WorldWideScience

Sample records for basic material properties

  1. Basic requirements of mechanical properties for nuclear pressure vessel materials in ASME-BPV code

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2011-01-01

    The four basic aspects of strengths, ductility, toughness and fatigue strengths can be summarized for overall mechanical properties requirements of materials for nuclear pressure-retaining vessels in ASME-BPV code. These mechanical property indexes involve in the factors of melting, manufacture, delivery conditions, check or recheck for mechanical properties and chemical compositions, etc. and relate to degradation and damage accumulation during the use of materials. This paper specifically accounts for the basic requirements and theoretic basis of mechanical properties for nuclear pressure vessel materials in ASME-BPV code and states the internal mutual relationships among the four aspects of mechanical properties. This paper focuses on putting forward at several problems on mechanical properties of materials that shall be concerned about during design and manufacture for nuclear pressure vessels according to ASME-BPV code. (author)

  2. An Investigation of the Basic Properties of Irradiated Polyethylene Memory Materials.

    Science.gov (United States)

    1969-09-01

    This report describes the work done and conclusions arrived at in an investigation of the basic properties of irradiated polyethylene memory ...materials. The properties affecting crosslinking, the main factor which determines the memory in polyethylene, were investigated using different commercial...molecular weight distribution was the main factor that influences the crosslinking efficiency. In addition,the conditions at which the crosslinking

  3. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  4. Deterioration of Basic Properties of the Materials in FRP-Strengthening RC Structures under Ultraviolet Exposure

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2017-08-01

    Full Text Available This paper presents an experimental study of the basic properties of the main materials found in reinforced concrete (RC structures strengthened by fibre reinforced polymer (FRP sheets with scope to investigate the effect of ultraviolet (UV exposure on the degradation of FRP, resin adhesive materials and concrete. The comparison studies focused on the physical change and mechanical properties of FRP sheet, and resin adhesive materials and concrete before and after UV exposure. However, the degradation mechanisms of the materials under UV exposure were not analyzed. The results show that the ultimate tensile strength and modulus of FRP sheets decrease with UV exposure time and the main degradation of FRP-strengthened RC structures is dependent on the degradation of resin adhesive materials. The increase in the number of FRP layers cannot help to reduce the effect of UV exposure on the performance of these materials. However, it was verified that carbon FRP materials have a relatively stable strength and elastic modulus, and the improvement of the compression strength of concrete was also observed after UV exposure.

  5. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR

    2013-01-01

    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  6. Hydromechanics - basic properties

    International Nuclear Information System (INIS)

    Lee, Sung Tak; Lee, Je Geun

    1987-03-01

    This book tells of hydromechanics, which is about basic properties of hydromechanics such as conception, definition, mass, power and weight, and perfect fluid and perfect gas, hydrostatics with summary, basic equation of hydrostatics, relative balance of hydrostatics, and kinematics of hydromechanics, description method of floating, hydromechanics about basic knowledge, equation of moment, energy equation and application of Bernoulli equation, application of momentum theory, inviscid flow and fluid measuring.

  7. Basic properties of semiconductors

    CERN Document Server

    Landsberg, PT

    2013-01-01

    Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title. Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form. The first three chapters discuss various aspects of modern band theory and the

  8. Reference upper shelf fracture toughness properties of PWR pressure vessel materials: neutral/basic flux PWR submerged-arc welds

    International Nuclear Information System (INIS)

    Lidbury, D.P.G.

    1987-10-01

    A generic data base, relating to the upper shelf fracture toughness properties (O ≤ T ≤ 300 0 C) of pressurised water reactor (PWR) pressure vessel submerged-arc welds, deposited using neutral or basic fluxes, has been compiled and is presented in summary form within the main body of this report. A comparison with the A533B-1 plate and A508-3 forging data presented in the Second (1982) Report of the Light Water Reactor Study Group suggests the upper shelf fracture toughness properties of RPV submerged-arc welds metals are such that, over the temperature range appropriate to PWR plant operation: (i) initiation toughnesses are generally less than those associated with A533B-1/A508-3 base metals containing < 0.010 wt% S; (ii) enhanced toughnesses, corresponding to 2.0 mm stable crack extension, are comparable with those expected of A533B-1 plate materials containing < 0.010 wt% S. The information gathering exercise has also confirmed that upper shelf toughnesses associated with the use of basic or neutral fluxes are higher than those associated with the use of acidic fluxes. (author)

  9. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  10. Basic concepts of materials accounting

    International Nuclear Information System (INIS)

    Markin, J.T.

    1989-01-01

    The importance of accounting for nuclear materials to the efficient, safe, and economical operation of nuclear facilities is introduced, and the following topics are covered: material balance equation; item control areas; material balance uncertainty; decision procedures for materials accounting; conventional and near-real-time accounting; regulatory requirements of the US Department of Energy and the Nuclear Regulatory Commission; and a summary related to the development of a materials accounting system to implement the basic concepts described. The summary includes a section on each of the following: problem definition, system objectives, and system design

  11. Quality quantification model of basic raw materials

    Directory of Open Access Journals (Sweden)

    Š. Vilamová

    2016-07-01

    Full Text Available Basic raw materials belong to the key input sources in the production of pig iron. The properties of basic raw materials can be evaluated using a variety of criteria. The essential ones include the physical and chemical properties. Current competitive pressures, however, force the producers of iron more and more often to include cost and logistic criteria into the decision-making process. In this area, however, they are facing a problem of how to convert a variety of vastly different parameters into one evaluation indicator in order to compare the available raw materials. This article deals with the analysis of a model created to evaluate the basic raw materials, which was designed as part of the research.

  12. Notes on basic materials (1)

    International Nuclear Information System (INIS)

    Donald, R.

    1976-01-01

    This lecture was a revision of basic material, intended for students who were mainly postgraduate at the end of their first year in experimental high energy physics. The subject headings include the following: notation and generalities; classification of particles; symmetry arguments; higher symmetries; SU 3 isoscalar factors; predictions from SU 3; charm; relativistic wave equations; Feynman graphical techniques. (U.K.)

  13. Basic mechanical properties of layered steels

    OpenAIRE

    Michal Černý; Josef Filípek; Pavel Mazal; Petr Dostál

    2013-01-01

    This article deals with identifying attributes of layered steel materials (damask steel) with the help of mechanical tests. Experimentally verify basic mechanical properties of layered steel and subsequently assessed it in comparison with the values obtained for the classic steel materials. In conclusion, there are listed the possibilities of using multilayer steel materials in technical practice, depending on the economics of production.The damask steel was prepared by forge welding from a p...

  14. Basic characteristics data base of buffer material

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji

    2004-02-01

    For the buffer material of geological disposal of High-Level radioactive Waste (HLW) in Japan, it is expected to maintain its low water permeability, thermal conductivity, self-sealing, radionuclide sorption and retardation, chemical buffering, overpack support and stress buffering properties over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above functions. Among the kinds of natural clay, bentonite when compacted is superior because (1) it has exceptionally low water permeability and properties to control the movement of water in buffer, (2) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (3) it has ability to exchange cations and to adsorb cationic radioelements. Japan Nuclear Cycle Development Institute has extended the basic characteristics data of buffer material as one of the base information required for safe regulation of a country and HLW disposal project. This report presents the basic characteristics data of the buffer material which JNC acquired by December, 2003 was collected as a collection of data. (author)

  15. Basic mechanical properties of layered steels

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2013-01-01

    Full Text Available This article deals with identifying attributes of layered steel materials (damask steel with the help of mechanical tests. Experimentally verify basic mechanical properties of layered steel and subsequently assessed it in comparison with the values obtained for the classic steel materials. In conclusion, there are listed the possibilities of using multilayer steel materials in technical practice, depending on the economics of production.The damask steel was prepared by forge welding from a packet consisting of 17 layers (9 layers of tool steel 19 133 (ČSN with the thickness of 6 mm and 8 layers 80NiCr11 steel in the form of saw bands with the thickness of 1.2 mm. The packet was cut into 8 parts, folded 3 times and forged together, which provided damask steel with 136 layers. The resulting steel bars were used to make semi-finished products with the approximate dimensions of the test specimens. For evaluation of mechanical properties were applied the following tests: tensile test, Charpy impact test, hardness and microhardness measurementsThe results of tests proved that the properties of damask steel are dependent not only on the direction led impact quality forge weld layers and content iof nhomogeneities in the place of discord, but also on the quenching and tempering temperature, resp. on the choice of quenching bath, which determine the final structure of steel and the resulting hardness, respectively microhardness.

  16. Thermomechanical properties of mullitic materials

    OpenAIRE

    Jan Urbánek; Jirí Hamáček; Jan Macháček; Jaroslav Kutzendörfer; Jana Hubálková

    2017-01-01

    Mechanical tests provide important information about the properties and behaviour of materials. Basic tests include the measurement of flexural strength and in case of refractory materials, the measurement of flexural strength at high temperatures as well. The dependence of flexural strength on the temperature of ceramic materials usually exhibits a constant progression up to a certain temperature, where the material starts to melt and so the curve begins to decline. However, it was discovere...

  17. Construction of irradiated material examination facility-basic design

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Kim, Eun Ka; Hong, Gye Won; Herr, Young Hoi; Hong, Kwon Pyo; Lee, Myeong Han; Baik, Sang Youl; Choo, Yong Sun; Baik, Seung Je

    1989-02-01

    The basic design of the hot cell facility which has the main purpose of doing mechanical and physical property tests of irradiated materials, the examination process, and the annexed facility has been made. Also basic and detall designs for the underground excavation work have been performed. The project management and tasks required for the license application have been carried out in due course. The facility is expected to be completed by the end of 1992, if the budgetary support is sufficient. (Author)

  18. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  19. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  20. Study on the basic property of Gaomiaozi bentonite, inner mongolia

    International Nuclear Information System (INIS)

    Liu Yuemiao; Xu Guoqing; Liu Shufen; Chen Zhangru

    2001-01-01

    Buffer/backfill material layer is one of important engineered barriers in the HLW geological repository. The geologic setting of Gaomiaozi bentonite deposit is introduced, and the mineral composition, physical and chemical property, basic geotechnical property, swelling property and permeability of highly compacted bentonite of main ore bed has been studied. The study results show that montmorillonite content of Gaomiaozi bentonite is relatively high, physical and chemical property, geotechnical property and impermeability are good. So Gaomiaozi bentonite deposit could be regarded as supply base of buffer/backfill material for HLW geological repository

  1. Basic monolithic materials containing zirconium sinters

    International Nuclear Information System (INIS)

    Kloska, A.; Miaczynska, H.; Strama, J.; Seifert, H.

    1997-01-01

    The presented proposals and results of investigation deal with the new types of basic refractory concrete. Refractory ceramic composites of the system CaO-MgO-ZrO 2 -SiO 2 have a key role in the production technology of these types of concrete. Such types of concrete possess useful characteristics, especially good corrosion resistance and thermomechanical properties. Preliminary analysis of the application possibilities for the new concrete types suggests that they can be useful in modern steel-making processes, including secondary metallurgy. (author)

  2. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    Directory of Open Access Journals (Sweden)

    Monika Božiková

    2017-01-01

    Full Text Available In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of thermal parameters measurement for various foods and food raw materials as: granular materials – corn flour and wheat flour; fruits, vegetables and fruit products – grated apple, dried apple and apple juice; liquid materials – milk, beer etc. Measurements were performed in two temperature ranges according to the character of examined material. From graphical relations of thermophysical parameter is evident, that thermal conductivity and diffusivity increases with temperature and moisture content linearly, only for granular materials were obtained non‑linear dependencies. Results shows, that foods and food raw materials have different thermal properties, which are influenced by their type, structure, chemical and physical properties. From presented results is evident, that basic thermal parameters are important for material quality detection in food industry.

  3. Law - temperature material properties

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1986-01-01

    This chapter is a survey of those properties which are of greatest importance to cryogenics. Included in the discussion are the behavior of the heat capacity, electrical and thermal conductivities, thermal contraction, and some special properties of materials--specifically magnetic spin systems and superconductors. Most of the descriptions are on the basis of thermodynamic or solid-state physics principles. Figures show Deybe specific heat and internal energy functions, and the Brillouin function for different total spin quantum numbers

  4. Mechanical Properties of Materials

    CERN Document Server

    Pelleg, Joshua

    2013-01-01

    The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years.  This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a differ...

  5. Thermomechanical properties of mullitic materials

    Directory of Open Access Journals (Sweden)

    Jan Urbánek

    2017-12-01

    Full Text Available Mechanical tests provide important information about the properties and behaviour of materials. Basic tests include the measurement of flexural strength and in case of refractory materials, the measurement of flexural strength at high temperatures as well. The dependence of flexural strength on the temperature of ceramic materials usually exhibits a constant progression up to a certain temperature, where the material starts to melt and so the curve begins to decline. However, it was discovered that ceramic mullitic material with a 63 wt.% of Al2O3 exhibits a relatively significant maximum level of flexural strength at about 1000 °C and refractory mullitic material with a 60 wt.% of Al2O3 also exhibits a similar maximum level at about 1100 °C. The mentioned maximum is easily reproducible, but it has no connection with the usual changes in structure of material during heating. The maximum was also identified by another measurement, for example from the progression of the dynamic Young’s modulus or from deflection curves. The aim of this work was to analyse and explain the reason for the flexural strength maximum of mullitic materials at high temperatures.

  6. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  7. Electrical properties of materials

    CERN Document Server

    Solymar, L; Syms, R R A

    2014-01-01

    An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microele...

  8. Some basic properties of environmentally adapted oils

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, E. [Div. of Machine Elements, Luleaa University of Technology (Sweden)

    1998-11-01

    Environmental concern has led to a development of lubricants that are less harmful to the environmental than traditional mineral based oils. Biodegradability and non-toxicity are desired properties together with a competitive price and if possible they should also be derived from renewable raw materials. In order to have a major breakthrough for the new, environmentally adapted lubricating oils they must perform well in mechanical and hydraulic systems. They must reduce wear, increase efficiency and reduce maintenance costs equally well, or preferably better than mineral based oils. This paper presents primary results from an investigation where four environmentally adapted oils (rape seed, pine tree, diester and TMP-ester) are compared to a conventional naphthenic mineral oil. Viscosity and viscosity-pressure coefficients, limiting shear stress, friction properties and film forming ability have been evaluated under elastohydrodynamic conditions. It was found that the mineral oil had the highest values of pressure-viscosity coefficient, limiting shear stress and coefficient of friction. Rape seed oil had the second highest pressure-viscosity coefficient but the lowest limiting shear stress and coefficient of friction. Pine tree oil, diester and TMP-ester formed an intermediate group with rather similar results. The Hamrock-Dowson equation for central film thickness was found to overestimate film thickness by about 10-20 per cent with the least discrepancy for the mineral oil. (orig.) 8 refs.

  9. Polymer materials basic research needs for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Macknight, W.J.; Baer, E.; Nelson, R.D. (eds.)

    1978-08-01

    The larger field covered in the workshop consists of (1) synthesis and characterization, (2) physical chemistry, (3) physics, and (4) engineering. Polymeric materials are properly regarded as new materials in their own right, not as replacements for existing materials. As such they need to be studied to understand the properties which are unique to them by virtue of their particular molecular structures. Technological applications will rationally follow from such studies. It is the objective of this report to point out basic research needs in polymer materials related to energy. The development of sophisticated instrumentation makes the task of molecular characterization possible on a level hitherto unattainable. Many of these instruments because of their size and complexity must of necessity be located at the DOE National Laboratories. The importance of personnel trained in the polymer field located at these facilities is emphasized. In the past there has been relatively little concerted polymer research within the energy community. This report attempts to describe the present situation and point out some needs and future research directions. (GHT)

  10. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  11. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud

    2011-01-01

    activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  12. Aqueous interactions of zeolitic material in acidic and basic solutions

    OpenAIRE

    Polatoğlu, İlker; Çakıcıoğlu Özkan, Seher Fehime

    2010-01-01

    Aqueous interactions of natural zeolitic material in as-received and modified forms were studied. The zeolitic materials was interacted with acidic (hydrochloric acid, lactic acid, acetic acid) and basic (sodium hydroxide) solutions. Ion exchange, adsorption, complex formation, precipitation and cation hydrolysis were possible interaction mechanisms affected by the amount and cation content of zeolite and pH. The dominant mechanisms seemed to be ion exchange and adsorption in HCl solution whe...

  13. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete and the p...... and the properties of lime mortar....

  14. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  15. Pelczynski's property (V) and weak* basic sequences | Cilia ...

    African Journals Online (AJOL)

    In this note we study the property (V) of Pelczynski, in a Banach space X, in relation with the presence, in the dual Banach space X*, of suitable weak* basic sequences. We answer negatively to a question posed by John and we prove that, if X is a Banach space with the Property (V) of Pelczynski and the Gelfand Phillips ...

  16. Basic and Morphological Properties of Bukit Goh Bauxite

    Science.gov (United States)

    Hasan, Muzamir; Nor Azmi, Ahmad Amirul Faez Ahmad; Tam, Weng Long; Phang, Biao Yu; Azizul Moqsud, M.

    2018-03-01

    Investigation conducted by International Maritime Organization (IMO) concluded that the loss of the Bulk Jupiter that carrying bauxite from Kuantan has uncovered evidence to suggest liquefaction led to loss of stability. This research analysed Bukit Goh bauxite and comparison was made with International Maritime Solid Bulk Cargoes (IMSBC Code) standard. To analyse these characteristics of the bauxite, four samples were selected at Bukit Goh, Kuantan ; two of the samples from the Bukit Goh mine and two samples from the stock piles were tested to identify the bauxite basic and morphological properties by referring to GEOSPEC 3 : Model Specification for Soil Testing ; particle size distribution, moisture content and specific gravity and its morphological properties. Laboratory tests involved including Hydrometer test, Small Pycnometer test, Dry Sieve test and Field Emission Scanning Electron Microscop (FESEM) test. The results show that the average moisture content of raw Bukit Goh bauxite is 20.64% which exceeded the recomended value of maximum 10%. Average fine material for raw bauxite is 37.75% which should not be greater than 30% per IMSBC standard. By that, the bauxite from Bukit Goh mine do not achieved the minimum requirements and standards of the IMSBC standard and need to undergo beneficiation process for better quality and safety.

  17. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    OpenAIRE

    Monika Božiková; Ľubomír Híreš; Michal Valach; Martin Malínek; Jan Mareček

    2017-01-01

    In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of ...

  18. Basic Research in Materials Science and Economic Sustainable Growth

    Science.gov (United States)

    Habermeier, H.-U.

    2000-09-01

    The necessity of public funding of basic research has been proclaimed by V. Bush 1945 in the `social contract for science' and this concept has been unanimously accepted as a vital prerequisite for the wealth of nations during the past 50 years. Recent developments gave rise to a paradigm shift away from the Bush's concept. In this paper this development is critically explored and the economical impact of research is discussed. Current evolution in knowledge generation and a change of the political boundary conditions require a new concept for an integrated research system. Examples taken from the semiconductor industry serve as an indicator of the enabling importance of materials science and condensed matter physics in the past. Basic research in materials science of functional ceramics generated new developments that are believed to have similar impact in the future. Already appearing and in the years ahead more emphasized nature of materials science as an multidisciplinary activity serves a model for the proposal of the vision of an integrated system of basic research and education. This is a prerequisite to master the challenges we are facind in the next century. A science based winning culture is the model for the future.

  19. Material Properties at Low Temperature

    CERN Document Server

    Duthil, P

    2014-07-17

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.

  20. Mechanical properties of nanophase materials

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, R.W. [Argonne National Lab., IL (United States); Fougere, G.E. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

    1993-11-01

    It has become possible in recent years to synthesize new materials under controlled conditions with constituent structures on a nanometer size scale (below 100 nm). These novel nanophase materials have grain-size dependent mechanical properties significantly different than those of their coarser-grained counterparts. For example, nanophase metals are much stronger and apparently less ductile than conventional metals, while nanophase ceramics are more ductile and more easily formed than conventional ceramics. The observed mechanical property changes are related to grain size limitations and/or the large percentage of atoms in grain boundary environments; they can also be affected by such features as flaw populations, strains and impurity levels that can result from differing synthesis and processing methods. An overview of what is presently known about the mechanical properties of nanophase materials, including both metals and ceramics, is presented. Some possible atomic mechanisms responsible for the observed behavior in these materials are considered in light of their unique structures.

  1. Be-Cu gradient materials through controlled segregation. Basic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Muecklich, F.; Lorinser, M.; Hartmann, S.; Beinstingel, S. [Saarland Univ., Saarbruecken (Germany); Linke, J.; Roedig, M.

    1998-01-01

    The joining of materials has a fundamental problematic nature: Creating a sharp interface between two different materials causes a more or less extreme jump in the properties at this point. This may result in the failure of the component under mechanical or thermal loads. In some cases there are further difficulties caused by using a third component (e.g. the transformation of Ag-lead into Cd by neutron beams). The solution may be the creating of a functionally gradient material (FGM) Be-Cu. We discuss the advantage of such a FGM and the probabilities of an new procedure for manufacturing 1-dimensional FGMs. (author)

  2. Ferroelectric Thin Films Basic Properties and Device Physics for Memory Applications

    CERN Document Server

    Okuyama, Masanori

    2005-01-01

    Ferroelectric thin films continue to attract much attention due to their developing, diverse applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. All authors are acknowledged experts in the field.

  3. Gear materials, properties, and manufacture

    National Research Council Canada - National Science Library

    Davis, J. R

    2005-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Proper Gear Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Basic Applied Stresses...

  4. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly decreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  5. What the Sun Has Taught Us About Basic Properties of Matter

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Sarbani [Yale University

    2012-03-07

    The Sun is an immensely large object formed out of many tons of gas. Yet the Sun can help us learn about some of the basic properties of matter. The structure of the Sun is governed not only by macrophysics such as hydrostatic equilibrium, convective and radiative heat transport, but also by microphysics such as nuclear reaction rates and the equation of state of the material that forms the Sun. Knowledge of the detailed structure of the Sun can therefore help us constrain the basic properties of matter. Helioseismology, the study of solar pulsations, has given us the means to get a detailed picture of the solar interior. In this talk I shall discuss how helioseismology has allowed us to determine details of solar structure, and in turn allowing us to study basic properties of matter.

  6. [Mechanical properties of thermoplastic materials].

    Science.gov (United States)

    Zhang, Ning; Bai, Yu-xing; Zhang, Kun-ya

    2010-09-14

    To investigate the mechanical properties of various brands of thermoplastic materials under different test conditions so as to analyze their influencing factors so as to provide a reference for improving the effect of invisible orthodontics. Three brands of thermoplastic materials, DR, Biolon and Erkodent, were selected. They were tested by Instron testing machine to measure their maximal stress and modulus under different processing modes, including pre-thermoforming, post-thermoforming and dipped in artificial saliva for two weeks after thermoforming. The data were analyzed by SPSS 11.5. Analyzed the mechanical properties change-trend under each test condition. The modulus (MPa) and maximum stress (MPa) of control group were significantly higher than those of thermoforming group (DR: 9.63±0.68 vs 7.85±0.61, 267±8 vs 199±6; Erkodent: 8.28±0.28 vs 7.59±0.45, 226±6 vs 199±6; Biolon: 8.85±0.41 vs 7.07±0.22, 237±6 vs 169±7, all P<0.05). The modulus (MPa) and maximum stress (MPa) of thermoforming group were significantly lower than those of saliva immersion group (DR: 7.85±0.61 vs 9.14±0.41, 199±6 vs 243±7; Erkodent: 7.59 ± 0.45 vs 8.38±0.29, 199±6 vs 212±7; Biolon: 7.07±0.22 vs 7.90±0.31, 169±7 vs 197±5, all P<0.05). The different brands of thermoplastic materials have different mechanical properties. The different processing modes influence the mechanical properties of thermoplastic materials. The mechanical properties decrease after thermoforming and increase after saliva immersion.

  7. Gear materials, properties, and manufacture

    National Research Council Canada - National Science Library

    Davis, J. R

    2005-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Gear Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  8. Gear materials, properties, and manufacture

    National Research Council Canada - National Science Library

    Davis, J. R

    2005-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Introduction to Gear Technology Chapter 1 Basic Understanding of Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1...

  9. Basic aspects of spallation radiation damage to materials

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States); Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The nature of radiation effects, as learned from investigations using reactor neutron irradiations, is reviewed, and its relevance to spallation radiation damage to materials in accelerator-driven neutron sources is discussed. Property changes upon irradiation are due to (1) displaced atoms, producing vacancy and interstitial defect clusters, which cause radiation hardening and embrittlement; (2) helium production, the helium then forming bubbles, which engenders high-temperature grain-boundary fracture; and (3) transmutations, which means that impurity concentrations are introduced. Methods for analyzing displacement production are related, and recent calculations of displacement cross sections using SPECTER and LAHET are described, with special reference to tungsten, a major candidate for a target material in accelerator-driven neutron systems.

  10. Basic science research to support the nuclear material focus area

    Energy Technology Data Exchange (ETDEWEB)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material

  11. Basic Science Research to Support the Nuclear Materials Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material

  12. Studies of the dynamic properties of materials using neutron scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Windsor, C.G.

    1985-09-01

    The dynamic properties of materials using the neutron scattering technique is reviewed. The basic properties of both nuclear scattering and magnetic scattering are summarized. The experimental methods used in neutron scattering are described, along with access to neutron sources, and neutron inelastic instruments. Applied materials science using inelastic neutron scattering; rotational tunnelling of a methyl group; molecular diffusion from quasi-elastic scattering; and the diffusion of colloidal particles and poly-nuclear complexes; are also briefly discussed. (U.K.)

  13. Determination of reliable material properties

    International Nuclear Information System (INIS)

    Roos, E.; Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 5 is about the determination of reliable material properties. This concerns mainly mechanical test procedures and their interpretation. Some background concerning crack and fracture mechanisms is given

  14. Basic characteristic test of buffer/backfill material under Horonobe groundwater condition

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji

    2005-02-01

    By the second progress report (H12) on research and development for the geological disposal of high-level radioactive waste (HLW) in Japan, Japan Nuclear Cycle Development Institute (JNC) extended the data base of basic properties of compacted bentonite which were mainly obtained by using distilled water as test fluid. This report presents influence of Horonobe groundwater on the basic properties of buffer and backfill material. The Horonobe groundwater is a type of saline groundwater. The groundwater was sampled at GL-300 m or deeper by using bore hole HDB-6 of the underground laboratory of Horonobe site. In addition, basic properties are also obtained by using distilled water, synthetic seawater, and NaCl solution. Experimental results are as follows; 1) Swelling characteristics, hydraulic characteristics and mechanical characteristics of the buffer material and backfill material decrease by the influence of saline water. The relationship between effective clay density and swelling stress is described by the following equation. σ = exp (2.5786ρ b 3 - 12.238ρ b 2 + 21.818ρ b - 14.035) where σ is swelling stress [MPa], ρ b is effective clay density [Mg/m 3 ]. The relationship between effective clay density and intrinsic permeability is described by the following equation. κ = exp (-41.466 + 4.316ρ b - 4.069ρ b 2 ) where κ is intrinsic permeability [m 2 ], ρ b is effective clay density [Mg/m 3 ]. The relationship between effective clay density and unconfined compressive strength is described by the following equation. qu = 1.4 x 10 -4 exp (5.637ρ b ) where qu is unconfined compressive strength [MPa], ρ b is effective clay density [Mg/m 3 ]. 2) Saline water doesn't influence the thermal characteristic of the buffer material. The thermal conductivity and specific heat are derived by using the relationship that was obtained so far. (author)

  15. Principle and basic property of the sequential flow pump.

    Science.gov (United States)

    Hara, Shintaro; Maeno, Erina; Li, Xinyang; Yurimoto, Terumi; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke

    2017-09-01

    In the emergency care field, early treatment of acute heart or respiratory failure has been a global concern. In severe cases, patients are frequently required to be on an extracorporeal membrane oxygenator (ECMO) life support. To make the ECMO system more compact and portable, we proposed a sequential flow-type centrifugal pump named the sequential flow pump (SFP). In this study, principle and basic properties of this novel blood pump were examined by computational fluid dynamic (CFD) analysis and an experimental model. In the SFP, fluid is given centrifugal force sequentially twice with a single closed impeller. This sequential pressurization mechanism enables high-pressure output without high impeller speed. To realize easy integration of a blood pump with an artificial lung, the inlet and outlet ports are located at lateral side and center of the pump, respectively, which is the reverse configuration of conventional centrifugal pumps. The computational model was composed for CFD analysis and the experimental model was developed for the experiment of the actual pump. For both models, dimension of the impeller and volute was designed to be equal. In the CFD analysis, the SFP could generate higher performance than the single pressurization model with the same rotational speed of the impeller. Basic property of the experimental model was very similar to that of the computational model. The results showed the possibility that the SFP would be more suitable for the compact ECMO system than conventional centrifugal pumps.

  16. Basic research of developed the evaluation model of buffer material

    International Nuclear Information System (INIS)

    Kawamura, K.; Ichikawa, Y.; Suzuki, S.; Shibata, M.; Sato, H.; Ueno, K.

    2003-07-01

    For the better understanding of mass transport property of the buffer material of the high-level radioactive waste disposal, the unified method of molecular dynamics simulations (MD) and homogenization analysis (HA) method and model were developed. Interaction of atoms and multi-body potential model which needed in MD calculation was improved. Na-smectite surface and water molecule system were calculated by MD, the structure of water molecule, viscosity of water nearby the Na-smectite surface and distribution of diffusion coefficient of which were estimated. According to the results of the MD calculation, first water layer adjacent to Na-smectite surface was structured, and about 1nm thick diffuse layer was observed in which viscosity of water in higher than ordinary water. Structure modeling for Na-smectite including edge was also discussed. The HA analysis needs the results of the micro-scale properties from MD calculation and the microstructure of the field, i.e. microstructure of buffer material. Microstructure of compacted Na-smectite were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and X-ray diffraction (XRD). On the basis of the simplified observation results, the equation was formulated that the external pore size was expressed as a function of the number of clay layers and dry density. Using MD simulation results and pore structure model, diffusion coefficient of water molecule in compacted Na-smectite were calculated by the unified MD/HA analysis method. For this analysis Multi-scale HA method which can handle for porous media consists of various scale particles was developed. Calculated diffusion coefficient of water was in agreement with the results of diffusion experiment of triturated water (HTO). Regarding solute diffusion through compacted bentonite, experimental results are accumulated and discussed. Modelling frameworks for diffusion and sorption of ion were also developed. (author)

  17. Introducing Viewpoints of Mechanics into Basic Growth Analysis : (VII) Mathematical Properties of Basic Growth Mechanics in Ruminant

    OpenAIRE

    Shimojo, Masataka; Shao, Tao; Masuda, Yasuhisa; 下條, 雅敬; 増田, 泰久

    2008-01-01

    This study was conducted to investigate mathematical properties of basic growth mechanics in ruminant by introducing newly developed viewpoints into mathematical operations of basic growth function. The negative sign, which appeared naturally by taking the square root of the differential equation based on basic growth mechanics, gave mathematical contradictions to the differential principle. In the process of correcting those contradictions, viewpoints of interest were newly introduced to giv...

  18. Microstructure and properties of ceramic materials

    International Nuclear Information System (INIS)

    Yen Tungsheng

    1984-01-01

    Ceramics materials study is an important field in modern materials science. Each side presented 19 papers most of which were recent investigations giving rather extensive coverage of microstructure and properties of new materials. (Auth.)

  19. Optical properties of metallic nanoparticles basic principles and simulation

    CERN Document Server

    Trügler, Andreas

    2016-01-01

    This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructu...

  20. Quantum paradoxes and the collapse of orthodox materialism basics

    Directory of Open Access Journals (Sweden)

    Oleg Avchenko

    2015-06-01

    Full Text Available Three quantum paradoxical experiments — (1 double-slit, (2 delayed choice, and (3 EPR paradox ones are considered. These experiments definitely indicate the inadequacy of the mate- rialist paradigm. The materialist doctrine can not describe, explain and predict phenomena and strangeness of quantum world, and the concept of matter is inconsistent at the quantum level. Doubtless, from the materialistic point of view, two propositions saying about that the physical properties of the system are in themselves, they are objective and independent of measurement (1\tand measurement (observation of one system does not affect the result of the measurement (observation of another system (2 are not verified by the recent experiments confirming so- called quantum non-locality or non-local realism. In relation to this, we have to doubt the truth of materialist ontology which denies the existence of transcendental objects or any extrasensory phenomena with certainty. There should be set boundaries for the materialist paradigm, beyond which it can not be accepted. The poliontichny paradigm that considers reality in potential and actual modes is proposed as an alternative world view embracing both material and quantum world. The unity of the world is not denied but it can be distinguished by two structural levels — two modes of reality evidencing the dual nature of the Universe.

  1. Control over magnetic properties in bulk hybrid materials

    Science.gov (United States)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  2. Physicomechanical properties of porous fiber materials and prediction of them

    International Nuclear Information System (INIS)

    Kostornov, A.G.; Galstyan, L.G.

    1985-01-01

    A comparison is presented of the experimentally determined values of certain properties of porous fiber materials obtained by the optimum method from monodisperse fibers of copper, nickel, and Nichrome of different diameters with the corresponding theoretical values. The electrical conductivity, tensile strength, and modulus of elasticity, the basic properties of a porous body, which are determined both by the structural characteristics of the elements and by the condition of the interparticle contacts, were considered

  3. BASIC

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Schmidt, Karsten

    2017-01-01

    BPP. Tilgangen består dels af den overordnede proces-model BASIC og dels af et iboende framework, ABCD, der er en model for systematisk adfærdsanalyse, udvikling, test og implementering af adfærdsrettede løsningskoncepter. Den samlede model gør det muligt for forskere såvel som offentligt ansatte...

  4. Experimental Study on Basic Mechanical Properties of BFRP Bars

    Science.gov (United States)

    Fan, Xiaochun; Xu, Ting; Zhou, Zhengrong; Zhou, Xun

    2017-10-01

    Basalt Fiber Reinforced Polymer (BFRP) bars have the advantages of corrosion resistance, high strength, light weight, good dielectric properties, and they are new type of green reinforced alternative material. In order to determine the mechanical properties of BFRP bars, the tensile strength of basalt fiber bars was necessary to be studied. The diameters of the basalt fiber bars were compared by means of uniaxial tensile test in this article. Then the stress-strain curve can be drawn out. The results show that the stress - strain curve of BFRP bars present straight line relation, and there is no sign before failure; there is no yield platform on the stress-strain curve of BFRP bars, which are typical brittle material;the tensile strength of BFRP bars is about 3 times higher than that of ordinary steel bars. and the elastic modulus is about 1/5 of that of ordinary steel; the ultimate tensile strength of BFRP bars varies little with the increase of diameter, but there exist some differences in modulus values.

  5. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  6. Design of materials with prescribed nonlinear properties

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole; Jensen, Jakob Søndergaard

    2014-01-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests...

  7. Basic components of a national control system for nuclear materials

    International Nuclear Information System (INIS)

    Rabot, G.

    1986-01-01

    The paper presents the different aspects related to the organization and the functioning of a national control and accounting system for nuclear materials. The legal aspects and the relations with the IAEA are included

  8. Basic Physical Properties of Ammonia-Rich Ice

    Science.gov (United States)

    Shandera, S. E.; Lorenz, R. D.

    2000-10-01

    We report simple measurements of the thermal conductivity, mechanical strength and microwave absorptivity of ammonia hydrate ices, which are likely to be abundant in the Saturnian system. Understanding the dielectric properties of ammonia ice could play an important role in interpreting data from the Cassini spacecraft, which will image Titan's surface by radar in 2004. Thermal conductivity measurements were made by freezing a thin copper wire in the center of ice samples. The wire acted as both heater and temperature sensor, calibrated by a thermocouple also frozen in the sample. Ices with concentrations of 5- 30% ammonia were compared to pure water ice and ices containing salts. Thermal conductivity was found to decrease with increasing concentration of ammonia - a factor of 3 or 4 less than pure water ice for the 30% peritectic composition. Microwave absorptivity was measured by placing insulated ice samples and calibration materials in a conventional microwave oven. The microwave absorptivity was found to increase with increasing concentration of ammonia, although the effect is strongly temperature dependent, and heat leak from the room made quantitative measurement difficult. Mechanical strength was estimated using a ball bearing/accelerometer indentation method. For temperatures 100-150K, ammonia-rich ice has a Young's modulus about 10x smaller than pure ice. These properties affect tidal dissipation and the likelihood and style of cryovolcanism on (and the radar appearance of) the icy satellites and Titan. This work was supported by the Cassini RADAR team and the Arizona Space Grant Consortium.

  9. Basic physiochemical and rheological properties of detergent sclerosants.

    Science.gov (United States)

    Wong, Kaichung; Chen, Tony; Connor, David E; Behnia, Masud; Parsi, Kurosh

    2015-06-01

    To determine the basic physiochemical properties and rheological activity of detergent sclerosants. Sodium tetradecyl sulphate and polidocanol liquid and foam sclerosants were investigated in a range of concentrations (0.1-3%), liquid-plus-air fractions (1+2 to 1+8) and dilutions in water (stock solutions) or in normal saline. The embolic agent ethanol was investigated for comparison. Density was measured using a digital balance. Surface tension was measured by the Du Nuoy ring method and used to determine the critical micellar concentration. Viscosity was measured using a cone-plate rheometer for liquid and a modified parallel plate method for foam. Liquid sclerosant density decreased as the sclerosant concentration increased while foam density decreased with the increasing air fraction. The critical micellar concentration of polidocanol was 0.002% in both normal saline and water while that of sodium tetradecyl sulphate was 0.075% in normal saline and 0.200% in water. Viscosity of liquid sodium tetradecyl sulphate was lower than that of polidocanol. Foam sclerosants were at least 10,000-fold more viscous than liquid sclerosants and ethanol. All agents demonstrated a Non-Newtonian shear-thinning behaviour with a fall in viscosity at lower shear rates (<10 s(-1)). Polidocanol (but not sodium tetradecyl sulphate) foam viscosity progressively increased with increasing sclerosant concentration and liquid-plus-air fractions. Liquid and foam sclerosants and ethanol are Non-Newtonian shear thinning fluids. Foam sclerosants are significantly more viscous than liquid agents. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    DEFF Research Database (Denmark)

    Warner, Terence Edwin

    -specialists, who are interested in learning more about how technological ceramic materials and artificial minerals are made. Finally, the author assumes that the reader is familiar with the basic principles and concepts of materials chemistry (or at least has access to such knowledge), such as; thermodynamic......The synthesis of high quality material is an essential step in the process of obtaining meaningful information about the material’s properties, and therefore, is an important link between physics and chemistry. Semiconductors; superconductors; solid-electrolytes; glasses; pigments; dielectric......? This book attempts to address this problem by offering the reader clear and detailed descriptions on how to prepare a selection of fifteen inorganic materials that exhibit important optical, magnetic, electrical and thermal properties; on a laboratory scale. The materials and chemical syntheses have been...

