Sample records for basic helix-loop-helix factors

  1. Biochemical analysis of the basic helix-loop-helix transcription factor Olig2

    NARCIS (Netherlands)

    Meijer, D.H.M.


    The basic helix-loop-helix (bHLH) transcription factors oligodendrocyte transcription factor 1 (Olig1) and Olig2 are structurally similar and, to a first approximation, coordinately expressed in the developing CNS and postnatal brain. Notwithstanding these similarities, it was apparent from early on

  2. Challenges in Targeting a Basic Helix-Loop-Helix Transcription Factor with Hydrocarbon-Stapled Peptides

    NARCIS (Netherlands)

    Edwards, Amanda L; Meijer, Dimphna H; Guerra, Rachel M; Molenaar, Remco J; Alberta, John A; Bernal, Federico; Bird, Gregory H; Stiles, Charles D; Walensky, Loren D


    Basic helix-loop-helix (bHLH) transcription factors play critical roles in organism development and disease by regulating cell proliferation and differentiation. Transcriptional activity, whether by bHLH homo- or heterodimerization, is dependent on protein-protein and protein-DNA interactions mediat

  3. A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson


    Full Text Available The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281 of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.

  4. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. (United States)

    Howard, T D; Paznekas, W A; Green, E D; Chiang, L C; Ma, N; Ortiz de Luna, R I; Garcia Delgado, C; Gonzalez-Ramos, M; Kline, A D; Jabs, E W


    Saethre-Chotzen syndrome is one of the most common autosomal dominant disorders of craniosynostosis in humans and is characterized by craniofacial and limb anomalies. The locus for Saethre-Chotzen syndrome maps to chromosome 7p21-p22. We have evaluated TWIST, a basic helix-loop-helix transcription factor, as a candidate gene for this condition because its expression pattern and mutant phenotypes in Drosophila and mouse are consistent with the Saethre-Chotzen phenotype. We mapped TWIST to human chromosome 7p21-p22 and mutational analysis reveals nonsense, missense, insertion and deletion mutations in patients. These mutations occur within the basic DNA binding, helix I and loop domains, or result in premature termination of the protein. Studies in Drosophila indicate that twist may affect the transcription of fibroblast growth factor receptors (FGFRs), another gene family implicated in human craniosynostosis. The emerging cascade of molecular components involved in craniofacial and limb development now includes TWIST, which may function as an upstream regulator of FGFRs.

  5. Challenges in Targeting a Basic Helix-Loop-Helix Transcription Factor with Hydrocarbon-Stapled Peptides. (United States)

    Edwards, Amanda L; Meijer, Dimphna H; Guerra, Rachel M; Molenaar, Remco J; Alberta, John A; Bernal, Federico; Bird, Gregory H; Stiles, Charles D; Walensky, Loren D


    Basic helix-loop-helix (bHLH) transcription factors play critical roles in organism development and disease by regulating cell proliferation and differentiation. Transcriptional activity, whether by bHLH homo- or heterodimerization, is dependent on protein-protein and protein-DNA interactions mediated by α-helices. Thus, α-helical decoys have been proposed as potential targeted therapies for pathologic bHLH transcription. Here, we developed a library of stabilized α-helices of OLIG2 (SAH-OLIG2) to test the capacity of hydrocarbon-stapled peptides to disrupt OLIG2 homodimerization, which drives the development and chemoresistance of glioblastoma multiforme, one of the deadliest forms of human brain cancer. Although stapling successfully reinforced the α-helical structure of bHLH constructs of varying length, sequence-specific dissociation of OLIG2 dimers from DNA was not achieved. Re-evaluation of the binding determinants for OLIG2 self-association and stability revealed an unanticipated role of the C-terminal domain. These data highlight potential pitfalls in peptide-based targeting of bHLH transcription factors given the liabilities of their positively charged amino acid sequences and multifactorial binding determinants.

  6. Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. (United States)

    Selote, Devarshi; Samira, Rozalynne; Matthiadis, Anna; Gillikin, Jeffrey W; Long, Terri A


    Iron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation. To further characterize the function of this protein, we examined the expression pattern of recombinant ProBTS::β-GLUCURONIDASE and found that it is expressed in developing embryos and other reproductive tissues, corresponding with its apparent role in reproductive growth and development. Our findings also indicate that the interactions between BTS and PYE-like (PYEL) basic helix-loop-helix transcription factors occur within the nucleus and are dependent on the presence of the RING domain. We provide evidence that BTS facilitates 26S proteasome-mediated degradation of PYEL proteins in the absence of iron. We also determined that, upon binding iron at the HHE domains, BTS is destabilized and that this destabilization relies on specific residues within the HHE domains. This study reveals an important and unique mechanism for plant iron homeostasis whereby an E3 ubiquitin ligase may posttranslationally control components of the transcriptional regulatory network involved in the iron deficiency response.

  7. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Wuyi Liu


    Full Text Available The previous survey identified 70 basic helix-loop-helix (bHLH proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families.

  8. A genome-wide survey on basic helix-loop-helix transcription factors in rat and mouse. (United States)

    Zheng, Xiaodong; Zheng, X; Wang, Yong; Wang, Y; Yao, Qin; Yao, Q; Yang, Zhe; Yang, Z; Chen, Keping; Chen, K


    The basic helix-loop-helix (bHLH) proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including nematode, fruit fly, and human. Our study identified 114 rat and 14 additional mouse bHLH members in rat and mouse genomes, respectively. Phylogenetic analyses revealed that both rat and mouse had 49, 26, 15, 4, 12, and 4 bHLH members in groups A, B, C, D, E, and F, respectively. Only the rat Mxi1 gene has two copies in the genome. All other rat bHLH genes and all mouse bHLH genes are single-copy genes. The chromosomal distribution pattern of mouse, rat, and human bHLH genes suggests the emergence of some bHLH genes through gene duplication, which probably happened at least before the divergence of vertebrates from invertebrates. The present study provides useful information for future studies using rat as a model animal for mammalian development.

  9. Heterogeneity of myotubes generated by the MyoD and E12 basic helix-loop-helix transcription factors in otherwise non-differentiation growth conditions. (United States)

    Grubišić, Vladimir; Gottipati, Manoj K; Stout, Randy F; Grammer, J Robert; Parpura, Vladimir


    We used a synthetic biology approach to produce myotubes from mammalian C2C12 myoblasts in non-differentiation growth conditions using the expression of basic helix-loop-helix transcription factors, MyoD and E12, in various combinations and configurations. Our approach not only recapitulated the basics of muscle development and physiology, as the obtained myotubes showed qualities similar to those seen in striated muscle fibers in vivo, but also allowed for the synthesis of populations of myotubes which assumed distinct morphology, myofibrillar development and Ca(2+) dynamics. This fashioned class of biomaterials is suitable for the building blocks of soft actuators in micro-scale biomimetic robotics. This production line strategy can be embraced in reparative medicine as synthetic human myotubes with predetermined morphological/functional properties could be obtained using this very approach. This methodology can be adopted beyond striated muscle for the engineering of other tissue components/cells whose differentiation is governed by the principles of basic helix-loop-helix transcription factors, as in the case, for example, of neural or immune cell types.

  10. Molecular characterization of cold-responsive basic helix-loop-helix transcription factors MabHLHs that interact with MaICE1 in banana fruit. (United States)

    Peng, Huan-Huan; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye


    Basic helix-loop-helix (bHLH) transcription factors (TFs) are ubiquitously involved in the response of higher plants to various abiotic stresses. However, little is known about bHLH TFs involved in the cold stress response in economically important fruits. Here, five novel full-length bHLH genes, designated as MabHLH1-MabHLH5, were isolated and characterized from banana fruit. Gene expression profiles revealed that MabHLH1/2/4 were induced by cold stress and methyl jasmonate (MeJA) treatment. Transient assays in tobacco BY2 protoplasts showed that MabHLH1/2/4 promoters were activated by cold stress and MeJA treatments. Moreover, protein-protein interaction analysis demonstrated that MabHLH1/2/4 not only physically interacted with each other to form hetero-dimers in the nucleus, but also interacted with an important upstream component of cold signaling MaICE1, with different interaction domains at their N-terminus. These results indicate that banana fruit cold-responsive MabHLHs may form a big protein complex in the nucleus with MaICE1. Taken together, our findings advance our understanding of the possible involvement of bHLH TFs in the regulatory network of ICE-CBF cold signaling pathway.

  11. Basic helix-loop-helix transcription factor Bmsage is involved in regulation of fibroin H-chain gene via interaction with SGF1 in Bombyx mori. (United States)

    Zhao, Xiao-Ming; Liu, Chun; Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You


    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix-loop-helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells.

  12. A genome-wide identification and analysis of the basic helix-loop-helix transcription factors in the ponerine ant, Harpegnathos saltator

    Directory of Open Access Journals (Sweden)

    Liu Ake


    Full Text Available Abstract Background The basic helix-loop-helix (bHLH transcription factors and their homologs form a superfamily that plays essential roles in transcriptional networks of multiple developmental processes. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, human and mouse. Result In this study, we conducted a genome-wide survey for bHLH sequences, and identified 57 bHLH sequences encoded in complete genome sequence of the ponerine ant, Harpegnathos saltator. Phylogenetic analysis of the bHLH domain sequences classified these genes into 38 bHLH families with 23, 14, 10, 1, 8 and 1 members in group A, B, C, D, E and F, respectively. The number of PabHLHs (ponerine ant bHLHs with introns is higher than many other insect species, and they are found to have introns with average lengths only inferior to those of pea aphid. In addition, two H. saltator bHLHs named PaCrp1 and PaSide locate on two separate contigs in the genome. Conclusions A putative full set of PabHLH genes is comparable with other insect species and genes encoding Oligo, MyoRb and Figα were not found in genomes of all insect species of which bHLH family members have been identified. Moreover, in-family phylogenetic analyses indicate that the PabHLH genes are more closely related with Apis mellifera than others. The present study will serve as a solid foundation for further investigations into the structure and function of bHLH proteins in the regulation of H. saltator development.

  13. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. (United States)

    Bai, Ming-Yi; Fan, Min; Oh, Eunkyoo; Wang, Zhi-Yong


    Environmental and endogenous signals, including light, temperature, brassinosteroid (BR), and gibberellin (GA), regulate cell elongation largely by influencing the expression of the paclobutrazol-resistant (PRE) family helix-loop-helix (HLH) factors, which promote cell elongation by interacting antagonistically with another HLH factor, IBH1. However, the molecular mechanism by which PREs and IBH1 regulate gene expression has remained unknown. Here, we show that IBH1 interacts with and inhibits a DNA binding basic helix-loop-helix (bHLH) protein, HBI1, in Arabidopsis thaliana. Overexpression of HBI1 increased hypocotyl and petiole elongation, whereas dominant inactivation of HBI1 and its homologs caused a dwarf phenotype, indicating that HBI1 is a positive regulator of cell elongation. In vitro and in vivo experiments showed that HBI1 directly bound to the promoters and activated two EXPANSIN genes encoding cell wall-loosening enzymes; HBI1's DNA binding and transcriptional activities were inhibited by IBH1, but the inhibitory effects of IBH1 were abolished by PRE1. The results indicate that PREs activate the DNA binding bHLH factor HBI1 by sequestering its inhibitor IBH1. Altering each of the three factors affected plant sensitivities to BR, GA, temperature, and light. Our study demonstrates that PREs, IBH1, and HBI1 form a chain of antagonistic switches that regulates cell elongation downstream of multiple external and endogenous signals.

  14. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5' exon usage and splicing.

    Directory of Open Access Journals (Sweden)

    Mari Sepp

    Full Text Available BACKGROUND: Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2 is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG. While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS: In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS: Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence

  15. A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. (United States)

    Zhao, Hongtao; Wang, Xiaoxue; Zhu, Dandan; Cui, Sujuan; Li, Xia; Cao, Ying; Ma, Ligeng


    Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein transparent TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or werewolf (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or enhancer of GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors.

  16. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Kristin Kathleen; Uittenbogaard, Martine [Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC (United States); Chiaramello, Anne, E-mail: [Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC (United States)


    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  17. Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis. (United States)

    Leivar, Pablo; Tepperman, James M; Cohn, Megan M; Monte, Elena; Al-Sady, Bassem; Erickson, Erika; Quail, Peter H


    Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-responsive transcriptome profiles of wild-type and quadruple pif (pifq) mutants. We identify a subset of genes, enriched in transcription factor-encoding loci, that respond rapidly to shade, in a PIF-dependent manner, and contain promoter G-box motifs, known to bind PIFs. These genes are potential direct targets of phy-PIF signaling that regulate the primary downstream transcriptional circuitry. A second subset of PIF-dependent, early response genes, lacking G-box motifs, are enriched for auxin-responsive loci, and are thus potentially indirect targets of phy-PIF signaling, mediating the rapid cell expansion induced by shade. Comparing deetiolation- and shade-responsive transcriptomes identifies another subset of G-box-containing genes that reciprocally display rapid repression and induction in response to light and shade signals. These data define a core set of transcriptional and hormonal processes that appear to be dynamically poised to react rapidly to light-environment changes via perturbations in the mutually antagonistic actions of the phys and PIFs. Comparing the responsiveness of the pifq and triple pif mutants to light and shade confirms that the PIFs act with overlapping redundancy on seedling morphogenesis and transcriptional regulation but that each PIF contributes differentially to these responses.

  18. Human variants in the neuronal basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS transcription factor complex NPAS4/ARNT2 disrupt function.

    Directory of Open Access Journals (Sweden)

    David C Bersten

    Full Text Available Neuronal Per-Arnt-Sim homology (PAS Factor 4 (NPAS4 is a neuronal activity-dependent transcription factor which heterodimerises with ARNT2 to regulate genes involved in inhibitory synapse formation. NPAS4 functions to maintain excitatory/inhibitory balance in neurons, while mouse models have shown it to play roles in memory formation, social interaction and neurodegeneration. NPAS4 has therefore been implicated in a number of neuropsychiatric or neurodegenerative diseases which are underpinned by defects in excitatory/inhibitory balance. Here we have explored a broad set of non-synonymous human variants in NPAS4 and ARNT2 for disruption of NPAS4 function. We found two variants in NPAS4 (F147S and E257K and two variants in ARNT2 (R46W and R107H which significantly reduced transcriptional activity of the heterodimer on a luciferase reporter gene. Furthermore, we found that NPAS4.F147S was unable to activate expression of the NPAS4 target gene BDNF due to reduced dimerisation with ARNT2. Homology modelling predicts F147 in NPAS4 to lie at the dimer interface, where it appears to directly contribute to protein/protein interaction. We also found that reduced transcriptional activation by ARNT2 R46W was due to disruption of nuclear localisation. These results provide insight into the mechanisms of NPAS4/ARNT dimerisation and transcriptional activation and have potential implications for cognitive phenotypic variation and diseases such as autism, schizophrenia and dementia.

  19. The basic helix-loop-helix/leucine zipper transcription factor USF2 integrates serum-induced PAI-1 expression and keratinocyte growth. (United States)

    Qi, Li; Higgins, Craig E; Higgins, Stephen P; Law, Brian K; Simone, Tessa M; Higgins, Paul J


    Plasminogen activator inhibitor type-1 (PAI-1), a major regulator of the plasmin-dependent pericellular proteolytic cascade, is prominently expressed during the tissue response to injury although the factors that impact PAI-1 induction and their role in the repair process are unclear. Kinetic modeling using established biomarkers of cell cycle transit (c-MYC; cyclin D1; cyclin A) in synchronized human (HaCaT) keratinocytes, and previous cytometric assessments, indicated that PAI-1 transcription occurred early after serum-stimulation of quiescent (G0) cells and prior to G1 entry. It was established previously that differential residence of USF family members (USF1→USF2 switch) at the PE2 region E box (CACGTG) characterized the G0  → G1 transition period and the transcriptional status of the PAI-1 gene. A consensus PE2 E box motif (5'-CACGTG-3') at nucleotides -566 to -561 was required for USF/E box interactions and serum-dependent PAI-1 transcription. Site-directed CG → AT substitution at the two central nucleotides inhibited formation of USF/probe complexes and PAI-1 promoter-driven reporter expression. A dominant-negative USF (A-USF) construct or double-stranded PE2 "decoy" attenuated serum- and TGF-β1-stimulated PAI-1 synthesis. Tet-Off induction of an A-USF insert reduced both PAI-1 and PAI-2 transcripts while increasing the fraction of Ki-67(+) cells. Conversely, overexpression of USF2 or adenoviral-delivery of a PAI-1 vector inhibited HaCaT colony expansion indicating that the USF1 → USF2 transition and subsequent PAI-1 transcription are critical events in the epithelial go-or-grow response. Collectively, these data suggest that USF2, and its target gene PAI-1, regulate serum-stimulated keratinocyte growth, and likely the cadence of cell cycle progression in replicatively competent cells as part of the injury repair program.

  20. Fluorescence Resonance Energy Transfer (FRET as a method to calculate the dimerization strength of basic Helix-Loop-Helix (bHLH proteins

    Directory of Open Access Journals (Sweden)

    Centonze Victoria E.


    Full Text Available Post-translational modifications such as phosphorylation play a vital role in the regulation of protein function. In our study of the basic Helix-loop-Helix (bHLH transcription factor HAND1, we show that HAND1 is phosphorylated during the trophoblast giant cell differentiation on residues residing in Helix I of the bHLH domain. Our hypothesis is that these modifications result in changes in HAND1 dimerization affinities with other bHLH factors. To test this idea, we employed FRET to measure the protein-protein interactions of HAND1 and HAND1 point mutants in HEK293 cells using YFP and CFP fusion proteins and laser scanning confocal microscopy.

  1. A Dual Mechanism Controls Nuclear Localization in the Atypical Basic-Helix-Loop-Helix Protein PAR1 of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Anahit Galstyan; Jordi Bou-Torrent; Irma Roig-Villanova; Jaime F. Martínez-García


    PAR1 is an atypical basic-helix-loop-helix (bHLH) protein that negatively regulates the shade avoidance syndrome in Arabidopsis thaliana acting as a transcriptional cofactor.Consistently with this function,PAR1 has to be in the nucleus to display biological activity.Previous structure-function analyses revealed that the N-terminal region of PAR1 drives the protein to the nucleus.However,truncated forms of PAR1 lacking this region still display biological activity,implying that PAR1 has additional mechanisms to localize into the nucleus.In this work,we compared the primary structure of PAR1 and various related and unrelated plant bHLH proteins,which led us to suggest that PAR1 contains a non-canonical nuclear localization signal (NLS) in the N-terminal region.By overexpressing truncated and mutated derivatives of PAR1,we have also investigated the importance of other regions of PAR1,such as the acidic and the extended HLH dimerization domains,for its nuclear localization.We found that,in the absence of the N-terminal region,a functional HLH domain is required for nuclear localization.Our results suggest the existence of a dual mechanism for PAR1 nuclear localization:(1) one mediated by the N-terminal non-consensus NLS and (2) a second one that involves interaction with other proteins via the dimerization domain.

  2. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. (United States)

    Sweeney, Megan T; Thomson, Michael J; Pfeil, Bernard E; McCouch, Susan


    Rc is a domestication-related gene required for red pericarp in rice (Oryza sativa). The red grain color is ubiquitous among the wild ancestors of O. sativa, in which it is closely associated with seed shattering and dormancy. Rc encodes a basic helix-loop-helix (bHLH) protein that was fine-mapped to an 18.5-kb region on rice chromosome 7 using a cross between Oryza rufipogon (red pericarp) and O. sativa cv Jefferson (white pericarp). Sequencing of the alleles from both mapping parents as well as from two independent genetic stocks of Rc revealed that the dominant red allele differed from the recessive white allele by a 14-bp deletion within exon 6 that knocked out the bHLH domain of the protein. A premature stop codon was identified in the second mutant stock that had a light red pericarp. RT-PCR experiments confirmed that the Rc gene was expressed in both red- and white-grained rice but that a shortened transcript was present in white varieties. Phylogenetic analysis, supported by comparative mapping in rice and maize (Zea mays), showed that Rc, a positive regulator of proanthocyanidin, is orthologous with INTENSIFIER1, a negative regulator of anthocyanin production in maize, and is not in the same clade as rice bHLH anthocyanin regulators.

  3. Mutations within or upstream of the basic helix-loop-helix domain of the TWIST gene are specific to Saethre-Chotzen syndrome. (United States)

    El Ghouzzi, V; Lajeunie, E; Le Merrer, M; Cormier-Daire, V; Renier, D; Munnich, A; Bonaventure, J


    Saethre-Chotzen syndrome (ACS III) is an autosomal dominant craniosynostosis syndrome recently ascribed to mutations in the TWIST gene, a basic helix-loop-helix (b-HLH) transcription factor regulating head mesenchyme cell development during cranial neural tube formation in mouse. Studying a series of 22 unrelated ACS III patients, we have found TWIST mutations in 16/22 cases. Interestingly, these mutations consistently involved the b-HLH domain of the protein. Indeed, mutant genotypes included frameshift deletions/insertions, nonsense and missense mutations, either truncating or disrupting the b-HLH motif of the protein. This observation gives additional support to the view that most ACS III cases result from loss-of-function mutations at the TWIST locus. The P250R recurrent FGFR 3 mutation was found in 2/22 cases presenting mild clinical manifestations of the disease but 4/22 cases failed to harbour TWIST or FGFR 3 mutations. Clinical re-examination of patients carrying TWIST mutations failed to reveal correlations between the mutant genotype and severity of the phenotype. Finally, since no TWIST mutations were detected in 40 cases of isolated coronal craniosynostosis, the present study suggests that TWIST mutations are specific to Saethre-Chotzen syndrome.

  4. Elevated endogenous expression of the dominant negative basic helix-loop-helix protein ID1 correlates with significant centrosome abnormalities in human tumor cells

    Directory of Open Access Journals (Sweden)

    Gutmann Anja


    Full Text Available Abstract Background ID proteins are dominant negative inhibitors of basic helix-loop-helix transcription factors that have multiple functions during development and cellular differentiation. Ectopic (over-expression of ID1 extends the lifespan of primary human epithelial cells. High expression levels of ID1 have been detected in multiple human malignancies, and in some have been correlated with unfavorable clinical prognosis. ID1 protein is localized at the centrosomes and forced (over-expression of ID1 results in errors during centrosome duplication. Results Here we analyzed the steady state expression levels of the four ID-proteins in 18 tumor cell lines and assessed the number of centrosome abnormalities. While expression of ID1, ID2, and ID3 was detected, we failed to detect protein expression of ID4. Expression of ID1 correlated with increased supernumerary centrosomes in most cell lines analyzed. Conclusions This is the first report that shows that not only ectopic expression in tissue culture but endogenous levels of ID1 modulate centrosome numbers. Thus, our findings support the hypothesis that ID1 interferes with centrosome homeostasis, most likely contributing to genomic instability and associated tumor aggressiveness.

  5. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA

    Institute of Scientific and Technical Information of China (English)

    Zixi Wang; Yaling Wu; Lanfen Li; Xiao-Dong Su


    CLOCK (circadian locomotor output cycles kaput) and BMAL1 (brain and muscle ARNT-like 1) are both transcription factors of the circadian core loop in mammals.Recently published mouse CLOCK-BMAL1 bHLH (basic helix-loop-helix)-PAS (period-ARNT-single-minded) complex structure sheds light on the mechanism for heterodimer formation,but the structural details of the protein-DNA recognition mechanisms remain elusive.Here we have elucidated the crystal structure of human CLOCK-BMAL1 bHLH domains bound to a canonical E-box DNA.We demonstrate that CLOCK and BMAL1 bHLH domains can be mutually selected,and that hydrogen-bonding networks mediate their E-box recognition.We identified a hydrophobic contact between BMAL1 Ile80 and a fianking thymine nucleotide,suggesting that CLOCK-BMAL1 actually reads 7-bp DNA and not the previously believed 6-bp DNA.To find potential non-canonical E-boxes that could be recognized by CLOCK-BMAL1,we constructed systematic single-nucleotide mutations on the E-box and measured their relevant affinities.We defined two non-canonical E-box patterns with high affinities,AACGTGA and CATGTGA,in which the flanking A7-T7' base pair is indispensable for recognition.These results will help us to identify functional CLOCK-BMAL1-binding sites in vivo and to search for clock-controlled genes.Furthermore,we assessed the inhibitory role of potential phosphorylation sites in bHLH regions.We found that the phospho-mimicking mutation on BMAL1 Ser78 could efficiently block DNA binding as well as abolish normal circadian oscillation in cells.We propose that BMAL1 Ser78 should be a key residue mediating input signal-regulated transcriptional inhibition for external cues to entrain the circadian clock by kinase cascade.

  6. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. (United States)

    Seo, Ju-Seok; Joo, Joungsu; Kim, Min-Jeong; Kim, Yeon-Ki; Nahm, Baek Hie; Song, Sang Ik; Cheong, Jong-Joo; Lee, Jong Seob; Kim, Ju-Kon; Choi, Yang Do


    Jasmonates play important roles in development, stress responses and defense in plants. Here, we report the results of a study using a functional genomics approach that identified a rice basic helix-loop-helix domain gene, OsbHLH148, that conferred drought tolerance as a component of the jasmonate signaling module in rice. OsbHLH148 transcript levels were rapidly increased by treatment with methyl jasmonate (MeJA) or abscisic acid, and abiotic stresses including dehydration, high salinity, low temperature and wounding. Transgenic over-expression of OsbHLH148 in rice confers plant tolerance to drought stress. Expression profiling followed by DNA microarray and RNA gel-blot analyses of transgenic versus wild-type rice identified genes that are up-regulated by OsbHLH148 over-expression. These include OsDREB and OsJAZ genes that are involved in stress responses and the jasmonate signaling pathway, respectively. OsJAZ1, a rice ZIM domain protein, interacted with OsbHLH148 in yeast two-hybrid and pull-down assays, but it interacted with the putative OsCOI1 only in the presence of coronatine. Furthermore, the OsJAZ1 protein was degraded by rice and Arabidopsis extracts in the presence of coronatine, and its degradation was inhibited by MG132, a 26S proteasome inhibitor, suggesting 26S proteasome-mediated degradation of OsJAZ1 via the SCF(OsCOI1) complex. The transcription level of OsJAZ1 increased upon exposure of rice to MeJA. These results show that OsJAZ1 could act as a transcriptional regulator of the OsbHLH148-related jasmonate signaling pathway leading to drought tolerance. Thus, our study suggests that OsbHLH148 acts on an initial response of jasmonate-regulated gene expression toward drought tolerance, constituting the OsbHLH148-OsJAZ-OsCOI1 signaling module in rice.

  7. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus. (United States)

    Paolocci, Francesco; Robbins, Mark P; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco


    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis.

  8. Molecular recognition in helix-loop-helix and helix-loop-helix-leucine zipper domains. Design of repertoires and selection of high affinity ligands for natural proteins. (United States)

    Ciarapica, Roberta; Rosati, Jessica; Cesareni, Gianni; Nasi, Sergio


    Helix-loop-helix (HLH) and helix-loop-helix-leucine zipper (HLHZip) are dimerization domains that mediate selective pairing among members of a large transcription factor family involved in cell fate determination. To investigate the molecular rules underlying recognition specificity and to isolate molecules interfering with cell proliferation and differentiation control, we assembled two molecular repertoires obtained by directed randomization of the binding surface in these two domains. For this strategy we selected the Heb HLH and Max Zip regions as molecular scaffolds for the randomization process and displayed the two resulting molecular repertoires on lambda phage capsids. By affinity selection, many domains were isolated that bound to the proteins Mad, Rox, MyoD, and Id2 with different levels of affinity. Although several residues along an extended surface within each domain appeared to contribute to dimerization, some key residues critically involved in molecular recognition could be identified. Furthermore, a number of charged residues appeared to act as switch points facilitating partner exchange. By successfully selecting ligands for four of four HLH or HLHZip proteins, we have shown that the repertoires assembled are rather general and possibly contain elements that bind with sufficient affinity to any natural HLH or HLHZip molecule. Thus they represent a valuable source of ligands that could be used as reagents for molecular dissection of functional regulatory pathways.

  9. Responses of a triple mutant defective in three iron deficiency-induced Basic Helix-Loop-Helix genes of the subgroup Ib(2) to iron deficiency and salicylic acid. (United States)

    Maurer, Felix; Naranjo Arcos, Maria Augusta; Bauer, Petra


    Plants are sessile organisms that adapt to external stress by inducing molecular and physiological responses that serve to better cope with the adverse growth condition. Upon low supply of the micronutrient iron, plants actively increase the acquisition of soil iron into the root and its mobilization from internal stores. The subgroup Ib(2) BHLH genes function as regulators in this response, however their concrete functions are not fully understood. Here, we analyzed a triple loss of function mutant of BHLH39, BHLH100 and BHLH101 (3xbhlh mutant). We found that this mutant did not have any iron uptake phenotype if iron was provided. However, under iron deficiency the mutant displayed a more severe leaf chlorosis than the wild type. Microarray-based transcriptome analysis revealed that this mutant phenotype resulted in the mis-regulation of 198 genes, out of which only 15% were associated with iron deficiency regulation itself. A detailed analysis revealed potential targets of the bHLH transcription factors as well as genes reflecting an exaggerated iron deficiency response phenotype. Since the BHLH genes of this subgroup have been brought into the context of the plant hormone salicylic acid, we investigated whether the 3xbhlh mutant might have been affected by this plant signaling molecule. Although a very high number of genes responded to SA, also in a differential manner between mutant and wild type, we did not find any indication for an association of the BHLH gene functions in SA responses upon iron deficiency. In summary, our study indicates that the bHLH subgroup Ib(2) transcription factors do not only act in iron acquisition into roots but in other aspects of the adaptation to iron deficiency in roots and leaves.

  10. Responses of a triple mutant defective in three iron deficiency-induced Basic Helix-Loop-Helix genes of the subgroup Ib(2 to iron deficiency and salicylic acid.

    Directory of Open Access Journals (Sweden)

    Felix Maurer

    Full Text Available Plants are sessile organisms that adapt to external stress by inducing molecular and physiological responses that serve to better cope with the adverse growth condition. Upon low supply of the micronutrient iron, plants actively increase the acquisition of soil iron into the root and its mobilization from internal stores. The subgroup Ib(2 BHLH genes function as regulators in this response, however their concrete functions are not fully understood. Here, we analyzed a triple loss of function mutant of BHLH39, BHLH100 and BHLH101 (3xbhlh mutant. We found that this mutant did not have any iron uptake phenotype if iron was provided. However, under iron deficiency the mutant displayed a more severe leaf chlorosis than the wild type. Microarray-based transcriptome analysis revealed that this mutant phenotype resulted in the mis-regulation of 198 genes, out of which only 15% were associated with iron deficiency regulation itself. A detailed analysis revealed potential targets of the bHLH transcription factors as well as genes reflecting an exaggerated iron deficiency response phenotype. Since the BHLH genes of this subgroup have been brought into the context of the plant hormone salicylic acid, we investigated whether the 3xbhlh mutant might have been affected by this plant signaling molecule. Although a very high number of genes responded to SA, also in a differential manner between mutant and wild type, we did not find any indication for an association of the BHLH gene functions in SA responses upon iron deficiency. In summary, our study indicates that the bHLH subgroup Ib(2 transcription factors do not only act in iron acquisition into roots but in other aspects of the adaptation to iron deficiency in roots and leaves.