  11. Audiovisual Fundamentals; Basic Equipment Operation and Simple Materials Production.

    Science.gov (United States)

    Bullard, John R.; Mether, Calvin E.

    A guide illustrated with simple sketches explains the functions and step-by-step uses of audiovisual (AV) equipment. Principles of projection, audio, AV equipment, lettering, limited-quantity and quantity duplication, and materials preservation are outlined. Apparatus discussed include overhead, opaque, slide-filmstrip, and multiple-loading slide…

  12. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    Science.gov (United States)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  13. Basic Mechanisms Leading to Fatigue Failure of Structural Materials

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Mazánová, Veronika

    2016-01-01

    Roč. 69, č. 2 (2016), s. 289-294 ISSN 0972-2815. [International Conference on CREEP, FATIGUE and CREEP-FATIGUE INTERACTION /7./. Kalpakkam, 19.01.2016-22.01.2016] R&D Projects: GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Damage mechanism * Fatigue crack initiation * Austenitic steel * Oxide cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  14. Spin-crossover materials properties and applications

    CERN Document Server

    Halcrow, Malcolm A

    2013-01-01

    The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applicat

  15. Acoustical properties of double porosity granular materials.

    Science.gov (United States)

    Venegas, Rodolfo; Umnova, Olga

    2011-11-01

    Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics.

  16. Tailoring of epoxy material properties

    NARCIS (Netherlands)

    Nakka, J.S.

    2010-01-01

    This research work is aimed to understand the effect of resin chemistry on the physical properties (e.g. moduli, viscoelasticity, moisture uptake, coefficient of thermal expansion) of cured aromatic epoxy-amine thermoset resins. This understanding will result into a good first approximation of the

  17. BASIC PROPERTIES IN RELATION TO DRYING PROPERTIES OF THREE WOOD SPECIES FROM INDONESIA

    Directory of Open Access Journals (Sweden)

    Efrida Basri

    2005-03-01

    Full Text Available The objectives of this study were to investigate basic and drying properties of three wood species from Indonesia, i.e. kuda (Lannea coromandelica Merr., waru (Hibiscus tiliaceus L. and mindi besar (Melia dubia Cav.. The basic properties include density, shrinkages, modulus of rupture (MOR, compression parallel to grain (C//, wood strength and anatomical structures. Meanwhile, the drying properties included drying time and drying defects. The initial-final temperature and humidity for each species was based on defects that resulted from high temperature drying trial. The results showed that the drying properties were significantly affected by wood anatomical structure. The initial-final drybulb temperature and wetbulb depression   for kuda wood are 50 -70ºC and 3-30ºC respectively, while the corresponding figures for waru wood are 65-80ºC and 6-30ºC, and for mindi besar wood are 55-80ºC and 4-30ºC. These drying schedules, however, still need further trial prior to their implementation in the factory-scale operation. All wood species studied have density and considerable strength recommended in their use for light medium construction purposes. Mindi besar wood has decorative appearance so it is suitable for furniture.

  18. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  19. Properties and characterization of modern materials

    CERN Document Server

    Altenbach, Holm

    2017-01-01

    This book focuses on robust characterization and prediction methods for materials in technical applications as well as the materials’ safety features during operation. In particular, it presents methods for reliably predicting material properties, an aspect that is becoming increasingly important as engineering materials are pushed closer and closer to their limits to boost the performance of machines and structures. To increase their engineering value, components are now designed under the consideration of their multiphysical properties and functions, which requires much more intensive investigation and characterization of these materials. The materials covered in this monograph range from metal-based groups such as lightweight alloys, to advanced high-strength steels and modern titanium alloys. Furthermore, a wide range of polymers and composite materials (e.g. with micro- and nanoparticles or fibres) is covered. The book explores methods for property prediction from classical mechanical characterization-...

  20. Database development of fundamental properties for the buffer material in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji; Yui, Mikazu

    2005-01-01

    By the second progress report (H12 report) on research and development for the geological disposal of High-Level radioactive waste (HLW) in Japan, the Japan Nuclear Cycle Development Institute (JNC) extended the database of basic properties for compacted bentonite, which were mainly saturated with distilled water as test fluid. This paper presents the effect of salinity on the basic properties of the buffer material and the status of the database development of the buffer material. For the basic properties of the buffer material, the hydraulic, swelling and mechanical properties of Kunigel V1 bentonite decrease due to the effect of salinity. The correlation among effective clay density, intrinsic permeability, swelling pressure, and unconfined compressive strength was obtained. The prototype database of fundamental properties not only for the buffer material but also for the backfill material was developed for the design of the HLW repository, through these experimental results. (author)

  1. Basic Density And Strength Properties Of Pines In Uganda ...

    African Journals Online (AJOL)

    There were no significant differences in all wood properties between the three species. Between tree variations in wood properties were statistically insignificant (p<0.05) in all the species, indicating a low potential of improving wood quality through selection. Growth rate had no significant influence on wood properties.

  2. Using catalytic methods for producing basic oil from domestic raw material

    Energy Technology Data Exchange (ETDEWEB)

    Selakovic, O.; Cavcic, E.; Jovanovic, M.

    1980-01-01

    A review is given of catalysts and catalytic methods for producing high quality lubricating oils. The results of studies in laboratory and semiindustrial scales, conducted to explain the capability of producing basic lubricating oils from domestic raw material with the use of various catalytic methods, are cited. Serving as the raw material was a vacuum distillate of oil from the Velebit deposit (a 343 to 540 degree fraction) with the following properties: density of 0.9187 per 15 degrees, a viscosity of 83.8 centistokes per 38 degrees and 8.12 centistokes at 99 degrees; a viscosity index of 61, an inflamation point of 200 degrees; a stagnation point of -24 degrees; a sulfur content of 0.32 percent and an anylin point (AT) of 88.2 degrees. The fraction was hydrated: in laboratory conditions in an aluminum, nickel and molybdenum catalyst at 8 to 11 megapascals, 340 to 380 degrees, a cubic feeding speed of 0.5 to 1 per hour, a supply of H/sub 2/ of 1,000 liters per liter of raw material. It was also hydrated in semiindustrial conditions, which are cited.

  3. Mechanical properties of graphites and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, Gilbert.

    1977-01-01

    The mechanical behavior of graphites and artificial carbons is related to the structure of these materials. The influence of structural modifications in a graphite monocrystal on the deformation and fracture properties is studied [fr

  4. Excitonic properties of graphene-based materials.

    Science.gov (United States)

    Wang, Min; Li, Chang Ming

    2012-02-21

    First-principle density functional theory (DFT) calculations with quasiparticle corrections and many body effects are performed to study the electronic and optical properties of graphene-based materials. This review summarizes the excitonic properties including optical transition spectra and the distribution of exciton wavefunctions, thus providing the theoretical knowledge and predictions for promising optical applications of graphene materials. This journal is © The Royal Society of Chemistry 2012

  5. Macroscopic properties of model disordered materials

    International Nuclear Information System (INIS)

    Knackstedt, M.A.; Roberts, A.P.

    1996-01-01

    Disordered materials are ubiquitous in nature and in industry. Soils, sedimentary rocks, wood, bone, polymer composites, foams, catalysts, gels, concretes and ceramics have properties that depend on material structure. Present techniques for predicting properties are limited by the theoretical and computational difficulty of incorporating a realistic description of material structure. A general model for microstructure was recently proposed by Berk [Berk, Phys.Rev.A, 44 5069 (1991)]. The model is based on level cuts of a Gaussian random field with arbitrary spectral density. The freedom in specifying the parameters of the model allows the modeling of physical materials with diverse morphological characteristics. We have shown that the model qualitatively accounts for the principal features of a wider variety of disordered materials including geologic media, membranes, polymer blends, ceramics and foams. Correlation functions are derived for the model microstructure. From this characterisation we derive mechanical and conductive properties of the materials. Excellent agreement with experimentally measured properties of disordered solids is obtained. The agreement provides a strong hint that it is now possible to correlate effective physical properties of porous solids to microstructure. Simple extensions to modelling properties of non-porous multicomponent blends; metal alloys, ceramics, metal/matrix and polymer composites are also discussed

  6. Important physical properties of peat materials

    Science.gov (United States)

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  7. [Psychometric properties of the Basic Family Relations Inventory (BFRI)].

    Science.gov (United States)

    Ibáñez Martínez, Núria; Linares Fernández, Juan Luis; Vilaregut Puigdesens, Anna; Virgili Tejedor, Carles; Campreciós Orriols, Meritxell

    2012-01-01

    The aim of this study was to analyze the factor structure and internal consistency of the Basic Family Relations Inventory (BFRI) in a non-probabilistic convenience sample of 442 participants (221 couples). Exploratory factor analysis resulted in three components. In a second-order factor analysis, the three components were grouped into two factors: the Conjugal factor, which refers to how the people who exercise the parental role interact with each other (generally, the parental couple), and the Parenting factor, which represents the way in which the parental couple treat their children. Both first- and second-order factors had high reliability indices. It was concluded that the 25-item BFRI is a valid instrument to evaluate the two-dimensional model of the basic family relations theory.

  8. Predicting blood:air partition coefficients using basic physicochemical properties

    NARCIS (Netherlands)

    Buist, H.E.; Wit-Bos, L. de; Bouwman, T.; Vaes, W.H.J.

    2012-01-01

    Quantitative Property Property Relationships (QPPRs) for human and rat blood:air partition coefficients (PBAs) have been derived, based on vapour pressure (Log(VP)), the octanol:water partition coefficient (Log(K_OW)) and molecular weight (MW), using partial least squares multilinear modelling.

  9. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...... cell of the periodic material can take the shape of a square, rectangle, or parallelogram, allowing for all kinds of 2D periodicities. © 2013 Elsevier B.V. All rights reserved....

  10. Virtual materials design using databases of calculated materials properties

    International Nuclear Information System (INIS)

    Munter, T R; Landis, D D; Abild-Pedersen, F; Jones, G; Wang, S; Bligaard, T

    2009-01-01

    Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.

  11. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  12. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  13. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei

    2017-01-01

    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  14. Role of material property gradient and anisotropy in thermoelectric materials

    International Nuclear Information System (INIS)

    Wang, X; Pan, E; Albrecht, J D

    2008-01-01

    It was recently discovered that inclusions, fatigue damage and other types of material imperfections and defects in metals can be nondestructively detected by noncontacting magnetic measurements that sense the thermoelectric currents produced by directional heating and cooling. Since detection of small defects in thermoelectric materials is ultimately limited by intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected, a thorough study is required on their impact on the nondestructive capability. Therefore, in this investigation the induced electric current densities and thermal fluxes are first derived for a steady line heat source in an inhomogeneous and anisotropic thermoelectric material. The exact closed-form solutions are obtained by converting the original problem into two inhomogeneous Helmholtz equations via eigenvalue/eigenvector separation. The material properties are assumed to vary exponentially in the same manner in an arbitrary direction. For the corresponding homogeneous but anisotropic material case, we also present an elegant formulation based on the complex variable method. It is shown that the induced magnetic fields can be expressed in a concise and exact closed form for a line heat source in an infinite homogeneous anisotropic material and in one of the two bonded anisotropic half-planes. Our numerical results demonstrate clearly that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields

  15. OM85. Basic Properties of Optical Materials Summaries of Papers.

    Science.gov (United States)

    1985-05-01

    Kirchoefer, N. Holonyak, K. Hess, D. A. Gulino, H. G. Drickamer, J. J. Coleman , P. D. Dapkus, Appl. Phys. Lett., 40, 821 (1982). 206 KI... Borrelli J. Chem. Phys. 41, 3293 (1964) [5] L. D. Pye, S. C. Cherukuri, J. Mansfield and T. Loretz J. Non-Crystalline Solids 56, 99 (1983) * [6] M. J

  16. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  17. The elusive memristor: properties of basic electrical circuits

    International Nuclear Information System (INIS)

    Joglekar, Yogesh N; Wolf, Stephen J

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux φ in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML) and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students

  18. The elusive memristor: properties of basic electrical circuits

    Energy Technology Data Exchange (ETDEWEB)

    Joglekar, Yogesh N; Wolf, Stephen J [Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 (United States)], E-mail: yojoglek@iupui.edu

    2009-07-15

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux {phi} in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML) and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students.

  19. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  20. Basic Properties of Flue-Gas Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    Kovacs Ferenc

    2003-03-01

    Full Text Available Several hundred thousand of FGD gypsum is produced annually at the Matra Power Plant (Hungary as a byproduct of generating electricity and protecting the environment. Chemical and mechanical characteristics of this material were studied of the Department of Mining and Geotechnical Engineering, University of Miskolc (Hungary. The material in question was found dead gypsum which can be calcined easily to obtain a relatively high-strength (15-25 MPa and clean binding material. Furthermore, grain composites were made of it by adding fly ash, which the power plant can provide the expected producers with, thus decreasing the energy consumption of calcining and utilizing a small part of coal combustion wastes.

  1. Closed subspaces and some basic topological properties of ...

    Indian Academy of Sciences (India)

    In this paper, we study the noncommutative Orlicz space L φ ( M ~ , τ ) ,which generalizes the concept of noncommutative L p space, where M is a von Neumann algebra, and φ is an Orlicz function. As a modular space, the space L φ ( M ~ , τ ) possesses the Fatou property, and consequently, it is a Banach space. In addition ...

  2. Some basic criteria for using of accountancy common system and nuclear material control

    International Nuclear Information System (INIS)

    Marzo, M.A.; Biaggio, A.L.

    1994-01-01

    Some basic criteria used by the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, using in the Accountancy and Control Common System of Nuclear Materials (SCCC) are presented and the control elements are described. The SCCC is a safeguard system used for all nuclear materials present in all nuclear activities executed by Brazil and Argentina. (C.G.C.). 4 refs, 1 tab

  3. Cutting and Folding for Tunable Materials Properties

    Science.gov (United States)

    Damasceno, Pablo; Dodd, Paul; Shyu, Terry; Shlian, Matthew; Shtein, Max; Kotov, Nicholas; Glotzer, Sharon

    2014-03-01

    Despite the small set of building blocks used for their assembly, naturally occurring materials such as proteins show remarkable diversity in their mechanical properties ranging from something resembling rubber-low stiffness, high resilience and extensibility-to silk-high stiffness and strength. Moreover, their self-folding properties inspire the design of structures capable of tunable reconfiguration. Motivated by such versatility, we report on simulations and experiments for the design of nanocomposites sheets whose mechanical properties can be made tunable via ``secondary structures'' patterning. Our simulations reveal the main cutting features needed to obtain desired material extensibility. Additionally, we study how similar sheets could self-fold into their desired ``native'' structure via stochastic forces. Our results open the possibilities for manufacture of flexible and reconfigurable materials with targeted strength and extensibility. Research supported by the National Science Foundation, Emerging Frontiers in Research and Innovation Award # EFRI-1240264.

  4. The flexural properties of endodontic post materials.

    Science.gov (United States)

    Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M; Lumley, Philip J

    2010-08-01

    To measure the flexural strengths and moduli of endodontic post materials and to assess the effect on the calculated flexural properties of varying the diameter/length (D/L) ratio of three-point bend test samples. Three-point bend testing of samples of 2mm diameter metal and fiber-reinforced composite (FRC) rods was carried out and the mechanical properties calculated at support widths of 16 mm, 32 mm and 64 mm. Weibull analysis was performed on the strength data. The flexural strengths of all the FRC post materials exceeded the yield strengths of the gold and stainless steel samples; the flexural strengths of two FRC materials were comparable with the yield strength of titanium. Stainless steel recorded the highest flexural modulus while the titanium and the two carbon fiber materials exhibited similar values just exceeding that of gold. The remaining glass fiber materials were of lower modulus within the range of 41-57 GPa. Weibull modulus values for the FRC materials ranged from 16.77 to 30.09. Decreasing the L/D ratio produced a marked decrease in flexural modulus for all materials. The flexural strengths of FRC endodontic post materials as new generally exceed the yield strengths of metals from which endodontic posts are made. The high Weibull modulus values suggest good clinical reliability of FRC posts. The flexural modulus values of the tested posts were from 2-6 times (FRC) to 4-10 times (metal) that of dentin. Valid measurement of flexural properties of endodontic post materials requires that test samples have appropriate L/D ratios. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Hemostatic properties of glucosamine-based materials.

    Science.gov (United States)

    Fischer, Thomas H; Bode, Arthur P; Demcheva, Marina; Vournakis, John N

    2007-01-01

    Glucosamine- and N-acetyl glucosamine-containing polymers are being used in an increasing number of biomedical applications, including in products for surface (topical) hemostasis. The studies presented here investigate the relationship between the structure (conformation) and function (activation of hemostasis) of glucosamine-based materials. Several polymer systems were studied, including fibers isolated from a microalgal source containing poly-N-acetyl glucosamine polymers that are organized in a parallel, hydrogen-bonded tertiary structure and can be chemically modified to an antiparallel orientation; and gel formulation derivatives of the microalgal fibers consisting of partially deacetylated (F2 gel) and fully deacetylated (F3 gel) polymers. Comparison of the properties of the poly-N-acetyl glucosamine fiber-derived materials with chitin, chitosan, and commercial chitosan-based products are presented. Several studies were performed with the glucosamine-based materials, including (1) an analysis of the ability of materials to activate platelets and turnover of the intrinsic coagulation cascade, (2) an examination of the viscoelastic properties of mixtures of platelet-rich plasma and the glucosamine-based materials via thromboelastography, and (3) scanning electron microscopic studies to examine the morphology of the glucosamine-based materials. The results presented demonstrate that hemostatic responses to the glucosamine-based materials studied are highly dependent on their chemical nature and tertiary/quaternary structure. The unique natural microalgal fibers were found to have strongly prohemostatic activity compared to the other materials studied. (c) 2006 Wiley Periodicals, Inc.

  6. Syntheses, structural characterization, and basic properties of unsymmetrically substituted biphenoquinones

    Science.gov (United States)

    Fujii, Ryotaro; Sugiura, Ken-ichi

    2018-03-01

    Unsymmetrically substituted biphenoquinones, 3,5-dimethyl-3‧,5‧-diphenylbiphenoquinone and 3,5-di-tert-butyl-3‧,5‧-diphenylbiphenoquinone, were prepared by a mixed oxidative coupling reaction of the corresponding phenols with potassium permanganate in CHCl3. The properties of the quinones such as reduction potential and visible light absorption were measured and positively shifted reduction potentials and bathochromic shifts as a result of light absorption were found to be characteristic of the π-expanded quinones. We also carried out single-crystal diffraction study and uncovered a unique packing motif attributable to their unsymmetrical structures.

  7. Quercetin and its analogues: optical and acido-basic properties.

    Science.gov (United States)

    Biler, Michal; Biedermann, David; Valentová, Kateřina; Křen, Vladimír; Kubala, Martin

    2017-10-11

    This study is focused on eight structurally analogous natural flavonoids that exhibit a wide range of biological activities, which are of interest in pharmacy, cosmetics and the food industry. Using both experimental and theoretical approaches, we relate their fundamental physico-chemical properties to the structural motifs, with particular focus on UV/Vis absorption properties and pH dependence. We highlight the role of the C2-C3 double bond, whose presence or absence is responsible for the switch between absorption bands in the UVB and UVA regions, which is rationalized by strong modification of the involved molecular orbitals. After deprotonation in an alkaline environment, a typical switch in intensity at the maximum absorption wavelength (λ max ) is observed enabling the calculation of pK a values for compounds with a C2-C3 single bond, whereas a bathochromic shift of λ max vs. pH is observed for the C2-C3 double bond containing compounds. These behaviors are also rationalized and understood by MO analysis. Interestingly, high pH (above 11 for ampelopsin and above 9 for myricetin) induces the formation of a long-wavelength peak arising from double and/or triple deprotonation. Substitution at position C3 by the OH group has almost no effect on λ max for taxifolin and eriodictyol, whereas the effect is larger for quercetin and luteolin. An additional sugar moiety at C3 has a stabilizing effect and induces only minor changes in spectral behavior.

  8. Defect-related luminescent materials: synthesis, emission properties and applications.

    Science.gov (United States)

    Zhang, Cuimiao; Lin, Jun

    2012-12-07

    Luminescent materials have found a wide variety of applications, including information displays, lighting, X-ray intensification and scintillation, and so on. Therefore, much effort has been devoted to exploring novel luminescent materials so far. In the past decade, defect-related luminescent materials have inspired intensive research efforts in their own right. This kind of luminescent material can be basically classified into silica-based materials, phosphate systems, metal oxides, BCNO phosphors, and carbon-based materials. These materials combine several favourable attributes of traditional commercially available phosphors, which are stable, efficient, and less toxic, being free of the burdens of intrinsic toxicity or elemental scarcity and the need for stringent, intricate, tedious, costly, or inefficient preparation steps. Defect-related luminescent materials can be produced inexpensively and on a large scale by many approaches, such as sol-gel process, hydro(solvo)thermal reaction, hydrolysis methods, and electrochemical methods. This review article highlights the recent advances in the chemical synthesis and luminescent properties of the defect-related materials, together with their control and tuning, and emission mechanisms (solid state physics). We also speculate on their future and discuss potential developments for their applications in lighting and biomedical fields.

  9. Static mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Suzuki, Hideaki

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)

  10. ESR dosimetric properties of some biomineral materials

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Gamal M. [Department of Ionizing Radiation Metrology, National Institute for Standards (NIS), Tersa Street, El-Haram, El-Giza, P.O. Box 136 Giza, El-Giza (Egypt)]. E-mail: gamalhassan65@hotmail.com; Sharaf, M.A. [Department of Ionizing Radiation Metrology, National Institute for Standards (NIS), Tersa Street, El-Haram, El-Giza, P.O. Box 136 Giza, El-Giza (Egypt)

    2005-02-01

    Dosimetric properties of g-irradiated modern coral and bioactive glass (Bio-G) samples analyzed with electron spin resonance (ESR) have been separately reported (Hassan et al., 2004; Sharaf and Hassan, 2004) and compared with alanine. These are combined here to allow a three-way comparison between these materials.

  11. Material properties of ceramics for dental applications

    Science.gov (United States)

    Quinn, Janet Bernice

    2000-12-01

    Ceramic tooth-replacement materials have been greatly improved since their introduction near the end of the eighteenth century, but still have problems concerning clinical performance and aesthetics. Material property testing has advanced as well as the ability to form new dental ceramics. The purpose of this study was to test some of the new materials according to recently developed standards, and to utilize the results to better understand, predict and determine how to improve dental material performance and machinability. Aspects of this study include unique applications of testing methodology and the development of a new edge chipping test. A new brittleness parameter, B, is introduced. Unlike previously suggested brittleness parameters, B has theoretical significance as a volume energy to surface energy ratio. The ascertained properties were used to evaluate the dental ceramics. Toughness-related parameters were important in the clinical results, and correlations with microstructural characteristics indicate potential improvements as well as limitations. A good fit to a model predicting toughness increases with grain size, for example, suggests processing-induced thermal mismatch stresses as a toughening mechanism in glass-ceramics. Stresses that are too high, however, can result in local microcracking and a decrease in toughness. Machinability is of particular importance in fabricating dental components, which have complicated shapes and tight tolerances. As there is no currently accepted quantitative definition of machinability, a subjective analysis involving professional machinists and a regression analysis was used. Material properties and a theoretical model for material removal rates, based on lateral crack formation, were compared with the subjective machinability rankings. Although there were differences among the machinists' criteria, hardness was found to be the single most effective property in predicting machinability. High temperature properties

  12. Informatics derived materials databases for multifunctional properties.

    Science.gov (United States)

    Broderick, Scott; Rajan, Krishna

    2015-02-01

    In this review, we provide an overview of the development of quantitative structure-property relationships incorporating the impact of data uncertainty from small, limited knowledge data sets from which we rapidly develop new and larger databases. Unlike traditional database development, this informatics based approach is concurrent with the identification and discovery of the key metrics controlling structure-property relationships; and even more importantly we are now in a position to build materials databases based on design 'intent' and not just design parameters. This permits for example to establish materials databases that can be used for targeted multifunctional properties and not just one characteristic at a time as is presently done. This review provides a summary of the computational logic of building such virtual databases and gives some examples in the field of complex inorganic solids for scintillator applications.

  13. Microstructures and mechanical properties of aging materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Viswanathan, R.; Murty, K.L.; Simonen, E.P.; Frear, D.

    1993-01-01

    This book contains a collection of papers presented at the symposium on ''Microstructures and Mechanical Properties of Aging Materials,'' that was held in Chicago, IL. November 2-5, 1992 in conjunction with the Fall Meeting of The Minerals, Metals and Materials Society (TMS). The subjects of interest in the symposium included: (1) mechanisms of microstructural degradation, (2) effects of microstructural degradation on mechanical behavior, (3) development of life prediction methodology for in-service structural and electronic components, (4) experimental techniques to monitor degradation of microstructures and mechanical properties, and (5) effects of environment on microstructural degradation and mechanical properties. Individual papers have been processed separately for inclusion in the appropriate data bases

  14. Materials selection as an interdisciplinary technical activity: basic methodology and case studies

    Directory of Open Access Journals (Sweden)

    Ferrante M.

    2000-01-01

    Full Text Available The technical activity known as Materials Selection is reviewed in its concepts and methodologies. Objectives and strategies are briefly presented and two important features are introduced and discussed; (i Merit Indices: a combination of materials properties, which maximises the objectives chosen by the designer and (ii Materials Properties Maps: a bi-dimensional space whose coordinates are pairs of properties in which materials can be plotted and compared directly in terms of their merit indices. A general strategy for the deduction of these indices is explained and a formal methodology to establish a ranking of candidate materials when multiple constraints intervene is presented. Finally, two case studies are discussed in depth, one related to materials substitution in the context of mechanical design and a less conventional case linking material selection to physical comfort in the home furniture industry.

  15. Data base on structural materials aging properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1992-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where long-term and environment-dependent properties of concretes and other structural materials are being collected and assembled into a data base. These properties will be used to evaluate the current condition of critical structural components in nuclear power plants and to estimate the future performance of these materials during the continued service period

  16. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    International Nuclear Information System (INIS)

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-01-01

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  17. Visual perception of materials and their properties.

    Science.gov (United States)

    Fleming, Roland W

    2014-01-01

    Misidentifying materials-such as mistaking soap for pâté, or vice versa-could lead to some pretty messy mishaps. Fortunately, we rarely suffer such indignities, thanks largely to our outstanding ability to recognize materials-and identify their properties-by sight. In everyday life, we encounter an enormous variety of materials, which we usually distinguish effortlessly and without error. However, despite its subjective ease, material perception poses the visual system with some unique and significant challenges, because a given material can take on many different appearances depending on the lighting, viewpoint and shape. Here, I use observations from recent research on material perception to outline a general theory of material perception, in which I suggest that the visual system does not actually estimate physical parameters of materials and objects. Instead-I argue-the brain is remarkably adept at building 'statistical generative models' that capture the natural degrees of variation in appearance between samples. For example, when determining perceived glossiness, the brain does not estimate parameters of the BRDF. Instead, it uses a constellation of low- and mid-level image measurements to characterize the extent to which the surface manifests specular reflections. I argue that these 'statistical appearance models' are both more expressive and easier to compute than physical parameters, and therefore represent a powerful middle way between a 'bag of tricks' and 'inverse optics'. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. Consecutive Course Modules Developed with Simple Materials to Facilitate the Learning of Basic Concepts in Astronomy

    Science.gov (United States)

    Okulu, Hasan Zuhtu; Oguz-Unver, Ayse

    2015-01-01

    From the perspective of teaching, the huge natural laboratory that astronomy provides constitutes the most prominent connection between astronomy and other branches of science. The purpose of this research was to provide educators with activities of observation using simple materials that were developed to facilitate the teaching of basic concepts…

  19. Beyond local effective material properties for metamaterials

    Science.gov (United States)

    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.

    2018-02-01

    To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.

  20. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.

  1. Basic research for nuclear energy. y Study on the nuclear materials technology

    International Nuclear Information System (INIS)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs

  2. A smart predictor for material property testing

    International Nuclear Information System (INIS)

    Wang, Wilson; Kanneg, Derek

    2008-01-01

    A reliable predictor is very useful for real-world industrial applications to forecast the future behavior of dynamic systems. A smart predictor, based on a novel recurrent neural fuzzy (RNF) scheme, is developed in this paper for multi-step-ahead prediction of material properties. A systematic investigation based on two benchmark data sets is conducted in terms of performance and efficiency. Analysis results reveal that, of the data-driven forecasting schemes, predictors based on step input patterns outperform those based on sequential input patterns; the RNF predictor outperforms those based on recurrent neural networks and ANFIS schemes in multi-step-ahead prediction of nonlinear time series. An adaptive Levenberg–Marquardt training technique is adopted to improve the robustness and convergence of the RNF predictor. Furthermore, the proposed smart predictor is implemented for material property testing. Investigation results show that the developed RNF predictor is a reliable forecasting tool for material property testing; it can capture and track the system's dynamic characteristics quickly and accurately. It is also a robust predictor to accommodate different system conditions

  3. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  4. Magnetic properties of Martian surface material

    Science.gov (United States)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  5. Acoustical properties of highly porous fibrous materials

    Science.gov (United States)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  6. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design.

    Science.gov (United States)

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Jiang, Hao; Li, Chunzhong; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2018-01-01

    Tremendous efforts have been dedicated into the development of high-performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery-like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery-like behavior are discussed. Furthermore, guidelines for material selection, the state-of-the-art materials, and the electrode design rules to advanced electrode are proposed.

  7. Basic materials research programs at the U.S. Air Force Office of Scientific Research

    International Nuclear Information System (INIS)

    Carlson, Herbert C.; Goretta, K.C.

    2006-01-01

    The Air Force Office of Scientific Research (AFOSR) annually sponsors approximately 5000 research scientists at 1000 universities and laboratories, generating about 10,000 Ph.D. graduates per decade, all expected to publish their basic research findings in peer-reviewed journals. After a brief introduction of the nature of AFOSR's support to basic research in the U.S. and international scientific communities, work it supports at the frontiers of materials science is highlighted. One focused research theme that drives our investment is the MEANS program. It begins with the end in mind; materials are designed with practicable manufacture as an explicit initial goal. AFOSR's broad research portfolio comprises many materials. Nanotechnology efforts include optical materials that reduce distortion to the scale of the nanoparticles themselves. Advances in semiconductors include breakthroughs in Group III nitrides, some of which emanated from Asia under sponsorship from AFOSR's Asian office. Advances in structural materials include those for use at ultra-high temperatures and self-healing composites. The growing role of high-performance computing in design and study of functional, biological, and structural materials is also discussed

  8. Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties

    International Nuclear Information System (INIS)

    Takesue, Shinji

    1989-01-01

    This is the first part of a series devoted to the study of thermodynamic behavior of large dynamical systems with the use of a family of full-discrete and conservative models named elementary reversible cellular automata (ERCAs). In this paper, basic properties such as conservation laws and phase space structure are investigated in preparation for the later studies. ERCAs are a family of one-dimensional reversible cellular automata having two Boolean variables on each site. Reflection and Boolean conjugation symmetries divide them into 88 equivalence classes. For each rule, additive conserved quantities written in a certain form are regarded as a kind of energy, if they exist. By the aid of the discreteness of the variables, every ERCA satisfies the Liouville theorem or the preservation of phase space volume. Thus, if an energy exists in the above sense, statistical mechanics of the model can formally be constructed. If a locally defined quantity is conserved, however, it prevents the realization of statistical mechanics. The existence of such a quantity is examined for each class and a number of rules which have at least one energy but no local conservation laws are selected as hopeful candidates for the realization of thermodynamic behavior. In addition, the phase space structure of ERCAs is analyzed by enumerating cycles exactly in the phase space for systems of comparatively small sizes. As a result, it is revealed that a finite ERCA is not ergodic, that is, a large number of orbits coexist on an energy surface. It is argued that this fact does not necessarily mean the failure of thermodynamic behavior on the basis of an analogy with the ergodic nature of infinite systems

  9. Production and deposition of well defined aerosol nanoparticles for studies of basic properties

    NARCIS (Netherlands)

    Peineke, C.

    2008-01-01

    The search for new materials and material properties has advanced to smaller and smaller structures during the past years. Inorganic particles in the size range below {100 nm} are interesting for many applications, because on this scale properties often vary strongly from bulk. Nanoparticles are

  10. AGC 2 Irradiated Material Properties Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.

  11. A Feasibility Study on the Application of Basic Oxygen Furnace (BOF Steel Slag for Railway Ballast Material

    Directory of Open Access Journals (Sweden)

    Taehoon Koh

    2018-01-01

    Full Text Available Railway ballast, for which natural crushed stone aggregates have been generally used, is an essential track component for the distribution of train loads along the rails and sleepers to the roadbed. However, the use of natural crushed stone aggregate causes environmental destruction as well as dust production in train service. This paper evaluates the feasibility of using the basic oxygen furnace (BOF steel slag as railway ballast material. A series of physical and chemical quality tests are performed to investigate the characteristics of the materials associated with the effect of aging period due to the remaining free CaO and MgO in the BOF steel slag. Three different aging periods (i.e., 0, 3, and 6 months are used to compare with various standards and the properties of the crushed stone aggregates. It is demonstrated that the physical and chemical properties of the BOF steel slag with different aging periods satisfy all requirements of standards sufficiently. Especially, the BOF steel slag without aging (i.e., 0 month provides the similar physical and chemical properties, when compared to the BOF steel slag with aging (i.e., 3 and 6 months. Thus, it is possible to apply the BOF steel slag regardless of aging periods to the railway ballast materials instead of natural crushed stone aggregates.

  12. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  13. Physical Properties of Synthetic Resin Materials

    Science.gov (United States)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  14. Properties of Sealing Materials in Groundwater Wells

    DEFF Research Database (Denmark)

    Köser, Claus

    boreholes which in some cases can act as direct openings down to aquifers. The reasons for this may include bad or missing seal. In this context, Schmidt (1999) concluded that there is no proven way to make a clay seal with the desired tightness. This thesis deals primarily with the properties of bentonite...... pellets as sealing material in groundwater wells. The way and the pattern, in which bentonite pellets are deposited, have been shown to have an effect on the swelling pressure of the bentonite seal. During the transport phase of pellets from the terrain to a given sedimentation depth, a sorting process...... on the maximum swelling pressure; i) the bulk density of the sample, and ii) whether the sample is sorted or unsorted. CT scans (Computed Tomography) have been used to evaluate certain properties of bentonite seals in a limited volume. In this context, a set of algorithms to convert CT numbers (HU unit...

  15. High field dielectric properties of piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Cain, M

    1999-05-01

    These guidelines are intended to enable a user to perform high field dielectric measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate). Many of the properties of piezoelectric ceramics such as PZT are highly dependant on the applied field, and therefore to make intelligent design choices, the dielectric properties are required at these field levels. These guidelines cover measurements at a fixed frequency of 1 kHz, to enable comparison with measurements made at low field. The measurement methods could all safely be extended from line frequency up to several tens of kHz, to cover a broad range of applications. However, for frequencies in the MHz range and above different factors need to be considered which are not covered in this guide. The guidelines give some general advice on high field dielectric measurements followed by a detailed description of three different measurement methods:Schering bridge; impedance analysis; and PE hysteresis loop methods. (author)

  16. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  17. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    1996-01-01

    Fundamentals of Semiconductors attempts to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors The approach is physical and intuitive rather than formal and pedantic Theories are presented to explain experimental results This textbook has been written with both students and researchers in mind Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors The explanations are based on physical insights Each chapter is enriched by an extensive collection of tables of material parameters, figures and problems Many of these problems 'lead the student by the hand' to arrive at the results

  18. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  19. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  20. Porous concrete basic property criteria as rigid pavement base layer in indonesia

    Directory of Open Access Journals (Sweden)

    Ridwan Aldila Melania Care Frisky

    2018-01-01

    moment of rainfall or after rainfall. In that condition, the present of traffic might also create movement below the foundation layer and reduce its bearing capacity. Nevertheless, the foundation material that contain large fine creates base layer with low permeability and slow water movement. This paper presented the procedure and result of laboratory experimental study to obtain basic property criteria for rigid pavement base layer.The porous concrete mixture was successfully designed and surpassed the minimum requirements required by Directorate General of Highways [11] [12]. It was found that there was very strong correlation between void content and permeability which created fine likelihood to use void content to represent porous concrete permeability behavior. High void content with good connection resulting weaker aggregate interlocking inside the mixture so that permeability rose whereas compressive strength fell. Solid fresh density and more filled by cement paste created a smaller void that would reduce permeability and improve compressive strength. Strong correlation between fresh density towards void content and permeability opened potency to use the fresh density as a reference to set the desired porous concrete void content on the field.

  1. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  2. Mechanical properties of dental investment materials.

    Science.gov (United States)

    Low, D; Swain, M V

    2000-07-01

    Measurement of the elastic modulus (E) of investment materials has been difficult because of their low strength. However, these values are essential for engineering simulation and there are many methods available to assess the elasticity of materials. The present study compared two different methods with one of the methods being non-destructive in nature and can be used for specimens prepared for other tests. Two different types of investment materials were selected, gypsum-and phosphate-bonded. Method 1 is a traditional three-point bending test. Twelve rectangular bars with dimension of (70 x 9 x 3 mm) were prepared and placed on supports 56.8 mm apart. The test was conducted at a cross-head speed of 1 mm/min by use of a universal testing machine. The load applied to the test specimen and the corresponding deflection were measured until the specimen fractured. The E value was calculated from a linear part of the stress-strain plot. Method 2 is an ultra micro-indentation system to determine near surface properties of materials with nanometer resolution. The measurement procedure was programmed such that the specimens were indented with an initial contact force of 5 mN then followed by a maximum force of 500 mN. Measurement consisted of 10 indentations conducted with a spherical stainless steel indenter (R = 250 microm) that were equally spaced (500 microm). The E value rose asymptotically with depth of penetration and would approach the three-point bending test value at approximately four time's maximum contact depth for both materials. Both methods are practical ways of measuring the E of investment materials. Copyright 2000 Kluwer Academic Publishers

  3. Basic experimental study on the backfilling material under saline seawater condition

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji; Sugita, Yutaka

    2003-11-01

    In geological disposal of high-level radioactive waste, closure of repository is the technique of filling clearance using the backfilling material to preserve barrier performance of the engineered barrier system. The required performances of the backfilling material are clearance filling, low permeability and swelling pressure and stiffness. The expecting behaviors of the backfilling material are very complex which are decrease of section area of the tunnel due to creep displacement, decrease of performance of bentonite due to alteration of the concrete lining and so on. And ideal assessment of the clearance filling performance in the backfilled tunnel will be performed considering the coupled behaviors described above. However, there is not enough data to explain the expecting behaviors, and mechanisms of the coupled behaviors are not clarified yet. Therefore, the clearance filling performance of backfilling material was selected first. In this study, the clearance filling performance was tested using the clearance considering only decrease of the volume of the concrete lining due to alteration of the concrete. Basic examination of the backfilling material was performed, which focused on the feasibility of the backfilling material described in the H12 report and the adequate bentonite/sand mixture to obtain conservative filling clearance performance. Results of the examination showed, under test conditions that 30% of the volume of concrete lining decreases due to alteration and such volume become clearance between the backfilling material and concrete lining, in distilled water condition, the specification (bentonite/sand mixture) of the backfilling material described in H12 report almost filled the clearance. However, in saline seawater, 50% and more bentonite was required to fill the clearance. Since this examination fixed the clearance, water stopping performance will be examined in next phase. Through the saline seawater examination, the basic clearance

  4. Some Basic Properties of Uniformly Symmetrically Continuous (Real Valued) Functions on Metric Spaces

    Science.gov (United States)

    Manuharawati; Yunianti, D. N.; Jakfar, M.

    2018-01-01

    We give the definition of uniform symmetric continuity for real valued functions defined on a metric space. Then we investigate the basic properties of uniformly symmetrically continuous functions and compare them with those of symmetrically continuous functions and uniformly continuous functions. Several examples are also given.

  5. 41 CFR 102-80.10 - What are the basic safety and environmental management policies for real property?

    Science.gov (United States)

    2010-07-01

    ... safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public... MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT General Provisions § 102-80.10 What are the basic safety and environmental management policies for real property? The basic safety and...

  6. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 1: Verification of basic methods

    Science.gov (United States)

    Chiang, T.; Tessarzik, J. M.; Badgley, R. H.

    1972-01-01

    The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.

  7. Emergent material properties of developing epithelial tissues.

    Science.gov (United States)

    Machado, Pedro F; Duque, Julia; Étienne, Jocelyn; Martinez-Arias, Alfonso; Blanchard, Guy B; Gorfinkiel, Nicole

    2015-11-23

    Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. Our results show that in an epithelial

  8. Material property measurements with post-processed thermal image data

    Science.gov (United States)

    Welch, Christopher S.; Winfree, William P.; Heath, D. M.; Cramer, Elliott; Howell, Patricia

    1990-01-01

    Some of the applications to materials evaluation and property determination of thermographic NDE using digital postprocessing of sequences of thermograms are demonstrated. A generic description is given of the steps used in postprocessing for obtaining material property values.

  9. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  10. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  11. Towards properties on demand in quantum materials

    Science.gov (United States)

    Basov, D. N.; Averitt, R. D.; Hsieh, D.

    2017-11-01

    The past decade has witnessed an explosion in the field of quantum materials, headlined by the predictions and discoveries of novel Landau-symmetry-broken phases in correlated electron systems, topological phases in systems with strong spin-orbit coupling, and ultra-manipulable materials platforms based on two-dimensional van der Waals crystals. Discovering pathways to experimentally realize quantum phases of matter and exert control over their properties is a central goal of modern condensed-matter physics, which holds promise for a new generation of electronic/photonic devices with currently inaccessible and likely unimaginable functionalities. In this Review, we describe emerging strategies for selectively perturbing microscopic interaction parameters, which can be used to transform materials into a desired quantum state. Particular emphasis will be placed on recent successes to tailor electronic interaction parameters through the application of intense fields, impulsive electromagnetic stimulation, and nanostructuring or interface engineering. Together these approaches outline a potential roadmap to an era of quantum phenomena on demand.

  12. Materialism and well-being among Chinese college students: the mediating role of basic psychological need satisfaction.

    Science.gov (United States)

    Chen, Yongjie; Yao, Meilin; Yan, Wenfan

    2014-10-01

    Based on self-determination theory, this study explored the potential mediating role of basic psychological need satisfaction in the relationship between materialism and well-being among Chinese college students. The results showed that basic psychological need satisfaction partially mediated the relationship between materialism and life satisfaction and fully mediated the relationships among materialism and emotional well-being, subjective vitality, and self-actualization. The findings indicated the importance of considering both subjective and psychological well-being and the interpretative power of basic psychological need satisfaction and Chinese culture in the flow from materialism to well-being. © The Author(s) 2013.

  13. Correlation of basic TL, OSL and IRSL properties of ten K-feldspar samples of various origins

    Energy Technology Data Exchange (ETDEWEB)

    Sfampa, I.K. [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece); Polymeris, G.S. [Institute of Nuclear Sciences, Ankara University, 06100 Besevler, Ankara (Turkey); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Theodosoglou, E. [Department of Mineralogy-Petrology-Economic Geology, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Tsirliganis, N.C. [Laboratory of Radiation Applications and Archaeological Dating, Department of Archaeometry and Physicochemical Measurements, ‘Athena’ R.& I.C., Kimmeria University Campus, GR67100 Xanthi (Greece); Kitis, G., E-mail: gkitis@auth.gr [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece)

    2015-09-15

    Highlights: • OSL and IRSL bleaching behavior of ten K-feldspar samples is presented. • OSL and IRSL decay curves were component resolved using tunneling model. • The growth of integrated OSL and IRSL signals versus time was described by new expression based on tunneling model. • Correlation between TL, OSL and IRSL signals and of all properties with K-feldspar structure was discussed. - Abstract: Feldspars stand among the most widely used minerals in dosimetric methods of dating using thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Having very good dosimetric properties, they can in principle contribute to the dating of every site of archaeological and geological interest. The present work studies basic properties of ten naturally occurring K-feldspar samples belonging to three feldspar species, namely sanidine, orthoclase and microcline. The basic properties studied are (a) the influence of blue light and infrared stimulation on the thermoluminescence glow-curves, (b) the growth of OSL, IRSL, residual TL and TL-loss as a function of OSL and IRSL bleaching time and (c) the correlation between the OSL and IRSL signals and the energy levels responsible for the TL glow-curve. All experimental data were fitted using analytical expressions derived from a recently developed tunneling recombination model. The results show that the analytical expressions provide excellent fits to all experimental results, thus verifying the tunneling recombination mechanism in these materials and providing valuable information about the concentrations of luminescence centers.

  14. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter

    2012-01-01

    in the TPB region. Also, segregations to the surfaces and interfaces of the electrode materials, which may affect the electrode reaction mechanism, are very dependent on the exact history of fabrication and operation. The positive effects of even small concentrations of nanoparticles in the electrodes may...... is not applicable for composite porous electrodes, and we claim that even in the case of simple model electrodes no clear evidences of charge transfer limitations following Butler- Volmer have been reported. Thus, we find overall that the large differences in the literature reports indicate that no universal truth...... such as “this is the rate limiting step of H2 oxidation in a Ni-zirconia cermet electrode...” will ever be found because the actual electrode properties are so dependent on the fabrication and operation history of the electrode. This does not mean, however, that deep knowledge of mechanisms of specific SOC...

  15. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  16. A whole range hygric material model: Modelling liquid and vapour transport properties in porous media

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2010-01-01

    This paper addresses the modelling of hygric material coefficients bridging the gap between measured material properties and the non-linear storage and transport coefficients in the transfer equation. The conductivity approach and a bundle of tubes model are the basis. By extending this model...... with a mechanistic treatment of serial and parallel structured transport, a semi-empirical material model is developed. Deriving the transport properties from the pore structure of the material, the model provides a physical basis whereas a high flexibility and adjustability is obtained by the coupling...... with the mechanistic model. The required minimum input data are basic standard material properties. The model is very suitable for sophisticated research as well as for a broad application to porous materials in general....

  17. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Nagase, Fumihisa; Futakawa, Masatoshi; Kiuchi, Kiyoshi

    2001-03-01

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  18. [Research on basic questions of intellectual property rights of acupuncture and moxibustion].

    Science.gov (United States)

    Dong, Guo-Feng; Wu, Xiao-Dong; Han, Yan-Jing; Meng, Hong; Wang, Xin

    2011-12-01

    Along with the modernization and internationalization of acupuncture-moxibustion (acu-moxibustion), the issue of intellectual property rights has been becoming prominent and remarkable increasingly. In the present paper, the authors explain the basic issues of acu-moxibustion learning from the concept, scope, subject, object, contents and acquisition way of intellectual property rights. To make clear these questions will help us inherit and carry forward the existing civilization achievements of acu-moxibustion, and unceasingly bring forth new ideas and further improvement in clinical application, so as to serve the people's health in a better way.

  19. Research on technology of evaluating thermal property data of nuclear power materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1997-01-01

    For the materials of first wall and diverter of nuclear fusion reactor, in order to withstand steady and unsteady high heat flux load, excellent thermal characteristics are required. It is strongly demanded to measure such thermal property values as heat conductivity, heat diffusivity, specific heat capacity, emissivity and so using small test pieces up to higher than 2000degC. As the materials of nuclear reactors are subjected to neutron irradiation, in order to secure the long term reliability of the materials, it is very important to establish the techniques for forecasting the change of the thermal property values due to irradiation effect. Also the establishment of the techniques for estimating the thermal property values of new materials like low radioactivation material is important. In National Research Laboratory of Metrology, the research on the advancement of the measuring technology for high temperature thermal properties has resulted in the considerably successful development of such technologies. In this research, the rapid measurement of thermal property values up to superhigh temperature with highest accuracy, the making of thermal property data set of high level, the analysis and evaluation of the correlation of material characters and thermal property values, and the development of the basic techniques for estimating the thermal property values of solid materials are aimed at and advanced. These are explained. (K.I.)

  20. The basic construction materials industry and today’s vast housing shortage

    Directory of Open Access Journals (Sweden)

    Oteiza, I.

    2008-12-01

    Full Text Available This paper documents some of the aspects of the major challenge facing world-wide building: humanity's daunting shortage of basic housing, monographically focusing on what this means for the basic building materials industry. These needs have created the greatest demand ever for ex-novo solutions and an exponential increase in slum rehabilitation and improvement, translated here into the need for construction materials and more specifically, cement, as the emblematic component of buildings.El trabajo aborda en forma documentada, algunos aspectos del mayor de los retos que tiene planteado a nivel cosmopolita el sector de la edificación: las ingentes necesidades de habitabilidad básica que padece la humanidad, centrándose en forma monográfica en lo que ello supone para la industria de materiales básicos de edificación. Necesidades que se traducen en la mayor demanda histórica de soluciones ex-novo y en el aumento exponencial de rehabilitación y mejora de tugurios, que los autores traducen en necesidades de materiales de construcción, y de forma más concreta, de cemento, como material emblemático de la edificación.El trabajo, mediante el análisis de casos, muestra la muy diferente repercusión que tienen los materiales sobre los presupuestos finales de lo ejecutado, según se trate del mundo desarrollado (MD o de países en vías de desarrollo (PVD. Por otra parte, estudia la incidencia general del sector 'informal' de la construcción, concluyendo que éste, en muchos países, es el consumidor mayoritario de materiales -specialmente cemento-y que a nivel mundial los PVD lo son tanto en producción como en consumo.

  1. Determining Surface Material Properties Using Satellite Imaging

    Science.gov (United States)

    Gloudeman, C.; Gerace, A. D.

    2017-12-01

    Knowledge of soil moisture content is necessary for drought monitoring, crop irrigation, and water runoff. Remote sensing techniques provide a more efficient alternative to traditional field measurements for determining soil moisture content. Thermal infrared sensors from Landsat, MODIS Aqua & Terra, and AVHRR MetOp A & B satellites were used to find thermal inertia, which is highly correlated with soil moisture. A diurnal cycle is converted from band effective radiance to Land Surface Temperature (LST) using Planck's Law for blackbody radiation and a modified split-window algorithm. The THERM model for finding expected LST is then used to determine the material properties. A second approach was used to calculate apparent thermal inertia and soil moisture content from day/ night pairs of LST. For this method, only the MODIS Aqua LST product was used.To this end, we have observed clear differences in moisture between areas of vegetation and sand and between different crop fields. Our results indicate that matching the observed data with the THERM model could be improved with increased satellite measurements.

  2. Unsaturated hydraulic property of buffer material

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Fujita, Tomoo

    1999-09-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanism, infiltration of groundwater from the surrounding rock into the EBS, generation of swelling pressure in the buffer due to water infiltration and the stress imposed by the overburden pressure. These phenomena are not all independent, but can be strongly influenced by, and coupled with, each other. Evaluating these coupled thermo-hydro-mechanical phenomena is important in order to clarify the initial transient behavior of the engineered barrier system within the near-field. This report describes the results on measurement of chemical potential, water diffusivity, and thermal water diffusivity of bentonite that is considered as a candidate material of buffer and on comparison between measurements and theoretical studies for these properties. The following results are identified; (l) The hysteresis of chemical potential in wet and dry conditions for compacted bentonite is not shown clearly. The chemical potential depends on temperature and amount of montmorillonite. When chemical potential of compacted bentonite is zero, the specimen is saturated. The van Genuchten model is applicable to the measured chemical potential of compacted bentonite. (2) The Darcy's law and Philip and de Vries model are applicable to the measured water diffusivity and thermal water diffusivity of compacted bentonite. (author)

  3. Decree 2805 by means of which the National Accounting and Control of Basic Nuclear Materials and Special Fusionable Materials System, is established

    International Nuclear Information System (INIS)

    1979-01-01

    This Decree has for object to establish a National Accounting and Control of Basic Nuclear Materials and Special Fusionable Materials System, under the supervision of the National Council for the Nuclear Industry Development. Its aims are to account nuclear materials, to control nuclear activities, to preserve and control nuclear information, to keep technical relationship with specialized organizations, and to garant nuclear safeguards [es

  4. Energy analysis of the basic materials utilized in electric power transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-30

    The energy content per mile of installed underground and overhead power transmission systems has been calculated for the following types of systems: self-contained oil-filled cables; HPOF pipe-type cables; extruded dielectric cables; compressed-gas-insulated systems; overhead lines (ac and dc) and two proposed superconducting systems (ac and dc). The system operating voltages analyzed included 138, 230, 345, 500, 765 and 1,200 kV for ac systems, but all systems were not analyzed at the higher voltages. The dc overhead lines operated at +-200, +-400, +-600 and +-800 kV. Total installed energy content for these systems ranged from 4 x 10/sup 9/ to 1.2 x 10/sup 11/ Btu per mile. Installation energy requirements were generally 10% or less of the inherent system energy content based on the materials used in each system. Most of the energy content in each system can be attributed to the metallic components; plastic and insulating oil also contribute significantly. The energy content of 36 materials and basic products, in terms of Btu per ton, was calculated as part of this study. Substitution of conductor materials (e.g., aluminum for copper) in cable systems resulted in changes in the total system energy content on the order of 15%.

  5. The Behaviour of Laboratory Soil Electrical Resistivity Value under Basic Soil Properties Influences

    International Nuclear Information System (INIS)

    Hazreek, Z A M; Aziman, M; Azhar, A T S; Chitral, W D; Fauziah, A; Rosli, S

    2015-01-01

    Electrical resistivity method (ERM) was a popular indirect geophysical tools adopted in engineering, environmental and archaeological studies. In the past, results of the electrical resistivity value (ERV) were always subjected to a long discussion and debate among the related parties such as an engineers, geophysicists and geologists due to its lack of clarification and evidences in quantitative point of view. Most of the results produced in the past was always been justified using qualitative ways which difficult to be accept by certain parties. In order to reduce the knowledge gap between those parties, this study has performed a laboratory experiment of soil box resistivity test which supported by an additional basic geotechnical test as referred to particle size distribution test (d), moisture content test (w), density test (ρ bulk ) and Atterberg limit test (LL, PL and PI). The test was performed to establish a series of electrical resistivity value with different quantity of water content for Clayey SILT and Silty SAND soil. It was found that the ERV of Silty SAND (600 - 7300 Ωm) was higher than Clayey SILT (13 - 7700 Ωm) due to the different quantity of basic soil properties value obtained from the basic geotechnical test. This study was successfully demonstrated that the fluctuation of ERV has greatly influenced by the variations of the soil physical properties (d, w, ρ bulk , LL, PL and PI). Hence, the confidence level of ERV interpretation will be increasingly meaningful since it able to be proved by others parameter generated by laboratory direct test

  6. The relationship between cognitive processing of affective verbal material and the basic personality structure

    Directory of Open Access Journals (Sweden)

    Orlić Ana

    2010-01-01

    Full Text Available The aim of this study was to investigate the relationship between cognitive processing of affective verbal material and the basic personality structure. For the purposes of research a new experiment was created, where affective priming was measured in a lexical decision task. The term affective priming stands for facilitation in recognition of the stimuli that comes after the presentation of stimuli of the same valence. In this experiment, two words were presented on a screen in front of the subject (stimuli-prime and stimuli-target. Those two words were of the same or different affective valence, and the subject's were instructed to respond whether the second word on the screen had a meaning or not. The basic personality structure was defined by the 'Big five' model and the Disintegration model and measured by NEO PI-R and Delta 10 questionnaires. The results of the affective priming experiment indicated a strong effect of positive facilitation and much weaker effect off negative facilitation. Two significant functions were extracted by quasicanonical correlation analysis. The first function showed correlation between the effect of positive facilitation and all of the subscales of Neuroticism, Extraversion and Conscientiousness (NEO PI-R, as well as all sub dimensions of Disintegration (DELTA 10. The second one indicated to a correlation between the negative facilitation effect and some subscales of Neuroticism, Extraversion and Agreeableness (NEO PI-R, as well as all subscales of Disintegration (DELTA 10.

  7. Interactive computer-based instruction: Basic material control and accounting demonstration

    International Nuclear Information System (INIS)

    Keisch, B.

    1993-01-01

    The use of interactive, computer-based training (CBT) courses can be a time- and resource-saving alternative to formal instruction in a classroom milieu. With CBT, students can proceed at their own pace, fit the study course into their schedule, and avoid the extra time and effort involved in travel and other special arrangements. The demonstration given here is an abbreviated, annotated version of a recently developed course in basic material control and accounting designed for the MC and A novice. The system used is ''Quest'' which includes multi-media capabilities, individual scoring, and built-in result-reporting capabilities for the course administrator. Efficient instruction and training are more important than ever because of the growing numbers of relatively inexperienced persons becoming active in safeguards

  8. Basic Physical – Mechanical Properties of Geopolymers Depending on the Content of Ground Fly Ash and Fines of Sludge

    Directory of Open Access Journals (Sweden)

    Sičáková Alena

    2017-06-01

    Full Text Available The binding potential of fly ash (FA as a typical basic component of building mixtures can be improved in mechanical way, which unfolds new possibilities of its utilization. This paper presents the possibilities of preparing the geopolymer mixtures based on ground (dm = 31.0 μm FA, used in varying percentages to the original (unground; dm = 74.1 μm one. As a modification, fine-grain sludge from the process of washing the crushed aggregates was used as filler in order to obtain mortar-type material. The basic physical-mechanical properties of mixtures are presented and discussed in the paper, focusing on time dependence. The following standard tests were executed after 2, 7, 28, and 120 days: density, total water absorption, flexural strength, and compressive strength. Ground FA provided for positive effect in all tested parameters, while incorporation of fine portion of sludge into the geopolymer mixture does not offer a significant technical profit. On the other hand, it does not cause the decline in the properties, so the environmental effect (reduction of environmental burden can be applied through its incorporation into the geopolymer mixtures.

  9. Basic Physical - Mechanical Properties of Geopolymers Depending on the Content of Ground Fly Ash and Fines of Sludge

    Science.gov (United States)

    Sičáková, Alena; Števulová, Nadežda

    2017-06-01

    The binding potential of fly ash (FA) as a typical basic component of building mixtures can be improved in mechanical way, which unfolds new possibilities of its utilization. This paper presents the possibilities of preparing the geopolymer mixtures based on ground (dm = 31.0 μm) FA, used in varying percentages to the original (unground; dm = 74.1 μm) one. As a modification, fine-grain sludge from the process of washing the crushed aggregates was used as filler in order to obtain mortar-type material. The basic physical-mechanical properties of mixtures are presented and discussed in the paper, focusing on time dependence. The following standard tests were executed after 2, 7, 28, and 120 days: density, total water absorption, flexural strength, and compressive strength. Ground FA provided for positive effect in all tested parameters, while incorporation of fine portion of sludge into the geopolymer mixture does not offer a significant technical profit. On the other hand, it does not cause the decline in the properties, so the environmental effect (reduction of environmental burden) can be applied through its incorporation into the geopolymer mixtures.

  10. ACOUSTIC ENERGY AT CHANGE OF TREATED COMPOSITE MATERIAL DISPERSION PROPERTIES

    Directory of Open Access Journals (Sweden)

    Sergii Filonenko

    2016-12-01

    Full Text Available Purpose: The aim of this study is to investigate the influence of treated composite material dispersion properties on acoustic radiation energy, which appears during composite material machining. Methods: The researches were grounded on simulation of acoustic radiation energy at change of mechanically treated composite material properties dispersion for the mechanical model of its surface layer destruction. The data processing with definition of acoustic radiation statistical energy parameters was conducted. The analysis of acoustic emission energy parameters sensitivity to change of composite material properties dispersion, and as the analysis of influencing of composite material properties dispersion on AE amplitude and energy parameters was conducted. Results: Were obtained that at decreasing of composite material properties dispersion there is increasing an average level of acoustic radiation energy and value of its deviation. Is determined, that at decreasing of composite material properties dispersion the greatest increasing there is an acoustic emission energy average level dispersion. It is show that the increasing of acoustic radiation energy parameters advances increasing its amplitude parameters. Discussion: The simulation of acoustic radiation energy at composite material machining for the mechanical model surface layer destruction at decreasing of composite material properties dispersion (spread is conducted. It is shown, that the decreasing of composite material properties dispersion does not influence on acoustic radiation energy nature change. At the same time, the ascending parameter, that describing of composite material properties dispersion decreasing, results in increase of acoustic radiation signal energy parameters. The obtained outcomes can be used at mining methods of verification, diagnostic and monitoring of composite material machining technological processes. Thus during the composite material machining is possible

  11. Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films

    DEFF Research Database (Denmark)

    Khan, Zia Ullah; Bubnova, Olga; Jafari, Mohammad Javad

    2015-01-01

    PEDOT-Tos is one of the conducting polymers that displays the most promising thermoelectric properties. Until now, it has been utterly difficult to control all the synthesis parameters and the morphology governing the thermoelectric properties. To improve our understanding of this material, we...... study the variation in the thermoelectric properties by a simple acido-basic treatment. The emphasis of this study is to elucidate the chemical changes induced by acid (HCl) or base (NaOH) treatment in PEDOT-Tos thin films using various spectroscopic and structural techniques. We could identify changes...... for the power factor in PEDOT-Tos thin films....

  12. A three-scale model of basic mechanical properties of Nafion

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav; Vokoun, David

    2015-01-01

    Roč. 50, č. 6 (2015), s. 763-776 ISSN 0191-5665 R&D Projects: GA ČR(CZ) GAP108/10/1296; GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 ; RVO:68378271 Keywords : Nafion * mechanical properties * mesomechanics * material structure * hydration Subject RIV: JL - Materials Fatigue, Friction Mechanics; JJ - Other Materials (FZU-D) Impact factor: 0.729, year: 2015 http://link.springer.com/article/10.1007%2Fs11029-015-9466-y

  13. A three-scale model of basic mechanical properties of Nafion

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav; Vokoun, David

    2015-01-01

    Roč. 50, č. 6 (2015), s. 763-776 ISSN 0191-5665 R&D Projects: GA ČR(CZ) GAP108/10/1296; GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 ; RVO:68378271 Keywords : Nafion * mechanical properties * mesomechanics * material structure * hydration Subject RIV: JL - Material s Fatigue, Friction Mechanics; JJ - Other Material s (FZU-D) Impact factor: 0.729, year: 2015 http://link.springer.com/article/10.1007%2Fs11029-015-9466-y

  14. Cytocompatibility and Antibacterial Properties of Capping Materials

    Directory of Open Access Journals (Sweden)

    Claudio Poggio

    2014-01-01

    Full Text Available The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply, Calcicur (Voco, Calcimol LC (Voco, TheraCal LC (Bisco, MTA Angelus (Angelus, and Biodentine (Septodont. To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity.

  15. Cytocompatibility and Antibacterial Properties of Capping Materials

    Science.gov (United States)

    Arciola, Carla Renata; Monaco, Annachiara; Lombardini, Marco

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  16. Cytocompatibility and Antibacterial Properties of Capping Materials

    OpenAIRE

    Poggio, Claudio; Arciola, Carla Renata; Beltrami, Riccardo; Monaco, Annachiara; Dagna, Alberto; Lombardini, Marco; Visai, Livia

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towa...

  17. From basic raw material goods to cultural and environmental services: the Chinese bamboo sophistication path

    Directory of Open Access Journals (Sweden)

    Manuel Ruiz Pérez

    2014-12-01

    Full Text Available Bamboo has deep cultural and economic roots in China, the country with the largest bamboo resources in the world. Over the last three decades bamboo has evolved from a supply of raw material for basic goods into the material base of an increasingly diversified array of products and, more recently, into a potentially important source of cultural and environmental services. Based on a general literature review and the lessons learned from detailed case studies in different regions of China, we explored the changing roles of bamboo, and its effects on local economies and farmers' livelihood strategies. As the country develops and new economic activities continue to appear, bamboo production has shifted from a superior income-generating opportunity that largely benefited the better-off to a less attractive option left for those who have no other choice. The nature of the work has also changed, from families working directly on their bamboo plots to an emphasis on hired labor, with prosperous bamboo owners devoting most of their time to more lucrative activities. A similar process can be observed in bamboo processing in counties where previous industrial structures hinged around raw material harvests, but which have now entered into other secondary and tertiary industry activities. At the same time, bamboo has attracted new opportunities as a source of cultural, aesthetic, and leisure-related activities, as well as some potentially important climatic, watershed, and biodiversity functions. We analyze the complementarity between goods and services provided by bamboo and discuss some research issues and future trends that may help in overcoming these conflicts.

  18. Metallurgy and properties of plasma spray formed materials

    Science.gov (United States)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  19. Interface Properties in Extruded FRC-Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1997-01-01

    reinforced cementitious material extruded by the developed process. It is further more shown that the fiber-matrix bond is highly dependent on the relative slip at the interface and a bond-slip relationship is suggested for the extruded material. The observed very high fiber-matrix bond is explained...

  20. New elastoplastic materials with performance properties

    Directory of Open Access Journals (Sweden)

    Sanda VISAN,

    2009-06-01

    Full Text Available The fabrication of high performance materials using EPDM rubber and polyethylene mixtures with a low cost, nonpolluting and minimum investment technology is studied. These new materials can be used for obtaining a lot of goods for the economy, sport and private life.

  1. Electromagnetic, mechanical, and transport properties of composite materials

    CERN Document Server

    Pal, Rajinder

    2012-01-01

    Applications of Composite MaterialsElectromagnetic Properties of Composites: Static Electromagnetic Properties of CompositesElectrical Conductivity of CompositesDielectric Properties of CompositesMagnetic Properties of CompositesElectromagnetic Properties of Composites: General Treatment of Electromagnetic Phenomena in CompositesMaxwell Equations and the Generalized Conductivity PrincipleComplex Electromagnetic Properties of CompositesMechanical Properties of CompositesMechanical Properties of Dilute Particulate-Filled CompositesMechanical Properties of Concentrated Pore-Solid CompositesEffective Young's Modulus of Concentrated CompositesEffective Shear Modulus of Concentrated CompositesMechanical Properties of Concentrated Composites of Randomly Oriented Platelets Interfacial and Interphase Effects on Mechanical Properties of CompositesViscoelastic Behavior of CompositesTransport Properties of Composites: Heat Transfer in CompositesGeneral Introduction to Heat TransferFundamentals of Conductive Heat Transfer...

  2. The influence of protective properties of packaging materials and ...

    African Journals Online (AJOL)

    The influence of protective properties of packaging materials and modified atmosphere on quality changes of dried apricot is shown in this paper. In our investigation, we used four different characteristic combinations of packaging materials with different barrier properties for packaging of dried apricot: ...

  3. Basic properties and application of shape memory polymer composite to deployable hinge for solar arrays

    Science.gov (United States)

    Wang, Xiaohua; Zhang, Wei; Lan, Xin; Liu, Yanju; Leng, Jinsong

    2007-07-01

    This paper is concerned about the basic properties of deployment of shape memory polymer composite (SMPC) and its application to deployable hinge for solar arrays. Shape memory polymer (SMP) used in this study is a thermoset styrene-based shape memory resin in contrast to normal thermoplastic SMPs. Carbon fiber fabric reinforced SMPC is discussed here. In order to investigate the basic performances of deployment for SMPC hinge, the experimental methods are used as follows: dynamic mechanical analysis (DMA), three point bending test and deployment tests. Results indicate that the glass transition temperature (T g) of SMPC is approximate 63°C. SMPC shows typical linear elasticity and high bending modulus before glass transition in SMP, while exhibits apparent nonlinear viscoelasticity and low bending modulus within the range of glass transition in SMP. The shape recovery ratio of SMPC is above 90% at/above T g, while drops sharply at below T g. The deployment properties of SMPC depend strongly on the number of thermomechanical cycles, which become relatively stable after some packaging/deployment cycles. Moreover, deployment velocity and shape recovery ratio rise remarkably with the increase of temperature of SMPC. In the end, a prototype of solar array actuated by SMPC hinge, which is heated by passing an electrical current, deploys from about 180° to 0° in one minute. This SMPC hinge performs good deployment performances during numerous thermomechanical cycles.

  4. Semimicroscopic description of basic properties of isoscalar monopole and dipole excitations in medium-mass spherical nuclei

    NARCIS (Netherlands)

    Gorelik, ML; Urin, MH

    2003-01-01

    A description of basic properties (strength function, transition density, probabilities of direct nucleonic decays) of isoscalar giant monopole (including an overtone) and dipole resonances in medium-mass spherical nuclei is proposed within a semimicroscopic approach. The approach relies on

  5. Influence of Property Gradient on the Behavior of Cellular Materials Subjected to Impact Loading

    Science.gov (United States)

    Zeng, H.; Nasri, I.; Pattofatto, S.; Zhao, H.

    2008-02-01

    Recent manufacturing advances offer the possibility of introducing controlled porosity gradients in metallic-based cellular materials (foam, hollow spheres), which are promising structural materials used in applications involving lightweight structures, impact energy absorption, acoustical wave attenuation, etc. However, the influence of such porosity gradients on the overall mechanical properties of these cellular materials still lacks understanding. This paper presents a study of such porosity gradient influence using numerical simulation. Basic material behavior of a given sphere size is experimentally characterized using a recently developed testing device—a 60 mm diameter nylon Hopkinson bar system, which provides an interesting solution for both the impedance match and reasonable specimen size. Numerical results using realistic material constants permit the determination of optimized porosity gradient influence on various properties such as impact resistance, thermal diffusion, etc.

  6. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  7. Diffuse scattering and the fundamental properties of materials

    CERN Document Server

    EIce, Gene; Barabash, Rozaliya

    2009-01-01

    Diffuse Scattering-the use of off-specular X-Rays and neutrons from surfaces and interfaces-has grown rapidly as a tool for characterizing the surface properties of materials and related fundamental structural properties. It has proven to be especially useful in the understanding of local properties within materials. This book reflects the efforts of physicists and materials scientists around the world who have helped to refine the techniques and applications of diffuse scattering. Major topics specifically covered include: -- Scattering in Low Dimensions -- Elastic and Thermal Diffuse Scattering from Alloys -- Scattering from Complex and Disordered Materials -- Scattering from Distorted Crystals.

  8. Materials with a cluster structure. New properties, new possibilities

    International Nuclear Information System (INIS)

    Svechnikov, S.

    1998-01-01

    The author examines the structural special features, growth relationships and physical properties of a group of relatively new materials which includes quasicrystals, fullerites, aerogels, porous silicon. These materials are interesting because of their cluster structure. They include metallic alloys, semiconductor and molecular crystals, and disordered solidified gels. The nanocrystalline structure of the cluster materials determines their characteristic properties and unconventional properties, including those used in applied aspects. Special attention is given to the role of noise regarded as the statistical aspect in the formation of the cluster structure of the material in the aggregation condition, limited by diffusion during growth under highly non-equilibrium conditions. (author)

  9. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  10. Superconductivity and magnetism: Materials properties and developments

    International Nuclear Information System (INIS)

    Andersen, N.H.; Bay, N.; Grivel, J.C.

    2003-01-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T c superconductivity, magnetic superconductors, MgB 2 , CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  11. Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters

    Science.gov (United States)

    Wang, Ji-Peng; Hu, Nian; François, Bertrand; Lambert, Pierre

    2017-07-01

    This study proposed two pedotransfer functions (PTFs) to estimate sandy soil water retention curves. It is based on the van Genuchten's water retention model and from a semiphysical and semistatistical approach. Basic gradation parameters of d60 as particle size at 60% passing and the coefficient of uniformity Cu are employed in the PTFs with two idealized conditions, the monosized scenario and the extremely polydisperse condition, satisfied. Water retention tests are carried out on eight granular materials with narrow particle size distributions as supplementary data of the UNSODA database. The air entry value is expressed as inversely proportional to d60 and the parameter n, which is related to slope of water retention curve, is a function of Cu. The proposed PTFs, although have fewer parameters, have better fitness than previous PTFs for sandy soils. Furthermore, by incorporating with the suction stress definition, the proposed pedotransfer functions are imbedded in shear strength equations which provide a way to estimate capillary induced tensile strength or cohesion at a certain suction or degree of saturation from basic soil gradation parameters. The estimation shows quantitative agreement with experimental data in literature, and it also explains that the capillary-induced cohesion is generally higher for materials with finer mean particle size or higher polydispersity.

  12. Studies of Basic Electronic Properties of CdTe-Based Solar Cells and Their Evolution During Processing and Stress: Final Technical Report, 16 October 2001 - 31 August 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kaydanov, V. I.; Ohno, T. R.

    2007-02-01

    This report describes basic issues behind CdTe/CdS cell performance and stability, such as the nature and electronic properties of impurities and defects that control the majority carrier concentration, mechanisms of dopant compensation, recombination processes, their nature and properties, migration and transformation of defects under various processing, stress, and operating conditions. We believe that a better basic understanding of the specific influence of grain boundaries, especially for fine-grain materials such as those making up CdTe-based cells, is now one of the most important issues we must address. We need to clarify the role of grain boundaries in forming the film electronic properties, as well as those of the p-n junction.

  13. Comparative study of hygrothermal properties of five thermal insulation materials

    OpenAIRE

    Laure Ducoulombier; Zoubeir Lafhaj

    2017-01-01

    The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three pa...

  14. Pilot program to assess proposed basic quality assurance requirements in the medical use of byproduct materials

    International Nuclear Information System (INIS)

    Kaplan, E.; Nelson, K.; Meinhold, C.B.

    1991-10-01

    In January 1990, the Nuclear Regulatory Commission (NRC) proposed amendments to 10 CFR Part 35 that would require medical licensees using byproduct material to establish and implement a basic quality assurance program. A 60-day real-world trial of the proposed rules was initiated to obtain information beyond that generally found through standard public comment procedures. Volunteers from randomly selected institutions had opportunities to review the details of the proposed regulations and to implement these rules on a daily basis during the trial. The participating institutions were then asked to evaluate the proposed regulations based on their personal experiences. The pilot project sought to determine whether medical institutions could develop written quality assurance programs that would meet the eight performance-based objectives of proposed Section 35.35. In addition, the NRC wanted to learn from these volunteers if they had any recommendations on how the rule could be revised to minimized its cost and to clarify its objectives without decreasing its effectiveness. It was found that licensees could develop acceptable QA programs under a performance-based approach, that most licensee programs did meet the proposed objectives, and that most written QA plans would require consultations with NRC or Agreement State personnel before they would fully meet all objectives of proposed Section 35.35. This report describes the overall pilot program. The methodology used to select and assemble the group of participating licensees is presented. The various workshops and evaluation questionnaires are discussed, and detailed findings are presented. 7 refs

  15. Pilot program to assess proposed basic quality assurance requirements in the medical use of byproduct materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.; Nelson, K.; Meinhold, C.B. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    In January 1990, the Nuclear Regulatory Commission (NRC) proposed amendments to 10 CFR Part 35 that would require medical licensees using byproduct material to establish and implement a basic quality assurance program. A 60-day real-world trial of the proposed rules was initiated to obtain information beyond that generally found through standard public comment procedures. Volunteers from randomly selected institutions had opportunities to review the details of the proposed regulations and to implement these rules on a daily basis during the trial. The participating institutions were then asked to evaluate the proposed regulations based on their personal experiences. The pilot project sought to determine whether medical institutions could develop written quality assurance programs that would meet the eight performance-based objectives of proposed Section 35.35. In addition, the NRC wanted to learn from these volunteers if they had any recommendations on how the rule could be revised to minimized its cost and to clarify its objectives without decreasing its effectiveness. It was found that licensees could develop acceptable QA programs under a performance-based approach, that most licensee programs did meet the proposed objectives, and that most written QA plans would require consultations with NRC or Agreement State personnel before they would fully meet all objectives of proposed Section 35.35. This report describes the overall pilot program. The methodology used to select and assemble the group of participating licensees is presented. The various workshops and evaluation questionnaires are discussed, and detailed findings are presented. 7 refs.