  11. Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Batoux, Martine; Schwessinger, Benjamin;


    Plants need to finely balance resources allocated to growth and immunity to achieve optimal fitness. A tradeoff between pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and brassinosteroid (BR)-mediated growth was recently reported, but more information about the underlying...... to different PAMPs. HBI1 overexpression leads to reduced PAMP-triggered responses. This inhibition correlates with reduced steady-state expression of immune marker genes, leading to increased susceptibility to the bacterium Pseudomonas syringae. Overexpression of the HBI1-related bHLHs brassinosteroid enhanced...... expression2 (BEE2) and cryptochrome-interacting bHLH (CIB1) partially inhibits immunity, indicating that BEE2 and CIB1 may act redundantly with HBI1. In contrast to its expression pattern upon PAMP treatment, HBI1 expression is enhanced by BR treatment. Also, HBI1-overexpressing plants are hyperresponsive...

  12. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution

    NARCIS (Netherlands)

    Kuiper, RP; Schepens, M; Thijssen, J; van Asseldonk, M; van den Berg, E; Bridge, J; Schuuring, E; Schoenmakers, EFPM; van Kessel, AG


    The MITF/TFE subfamily of basic helix-loop-helix leucine-zipper (bHLH-LZ) transcription factors consists of four closely related members, TFE3, TFEB, TFEC and MITF, which can form both homo- and heterodimers. Previously, we demonstrated that in t(X;1)(p11;q21)-positive renal cell carcinomas (RCCs),

  13. Progress of transcription factor Twist expression in breast cancer and its biological effect

    Institute of Scientific and Technical Information of China (English)

    Tian Qian


    Breast cancer is the most common malignant tumor in women and the pathogenesis is not fully elucidated. Proliferation, invasion, epithelial-mesenchymal transition and angiogenesis are the links closely related to the occurrence and development of breast cancer. Twist is a type of basic helix-loop-helix transcription factor that can affect cell proliferation and invasion process, epithelial-mesenchymal transition process and angiogenesis process through regulating the transcription of downstream target genes. In the research, the study of transcription factor Twist expression in breast cancer and its biological effect is reviewed.

  14. Experimental determination of the evolvability of a transcription factor. (United States)

    Maerkl, Sebastian J; Quake, Stephen R


    Sequence-specific binding of a transcription factor to DNA is the central event in any transcriptional regulatory network. However, relatively little is known about the evolutionary plasticity of transcription factors. For example, the exact functional consequence of an amino acid substitution on the DNA-binding specificity of most transcription factors is currently not predictable. Furthermore, although the major structural families of transcription factors have been identified, the detailed DNA-binding repertoires within most families have not been characterized. We studied the sequence recognition code and evolvability of the basic helix-loop-helix transcription factor family by creating all possible 95 single-point mutations of five DNA-contacting residues of Max, a human helix-loop-helix transcription factor and measured the detailed DNA-binding repertoire of each mutant. Our results show that the sequence-specific repertoire of Max accessible through single-point mutations is extremely limited, and we are able to predict 92% of the naturally occurring diversity at these positions. All naturally occurring basic regions were also found to be accessible through functional intermediates. Finally, we observed a set of amino acids that are functional in vitro but are not found to be used naturally, indicating that functionality alone is not sufficient for selection.

  15. A smallest 6 kda metalloprotease, mini-matrilysin, in living world: a revolutionary conserved zinc-dependent proteolytic domain- helix-loop-helix catalytic zinc binding domain (ZBD

    Directory of Open Access Journals (Sweden)

    Yu Wei-Hsuan


    Full Text Available Abstract Background The Aim of this study is to study the minimum zinc dependent metalloprotease catalytic folding motif, helix B Met loop-helix C, with proteolytic catalytic activities in metzincin super family. The metzincin super family share a catalytic domain consisting of a twisted five-stranded β sheet and three long α helices (A, B and C. The catalytic zinc is at the bottom of the cleft and is ligated by three His residues in the consensus sequence motif, HEXXHXXGXXH, which is located in helix B and part of the adjacent Met turn region. An interesting question is - what is the minimum portion of the enzyme that still possesses catalytic and inhibitor recognition?” Methods We have expressed a 60-residue truncated form of matrilysin which retains only the helix B-Met turn-helix C region and deletes helix A and the five-stranded β sheet which form the upper portion of the active cleft. This is only 1/4 of the full catalytic domain. The E. coli derived 6 kDa MMP-7 ZBD fragments were purified and refolded. The proteolytic activities were analyzed by Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 peptide assay and CM-transferrin zymography analysis. SC44463, BB94 and Phosphoramidon were computationally docked into the 3day structure of the human MMP7 ZBD and TAD and thermolysin using the docking program GOLD. Results This minimal 6 kDa matrilysin has been refolded and shown to have proteolytic activity in the Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 peptide assay. Triton X-100 and heparin are important factors in the refolding environment for this mini-enzyme matrilysin. This minienzyme has the proteolytic activity towards peptide substrate, but the hexamer and octamer of the mini MMP-7 complex demonstrates the CM-transferrin proteolytic activities in zymographic analysis. Peptide digestion is inhibited by SC44463, specific MMP7 inhibitors, but not phosphorimadon. Interestingly, the mini MMP-7 can be processed by autolysis and producing ~ 6

  16. A juvenile hormone transcription factor Bmdimm-fibroin H chain pathway is involved in the synthesis of silk protein in silkworm, Bombyx mori. (United States)

    Zhao, Xiao-Ming; Liu, Chun; Jiang, Li-Jun; Li, Qiong-Yan; Zhou, Meng-Ting; Cheng, Ting-Cai; Mita, Kazuei; Xia, Qing-You


    The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori.

  17. Mixed lineage kinase phosphorylates transcription factor E47 and inhibits TrkB expression to link neuronal death and survival pathways. (United States)

    Pedraza, Neus; Rafel, Marta; Navarro, Isis; Encinas, Mario; Aldea, Martí; Gallego, Carme


    E47 is a basic helix-loop-helix transcription factor involved in neuronal differentiation and survival. We had previously shown that the basic helix-loop-helix protein E47 binds to E-box sequences within the promoter of the TrkB gene and activates its transcription. Proper expression of the TrkB receptor plays a key role in development and function of the vertebrate nervous system, and altered levels of TrkB have been associated with important human diseases. Here we show that E47 interacts with MLK2, a mixed lineage kinase (MLK) involved in JNK-mediated activation of programmed cell death. MLK2 enhances phosphorylation of the AD2 activation domain of E47 in vivo in a JNK-independent manner and phosphorylates in vitro defined serine and threonine residues within a loop-helix structure of AD2 that also contains a putative MLK docking site. Although these residues are essential for MLK2-mediated inactivation of E47, inhibition of MLKs by CEP11004 causes up-regulation of TrkB at a transcriptional level in cerebellar granule neurons and differentiating neuroblastoma cells. These findings allow us to propose a novel mechanism by which MLK regulates TrkB expression through phosphorylation of an activation domain of E47. This molecular link would explain why MLK inhibitors not only prevent activation of cell death processes but also enhance cell survival signaling as a key aspect of their neuroprotective potential.

  18. Analysis of the DNA-binding and dimerization activities of Neurospora crassa transcription factor NUC-1. (United States)

    Peleg, Y; Metzenberg, R L


    NUC-1, a positive regulatory protein of Neurospora crassa, controls the expression of several unlinked target genes involved in phosphorus acquisition. The carboxy-terminal end of the NUC-1 protein has sequence similarity to the helix-loop-helix family of transcription factors. Bacterially expressed and in vitro-synthesized proteins, which consist of the carboxy-terminal portion of NUC-1, bind specifically to upstream sequences of two of its target genes, pho2+ and pho-4+. These upstream sequences contain the core sequence, CACGTG, a target for many helix-loop-helix proteins. A large loop region (47 amino acids) separates the helix I and helix II domains. Mutations and deletion within the loop region did not interfere with the in vitro or in vivo functions of the protein. Immediately carboxy-proximal to the helix II domain, the NUC-1 protein contains an atypical zipper domain which is essential for function. This domain consists of a heptad repeat of alanine and methionine rather than leucine residues. Analysis of mutant NUC-1 proteins suggests that the helix II and the zipper domains are essential for the protein dimerization, whereas the basic and the helix I domains are involved in DNA binding. The helix I domain, even though likely to participate in dimer formation while NUC-1 is bound to DNA, is not essential for in vitro dimerization.

  19. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon-substrate photonic crystal protein arrays. (United States)

    Jones, Sarah I; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T; Vodkin, Lila


    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts.

  20. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. (United States)

    Raissig, Michael T; Abrash, Emily; Bettadapur, Akhila; Vogel, John P; Bergmann, Dominique C


    Stomata, epidermal valves facilitating plant-atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix-loop-helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot's developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity.

  1. [Research progress of the bHLH transcription factors involved in genic male sterility in plants]. (United States)

    Yongming, Liu; Ling, Zhang; Jianyu, Zhou; Moju, Cao


    Male sterility exists widely in the spermatophytes. It contributes to the study of plant reproductive development and can be used as an effective tool for hybrid seed production in heterosis utilization. Therefore, the study on male sterility is of great value in both theory and application. As one of the largest transcription factor families in plants, basic helix-loop-helix proteins (bHLHs) play a crucial role in regulating plant growth and development. This paper introduces the mechanism of bHLH regulating stamen development in several important model plants. Furthermore, we discuss the molecular mechanisms of genic male sterility resulting from bHLH dysfunction to provide references for crop breeding and theoretical studies.

  2. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses. (United States)

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen


    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1(-/-) mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1(-/-)mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  3. Iron assimilation and transcription factor controlled synthesis of riboflavin in plants. (United States)

    Vorwieger, A; Gryczka, C; Czihal, A; Douchkov, D; Tiedemann, J; Mock, H-P; Jakoby, M; Weisshaar, B; Saalbach, I; Bäumlein, H


    Iron homeostasis is vital for many cellular processes and requires a precise regulation. Several iron efficient plants respond to iron starvation with the excretion of riboflavin and other flavins. Basic helix-loop-helix transcription factors (TF) are involved in the regulation of many developmental processes, including iron assimilation. Here we describe the isolation and characterisation of two Arabidopsis bHLH TF genes, which are strongly induced under iron starvation. Their heterologous ectopic expression causes constitutive, iron starvation independent excretion of riboflavin. The results show that both bHLH TFs represent an essential component of the regulatory pathway connecting iron deficiency perception and riboflavin excretion and might act as integrators of various stress reactions.

  4. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. (United States)

    Liu, Yuhui; Lin-Wang, Kui; Espley, Richard V; Wang, Li; Yang, Hongyu; Yu, Bin; Dare, Andrew; Varkonyi-Gasic, Erika; Wang, Jing; Zhang, Junlian; Wang, Di; Allan, Andrew C


    In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs,StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13a re key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1,StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation.

  5. RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors

    DEFF Research Database (Denmark)

    Thompson, Nancy; Gésina, Emilie; Scheinert, Peter;


    Pancreas development is initiated by the specification and expansion of a small group of endodermal cells. Several transcription factors are crucial for progenitor maintenance and expansion, but their interactions and the downstream targets mediating their activity are poorly understood. Among...... those factors, PTF1a, a basic helix-loop-helix (bHLH) transcription factor which controls pancreas exocrine cell differentiation, maintenance, and functionality, is also needed for the early specification of pancreas progenitors. We used RNA profiling and chromatin immunoprecipitation (ChIP) sequencing...... to identify a set of targets in pancreas progenitors. We demonstrate that Mnx1, a gene that is absolutely required in pancreas progenitors, is a major direct target of PTF1a and is regulated by a distant enhancer element. Pdx1, Nkx6.1, and Onecut1 are also direct PTF1a targets whose expression is promoted...

  6. 细胞功能调控的重要转录因子TFEB%Function and regulation of the transcription factor TFEB

    Institute of Scientific and Technical Information of China (English)

    陈太琪; 姜丛; 王平; 刘宁


    TFEB is a member of the MiTF/TFE (microphthalmia-transcription factor E) subfamily of bHLH-LZ (basic-helix-loop-helix leucine-zipper) factors. And TFEB-related pathway is involved in some of cellular physiological processes and its regulating aberration has been known to contribute to the pathogenesis of several human diseases, such as placenta angiogenesis and renal cell carcinoma. Recent studies have shown that TFEB could regulate autophagy and lysosome function through regulating the expression of the related genes. Future study on the function and mechanism of TFEB will help better understand the pathological process and provide new theory basis and clues for the treatment of TFEB-related diseases.%转录因子TFEB (transcription factor EB)属于亮氨酸拉链bHLH-LZ (basic-helix-loop-helix leucine-zipper)类转录因子中的MiTF/TFE (microphthalmia-transcription factor E)家族成员,参与调控许多重要的细胞生理过程,例如胎盘血管新生、肾癌的发生等.最近研究表明,TFEB能通过调控细胞自噬和溶酶体相关的基因表达而调控细胞自噬以及溶酶体功能.因此,对于TFEB的生物学功能及其相关调控机制的研究,将为进一步阐释其生理病理发生过程及相关疾病的治疗提供重要的线索及理论依据.

  7. Hypoxia-inducible factor-1α increased the expression of peroxisome proliferator activated receptor α in lung cancer cell A549

    Institute of Scientific and Technical Information of China (English)

    张惠兰; 张珍祥; 徐永健


    @@ Hypoxia plays a fundamental role in many pathologic processes. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric basic helix-loop-helix-per-aryl hydrocarbon receptor ARNT-sim (PAS) domain protein, consisting of α and β subunits and is precisely regulated by cellular oxygen levels.1 The peroxisome proliferator-activated receptors (PPARs) are family nuclear hormone-binding proteins with increasing diverse functions as transcriptional regulators, owning three subtypes (α, β, and γ).2 PPARα plays a critical physiological role as lipid sensors and regulators of proliferation.3 Hypoxia can elicit up-regulation of PPAR-α expression.4 Herein, we report the results of an investigation on the correlation of HIF-1α and PPARα.

  8. Protein (Viridiplantae): 297852830 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)


  9. Mutations in the basic domain and the loop-helix II junction of TWIST abolish DNA binding in Saethre-Chotzen syndrome. (United States)

    El Ghouzzi, V; Legeai-Mallet, L; Benoist-Lasselin, C; Lajeunie, E; Renier, D; Munnich, A; Bonaventure, J


    Saethre-Chotzen syndrome is an autosomal dominant skull disorder resulting from premature fusion of coronal sutures (craniosynostosis). It is caused by mutations in the TWIST gene encoding a basic Helix-Loop-Helix transcription factor. Here we report on the identification of a novel mutation affecting a highly conserved residue of the basic domain. Unlike nonsense and missense mutations lying within helices, this mutation does not affect protein stability or heterodimerisation of TWIST with its partner E12. However, it does abolish TWIST binding capacity to a target E-box as efficiently as two missense mutations in the loop-helix II junction. By contrast, elongation of the loop through a 7 amino acid insertion appears not to hamper binding to the DNA target. We conclude that loss of TWIST protein function in Saethre-Chotzen patients can occur at three different levels, namely protein stability, dimerisation, and DNA binding and that the loop-helix II junction is essential for effective protein-DNA interaction.

  10. Specification of jaw identity by the Hand2 transcription factor (United States)

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko


    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  11. Regulation of the nuclear gene that encodes the alpha-subunit of the mitochondrial F0F1-ATP synthase complex. Activation by upstream stimulatory factor 2. (United States)

    Breen, G A; Jordan, E M


    We have previously identified several positive cis-acting regulatory regions in the promoters of the bovine and human nuclear-encoded mitochondrial F0F1-ATP synthase alpha-subunit genes (ATPA). One of these cis-acting regions contains the sequence 5'-CACGTG-3' (an E-box), to which a number of transcription factors containing a basic helix-loop-helix motif can bind. This E-box element is required for maximum activity of the ATPA promoter in HeLa cells. The present study identifies the human transcription factor, upstream stimulatory factor 2 (USF2), as a nuclear factor that binds to the ATPA E-box and demonstrates that USF2 plays a critical role in the activation of the ATPA gene in vivo. Evidence includes the following. Antiserum directed against USF2 recognized factors present in HeLa nuclear extracts that interact with the ATPA promoter in mobility shift assays. Wild-type USF2 proteins synthesized from expression vectors trans-activated the ATPA promoter through the E-box, whereas truncated USF2 proteins devoid of the amino-terminal activation domains did not. Importantly, expression of a dominant-negative mutant of USF2 lacking the basic DNA binding domain but able to dimerize with endogenous USF proteins significantly reduced the level of activation of the ATPA promoter caused by ectopically coexpressed USF2, demonstrating the importance of endogenous USF2 in activation of the ATPA gene.

  12. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE. (United States)

    Sumimoto, H; Ohkuma, Y; Sinn, E; Kato, H; Shimasaki, S; Horikoshi, M; Roeder, R G


    A general initiation factor, TFIIE, is essential for transcription initiation by RNA polymerase II in conjunction with other general factors. TFIIE is a heterotetramer containing two subunits of relative molecular mass 57,000 (TFIIE-alpha) and two of 34,000 (TFIIE-beta). TFIIE-beta is required in conjunction with TFIIE-alpha for transcription initiation. Here we report the cloning and expression of a complementary DNA encoding a functional human TFIIE-beta. Recombinant TFIIE-beta could replace the natural TFIIE-beta for transcription in conjunction with TFIIE-alpha. Amino-acid sequence comparisons reveal regions with sequence similarities to: subregion 3 of bacterial sigma factors; a region of RAP30 (the small subunit of TFIIF) with sequence similarity to a sigma-factor subregion implicated in binding to RNA polymerase; and a portion of the basic region-helix-loop-helix motif found in several enhancer-binding proteins. These potential homologies have implications for the role of TFIIE in preinitiation complex assembly and function.

  13. MAGED1 is a novel regulator of a select subset of bHLH PAS transcription factors. (United States)

    Sullivan, Adrienne E; Peet, Daniel J; Whitelaw, Murray L


    Transcription factors of the basic helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) family generally have critical and nonredundant biological roles, but some bHLH PAS proteins compete for common cofactors or recognise similar DNA elements. Identifying factors that regulate function of bHLH PAS proteins, particularly in cells where multiple family members are coexpressed, is important for understanding bHLH PAS factor biology. This study identifies and characterises a novel interaction between melanoma-associated antigen D1 (MAGED1) and select members of the bHLH PAS transcription factor family. MAGED1 binds and positively regulates the transcriptional activity of family members SIM1, SIM2, NPAS4 and ARNT2, but does not interact with AhR, HIF1α and ARNT. This interaction is mediated by PAS repeat regions which also form the interface for bHLH PAS dimerisation, and accordingly MAGED1 is not found in complex with bHLH PAS dimers. We show that MAGED1 does not affect bHLH PAS protein levels and cannot be acting as a coactivator of transcriptionally active heterodimers, but rather appears to interact with nascent bHLH PAS proteins in the cytoplasm to enhance their function prior to nuclear import. As a selective regulator, MAGED1 may play an important role in the biology of these specific factors and in general bHLH PAS protein dynamics.

  14. Distinct and shared transcriptomes are regulated by microphthalmia-associated transcription factor isoforms in mast cells. (United States)

    Shahlaee, Amir H; Brandal, Stephanie; Lee, Youl-Nam; Jie, Chunfa; Takemoto, Clifford M


    The Microphthalmia-associated transcription factor (Mitf) is an essential basic helix-loop-helix leucine zipper transcription factor for mast cell development. Mice deficient in Mitf harbor a severe mast cell deficiency, and Mitf-mutant mast cells cultured ex vivo display a number of functional defects. Therefore, an understanding of the genetic program regulated by Mitf may provide important insights into mast cell differentiation. Multiple, distinct isoforms of Mitf have been identified in a variety of cell types; we found that Mitf-a, Mitf-e, and Mitf-mc were the major isoforms expressed in mast cells. To determine the physiologic function of Mitf in mast cells, we restored expression of these isoforms in primary mast cells from Mitf(-/-) mice. We found that these isoforms restored granular morphology and integrin-mediated migration. By microarray analysis, proteases, signaling molecules, cell surface receptor, and transporters comprised the largest groups of genes up-regulated by all isoforms. Furthermore, we found that isoforms also regulated distinct genes sets, suggesting separable biological activities. This work defines the transcriptome regulated by Mitf in mast cells and supports its role as master regulator of mast cell differentiation. Expression of multiple isoforms of this transcription factor may provide for redundancy of biological activities while also allowing diversity of function.

  15. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus.

    Directory of Open Access Journals (Sweden)

    Clint L Miller

    Full Text Available Coronary heart disease (CHD is the leading cause of mortality in both developed and developing countries worldwide. Genome-wide association studies (GWAS have now identified 46 independent susceptibility loci for CHD, however, the biological and disease-relevant mechanisms for these associations remain elusive. The large-scale meta-analysis of GWAS recently identified in Caucasians a CHD-associated locus at chromosome 6q23.2, a region containing the transcription factor TCF21 gene. TCF21 (Capsulin/Pod1/Epicardin is a member of the basic-helix-loop-helix (bHLH transcription factor family, and regulates cell fate decisions and differentiation in the developing coronary vasculature. Herein, we characterize a cis-regulatory mechanism by which the lead polymorphism rs12190287 disrupts an atypical activator protein 1 (AP-1 element, as demonstrated by allele-specific transcriptional regulation, transcription factor binding, and chromatin organization, leading to altered TCF21 expression. Further, this element is shown to mediate signaling through platelet-derived growth factor receptor beta (PDGFR-β and Wilms tumor 1 (WT1 pathways. A second disease allele identified in East Asians also appears to disrupt an AP-1-like element. Thus, both disease-related growth factor and embryonic signaling pathways may regulate CHD risk through two independent alleles at TCF21.

  16. Molecular characterisation, evolution and expression of hypoxia-inducible factor in Aurelia sp.1. (United States)

    Wang, Guoshan; Yu, Zhigang; Zhen, Yu; Mi, Tiezhu; Shi, Yan; Wang, Jianyan; Wang, Minxiao; Sun, Song


    The maintenance of physiological oxygen homeostasis is mediated by hypoxia-inducible factor (HIF), a key transcriptional factor of the PHD-HIF system in all metazoans. However, the molecular evolutionary origin of this central physiological regulatory system is not well characterized. As the earliest eumetazoans, Cnidarians can be served as an interesting model for exploring the HIF system from an evolutionary perspective. We identified the complete cDNA sequence of HIF-1α (ASHIF) from the Aurelia sp.1, and the predicted HIF-1α protein (pASHIF) was comprised of 674 amino acids originating from 2,025 bp nucleotides. A Pairwise comparison revealed that pASHIF not only possessed conserved basic helix-loop-helix (bHLH) and Per-Arnt-Sim (PAS) domains but also contained the oxygen dependent degradation (ODD) and the C-terminal transactivation domains (C-TAD), the key domains for hypoxia regulation. As indicated by sequence analysis, the ASHIF gene contains 8 exons interrupted by 7 introns. Western blot analysis indicated that pASHIF that existed in the polyps and medusa of Aurelia. sp.1 was more stable for a hypoxic response than normoxia.

  17. Characterization of MxFIT, an iron deficiency induced transcriptional factor in Malus xiaojinensis. (United States)

    Yin, Lili; Wang, Yi; Yuan, Mudan; Zhang, Xinzhong; Xu, Xuefeng; Han, Zhenhai


    Iron deficiency often results in nutritional disorder in fruit trees. Transcription factors play an important role in the regulation of iron uptake. In this study, we isolated an iron deficiency response transcription factor gene, MxFIT, from an iron-efficient apple genotype of Malus xiaojinensis. MxFIT encoded a basic helix-loop-helix protein and contained a 966 bp open reading frame. MxFIT protein was targeted to the nucleus in onion epidermal cells and showed strong transcriptional activation in yeast cells. Spatiotemporal expression analysis revealed that MxFIT was up-regulated in roots under iron deficiency at both mRNA and protein levels, while almost no expression was detected in leaves irrespective of iron supply. Ectopic expression of MxFIT resulted in enhanced iron deficiency responses in Arabidopsis under iron deficiency and stronger resistance to iron deficiency. Thus, MxFIT might be involved in iron uptake and plays an important role in iron deficiency response.

  18. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. (United States)

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O'Connor, Sarah E; Rischer, Heiko; Memelink, Johan; Goossens, Alain


    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.

  19. Genome-wide identification, classification and functional analyses of the bHLH transcription factor family in the pig, Sus scrofa. (United States)

    Liu, Wuyi


    The basic helix-loop-helix (bHLH) transcription factors are one of the largest families of gene regulatory proteins and play crucial roles in genetic, developmental and physiological processes in eukaryotes. Here, we conducted a survey of the Sus scrofa genome and identified 109 putative bHLH transcription factor members belonging to super-groups A, B, C, D, E, and F, respectively, while four members were orphan genes. We identified 6 most significantly enriched KEGG pathways and 116 most significant GO annotation categories. Further comprehensive surveys in human genome and other 12 medical databases identified 72 significantly enriched biological pathways with these 113 pig bHLH transcription factors. From the functional protein association network analysis 93 hub proteins were identified and 55 hub proteins created a tight network or a functional module within their protein families. Especially, there were 20 hub proteins found highly connected in the functional interaction network. The present study deepens our understanding and provided insights into the evolution and functional aspects of animal bHLH proteins and should serve as a solid foundation for further for analyses of specific bHLH transcription factors in the pig and other mammals.

  20. Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿ (United States)

    Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo


    Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128

  1. A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean (United States)

    Zhao, Yuanling; Chang, Xin; Qi, Dongyue; Dong, Lidong; Wang, Guangjin; Fan, Sujie; Jiang, Liangyu; Cheng, Qun; Chen, Xi; Han, Dan; Xu, Pengfei; Zhang, Shuzhen


    Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean ‘Suinong 10.’ Sequence analysis suggested that the protein encoded by GmERF113 contained a conserved AP2/ERF domain of 58 amino acid and belonged to the B-4 subgroup of the ERF subfamily. Expression of GmERF113 was significantly induced by P. sojae, ethylene, and methyl jasmonate. GmERF113 protein localized to the nucleus when transiently expressed in Arabidopsis protoplasts, could bind to the GCC-box, and acted as a transcription activator. In addition, a region of the full-length GmERF113, GmERF113-II, interacted with a basic helix-loop-helix transcription factor (GmbHLH) in yeast cells. Full-length GmERF113 also interacted with GmbHLH in planta. GmERF113-overexpressing transgenic plants in susceptible cultivar ‘Dongnong 50’ soybean exhibited increased resistance to P. sojae and positively regulated the expression of the pathogenesis-related genes, PR1 and PR10-1. These results indicate that GmERF113 may play a crucial role in the defense of soybean against P. sojae infection. PMID:28326092

  2. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Dixon Richard A


    Full Text Available Abstract Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE or methyl jasmonate (MJ. From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2 and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.

  3. Differential contribution of transcription factors to Arabidopsis thaliana defence against Spodoptera littoralis.

    Directory of Open Access Journals (Sweden)

    Fabian eSchweizer


    Full Text Available In response to insect herbivory, Arabidopsis plants activate the synthesis of the phytohormone jasmonate-isoleucine (JA-Ile, which binds to a complex consisting of the receptor COI1 and JAZ repressors. Upon proteasome-mediated JAZ degradation, basic helix-loop-helix transcription factors (TFs MYC2, MYC3, and MYC4 become activated and this results in the expression of defence genes. Although the jasmonate (JA pathway is known to be essential for the massive transcriptional reprogramming that follows herbivory, there is however little information on other TFs that are required for defence against herbivores and whether they contribute significantly to JA-dependent defence gene expression. By transcriptome profiling, we identified 41 TFs that were induced in response to herbivory by the generalist Spodoptera littoralis. Among them, nine genes, including WRKY18, WRKY40, ANAC019, ANAC055, ZAT10, ZAT12, AZF2, ERF13, and RRTF1, were found to play a significant role in resistance to S. littoralis herbivory. However, compared to the triple mutant myc234 that is as sensitive as coi1-1 to herbivory, knockout lines of these nine TFs were only partially more sensitive to S. littoralis and showed only minor gene expression changes at the whole genome level. Data thus reveal that MYC2, MYC3, and MYC4 are master regulators of Arabidopsis resistance to a generalist herbivore and identify new genes involved in insect defence.

  4. Transcription factor HAND2 mutations in sporadic Chinese patients with congenital heart disease

    Institute of Scientific and Technical Information of China (English)

    SHEN Lei; LI Xiao-feng; SHEN A-dong; WANG Qiang; LIU Cai-xia; GUO Ya-jie; SONG Zhen-jiang; LI Zhong-zhi


    Background The basic helix-loop-helix transcription factor HAND2 plays an essential role in cardiac morphogenesis.However, the prevalence of HAND2 mutations in congenial heart disease (CHD) and the correlation between the HAND2 genotype and CHD phenotype have not been studied extensively. Methods We amplified the exons and the flanking intron sequences of the HAND2 gene in 131 patients diagnosed with congenital defects of the right ventricle, outflow tract, aortic artery or cardiac cushion and confirmed the mutations by sequencing.Results Seven mutations including three missense mutations (P11R, S36N and V83L), one isonymous mutation (H14H)and three mutations in untranslated region (241 A>G, 604C>T and 3237T>A) were identified in 12 out of the 131 patients.Both nonisonymous mutations are located in the transcriptional activation domain on the N-terminus. Only one mutation (S36N) was identified in 250 normal healthy controls. The distribution of 3637T>A is the unique one which was differentbetween the 2 groups.Conclusions HAND2 may be a potential candidate gene of stenosis of the right ventricle, outflow tract. Further study of those with a family history of HAND2 mutations will help convincingly relate their genotype to the pathogenesis of CHD.

  5. Transcription factor ABF-1 suppresses plasma cell differentiation but facilitates memory B cell formation. (United States)

    Chiu, Yi-Kai; Lin, I-Ying; Su, Shin-Tang; Wang, Kuan-Hsiung; Yang, Shii-Yi; Tsai, Dong-Yan; Hsieh, Yi-Ting; Lin, Kuo-I


    Ag-primed B cells that result from an immune response can form either memory B cells or Ab-secreting plasma cells; however, the molecular machinery that controls this cellular fate is poorly understood. In this study, we show that activated B cell factor-1 (ABF-1), which encodes a basic helix-loop-helix transcriptional repressor, participates in this regulation. ABF-1 was prevalently expressed in purified memory B cells and induced by T follicular helper cell-mediated signals. ABF-1 expression declined by the direct repression of B lymphocyte-induced maturation protein-1 during differentiation. Ectopic expression of ABF-1 reduced the formation of Ab-secreting cells in an in vitro differentiation system of human memory B cells. Accordingly, knockdown of ABF-1 potentiates the formation of Ab-secreting cells. A transgenic mouse that expresses inducible ABF-1 in a B cell-specific manner was generated to demonstrate that the formation of germinal center and memory B cells was augmented by induced ABF-1 in an immune response, whereas the Ag-specific plasma cell response was dampened. This effect was associated with the ability of ABF-1 to limit cell proliferation. Together, our results demonstrate that ABF-1 facilitates formation of memory B cells but prevents plasma cell differentiation.