  16. Dielectric properties of materials at microwave frequencies

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The paper introduces the review of the present state of art in the measurement of the interaction of electromagnetic waves with different kinds of materials. It is analysis of the possibilities of the mea­surement of the interaction of high frequencies waves (microwaves with materials and proposal of the experimental method for the studies mentioned above.The electromagnetic field consists of two components: electric and magnetic field. The influence of these components on materials is different. The influence of the magnetic field is negligible and it has no impact on practical use. The influence of the electric field is strong as the interaction between them results in the creation of electric currents in the material (Křivánek and Buchar, 1993.Experiments focused on the evaluation of the complex dielectric permitivity of different materials have been performed. The permitivity of solid material is also measurable by phasemethod, when the specimen is a part of transmission sub-circuit. Microwave instrument for complex permittivity measurement works in X frequency band (8.2–12.5 GHz, the frequency 10.1 GHz was used for all the measurement in the laboratory of physics, Mendel University in Brno. The extensive number of experimental data have been obtained for different materials. The length of the square side of the ae­rial open end was 50 mm and internal dimensions of waveguides were 23 mm × 10 mm. The samples have form of the plate shape with dimensions 150 mm × 150 mm × 4 mm.

  17. Adsorption Properties of Chalk Reservoir Materials

    DEFF Research Database (Denmark)

    Okhrimenko, Denis

    Understanding adsorption energetics and wetting properties of calcium carbonate surfaces is essential for developing remediation strategies for aquifers, improving oil recovery, minimising risk in CO2 storage and optimising industrial processes. This PhD was focussed on comparing the vapour....../gas adsorption properties of synthetic calcium carbonate phases (calcite, vaterite and aragonite) with chalk, which is composed of biogenic calcite (>98%). In combination with data from nanotechniques, the results demonstrate the complexity of chalk behavior and the role of nanoscale clay particles. The results...

  18. Measuring sodium alginate content of brown algae species Padina sp. as the basic matter for making dental impression material (Irreversible hydrocolloid impression material)

    OpenAIRE

    Nurlindah Hamrun; Suci Amalia Rachman

    2016-01-01

    One of the most important procedures in denture fabrication and orthodontic treatment is molding the patient’s detail oral cavity to determine the treatment planning. This procedure was done by using alginate impression material or irreversible hydrocolloid in which the basic material is sodium alginate imported from abroad because it is extracted from brown algae which its habitat is not in Indonesia so that it is causes the impression material is relatively expensive roomates is impact to h...

  19. Measuring natrium alginate content of brown algae spesies Padina sp. as the basic matter for making dental impression material (Irreversible hydrocolloid impression material)

    OpenAIRE

    Nurlindah Hamrun; Suci Amalia Rachman

    2016-01-01

    One of the most important procedure in denture fabrication and orthodontic treatment is molding the patient’s detail oral cavity to determine the treatment planning. This procedure does by using alginate impression material or irreversible hydrocolloid which is the basic material is natrium alginate which is imported from abroad because it is extracted from brown algae which habitat is not in Indonesia so it is causes the impression material is relative expensive which is impact to high cost ...

  20. Mechanical properties of structural materials in HLM

    International Nuclear Information System (INIS)

    Moisa, A. E.; Valeca, S.; Pitigoi, V.

    2016-01-01

    The Generation IV nuclear systems are nowadays in the design stage, and this is one of the reasons of testing stage for candidate materials. The purpose of this paper is to present the tensile tests, for candidate materials. The studied test are: on temperature of 500°C in air, on mechanical testing machine Walter + Bie by using the furnace of the testing machine, and environmental molten lead using testing machine Instron, equipped with a lead testing device attached to it. Also the mechanical parameters will be determined on tensile strength and yield strength for steel 316L material to be used as candidate in achieving LFR reactor vessel type, and the microstructural analysis of surface breaking will be performed by electronic microscopy. The paper will present the main components, the operating procedure of the testing system, and the results of tensile tests in molten lead. (authors)

  1. Mechanical properties of graphite and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, G.

    1976-01-01

    The elastic properties of the graphite monocrystal, the role of internal characteristics (texture, porosity) on the mechanical behavior of carbons, effects caused by the gaseous environment and neutron irradiation, and the resistance of graphites to cyclic mechanical stresses are discussed [fr

  2. Material, compressional and mechanical properties of Borassus ...

    African Journals Online (AJOL)

    The compressional and mechanical properties of tablet formulations incorporating native and modified Borassus aethiopum starches as binder were evaluated. The native Borassus aethiopum starch (BAS) was modified to yield fully gelatinised starch (FGBAS) and microcrystalline starch (MBAS). The compressional ...

  3. Probabilistic Modeling of Graded Timber Material Properties

    DEFF Research Database (Denmark)

    Faber, M. H.; Köhler, J.; Sørensen, John Dalsgaard

    2004-01-01

    The probabilistic modeling of timber material characteristics is considered with special emphasis to the modeling of the effect of different quality control and selection procedures used as means for quality grading in the production line. It is shown how statistical models may be established on ...

  4. Material properties under intensive dynamic loading

    CERN Document Server

    Cherne, Frank J; Zhernokletov, Mikhail V; Glushak, B L; Zocher, Marvin A

    2007-01-01

    Understanding the physical and thermomechanical response of materials subjected to intensive dynamic loading is a challenge of great significance in engineering today. This volume assumes the task of gathering both experimental and diagnostic methods in one place, since not much information has been previously disseminated in the scientific literature.

  5. Concrete deck material properties : final report.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  6. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...

  7. Magnetic Properties of Nanoparticles of Antiferromagnetic Materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Bødker, Franz

    2003-01-01

    The magnetic properties of antiferromagnetic nanoparticles have been studied by Mossbauer spectroscopy and neutron scattering. Temperature series of Mossbauer spectra of non-interacting, superparamagnetic hematite nanoparticles were fitted by use of the Blume-Tjon relaxation model. It has been...... found that the magnetic anisotropy energy constant increases significantly with decreasing particle size. Neutron scattering experiments on similar samples give new information on both superparamagnetic relaxation and collective magnetic excitations. There is good agreement between the values...

  8. Standard test method for determining the superplastic properties of metallic sheet materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes the procedure for determining the superplastic forming properties (SPF) of a metallic sheet material. It includes tests both for the basic SPF properties and also for derived SPF properties. The test for basic properties encompasses effects due to strain hardening or softening. 1.2 This test method covers sheet materials with thicknesses of at least 0.5 mm but not greater than 6 mm. It characterizes the material under a uni-axial tensile stress condition. Note 1—Most industrial applications of superplastic forming involve a multi-axial stress condition in a sheet; however it is more convenient to characterize a material under a uni-axial tensile stress condition. Tests should be performed in different orientations to the rolling direction of the sheet to ascertain initial anisotropy. 1.3 This method has been used successfully between strain rates of 10-5 to 10-1 per second. 1.4 This method has been used successfully on Aluminum and Titanium alloys. The use of the method wi...

  9. IMAP: Interferometry for Material Property Measurement in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  10. Size-Dependent Materials Properties Toward a Universal Equation

    Directory of Open Access Journals (Sweden)

    Guisbiers G

    2010-01-01

    Full Text Available Abstract Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done.

  11. Thermal and Electrical Properties of Nanocomposites, Including Material Properties

    NARCIS (Netherlands)

    Kochetov, R.

    2012-01-01

    The research described in this thesis is part of a state-funded IOP-EMVT project in cooperation with industrial companies, aiming at the design, assessment and implementation of new, environmental friendly (e.g. oil and SF6 - free) solid dielectric materials. A large disadvantage of solid polymer

  12. Structural properties of porous materials and powders used in different fields of science and technology

    CERN Document Server

    Volfkovich, Yury Mironovich; Bagotsky, Vladimir Sergeevich

    2014-01-01

    This book provides a comprehensive and concise description of most important aspects of experimental and theoretical investigations of porous materials and powders, with the use and application of these materials in different fields of science, technology, national economy and environment. It allows the reader to understand the basic regularities of heat and mass transfer and adsorption occurring in qualitatively different porous materials and products, and allows the reader to optimize the functional properties of porous and powdered products and materials. Written in an straightforward and transparent manner, this book is accessible to both experts and those without specialist knowledge, and it is further elucidated by drawings, schemes and photographs. Porous materials and powders with different pore sizes are used in many areas of industry, geology, agriculture and science. These areas include (i) a variety of devices and supplies; (ii) thermal insulation and building materials; (iii) oil-bearing geologic...

  13. Properties of cathode materials in alkaline cells

    International Nuclear Information System (INIS)

    Salkind, A.J.; McBreen, J.; Freeman, R.; Parkhurst, W.A.

    1985-01-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve-type silver-zinc batteries, a new material - AgNiO/sub 2/ - and several nickel electrodes for nickel-cadmium and nickel-hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities detected by XPS and SAM. After the first discharge AgNiO/sub 2/ can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic-bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)/sub 2/ largely eliminate this

  14. Properties of cathode materials in alkaline cells

    Science.gov (United States)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  15. Optical properties of nanostructured materials: a review

    Science.gov (United States)

    Flory, François; Escoubas, Ludovic; Berginc, Gérard

    2011-01-01

    Depending on the size of the smallest feature, the interaction of light with structured materials can be very different. This fundamental problem is treated by different theories. If first order theories are sufficient to describe the scattering from low roughness surfaces, second order or even higher order theories must be used for high roughness surfaces. Random surface structures can then be designed to distribute the light in different propagation directions. For complex structures such as black silicon, which reflects very little light, the theory needs further development. When the material is periodically structured, we speak about photonic crystals or metamaterials. Different theoretical approaches have been developed and experimental techniques are rapidly progressing. However, some work still remains to understand the full potential of this field. When the material is structured in dimension much smaller than the wavelength, the notion of complex refractive index must be revisited. Plasmon resonance can be excited by a progressing wave on metallic nanoparticles inducing a shaping of the absorption band and of the dispersion of the extinction coefficient. This addresses the problem of the permittivity of such metallic nanoparticles. The coupling between several metallic nanoparticles induces a field enhancement in the surrounding media, which can increase phenomena like scattering, absorption, luminescence, or Raman scattering. For semiconductor nanoparticles, electron confinement also induces a modulated absorption spectra. The refractive index is then modified. The bandgap of the material is changed because of the discretization of the electron energy, which can be controlled by the nanometers size particles. Such quantum dots behave like atoms and become luminescent. The lifetime of the electron in the excited states are much larger than in continuous energy bands. Electrons in coupled quantum dots behave as they do in molecules. Many applications

  16. Study on physical-mechanical properties of alkali activated materials based on fly ash

    Directory of Open Access Journals (Sweden)

    Olena Halas

    2012-09-01

    Full Text Available Alkali activated materials are relatively new materials, thanks to their good mechanical, physical, thermal properties and at the same time environmental friendliness, they could be widely adopted in different fields. The experiments, described in this article, are focused on the investigation of some basic mechanical-physical properties of alkali activated materials based on fly ash. For the following experiments were prepared two types of samples: in form of cubes and beams. On the cubes was tested compressive strength and on the beams – bending tensile strength and Young’s modulus of the material. It was also investigated the influence of water glass modulus, temperature of heat treatment on the final strength of the samples.

  17. A preliminary study on radiation damage effect in ceramics composite materials as innovative basic research using the HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Baba, Shinichi; Aihara, Jun; Arai, T.; Hayashi, K.; Ishino, S.

    1999-01-01

    An innovative basic research concerning with the basic science and applied technology is planned using the High Temperature Engineering Test Reactor (HTTR), which provides the advantage of not only a high temperature irradiation field above 400degC but also a large irradiation space. The first irradiation experiment is to be performed in 2001. Many research themes with a wide variety of scientific and technological interests are proposed as the innovative basic research. For the purpose of demonstration of scientific feasibility and advantages in the HTTR irradiation, several research themes have been being conducted as the preliminary studies. In this paper the outline of the innovative basic research is described, and the preliminary study on the radiation damage mechanism of ceramic composite materials is presented. (author)

  18. Oxygen Ion Conduction in Oxide Materials: Selected Examples and Basic Mechanisms

    Directory of Open Access Journals (Sweden)

    Traqueia, L. S. M.

    2006-06-01

    Full Text Available Oxygen ion conductors with most symmetrical structures such as fluorite- and perovskite-related phases, rely on the mobility of oxygen vacancies. High-performance electrolytes, namely with the apatite type structure, recently developed, show dominant interstitial transport. In order to assess basic composition-conductivity relationships in a fluorite-derived C-type cubic structure with high tolerance to different types of oxygen defects, a series of Y2O3-based materials were studied by impedance spectroscopy in air in the range 700-1000oC. Yttria doped with CaO exhibits reasonably high ionic conduction via the vacancy mechanism. Samples doped with ZrO2 and HfO2 possess oxygen interstitials as dominant defects, but show poor ionic conductivity when compared to Ca-doped materials. These tendencies, known for other fluorite-related phases such as pyrochlores, are opposite to those observed for apatite- and K2NiF4-type structures. Comparison of ionic conductivity levels in various oxide materials suggests that fast interstitial migration may be expected for complex multicomponent materials where the ion transport occurs in lattice fragments with high bond ionicity. Furthermore, conduction-affecting stereological parameters, to a great extent, depend on the relaxation of covalent fragments.

    Los conductores iónicos de oxígeno con estructuras más simétricas como fluorita y perovsquita dependen de la movilidad de las vacantes de oxígeno. Se han desarrollado recientemente electrolitos con elevadas prestaciones, los llamados de estructura tipo apatito, que muestran transporte intersticial dominante. Con el objeto de establecer las relaciones básicas entre composición y conductividad en una estructura cúbica tipo-C derivada de la fluorita con alta tolerancia a diferentes defectos de oxígeno, se han estudiado materiales basados en Y2O3 por espectroscopía de impedancia en el rango de temperaturas entre 700 y 1000ºC. La ytria dopada con Ca

  19. Web-based material property database system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W. K.; Huh, Y. H.; Moon, H. G. [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)

    2000-07-01

    This is to describe about power installations established by Korea Research Institute of Standards and Science and about the contents and function of database on creep and fatigue of high temperature resistance steel used in petrolium chemical plant. The database can be searched through commercial web browser and can also be available by plotting the relationship between collection of data at different temperature of material's creep rupture, creep deformation, creep crack growth, low cycle fatigue, high cycle fatigue, and fatigue crack growth and database. (Hong, J. S.)

  20. Thermophysical Properties of Heat Resistant Shielding Material

    International Nuclear Information System (INIS)

    Porter, W.D.

    2004-01-01

    This project was aimed at determining thermal conductivity, specific heat and thermal expansion of a heat resistant shielding material for neutron absorption applications. These data are critical in predicting the structural integrity of the shielding under thermal cycling and mechanical load. The measurements of thermal conductivity and specific heat were conducted in air at five different temperatures (-31 F, 73.4 F, 140 F, 212 F and 302 F). The transient plane source (TPS) method was used in the tests. Thermal expansion tests were conducted using push rod dilatometry over the continuous range from -40 F (-40 C) to 302 F (150 C)

  1. Availability of Instructional Materials at the Basic Education Level in Enugu Educational Zone of Enugu State, Nigeria

    Science.gov (United States)

    Chukwu, Leo C.; Eze, Thecla A. Y.; Agada, Fidelia Chinyelugo

    2016-01-01

    The study examined the availability of instructional materials at the basic education level in Enugu Education Zone of Enugu State, Nigeria. One research question and one hypothesis guided the study. The research question was answered using mean and grand mean ratings, while the hypothesis was tested using t-test statistics at 0.05 level of…

  2. Long term monitoring of mechanical properties of FRP repair materials.

    Science.gov (United States)

    2013-06-01

    Over the years, Fiber Reinforced Polymer (FRP) composites have gained popularity in transportation infrastructure as a material able to restore and increase the capacity of existing concrete elements. Properties such as a high strength to weight rati...

  3. Role of Interfaces in Mechanical Properties of Polycrystalline Materials

    Indian Academy of Sciences (India)

    Role of Interfaces in Mechanical Properties of Polycrystalline Materials. Atul H. Chokshi; Department of Metallurgy; Indian Institute of Science; Bangalore 560 012; E-mail: achokshi@met.iisc.ernet.in.

  4. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  5. Determination of Basic Structure-Property Relations for Processing and Modeling in Advanced Nuclear Fuel: Microstructure Evolution and Mechanical Properties

    International Nuclear Information System (INIS)

    Wheeler, Kirk; Parra, Manuel; Peralta, Pedro

    2009-01-01

    The project objective is to study structure-property relations in solid solutions of nitrides and oxides with surrogate elements to simulate the behavior of fuels of inert matrix fuels of interest to the Advanced Fuel Cycle Initiative (AFCI), with emphasis in zirconium-based materials. Work with actual fuels will be carried out in parallel in collaboration with Los Alamos National Laboratory (LANL). Three key aspects will be explored: microstructure characterization through measurement of global texture evolution and local crystallographic variations using Electron Backscattering Diffraction (EBSD); determination of mechanical properties, including fracture toughness, quasi-static compression strength, and hardness, as functions of load and temperature, and, finally, development of structure-property relations to describe mechanical behavior of the fuels based on experimental data. Materials tested will be characterized to identify the mechanisms of deformation and fracture and their relationship to microstructure and its evolution. New aspects of this research are the inclusion of crystallographic information into the evaluation of fuel performance and the incorporation of statistical variations of microstructural variables into simplified models of mechanical behavior of fuels that account explicitly for these variations. The work is expected to provide insight into processing conditions leading to better fuel performance and structural reliability during manufacturing and service, as well as providing a simplified testing model for future fuel production

  6. MD-portal Materials Database: Effective Materials Property Information Management in Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeonggeun; Kil, Soyeon; Kwon, Junhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The collective properties of the nuclear materials are defined as standard industrial codes such as ASME codes. While in service, the materials are aged and degraded, and the initial properties are changed according to the operating environments. These changes are a matter of substantial concern of the operators, regulators, and researchers in nuclear fields. Hence, the material property database considering the degradation is required, and the successful management and use of material property information must be responsive to the continuing changes and increasing complexity in nuclear engineering materials. Recently, the nuclear materials division in the Korea Atomic Energy Research Institute (KAERI) launched a comprehensive portal website for nuclear material information, which is known as the MD-portal. The MD-portal contains various technical documents on the degradation and development of nuclear materials. Additionally, the nuclear materials database (MatDB) is incorporated in it. The MatDB covers the mechanical properties of various nuclear structural materials used as the components: a reactor pressure vessel, steam generator, and primary and secondary piping. In this study, we introduced the MD-portal MatDB briefly, and showed an application of the MatDB to the real case of material degradations in NPPs.

  7. Tensiography instrumentation for measuring liquid material properties

    Energy Technology Data Exchange (ETDEWEB)

    Tiernan, K.; Kennedy, D.; McMillan, N

    2005-05-15

    An on-line process control of liquids represents a very cost effective and economical way of quality testing fluids. The Tensiography equipment incorporated for this quality technique operates on the principle that all liquids have unique properties and characteristics. Using fibre optic technology and electronic control systems, a fingerprint or trace of a liquid can be taken and recorded on file for future reference. With time other batches of the same liquid can be compared to the original and any major discrepancies can be used to signal quality problems. The technique can be applied to lubricants, alcohols, perfumes, and water. This paper discusses the design of such a system, the methods of testing, errors in the signals produced, correction methods, and some industrial applications for quality checking and control.

  8. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  9. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  10. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  11. Solder joint technology materials, properties, and reliability

    CERN Document Server

    Tu, King-Ning

    2007-01-01

    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  12. MIDAS (Material Implementation, Database, and Analysis Source): A comprehensive resource of material properties

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M; Norquist, P; Barton, N; Durrenberger, K; Florando, J; Attia, A

    2010-12-13

    MIDAS is aimed to be an easy-to-use and comprehensive common source for material properties including both experimental data and models and their parameters. At LLNL, we will develop MIDAS to be the central repository for material strength related data and models with the long-term goal to encompass other material properties. MIDAS will allow the users to upload experimental data and updated models, to view and read materials data and references, to manipulate models and their parameters, and to serve as the central location for the application codes to access the continuously growing model source codes. MIDAS contains a suite of interoperable tools and utilizes components already existing at LLNL: MSD (material strength database), MatProp (database of materials properties files), and MSlib (library of material model source codes). MIDAS requires significant development of the computer science framework for the interfaces between different components. We present the current status of MIDAS and its future development in this paper.

  13. Thermomechanical Elastic Post-Buckling of Functionally Graded Materials Plate with Random System Properties

    Science.gov (United States)

    Jagtap, K. R.; Lal, Achchhe; Singh, B. N.

    2013-04-01

    This paper presents the stochastic post-buckling response of elastically supported FGM plate with random system properties subjected to uniform and nonuniform temperature change with temperature-dependent and -independent material properties. The FGMs plate is supported with two parameters of Pasternak foundation with Winkler cubic nonlinearity. The basic formulation is based on higher-order shear deformation theory (HSDT) with von-Karman nonlinearity using modified C0 continuity. A direct iterative-based nonlinear finite element method combined with first-order perturbation technique is used to compute the second-order statistics (mean and coefficient of variation) of post-buckling response of FGM plates.

  14. Role of Interfaces in Mechanical Properties of Polycrystalline Materials

    Indian Academy of Sciences (India)

    Table of contents. Role of Interfaces in Mechanical Properties of Polycrystalline Materials · Slide 2 · Slide 3 · Slide 4 · Mechanical Properties · Slide 6 · Slide 7 · Commercial Applications · Slide 9 · Slide 10 · Grain Boundary Sliding and Slip · Slide 12 · Slide 13 · Role of Grain Boundaries · Superplasticity in Zirconia · Slide 16.

  15. Assembling and properties of the polymer-particle nanostructured materials

    Science.gov (United States)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  16. Comparative study of hygrothermal properties of five thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Laure Ducoulombier

    2017-09-01

    Full Text Available The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three parts. The first part presents the phenomena of hygrothermal transfers in walls in order to understand the need for determining specific properties of the insulating materials. The second part describes in details the five studied insulating materials and the methods used for the characterization and identification of their main properties. Finally, the last part presents the experimental results and makes comparisons between materials. The differences between the insulating materials are brought out, such as the strong dependence of the thermal conductivity of polystyrene on temperature, or the good permeability of fibrous insulating materials to water vapor. A detailed analysis of the obtained results is presented.

  17. The design and modeling of periodic materials with novel properties

    Science.gov (United States)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  18. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  19. SiC/SiC Cladding Materials Properties Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormal operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.

  20. Composite Material from By-products and Its Properties

    Science.gov (United States)

    Šeps, K.; Broukalová, I.; Vodička, J.

    2017-09-01

    The paper shows an example of utilization of specific textile admixture - fluffs of torn textiles from waste cars in production of composite with aggregate consisting entirely of unsorted recycled concrete. The admixture in the mixture of recycled concrete and cement binder fills the pores and voids in composite. The elaborated composite has working title STEREDconcrete. In the article, basic mechanical-physical properties of the composite are presented also the fire resistance of STEREDconcrete, which was determined in tests.

  1. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  2. Stochasticity in materials structure, properties, and processing—A review

    Science.gov (United States)

    Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai

    2018-03-01

    We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

  3. Tribological properties of silicate materials on nano and microscale

    International Nuclear Information System (INIS)

    Tordjeman, Ph.; Morel, N.; Ramonda, M.

    2009-01-01

    We studied the friction properties of four model silicate materials at the nanoscale and microscale. From nanotribology, we characterized the tribological properties at single asperity contact scale and from microtribology, we characterized the tribological properties at multi asperity contact scale. First, for each material we measured chemical composition by XPS, Young's modulus by acoustical microscopy and roughness σ by atomic force microscopy (AFM). Second, we measured the nanofriction coefficients with an AFM and the microfriction coefficients with a ball probe tribometer, for three hardnesses of the ball probe. We identified one friction mechanism at the nanoscale (sliding friction) and two friction mechanisms at the microscale (sliding friction and yielding friction). Comparison of the nano and microfriction coefficients at the same sliding friction regime shown, that the tribological properties of these materials didn't depend on roughness.

  4. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  5. Effective elastic properties of sintered materials with branched cracks

    Science.gov (United States)

    Fedelinski, Piotr

    2018-01-01

    The aim of work is analysis of sintered materials with branched cracks growing from the voids situated at corners of fibers. The material is modelled as a two-dimensional linear-elastic structure using the boundary element method (BEM). The materials without voids and with voids having different shapes are considered. The influence of lengths of cracks and shapes of voids on stress intensity factors (SIF) and effective elastic properties (the Young modulus and the Poisson ratio) are studied. The overall properties of the sintered materials are determined by considering the representative volume element (RVE) with large number of branched cracks. The sensitivity of effective elastic properties on boundary conditions imposed on the RVE is studied.

  6. Materials Issues in Advanced Nuclear Systems: Executive Summary of DOE Basic Research Needs Workshop, 'Basic Research Needs for Advanced Nuclear Energy Systems'

    International Nuclear Information System (INIS)

    Roberto, James B.; Diaz de la Rubia, Tomas

    2007-01-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  7. Further developments in material properties determined by vibration analysis

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang; Andreasen, Lotte; Seifert, Mette

    1997-01-01

    have been studied by testing a number of building materials. The method has been PC-integrated with the Brüel & Kjær's type 3550 vibration equipment - and special user menus have been developed to facilitate handling of the method in practice. Limits on range of test frequencies applied are discussed...... as theoretical aspects with respect to the handling of mathematics involved to convert vibration signals to material properties. The latter aspects are referred to in this research note where the numerical part of the method described in Materialenyt 1 (1995) is imporved.The reader of this note is assumed......A method was described in Materialnyt 1 (1995) on "Material properties determined by vibration analysis". This new method of materials testing has been further developed as the result of research at the Building Materials Laboratory, Technical University of Denmark.Practical aspects of the method...

  8. A summary of the fatigue properties of wind turbine materials

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J. [Sandia National Labs., Wind Energy Technology Dept., Albuquerque, NM (United States)

    2000-07-01

    Modern wind turbines are fatigue-critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue-critical structures, e.g. an aeroplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialised to materials typically used in wind turbines. This article reviews the fatigue data that have been developed especially for wind turbines. Major sections are devoted to the properties developed for metals (primarily aluminium), wood and fibreglass. Special emphasis is placed on the fibreglass discussion because this material is currently the material of choice for wind turbine blades. The article focuses on the data developed in the US, but cites European references that provide important insights. (Author)

  9. Properties of Extruded PS-212 Type Self-Lubricating Materials

    Science.gov (United States)

    Waters, W. J.; Sliney, H. E.; Soltis, R. F.

    1993-01-01

    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent.

  10. Basic fracture toughness requirements for ferritic materials of nuclear class pressure retaining equipment in NPP

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2005-01-01

    In this paper, theory basis on cold brittleness and anti-brittle fracture design of ferritic materials are introduced summarily and fracture toughness requirements for ferritic materials in ASME code for nuclear safety class pressure retaining equipment in NPP are summarized and evaluated. The results show that notch impact toughness requirements for materials relate to nuclear safety class of materials so as to ensure that brittle fracture of retaining pressure boundary in NPP can not occur. (authors)

  11. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  12. Effects of liquid phase on basic properties of alpha-tricalcium phosphate-based apatite cement.

    Science.gov (United States)

    Oda, Makoto; Takeuchi, Akari; Lin, Xin; Matsuya, Shigeki; Ishikawa, Kunio

    2008-09-01

    Effects of liquid phase on the basic properties of alpha-tricalcuim phosphate (alpha-TCP)-based cement, BIOPEX, were investigated by employing three liquid phases: distilled water, neutral sodium hydrogen phosphate solution, and succinic acid disodium salt solution containing sodium salt of chondroitin sulfate. When mixed with neutral sodium hydrogen phosphate or succinic acid disodium salt solution, the initial setting times of the cement were 19.4 +/- 0.55 and 11.8 +/- 0.45 minutes respectively. These setting times were much shorter than that of distilled water, 88.4 +/- 0.55 minutes. Formation of needle-like crystals typical of apatite was much faster when neutral sodium hydrogen phosphate solution was used, as compared to distilled water or succinic acid disodium salt solution. Moreover, at 24 hours after mixing, the largest amount of apatite was formed when neutral sodium hydrogen phosphate solution was used, whereas use of succinic acid resulted in the least. On the final mechanical strength of the cement, that yielded with neutral sodium hydrogen phosphate solution was the highest. In contrast, lower mechanical strength was observed--especially at the initial stage--when succinic acid sodium salt was used. It was thus concluded that alpha-TCP-based cement allowed accelerated transformation to apatite, and that higher mechanical strength since the initial stage was achieved when neutral sodium hydrogen phosphate solution was used as the liquid phase.

  13. Basic AC loss properties of IBAD/CVD-YBCO tapes for pancake-type coils

    Energy Technology Data Exchange (ETDEWEB)

    Funaki, K. [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)], E-mail: funaki@sc.kyushu-u.ac.jp; Sueyoshi, T.; Iwakuma, M. [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Shikimachi, K.; Hirano, N.; Nagaya, S. [Chubu Electric Power Co., Inc., 20-1 Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya 459-8522 (Japan)

    2008-09-15

    We are experimentally studying basic AC loss properties of IBAD/CVD-YBCO coated conductors with a copper layer for stabilizing, especially the temperature dependence of perpendicular field loss in alternating electromagnetic environments. We prepared two types of short specimens with and without a copper layer and measured AC losses by a saddle-shaped pickup coil in an alternating magnetic field perpendicular to the wide surfaces at liquid helium temperature. In the ranges of the amplitude up to 4 T and the frequency up to 0.2 Hz, the AC losses both of the two specimens are hardly dependent upon the frequency. The results show that hysteresis loss is a major component of the AC loss in the specimens and the effects of the copper layer can be negligible. We also measured AC losses for the specimens with the copper layer at liquid nitrogen temperature to estimate the dependence on measurement temperature. The results suggested that the AC loss vs. the amplitude of applied field can be scaled by a critical current at a zero magnetic field.

  14. Properties of structural materials in liquid metal environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H.U. [ed.

    1991-12-15

    The International Working Group on Fast Reactors (IWGFR) Specialists Meeting on Properties of Structural Materials in Liquid Metal Environment was held during June 18 to June 20, 1991, at the Nuclear Research Centre (Kernforschungszentrum) in Karlsruhe, Germany. The Specialists Meeting was divided into five technical sessions which addressed topics as follows: Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; Behaviour of Materials in Liquid Metal Environments under Off-Normal Conditions;Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; Crack Propagation in Liquid Sodium; and Conclusions and recommendations. Individual papers have been cataloged separately.

  15. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  16. Thermophysical properties of materials for water cooled reactors

    International Nuclear Information System (INIS)

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA's International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs

  17. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  18. Ternary gypsum-based materials: Composition, properties and utilization

    Science.gov (United States)

    Doleželová, M.; Svora, P.; Vimmrová, A.

    2017-10-01

    In spite of the fact that gypsum is one of the most environmentally friendly binders, utilization of gypsum products is relatively narrow. The main problem of gypsum materials is their low resistance to the wet environment and radical decrease of mechanical properties with increasing moisture. The solution of the problem could be in use of composed gypsum-based binders, usually ternary, comprising gypsum, pozzolan and alkali activator of pozzolan reaction. These materials have a better moisture resistance and often also better mechanical properties. Paper provides literature survey of the possible compositions, properties and ways of utilization of the composed gypsum-based binders with latent hydraulic and pozzolan materials together with some results of present research performed by authors.

  19. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.

    1997-01-01

    of the cortical bone to the total glenoid strength was assessed by compression tests of pristine and cancellous-free glenoid specimens. Strength decreased by an average of 31% after the cancellous bone was removed. The material properties of the glenoid cancellous bone were determined by axial compression tests......The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid......, these models were all based on assumptions that the material properties of the glenoid were similar to those of the tibial plateau. The osteopenetrometer was used to assess the topographic strength distribution at the glenoid. Strength at the proximal subchondral level of the glenoid averaged 66.9 MPa. Higher...

  20. Atomistic methodologies for material properties of 2D materials at the nanoscale

    Science.gov (United States)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  1. Micro-mechanical properties of bio-materials

    Science.gov (United States)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  2. The material element in the basic form of the offense of abusive behavior

    Directory of Open Access Journals (Sweden)

    Mihaela ROTARU

    2012-06-01

    Full Text Available Legal rules are dynamic, meaning that they change depending on the evolution of the society at a certain time, in order to successfully meet the needs of regulation of social relations. The Criminal Code is no exception to this rule. Insult and slander have been decriminalized by the Law no. 278/2006, a situation which has led to changing legal content of other crimes, such as outrage, referred to in Art. 239 Criminal Code, by repealing its basic variant, relative to insult and slander. Instead, at the offense of abusive behavior, referred to in Art. 250 Criminal Code, the basic variant, represented by ,,the use of offensive language”, remained in force.

  3. From Tomography to Material Properties of Thermal Protection Systems

    Science.gov (United States)

    Mansour, Nagi N.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Barnhardt, Michael; Wright, Michael

    2017-01-01

    A NASA Ames Research Center (ARC) effort, under the Entry Systems Modeling (ESM) project, aims at developing micro-tomography (micro-CT) experiments and simulations for studying materials used in hypersonic entry systems. X-ray micro-tomography allows for non-destructive 3D imaging of a materials micro-structure at the sub-micron scale, providing fiber-scale representations of porous thermal protection systems (TPS) materials. The technique has also allowed for In-situ experiments that can resolve response phenomena under realistic environmental conditions such as high temperature, mechanical loads, and oxidizing atmospheres. Simulation tools have been developed at the NASA Ames Research Center to determine material properties and material response from the high-fidelity tomographic representations of the porous materials with the goal of informing macroscopic TPS response models and guiding future TPS design.

  4. The Representation and Exchange of Material and Other Engineering Properties

    OpenAIRE

    Swindells, Norman

    2009-01-01

    The representation of information and its exchange in a communication requires the use of a common information model to define the semantics and syntax of the representation and a common dictionary to define the meaning of the data items. These fundamental concepts are the basis of the new standard ISO 10303-235: 'Engineering properties for product design and verification' for the computer representation and exchange of material and any other engineering properties of a product and to provide...

  5. Methods for Assessing Basic Particle Properties and Cytotoxicity of Engineered Nanoparticles

    Directory of Open Access Journals (Sweden)

    Olga-Ioanna Kalantzi

    2014-03-01

    Full Text Available The increasing penetration of materials and products containing engineered nanoparticles (ENPs to the market is posing many concerns regarding their environmental impacts. To assess these impacts, there is an urgent need of techniques for determining the health-related properties of ENPs and standards for assessing their toxicity. Although a wide number of systems for characterizing nanoparticles in different media (i.e., gases and liquids is already commercially available, the development of protocols for determining the cytotoxicity of ENPs is still at an infant stage, drawing upon existing knowledge from general toxicology. In this regard, differences in the preparation of ENP-containing solutions for cytotoxicity testing, as well as in the steps involved in the tests can result in significant deviations and inconsistencies between studies. In an attempt to highlight the urgent need for assessing the environmental impacts of nanotechnology, this article provides a brief overview of the existing methods for determining health-related properties of ENPs and their cytotoxicity.

  6. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  7. Fabrication, properties, and tritium recovery from solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.E. (Argonne National Lab., IL (USA)); Kondo, T. (Japan Atomic Energy Research Inst., Tokyo (Japan)); Roux, N. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Tanaka, S. (Tokyo Univ. (Japan)); Vollath, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  8. INVESTIGATION OF TRIBOLOGICAL PROPERTIES CuSn10 BEARING MATERIAL

    Directory of Open Access Journals (Sweden)

    Bekir Sadık ÜNLÜ

    2005-01-01

    Full Text Available Bronzes which copper based alloys is widely used because of properties physical, thermal and tribological as journal bearing material. This material that has tribological performance good conclusions gives at journal bearings. In this study, CuSn10 bronze that were manufactured journal bearings friction and wear properties has been examined and compared. SAE 1050 steel shaft has been used as counter abrader. Experiments have been carried out 10 N and 20 N loads, 750 and 1500 rpm, dry and lubricated conditions by using radial journal bearing wear test rig. As a results, high friction coefficient and weigh loss have been obtained at dry condition more than lubricated condition.

  9. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    CERN Document Server

    Warner, Terence E

    2010-01-01

    Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to miner

  10. Materials used to simulate physical properties of human skin.

    Science.gov (United States)

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Overview of European Community (Activity 3) work on materials properties of fast reactor structural materials

    International Nuclear Information System (INIS)

    Wood, D.S.