  6. The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of EAT1 and Regulate Pollen Development in Rice. (United States)

    Ko, Swee-Suak; Li, Min-Jeng; Sun-Ben Ku, Maurice; Ho, Yi-Cheng; Lin, Yi-Jyun; Chuang, Ming-Hsing; Hsing, Hong-Xian; Lien, Yi-Chen; Yang, Hui-Ting; Chang, Hung-Chia; Chan, Ming-Tsair


    Male sterility plays an important role in F1 hybrid seed production. We identified a male-sterile rice (Oryza sativa) mutant with impaired pollen development and a single T-DNA insertion in the transcription factor gene bHLH142. Knockout mutants of bHLH142 exhibited retarded meiosis and defects in tapetal programmed cell death. RT-PCR and in situ hybridization analyses showed that bHLH142 is specifically expressed in the anther, in the tapetum, and in meiocytes during early meiosis. Three basic helix-loop-helix transcription factors, UDT1 (bHLH164), TDR1 (bHLH5), and EAT1/DTD1 (bHLH141) are known to function in rice pollen development. bHLH142 acts downstream of UDT1 and GAMYB but upstream of TDR1 and EAT1 in pollen development. In vivo and in vitro assays demonstrated that bHLH142 and TDR1 proteins interact. Transient promoter assays demonstrated that regulation of the EAT1 promoter requires bHLH142 and TDR1. Consistent with these results, 3D protein structure modeling predicted that bHLH142 and TDR1 form a heterodimer to bind to the EAT1 promoter. EAT1 positively regulates the expression of AP37 and AP25, which induce tapetal programmed cell death. Thus, in this study, we identified bHLH142 as having a pivotal role in tapetal programmed cell death and pollen development.

  7. The Origin, Development and Molecular Diversity of Rodent Olfactory Bulb Glutamatergic Neurons Distinguished by Expression of Transcription Factor NeuroD1.

    Directory of Open Access Journals (Sweden)

    Laurent Roybon

    Full Text Available Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1 is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced - the mitral cells - can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers.

  8. Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor. (United States)

    Varma Penmetsa, R; Carrasquilla-Garcia, Noelia; Bergmann, Emily M; Vance, Lisa; Castro, Brenna; Kassa, Mulualem T; Sarma, Birinchi K; Datta, Subhojit; Farmer, Andrew D; Baek, Jong-Min; Coyne, Clarice J; Varshney, Rajeev K; von Wettberg, Eric J B; Cook, Douglas R


    Chickpea (Cicer arietinum) is among the founder crops domesticated in the Fertile Crescent. One of two major forms of chickpea, the so-called kabuli type, has white flowers and light-colored seed coats, properties not known to exist in the wild progenitor. The origin of the kabuli form has been enigmatic. We genotyped a collection of wild and cultivated chickpea genotypes with 538 single nucleotide polymorphisms (SNPs) and examined patterns of molecular diversity relative to geographical sources and market types. In addition, we examined sequence and expression variation in candidate anthocyanin biosynthetic pathway genes. A reduction in genetic diversity and extensive genetic admixture distinguish cultivated chickpea from its wild progenitor species. Among germplasm, the kabuli form is polyphyletic. We identified a basic helix-loop-helix (bHLH) transcription factor at chickpea's B locus that conditions flower and seed colors, orthologous to Mendel's A gene of garden pea, whose loss of function is associated invariantly with the kabuli type of chickpea. From the polyphyletic distribution of the kabuli form in germplasm, an absence of nested variation within the bHLH gene and invariant association of loss of function of bHLH among the kabuli type, we conclude that the kabuli form arose multiple times during the phase of phenotypic diversification after initial domestication of cultivated chickpea.

  9. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. (United States)

    Aleman, Fernando; Yazaki, Junshi; Lee, Melissa; Takahashi, Yohei; Kim, Alice Y; Li, Zixing; Kinoshita, Toshinori; Ecker, Joseph R; Schroeder, Julian I


    Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways.

  10. A proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FER. (United States)

    Brumbarova, Tzvetina; Matros, Andrea; Mock, Hans-Peter; Bauer, Petra


    Plants need to mobilize iron in the soil, and the basic helix-loop-helix transcription factor FER is a central regulator of iron acquisition in tomato roots. FER activity is controlled by iron supply. To analyse to what extent FER influences Fe-regulated protein expression, we investigated the root proteome of wild-type tomato, the fer mutant and a transgenic FER overexpression line under low-iron conditions versus sufficient and generous iron supply. The root proteomes were analysed by two-dimensional gel electrophoresis with three technical and three biological replicates. Statistical analysis identified 39 protein spots that were differentially regulated in selected pairwise comparisons of experimental conditions. Of these, 24 were correlated with expression clusters revealed by principal component analysis. The 39 protein spots were analysed by MALDI-TOF and nanoLC-MS/MS to deduce their possible functions. We investigated the functional representation in the identified expression clusters, and found that loss of FER function in iron-cultured plants mimicked an iron-deficiency status. The largest identified protein expression cluster was upregulated by iron deficiency and in the fer mutant. Two iron-regulated proteins required FER activity for induction by iron deficiency. Few proteins were suppressed by iron deficiency. The differentially expressed proteins belonged predominantly to the functional categories 'stress', 'redox regulation' and 'miscellaneous peroxidases'. Hence, we were able to identify distinct expression clusters of proteins with distinct functions.

  11. Yas3p, an Opi1 Family Transcription Factor, Regulates Cytochrome P450 Expression in Response to n-Alkanes in Yarrowia lipolytica*


    Hirakawa, Kiyoshi; Kobayashi, Satoshi; Inoue, Takuro; Endoh-Yamagami, Setsu; Fukuda, Ryouichi; Ohta, Akinori


    In the alkane-assimilating yeast Yarrowia lipolytica, the expression of ALK1, a gene encoding cytochrome P450 that catalyzes the first step of n-alkane oxidation, is induced by n-alkanes. We previously demonstrated that two basic helix-loop-helix proteins, Yas1p and Yas2p, activate the transcription of ALK1 in an alkane-dependent manner by forming a heterocomplex and binding to alkane-responsive element 1 (ARE1), a cis-acting element in the ALK1 promoter. Here we i...

  12. Effects of hypoxia-inducible factor 1 on ischemic cerebrovascular disease

    Institute of Scientific and Technical Information of China (English)

    Yongjie Luo; Xiaoping Wang; Hongbin Sun


    Hypoxia-inducible factor I, a nuclear transcription factor, is induced by hypoxia. Hypoxia-inducible factor I, a heterodimeric DNA-binding protein, is composed of hypoxia-inducible factor 1α and hypoxia-inducible factor 1 β subunits, which are family members of the basic helix-loop-helix-PER, ARNT, SIM (PAS) protein. O2 concentration regulates hypoxia-inducible factor 1 activity via this subunit. Hypoxia-inducible factor 1α plays a major role in response to hypoxia and transcriptional activation, as well as in the target gene specificity of the DNA enhancer. Hypoxia-inducible factor 1β cannot be induced by hypoxia. This effect may be due to hypoxia-inducible factor 1 stability and activated conformation due to dimerization. Previous studies have shown that hypoxia-inducible factor 1 mRNA expression increases in the penumbra following ischemia/hypoxia. Hypoxia-inducible factor 1 plays an important role in brain tissue injury alter ischemia by affecting a series of target genes, elevating tolerance to hypoxia, and ensuring survival of neural cells. This article summarizes the structure, function, expression, regulatory mechanisms, biological effects, and significance of hypoxia-inducible factor 1 in patients with ischemic cerebrovascular disease. As a transcriptional activator, hypoxia- inducible factor 1 plays a key role in hypoxic responses by stabilizing the internal environment. It also has been shown to regulate the expression of several genes. The regulatory effects of hypoxia-inducible factor 1 in patients with ischemic cerebrovascular disease have been described. The present review re-examined the concept of brain protection at the level of gene regulation.

  13. Protein: MPA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA6 SREBBP1c SREBF1 BHLHD1, SREBP1 Sterol regulatory element-binding protein 1 D basic helix-loop-helix protein 1, Sterol regulatory element-binding transcription factor 1 9606 Homo sapiens P36956 6720 1AM9 6720 P36956 ...

  14. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression

    DEFF Research Database (Denmark)

    Nairismägi, Maarja-Liisa; Vislovukh, Andrii; Meng, Q


    TWIST1 is a highly conserved basic helix-loop-helix transcription factor that promotes epithelial–mesenchymal transition (EMT). Its misregulation has been observed in various types of tumors. Using the MCF-10A-series of cell lines that recapitulate the early stages of breast cancer formation...

  15. The window period of NEUROGENIN3 during human gestation

    NARCIS (Netherlands)

    R.J. Salisbury (Rachel J.); J. Blaylock (Jennifer); A.A. Berry (Andrew A.); R.E. Jennings (Rachel E.); R.R. de Krijger (Ronald); K.P. Hanley (Karen Piper); N.A. Hanley (Neil A)


    textabstractThe basic helix-loop-helix transcription factor, NEUROG3, is critical in causing endocrine commitment from a progenitor cell population in the developing pancreas. In human, NEUROG3 has been detected from 8 weeks postconception (wpc). However, the profile of its production and when it ce

  16. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis

    NARCIS (Netherlands)

    Verweij, W.; Spelt, C.E.; Bliek, M.; de Vries, M.; Wit, N.; Faraco, M.; Koes, R.; Quattrocchio, F.


    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) fromArabidopsis thalianaand associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein

  17. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. (United States)

    Payyavula, Raja S; Singh, Rajesh K; Navarre, Duroy A


    Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids.

  18. The neuronal differentiation factor NeuroD1 downregulates the neuronal repellent factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma. (United States)

    Huang, Peng; Kishida, Satoshi; Cao, Dongliang; Murakami-Tonami, Yuko; Mu, Ping; Nakaguro, Masato; Koide, Naoshi; Takeuchi, Ichiro; Onishi, Akira; Kadomatsu, Kenji


    The basic helix-loop-helix transcription factor NeuroD1 has been implicated in the neurogenesis and early differentiation of pancreatic endocrine cells. However, its function in relation to cancer has been poorly examined. In this study, we found that NeuroD1 is involved in the tumorigenesis of neuroblastoma. NeuroD1 was strongly expressed in a hyperplastic region comprising neuroblasts in the celiac sympathetic ganglion of 2-week-old MYCN transgenic (Tg) mice and was consistently expressed in the subsequently generated neuroblastoma tissue. NeuroD1 knockdown by short hairpin RNA (shRNA) resulted in motility inhibition of the human neuroblastoma cell lines, and this effect was reversed by shRNA-resistant NeuroD1. The motility inhibition by NeuroD1 knockdown was associated with induction of Slit2 expression, and knockdown of Slit2 could restore cell motility. Consistent with this finding, shRNA-resistant NeuroD1 suppressed Slit2 expression. NeuroD1 directly bound to the first and second E-box of the Slit2 promoter region. Moreover, we found that the growth of tumor spheres, established from neuroblastoma cell lines in MYCN Tg mice, was suppressed by NeuroD1 suppression. The functions identified for NeuroD1 in cell motility and tumor sphere growth may suggest a link between NeuroD1 and the tumorigenesis of neuroblastoma. Indeed, tumor formation of tumor sphere-derived cells was significantly suppressed by NeuroD1 knockdown. These data are relevant to the clinical features of human neuroblastoma: high NeuroD1 expression was closely associated with poor prognosis. Our findings establish the critical role of the neuronal differentiation factor NeuroD1 in neuroblastoma as well as its functional relationship with the neuronal repellent factor Slit2.

  19. Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5

    Directory of Open Access Journals (Sweden)

    Lorca Thierry


    Full Text Available Abstract Background The two myogenic regulatory factors Myf5 and MyoD are basic helix-loop-helix muscle transcription factors undergoing differential cell cycle dependent proteolysis in proliferating myoblasts. This regulated degradation results in the striking expression of these two factors at distinct phases of the cell cycle, and suggests that their precise and alternated disappearance is an important feature of myoblasts, maybe connected to the maintenance of the proliferative status and/or commitment to the myogenic lineage of these cells. One way to understand the biological function(s of the cyclic expression of these proteins is to specifically alter their degradation, and to analyze the effects of their stabilization on cells. To this aim, we undertook the biochemical analysis of the mechanisms governing Myf5 mitotic degradation, using heterologous systems. Results We show here that mitotic degradation of Myf5 is conserved in non-myogenic cells, and is thus strictly under the control of the cell cycle apparatus. Using Xenopus egg extracts as an in vitro system to dissect the main steps of Myf5 mitotic proteolysis, we show that (1 Myf5 stability is regulated by a complex interplay of phosphorylation/dephosphorylation, probably involving various kinases and phosphatases, (2 Myf5 is ubiquitylated in mitotic extracts, and this is a prerequisite to its degradation by the proteasome and (3 at least in the Xenopus system, the E3 responsible for its mitotic degradation is not the APC/C (the major E3 during mitosis. Conclusion Altogether, our data strongly suggest that the mitotic degradation of Myf5 by the ubiquitin-proteasome system is precisely controlled by multiple phosphorylation of the protein, and that the APC/C is not involved in this process.

  20. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. (United States)

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng


    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.

  1. The Arabidopsis bHLH25 and bHLH27 transcription factors contribute to susceptibility to the cyst nematode Heterodera schachtii. (United States)

    Jin, Jing; Hewezi, Tarek; Baum, Thomas J


    Successful cyst nematode parasitism depends on the formation and maintenance of feeding sites (syncytia) in host roots, and these processes are highly regulated by the interaction between the cyst nematode and the host. Using an integrated research approach and the Arabidopsis-Beta vulgaris (sugar beet) cyst nematode (Heterodera schachtii) pathosystem, we have determined that the two Arabidopsis basic helix-loop-helix transcription factors bHLH25 and bHLH27 positively influence cyst nematode parasitism. Promoter studies indicated that as early as 1 day post-inoculation, both transcription factor genes were upregulated in developing syncytia, whereas in non-infected plants, these two promoters were not found to be active in the same cells. By using yeast two-hybrid analyses and bimolecular fluorescence complementation assays, we documented that the two bHLH transcription factors can dimerize in planta. Transgenic Arabidopsis plants overexpressing either one or both of the bHLH genes exhibited altered morphology of roots and shoots, as well as an increased susceptibility to H. schachtii. bhlh25 or bhlh27 single mutants were without strong phenotypes, presumably because of functional redundancies in this gene family. However, the bhlh25 bhlh27 double mutant was less susceptible to H. schachtii, confirming an important conducive role of the co-expression of both transcription factor genes for cyst nematode parasitism. Our results document an example of pathogen-induced ectopic co-expression of two regulatory genes to enhance pathogen success, although these transcription factors apparently do not function in concert in non-infected plants. This is an intriguing biological phenomenon that highlights the complexity of obligate biotrophic plant-pathogen interactions, like those of cyst nematodes.

  2. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. (United States)

    Dong, Lidong; Cheng, Yingxin; Wu, Junjiang; Cheng, Qun; Li, Wenbin; Fan, Sujie; Jiang, Liangyu; Xu, Zhaolong; Kong, Fanjiang; Zhang, Dayong; Xu, Pengfei; Zhang, Shuzhen


    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.], caused by Phytophthora sojae Kaufmann and Gerdemann, is a destructive disease throughout the soybean planting regions in the world. Here, we report insights into the function and underlying mechanisms of a novel ethylene response factor (ERF) in soybean, namely GmERF5, in host responses to P. sojae. GmERF5-overexpressing transgenic soybean exhibited significantly enhanced resistance to P. sojae and positively regulated the expression of the PR10, PR1-1, and PR10-1 genes. Sequence analysis suggested that GmERF5 contains an AP2/ERF domain of 58 aa and a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region. Following stress treatments, GmERF5 was significantly induced by P. sojae, ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). The activity of the GmERF5 promoter (GmERF5P) was upregulated in tobacco leaves with ET, ABA, Phytophthora nicotianae, salt, and drought treatments, suggesting that GmERF5 could be involved not only in the induced defence response but also in the ABA-mediated pathway of salt and drought tolerance. GmERF5 could bind to the GCC-box element and act as a repressor of gene transcription. It was targeted to the nucleus when transiently expressed in Arabidopsis protoplasts. GmERF5 interacted with a basic helix-loop-helix transcription factor (GmbHLH) and eukaryotic translation initiation factor (GmEIF) both in yeast cells and in planta. To the best of our knowledge, GmERF5 is the first soybean EAR motif-containing ERF transcription factor demonstrated to be involved in the response to pathogen infection.

  3. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) Interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) Linking Iron Deficiency and Oxidative Stress Responses. (United States)

    Le, Cham Thi Tuyet; Brumbarova, Tzvetina; Ivanov, Rumen; Stoof, Claudia; Weber, Eva; Mohrbacher, Julia; Fink-Straube, Claudia; Bauer, Petra


    Plants grown under iron (Fe)-deficient conditions induce a set of genes that enhance the efficiency of Fe uptake by the roots. In Arabidopsis (Arabidopsis thaliana), the central regulator of this response is the basic helix-loop-helix transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). FIT activity is regulated by protein-protein interactions, which also serve to integrate external signals that stimulate and possibly inhibit Fe uptake. In the search of signaling components regulating FIT function, we identified ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12), an abiotic stress-induced transcription factor. ZAT12 interacted with FIT, dependent on the presence of the ethylene-responsive element-binding factor-associated amphiphilic repression motif. ZAT12 protein was found expressed in the root early differentiation zone, where its abundance was modulated in a root layer-specific manner. In the absence of ZAT12, FIT expression was upregulated, suggesting a negative effect of ZAT12 on Fe uptake. Consistently, zat12 loss-of-function mutants had higher Fe content than the wild type at sufficient Fe. We found that under Fe deficiency, hydrogen peroxide (H2O2) levels were enhanced in a FIT-dependent manner. FIT protein, in turn, was stabilized by H2O2 but only in the presence of ZAT12, showing that H2O2 serves as a signal for Fe deficiency responses. We propose that oxidative stress-induced ZAT12 functions as a negative regulator of Fe acquisition. A model where H2O2 mediates the negative regulation of plant responses to prolonged stress might be applicable to a variety of stress conditions.

  4. Metabolic Profiling of Retrograde Pathway Transcription Factors Rtg1 and Rtg3 Knockout Yeast

    Directory of Open Access Journals (Sweden)

    Zanariah Hashim


    Full Text Available Rtg1 and Rtg3 are two basic helix-loop-helix (bHLH transcription factors found in yeast Saccharomyces cerevisiae that are involved in the regulation of the mitochondrial retrograde (RTG pathway. Under RTG response, anaplerotic synthesis of citrate is activated, consequently maintaining the supply of important precursors necessary for amino acid and nucleotide synthesis. Although the roles of Rtg1 and Rtg3 in TCA and glyoxylate cycles have been extensively reported, the investigation of other metabolic pathways has been lacking. Characteristic dimer formation in bHLH proteins, which allows for combinatorial gene expression, and the link between RTG and other regulatory pathways suggest more complex metabolic signaling involved in Rtg1/Rtg3 regulation. In this study, using a metabolomics approach, we examined metabolic alteration following RTG1 and RTG3 deletion. We found that apart from TCA and glyoxylate cycles, which have been previously reported, polyamine biosynthesis and other amino acid metabolism were significantly altered in RTG-deficient strains. We revealed that metabolic alterations occurred at various metabolic sites and that these changes relate to different growth phases, but the difference can be detected even at the mid-exponential phase, when mitochondrial function is repressed. Moreover, the effect of metabolic rearrangements can be seen through the chronological lifespan (CLS measurement, where we confirmed the role of the RTG pathway in extending the yeast lifespan. Through a comprehensive metabolic profiling, we were able to explore metabolic phenotypes previously unidentified by other means and illustrate the possible correlations of Rtg1 and Rtg3 in different pathways.

  5. Cloning and functional characterisation of avian transcription factor E2A

    Directory of Open Access Journals (Sweden)

    Meyer Kerstin B


    Full Text Available Abstract Background During B lymphocyte development the E2A gene is a critical regulator of cell proliferation and differentiation. With regards to the immunoglobulin genes the E2A proteins contribute to the regulation of gene rearrangement, expression and class switch recombination. We are now using the chicken cell line DT40 as a model system to further analyse the function of E2A. Results Here we report the cloning and functional analysis of the transcription factor E2A from chicken. Using RACE PCR on the chicken lymphoma cell line DT40 we have isolated full-length clones for the two E2A splice variants E12 and E47. Sequence conservation between the human and chicken proteins is extensive: the basic-helix-loop-helix DNA binding domain of human and chicken E47 and E12 are 93% and 92% identical, respectively. In addition high levels of conservation are seen in activation domain I, the potential NLS and the ubiquitin ligase interaction domain. E2A is expressed in a variety of tissues in chicken, with higher levels of expression in organs rich in immune cells. We demonstrate that chicken E12 and E47 proteins are strong transcriptional activators whose function depends on the presence of activation domain I. As in mammals, the dominant negative proteins Id1 and Id3 can inhibit the function of chicken E47. Conclusions The potential for homologous recombination in DT40 allows the genetic dissection of biochemical pathways in somatic cells. With the cloning of avian E2A and the recent description of an in vitro somatic hypermutation assay in this cell line, it should now be possible to dissect the potential role of E2A in the regulation of somatic hypermutation and gene conversion.

  6. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. (United States)

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian


    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula.

  7. Molecular characterization of hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) from Taiwan voles (Microtus kikuchii). (United States)

    Jiang, Yi-Fan; Chou, Chung-Hsi; Lin, En-Chung; Chiu, Chih-Hsien


    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that senses and adapts cells to hypoxic environmental conditions. HIF-1 is composed of an oxygen-regulated α subunit (HIF-1α) and a constitutively expressed β subunit (HIF-1β). Taiwan voles (Microtus kikuchii) are an endemic species in Taiwan, found only in mountainous areas greater than 2000m above sea level. In this study, the full-length HIF-1α cDNA was cloned and sequenced from liver tissues of Taiwan voles. We found that HIF-1α of Taiwan voles had high sequence similarity to HIF-1α of other species. Sequence alignment of HIF-1α functional domains indicated basic helix-loop-helix (bHLH), PER-ARNT-SIM (PAS) and C-terminal transactivation (TAD-C) domains were conserved among species, but sequence variations were found between the oxygen-dependent degradation domains (ODDD). To measure Taiwan vole HIF-1α responses to hypoxia, animals were challenged with cobalt chloride, and HIF-1α mRNA and protein expression in brain, lung, heart, liver, kidney, and muscle was assessed by quantitative RT-PCR and Western blot analysis. Upon induction of hypoxic stress with cobalt chloride, an increase in HIF-1α mRNA levels was detected in lung, heart, kidney, and muscle tissue. In contrast, protein expression levels showed greater variation between individual animals. These results suggest that the regulation of HIF-1α may be important to the Taiwan vole under cobalt chloride treatments. But more details regarding the evolutionary effect of environmental pressure on HIF-1α primary sequence, HIF-1α function and regulation in Taiwan voles remain to be identified.

  8. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. (United States)

    Ballester, Ana-Rosa; Molthoff, Jos; de Vos, Ric; Hekkert, Bas te Lintel; Orzaez, Diego; Fernández-Moreno, Josefina-Patricia; Tripodi, Pasquale; Grandillo, Silvana; Martin, Cathie; Heldens, Jos; Ykema, Marieke; Granell, Antonio; Bovy, Arnaud


    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with the position of the y (yellow) mutation known to result in colorless epidermis, and hence pink-colored fruit, when combined with a red flesh. Metabolic analysis showed that pink fruit lack the ripening-dependent accumulation of the yellow-colored flavonoid naringenin chalcone in the fruit peel, while carotenoid levels are not affected. The expression of all genes encoding biosynthetic enzymes involved in the production of the flavonol rutin from naringenin chalcone was down-regulated in pink fruit, suggesting that the candidate gene underlying the pink phenotype encodes a regulatory protein such as a transcription factor rather than a biosynthetic enzyme. Of 26 MYB and basic helix-loop-helix transcription factors putatively involved in regulating transcription of genes in the phenylpropanoid and/or flavonoid pathway, only the expression level of the MYB12 gene correlated well with the decrease in the expression of structural flavonoid genes in peel samples of pink- and red-fruited genotypes during ripening. Genetic mapping and segregation analysis showed that MYB12 is located on chromosome 1 and segregates perfectly with the characteristic pink fruit color. Virus-induced gene silencing of SlMYB12 resulted in a decrease in the accumulation of naringenin chalcone, a phenotype consistent with the pink-colored tomato fruit of IL1b. In conclusion, biochemical and molecular data, gene mapping, segregation analysis, and virus-induced gene silencing experiments demonstrate that the MYB12 transcription factor plays an important role in regulating the flavonoid pathway in tomato fruit

  9. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland. (United States)

    Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M


    Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner.

  10. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. (United States)

    Zhang, Jie; Liu, Bing; Li, Mengshu; Feng, Dongru; Jin, Honglei; Wang, Peng; Liu, Jun; Xiong, Feng; Wang, Jinfa; Wang, Hong-Bin


    Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of bHLH104 in Arabidopsis thaliana greatly reduced tolerance to Fe deficiency, whereas overexpression of bHLH104 had the opposite effect and led to accumulation of excess Fe in soil-grown conditions. The activation of Fe deficiency-inducible genes was substantially suppressed by loss of bHLH104. Further investigation showed that bHLH104 interacted with another IVc subgroup bHLH protein, IAA-LEUCINE RESISTANT3 (ILR3), which also plays an important role in Fe homeostasis. Moreover, bHLH104 and ILR3 could bind directly to the promoters of Ib subgroup bHLH genes and POPEYE (PYE) functioning in the regulation of Fe deficiency responses. Interestingly, genetic analysis showed that loss of bHLH104 could decrease the tolerance to Fe deficiency conferred by the lesion of BRUTUS, which encodes an E3 ligase and interacts with bHLH104. Collectively, our data support that bHLH104 and ILR3 play pivotal roles in the regulation of Fe deficiency responses via targeting Ib subgroup bHLH genes and PYE expression.

  11. Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. (United States)

    Andriankaja, Megan E; Danisman, Selahattin; Mignolet-Spruyt, Lorin F; Claeys, Hannes; Kochanke, Irina; Vermeersch, Mattias; De Milde, Liesbeth; De Bodt, Stefanie; Storme, Veronique; Skirycz, Aleksandra; Maurer, Felix; Bauer, Petra; Mühlenbock, Per; Van Breusegem, Frank; Angenent, Gerco C; Immink, Richard G H; Inzé, Dirk


    The establishment of the photosynthetic apparatus during chloroplast development creates a high demand for iron as a redox metal. However, iron in too high quantities becomes toxic to the plant, thus plants have evolved a complex network of iron uptake and regulation mechanisms. Here, we examined whether four of the subgroup Ib basic helix-loop-helix transcription factors (bHLH38, bHLH39, bHLH100, bHLH101), previously implicated in iron homeostasis in roots, also play a role in regulating iron metabolism in developing leaves. These transcription factor genes were strongly up-regulated during the transition from cell proliferation to expansion, and thus sink-source transition, in young developing leaves of Arabidopsis thaliana. The four subgroup Ib bHLH genes also showed reduced expression levels in developing leaves of plants treated with norflurazon, indicating their expression was tightly linked to the onset of photosynthetic activity in young leaves. In addition, we provide evidence for a mechanism whereby the transcriptional regulators SAC51 and TCP20 antagonistically regulate the expression of these four subgroup Ib bHLH genes. A loss-of-function mutant analysis also revealed that single mutants of bHLH38, bHLH39, bHLH100, and bHLH101 developed smaller rosettes than wild-type plants in soil. When grown in agar plates with reduced iron concentration, triple bhlh39 bhlh100 bhlh101 mutant plants were smaller than wild-type plants. However, measurements of the iron content in single and multiple subgroup Ib bHLH genes, as well as transcript profiling of iron response genes during early leaf development, do not support a role for bHLH38, bHLH39, bHLH100, and bHLH101 in iron homeostasis during early leaf development.

  12. The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS). (United States)

    Thorstensen, Tage; Grini, Paul E; Mercy, Inderjit S; Alm, Vibeke; Erdal, Sigrid; Aasland, Rein; Aalen, Reidunn B


    The Arabidopsis thaliana genome contains more than 30 genes encoding SET-domain proteins that are thought to be epigenetic regulators of gene expression and chromatin structure. SET-domain proteins can be divided into subgroups, and members of the Polycomb group (PcG) and trithorax group (trxG) have been shown to be important regulators of development. Both in animals and plants some of these proteins are components of multimeric protein complexes. Here, we have analyzed the Arabidopsis trxG protein ASHR3 which has a SET domain and pre- and post-SET domains similar to that of Ash1 in Drosophila. In addition to the SET domain, a divergent PHD finger is found in the N-terminus of the ASHR3 protein. As expected from SET-domain proteins involved in transcriptional activation, ASHR3 (coupled to GFP) localizes to euchromatin. A yeast two-hybrid screening revealed that the ASHR3 protein interacts with the putative basic helix-loop-helix (bHLH) transcription factor ABORTED MICROSPORES (AMS), which is involved in anther and stamen development in Arabidopsis. Deletion mapping indicated that both the PHD finger and the SET domain mediate the interaction between the two proteins. Overexpression of ASHR3 led in general to growth arrest, and specifically to degenerated anthers and male sterility. Expression analyses demonstrated that ASHR3 like AMS is expressed in the anther and in stamen filaments. We therefore propose that AMS can target ASHR3 to chromatin and regulate genes involved in stamen development and function.

  13. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana. (United States)

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei


    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response.