    The Fast Reactor Coordinating Committee set up in 1974 the Working Group Codes and Standards, and organized its work into four main activities: Manufacturing standards, Structural analysis, Materials and Classification of components. The main purpose of materials activity is to compare and contrast existing national specifications and associated properties relevant to structural materials in fast reactors. Funds are available on a yearly basis for tasks to be carried out through Study Contracts. At present about four Study Contract Reports are prepared each year

  12. Basic properties of Sr{sub 1-x}Ba{sub x}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Motoharu, E-mail: IMAI.Motoharu@nims.go.jp; Sato, Akira; Kimura, Takashi; Aoyagi, Takeshi

    2011-10-03

    Basic properties, such as the phase relationship, crystal structure, and energy gap E{sub g}, have been investigated in Sr-rich Sr{sub 1-x}Ba{sub x}Si{sub 2}. Sr{sub 1-x}Ba{sub x}Si{sub 2} (0 {<=} x {<=} 1.0) has two phases: one with the SrSi{sub 2}-type structure and another with the BaSi{sub 2}-type structure. The SrSi{sub 2} phase exists at x ranging from 0 to 0.13, and the BaSi{sub 2} phase exists at x ranging from 0.24 to 1.0. The volume increases with x in both the SrSi{sub 2} and BaSi{sub 2} phases. A volume jump of 13.7% appears at the structural phase transition from the SrSi{sub 2} phase to the BaSi{sub 2} phase. E{sub g} increases with x in SrSi{sub 2}-phase Sr{sub 1-x}Ba{sub x}Si{sub 2} but E{sub g} decreases with x in the BaSi{sub 2}-phase Sr{sub 1-x}Ba{sub x}Si{sub 2}. In Sr-rich BaSi{sub 2}-phase Sr{sub 1-x}Ba{sub x}Si{sub 2}, Ba atoms at a specific crystallographic site, the A1 site, are preferentially substituted by Sr atoms, as well as in Ba-rich BaSi{sub 2}-phase Sr{sub 1-x}Ba{sub x}Si{sub 2}.

  13. Polymer Basics: Classroom Activities Manipulating Paper Clips to Introduce the Structures and Properties of Polymers

    Science.gov (United States)

    Umar, Yunusa

    2014-01-01

    A simple and effective hands-on classroom activity designed to illustrate basic polymer concepts is presented. In this activity, students build primary structures of homopolymers and different arrangements of monomers in copolymer using paper clips as monomers. The activity supports formation of a basic understanding of polymer structures,…

  14. Psychometric properties of the Basic Psychological Need Satisfaction and Frustration Scale : Intellectual disability

    NARCIS (Netherlands)

    Frielink, N.; Schuengel, C.; Embregts, P.J.C.M.

    2018-01-01

    The Basic Psychological Need Satisfaction and Frustration Scale – Intellectual Disability (BPNSFS-ID), an adapted version of the original BPNSFS (Chen, Vansteenkiste, et al., 2015), operationalizes satisfaction and frustration with the three basic psychological needs according to self-determination

  15. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.

    Science.gov (United States)

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing

    2018-03-23

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

  16. Scholar-activating teaching materials for quantum physics. Pt. 2. Basic facts of quantum physics and heuristic methods

    International Nuclear Information System (INIS)

    Huebel, Horst

    2010-01-01

    Traditionally in the center of interest on quantum physics referring to schools the question lies, whether electrons and photons are now particles or waves, a question, which is often characterized by the phrase ''wave-particle dualism'', which notoriously not exists in its original meaning. Against that by the author - basing on important preparatory works of Kueblbeck and Mueller - a new concept for the treatment of quantum physics for the school was proposed, which puts ''basic facts'' in the foreground, comparable with the Kueblbeck-Mueller ''characteristic features''. The ''basic facts'' are similar to axioms of quantum physics, by means of which a large number of experiments and phenomena can be ''explained'' at least qualitatively - in a heuristic way -. Instead of the so-called ''wave-particle dualism'' here uncertainty and complementarity are put in the foreground. The new concept is in the Internet under http://www.forphys.de extensively presented with many further materials. In the partial volumes of this publication manifold and carefully elaborated teaching materials are presented, by means of which scholars can get themselves the partial set of quantum physics referring to schools by different methods like learn at stations, short referates, Internet research, group puzzle, the query-sheet or the card-index method etc. In the present 2. part materials for the ''basic facts'' of quantum physics are prepared, by which also modern experiments can be interpreted. Here deals it with the getting of knowledge and application of the ''basic Facts''. This pursues also by real scholar experiments, simulations and analogy tests. The scholars obtain so more simply than generally a deeper insight in quantum physics.

  17. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado

    2010-02-17

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Basic study on intelligent materialization of glass; Glass no intelligent ko zairyoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-31

    This is the report No. 98 issued by the Inorganic Material Research Institute. An intelligent material is a substance and/or material which responds intelligently to environmental conditions and exhibits functions. One of the features of amorphous materials including amorphous glass is a large freedom in chemical composition. These materials maintain order in short distance, but have as a whole the turbulent and specific atom orientation. Therefore, high tolerability in selecting the composition, and diverse synthesizing methods are available. A wide range of utilization may be conceived, such as introduction of the state of electrons having different valences in a structure, and the diverse chemical combinations. Patterns of existence of polyhedrons having different orientations, and how they are connected correlate closely with an external environment. Intelligent materials have high freedom against change in the external environment and are suitable to exhibit intelligent functions. Setting heat and light as the external conditions, attempts have been made on search and creation of intelligent materials based on state change induced by interactions between the two factors. Fundamental studies have been made on synthesis of different environment responding glasses and films, and on factors and phenomena for exhibition of the intelligence. 62 refs., 91 figs., 8 tabs.

  19. The Representation and Exchange of Material and Other Engineering Properties

    Directory of Open Access Journals (Sweden)

    Norman Swindells

    2009-09-01

    Full Text Available The representation of information and its exchange in a communication requires the use of a common information model to define the semantics and syntax of the representation and a common dictionary to define the meaning of the data items. These fundamental concepts are the basis of the new standard ISO 10303-235: 'Engineering properties for product design and verification' for the computer representation and exchange of material and any other engineering properties of a product and to provide an audit trail for the derivation of the property value. A related dictionary conforming to ISO 13584 can define testing methods and their properties and enable the information model to be used for any property of any product.

  20. Sorption-desorption properties of saponite-containing material

    Science.gov (United States)

    Morozova, M. V.; Frolova, M. A.; Makhova, T. A.

    2017-11-01

    The sorption mechanism of the mineral additive showed that self-saturation of the saponite-containing material with water vapors has a long-term nature (12 days). The nature of desorption differs from adsorption isotherm, i.e. the adsorption/desorption hysteresis is observed. Saponite-containing material samples studied after moisture desorption using infrared spectroscopy demonstrated that chemical compounds in the material have the ability to form calcium silicate hydrates when saturated with water. This fact along with the additive capability to control the water-cement ratio during concrete curing contributes to significantly better physical and chemical properties (strength, frost resistance) of the concrete composite.

  1. Characterization of mouthguard materials: thermal properties of commercialized products.

    Science.gov (United States)

    Gould, Trenton E; Piland, Scott G; Shin, Junghwan; McNair, Olivia; Hoyle, Charles E; Nazarenko, Sergei

    2009-12-01

    Several mechanisms have been purported to describe how mouthguards protect the orofacial complex against injury. As the properties needed for these mechanisms to be effective are temperature and frequency dependent, the specific aim of this study was to provide a comprehensive thermal characterization of commercial mouthguard materials. Five commercially representative thermoplastic mouthguard materials (Essix Resin, Erkoflex, Proform-regular, Proform-laminate, and Polyshok) were tested. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques were implemented to measure thermal transitions and mechanical properties. Measurements were conducted three times per sample. One-way ANOVA and one-sample t-tests were used to test for differences between commercial products on selected mean thermal property values. The DSC measurements indicated no differences between commercial materials for mean glass transition (p=0.053), onset melt (p=0.973), or peak melt (p=0.436) temperatures. Likewise, DMA measurements revealed no differences between commercial materials for the mean glass transition (p=0.093), storage modulus (p=0.257), or loss modulus (p=0.172) properties, respectively. The one-sample t-tests revealed that glass transition temperatures were different from intra-oral temperature (psensitive to repetitive heating and cooling cycles, prolonged thermal treatment, and have glass transitions well below their end-use intra-oral temperature. As such, these materials are functioning as elastomers and not optimal mechanical damping materials. Dental clinicians, healthcare practitioners, or end-users should be aware that these materials are at best problematic with respect to this protective mechanism.

  2. Thermal properties of hemp fibre non-woven materials

    Science.gov (United States)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  3. Thermal properties of hemp fibre non-woven materials

    International Nuclear Information System (INIS)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-01-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies – thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used – Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised

  4. Estimating the Material Properties of Fabric from Video (Open Access)

    Science.gov (United States)

    2014-03-03

    under var - ious unknown wind forces, and recover two key material properties of the fabric: stiffness and area weight. We ex- tend features previously...Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV, 2000. 5, 6 [13] C. Schuldt

  5. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  6. Realization of prediction of materials properties by ab initio ...

    Indian Academy of Sciences (India)

    Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical properties of academically and industrially interesting materials. There is, however, some limitation in size and time of the system up to the order of several hundred atoms and ∼ 1 pico second, even if we use the fastest ...

  7. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  8. Low temperature radiative properties of materials used in cryogenics

    Czech Academy of Sciences Publication Activity Database

    Musilová, Věra; Hanzelka, Pavel; Králík, Tomáš; Srnka, Aleš

    2005-01-01

    Roč. 45, č. 8 (2005), s. 529-536 ISSN 0011-2275 R&D Projects: GA AV ČR(CZ) IBS2065109 Keywords : structural materials * radiant properties * cryostats Subject RIV: BJ - Thermodynamics Impact factor: 0.762, year: 2005

  9. Mechanics of advanced materials analysis of properties and performance

    CERN Document Server

    Matveenko, Valery

    2015-01-01

    The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.

  10. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    on the electron and phonon transport was analyzed and discussed in detail. In order to solve the problems of high thermal conductivity without the deterioration of electrical conductivity by nanostructuring for conventional ZnO materials, the doped ZnCdO material was proposed as a new n-type oxide thermoelectric...... material. The material is sintered in air in order to maintain the oxygen stoichiometry and avoid the stability issues. The successful alloying of CdO with ZnO at a molar ratio of 1:9 resulted in a significant reduction of thermal conductivity up to 7-fold at room temperature. By careful selection......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  11. Determination of basic state parameters and characterization of optical, dielectric and fluorescence properties of calcium boro lactate (CaBL)

    International Nuclear Information System (INIS)

    Vijayalakshmi, A.; Balraj, V.

    2016-01-01

    This paper describes the calculation of basic solid state parameters like penn gap, plasma energy, polarizability and fermi energy for calcium boro lactate single crystal. calcium boro lactate crystals were developed by solution growth method. Single crystal diffraction studies carried out and calculated basic solid state criterion for the CaBL compound. optical nature of these compound explained by using UV-Visible spectrum. Electro-optic behaviour of the crystal explained by dielectric studies. Light emitting properties explained by fluorescence studies. (author)

  12. Longitudinal ultrasonic velocity as a predictor of material properties of porous materials

    International Nuclear Information System (INIS)

    Panakkal, J.P.

    1996-01-01

    Nondestructive evaluation/characterization of porous materials using ultrasonic velocity is demonstrated taking examples from various types of materials-structural, nuclear, clay and other ceramics and powder metallurgy compacts. A general relationship between sintered density and longitudinal ultrasonic velocity is established for porous materials. A good correlation has been obtained between elastic moduli and ultrasonic velocity. The values are compared with various theories of ultrasound propagation in materials. It has also been shown ultrasonic velocity is a useful tool for monitoring fabrication parameters, tensile strength and thermal conductivity of porous materials. This paper demonstrates that measurement of a single parameter i.e. ultrasonic velocity is useful as a predictor of diverse material properties of porous materials. (author)

  13. Estimation technique on thermal properties data of reactor materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1998-01-01

    This study aims at rapid measurement of thermal properties (thermal conductivity, thermal diffusivity, specific heat capacity, and emissivity) with the highest precision and till ultra high temperature in the world under identifying high temperature materials expected at reactor engineering in future such as plasma facing materials of nuclear fusion reactor. It was conducted by setting some sub-theme such as highly precise measurement and characterization of thermal properties, estimation technique of their data. Thus, precise measurement on specific heat capacity of meso-phase graphite was conducted. Between those at 1000degC and 3000degC a difference of about 5% was observed. As a result, it was found that it was required for highly precise estimation of thermal property data to consider value of the specific heat capacity. (G.K.)

  14. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.

    Science.gov (United States)

    Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi

    2009-05-30

    Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.

  15. Identification of material properties of sandwich structure with piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Zemčík R.

    2008-11-01

    Full Text Available The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests on separate materials, which makes computational models unreliable. Therefore, the properties are identified using the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.

  16. Red mud of aluminium production waste as basic component of new construction materials.

    Science.gov (United States)

    Mymrin, V A; Vázquez-Vaamonde, A J

    2001-10-01

    The work presented here shows the possibility of using the red mud waste from the Bayer process used for aluminium production as the main component of new construction materials. It describes some recent experiments lasting 180 days as well as some 1 year old samples. The best part of materials used are industrial wastes, but some of them contain small (no more the 2%) additions of CaO or Portland Cement (PC) to increase the strengthening rate of the samples. The high strength values of these materials allow their use as new materials for road and airfields bases, levee core, dumps, foundations, etc. They can also be used to make bricks, tiles, and similar items. In addition to the economic factors, these materials are very easy to use and no new residues are generated. The results of the heavy metal leaching tests, not included in this paper, show very low levels of their leachability in acid solutions, far below the demands of the Spanish environmental standards. This can be explained by the strong chemical binding of heavy metals in practically insoluble chemical compositions.

  17. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  18. Material Properties Analysis of Structural Members in Pumpkin Balloons

    Science.gov (United States)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  19. Mathematical Modeling and Simulations of Phase Change Materials in Basic Orthogonal Coordinate Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, Daniel; Dutil, Yvan; Ben Salah, Nizar; Lassue, Stephane

    2010-09-15

    Energy storage components improve the energy efficiency of systems by reducing the mismatch between supply and demand. Phase change materials are attractive since they provide a high energy storage density at constant temperatures. Nevertheless, the incorporation of such materials in a particular application often calls for numerical analyses due to the non-linear nature of the problem. The review of the mathematical models will include selected results to enable one to start his/her research with an exhaustive overview of the subject. This overview also stresses the need to match experimental investigations with recent numerical analyses.

  20. Methods for nuclear material control used in the basic production of a typical radiochemical plant

    International Nuclear Information System (INIS)

    Kositsyn, V.F.; Mukhortov, N.F.; Korovin, Yu.I.; Rudenko, V.S.; Petrov, A.M.

    1999-01-01

    Techniques for destructive and non-destructive assay of the component and isotopic composition of nuclear materials are described, namely gravimetric, titrimetric, coulometric, mass spectrometry, as well as those based on registration of neutron and γ radiations. Their metrologic characteristics are described. The techniques described are suggested to be used for nuclear material (NM) control and accounting purposes at the model radiochemical plant for processing irradiated fuel subassemblies from power reactors. The measurement control program is also described. This program is intended for the measurement quality assurance in the framework of NM control and accountancy system [ru

  1. Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat

    Science.gov (United States)

    Bellistri, Elisa; Aguilar, Juan; Brotons-Mas, Jorge R; Foffani, Guglielmo; de la Prida, Liset Menendez

    2013-01-01

    The hippocampus is a pivotal structure for episodic memory function. This ability relies on the possibility of integrating different features of sensory stimuli with the spatio-temporal context in which they occur. While recent studies now suggest that somatosensory information is already processed by the hippocampus, the basic mechanisms still remain unexplored. Here, we used electrical stimulation of the paws, the whisker pad or the medial lemniscus to probe the somatosensory pathway to the hippocampus in the anaesthetized rat, and multisite electrodes, in combination with tetrode and intracellular recordings, to look at the properties of somatosensory hippocampal responses. We found that peripheral and lemniscal stimulation elicited small local field potential responses in the dorsal hippocampus about 35–40 ms post-stimulus. Current source density analysis established the local nature of these responses, revealing associated synaptic sinks that were consistently confined to the molecular layer (ML) of the dentate gyrus (DG), with less regular activation of the CA1 stratum lacunosum moleculare (SLM). A delayed (40–45 ms), potentially active, current source that outlasted the SLM sink was present in about 50% cases around the CA1 pyramidal cell layer. Somatosensory stimulation resulted in multi-unit firing increases in the majority of DG responses (79%), whereas multi-unit firing suppression was observed in the majority of CA1 responses (62%). Tetrode and intracellular recordings of individual cells confirmed different firing modulation in the DG and the CA1 region, and verified the active nature of both the early ML sink and delayed somatic CA1 source. Hippocampal responses to somatosensory stimuli were dependent on fluctuations in the strength and composition of synaptic inputs due to changes of the ongoing local (hippocampal) and distant (cortical) state. We conclude that somatosensory signals reach the hippocampus mainly from layer II entorhinal cortex to

  2. Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat.

    Science.gov (United States)

    Bellistri, Elisa; Aguilar, Juan; Brotons-Mas, Jorge R; Foffani, Guglielmo; de la Prida, Liset Menendez

    2013-05-15

    The hippocampus is a pivotal structure for episodic memory function. This ability relies on the possibility of integrating different features of sensory stimuli with the spatio-temporal context in which they occur. While recent studies now suggest that somatosensory information is already processed by the hippocampus, the basic mechanisms still remain unexplored. Here, we used electrical stimulation of the paws, the whisker pad or the medial lemniscus to probe the somatosensory pathway to the hippocampus in the anaesthetized rat, and multisite electrodes, in combination with tetrode and intracellular recordings, to look at the properties of somatosensory hippocampal responses. We found that peripheral and lemniscal stimulation elicited small local field potential responses in the dorsal hippocampus about 35-40 ms post-stimulus. Current source density analysis established the local nature of these responses, revealing associated synaptic sinks that were consistently confined to the molecular layer (ML) of the dentate gyrus (DG), with less regular activation of the CA1 stratum lacunosum moleculare (SLM). A delayed (40-45 ms), potentially active, current source that outlasted the SLM sink was present in about 50% cases around the CA1 pyramidal cell layer. Somatosensory stimulation resulted in multi-unit firing increases in the majority of DG responses (79%), whereas multi-unit firing suppression was observed in the majority of CA1 responses (62%). Tetrode and intracellular recordings of individual cells confirmed different firing modulation in the DG and the CA1 region, and verified the active nature of both the early ML sink and delayed somatic CA1 source. Hippocampal responses to somatosensory stimuli were dependent on fluctuations in the strength and composition of synaptic inputs due to changes of the ongoing local (hippocampal) and distant (cortical) state. We conclude that somatosensory signals reach the hippocampus mainly from layer II entorhinal cortex to

  3. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  4. Materials Sciences programs, fiscal year 1978: Office of Basic Energy Services

    International Nuclear Information System (INIS)

    1978-09-01

    A compilation and index are provided of the the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  5. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    International Nuclear Information System (INIS)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  6. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1994-01-01

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  7. Some aspects of experimental investigation of the RPV material properties

    International Nuclear Information System (INIS)

    Lipka, J.; Hascik, J.; Groene, R.; Slugen, V.; Vitazek, K.; Hinca, R.; Toth, I.; Kupca, L.

    1996-01-01

    Moessbauer spectra (MS) and Electron-Positron Annihilation (EPA) spectra at room temperature have been measured on the samples from Reactor Pressure Vessel (RPV). Both types of measurements showed that the changes associated with the effects of neutron irradiation, as well as thermal treatment, can be detected by Moessbauer and Electron-Positron Annihilation spectroscopy. On base of a positive results achieved in MS and EPA measurements the complementary surveillance specimen program for the Reactor Pressure Vessel Materials Study of the third and fourth units NPP Jaslovske Bohunice has been prepared. The complementary surveillance specimen program has started in May 1995. The samples with proper design from basic and welded RPV materials were measured by MS and EPA before placing into the reactor. After neutron irradiation the samples become radioactive because of 59 Co content. To eliminate the influence of 60 Co gamma radiation on the EPA angular correlation and time spectra a three detectors spectrometer has been introduced. (author)

  8. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-03-01

    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  9. Hypervelocity penetration against mechanical properties of target materials

    Science.gov (United States)

    Ariffin, M. M.; Roslan, M. H.; Ishak, M. T.; Hamid, M. H. A.; Katim, N. I. A.; Hashim, F. R.; Razali, S.

    2018-02-01

    Sustainable development is growing importance issues nowadays and requires the consideration of environmental criteria to develop of all new materials and equipment. A better balance must be found in properties of oils so that the impact on the environment can be minimized. In transformers, a stable liquid, inert, with good electrical and thermal properties is necessary and the liquid must be non-toxic to environment and readily biodegradable. The objective of this research is to make a comparative study of different vegetable oils: palm oil, corn oil, rice bran oil and analyze the dielectric properties such as relative permittivity, dielectric constant and resistivity with variation temperature 30°C-90°C and breakdown voltage with different ageing time 30 days, 90 days and 180 days. The dielectric properties data of the vegetable oils are compared with the transformer oil (mineral oil) and appropriate causes for similarities and different have been discussed.

  10. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  11. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  12. Nickel hydroxides and related materials: a review of their structures, synthesis and properties

    Science.gov (United States)

    Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.

    2015-01-01

    This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812

  13. Application of the basic concepts of dynamic materials accountancy to the Tokai spent fuel reprocessing facilityssing facility

    International Nuclear Information System (INIS)

    Lovett, J.E.; Ikawa, Koji; Hirata, Mitsuho; Augustson, R.H.

    1980-11-01

    During 1978 and 1979 individuals from the International Atomic Energy Agency, the Los Alamos Scientific Laboratory, and the Japan Atomic Energy Research Institute investigated the feasibility of applying the basic concepts of dynamic materials accountancy to PNC-Tokai reprocessing facility in Japan. The system developed for Tokai requires weekly in-process physical inventories for the process MBA, and allows 2-3 additional days for completion of measurements and for data reduction and evaluation. The study concluded that such a system would be feasible, and recommended that an actual field test should be conducted as soon as feasible. (author)

  14. Study of chemical and physical properties of synthetic carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaloc, M.; Lesko, J.; Martineg, P.; Rojak, A.; Roubicek, V.; Weiss, Z.

    1980-01-01

    Results are presented of studying the chemical and physical properties of 17 samples of synthetic carbonaceous materials (''carbons'') of different origin and with different degree of thermal treatment, and for comparison two samples of natural graphite were tested. For all the samples an analysis was made of the element composition and they were studied by the methods DTA, TGA, IR-spectrometry, x-ray analysis and electron screen microscopy. The studies indicated that proper combination of these methods can provide a high quality evaluation of the initial materials and the processes of their processing, and also the attained carbonaceous materials from the viewpoint of using them in the modern sectors of technology: electrical metallurgy, electrical chemistry and electrothermal production, nuclear technology, production of semiconductor materials, etc.

  15. Correlation of macroscopic material properties with microscopic nuclear data

    International Nuclear Information System (INIS)

    Simons, R.L.

    1981-01-01

    Two primary irradiation-induced changes occur during neutron irradiation: the displacement of atoms forming crystal defects and the transmutation of atoms into either gaseous or solid products. The material scientist studying irradiation damage to material by fusion-produced neutrons is faced with several questions: Is the nature of high-energy (14-MeV) displacement damage the same as or different from that caused by fission neutrons (< 2 MeV). How do the high helium concentrations expected in a fusion environment affect the material properties. What effects do solid transmutation products have on the behavior of the irradiated materials. In the past few years, much work has been done to answer these questions. This paper reviews recent work in this area

  16. Kenya explores new ways of producing literacy materials for basic education.

    Science.gov (United States)

    Kinyua, M

    1983-06-01

    For most developing countries, educational innovation in the 1980s will mean making the most of meager available resources in an era of shrinking foreign aid and growing educational need. According to a 1976 survey, slightly over 1/2 of Kenya's adult population was illiterate in 1976, with illiteracy concentrated among women. By 1981, some 15,000 full-time and part-time adult literacy teachers had been recruited by the Department of Adult Education, created in 1979. Since 1979, primers have been developed for the adult education program in only 15 of the more than 40 indigenous languages. In a search for ways to provide appropriate adult learning materials, pilot projects were begun in 2 districts, Meru and Kisumu. About 30 participants attended a 2-week workshop in Meru in 1980 to discuss curriculum for the low-cost literacy materials project, and the facilitators learned new techniques to pass on to the teachers. In early 1981, workshops to train teachers in low-cost materials production techniques were held in the 2 districts. About 290 teachers in Meru and 75 in Kisumu underwent training in screening techniques to determine learners' interests, exploring locally available resources for teaching aids, producing, and pretesting materials, and operating simple reproduction equipment. The workshops blended theory and practical work and were responsive to evaluation results. The projects were later expanded to the whole country, and it is hoped that by late 1983 all districts will have been covered and an evaluation carried out. The project experience has demonstrated that Third World countries do not have to be dependent on modern educational technology. Low-cost print is 1 way of supplying a technology appropriate in both cost and in meeting local needs.

  17. Investigation of Basic Mechanisms of Radiation Effects in Carbon-Based Electronic Materials

    Science.gov (United States)

    2017-06-01

    Mechanisms of Radiation Effects in Carbon -Based Electronic Materials Distribution Statement A. Approved for public release; distribution is unlimited...MS-6201, FT BELVOIR, VA 22060-6201, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO... DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  18. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  19. Disclinations in bulk nanostructured materials: their origin, relaxation and role in material properties

    International Nuclear Information System (INIS)

    Nazarov, Ayrat A

    2013-01-01

    The role of disclinations in the processing, microstructure and properties of bulk nanostructured materials is reviewed. Models of grain subdivision during severe plastic deformation (SPD) based on the disclination concept, a structural model of the bulk nanostructured materials processed by SPD are presented. The critical strength of triple junction disclinations is estimated. Kinetics of relaxation of triple junction disclinations and their role in the grain boundary diffusion are studied. (review)

  20. Radiation chemistry from basics to applications in material and life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, J.; Mostafavi, M. [Paris-11 Univ., 91 - Orsay (France); Douki, Th. [CEA Grenoble, 38 (France); Spotheim-Maurizot, M. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France)

    2008-07-01

    This book gives a progress report on the many and original contributions of radiation chemistry to the fundamental knowledge of the vast domain of chemical reactions and its applications. Radiation chemistry techniques indeed make it possible to elucidate detailed physicochemical mechanisms in inorganic and organic chemistry (including in space) and in biochemistry. Moreover, this comprehension is applied in materials science to precisely control syntheses by radiation, such as radiopolymerization, radio-grafting, specific treatment of surfaces (textiles, paintings, inks,..), synthesis of complex nano-materials, degradation of environmental pollutants and radioresistance of materials for nuclear reactors. In life sciences, the study of the effects of radiation on bio-macromolecules (DNA, proteins, lipids) not only permits the comprehension of normal or pathological biological mechanisms, but also the improvement of our health. In particular, many advances in cancer radiotherapy, in the radioprotection of nuclear workers and the general population, as well as in the treatment of diseases and the radiosterilization of drugs, could be obtained thanks to this research. Abundantly illustrated and written in English by top international specialists who have taken care to render the subjects accessible, this work will greatly interest those curious about a scientific field that is new to them and students attracted by the original and multidisciplinary aspects of the field. At a time when radiation chemistry research is experiencing spectacular development in numerous countries, this book will attract newcomers to the field. (authors)

  1. Radiation chemistry from basics to applications in material and life sciences

    International Nuclear Information System (INIS)

    Belloni, J.; Mostafavi, M.; Douki, Th.; Spotheim-Maurizot, M.

    2008-01-01

    This book gives a progress report on the many and original contributions of radiation chemistry to the fundamental knowledge of the vast domain of chemical reactions and its applications. Radiation chemistry techniques indeed make it possible to elucidate detailed physicochemical mechanisms in inorganic and organic chemistry (including in space) and in biochemistry. Moreover, this comprehension is applied in materials science to precisely control syntheses by radiation, such as radiopolymerization, radio-grafting, specific treatment of surfaces (textiles, paintings, inks,..), synthesis of complex nano-materials, degradation of environmental pollutants and radioresistance of materials for nuclear reactors. In life sciences, the study of the effects of radiation on bio-macromolecules (DNA, proteins, lipids) not only permits the comprehension of normal or pathological biological mechanisms, but also the improvement of our health. In particular, many advances in cancer radiotherapy, in the radioprotection of nuclear workers and the general population, as well as in the treatment of diseases and the radiosterilization of drugs, could be obtained thanks to this research. Abundantly illustrated and written in English by top international specialists who have taken care to render the subjects accessible, this work will greatly interest those curious about a scientific field that is new to them and students attracted by the original and multidisciplinary aspects of the field. At a time when radiation chemistry research is experiencing spectacular development in numerous countries, this book will attract newcomers to the field. (authors)

  2. Use of thermal-inertia properties for material identification

    Science.gov (United States)

    Schieldge, J. P.; Kahle, A. B.; Alley, R. E.; Gillespie, A. R.

    1980-01-01

    It is noted that a knowledge of the thermal inertia of the earth's surface can be used in geologic mapping as a complement to surface reflectance data as provided by Landsat. Thermal inertia, which is a body property, cannot be determined directly but can be inferred from radiation temperature measurements made at various times in the diurnal heating cycle, combined with a model of the surface heating processes. A model of this type is developed and applied along with temperature measurements made in the field and by satellite to determine thermal properties of surface materials. An example from a test site in western Nevada is used to demonstrate the utility of this technique.

  3. Thermophysical properties of new materials; Proprietes thermophysiques des materiaux nouveaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `thermo-kinetics` section of the French association of thermal engineers. This book of proceedings contains 5 papers entitled: `characterization of thermal properties using periodical methods at the Odeillo test centre: developments and applications`; `measurement of the distribution of local thermophysical properties by IR images processing and averaging technique`; `extension of shock probes to the characterization of multi-layers - development of a simple device for the characterization of insulating materials or shear fluids`; `thermal local diffusivity of constituents of carbon/carbon composites`; `new method for the thermal diffusivity measurement of thermo-hardenable resins during polymerization`. (J.S.)

  4. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  5. Analysis of Mechanical Properties of Fabrics of Different Raw Material

    Directory of Open Access Journals (Sweden)

    Aušra ADOMAITIENĖ

    2011-07-01

    Full Text Available The study analyzes dependence of mechanical properties (breaking force, elongation at break, static friction force and static friction coefficient on integrated fabric structure factor j and raw material density r, among the fabrics of different raw material (cotton, wool, polypropylene, polyester and polyacrylnitrile and woven in different conditions. The received results demonstrate that sometimes strong dependences exist (wool, polypropylene and polyacrylnitrile, whereas in some cases (cotton and polyester there is no correlation. It was also discovered that the breaking force and elongation at break in the direction of weft increase, when fabric structure becomes more rigid. In the meantime variations of the curves in the direction of warp are insignificant. Regarding static friction force and static friction coefficient (found in two cases, when fabrics were rubbing against leather and materials, it was discovered that consistency of the curves is irregular, i. e. they either increase or decrease, when integrated fabric structure factor j growth. It was also identified that some dependences are not strong and relationship between explored and analyzed factors does not exist. Variation of all these mechanical properties with respect to material density r enables to conclude that increase of material density r results in poor dependences or they are whatsoever non-existent.http://dx.doi.org/10.5755/j01.ms.17.2.487

  6. Effective Thermal Expansion Property of Consolidated Granular Materials.

    Science.gov (United States)

    Küçük, Gülşad; Gonzalez, Marcial; Cuitiño, Alberto M

    2017-11-09

    Thermally-assisted compaction of granular materials is of keen interest in many engineering applications. A proper estimation of the material behavior of compacted granular materials is contingent upon the knowledge of microstructure formation, which is highly dependent on the bulk material properties and processing conditions, during the deformation stage. Originating from the pair interactions between particles, the macroscopic properties are obtained using various homogenization techniques and postulating continuum constitutive laws. While pioneers in this field have laid fundamental groundwork regarding effective medium descriptions, there exists a discrepancy between discrete and continuum level solutions. In our previous work, we elaborated a Particle Mechanics Approach (PMA) that integrates thermal contact and Hertzian deformation models to understand the thermo-mechanically-coupled consolidation problem. We also considered the analogous problem from the perspective of the conventional Continuum Mechanics Approach (CMA). In this study, following the multi-scale modeling framework, we propose an effective thermal expansion coefficient for the thermally-assisted compaction of granular materials.

  7. Wide-gap layered oxychalcogenide semiconductors: Materials, electronic structures and optoelectronic properties

    International Nuclear Information System (INIS)

    Ueda, Kazushige; Hiramatsu, Hidenori; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2006-01-01

    Applying the concept of materials design for transparent conductive oxides to layered oxychalcogenides, several p-type and n-type layered oxychalcogenides were proposed as wide-gap semiconductors and their basic optical and electrical properties were examined. The layered oxychalcogenides are composed of ionic oxide layers and covalent chalcogenide layers, which bring wide-gap and conductive properties to these materials, respectively. The electronic structures of the materials were examined by normal/inverse photoemission spectroscopy and energy band calculations. The results of the examinations suggested that these materials possess unique features more than simple wide-gap semiconductors. Namely, the layered oxychalcogenides are considered to be extremely thin quantum wells composed of the oxide and chalcogenide layers or 2D chalcogenide crystals/molecules embedded in an oxide matrix. Observation of step-like absorption edges, large band gap energy and large exciton binding energy demonstrated these features originating from 2D density of states and quantum size effects in these layered materials

  8. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  9. Relationships between fracture toughness and other material properties. Final report

    International Nuclear Information System (INIS)

    Perra, M.; Finnie, I.

    1974-01-01

    The key experimental and analytical studies which have led to our present understanding of the mechanisms of ductile fracture are reviewed. It is concluded that insufficient progress has been made in the quantitative description of ductile separation mechanisms on a microscale to allow the realistic prediction of fracture toughness from material properties and microstructure. An experimental study of ductile fracture is underway which has the aim of determining the growth rate of voids in known plastic deformation fields as a function of triaxiality of stress and material work-hardening. Novel specimens of particularly well characterized microstructure are utilized

  10. Surface Antibacterial Properties of Four Tooth-Colored Restorative Materials

    Directory of Open Access Journals (Sweden)

    F. Shirani

    2008-03-01

    Full Text Available Objective: This study investigated the antibacterial properties of an ion-releasing resin composite (Degufill, a hybrid resin composite (InTen-S, a compomer (Compoglass F and a resin-modified glass ionomer (Vitremer against streptococcus mutans.Materials and Methods: The bacteria were derived from the dental plaque and cultured on blood agar plates. Eppendorf tubes were filled by unset restorative materials. A narrow conical cavity was created in the center of each material, prior to curing and the bacterial suspension was placed into each cavity. Each tube was incubated for the selected time pe-riods of 8, 24, 48 hours and 5 days and the procedure was repeated five times. After the incubation period, the suspensions were removed and the number of viable bacteria was evaluated. The data were analyzed using two-way ANOVA, one-way ANOVA and Tukey HSD tests.Results: After the incubation periods of 8, 24 and 48 hours, all restorative materials ex-cept InTen-S showed significant growth inhibition when compared to the control group. There was a significant difference in the number of bacterial colonies in different incuba-tion periods. The interaction between the materials and time intervals was also significant (P<0.05.Conclusion: The method used in this study was almost successful in ranking restorative dental materials according to their antibacterial effects. InTen-S showed no inhibitory ef-fect on bacterial growth, while other materials, especially Vitremer, showed considerable antibacterial effects.

  11. Temporal properties of material categorization and material rating: visual vs non-visual material features.

    Science.gov (United States)

    Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki

    2015-10-01

    Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Basic conceptions

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    In this part of book author presents the basic conceptions of minerals studying. The course of minerals deposits is the most important branch of geology science and studying the geology, material constitution, formation conditions and regularity of distribution in earth crust different types of mineral raw materials

  13. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  14. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    International Nuclear Information System (INIS)

    Prima, Eka Cahya; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno

    2015-01-01

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell

  15. Radiation chemistry - From basics to applications in material and life sciences; Chimie sous rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, J. [Paris-11 Univ., Dir. CNRS, Lab. de Chimie Physique, ELYSE, 91 - Orsay (France); Mostafavi, M. [Paris-11, Lab. de Chimie Physique (LCP), Centre ELYSE-CLIO, 91 - Orsay (France); Douki, T. [CEA Grenoble, Lab. Lesions des Acides Nucleiques, 38 (France); Spotheim-Maurizot, M. [Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France); Centre de Biophysique Moleculaire, 45 - Orleans (France)

    2008-02-15

    Radiation chemistry concerns various domains, for primary phenomena induced by energy absorption, to very numerous chemical mechanisms it allows to elucidate and to the synthesis applications of performing materials, or to very efficient physico-chemical treatments it can cause. The understanding of biochemical mechanisms, healthy or pathogenic, is a crucial challenge at which the radiation chemistry gives a decisive contribution for health, and which is essential in particular for using at best the chemo-radiotherapy tool in neoplasms treatment. (O.M.)

  16. Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences.

    Science.gov (United States)

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-06-17

    Acidic montmorillonite-immobilized primary amines (H-mont-NH(2)) were found to be excellent acid-base bifunctional catalysts for one-pot reaction sequences, which are the first materials with coexisting acid and base sites active for acid-base tamdem reactions. For example, tandem deacetalization-Knoevenagel condensation proceeded successfully with the H-mont-NH(2), affording the corresponding condensation product in a quantitative yield. The acidity of the H-mont-NH(2) was strongly influenced by the preparation solvent, and the base-catalyzed reactions were enhanced by interlayer acid sites.

  17. Properties of materials dedicated for the construction of isolation plugs-barriers in underground workings connecting an underground nuclear waste repository with a ground surface

    Directory of Open Access Journals (Sweden)

    Franciszek Plewa

    2007-01-01

    Full Text Available The paper presents results of tests of basic properties of selected materials dedicated for the construction of artificial isolation barriers in underground workings, which connect an underground disposal site with a surface of the ground. The modified waste from coal fired power generation plants have been considered as a potentially useful materials for this application.