  14. The molecular mechanisms of phytochrome interacting factors (PIFs) in phy-tohormone signaling transduction%光敏色素作用因子PIFs参与植物激素信号转导的分子机制

    Institute of Scientific and Technical Information of China (English)

    任小芸; 吴美琴; 陈建民; 张冬平; 高勇


    Phytochrome interacting factors (PIFs) belonging to basic helix-loop-helix (bHLH) transcription fac-tors family, play an important role in plant growth and development. As the hubs of signal network in plant, PIFs integrate multiple plant hormone signals to regulate the transcriptional network. Existing research shows that PIFs can not only affect the synthesis of GA, ABA and IAA, but also regulate signal transmission of GA, BR, JA, IAA, ABA and ethylene. This review summarizes the research progress of function of PIFs in plant homone, and provides help for the further study of PIFs.%光敏色素作用因子(PIFs)属于bHLH 转录因子家族,在植物的生长发育中起到重要调节作用。作为一个关键的胞内信号调控组分, PIFs扮演着整合不同激素信号通路“枢纽”的角色。现有研究表明, PIFs能影响GA、ABA、IAA等激素的合成,调控GA、BR、JA、IAA、ABA、乙烯等激素的信号传递。本文重点阐述PIFs在植物激素信号中调控功能的研究进展,以期为进一步探索PIFs的功能及机制提供帮助。

  15. Regulation of Phytochrome Interacting Factors (PIFs) on Plant Growth and Development%光敏色素互作因子(PIFs)对植物生长发育的调控

    Institute of Scientific and Technical Information of China (English)

    潘教文; 赵术珍; 张烨; 李长生; 王玉红; 王兴军


    Phytochrome interacting factors ( PIFs ) belonging to Arabidopsis basic helix -loop -helix ( bHLH) transcription factors subgroup 15 are key regulators in light signal transduction .Light -activated phytochromes regulate plant growth and development by promoting the degradation of PIFs and directly or indi -rectly inhibiting their DNA binding activity .Studies showed that PIFs played important roles in the regulation of seed germination, seedling morphogenesis , shade avoidance , circadian clock, phytohormone biosynthesis and signal transduction .PIFs have broader roles than previously expected and work as a cellular signaling hub that integrates multiple signals to orchestrate the transcriptional network of plants .%光敏色素相互作用因子( PIFs)属于拟南芥bHLH转录因子家族的第15亚族,是光信号响应过程中的关键负调控因子。光激活的光敏色素通过促进PIFs蛋白降解,直接或间接抑制它们与DNA的结合,从而实现光对植物生长发育的调控。研究发现PIFs在调控种子萌发、幼苗形态建成、避荫反应、昼夜节律以及各种植物激素响应过程中起着重要作用。此外,PIFs作为细胞信号传导的“枢纽”具有更为广泛的作用,能够整合不同信号,精细调控整个转录网络。

  16. Tobacco Transcription Factors NtMYC2a and NtMYC2b Form Nuclear Complexes with the NtJAZ1 Repressor and Regulate Multiple Jasmonate-Inducible Steps in Nicotine Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Hong-Bo Zhang; Marta T. Bokowiec; Paul J. Rushton; Sheng-Cheng Han; Michael P. Timko


    Biotic and abiotic stress lead to elevated levels of jasmonic acid (JA) and its derivatives and activation of the biosynthesis of nicotine and related pyridine alkaloids in cultivated tobacco (Nicotiana tabacum L.).Among the JAresponsive genes is NtPMT1a,encoding putrescine N-methyl transferase,a key regulatory enzyme in nicotine formation.We have characterized three genes (NtMYC2a,b,c) encoding basic helix-loop-helix (bH LH) transcription factors (TFs) whose expression is rapidly induced by JA and that specifically activate JA-inducible NtPMT1a expression by binding a G-box motif within the NtPMT1a promoter in in vivo and in vitro assays.Using split-YFP assays,we further show that,in the absence of JA,NtMYC2a and NtMYC2b are present as nuclear complexes with the NtJAZ1 repressor.RNA interference (RNAi)-mediated knockdown of NtMYC2a and NtMYC2b expression results in significant decreases in JA-inducible NtPMT1a transcript levels,as well as reduced levels of transcripts encoding other enzymes involved in nicotine and minor alkaloid biosynthesis,including an 80-90% reduction in the level of transcripts encoding the putative nicotine synthase gene NtA662.In contrast,ectopic overexpression of NtMYC2a and NtMYC2b had no effect on NtPMT1a expression in the presence or absence of exogenously added JA.These data suggest that NtMYC2a,b,c are required components of JA-inducible expression of multiple genes in the nicotine biosynthetic pathway and may act additively in the activation of JA responses.

  17. EST Table: FS845099 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available PREDICTED: similar to class b basic helix-loop-helix protein (bhlhb) (differentially expressed in chondrocytes) (mdec) (sharp...lar to class b basic helix-loop-helix protein (bhlhb) (differentially expressed in chondrocytes) (mdec) (sharp) [Tribolium castaneum] FS845099 fner ...

  18. EST Table: FS816912 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available milar to class b basic helix-loop-helix protein (bhlhb) (differentially expressed in chondrocytes) (mdec) (sharp...asic helix-loop-helix protein (bhlhb) (differentially expressed in chondrocytes) (mdec) (sharp) [Tribolium castaneum] FS845099 fmgV ...

  19. Translocation of Neurospora crassa transcription factor NUC-1 into the nucleus is induced by phosphorus limitation. (United States)

    Peleg, Y; Addison, R; Aramayo, R; Metzenberg, R L


    NUC-1, a basic helix-loop-helix zipper protein, activates the expression of several genes involved in phosphorus acquisition in Neurospora crassa. In the present study we investigated whether posttranscriptional mechanisms control the activity of NUC-1. The NUC-1 level was higher (up to fivefold) in wild-type cells grown at low external phosphate concentration and in mutant strains expressing the phosphorus acquisition genes constitutively than in a wild-type strain grown at high external phosphate concentration. Using indirect immunofluorescence we demonstrated that NUC-1 is localized at least predominantly in the cytosol when wild-type N. crassa is grown with an adequate supply of phosphate, whereas NUC-1 is largely concentrated in the nucleus upon limitation of external phosphate. In mutant strains expressing the phosphorus acquisition genes constitutively, NUC-1 localization was also primarily in the nucleus. Thus, subcellular compartmentation of regulatory proteins is an important mechanism in regulating gene expression in filamentous fungi.

  20. Altered Twist1 and Hand2 dimerization is associated with Saethre-Chotzen syndrome and limb abnormalities. (United States)

    Firulli, Beth A; Krawchuk, Dayana; Centonze, Victoria E; Vargesson, Neil; Virshup, David M; Conway, Simon J; Cserjesi, Peter; Laufer, Ed; Firulli, Anthony B


    Autosomal dominant mutations in the gene encoding the basic helix-loop-helix transcription factor Twist1 are associated with limb and craniofacial defects in humans with Saethre-Chotzen syndrome. The molecular mechanism underlying these phenotypes is poorly understood. We show that ectopic expression of the related basic helix-loop-helix factor Hand2 phenocopies Twist1 loss of function in the limb and that the two factors have a gene dosage-dependent antagonistic interaction. Dimerization partner choice by Twist1 and Hand2 can be modulated by protein kinase A- and protein phosphatase 2A-regulated phosphorylation of conserved helix I residues. Notably, multiple Twist1 mutations associated with Saethre-Chotzen syndrome alter protein kinase A-mediated phosphorylation of Twist1, suggesting that misregulation of Twist1 dimerization through either stoichiometric or post-translational mechanisms underlies phenotypes of individuals with Saethre-Chotzen syndrome.

  1. Id transcriptional regulators in adipogenesis and adipose tissue metabolism. (United States)

    Patil, Mallikarjun; Sharma, Bal Krishan; Satyanarayana, Ande


    Id proteins (Id1-Id4) are helix-loop-helix (HLH) transcriptional regulators that lack a basic DNA binding domain. They act as negative regulators of basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibit their DNA binding and transcriptional activity. Id proteins are implicated in the regulation of various cellular mechanisms such as cell proliferation, cellular differentiation, cell fate determination, angiogenesis and tumorigenesis. A handful of recent studies also disclosed that Id proteins have critical functions in adipocyte differentiation and adipose tissue metabolism. Here, we reviewed the progress made thus far in understanding the specific functions of Id proteins in adipose tissue differentiation and metabolism. In addition to reviewing the known mechanisms of action, we also discuss possible additional mechanisms in which Id proteins might participate in regulating adipogenic and metabolic pathways.

  2. Genomic pathways modulated by Twist in breast cancer


    Vesuna, Farhad; Bergman, Yehudit; Raman, Venu


    Background The basic helix-loop-helix transcription factor TWIST1 (Twist) is involved in embryonic cell lineage determination and mesodermal differentiation. There is evidence to indicate that Twist expression plays a role in breast tumor formation and metastasis, but the role of Twist in dysregulating pathways that drive the metastatic cascade is unclear. Moreover, many of the genes and pathways dysregulated by Twist in cell lines and mouse models have not been validated against data obtaine...

  3. NOTCH Signaling and ATOH1 in Colorectal Cancers



    The Notch receptor signaling pathway regulates expression of the basic helix-loop-helix transcription factor ATOH1 (Math1/Hath1) to determine cell fate in the intestine. In differentiating intestinal stem cells, high levels of Notch activity specify absorptive enterocyte/colonocyte differentiation, whereas high ATOH1 activity specifies secretory (goblet, enteroendocrine, and Paneth) cell differentiation. In colorectal cancer, ATOH1 is a tumor suppressor that is silenced in most tumors, while ...

  4. Id4 Promotes Senescence and Sensitivity to Doxorubicin-induced Apoptosis in DU145 Prostate Cancer Cells


    Carey, Jason P; Knowell, Ashley Evans; Chinaranagari, Swathi; Chaudhary, Jaideep


    Inhibitor of differentiation proteins (Id1, 2, 3 and 4) are dominant negative regulators of basic helix loop helix transcription factors and play dominant roles in cancer cells, spanning several molecular pathways including senescence, invasion, metastasis, proliferation and apoptosis. In contrast to high Id1, Id2 and Id3 expression, the expression of Id4 is epigenetically silenced in prostate cancer. In the present study we demonstrated a novel role of Id4, that of promotion of cellular sene...

  5. Identifying Novel Helix-Loop-Helix Genes in "Caenorhabditis elegans" through a Classroom Demonstration of Functional Genomics (United States)

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.


    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the "Caenorhabditis elegans" genome and further characterized three sequences that were predicted to encode…

  6. Computational modeling of the bHLH domain of the transcription factor TWIST1 and R118C, S144R and K145E mutants

    Directory of Open Access Journals (Sweden)

    Maia Amanda M


    Full Text Available Abstract Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47, MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS, which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro

  7. A review of a transcriptional regulation factor DEC2 and tumor%转录调节因子 DEC2和肿瘤的研究进展

    Institute of Scientific and Technical Information of China (English)

    曹悦悦; 吴雪琼; 赵思文; 范倩岩; 马骥; 刘洋


    DEC2(differentiated embryo - chondrocyte expressed gene 2)是一种碱性螺旋-环-螺旋(basic helix - loop - helix,bHLH)型转录抑制因子,通过识别靶基因启动子区域的 E - box 和 N - box 元件,从而发挥转录抑制功能。该基因于2001年首次被发现,并作为调节生物节律的重要成员被研究者所熟识。DEC2作为生物钟基因,在中枢主要定位于下丘脑视交叉上核。该基因的突变能显著缩短睡眠时间,而动物模型的结果也证实了这一观点。而最近发现该基因在周围组织中也有表达,DEC2的异常表达与多种生理和病理现象密切相关。随着科研人员的不断探索,发现该基因除了调节生物节律外,还参与调控免疫应答、细胞凋亡、缺氧应答、细胞分化、血管生成、肿瘤演进等多种生物学现象。本文将就其研究进展加以概述。%DEC2(differentiated embryo - chondrocyte expressed gene 2)is a basic helix - loop - helix transcriptional inhibitory factor,which can repress transcription of target gene through recognizing E - box and N - box element in promoter region. This gene was first discovered in 2001and well known as biorhythm regulator. As biological clock gene,DEC2 located in hypothalamic suprachiasmatic nucleus(SCN). People thought DEC2 mutation can reduce hour of sleep greatly and animal test confirmed it. Recently,expression of DEC2 was also found in surrounding tissues. Its abnormal expression was closely connected with many physiological and pathological phenomena. With development of the study,people found other functions of DEC2 including regulating immune response,cell apoptosis,hypoxia re-sponse,cell differentiation,angiogenesis,tumor progression. This paper would briefly present a review of DEC2.

  8. Gestalt factors modulate basic spatial vision. (United States)

    Sayim, B; Westheimer, G; Herzog, M H


    Human perception of a stimulus varies depending on the context in which the stimulus is presented. Such contextual modulation has often been explained by two basic neural mechanisms: lateral inhibition and spatial pooling. In the present study, we presented observers with a vernier stimulus flanked by single lines; observers' ability to discriminate the offset direction of the vernier stimulus deteriorated in accordance with both explanations. However, when the flanking lines were part of a geometric shape (i.e., a good Gestalt), this deterioration strongly diminished. These findings cannot be explained by lateral inhibition or spatial pooling. It seems that Gestalt factors play an important role in contextual modulation. We propose that contextual modulation can be used as a quantitative measure to investigate the rules governing the grouping of elements into meaningful wholes.

  9. Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome



    The Saethre-Chotzen syndrome is characterized by premature fusion of cranial sutures resulting from mutations in Twist, a basic helix-loop-helix (bHLH) transcription factor. We have identified Twist target genes using human mutant calvaria osteoblastic cells from a child with Saethre-Chotzen syndrome with a Twist mutation that introduces a stop codon upstream of the bHLH domain. We observed that Twist mRNA and protein levels were reduced in mutant cells and that the Twist mutation increased c...

  10. Twist1 activity thresholds define multiple functions in limb development


    Krawchuk, Dayana; Weiner, Shoshana J; Chen, You-Tzung; Lu, Benson; Costantini, Frank; Behringer, Richard R.; Laufer, Ed


    The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1−/− embryos die at midgestation. However, studies on early limb buds found that Twist1−/− mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional...

  11. Teaching Basic Writers: The Personality Factor. (United States)

    Reigstad, Tom


    Reviews research on the Myers-Briggs Type Indicator's (MBTI's) use in personalizing the basic writing curriculum. Describes an MBTI-based study of personality and writing performance in a basic writing class. Identifies ways MBTI results can inform teacher feedback and the use of prewriting, small groups, computers, and essay tests. (DMM)

  12. SREBP-1 dimerization specificity maps to both the helix-loop-helix and leucine zipper domains: use of a dominant negative

    DEFF Research Database (Denmark)

    Rishi, Vikas; Gal, Jozsef; Krylov, Dmitry


    The mammalian SREBP family contains two genes that code for B-HLH-ZIP proteins that bind sequence-specific DNA to regulate the expression of genes involved in lipid metabolism. We have designed a dominant negative (DN), termed A-SREBP-1, that inhibits the DNA binding of either SREBP protein. A...

  13. Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Wong, Gladys W; Lee, Sang-Yun


    alphabeta and gammadelta T cells arise from a common thymocyte progenitor during development in the thymus. Emerging evidence suggests that the pre-T cell receptor (pre-TCR) and gammadelta T cell receptor (gammadeltaTCR) play instructional roles in specifying the alphabeta and gammadelta T-lineag...

  14. Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex. (United States)

    El Omari, Kamel; Hoosdally, Sarah J; Tuladhar, Kapil; Karia, Dimple; Vyas, Paresh; Patient, Roger; Porcher, Catherine; Mancini, Erika J


    The LIM only protein 2 (LMO2) is a key regulator of hematopoietic stem cell development whose ectopic expression in T cells leads to the onset of acute lymphoblastic leukemia. Through its LIM domains, LMO2 is thought to function as the scaffold for a DNA-binding transcription regulator complex, including the basic helix-loop-helix proteins SCL/TAL1 and E47, the zinc finger protein GATA-1, and LIM-domain interacting protein LDB1. To understand the role of LMO2 in the formation of this complex and ultimately to dissect its function in normal and aberrant hematopoiesis, we solved the crystal structure of LMO2 in complex with the LID domain of LDB1 at 2.4 Å resolution. We observe a largely unstructured LMO2 kept in register by the LID binding both LIM domains. Comparison of independently determined crystal structures of LMO2 reveals large movements around a conserved hinge between the LIM domains. We demonstrate that such conformational flexibility is necessary for binding of LMO2 to its partner protein SCL/TAL1 in vitro and for the function of this complex in vivo. These results, together with molecular docking and analysis of evolutionarily conserved residues, yield the first structural model of the DNA-binding complex containing LMO2, LDB1, SCL/TAL1, and GATA-1.

  15. Functional and structural properties of a novel protein and virulence factor (Protein sHIP) in Streptococcus pyogenes. (United States)

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats


    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis.