  18. An outline for a vocabulary of nominal properties and examinations--basic and general concepts and associated terms.

    Science.gov (United States)

    Nordin, Gunnar; Dybkaer, René; Forsum, Urban; Fuentes-Arderiu, Xavier; Schadow, Gunther; Pontet, Françoise

    2010-11-01

    Scientists of disciplines in clinical laboratory sciences have long recognized the need for a common language for efficient and safe request of investigations, reporting of results, and communication of experience and scientific achievements. Widening the scope, most scientific disciplines, not only clinical laboratory sciences, rely to some extent on various nominal examinations, in addition to measurements. The 'International vocabulary of metrology--Basic and general concepts and associated terms' (VIM) is designed for metrology, science of measurement. The aim of the proposed vocabulary is to suggest definitions and explanations of concepts and terms related to nominal properties, i.e., properties that can be compared for identity with other properties of the same kind-of-property, but that have no magnitude.

  19. Mechanical Properties of Materials with Nanometer Scale Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  20. Q4 Titanium 6-4 Material Properties Development

    Science.gov (United States)

    Cooper, Kenneth; Nettles, Mindy

    2015-01-01

    This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.

  1. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.

    1997-01-01

    of the cortical bone to the total glenoid strength was assessed by compression tests of pristine and cancellous-free glenoid specimens. Strength decreased by an average of 31% after the cancellous bone was removed. The material properties of the glenoid cancellous bone were determined by axial compression tests...... ratio was 5.2, indicating strong anisotropy. The apparent density was an average 0.35 gr. cm-3, and the Poisson ratio averaged 0.263. According to our findings the anisotropy of the glenoid cancellous bone, details concerning the strength distribution, and the load-bearing function of the cortical shell......The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid...

  2. Mechanical properties of materials with nanometer scale dimensions and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Nix, William D. [Stanford Univ., CA (United States)

    2015-08-05

    The three-year grant for which this final report is required extends from 2011 to 2015, including a one-year, no-cost extension. But this is just the latest in a long series of grants from the Division of Materials Sciences of DOE and its predecessor offices and agencies. These include contracts or grants from: the Metallurgy Branch of the U.S. Atomic Energy Commission (from the late 1960s to the mid-1970s), the Materials Science Program of the U.S. Energy Research and Development Administration (from the mid- to late- 1970s), and the Division of Materials Science of the Office of Basic Energy Sciences of the U.S. Department of Energy (from the early 1980s to the present time). Taken all together, these offices have provided nearly continuous support for our research for nearly 50 years. As we have said on many occasions, this research support has been the best we have ever had, by far. As we look back on the nearly five decades of support from the Division of Materials Sciences and the predecessor offices, we find that the continuity of support that we have enjoyed has allowed us to be most productive and terms of papers published, doctoral students graduated and influence on the field of materials science. This report will, of course, cover the three-year period of the present grant, in summary form, but will also make reference to the output that resulted from support of previous grants from the Division of Materials Sciences and its predecessor offices.

  3. Effective Materials Property Information Management for the 21st Century

    Science.gov (United States)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  4. Effective Materials Property Information Management for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Cebon, David [Cambridge University; Barabash, Oleg M [ORNL

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  5. Assessment of the material properties of a fire damaged building

    OpenAIRE

    Oladipupo OLOMO; Olufikayo ADERINLEWO; Moses TANIMOLA; Silvana CROOPE

    2012-01-01

    This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive) tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concr...

  6. Phase change - memory materials - composition, structure, and properties

    Czech Academy of Sciences Publication Activity Database

    Frumar, M.; Frumarová, Božena; Wágner, T.; Hrdlička, M.

    2007-01-01

    Roč. 18, suppl.1 (2007), S169-S174 ISSN 0957-4522. [International Conference on Optical and Optoelectronic Properties of Materials and Applications 2006. Darwin, 16.06.2006-20.06.2006] R&D Projects: GA ČR GA203/06/0627 Institutional research plan: CEZ:AV0Z40500505 Keywords : phase change memory Subject RIV: CA - Inorganic Chemistry Impact factor: 0.947, year: 2007

  7. From properties to materials: An efficient and simple approach

    Science.gov (United States)

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-01

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  8. From properties to materials: An efficient and simple approach.

    Science.gov (United States)

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-21

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  9. Meaning, Memory, and Multiplication: Integrating Patterns and Properties with Basic Facts

    Science.gov (United States)

    Ploger, Don; Hecht, Steven

    2012-01-01

    Although learning mathematics certainly depends upon accurate understanding of the facts of multiplication, it requires much more. This study examines the relationship between a meaningful understanding of arithmetic operations and the mastery of basic facts. The study began with a joke about a mistaken mathematical fact. The children appreciated…

  10. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    Full Text Available Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young’s modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature

  11. Rheological properties of cementitious materials containing mineral admixtures

    Energy Technology Data Exchange (ETDEWEB)

    C.K. Park; M.H. Noh; T.H. Park [Korea Institute of Industrial Technology, Cheonan (Republic of Korea)

    2005-05-01

    The rheological properties of cementitious materials containing fine particles, such as mineral admixtures (MA), were investigated using a Rotovisco RT 20 rheometer (Haake) with a cylindrical spindle. The mineral admixtures were finely ground blast furnace slag, fly ash and silica fume. The cementitious materials were designed as one, two and three components systems by replacement of ordinary Portland cement (OPC) with these mineral admixtures. The rheological properties of one-component system (OPC) were improved with increasing the dosage of PNS-based superplasticizer. For two-components systems, yield stress and plastic viscosity decreased with replacing OPC with blast furnace slag (BFS) and fly ash (FA). In the case of OPC-silica fume (SF) system, yield stress and plastic viscosity steeply increased with increasing SF. For three components systems, both OPC-BFS-SF and OPC-FA-SF systems, the rheological properties improved, compared with the sample with SF. In the two and three components systems, the rheological properties of samples containing BFS improved much more than with FA replacement alone.

  12. Regional material properties of the human hip joint capsule ligaments.

    Science.gov (United States)

    Hewitt, J; Guilak, F; Glisson, R; Vail, T P

    2001-05-01

    The hip joint capsule functions to constrain translation between the femur and acetabulum while allowing rotational and planar movements. Despite the crucial role it plays in the pathogenesis of hip instability, little is known about its biomechanical properties. The goal of this study was to determine the regional material properties of the iliofemoral and ischiofemoral ligaments of the capsule. Ten human cadaveric specimens of each ligament were tested to failure in tension. The stress at failure, strain at failure, strain energy density at failure, toe- and linear-region elastic moduli, and the Poisson's ratio were measured for each ligament. The strain to failure was greatest in the ischiofemoral ligament, while no significant difference was noted in failure stress by region or ligament. The Young's moduli of elasticity ranged from 76.1 to 285.8 MPa among the different ligaments, and were generally consistent with properties previously reported for the shoulder capsule. The elastic moduli and strain energy density at failure differed by region. No significant differences in Poisson's ratio were found by region or ligament. The average Poisson's ratio was approximately 1.4, consistent with anisotropic behavior of ligamentous tissues. Understanding the material properties of the hip capsule may help the orthopaedic surgeon better understand normal ligament function, and thereby choose a surgical approach or strategy of repair. Furthermore, knowledge of the normal mechanical function of the hip capsule ligaments could assist in the evaluation of the success of a repair.

  13. Some classes of inelastic materials related problems basic to future technologies

    International Nuclear Information System (INIS)

    Drucker, D.C.

    1980-01-01

    This mainly philosophic look ahead to the future highlights a number of developing classes of materials-related mechanics problems on the microscale and the macroscale. Each appears to be of considerable practical importance, intellectually stimulating, and likely to be very difficult. The list includes: the mechanics of response of lightly and heavily damaged structures and microstructures to further loading, the development of design theorems for the microscale and macroscale which contain suitable measures of damage, mechanics guidance for the development and interpretation of the remarkably sensitive and discerning NDE ultrasonic measurements that are now becoming possible for creep and fatigue damage, the mechanics of chemically active solids, and the mechanics of enormous strain rates, strains, stresses and temperatures likely to be encountered in power generation by fusion. The paper closes with attention to the need to capture the essence of reality rather than its full complexity. (orig.)

  14. Aging and the Haptic Perception of Material Properties.

    Science.gov (United States)

    Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N

    2016-12-01

    The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.

  15. Static Magnetic Properties of AL800 Garnet Material

    Energy Technology Data Exchange (ETDEWEB)

    Kuharik, J. [Fermilab; Madrak, R. [Fermilab; Makarov, A. [Fermilab; Pellico, W. [Fermilab; Sun, S. [Fermilab; Tan, C. Y. [Fermilab; Terechkine, I. [Fermilab

    2017-05-17

    A second harmonic tunable RF cavity is being devel-oped for the Fermilab Booster. This device, which prom-ises reduction of the particle beam loss at the injection, transition, and extraction stages, employs perpendicularly biased garnet material for frequency tuning. The required range of the tuning is significantly wider than in previously built and tested tunable RF devices. As a result, the mag-netic field in the garnet comes fairly close to the gyromag-netic resonance line at the lower end of the frequency range. The chosen design concept of a tuner for the cavity cannot ensure uniform magnetic field in the garnet mate-rial; thus, it is important to know the static magnetic prop-erties of the material to avoid significant increase in the lo-cal RF loss power density. This report summarizes studies performed at Fermilab to understand variations in the mag-netic properties of the AL800 garnet material used to build the tuner of the cavity.

  16. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials.

    Science.gov (United States)

    Lin, Wei-Ting; Wu, Yuan-Chieh; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2014-11-20

    This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.

  17. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lin

    2014-11-01

    Full Text Available This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%, water/cement ratio (0.35 and 0.55 and steel fiber dosage (0.5%, 1.0% and 2.0%. The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.

  18. Material properties from contours: New insights on object perception.

    Science.gov (United States)

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. Copyright © 2015. Published by Elsevier Ltd.

  19. GPR Laboratory Tests For Railways Materials Dielectric Properties Assessment

    Directory of Open Access Journals (Sweden)

    Francesca De Chiara

    2014-10-01

    Full Text Available In railways Ground Penetrating Radar (GPR studies, the evaluation of materials dielectric properties is critical as they are sensitive to water content, to petrographic type of aggregates and to fouling condition of the ballast. Under the load traffic, maintenance actions and climatic effects, ballast condition change due to aggregate breakdown and to subgrade soils pumping, mainly on existing lines with no sub ballast layer. The main purpose of this study was to validate, under controlled conditions, the dielectric values of materials used in Portuguese railways, in order to improve the GPR interpretation using commercial software and consequently the management maintenance planning. Different materials were tested and a broad range of in situ conditions were simulated in laboratory, in physical models. GPR tests were performed with five antennas with frequencies between 400 and 1800 MHz. The variation of the dielectric properties was measured, and the range of values that can be obtained for different material condition was defined. Additionally, in situ GPR measurements and test pits were performed for validation of the dielectric constant of clean ballast. The results obtained are analyzed and the main conclusions are presented herein.

  20. Nanoscale defect architectures and their influence on material properties

    Science.gov (United States)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  1. Inelastic Neutron Scattering, Dynamics of Atoms and Novel Material Properties

    Science.gov (United States)

    Chaplot, S. L.

    2010-12-01

    We review our research on properties of two important functional materials in which dynamics plays an essential role, namely, fast-ion conductors and negative thermal expansion materials. We bring out the underlying role of the lattice dynamics in terms of the soft phonon modes in both cases. Then, using molecular dynamics simulation we show the mechanism of the fast-ion conduction that occurs at about 0.8 times the overall melting temperature in Li2O, UO2 and ThO2. We obtain numerical measures of the phonon anharmonicity from neutron-inelastic experiments and also lattice dynamics computations and quantitatively derive the negative expansion coefficient in several crystalline materials that is found to match well with direct diffraction measurements.

  2. Preparation and properties on hollow nano-structured smoke material

    Science.gov (United States)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  3. Monazite, the basic raw material for rare earth beneficiation from beach sands

    International Nuclear Information System (INIS)

    Bashir, V.S.

    1988-01-01

    The largest monazite deposits in the world are the readily accessible placers in beach, bar and dune sands along the west and east coasts of India. The commercial monazite deposits in India are natural concentration of monazite with other valuable minerals like ilmenite, rutile, zircon, garnet, sillimanite, etc. in the beach placers. These high grade accruals deposited to 1 - 1.5 m depth are selectively collected using labour intensive methods and processed for individual mineral recovery. All known methods of physical concentration of minerals are used for separating monazite and other valuable minerals. These make use of the five important physical properties of the minerals, viz., electrical conductivity, magnetic susceptibility, specific gravity, surface characteristics and grain size distribution. The Indian Rare Earths (IRE) are operating three minerals beneficiation plants - two in the western coast at Chavara in Kerala and Manavalakurichi in Tamilnadu and one in the eastern coast of Chatrapur in Orissa State. Due to intensive selective mining all these years, there is considerable depletion in the quality of beach accruals which if fed directly to the processing plants will considerably affect their efficiency. Therefore, IRE has introduced integrated mining systems using dredge and pre-concentrate the dredge spoils to the required grade using spiral plants before feeding to the dry mills in the above plants. IRE has also advanced plans to exploit the 5 million m.t. monazite reserves in the country. (author) 2 figs., 1 tab

  4. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs

  5. Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review

    Science.gov (United States)

    Galbusera, Fabio; Freutel, Maren; Dürselen, Lutz; D’Aiuto, Marta; Croce, Davide; Villa, Tomaso; Sansone, Valerio; Innocenti, Bernardo

    2014-01-01

    Knee ligaments are elastic bands of soft tissue with a complex microstructure and biomechanics, which are critical to determine the kinematics as well as the stress bearing behavior of the knee joint. Their correct implementation in terms of material models and properties is therefore necessary in the development of finite element models of the knee, which has been performed for decades for the investigation of both its basic biomechanics and the development of replacement implants and repair strategies for degenerative and traumatic pathologies. Indeed, a wide range of element types and material models has been used to represent knee ligaments, ranging from elastic unidimensional elements to complex hyperelastic three-dimensional structures with anatomically realistic shapes. This paper systematically reviews literature studies, which described finite element models of the knee, and summarizes the approaches, which have been used to model the ligaments highlighting their strengths and weaknesses. PMID:25478560

  6. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  7. Acido-basic properties of proton pump inhibitors in aqueous solutions.

    Science.gov (United States)

    Kristl, Albin

    2009-01-01

    The pharmacological characteristics of proton pump inhibitors are related to their protolytic behavior estimated by their pK(a) values. Lansoprazole is a potent anti-acid drug from this group. Because of its poor stability a rapid spectrophotometric method was developed for the determination of its pK(a) values. Three pK(a) values were obtained: an acidic pK(a1) = 8.84 and two basic, pK(a2) = 4.15 and pK(a3) = 1.33. These pK(a) values were discussed from the point of lansoprazole structure and instability with the aim of locating basic and acidic moieties in the molecule of proton pump inhibitors. They were also compared with experimentally determined pK(a) values from the literature and with some pK(a) values calculated by different programs.

  8. Effective Materials Property Information Management for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Cebon, David [Cambridge University; Arnold, Steve [National Aeronautics and Space Administration (NASA)

    2010-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in industry, research organizations and government agencies. In part these are fuelled by the demands for higher efficiency in material testing, product design and development and engineering analysis. But equally important, organizations are being driven to employ sophisticated methods and software tools for managing their mission-critical materials information by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Furthermore the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analysis approaches, particularly for composite materials, requires both processing of much larger volumes of test data for development of constitutive models and much more complex materials data input requirements for Computer-Aided Engineering (CAE) software. And finally, the globalization of engineering processes and outsourcing of design and development activities generates much greater needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands. They have evolved from hard copy archives, through simple electronic databases, to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access control, version control, and quality control; (ii) a wide range of data import, export and analysis capabilities; (iii) mechanisms for ensuring that all data is traceable to its pedigree sources: details of testing programs, published sources, etc; (iv) tools for searching, reporting and viewing the data; and (v

  9. Nonlinear optical properties and nonlinear optical probes of organic materials

    Science.gov (United States)

    Meredith, Gerald R.

    1992-02-01

    Nonlinear optical processes and electro-optical effects are expected to have increasing importance as the information age matures and photonics augment electronics in various high density and high bandwidth technologies. Whereas for electronics the emphasis is in construction of smaller device structures from a few parent materials, for organic materials the direction of materials research has been reversed. For some time it's been known that some molecular structures engender exceptionally large molecular nonlinear-polarization responses. If such molecules could be assembled in convenient, versatile, and reliable ways, the resulting materials would be very useful or even enabling in various photonics applications. The mature science and art of chemistry allows very good control over molecular composition and structure and, as will be illustrated in this talk, our knowledge of hyperpolarizability structure- property relationships is advancing rapidly. However, the science of fabrication and arrangement in molecular ensembles and polymers is rather primitive. Thus the goal to develop the appropriately structured materials for utilization in nonlinear and electro-optics has fostered the widespread use of nonlinear optical processes to probe the nature of supramolecular order and assembly. Examples of intrinsic and artificially assembled structures of crystals, molecular aggregates, polymeric orientational electrets and molecular mono- and multi-layer thin films will be shown. Nonlinear optical processes, primarily second-harmonic generation, provide unique probes of these structures, their assembly, and evolution.

  10. Miscanthus plants used as an alternative biofuel material. The basic studies on ecology and molecular evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chang-Hung [Graduate Institute of Ecology and Evolutionary Biology, College of Life Sciences, China Medical University, Taichung 404 (China)

    2009-08-15

    high energy resource plant. European scientists already brought Asian Miscanthus species and bred a new hybrid called Miscanthus x giganteus, which is now being used as a biofuel material in Europe and would be widely used in the world in the near future if fundamental questions, such as fiber transformation to alcohol or other breeding techniques, are answered. (author)

  11. Electronic and Thermal Properties of Puckered Orthorhombic Materials

    Science.gov (United States)

    Fei, Ruixiang

    Puckered orthorhombic crystals, such as black phosphorus and group IV monochalcogenides, are attracting tremendous attention because of their new exotic properties, which are of great interests for fundamental science and novel applications. Unlike those well studied layered hexagonal materials such as graphene and transition metal dichalcogenides, the puckered orthorhombic crystals possess highly asymmetrical in-plane crystal structures. Understanding the unique properties emerginge from their low symmetries is an intriguing and useful process, which gives insight into experimental observation and sheds light on manipulating their properties. In this thesis, we study and predict various properties of orthorhombic materials by using appropriate theoretical techniques such as first-principles calculations, Monte-Carlo simulations, and k · p models. In the first part of the thesis, we deal with the anisotropic electric and thermal properties of a typical puckered orthorhombic crystal, black phosphorus. We first study the electric properties in monolayer and few-layer black phosphorus, where the unique, anisotropic electrical conductance is founded. Furthermore, we find that the anisotropy of the electrical conductance can be rotated by 90° through applying appropriate uniaxial or biaxial strain. Beyond electrical conductance, we, for the first time, predict that the thermal conductance of black phosphorus is also anisotropic and, particularly, the preferred conducting direction is perpendicular to the preferred electrical conducting direction. Within the reasonable estimation regime, the thermoelectric figure of merit (ZT) ultimately reaches 1 at room temperature using only moderate doping. The second part of this thesis focuses on the electronic polarization of non-centrosymmetric puckered materials-group IV monochalcogenide. We propose that monolayer group IV monochalcogenides are a new class of two-dimensional (2D) ferroelectric materials with spontaneous in

  12. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  13. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties.

    Science.gov (United States)

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-25

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  14. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    International Nuclear Information System (INIS)

    Cressault, Y.

    2015-01-01

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas

  15. Materials Selection, Synthesis, and Dielectrical Properties of PVC Nanocomposites

    Directory of Open Access Journals (Sweden)

    Youssef Mobarak

    2013-01-01

    Full Text Available Materials selection process for electrical insulation application was carried out using Cambridge Engineering Selector (CES program. Melt mixing technique was applied to prepare polyvinyl-chloride- (PVC- nanofumed silica and nanomontmorillonite clay composites. Surface analysis and particles dispersibility were examined using scanning electron microscope. Dielectrical properties were assessed using Hipot tester. An experimental work for dielectric loss of the nanocomposite materials has been investigated in a frequency range of 10 Hz–50 kHz. The initial results using CES program showed that microparticles of silica and clay can improve electrical insulation properties and modulus of elasticity of PVC. Nano-montmorillonite clay composites were synthesized and characterized. Experimental analyses displayed that trapping properties of matrix are highly modified by the presence of nanofillers. The nanofumed silica and nanoclay particles were dispersed homogenously in PVC up to 10% wt/wt. Dielectric loss tangent constant of PVC-nanoclay composites was decreased successfully from 0.57 to 0.5 at 100 Hz using fillers loading from 1% to 10% wt/wt, respectively. Nano-fumed silica showed a significant influence on the electrical resistivity of PVC by enhancing it up to 1 × 1011 Ohm·m.

  16. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  17. Measuring natrium alginate content of brown algae spesies Padina sp. as the basic matter for making dental impression material (Irreversible hydrocolloid impression material

    Directory of Open Access Journals (Sweden)

    Nurlindah Hamrun

    2016-06-01

    Full Text Available One of the most important procedure in denture fabrication and orthodontic treatment is molding the patient’s detail oral cavity to determine the treatment planning. This procedure does by using alginate impression material or irreversible hydrocolloid which is the basic material is natrium alginate which is imported from abroad because it is extracted from brown algae which habitat is not in Indonesia so it is causes the impression material is relative expensive which is impact to high cost of dental treatment. Indonesia as the archipelago country has availability of abundant brown algae Padina sp. especially in Puntondo-Punaga seashore, South Sulawesi, but it has not cultivate yet by the local society because it is never discover by alginate industry so it is just grow wild and it’s potency is useless. This experiment purposes to identified how much natrium alginate is producted from Padina Sp. extraction as the basic matter of irreversible hydrocolloid. The design of this study is conducted by experimental design with one shot case study method. Early stage research, extraction of alginate in form of natrium alginate. After that it is weighted by using analytical weight in milligram (mg unit. Then, it is compare with the standard natrium alginate to observe the similarity of molecule by using FTIR device. Data were analyzed using uji rerata. Based on extracted Padina sp, produced 12.86 g natrium alginate content or 28,4% from the alga dry weight total was used which is 45 g. Based on FTIR test, showed that extracted natrium alginate is similar with the standard natrium alginate with the found of hidroxyl, carboxylate, and eter group which is composer of natrium alginate. From both of infra red spectrum pattern, it was observed unsignificant difference. Extracted natrium alginate Padinasp is same with the standard natrium alginate and it has content 12.86 g.

  18. FY1995 basic research for neuroactive materials; 1995 nendo shinkei kino zairyo kaihatsu ni kansuru kiban kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of nenroactive materials to improve neuronal defects is one of the most important subjects in Japan that will soon become a aging society. In this project, basic research for neuroactive molecule was performed to develop technology for neuronal regeneration, regulation of synaptic activity and interface between artificial surface and living neurons. A novel neurite promoting factor was discovered and its cDNA was cloned. Mutagenesis in vitro showed that a functional region of this factor located in a polypeptide of less than 50 aminoacids. Using neuronal culture, synapse formation was found to depend on two modes of activities and long-lasting synaptic potentiation was demonstrated to depend on a macromolecules released from pre- or postsynaptic neurons. To regulate nervous activities, photoactivated caged-peptide was developed and confirmed to change in affinity to its receptor. Neurons were cultured on substrates paterned by microlithography. (NEDO)

  19. Electrical and Nonlinear Optical Properties of Novel Organic Materials

    Science.gov (United States)

    Navin, Y. Narayana; Bappalige, N.

    2011-07-01

    The single crystals of organic nonlinear optical material 1-(2, 4-dichlorophenyl) -3-(4-dimethyl amino-phenyl)-2-propenone (DDAP ) and 4—Bromo 2-nitro aniline (BNA) were grown by solvent evaporation technique using ethanol as solvent. The grown crystals were characterized by IR, 1H NMR and mass spectroscopy to confirm the formation of the compound. Electrical property and non linear optical (NLO) properties of these two crystals were studied in detail. DDAP crystals crystallize in the monoclinic system with space group P2l/C. The second harmonic generation efficiency of DDAP is found to be 0.07 times that of KDP and that of BNA is 12 times that of KDP. Conductance of BNA is higher than that of DDAP.

  20. Structure, Morphology and Properties of Carbon Nanotube Containing Polymeric Materials

    Science.gov (United States)

    Li, Lingyu; Kodjie, Steve; Li, Christopher

    2006-03-01

    Carbon nanotubes (CNTs) are considered an ideal reinforcing fillers in polymer nanocomposites because of their high aspect ratio, nanosize diameter, very low density and excellent physical properties (such as extremely high mechanical strength, high electrical and thermal conductivity),. However, in order to achieve homogeneous dispersion of CNTs without damaging their extraordinary properties, non-covalent functionalization is an essential step. Our study of functionalization of CNTs via controlled polymer crystallization method has resulted in the formation of ``nano hybrid shish-kebab'' (NHSK), which is CNT periodically decorated with polymer lamellar crystals. By tuning the experimental parameters such as concentration of polymer and crystallization temperature, hybrid polymer spherulite with CNT inside was achieved. This can be considered as CNT reinforced composite with ideally controlled CNT dispersion. Both Nylon 6, 6 and PE were used as the matrix materials. Excellent dispersion of CNTs in polymer matrix was achieved and the nanocomposites showed improved thermal stability.

  1. Confinement Effect on Material Properties of RC Beams Under Flexure

    Science.gov (United States)

    Kulkarni, Sumant; Shiyekar, Mukund Ramchandra; Shiyekar, Sandip Mukund

    2017-12-01

    In structural analysis, especially in indeterminate structures, it becomes essential to know the material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress-strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. Present aim of study is to determine elastic properties of reinforced cement concrete beam. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental program consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63% which commensurate with existing Codal provisions of IS:456-2000 for flexural member. The effect of confinement is considered in this study. The experimental results are verified by using 3D finite element techniques.

  2. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  3. Process design of press hardening with gradient material property influence

    Science.gov (United States)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  4. Measurements of interface fracture properties of composite materials

    International Nuclear Information System (INIS)

    Ashkenazi, D.; Bank-Sills, L.; Travitzky, N.; Eliasi, R.

    1998-01-01

    In this investigation, interface Fracture properties are measured. To this end, glass/epoxy Brazilian disk specimens are studied. In order to calibrate the specimen, a numerical procedure is used. The finite element method is employed to derive stress intensity factors as a function of loading angle and crack length. By means of the weight friction method together with finite elements, a correction to the stress intensity factors for residual thermal stresses is obtained. These are combined to determine the critical interface energy release rate as a function of phase angle Tom the measured load and crack length at Fracture. A series of tests on a glass/epoxy material pair were carried out. It may be observed from the results that the residual thermal stresses resulting from the material mismatch greatly affect the interface toughness values

  5. Properties and processing of nanocrystalline materials. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Valiev, R.Z.

    1996-01-22

    The present Report completes the investigations in the frame of the project for the first year. It is important to estimate our achievements in the investigation of properties of nanocrystalline materials obtained by severe plastic deformation and their production. We think that the main results obtained can be summarized as follows: (1) We performed an improvement of the die-set for equal channel (ECA) pressing and torsion under high pressure with the aim to increase dimensions of the samples produced and to conduct processing of low ductile materials. (2) It was established that in pure metals severe plastic deformation led to the formation of an ultra fine-grained structure with a mean grain size of 100-200 nm, while in alloys due to severe plastic deformation and/or special methods of treatment (a decrease in the temperature of deformation, an increase of the pressure applied etc.) the grain size could be decreased down to a few tens of manometers.

  6. Pulsed power experiments in hydrodynamics and material properties

    CERN Document Server

    Reinovsky, R E

    1999-01-01

    A new application for high performance pulsed power program, the production of high energy density environments in materials for the study of material properties and hydrodynamics in complex geometries, has joined family of radiation source applications in the Stockpile Stewardship. The principle tool for producing high energy density environments is the high precision, magnetically imploded, near-solid density liner. The most attractive pulsed power system for driving such experiments is an ultra-high current, low impedance, microsecond time scale source that is economical both to build and operate. The 25-MJ Atlas capacitor bank system currently under construction at Los Alamos is the first system of its scale specifically designed to drive high precision solid liners. Delivering 30 MA, Atlas will provide liner velocities 12-15 km/sec and kinetic energies of 1-2 MJ /cm with extensive diagnostics and excellent reproducibility. Explosive flux compressor technology provides access to currents exceeding 100 MA ...

  7. Influence of texture on the physical properties of materials

    International Nuclear Information System (INIS)

    Penelle, R.; Baudin, T.

    1996-01-01

    The principles of crystallographic texture characterization by the means of X-ray or neutron diffraction statistical techniques are reviewed, and examples of their application to the study of the effects of texture on the properties of materials are presented: texture of magnetic steels, magneto-crystalline anisotropy, elasticity anisotropy and Young's modulus, plastic anisotropy (textural hardening), residual stresses. Neutron diffraction allows for the continuous monitoring of the recrystallization texture generation kinetics during in-situ annealing or for the follow-up of phase transformations. Backscattered electron diffraction allows for the quantification of the spatial distribution of grain and grain joint orientations and thus microstructure reconstruction

  8. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  9. Research on the icephobic properties of fluoropolymer-based materials

    Science.gov (United States)

    Yang, Shuqing; Xia, Qiang; Zhu, Lin; Xue, Jian; Wang, Qingjun; Chen, Qing-min

    2011-03-01

    Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at -8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at -8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to -8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.

  10. Additives, Hole Transporting Materials and Spectroscopic Methods to Characterize the Properties of Perovskite Films.

    Science.gov (United States)

    Ummadisingu, Amita; Seo, Ji-Youn; Stojanovic, Marko; Zakeeruddin, Shaik M; Grätzel, Michael; Hagfeldt, Anders; Vlachopoulos, Nick; Saliba, Michael

    2017-11-29

    The achievement of high efficiency and high stability in perovskite solar cells (PSCs) requires optimal selection and evaluation of the various components. After a brief introduction to the perovskite materials and their historical evolution, the first part is devoted to the hole transporting material (HTM), between photoelectrode and dark counter electrode. The basic requirements for an efficient HTM are stated. Subsequently, the most used HTM, spiro-OMeTAD, is compared to alternative HTMs, both small-molecule size species and electronically conducting polymers. The second part is devoted to additives related to the performance of the perovskite light-absorbing material itself. These are related either to the modification of the composition of the material itself or to the optimization of the morphology during the perovskite preparation stage, and their effect is in the enhancement of the power conversion efficiency, the long-term stability, or the reproducibility of the properties of the PSCs. Finally, a number of spectroscopic methods based on the UV-Vis part of the electromagnetic spectrum useful for characterizing the different perovskite material types are described in the last part of this review.

  11. Patents and the nurse scholar, Part I: The basic philosophy of intellectual property.

    Science.gov (United States)

    Stevens, K R

    1994-01-01

    Patenting intellectual property is important for a number of reasons. Health care products are designed to improve the effectiveness and efficiency of care. Without the patent, the property would most likely never enter into the public market for general use by either health care providers or clients. Products such as the specialized IV pole which also accommodates dependent drains (e.g. urinary drainage bags) (Rebar, 1991) or the premature infant pacifier (Engebretson & Wardell, 1991) are valuable assets to patient care. However, without patents to protect them as property, their value in the commercialization process would be nil. Therefore, the public benefits from this system for three reasons: (1) it encourages the inventor to make the invention; (2) the public is given the opportunity to use the invention; (3) the knowledge of the invention is made available to everyone; and (4) often royalties are returned to the institution for further research and development activities.

  12. Basic effects of pulp refining on fiber properties--a review.

    Science.gov (United States)

    Gharehkhani, Samira; Sadeghinezhad, Emad; Kazi, Salim Newaz; Yarmand, Hooman; Badarudin, Ahmad; Safaei, Mohammad Reza; Zubir, Mohd Nashrul Mohd

    2015-01-22

    The requirement for high quality pulps which are widely used in paper industries has increased the demand for pulp refining (beating) process. Pulp refining is a promising approach to improve the pulp quality by changing the fiber characteristics. The diversity of research on the effect of refining on fiber properties which is due to the different pulp sources, pulp consistency and refining equipment has interested us to provide a review on the studies over the last decade. In this article, the influence of pulp refining on structural properties i.e., fibrillations, fine formation, fiber length, fiber curl, crystallinity and distribution of surface chemical compositions is reviewed. The effect of pulp refining on electrokinetic properties of fiber e.g., surface and total charges of pulps is discussed. In addition, an overview of different refining theories, refiners as well as some tests for assessing the pulp refining is presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Inverse gas chromatography as a method for determination of surface properties of binding materials

    Science.gov (United States)

    Yu, Jihai; Lu, Xiaolei; Yang, Chunxia; Du, Baoli; Wang, Shuxian; Ye, Zhengmao

    2017-09-01

    Inverse gas chromatography (IGC) is a promising measurement technique for investigating the surface properties of binding materials, which are the major influence element for the adsorption performance of superplasticizer. In this work, using the IGC method, blast furnace slag (BFS), sulphoaluminate cement (SAC) and portland cement (P·O) are employed to systematically evaluate the corresponding dispersive component (γsd), specific surface free energy (γsab), and acid-base properties. The obtained results show that γsd contributes to a major section of the surface free energy in the three binding materials, suggesting they are of a relatively low polarity. Compared to the two kinds of cements, the BFS possesses the highest dispersive and specific surface free energies (the values are 45.01 mJ/m2 and 11.68 mJ/m2, respectively), and also exhibits a wider distribution range of γsd, indicating their surfaces are heterogeneous. For acid-base properties, the results indicate the surfaces of three samples are basic in nature. In addition, the adsorption investigation shows that per unit surface of BFS adsorbs the most superplasticizer molecules, which indicates the higher surface free energies is beneficial to the superplasticizer adsorption.

  14. 14 CFR 23.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction § 23.613 Material strength properties and design values. (a) Material strength...

  15. Relationship between geochemical and geomechanical properties of magnesia building material. Final report

    International Nuclear Information System (INIS)

    Freyer, Daniela

    2015-06-01

    Long-term isolation of radioactive wastes from the biosphere imposes particular demands an potential building materials for engineered barrier systems (EBS). Due to its proposed longterm stability in salt formations MgO-based (''Sorel'') mortar or concrete is the preferred material option for construction of dam or shaft seals based and more than 100 years practical experiences. Fundamental investigations concerning geochemical and geomechanical properties of the Sorel-building material were performed in the framework of an interdisciplinary research project of the IfAC (Institut fuer Anorganische Chemie) and the IfBUS (Institut fuer Bergbau und Spezialtiefbau) both of University TU Bergakademie Freiberg in cooperation with the IfG Leipzig (Institut fuer Gebirgsmechanik GmbH). The sophisticated investigation approach consisting of a step-by-step procedure, which delivers a comprehensive understanding of the strongly interrelated aspects and processes. This facilitates development of tailored building material mixtures for all technical purposes, e.g. for shotcrete or site concrete applications. Chemical phase formation and stability of sorel binder phases of the magnesia building material were investigated focusing and the solubility equilibria in the basic system Mg(OH) 2 - MgCI 2 - H 2 O and Mg(OH) 2 - MgSO 4 - H 2 .Two building material mixtures were developed. Both mixtures are optimized under consideration of their flow and solidification behavior and the rheology of the binder suspension, which was modified by adding filler materials. In particular, the used magnesium oxide reactivity was found to be the prime factor for the temporary binder phase formation and heat supply, e.g. too reactive MgO leads to earlier and higher setting temperatures correlating to earlier hardening which affects the material workability. The reliability of results was proven by comparisons with measured properties during large in situ-tests. Time

  16. Study on thermal and mechanical properties of U-tube materials for steam generator

    International Nuclear Information System (INIS)

    Rheu, Woo Suk; Kang, Young Hwan; Park, Jong Man; Joo, Ki Nam; Kim, Sung Soo; Maeng, Wan Young; Park, Se Jin

    1993-01-01

    Most of domestic nuclear plants have used I600 TT material for steam generator U-tube, and piled up the field experience. I600 HTMA and I690 TT, however, are recommended for an alternative of U-tube by ABB-CE since YK-3 and 4. Field experience of I600 HTMA and I690 TT have not compiled in the country, so it is concerned to select the future materials for U-tube. Thus, database on the thermal and mechanical properties of U-tube materials is very necessary for design documentations. In this study, the thermal, mechanical and metallugical properties were tested and evaluated to establish the database for steam generator U-tube. In addition, thermal conductivity of I600 and I690 was measured and compared statistically, providing a basic document for applying I690 to U-tube. The results will be used to improve the manufacturing process in order to increase the integrity of U-tube. (Author)

  17. A parametric study of influence of material properties on car cabin environment

    Science.gov (United States)

    Pokorny, Jan; Fiser, Jan; Jicha, Miroslav

    2014-03-01

    Recently the author presented the paper describing a car cabin heat load model for the prediction of the car cabin environment. The model allowed to simulate a transient behavior of the car cabin, i.e. radiant temperature of surfaces, air temperature and relative humidity. The model was developed in Dymola and was built on the basic principles of thermodynamics and heat balance equations. The model was validated by experiments performed on the Škoda Felicia during various operational conditions. In this paper the authors present a parametric study investigating influence of material properties on a car cabin environment. The Matlab version of the car cabin heat load model has been developed and used. The model was extended by simple graphical user interface and it was deployed into the stand alone executable application. The aim of this parametric study is to identify most important material properties and its effect on the cabin environment during specific operational conditions of car. By means of a sensitive analysis it can identified which material parameters have to be defined precisely and which parameters are not so important for the prediction of the air temperature inside cabin.

  18. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  19. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  20. Thermophysical properties study of micro/nanoscale materials

    Science.gov (United States)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and

  1. Elucidating the role of interfacial materials properties in microfluidic packages.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Thayne L.

    2013-01-01

    The purpose of this work was to discover a method to investigate the properties of interfaces as described by a numerical physical model. The model used was adopted from literature and applied to a commercially available multiphysics software package. By doing this the internal properties of simple structures could be elucidated and then readily applied to more complex structures such as valves and pumps in laminate microfluidic structures. A numerical finite element multi-scale model of a cohesive interface comprised of heterogeneous material properties was used to elucidate irreversible damage from applied strain energy. An unknown internal state variable was applied to characterize the damage process. Using a constrained blister test, this unknown internal state variable could be determined for an adherend/adhesive/adherend body. This is particularly interesting for laminate systems with microfluidic and microstructures contained within the body. A laminate structure was designed and fabricated that could accommodate a variety of binary systems joined using nearly any technique such as adhesive, welding (solvent, laser, ultrasonic, RF, etc.), or thermal. The adhesive method was the most successful and easy to implement but also one of the more difficult to understand, especially over long periods of time. Welding methods are meant to achieve a bond that is similar to bulk properties and so are easier to predict. However, methods of welding often produce defects in the bonds.. Examples of the test structures used to elucidate the internal properties of the model were shown and demonstrated. The real life examples used this research to improve upon current designs and aided in creating complex structures for sensor and other applications.

  2. Experimental Study on the Comparison of the Material Properties of Glass Wool Used as Building Materials

    Directory of Open Access Journals (Sweden)

    Kyoung-Woo KIM

    2014-04-01

    Full Text Available Artificial mineral fibers such as glass wool or stone wool are commonly used in building walls, ceilings and floors as a major insulation material for buildings. Among the material properties of building materials, thermal conductivity, the sound absorption coefficient, compressibility, and dynamic stiffness are regarded as important performance requirements since they directly affect the thermal and acoustic properties of the building. This study measured the changes of the thermal and acoustical performances of glass wool that was actually installed for a long time to the outer wall of a building as an insulation material through a comparison with recently produced glass wool. The results showed that the measured thermal conductivities of the old and the new specimens both rise with an increase of temperature, showing quite similar results in both specimens over temperature ranges of (0 – 20 ºC. The noise reduction coefficient decreased by 0.1 in the old specimen and the difference of the compressibilities in both specimens was shown to be 7.32 mm. The dynamic stiffness of the old specimen was found to be 1.28 MN/m3 higher than that of the new specimen.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3714

  3. NEW APPROACH TO OIL PALM WOOD UTILIZATION FOR WOODWORKING PRODUCTION Part 1: Basic Properties

    Directory of Open Access Journals (Sweden)

    Jamal Balfas

    2006-03-01

    Full Text Available An explosive development in oil palm plantations in the country has produced a consequence in the generation of  plantation wastes. The  disposal of these wastes  has created  an  enormous environmental problem that some practical solution to their economic utilization has to  be sought.  A series of experiments have been accomplished to observe the possibility of converting the oil palm stem into valuable woodworking products. The  first stage of  this effort was determining basic characteristics of oil palm wood.  Results in general showed that the wood has a great characteristic variation across and along the stem, which may develop problems in its utilization. Characteristics of this wood also vary according to species variety.  Quality degradations of oil palm wood were mostly happened during drying process; hence, modifications to upgrade quality should be undertaken before or within the drying process.

  4. Basic topological and geometric properties of Ces`aro–Orlicz spaces

    Indian Academy of Sciences (India)

    Abstract. Necessary and sufficient conditions under which the Ces`aro–Orlicz sequence space cesφ is nontrivial are presented. It is proved that for the Luxemburg norm, Ces`aro–. Orlicz spaces cesφ have the Fatou property. Consequently, the spaces are complete. It is also proved that the subspace of order continuous ...

  5. Factor Structure and Basic Psychometric Properties of the "Transition Assessment and Goal Generator"

    Science.gov (United States)

    Hennessey, Maeghan N.; Terry, Robert; Martin, James E.; McConnell, Amber E.; Willis, Donna M.

    2018-01-01

    We examined the theoretical factor structure fit and psychometric properties of the "Transition Assessment and Goal Generator" (TAGG). In the first study, 349 transition-aged students with disabilities, their special educators, and family members completed TAGG assessments, and using exploratory factor analysis (EFA)/confirmatory factor…

  6. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  7. Analysis of material properties for MEMS using interferometric measurements

    Science.gov (United States)

    O'Mahony, Conor; Hill, Martin; Mathewson, Alan

    2003-03-01

    As the scope and depth of research into microelectromechanical systems increases, the issue of mechanical characterisation has emerged as a major consideration in device design. It is now common to include a set of test structures on a MEMS wafer for extraction of thin film material properties (in particular, residual stress and Young's modulus). These structures usually consist of micromachined beams and strain gauges, and measurement techniques include tensile testing, electromechanical characterisation, SEM imaging, and Raman spectroscopy. However, some of these tests are destructive and difficult to carry out at wafer scale. This work uses electrostatic actuation to pull fixed-fixed beams towards the substrate, and a white-light interferometer to record the beam deflection profile. Finite-element simulation software is employed to model this deflection, and to estimate the material properties which minimise the difference between the measured and simulated profiles. The test is non-destructive, suitable for wafer-level characterisation, and the structures involved require less die space than other methods. We have developed a 1.5mm surface micromachining process for the fabrication of composite and monolayer structures with applications in relay switching, optical imaging and radio-frequency components. This work presents results obtained using interferometric analysis for both monolayer (titanium) and composite (SiOx - metal) thin films fabricated with this process.

  8. Material properties of zooplankton and nekton from the California current

    Science.gov (United States)

    Becker, Kaylyn

    This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast (h) was measured for Pacific hake flesh, myctophid flesh, Humboldt squid mantle, and Humboldt squid braincase. Sound speed varied within and between nekton taxa. The material properties reported in this study can be used to improve target strength estimates from acoustic scattering models which would increase the accuracy of biomass estimates from acoustic surveys for these zooplankton and nekton.

  9. Material Properties of Three Candidate Elastomers for Space Seals Applications

    Science.gov (United States)

    Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2010-01-01

    A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.

  10. ABINIT: First-principles approach to material and nanosystem properties

    Science.gov (United States)

    Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J. T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W.

    2009-12-01

    ABINIT [ http://www.abinit.org] allows one to study, from first-principles, systems made of electrons and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, or electronic properties, at different levels of approximation. The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in more details the recent, advanced, developments of ABINIT, with adequate references to the underlying theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials. Program summaryProgram title: ABINIT Catalogue identifier: AEEU_v1_0 Distribution format: tar.gz Journal reference: Comput. Phys. Comm. Programming language: Fortran95, PERL scripts, Python scripts Computer: All systems with a Fortran95 compiler Operating system: All systems with a Fortran95 compiler Has the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one thousand processors. RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file. Classification: 7.3, 7.8 External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6] Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and

  11. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  12. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Science.gov (United States)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  13. Evolution of material properties during free radical photopolymerization

    Science.gov (United States)

    Wu, Jiangtao; Zhao, Zeang; Hamel, Craig M.; Mu, Xiaoming; Kuang, Xiao; Guo, Zaoyang; Qi, H. Jerry

    2018-03-01

    Photopolymerization is a widely used polymerization method in many engineering applications such as coating, dental restoration, and 3D printing. It is a complex chemical and physical process, through which a liquid monomer solution is rapidly converted to a solid polymer. In the most common free-radical photopolymerization process, the photoinitiator in the solution is exposed to light and decomposes into active radicals, which attach to monomers to start the polymerization reaction. The activated monomers then attack Cdbnd C double bonds of unsaturated monomers, which leads to the growth of polymer chains. With increases in the polymer chain length and the average molecular weight, polymer chains start to connect and form a network structure, and the liquid polymer solution becomes a dense solid. During this process, the material properties of the cured polymer change dramatically. In this paper, experiments and theoretical modeling are used to investigate the free-radical photopolymerization reaction kinetics, material property evolution and mechanics during the photopolymerization process. The model employs the first order chemical reaction rate equations to calculate the variation of the species concentrations. The degree of monomer conversion is used as an internal variable that dictates the mechanical properties of the cured polymer at different curing states, including volume shrinkage, glass transition temperature, and nonlinear viscoelastic properties. To capture the nonlinear behavior of the cured polymer under low temperature and finite deformation, a multibranch nonlinear viscoelastic model is developed. A phase evolution model is used to describe the mechanics of the coupling between the crosslink network evolution and mechanical loading during the curing process. The comparison of the model and the experimental results indicates that the model can capture property changes during curing. The model is further applied to investigate the internal stress

  14. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  15. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  16. Material properties of various intraocular lenses in an experimental study.

    Science.gov (United States)

    Tehrani, Mana; Dick, H Burkhard; Wolters, Beate; Pakula, Tadeusz; Wolf, Evan

    2004-01-01

    With the recent introduction of small-incision cataract surgery, requirements for intraocular lens (IOL) flexibility, strength and hydrophilicity have rapidly evolved. The IOL surface, however, remains a critical factor influencing uveal biocompatibility. To objectively quantify factors of material properties of various IOLs using contact angle measurements, differential scanning calorimetry, dynamic-mechanical measurements and scanning electron microscopy. In our study, 17 currently available IOLs were investigated using contact angle measurements to assess hydrophilicity and biocompatibility, as well as differential scanning calorimetry for the estimation of glass transition temperature. Mechanical capacity and flexibility were investigated using dynamic-mechanical measurements. Additional analysis of the IOL surface was performed using scanning electron microscopy. The contact angle measurements of the studied IOLs revealed similar values within each group. The silicone IOLs had values between 106 and 119 degrees. The PMMA IOLs were found to have a narrower range of values, between 73.2 and 75.5 degrees. Lenses made of hydrogel had values between 59.2 and 69.1 degrees. The heparin-modified surface showed the lowest contact angle of 56.5 degrees. The glass transition temperature was determined by dynamic differential scanning calorimetry. The resulting values were between 118.8 and 113.5 degrees C for PMMA IOLs, 15.5 and 14.0 degrees C for acrylic IOLs, and -91.7 and -119.6 degrees C for silicone IOLs. The dynamic-mechanical measurements revealed that PMMA lenses manifested characteristics similar to glass, whereas silicone lenses had characteristics similar to rubber. Acrylic lenses were between rubber and glass. Scanning electron microscopy revealed smooth dispersion of fibrin on hydrophobic IOLs and a relative lack of fibrin adhesion on hydrophilic materials. These results demonstrate that material properties of various IOL materials are consistent within

  17. Study on magnetic property and fracture behavior of magnetic materials

    International Nuclear Information System (INIS)

    Miya, Kenzo; Demachi, Kazuyuki; Aoto, Kazumi; Nagae, Yuji

    2002-04-01

    Establishment of evaluation methods of material degradation before crack initiation is needed very much to enhance the reliability of structural components. We remark magnetic methods in this report. Our objectives are to reveal the relation between degradation and magnetic property and to develop evaluation methods of material degradation, especially plastic deformation and stress corrosion cracking (SCC). In the former part of this report, evaluation methods for plastic deformation are discussed. At first, the study that shows the relation between the magnetic flux leakage and plastic deformation is reviewed. We developed the inverse analysis method of magnetization to specify the degradation distribution. Moreover, we propose inverse analysis of magnetic susceptibility for quantitative evaluation. In the latter part, the topic is SCC. We measured the magnetic flux leakage from the sample induced a SCC crack (Inconel 600). Inconel 600 is a paramagnetic material at room temperature but the sample shows ferromagnetic and the magnetic flux leakage was changed near the SCC crack. The possibility of detection of a SCC crack is shown by the inverse analysis result from the magnetic flux leakage. Finally, it is recognized by observation of the micro magnetic distributions by using a magnetic force microscope that the magnetization has relation with chromium depletion near grain boundaries and it is weak near the SCC crack. From these results, the magnetic method is very effective for evaluation of degradation. (author)

  18. Evaluation of material properties determining the moisture transfer

    Directory of Open Access Journals (Sweden)

    Vestfálova M.

    2013-04-01

    Full Text Available Due to solution the problems of moisture transfer is necessary to deal with two mechanisms of transfer: the molecular mass transfer and mass transfer by convection. Transfer driving force is the difference of concentrations of moisture, respectively the difference of partial vapour pressure. For molecular transfer is deciding value the coefficient of diffusivity, i.e. the property of the material. For mass transfer by convection is deciding the convection mass transfer coefficient, which depends on many parameters, but for one particular arrangement of the experiment will be influenced primarily velocity of the flow. Experimentally detectable is the overall moisture transfer caused by both mechanisms, i.e. the overall moisture transfer coefficient. Our goal was to attempt to evaluate the value of coefficient of diffusivity of some materials from the set of measured date. The date was obtained in different modes on different samples of materials. The next goal was to evaluate the dependence of the convection mass transfer coefficient on the speed of flow for the experiment alignment.

  19. Effects of material properties on soft contact dynamics

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.; Ghafoor, A.

    2009-01-01

    The superiority of deformable human fingertips as compared to hard robot gripper fingers for grasping and manipulation has led to a number of investigations with robot hands employing elastomers or materials such as fluids or powders beneath a membrane at the fingertips. In this paper, to analyze the stability of dynamic control of an object grasped between two soft fingertips through a soft interface using the viscoelastic material between the manipulating fingers and a manipulated object is modeled through bond graph method (BGM). The fingers are made viscoelastic by using springs and dampers. Detailed bond graph modeling (BGM) of the contact phenomenon with two soft-finger contacts considered to be placed against each other on the opposite sides of the grasped object as is generally the case in a manufacturing environment is presented. The stiffness of the springs is exploited in order to achieve the stability in the soft-grasping which includes friction between the soft finger contact surfaces and the object, The paper also analyses stability of dynamic control through a soft interface between a manipulating finger and a manipulated object. It is shown in the paper that the system stability depends on the visco-elastic material properties of the soft interface. Method of root locus is used to analyze this phenomenon. The paper shows how the weight of the object coming downward is controlled by the friction between the fingers and the object during the application of contact forces by varying the damping and the stiffness in the soft finger. (author)

  20. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  1. Synthesis of Actinide Materials for the Study of Basic Actinide Science and Rapid Separation of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Dorhout, Jacquelyn Marie [Univ. of Nevada, Las Vegas, NV (United States)

    2017-11-28

    This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations. Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO3. Different types of frameworks also yield different results.

  2. Basic properties of Cu-Al-Be Alloy for application in damping

    International Nuclear Information System (INIS)

    Torra, V; Isalgue, A; Lovey, F.C; Sade, M

    2004-01-01

    To use an alloy with memory as a damper in civil engineering requires guaranteed behavior on the appropriate time scale. After several years with no external activity (about 10 to 20 years) the buffer needs to respond positively for some cycles (of 10 to 50) of maximum deformation together with hundreds of partial deformation cycles. To ensure elevated reliability the material has to be kept inside the pseudo elastic window. Appearing of permanent deformations after cycling needs to be studied quantitatively and, if this is the case, it needs to be reduced or suppressed. These deformations can arise from the accumulation of dislocations and, also, from the progressive stabilization of an amount of martensite. This work studies those aspects that guarantee its behavior. Firstly, the changes associated with the time used to beta transforming (for ex. at 1123 K) to ensure that the material is found in the austenite phase and secondly, the permanent deformation that induces the amplitude of the oscillations (CW)

  3. Construction of High Activity Titanium Dioxide Crystal Surface Heterostructures and Characterization of Its Basic Properties

    Science.gov (United States)

    Wang, Chunxiao; Li, DanQi; Shen, Tingting; Lu, Cheng; Sun, Jing; Wang, Xikui

    2018-01-01

    Heterogeneous photocatalytic materials, which combine the advantages of photocatalytic materials and heterojunction, have been developed rapidly in the field of environmental pollution control. In this paper, TiO2 surface heterojunction catalysts with different catalytic activity were prepared by controlling the amount of HF, and their XRD characterization was also carried out. In addition, the optimum amount of HF was determined by photocatalytic degradation of simulated dye wastewater by methylene blue solution. And the optimal amount of catalyst and the optimal pH reaction conditions for degradation experiments were used to screen the highly reactive titania surface heterojunction system and its optimum application conditions. It provides the possibility of application in the degradation of industrial wastewater and environmental treatment.

  4. Reflected and diffuse ions backstreaming from the earth's bow shock 1. Basic properties

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.

    1981-01-01

    Plasma data supplied by the ISEE 2 solar wind experiment are used to perform the first extended statistical analysis of the basic moments of the ions backstream from the earth's bow shock. The analysis is based on 3253 ion spectra, corresponding to a total observation time of approx. =87 hours. It turns out that the density and total energy density of the backstream ions are, on the average, equal to approx. =1% and approx. =10% of those of the solar wind, respectively. The distinction between the 'reflected' and 'diffuse' populations has been confirmed and put on a quantitive basis using the ratio A = V /sub B/P/w/sub B/P between the bulk velocity and the rms thermal speed of the ions. The reflected ions are characterized by a bulk velocity V/sub B/P of the order of 2 times the solar wind velocity and by a temperature of approx.7 x 10 6 K. In contrast, the diffuse ions have, on the average, a bulk velocity 1.2 times the solar wind velocity and a temperature of 40 x 10 6 K. Therefore the total energy density of the diffuse ions is approx. =30% larger than that of the reflected ions. Finally, the kinetic and thermal energy densities are distributed quite differently in the two ion populations: in fact, approx. =70% of the total energy density is kinetic for the reflected ions, while this percentage decreases to approx. =20% for the diffuse ions

  5. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    Science.gov (United States)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  6. Modern electronic materials

    CERN Document Server

    Watkins, John B

    2013-01-01

    Modern Electronic Materials focuses on the development of electronic components. The book first discusses the history of electronic components, including early developments up to 1900, developments up to World War II, post-war developments, and a comparison of present microelectric techniques. The text takes a look at resistive materials. Topics include resistor requirements, basic properties, evaporated film resistors, thick film resistors, and special resistors. The text examines dielectric materials. Considerations include basic properties, evaporated dielectric materials, ceramic dielectri

  7. Measuring sodium alginate content of brown algae species Padina sp. as the basic matter for making dental impression material (Irreversible hydrocolloid impression material

    Directory of Open Access Journals (Sweden)

    Nurlindah Hamrun

    2016-08-01

    Full Text Available One of the most important procedures in denture fabrication and orthodontic treatment is molding the patient’s detail oral cavity to determine the treatment planning. This procedure was done by using alginate impression material or irreversible hydrocolloid in which the basic material is sodium alginate imported from abroad because it is extracted from brown algae which its habitat is not in Indonesia so that it is causes the impression material is relatively expensive roomates is impact to high cost of dental treatment. Indonesia as the archipelago country has availability of abundant brown algae Padina sp. Especially in Puntondo-Punaga seashore, South Sulawesi, but it has not Cultivate yet by the local society because it is never discovered by alginate industry so it is just grow wild and its potency is useless. This experiment identified the purposes of how much sodium alginate is produced from Padina Sp. Extraction as the basic matter of irreversible hydrocolloid. The design of this study is experimental design with one shot case study method. In early stage research, extraction of alginate in the form of sodium alginate. After that, they are weighted by using analytical weight in milligrams (mg unit. Then, it is compare with the standard sodium alginate to observe the similarity of molecules by using FTIR (Fourier Transform Infra Red device. Data were Analyzed using mean differences. Based on Padina extracted, produced 12.86 g of sodium alginate content or 28.4% from the cleaning algae was used roomates total weight is 45 g. Based on FTIR test, showed that sodium alginate is extracted similar to the standard sodium alginate with the found of hydroxyl, carboxylic acid, ether group and the which is the composer of sodium alginate. In conclusion, from both of infra red spectrum pattern, it was observed unsignificant difference. Extracted sodium alginate Padina is same with the standard sodium alginate and it has 12.86 g content.

  8. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  9. Beam-induced magnetic property modifications: Basics, nanostructure fabrication and potential applications

    International Nuclear Information System (INIS)

    Devolder, T.; Bernas, H.; Ravelosona, D.; Chappert, C.; Pizzini, S.; Vogel, J.; Ferre, J.; Jamet, J.-P.; Chen, Y.; Mathet, V.

    2001-01-01

    We have developed an irradiation technique that allows us to tune the magnetic properties of thin films without affecting their roughness. We discuss the mechanisms involved and the applications. He + ion irradiation of Co/Pt multilayers lowers their magnetic anisotropy in a controlled way, reducing the coercive force and then leading to in-plane magnetization. By X-ray reflectometry, we study how irradiation-induced structural modifications correlate with magnetic properties. We also report the L1 0 chemical ordering of FePt by irradiation at 280 deg. C, and the consequent increase of magnetic anisotropy. Planar magnetic patterning at the sub 50 nm scale can be achieved when the irradiation is performed through a mask. New magnetic behaviors result from the fabrication process. They appear to arise from collateral damage. We model these effects in the case of SiO 2 and W masks. The planarity of irradiation-induced patterning and its ability to independently control nanostructure size and coercivity make it very appealing for magnetic recording on nanostructured media. Finally, possible applications to the granular media used in current hard disk drive storage technology are discussed

  10. Basic Comparison of the Properties of the Loop and Frotte Yarns, Woven and Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Ewa Grabowska Katarzyna

    2014-09-01

    Full Text Available Both loop fancy yarns and frotte fancy yarns belong to the group of yarns with continuous effects. The difference between frotte and loop yarn relies on the fact that the loop yarn is constructed with two core yarns and the frotte yarn is constructed with only one core yarn. The differences are evident in the shape of these two types of fancy yarns. These shape differences are the functions of the tensions of component yarns during the twisting process. The shape and construction of the fancy yarn influence its properties. The properties of loop and frotte fancy yarns, woven and knitted fabrics are compared in this article in order to find out the optimal yarn’s and fabric’s production condition to satisfy the final user and maintain low production costs. In terms of economy aspects only, the frotte fancy yarns are believed to be cheaper in production due to lower quantity of components utilize for their production to compare with loop fancy yarns, under conditions of the same settings of ring twisting frame.

  11. Studies on basic properties of ions in crystals and in solutions

    International Nuclear Information System (INIS)

    Miah, A.

    1999-04-01

    There is currently tremendous progress being seen in all areas of chemistry and physics provoking many classical ideas of chemical bonding to be modified or even revised. It is therefore highly desirable to revisit basic quantities that are used in treating intra- and intermolecular interactions. In the present work, the following parameters or concepts are critically surveyed and/or updated: the ionic radius both in the crystal and in aqueous solution, the (static electric dipole) polarizability, the effective nuclear charge, lattice enthalpies, and the thermodynamic characteristics (enthalpy, free energy and entropy) of the dissolution of ionic salts in water. Restriction is to noble gas ions and, in addition, symmetrical polyatomic anions. The polarizability of molecular liquids has also been determined. Some of the results may be summarized as follows: 1. The concept of the 'general purpose' Bragg-Slater (BS) radii is refined by assowing for a change in the cation coordination number. In contrast, the anion radii is identified with the covalent radius taken as invariant. These modified BS radii appear to be physically more reasonable than traditional ionic radii, since by their use an intimidating array of radii (covalent, tetrahedral, ionic, metallic) can be brought under the umbrella of one treatment. 2. A simple equation is presented for calculating the enthalpy of dissolution of simple salts in water in terms of the charges of the constituent ions, the lattice spacings and the Born radii. 3. The method of Stokes of correlating crystal lattice energies with the self energies of the gaseous ions is updated by using new values of the effective nuclear charge. 4. A simple interrelationship is shown between the gas-phase polarizabilities of molecular liquids and the hard-sphere diameter. (author)

  12. Magnetic shape memory alloys: Basic properties and applications; Aleaciones magneticas con memoria de forma: propiedades basicas y aplicaciones

    Energy Technology Data Exchange (ETDEWEB)

    Barandiaran, J. M.; Lazpita, P.; Guiterrez, J.; Garcia Arribas, A.; Feuchtwanger, J.; Asua, E.; Etxebarria, V.; Chernenko, V. A.

    2010-07-01

    These materials can undergo large deformations when subjected to external stresses when they are in the phase low temperature due to the super elasticity property. Super elasticity properties and memory effect form derived from the martensitic transformation, which thermoelastic transformation is involved in effort as well as temperature. The transformation autoacomodante called for a single crystal phase austenite gives rise to several crystals spontaneously martensite with their axes oriented in different directions to accommodate the deformation of the network. These crystals called variant or twins and their movement and change orientation gives rise to the super elasticity. (Author) 3 refs.

  13. Extended liner performance for hydrodynamics and material properties experiments

    CERN Document Server

    Reinovsky, R E

    2001-01-01

    Summary form only given, as follows. Over the last few years a new application for high performance pulsed power, the production of high energy density environments for the study of material properties under extreme conditions and hydrodynamics in complex geometries has joined the traditional family of radiation source applications. The newly commissioned Atlas pulsed power system at Los Alamos has replaced its predecessor, Pegasus, and joined the Shiva Star system at AFRL, Albuquerque and a variety of flux compression systems, principally at the All Russian Scientific Research Institute of Experimental Physics (VNIIEF) as ultra high current drivers for the high precision, magnetically imploded, near-solid density liner that is used to create the needed environments. Three families of experiments: the production of ultra strong shocks (>10 Mbar), the production of strongly coupled plasmas by liner compression of an initially dense plasma of a few eV temperature, and the compression of a magnetized plasma for ...

  14. Global sensitivity analysis of multiscale properties of porous materials

    Science.gov (United States)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  15. Study of adsorption properties on lithium doped activated carbon materials

    International Nuclear Information System (INIS)

    Los, S.; Daclaux, L.; Letellier, M.; Azais, P.

    2005-01-01

    A volumetric method was applied to study an adsorption coefficient of hydrogen molecules in a gas phase on super activated carbon surface. The investigations were focused on getting the best possible materials for the energy storage. Several treatments on raw samples were used to improve adsorption properties. The biggest capacities were obtain after high temperature treatment at reduced atmosphere. The adsorption coefficient at 77 K and 2 MPa amounts to 3.158 wt.%. The charge transfer between lithium and carbon surface groups via the doping reaction enhanced the energy of adsorption. It was also found that is a gradual decrease in the adsorbed amount of H 2 molecules due to occupation active sites by lithium ions. (author)

  16. Basic Properties and Problem Fields of Scientific-Innovation Space of the Region

    Directory of Open Access Journals (Sweden)

    Alexey Aleksandrovich Rumyantsev

    2013-06-01

    Full Text Available Increasing scale of the scientific-innovative activity in administrative-territorial units, complicating structure of the regional scientific-innovative complexes and development of inter-regional horizontal and vertical ties expand the space of the scientific and innovation activity research of which primarily involves the development of theoretical and methodological provisions. Basing on the philosophical category «space», the paper describes main properties of the scientific-innovative space of the region and the factors causing them. The author identified problem fields as the direction of possible transformation of scientific-innovative space of the region. The analysis allowed defining some features of the scientific and innovation space and problems of development. The obtained results show the feasibility of study of the scientific-innovative activity in the spatial dimension

  17. Dynamics of internetwork chromospheric fibrils: Basic properties and magnetohydrodynamic kink waves

    Science.gov (United States)

    Mooroogen, K.; Morton, R. J.; Henriques, V.

    2017-11-01

    Aims: Current observational instruments are now providing data with the necessary temporal and spatial cadences required to examine highly dynamic, fine-scale magnetic structures in the solar atmosphere. Using the spectroscopic imaging capabilities of the Swedish Solar Telescope, we aim to provide the first investigation on the nature and dynamics of elongated absorption features (fibrils) observed in Hα in the internetwork. Methods: We observe and identify a number of internetwork fibrils, which form away from the kilogauss, network magnetic flux, and we provide a synoptic view on their behaviour. The internetwork fibrils are found to support wave-like behaviour, which we interpret as magnetohydrodynamic (MHD) kink waves. The properties of these waves, that is, amplitude, period, and propagation speed, are measured from time-distance diagrams and we attempt to exploit them via magneto-seismology in order to probe the variation of plasma properties along the wave-guides. Results: We found that the Internetwork (IN) fibrils appear, disappear, and re-appear on timescales of tens of minutes, suggesting that they are subject to repeated heating. No clear photospheric footpoints for the fibrils are found in photospheric magnetograms or Hα wing images. However, we suggest that they are magnetised features as the majority of them show evidence of supporting propagating MHD kink waves, with a modal period of 120 s. Additionally, one IN fibril is seen to support a flow directed along its elongated axis, suggesting a guiding field. The wave motions are found to propagate at speeds significantly greater than estimates for typical chromospheric sound speeds. Through their interpretation as kink waves, the measured speeds provide an estimate for local average Alfvén speeds. Furthermore, the amplitudes of the waves are also found to vary as a function of distance along the fibrils, which can be interpreted as evidence of stratification of the plasma in the neighbourhood of

  18. Know your fibers : process and properties, or, a material science approach to designing pulp molded products

    Science.gov (United States)

    John F. Hunt

    1998-01-01

    The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.

  19. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  20. Analysis of nonlinear optical properties in donor–acceptor materials

    International Nuclear Information System (INIS)

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-01-01

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au 2 S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude

  1. Hygrothermal Material Properties for Soils in Building Science

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing

  2. Passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material: experimental and modelling.

    Science.gov (United States)

    Zvimba, John N; Siyakatshana, Njabulo; Mathye, Matlhodi

    2017-03-01

    This study investigated passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material over 90 days, with monitoring of the parameters' quality and assessment of their removal kinetics. The quality was observed to significantly improve over time with most parameters removed from the influent during the first 10 days. In this regard, removal of acidity, Fe(II), Mn, Co, Ni and Zn was characterized by fast kinetics while removal kinetics for Mg and SO 4 2- were observed to proceed slowly. The fast removal kinetics of acidity was attributed to fast release of alkalinity from slag minerals under mildly acidic conditions of the influent water. The removal of acidity through generation of alkalinity from the passive treatment system was also observed to generally govern the removal of metallic parameters through hydroxide formation, with overall percentage removals of 88-100% achieved. The removal kinetics for SO 4 2- was modelled using two approaches, yielding rate constant values of 1.56 and 1.53 L/(day mol) respectively, thereby confirming authenticity of SO 4 2- removal kinetics experimental data. The study findings provide insights into better understanding of the potential use of slags and their limitations, particularly in mine closure, as part of addressing this challenge in South Africa.

  3. Radiological properties of a wax-gypsum compensator material

    International Nuclear Information System (INIS)

    Plessis, F.C.P. du; Willemse, C.A.

    2005-01-01

    In this paper the radiological properties of a compensator material consisting of wax and gypsum is presented. Effective attenuation coefficients (EACs) have been determined from transmission measurements with an ion chamber in a Perspex phantom. Measurements were made at 80 and 100 cm source-to-skin distance (SSD) for beam energies of 6, 8, and 15 MV, for field sizes ranging from narrow beam geometries up to 40x40 cm 2 , and at measurement depths of maximum dose build-up, 5 and 10 cm. A parametrization equation could be constructed to predict the EAC values within 4% uncertainty as a function of field size and depth of measurement. The EAC dependence on off-axis position was also quantified at each beam energy and SSD. It was found that the compensator material reduced the required thickness for compensation by 26% at 8 MV when compared to pure paraffin wax for a 10x10 cm 2 field. Relative surface ionization (RSI) measurements have been made to quantify the effect of scattered electrons from the wax-gypsum compensator. Results indicated that for 80 cm SSD the RSI would exceed 50% for fields larger than 15x15 cm 2 . At 100 cm SSD the RSI values were below 50% for all field sizes used

  4. Hypervelocity penetration against mechanical properties of target materials

    Science.gov (United States)

    Kamarudin, Khairul Hasni; Abdullah, Mohamad Faizal; Zaidi, Ahmad Mujahid Ahmad; Nor, Norazman M.; Ismail, Ariffin; Yusof, Mohammed Alias; Hilmi, Ahmad Humaizi

    2018-02-01

    This paper study the mechanical properties behavior of metal plates against hypervelocity penetration caused by shaped charge. Five different materials were used as target specimen fabricated from welded stacks of material plates, namely Rolled Homogeneous Armor (RHA), Hardox-500, mild steel, aluminum and brass. Specimens had undergone an initial monolithic test consist of tensile tests and microstructure observations, followed by series of hydrodynamics penetration blast tests using shape charge mechanism. Results from blast test shows that the least penetrated specimen is RHA (58mm) followed by Hardox-500 (92 mm), mild steel (110 mm), Brass (155 mm) and aluminum 238 mm). Comparing these with the specimen yield strength from the tensile test results shows that Hardox-500 has higher yield strength (Sy) followed by RHA, mild steel, brass and aluminum, which are 1370 MPa, 1320 MPa, 280,221 respectively, which are not inversely proportional to the penetration. However, the ultimate tensile strength (Sut) where the RHA were the highest followed by Hardox-500, mild steel, brass and aluminum, were inversely proportional with the depth of penetration. The penetration results also show consistence relation with energy absorption.

  5. Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2016-11-01

    Full Text Available Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.

  6. Resistance training and the enhancement of the gains in material-handling ability and physical fitness of British Army recruits during basic training.

    Science.gov (United States)

    Williams, A G; Rayson, M P; Jones, D A

    2002-03-15

    The aim was to evaluate the efficacy of a modified British Army basic training that included resistance training in improving material-handling performance and physical fitness, and to compare the modified training directly with the normal basic training. Forty-three males [19.2 (2.6) years of age, 1764 (72) mm in height, 73.0 (10.6) kg in mass] and nine females [19.1 (2.2) years, 1641 (67) mm, 62.0 (7.2) kg] performed the modified basic training. Testing occurred in the week before and in the final week of the 11-week basic training. Improvements with the modified training were observed for all six material-handling tests, including 8-12% for maximal box lifting, 15-19% for repetitive lifting and carrying and 9-17% for loaded marching (all p material-handling ability and other aspects of physical fitness brought about in recruits by British Army basic training can be enhanced by the use of a physical training programme that includes a carefully designed resistance training element. Of particular note are the improvements shown in performance on material-handling tasks that require muscular strength, as these represent many of the tasks that soldiers encounter in their military careers.

  7. Electrical and optoelectronic properties of two-dimensional materials

    Science.gov (United States)

    Wang, Qiaoming

    Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We

  8. Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process

    Science.gov (United States)

    Liu, Dong-hui; Liu, Hao; Zhang, Jian-liang; Liu, Zheng-jian; Xue, Xun; Wang, Guang-wei; Kang, Qing-feng

    2017-09-01

    The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Δ T) and the softening start temperature ( T 10%) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO·SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.

  9. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    In this work, the electrical and luminescence properties of a series of silicon based materials used for photovoltaics, microelectronics and nanoelectronics have been investigated by means of electron beam induced current (EBIC), cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) methods. Photovoltaic materials produced by block casting have been investigated by EBIC on wafers sliced from different parts of the ingot. Various solar cell processings have been compared in parallel wafers by means of EBIC collection efficiency measurements and contrast-temperature C(T) behaviors of the extended defects, i. e. dislocations and grain boundaries (GBs). It was found that the solar cell processing with phosphorus diffusion gettering (PDG) followed with a SiN firing greatly reduces the recombination activity of extended defects at room temperature, and improves the bulk property simultaneously. A remaining activity of the dislocations indicates the limitation of the PDG at extended defects. Abnormal behavior of the dislocation activity after certain solar cell processes was also observed in the region with high dislocation density, the dislocations are activated after certain solar cell processings. In order to evaluate the properties of a thin polycrystalline silicon layer prepared by Al-induced layer exchange (Alile) technique, epitaxially layer grown on silicon substrate with different orientations was used as a model system to investigate the impact by the process temperature and the substrates. EBIC energy dependent collection efficiency measurements reveal an improvement of the epilayer quality with increasing substrate temperature during the growth from 450 C to 650 C, and a decrease of epilayer quality at 700 C. PL measurements on the epitaxially grown Si layer on silicon substrates revealed no characteristic dislocation-related luminescence (DRL) lines at room temperature and 77 K, while in the samples prepared by Alile process, intense

  10. Application of FT NIR Spectroscopy in the Determination of Basic Physical and Chemical Properties of Sausages

    Directory of Open Access Journals (Sweden)

    Zuzana Procházková

    2010-01-01

    Full Text Available The objectives of this study were to develop calibration models for determination of water activity and the content of fat, dry matter, salt, non collagen muscle protein and pH in dry cooked sausages. Samples (n = 42 were scanned in FT-NIR Analyzer and simultaneously analyzed by standard methods. The spectra were measured in the reflectance mode with a compressive cell between 10 000 and 4 000 cm-1, averaging 100 scans. Calibration models were developed using the partial least squares (PLS method. These calibration models were checked later by crossvalidation. The following statistical values were obtained: R (correlation coefficient = 0.997 and SEC (standard error of calibration = 0.002 for water activity, R = 0.966 and SEC = 0.023 for pH, R = 0.995 and SEC = 0.970 for dry matter content, R = 0.995 and SEC = 0.045 for salt content, R = 0.965 and SEC = 0.652 for non collagen muscle protein, R = 0.996 and SEC = 0.559 for fat content. The results of the study showed that FT-NIR is a suitable method for rapid analysis of physical and chemical properties of sausages.

  11. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.

    Science.gov (United States)

    Martín-Lara, M A; Pagnanelli, F; Mainelli, S; Calero, M; Toro, L

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP>HPOP>OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na(+) in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper.

  12. Dielectric properties for SF6 and SF6 mixtures predicted from basic data

    International Nuclear Information System (INIS)

    Kline, L.E.; Davies, D.K.; Chen, C.L.; Chantry, P.J.

    1978-01-01

    α and eta, the ionization and attachment coefficients, and (E/N)*, the limiting breakdown electric field-to-gas density ratio, in SF 6 and SF 6 mixtures were calculated by numerically solving the Boltzmann equation for the electron energy distribution. The calculations require a knowledge of several electron collision cross sections. Published momentum transfer and ionization cross sections for SF 6 were used. Various attachment cross sections for SF 6 were measured by using electron beam techniques with mass spectrometric ion detection. A total cross section for electronic excitation of SF 6 was determined by comparing the predicted values of α, eta, and (E/N)* with measured values obtained from spatial current growth experiments in SF 6 in uniform fields over an extended range of E/N. With this self-consistent set of SF 6 cross sections, together with published He cross sections, it was then possible to predict the dielectric properties of SF 6 --He mixtures. Published experimental values of α for these mixtures lie between the values of α calculated with and without ionization of SF 6 by excited He atoms. Published experimental values of (E/N)* agree with the calculations to within 5%. 11 figures

  13. Dielectric properties for SF6 and SF6 mixtures predicted from basic data

    International Nuclear Information System (INIS)

    Kline, L.E.; Davies, D.K.; Chen, C.L.; Chantry, P.J.

    1979-01-01

    We have calculated α and eta, the ionization and attachment coefficients, and (E/N) *, the limiting breakdown electric-field--to--gas-density ratio, in SF 6 and SF 6 mixtures by numerically solving the Boltzmann equation for the electron energy distribution. The calculations require a knowledge of several electron collision cross sections. Published momentum transfer and ionization cross sections for SF 6 were used. We measured various attachment cross sections for SF 6 using electron-beam techniques with mass spectrometric ion detection. We determined a total cross section for electronic excitation of SF 6 by comparing the predicted values of α, eta, and (E/N) * with our measured values obtained from spatial current growth experiments in SF 6 in uniform fields over an extended range of E/N. With this self-consistent set of SF 6 cross sections, together with published He and N 2 cross sections, it was then possible to predict the dielectric properties of SF 6 -He and SF 6 -N 2 mixtures. Published experimental values of α for the SF 6 -He mixtures lie between the values of α calculated with and without ionization of SF 6 by excited He atoms. Published experimental values of (E/N) * agree with our calculations to within 5% in both the SF 6 -He and the SF 6 -N 2 mixtures

  14. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis

    Science.gov (United States)

    Wang, Shun-Feng; Wang, Xiao-Hong; Gan, Lu; Wiens, Matthias; Schröder, Heinz C.; Müller, Werner E. G.

    2011-09-01

    In the last 15 years biomineralization, in particular biosilicification (i.e., the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches, following "Nature as model". Among the silica forming organisms there are the sponges that have the unique property to catalyze their silica skeletons by a specific enzyme termed silicatein. In the present review we summarize the present state of knowledge on silicatein-mediated "biosilica" formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in biomedicine. Recent advancements in the production of bone replacement material and in the potential use as a component in the treatment of osteoporosis are highlighted.

  15. Assessing material properties for fusion applications by ion beams

    Science.gov (United States)

    Catarino, N.; Dias, M.; Jepu, I.; Alves, E.

    2017-10-01

    The plasma-facing materials in the ITER divertor area must withstand unusual events, such as the edge-localized modes (ELMS). At the point when an ELM occurs, up to 30% of the energy can be deposited on the plasma-facing boundary in the form of the heat and particle load causing material loss due to sublimation. Tungsten is a promising candidate as a plasma-facing material in the ITER divertor area since it has a high melting point, good thermal conductivity and low sputtering yield, which minimizes the plasma contamination. However their brittleness at low temperatures which is worsened by irradiation is an issue. One strategy to modulate the properties of tungsten is alloying this element with other refractory metals, such as tantalum that shows higher toughness, lower activation and higher radiation resistance. In the present study tungsten-tantalum alloys (W-Ta) were produced by Ta implantation. The fundamental mechanisms which govern the behaviour of defect dynamics in W-Ta materials under reactor conditions, were simulated by the implantation of He and D. The microstructure observations of the W plates that after single Ta implantation revealed crater-like cavities and a more severe effect after D implantation. The effect increase with the increasing of D fluence. However at fluences higher than 1021D/m the effect is reduced. In addition, blistering was observed in W-Ta plates implanted with He. The D retention in the W-Ta alloys increases with the implanted fluence with tendency for saturation for high fluences. Moreover the results show that D retention is higher after sequential He and D implantation than for single D implantation. The diffractogram of W-Ta alloys implanted with He evidenced the presence of broadened W peaks associated with stress induced by irradiation, which may cause internal stress field resulting in a distortion of the crystal lattice. These irradiation defects can be observed in the D release spectra where three peaks are associated

  16. Optical and physical properties of ceramic crystal laser materials

    Science.gov (United States)

    Simmons, Jed A.

    Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption

  17. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  18. Combining adhesive contact mechanics with a viscoelastic material model to probe local material properties by AFM.

    Science.gov (United States)

    Ganser, Christian; Czibula, Caterina; Tscharnuter, Daniel; Schöberl, Thomas; Teichert, Christian; Hirn, Ulrich

    2017-12-20

    Viscoelastic properties are often measured using probe based techniques such as nanoindentation (NI) and atomic force microscopy (AFM). Rarely, however, are these methods verified. In this article, we present a method that combines contact mechanics with a viscoelastic model (VEM) composed of springs and dashpots. We further show how to use this model to determine viscoelastic properties from creep curves recorded by a probe based technique. We focus on using the standard linear solid model and the generalized Maxwell model of order 2. The method operates in the range of 0.01 Hz to 1 Hz. Our approach is suitable for rough surfaces by providing a defined contact area using plastic pre-deformation of the material. The very same procedure is used to evaluate AFM based measurements as well as NI measurements performed on polymer samples made from poly(methyl methacrylate) and polycarbonate. The results of these measurements are then compared to those obtained by tensile creep tests also performed on the same samples. It is found that the tensile test results differ considerably from the results obtained by AFM and NI methods. The similarity between the AFM results and NI results suggests that the proposed method is capable of yielding results comparable to NI but with the advantage of the imaging possibilities of AFM. Furthermore, all three methods allowed a clear distinction between PC and PMMA by means of their respective viscoelastic properties.

  19. HD 152246: a new high-mass triple system and its basic properties

    Science.gov (United States)

    Nasseri, A.; Chini, R.; Harmanec, P.; Mayer, P.; Nemravová, J. A.; Dembsky, T.; Lehmann, H.; Sana, H.; Le Bouquin, J.-B.

    2014-08-01

    Analyses of multi-epoch, high-resolution (R ~ 50 000) optical spectra of the O-type star HD 152246 (O9 IV according to the most recent classification), complemented by a limited number of earlier published radial velocities, led to the finding that the object is a hierarchical triple system, where a close inner pair (Ba-Bb) with a slightly eccentric orbit (e = 0.11) and a period of 6.^d0049 revolves in a 470-day highly eccentric orbit (e = 0.865) with another massive and brighter component A. The mass ratio of the inner system must be low since we were unable to find any traces of the secondary spectrum. The mass ratio A/(Ba+Bb) is 0.89. The outer system has recently been resolved using long-baseline interferometry on three occasions. The interferometry confirms the spectroscopic results and specifies elements of the system. Our orbital solutions, including the combined radial-velocity and interferometric solution indicate an orbital inclination of the outer orbit of 112° and stellar masses of 20.4 and 22.8 M⊙. We also disentangled the spectra of components A and Ba and compare them to synthetic spectra from two independent programmes, TLUSTY and FASTWIND. In either case, the fit was not satisfactory and we postpone a better determination of the system properties for a future study, after obtaining observations during the periastron passage of the outer orbit (the nearest chance being March 2015). For the moment, we can only conclude that component A is an O9 IV star with v sin i = 210 ± 10 km s-1and effective temperature of 33 000 ± 500 K, while component Ba is an O9 V object with v sin i = 65 ± 3 km s-1and Teff = 33 600 ± 600 K. Based on data products from observations made with ESO telescopes at La Silla Paranal Observatory under programmes 68.D-0095(A), 71.D-0369(A), 073.D-0609(A), 075.D-0061(A), 076.D0294(A), 077.D-0146(A), 079.D-0718(A), 081.D-2008(B), 083.D-0589(B), 086.D-0997(B), 087.D-0946(A), and 089.D-0975(A), extracted from the ESO/ST-ECF Science

  20. The double galaxy cluster Abell 2465 - I. Basic properties: optical imaging and spectroscopy

    Science.gov (United States)

    Wegner, Gary A.

    2011-05-01

    Optical imaging and spectroscopic observations of the z= 0.245 double galaxy cluster Abell 2465 are described. This object appears to be undergoing a major merger. It is a double X-ray source and is detected in the radio at 1.4 GHz. The purpose of this paper is to investigate signatures of the interaction of the two components. Redshifts were measured to determine velocity dispersions and virial radii of each component. The technique of fuzzy clustering was used to assign membership weights to the galaxies in each clump. Using redshifts of 93 cluster members within 1.4 Mpc of the subcluster centres, the virial masses of the north-east (NE) and south-west (SW) components are Mv= 4.1 ± 0.8 × 1014 and 3.8 ± 0.8 × 1014 M⊙, respectively. These agree within the errors with masses from X-ray scaling relations. The projected velocity difference between the two subclusters is 205 ± 149 km s-1. The anisotropy parameter, β, is found to be low for both components. Spectra of 37 per cent of the spectroscopically observed galaxies show emission lines and are predominantly star forming in the diagnostic diagram. No strong active galactic nucleus sources were found. The emission-line galaxies tend to lie between the two cluster centres with more near the SW clump. The luminosity functions of the two subclusters differ. The NE component is similar to many rich clusters, while the SW component has more faint galaxies. The NE clump’s light profile follows a single Navarro-Frenk-White profile with c= 10 while the SW is better fitted with an extended outer region and a compact inner core, consistent with available X-ray data indicating that the SW clump has a cooling core. The observed differences and properties of the two components of Abell 2465 are interpreted to have been caused by a collision 2-4 Gyr ago, after which they have moved apart and are now near their apocentres, although the start of a merger remains a possibility. The number of emission-line galaxies gives

  1. Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour

    Science.gov (United States)

    Tilley, Richard J. D.

    2003-05-01

    Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.

  2. Ab initio simulations for material properties inside Jupiter

    Science.gov (United States)

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Wicht, Johannes; Redmer, Ronald

    2013-07-01

    The behavior of warm dense matter is of paramount importance for interior and dynamo models for solar and extrasolar giant planets. For instance, nonmetal-to-metal transitions (e.g. metallization in hydrogen), demixing phenomena (in H-He or C-N-O-H mixtures), and new exotic phases (e.g. with proton conduction in water and ammonia) may occur at high pressures and elevated temperatures. These effects have to be taken into account consistently in corresponding planetary models. Therefore, we apply ab initio molecular dynamics simulations based on finite-temperature density functional theory to calculate thermophysical properties of warm dense matter. In particular we determine the equation of state (thermal and caloric), material (sound velocity, specific heat) and transport properties (electrical and thermal conductivity, viscosity, diffusion coefficient) along the adiabat of Jupiter, i.e. from ambient conditions up to the multi-megabar range [1,2]. This ab initio data set can be used as input in future interior (structure) and dynamo models (magnetic fields, flow dynamics) for this planet. Similar data sets can also be compiled for interior conditions of other solar giant planets so that important problems such as the size of planetary cores necessary for the accretion of gaseous (H/He) or icy (C-N-O hydrides) envelopes, the origin, location and stability of layer boundaries, or the source of an excess (e.g. Saturn) or deficit luminosity (e.g. Uranus) can be studied. The increasing sample of extrasolar planets poses new questions that can be addressed based on such ab initio data sets, e.g. to explain the wide range of radii for planets with similar mass. [1] N. Nettelmann, A. Becker, B. Holst, R. Redmer, Astrophys. J. 750, 52 (2012). [2] M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Astrophys. J. Suppl. Ser. 202, 5 (2012).

  3. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    Science.gov (United States)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity

  4. Hyperelastic Material Properties of Mouse Skin under Compression.

    Directory of Open Access Journals (Sweden)

    Yuxiang Wang

    Full Text Available The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus. These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6-10 weeks and intermediate (13-19 weeks adult ages but by body weight in mature mice (26-34 weeks. Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given

  5. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    Science.gov (United States)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  6. Bone material properties in premenopausal women with idiopathic osteoporosis

    Science.gov (United States)

    Misof, BM; Gamsjaeger, S; Cohen, A; Hofstetter, B; Roschger, P; Stein, E; Nickolas, TL; Rogers, HF; Dempster, D; Zhou, H; Recker, R; Lappe, J; McMahon, D; Paschalis, EP; Fratzl, P; Shane, E; Klaushofer, K

    2012-01-01

    Idiopathic osteoporosis (IOP) in premenopausal women is characterized by fragility fractures at low or normal bone mineral density (BMD) in otherwise healthy women with normal gonadal function. Histomorphometric analysis of transiliac bone biopsy samples has revealed microarchitectural deterioration of cancellous bone and thinner cortices. To examine bone material quality, we measured the bone mineralization density distribution (BMDD) in biopsy samples by quantitative backscattered electron imaging (qBEI), and mineral/matrix ratio, mineral crystallinity/maturity, relative proteoglycan content and collagen cross-link ratio at actively bone forming trabecular surfaces by Raman and Fourier Transform Infrared (FTIRM) microspectroscopic techniques. The study groups included: premenopausal women with idiopathic fractures (IOP, n=45), or idiopathic low BMD (Z-score ≤-2.0 at spine and/or hip) but no fractures (ILBMD, n=19), and healthy controls (CONTROL, n=38). BMDD of cancellous bone showed slightly lower mineral content in IOP (both Cn.CaMean and Cn.CaPeak are 1.4% lower) and in ILBMD (both are 1.6% lower, p<0.05) versus CONTROL, but no difference between IOP and ILBMD. Similar differences were found when affected groups were combined versus CONTROL. The differences remained significant after adjustment for mineralizing surface (MS/BS), suggesting that the reduced mineralization of bone matrix cannot be completely accounted for by differences in bone turnover. Raman and FTIRM analysis at forming bone surfaces showed no differences between combined IOP/ILBMD groups versus CONTROL, with the exceptions of increased proteoglycan content per mineral content and increased collagen cross-link ratio. When the two affected subgroups were considered individually, mineral/matrix ratio and collagen cross-link ratio were higher in IOP than ILBMD. In conclusion, our findings suggest that bone material properties differ between premenopausal women with IOP/ILBMD and normal controls

  7. Fe-based composite materials with improved mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzyna [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland)

    2008-07-01

    Following a previous study by the authors two new compositions (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 91}C{sub 9} and (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} have been developed with the aim of improving the ductility of Fe{sub 65.5}Cr{sub 4}Mo{sub 4}Ga{sub 4}P{sub 12}C{sub 5}B{sub 5.5} bulk metallic glass (BMG). In contrast to the alloys in that study, the recently prepared Fe-based materials are Ga-free. It was expected that the variations in the composition will lead to the changes in the phase formation and, hence, in the mechanical response of the investigated alloys. It was recognized that in-situ formed Fe-based composites show superior plasticity ({epsilon}{sub pl}{approx}37%) for the alloy with lower C content and ({epsilon}{sub pl}{approx}4%) for the alloy with higher C content compared to monolithic glass ({epsilon}{sub pl}{approx}0.2%). Furthermore, on the basis of present as well as previous investigations it has been shown that the Ga addition is beneficial for the plasticity of these Fe-based alloys. It was observed that the (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} alloy exhibits a significantly smaller fracture strain ({epsilon}{sub f}{approx}5%) compared to its Ga-containing counterpart ({epsilon}{sub f}{approx}16%). Therefore, it can be concluded that appropriate alloying additions are crucial in enhancing the mechanical properties of the complex Fe-based materials developed here.

  8. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials

  9. Parts, Materials, and Processes Experience Summary. Volume 1; [Catalog of ALERT and Other Information on Basic Design, Reliability, Quality and Applications Programs

    Science.gov (United States)

    1973-01-01

    The ALERT program, a system for communicating common problems with parts, materials, and processes, is condensed and catalogued. Expanded information on selected topics is provided by relating the problem area (failure) to the cause, the investigations and findings, the suggestions for avoidance (inspections, screening tests, proper part applications), and failure analysis procedures. The basic objective of ALERT is the avoidance of the recurrence of parts, materials, and processed problems, thus improving the reliability of equipment produced for and used by the government.

  10. Mechanical Properties of Composite Waste Material Based Styrofoam, Baggase and Eggshell Powder for Application of Drone Frames

    Science.gov (United States)

    Perdana, Mastariyanto; Prastiawan; Hadi, Syafrul

    2017-12-01

    The garbage issue becomes a very serious problem at the moment. Much research has been done to make waste into useful materials. One of the utilization of waste is as the basic material of composite material that can be applied in the field of engineering. Some of the wastes generated are styrofoam, bagasse and eggshell. Styrofoam, bagasse and eggshell can be applied to a composite material. Styrofoam serves as a composite binder material while the bagasse and eggshells serve as a reinforcement. Volume fraction between styrofoam, bagasse and eggshell are 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25%. The aims of research are determine the mechanical properties of composite material based waste materials from styrofoam, bagasse and eggshell. Mechanical properties tested in this study are bending strength and toughness of composite materials. The results showed bending strength of composite for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 5.07 MPa, 8.45 MPa, 8.68 MPa, and 11.01 MPa, respectively. Toughness of composite materials for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 0.33 J/mm2, 0.42 J/mm2, 0.75 J/mm2, and 0.75 J/mm2, respectively. Composite materials based on waste materials from styrofoam, bagasse and eggshell can be used as an alternative material for drone frames.

  11. Structural properties of laminated Douglas fir/epoxy composite material

    Energy Technology Data Exchange (ETDEWEB)

    Spera, D.A. (National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center); Esgar, J.B. (Sverdrup Technology, Inc., Cleveland, OH (USA)); Gougeon, M.; Zuteck, M.D. (Gougeon Bros., Bay City, MI (USA))

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  12. Irradiation effect on electrical properties of polyimide insulating material

    International Nuclear Information System (INIS)

    Borisova, M.Eh.; Kojkov, S.N.; Skornyakov, Yu.A.; Stepanov, A.N.

    1987-01-01

    The effect of irradiation on electric strength, dielectric properties and conductivity of polyimide glass varnished cloth LSN-180, suggested as electric insulation for the T-15 thermonuclear facility winding, is investigated. The effect of Co 60 source γ-radiation with 1.4 MeV quanta on the processes of electric aging of glass varnished cloth LSN-180 has been studied for the first time. It is shown that the effect of ionizing radiation results in the decrease of the glass varnished cloth lifetime. Lifetimes of preliminarily irradiated samples are 7-8 times lower, and in the case of simultaneous effect of γ-radiation and alternating electric field are approximately 20 times lower than the lifetime of initial glass varnished cloth. No decrease in the lifetime of glass varnished cloth as a result of irradiation in direct electric field was detected. Evaluation of serviceability of electric insulation intended for the operation in radiation effect zone, should be made according to the results of material resource tests inder conditions of simultaneous effect ofelectric field and radiation. No correlation between the change in short-term electric strength and service life of glass varnished cloth as a result of irradiation is observed. The absence of partial discharges in the process of electric field levelling in a sample using semiconducting coatings testifies to the good quality of impregnation by polyimide varnishes of the initial glass varnished cloth

  13. Optimal reconstruction of material properties in complex multiphysics phenomena

    Science.gov (United States)

    Bukshtynov, Vladislav; Protas, Bartosz

    2013-06-01

    We develop an optimization-based approach to the problem of reconstructing temperature-dependent material properties in complex thermo-fluid systems described by the equations for the conservation of mass, momentum and energy. Our goal is to estimate the temperature dependence of the viscosity coefficient in the momentum equation based on some noisy temperature measurements, where the temperature is governed by a separate energy equation. We show that an elegant and computationally efficient solution of this inverse problem is obtained by formulating it as a PDE-constrained optimization problem which can be solved with a gradient-based descent method. A key element of the proposed approach, the cost functional gradients are characterized by mathematical structure quite different than in typical problems of PDE-constrained optimization and are expressed in terms of integrals defined over the level sets of the temperature field. Advanced techniques of integration on manifolds are required to evaluate numerically such gradients, and we systematically compare three different methods. As a model system we consider a two-dimensional unsteady flow in a lid-driven cavity with heat transfer, and present a number of computational tests to validate our approach and illustrate its performance.

  14. Study of materials properties by neutron beam applications

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Kim, H. J.; Kim, B. C.; Jun, B. C.; Lee, J. S.; Seong, B. S.; Shim, H. S.; Choi, B. H.; Ho, J. W.; Kang, S. K.; Kim, J. Y.; Park, D. K.; Kim, C. K.; Kim, C. J.; Cho, Y. S.

    1997-10-01

    Horizontal and vertical beam ports related works for neutron beam experimental facilities in HANARO has been done. And the preparation works of neutron spectrometers, design, manufacture and installation of the high resolution powder diffractometer, the four circle diffractometer, the polarized neutron spectrometer, the small angle neutron spectrometer and the position sensitive detector unit for residual stress measurement have been done. The status for each spectrometer are described. The development of neutron spectroscopy technique for the crystal structure analysis on YBa 2 Cu 3 O 7-x , U 3 Si, Pb(Yb,Nb)O 3 by neutron diffraction, the anisotropic properties of textured orthorhombic polycrystalline materials and the low temperature sample environment facility has been performed and neutron reflectometry has been reviewed. After the design and manufacture of neutron radiography facility, it has been installed at NR beam tube and its' performance evaluation has been done. The image processing technique for real time testing is under development. As for neutron transmutation doping, design of irradiation tube, estimation on neutron flux distribution and flux quality, and study of irradiation damage recovery under annealing have been tried. (author). 11 refs., 40 tabs., 86 figs.

  15. Three-dimensional magnetic properties of soft magnetic composite materials

    International Nuclear Information System (INIS)

    Lin, Z.W.; Zhu, J.G.

    2007-01-01

    A three-dimensional (3-D) magnetic property measurement system, which can control the three components of the magnetic flux density B vector and measure the magnetic field strength H vector in a cubic sample of soft magnetic material, has been developed and calibrated. This paper studies the relationship between the B and H loci in 3-D space, and the power losses features of a soft magnetic composite when the B loci are controlled to be circles with increasing magnitudes and ellipses evolving from a straight line to circle in three orthogonal planes. It is found that the B and H loci lie in the same magnetization plane, but the H loci and power losses strongly depend on the orientation, position, and process of magnetization. On the other hand, the H vector evolves into a unique locus, and the power loss approaches a unique value, respectively, when the B vector evolves into the round locus with the same magnitude from either a series of circles or ellipses

  16. DNA micelle flares: a study of the basic properties that contribute to enhanced stability and binding affinity in complex biological systems

    OpenAIRE

    Wang, Yanyue; Wu, Cuichen; Chen, Tao; Sun, Hao; Cansiz, Sena; Zhang, Liqin; Cui, Cheng; Hou, Weijia; Wu, Yuan; Wan, Shuo; Cai, Ren; Liu, Yuan; Sumerlin, Brent; Zhang, Xiaobing; Tan, Weihong

    2016-01-01

    DMFs are spherical DNA-diacyllipid nanostructures formed by hydrophobic effects between lipid tails coupled to single-stranded DNAs. Such properties as high cellular permeability, low critical micelle concentration (CMC) and facile fabrication facilitate intracellular imaging and drug delivery. While the basic properties of NFs have been amply described and tested, few studies have characterized the fundamental properties of DMFs with particular respect to aggregation number, dissociation con...

  17. Effect of Improvised Instructional Materials on Students' Achievement in Geometry at the Upper Basic Education Level in Makurdi Metropolis, Benue State, Nigeria

    Science.gov (United States)

    Iji, C. O.; Ogbole, P. O.; Uka, N. K.

    2014-01-01

    Among all approaches aimed at reducing poor mathematics achievement among the students, adoption of appropriate methods of teaching appears to be more rewarding. In this study, improvised instructional materials were used to ascertain students' geometry achievement at the upper basic education one. Two research questions were asked with associated…

  18. New multifunctional lightweight materials based on cellular metals - manufacturing, properties and applications

    International Nuclear Information System (INIS)

    Stephani, Guenter; Quadbeck, Peter; Andersen, Olaf

    2009-01-01

    Cellular metallic materials are a new class of materials which have been the focus of numerous scientific studies over the past few years. The increasing interest in cellular metals is due to the fact that the introduction of pores into the materials significantly lowers the density. These highly porous materials also possess combinations of properties which are not possible to achieve with other materials. Besides the drastic weight and material savings that arise from the cell structure, there are also other application-specific benefits such as noise and energy absorption, heat insulation, mechanical damping, filtration effects and also catalytic properties. Cellular metallic materials are hence multi-functional lightweight materials.

  19. Structure-property relationships of multiferroic materials: A nano perspective

    Science.gov (United States)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  20. Basicity determination for neutral phosphorus organic extragents by NMR 31P-method in two-phase systems, and quantitative interrelations of acido-basic extractive properties

    International Nuclear Information System (INIS)

    Laskorin, B.N.; Yakshin, V.V.; Meshcheryakov, N.M.; Yagodin, V.G.

    1988-01-01

    Consideration is given to the method for determination of basicity of neutral organophosphorus compounds of XGZP=0 type (X, G, Z=C 4 H 9 , C 8 H 17 , C 6 H 5 ). The method is based on change of chemical shift of phosphorus-31 nuclei in two-phase extraction system depending on acidity function H O , H A , H PO . It is shown that the method can be used for evaluation and forecasting of phosphine oxide ability in the processes of UO 2 SO 4 solvent extraction from aqueous solutions of sulfuric acid

  1. Properties of energetic materials: United States Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI) strategic alliances

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.F.

    1997-01-01

    The Accelerated Strategic Computing Initiative (ASCI) program is designed to provide the computational resources which are required to provide a simulation based approach to the Science Based Stockpile Stewardship (SBSS) program. The capability to predict the properties of energetic materials is one of the areas of interest to the US Department of Energy`s (DOE) ASCI program. This capability will support computational assessments of the safety and reliability of systems containing explosives and other energetic materials subjected to normal and abnormal environments. Several research elements related to energetic material properties are described in more detail below. They are: (A) calculation of decomposition rates, (B) molecular potential functions, (C) physical properties and transport coefficients, (D) molecular energization mechanisms, (E) fracture/failure of energetic material crystals, (F) grain-grain and grain- binder interactions, and (G) aging effects in energetic material. These elements have in common the need to develop computational methods that have a strong foundation in basic physical principles. They will generally have to be implemented to run efficiently on advanced parallel computing platforms to achieve sufficient accuracy.

  2. Electronic Properties of Low-Dimensional Materials Under Periodic Potential

    Science.gov (United States)

    Jamei, Mehdi

    In the quest for the further miniaturization of electronic devices, numerous fabrication techniques have been developed. The semiconductor industry has been able to manifest miniaturization in highly complex and ultra low-power integrated circuits and devices, transforming almost every aspect of our lives. However, we may have come very close to the end of this trend. While advanced machines and techniques may be able to overcome technological barriers, theoretical and fundamental barriers are inherent to the top-down miniaturization approach and cannot be circumvented. As a result, the need for novel and natural alternatives to replace old materials is valued now more than ever. Fortunately, there exists a large group of materials that essentially has low-dimensional (quasi-one- or quasi-two-dimensional) structures. Graphene, a two-dimensional form of carbon, which has attracted a lot of attention in recent years, is a perfect example of a prime material from this group. Niobium tri-selenide (NbSe3), from a family of trichalcogenides, has a highly anisotropic structure and electrical conductivity. At sufficiently low temperatures, NbSe3 also exhibits two independent "sliding charge density waves"-- an exciting phenomenon, which could be altered by changing the overall size of the material. In NbSe3 (and Blue Bronze K0.3MoO3 which has a similar structure and electrical behavior), the effect of a periodic potential could be seen in creating a charge density wave (CDW) that is incommensurate to the underlying lattice. The required periodic potential is provided by the crystal ions when ordered in a particular way. The consequence is a peculiar non-linear conductivity behavior, as well as a unique narrow-band noise spectrum. Theoretical and experimental studies have concluded that the dynamic properties of resulting CDW are directly related to the crystal impurity density, and other pinning potentials. Therefore, reducing the overall size of the crystal could

  3. Effects of acido-basic support properties on the catalytic hydrogenation of acetylene on gold nano-particles

    Science.gov (United States)

    Manda, Abdullah Ahmed

    Metallic gold nanoparticles supported on gamma-Al2O 3 and magnesia-alumina mixed oxide, with different magnesia content have been prepared by sol-gel method and characterized by different techniques (inductive coupled plasma-mass spectroscopy (ICP-MS), XRD, BET surface area analysis, transmission electron microscopy (TEM), CO2 and NH 3 temperature programmed desorption (TPD), H2 temperature programmed reduction (TPR) and FTIR of adsorbed CO2). Such systems were found to produce catalysts with controllable acidity, varying from catalyst possessing large density of acidic and low density of basic sites, others with acidic and basic sites of equal strength and density, and others with large basic and low acid sites densities, respectively. The catalytic assessment of the generated acidity was carried out using 2-propanol decomposition as a test reaction. The results obtained indicate that the presence of magnesia and reduced gold nanopartilces has imparted the catalysts, 1%Au/4%Mg-Al 2O3 and 1%Au/8%Mg-Al2O3, with significant base-catalytic properties. Acetylene hydrogenation and formation of coke deposits were investigated on a gold catalyst supported on gamma-Al2O3 and gold supported on alumina-magnisia mixed oxide with different gold content; 1%Au/gamma-Al 2O3, 1%Au/15%Mg-Al2O3, 2%Au/15%Mg-Al 2O3 and 4%Au/15%Mg-Al2O3. The effect of the H2/C2H2 ratio was studied over a range of values. The catalytic activity and selectivity towards ethylene and other products were investigated at different reaction temperatures. Acetylene hydrogenation was investigated in the presence and absence of ethylene in stream. It is investigated that the adsorption of the triple bond is preferred over the double bond and during selective catalytic (SCR) of C2H2 the two hydrocarbons do not compete for the same adsorption sites. The deactivation of catalysts was studied by temperature programmed oxidation (TPO). Higher content of coke over 1%Au/Al2O3 catalyst was investigated in contrast to

  4. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  5. Material physical properties of 12 chromium ferritic steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Wakai, Takashi; Aoto, Kazumi

    2003-09-01

    High chromium ferritic steel is an attractive candidate for structural material of the next Fast Breeder Reactor, since both of thermal properties and high temperature strength of the steel are superior to those of conventional austenitic stainless steels. In this study, physical properties of 12Cr steels are measured and compared to those obtained in the previous studies to discuss about stochastic dispersions. The effect of measurement technique on Young's modulus and the influence of the specimen size on coefficient of thermal expansion are also investigated. The following conclusions are obtained. (1) Young's modulus of 12Cr steels obtained in this study tends to larger than those obtained in the previous studies especially in high temperature. Such a discrepancy is resulted from the difference in measurement technique. It was clarified that Young's modulus obtained by free vibration method is more adequate those obtained by the cantilever characteristic vibration method. Therefore, the authors recommend using the values obtained by free vibration method as Young's modulus of 12Cr steels. (2) Both instant and mean coefficient of thermal expansion of 12Cr steels obtained in this study is in a good agreement with those obtained in the previous studies. However, the obviously different values are obtained from the measurement by large size specimens. Such a discrepancy is resulted from heterogeneous during heating process of the specimens. Therefore, the authors recommend using the values obtained by φ4 x 20 mm specimens as instant and mean coefficient of thermal expansion of 12Cr steels. (3) Specific heat of 12Cr steels obtained in this study agree with those obtained in the previous studies with a few exceptions. (4)Thermal conductivity of 12Cr steels obtained in this study agree with those obtained in the previous studies. (5) It was confirmed that instant and mean coefficient of thermal expansion, density, specific heat and thermal conductivity of 12Cr steels

  6. Acidic-Basic Properties of Three Alanine-Based Peptides Containing Acidic and Basic Side Chains: Comparison Between Theory and Experiment

    OpenAIRE

    Makowska, Joanna; Bagińska, Katarzyna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A.

    2008-01-01

    The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)7-KK-NH2 (KAK), Ac-OO-(A)7-DD-NH2 (OAD), Ac-KK-(A)7-EE-NH2 (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability ...

  7. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  8. Preliminary study on piezoresistive and piezoelectric properties of a double-layer soft material for tactile sensing

    Directory of Open Access Journals (Sweden)

    Dan He

    2015-06-01

    Full Text Available This paper describes a double-layer simplified sensor unit based on the interesting electromechanical properties of MWNT mixed by polymer composite and PVDF films, which is envisaged to imitate the distributed tactile receptors of human hands so as to help the disabled to recover the basic tactile perception. This paper shows the fabrication and performance research of such a new piezoelectric-piezoresistive composite material which indicates a promising .application in prosthtic hand.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6454

  9. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  10. Mechanical properties of structural materials for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Kim, D. W.; Park, J. Y.; Kim, W. G.; Yoon, J. H.

    2011-08-01

    Structural materials for high temperature gas cooled reactor should have good properties such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Mechanical properties of major structural materials, such as pressure vessel, heat exchanger, control rod, were investigated. Effect of He and irradiation on these structural materials were investigated

  11. Technical Progress Report for "Optical and Electrical Properties of III-Nitrides and Related Materials"

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongxing

    2008-10-31

    Investigations have been conducted focused on the fundamental material properties of AIN and high AI-content AIGaN alloys and further developed MOCVD growth technologies for obtaining these materials with improved crystalline quality and conductivities.

  12. Application for managing model-based material properties for simulation-based engineering

    Science.gov (United States)

    Hoffman, Edward L [Alameda, CA

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  13. Availability and properties of materials for the Fakse Landfill biocover

    DEFF Research Database (Denmark)

    Pedersen, Gitte Bukh; Scheutz, Charlotte; Kjeldsen, Peter

    2010-01-01

    in Denmark. Methane oxidation rates were determined in batch incubations. Based on material availability, characteristics, and the results of batch incubations, five of the seven materials were selected for further testing in column incubations. Three of the best performing materials showed comparable...

  14. Properties of structural materials in liquid metal environment

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1991-12-01

    The proceedings contain 16 contributions to the following topics: 1. Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; 2. Behaviour of Materials in Liquid Metal Environment under Off-Normal Conditions; 3. Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; and 4. Crack Propagation in Liquid Sodium. (MM)

  15. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Tensile properties of sodium exposed and nickel diffused materials

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2002-12-01

    An oxide dispersion strengthened (ODS) ferritic steel is candidate for a long-life core materials of future FBR, because of good swelling resistance and high creep strength. In this study, tensile tests were carried out the long-term extrapolation of sodium environmental effects on the mechanical properties of ODS steels. The tested heats of materials are M93, M11 and F95. The specimens were pre-exposed to sodium for 1,000 and 3,000 hours under non-stress conditions. The pre-exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperature was 650 and 700degC, the oxygen concentration in sodium was about 1 ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/seconds (nearly static). Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The tensile strength and the fracture elongation after sodium exposure (maximum 3,000 hours) were same as that of as-received materials. If was considered that the sodium environmental effect is negligible under the condition of this study. (2) Tensile properties of nickel diffused specimens were slightly lower than that of the as-received specimens, but it remains equal to that of thermal aging specimens. (3) The change in microstructure such as a degraded layer was observed on the surface of nickel diffused specimen. In the region of the degraded layer, phase transformations from the α-phase to the γ-phase were recognized. But, the microscopic oxide particles were observed same as that of α-phase base metal. (author)

  16. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility

    DEFF Research Database (Denmark)

    Zdarta, Jakub; Meyer, Anne S.; Jesionowski, Teofil

    2018-01-01

    on the properties of the produced catalytic system. A large variety of inorganic and organic as well as hybrid and composite materials may be used as stable and efficient supports for biocatalysts. This review provides a general overview of the characteristics and properties of the materials applied for enzyme...... immobilization. For the purposes of this literature study, support materials are divided into two main groups, called Classic and New materials. The review will be useful in selection of appropriate support materials with tailored properties for the production of highly effective biocatalytic systems for use...

  17. Study of Adsorption Property of Ga(III) onto Strongly Basic Resin for Ga Extraction from Bayer Liquor

    Science.gov (United States)

    Zhao, Zhuo; Yang, Yongxiang; Lu, Hao; Hua, Zhongsheng; Ma, Xiaoling

    Ion-exchange is the main technology used in industry for gallium recovery from Bayer liquor, the largest gallium production resource. However, the co-extraction of vanadium and the degradation of resins are the major issues. Further investigations related to fundamental theory are needed. This paper reports the study of the adsorption properties of a strongly basic resin having a combination of one =NOH group and another active group -NH2 for Ga(III) extraction. The influence of operational conditions such as contact time, initial Ga(III) concentration and temperature on Ga(III) adsorption were extensively investigated. The results revealed that the resin has high adsorption capacity and Ga(III) selectivity. The optimal adsorption condition was obtained at temperatures of 40-50°C and contact time of 40-60 min. The Ga(III) adsorption data on the resin fit well with the pseudo second-order kinetics. Langmuir and Freundlich models were used to describe Ga(III) adsorption isotherms on the resin.

  18. The Characterization of the Magnetic Properties of Soft Magnetic Materials

    DEFF Research Database (Denmark)

    Larsen, Raino Michael

    1996-01-01

    The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings and cylin......The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings...

  19. Preparation and multi-properties determination of radium-containing rocklike material

    Science.gov (United States)

    Hong, Changshou; Li, Xiangyang; Zhao, Guoyan; Jiang, Fuliang; Li, Ming; Zhang, Shuai; Wang, Hong; Liu, Kaixuan

    2018-02-01

    The radium-containing rocklike material were fabricated using distilled water, ordinary Portland cement and additives mixed aggregates and admixtures according to certain proportion. The physico-mechanical properties as well as radioactive properties of the prepared rocklike material were measured. Moreover, the properties of typical granite sample were also investigated. It is found on one hand, similarities exist in physical and mechanical properties between the rocklike material and the granite sample, this confirms the validity of the proposed method; on the other hand, the rocklike material generally performs more remarkable radioactive properties compared with the granite sample, while radon diffusive properties in both materials are essentially matching. This study will provide a novel way to prepare reliable radium-containing samples for radon study of underground uranium mine.

  20. A Comparative Structural Analysis of the Oral Language Materials and the Basic Readers Used in Philippine Schools

    Science.gov (United States)

    Maminta, Rosario E.

    1968-01-01

    Outlines a study to determine similarities between language structures in English reading materials and oral language patterns familiar to Filipino children and mentions needs for readability studies of second-language materials. Bibliography. (MD)