  16. Down-regulation of ubiquitin ligase Cbl induced by twist haploinsufficiency in Saethre-Chotzen syndrome results in increased PI3K/Akt signaling and osteoblast proliferation. (United States)

    Guenou, Hind; Kaabeche, Karim; Dufour, Cécilie; Miraoui, Hichem; Marie, Pierre J


    Genetic mutations of Twist, a basic helix-loop-helix transcription factor, induce premature fusion of cranial sutures in Saethre-Chotzen syndrome (SCS). We report here a previously undescribed mechanism involved in the altered osteoblastogenesis in SCS. Cranial osteoblasts from an SCS patient with a Twist mutation causing basic helix-loop-helix deletion exhibited decreased expression of E3 ubiquitin ligase Cbl compared with wild-type osteoblasts. This was associated with decreased ubiquitin-mediated degradation of phosphatidyl inositol 3 kinase (PI3K) and increased PI3K expression and PI3K/Akt signaling. Increased PI3K immunoreactivity was also found in osteoblasts in histological sections of affected cranial sutures from SCS patients. Transfection with Twist or Cbl abolished the increased PI3K/Akt signaling in Twist mutant osteoblasts. Forced overexpression of Cbl did not correct the altered expression of osteoblast differentiation markers in Twist mutant cells. In contrast, pharmacological inhibition of PI3K/Akt, but not ERK signaling, corrected the increased cell growth in Twist mutant osteoblasts. The results show that Twist haploinsufficiency results in decreased Cbl-mediated PI3K degradation in osteoblasts, causing PI3K accumulation and activation of PI3K/Akt-dependent osteoblast growth. This provides genetic and biochemical evidence for a role for Cbl-mediated PI3K signaling in the altered osteoblast phenotype induced by Twist haploinsufficiency in SCS.

  17. Structure-Function Analysis of the v-Myc Oncoprotein (United States)


    transcription activation domain (TAD) and a carboxy-terminal basic helix-loop-helix/ leucine zipper (bHLH/LZ) motif (Henriksson and Luscher , 1996). Work by...U. (1996). Active repression mechanisms of eukaryotic transcription repressors. Trends in Genetics 12: 229-234. Henriksson, M. and Luscher , B. (1996

  18. AcEST: DK950560 [AcEST

    Lifescience Database Archive (English)

    Full Text Available A0|UVRC_SYNWW UvrABC system protein C OS=Syntrophomonas w... 36 0.28 sp|Q9NX45|SOLH2_HUMAN Spermatogenesis- and oogenesis...HUMAN Spermatogenesis- and oogenesis-specific basic helix-loop-helix-containing protein 2 OS=Homo sapiens GN

  19. Domain Modeling: NP_005797.1 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_005797.1 chr21 Crystal Structure of the basic-helix-loop-helix domains of the he...terodimer E47/NeuroD1 bound to DNA p2ql2d_ chr21/NP_005797.1/NP_005797.1_holo_110-166.pdb blast 113I,114N,11

  20. AcEST: DK944591 [AcEST

    Lifescience Database Archive (English)

    Full Text Available e-15 sp|P0C7P8|Y1615_ARATH Uncharacterized basic helix-loop-helix pro... 79 2e-14 sp|P49259|PLA2R...TEKQGEKTWICFVVEGQNNKVMHRMDILWSLVQ 725 >sp|P49259|PLA2R_BOVIN Secretory phospholipase A2 receptor OS=Bos taurus GN=PLA2R

  1. Domain Modeling: NP_004307.2 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_004307.2 chr12 Crystal Structure of the basic-helix-loop-helix domains of the he...terodimer E47/NeuroD1 bound to DNA p2ql2d_ chr12/NP_004307.2/NP_004307.2_holo_119-175.pdb psi-blast 120V,122

  2. Sequence Classification: 785813 [

    Lifescience Database Archive (English)

    Full Text Available -1, mammalian HIF (hypoxia inducible factor) homolog, Helix Loop Helix containing protein (79.9 kD) (hif-1) || ... ...Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|25153882|ref|NP_508008.2| hypoxia Inducible Factor HIF

  3. Regulation of chick early B-cell factor-1 gene expression in feather development. (United States)

    El-Magd, Mohammed Abu; Sayed-Ahmed, Ahmed; Awad, Ashraf; Shukry, Mustafa


    The chick Ebf1 (early B-cell factor-1) gene is a member of a novel family of helix loop helix transcription factors. The expression profile, regulation and significance of this gene have been extensively studied in lymphatic, nervous, adipose and muscular tissues. However, cEbf1 expression, regulation and function in the feather of chick embryo have not yet been investigated. cEbf1 expression was first detected throughout the mesenchymal core of some few feather placodes (D7-D7.5). After feathers became mature and grew distally (D9 and D10), the mesenchymal expression of cEbf1 became confined to the caudal margin of the proximal half of all formed feather buds. Because this dynamic pattern of expression resembles that of Sonic Hedgehog (Shh) protein and bone morphogenetic protein (Bmp4) plus the crucial role of these two major signals in feather development, we hypothesized that cEbf1 expression in the feather may be regulated by Shh and Bmp4. In a feather explant culture system, Shh signals are necessary to initiate and maintain cEbf1 expression in the posterior half of the feather bud, while Bmp4 is crucial for the initial cEbf1 expression in the anterior half of the feather bud. Inhibition of Shh, not only down-regulates cEbf1, but also changes the morphology of feather buds, which become irregular and fused. This is the first study to demonstrate that cEbf1 expression in the feather bud is under the control of Shh and Bmp4 signals and that expression may play a role in the normal development of feathers.

  4. Feedback regulation of NEUROG2 activity by MTGR1 is required for progression of neurogenesis. (United States)

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Gong, Wuming; Li, Tongbin; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko


    The sequential steps of neurogenesis are characterized by highly choreographed changes in transcription factor activity. In contrast to the well-studied mechanisms of transcription factor activation during neurogenesis, much less is understood regarding how such activity is terminated. We previously showed that MTGR1, a member of the MTG family of transcriptional repressors, is strongly induced by a proneural basic helix-loop-helix transcription factor, NEUROG2 in developing nervous system. In this study, we describe a novel feedback regulation of NEUROG2 activity by MTGR1. We show that MTGR1 physically interacts with NEUROG2 and represses transcriptional activity of NEUROG2. MTGR1 also prevents DNA binding of the NEUROG2/E47 complex. In addition, we provide evidence that proper termination of NEUROG2 activity by MTGR1 is necessary for normal progression of neurogenesis in the developing spinal cord. These results highlight the importance of feedback regulation of proneural gene activity in neurodevelopment.

  5. The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis. (United States)

    Lee, Nayoung; Park, Jeongmoo; Kim, Keunhwa; Choi, Giltsu


    PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a basic helix-loop-helix transcription factor that inhibits light-dependent seed germination in Arabidopsis thaliana. However, it remains unclear whether PIF1 requires other factors to regulate its direct targets. Here, we demonstrate that LEUNIG_HOMOLOG (LUH), a Groucho family transcriptional corepressor, binds to PIF1 and coregulates its targets. Not only are the transcriptional profiles of the luh and pif1 mutants remarkably similar, more than 80% of the seeds of both genotypes germinate in the dark. We show by chromatin immunoprecipitation that LUH binds a subset of PIF1 targets in a partially PIF1-dependent manner. Unexpectedly, we found LUH binds and coregulates not only PIF1-activated targets but also PIF1-repressed targets. Together, our results indicate LUH functions with PIF1 as a transcriptional coregulator to inhibit seed germination.

  6. Experiment list: SRX190262 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available omains. USF also contains a leucine repeat that is required for efficient DNA binding. USF was originally of regulatory factors containing helix-loop-helix domains. USF also contains a leucine repeat that is required for efficient

  7. Experiment list: SRX190292 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ix domains. USF also contains a leucine repeat that is required for efficient DNA binding. USF was of regulatory factors containing helix-loop-helix domains. USF also contains a leucine repeat that is required for efficient

  8. Experiment list: SRX190284 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ns. USF also contains a leucine repeat that is required for efficient DNA binding. USF was originally identi...y factors containing helix-loop-helix domains. USF also contains a leucine repeat that is required for efficient

  9. Experiment list: SRX100471 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ontains a leucine repeat that is required for efficient DNA binding. USF was originally identified as an up-...gulatory factors containing helix-loop-helix domains. USF also contains a leucine repeat that is required for efficient

  10. Experiment list: SRX190342 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s. USF also contains a leucine repeat that is required for efficient DNA binding. USF was originally identif...ory factors containing helix-loop-helix domains. USF also contains a leucine repeat that is required for efficient


    Abstract Inhibitor of DNA binding (Id2) is a member of the helix-loop-helix (HLH) transcription factor family whose members play important roles in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones,...

  12. Treatment of Skin Avulsion Injuries with Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Hajime Matsumine, MD, PhD


    Full Text Available Summary: This report describes favorable outcomes in 9 patients with skin avulsion injuries of the extremities who underwent full-thickness skin grafting and basic fibroblast growth factor (bFGF application. Following removal of contaminated subcutaneous fat tissue on the inside of skin, the avulsed skin was processed into a full-thickness skin graft, with as much of the skin used as possible irrespective of damage. Several drainage holes (5–10 mm in diameter were made on the graft for drainage from the graft bed and to prevent seroma and hematoma formation. Genetically recombinant human bFGF was sprayed at a dose of 1 μg/cm2 onto the graft bed, which was then covered with the graft and sutured. Pressure immobilization with ointment gauzes and elastic bandages was administered for 1 week postoperatively, and the surface of the skin grafts that did not take was scraped away, preserving the revascularized dermal component on the debrided raw surface as much as possible. bFGF was sprayed again onto the debrided surface to promote epithelialization. Wound closure was achieved in all cases with conservative therapy. The surgical procedure was effective in preventing postoperative ulcer formation and scar contracture and resulted in wound healing with the formation of good-quality, flexible scars.

  13. Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons

    Directory of Open Access Journals (Sweden)

    Mitchell D’Rozario


    Full Text Available Proneural proteins of the class I/II basic-helix-loop-helix (bHLH family are highly conserved transcription factors. Class I bHLH proteins are expressed in a broad number of tissues during development, whereas class II bHLH protein expression is more tissue restricted. Our understanding of the function of class I/II bHLH transcription factors in both invertebrate and vertebrate neurobiology is largely focused on their function as regulators of neurogenesis. Here, we show that the class I bHLH proteins Daughterless and Tcf4 are expressed in postmitotic neurons in Drosophila melanogaster and mice, respectively, where they function to restrict neurite branching and synapse formation. Our data indicate that Daughterless performs this function in part by restricting the expression of the cell adhesion molecule Neurexin. This suggests a role for these proteins outside of their established roles in neurogenesis.

  14. Transcriptional control of GABAergic neuron development in the dorsal spinal cord

    Institute of Scientific and Technical Information of China (English)

    Huang Jing; Wu Shengxi


    GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronalnet works. In recent years, tremendous progresses have been made in understanding the transcriptional control of GABAergic neuron development in the dorsal spinal cord. New experimental approaches provide a relatively high throughput way to study the molecular regulation of subgroup fate determination. Our understanding of the molecular mechanisms on GABAergic neuron development in the dorsal spinal cord is rapidly expanding. Recent studies have defined several transcription factors that play essential roles in GABAergic neuron development in the spinal dorsal horn. Here, we review results of very recent analyses of the mechanisms that specify the GABAergic neuron development in the dorsal spinal cord, especially the progresses in the homeodomain (HD) and basic-helix-loop-helix(bHLH) containing transcription factors.

  15. Functional domains of the transcriptional activator NUC-1 in Neurospora crassa. (United States)

    Kang, S


    The NUC-1 regulatory protein directly controls the transcription of these genes and how the activity enzymes in Neurospora crassa. To understand how NUC-1 regulates the transcription of these genes and how the activity of NUC-1 is modulated by other regulatory proteins, two putative functional domains of NUC-1 were analysed: the DNA-binding domain and the regulatory domain. The DNA-binding activity of NUC-1 has not been directly demonstrated; however, results of deletion analysis, sequence analysis of the nuc-1 mutant alleles, and strong sequence similarity with the Saccharomyces cerevisiae PHO4 protein strongly suggest that the basic helix-loop-helix motif of NUC-1 forms a DNA-binding domain. Deletion and mutant analyses revealed that 39 amino acid (aa) residues (aa 463 to 501), or fewer, of NUC-1 are interacting with the negative regulatory factor(s), the PREG and/or PGOV proteins.

  16. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Yellow seed is a desirable quality trait of the Brassica oilseed species. Previously, several seed coat color genes have been mapped in the Brassica species, but the molecular mechanism is still unknown. In the present investigation, map-based cloning method was used to identify a seed coat color gene, located on A9 in B. rapa. Blast analysis with the Arabidopsis genome showed that there were 22 Arabidopsis genes in this region including at4g09820 to at4g10620. Functional complementation test exhibited a phenotype reversion in the Arabidopsis thaliana tt8-1 mutant and yellow-seeded plant. These results suggested that the candidate gene was a homolog of TRANSPARENT TESTA8 (TT8 locus. BrTT8 regulated the accumulation of proanthocyanidins (PAs in the seed coat. Sequence analysis of two alleles revealed a large insertion of a new class of transposable elements, Helitron in yellow sarson. In addition, no mRNA expression of BrTT8 was detected in the yellow-seeded line. It indicated that the natural transposon might have caused the loss in function of BrTT8. BrTT8 encodes a basic/helix-loop-helix (bHLH protein that shares a high degree of similarity with other bHLH proteins in the Brassica. Further expression analysis also revealed that BrTT8 was involved in controlling the late biosynthetic genes (LBGs of the flavonoid pathway. Our present findings provided with further studies could assist in understanding the molecular mechanism involved in seed coat color formation in Brassica species, which is an important oil yielding quality trait.

  17. Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis. (United States)

    Gangappa, Sreeramaiah N; Prasad, V Babu Rajendra; Chattopadhyay, Sudip


    MYC2 is a basic helix-loop-helix transcription factor that cross talks with light, abscisic acid (ABA), and jasmonic acid (JA) signaling pathways. Here, we have shown that Arabidopsis (Arabidopsis thaliana) MYC2 directly binds to the G-box present in the SUPPRESSOR OF PHYTOCHROME A1 (SPA1) promoter and that it controls the expression of SPA1 in a COP1-dependent manner. Analyses of atmyc2 spa1 double mutants suggest that whereas MYC2 and SPA1 act redundantly to suppress photomorphogenic growth in the dark, they function synergistically for the suppression of photomorphogenic growth in the light. Our studies have also revealed that MYC2-mediated ABA and JA responses are further modulated by SPA1. Taken together, this study demonstrates the molecular and physiological interrelations of MYC2 and SPA1 in light, ABA, and JA signaling pathways.

  18. Inhibition of Tcf3 binding by I-mfa domain proteins. (United States)

    Snider, L; Thirlwell, H; Miller, J R; Moon, R T; Groudine, M; Tapscott, S J


    We have determined that I-mfa, an inhibitor of several basic helix-loop-helix (bHLH) proteins, and XIC, a Xenopus ortholog of human I-mf domain-containing protein that shares a highly conserved cysteine-rich C-terminal domain with I-mfa, inhibit the activity and DNA binding of the HMG box transcription factor XTcf3. Ectopic expression of I-mfa or XIC in early Xenopus embryos inhibited dorsal axis specification, the expression of the Tcf3/beta-catenin-regulated genes siamois and Xnr3, and the ability of beta-catenin to activate reporter constructs driven by Lef/Tcf binding sites. I-mfa domain proteins can regulate both the Wnt signaling pathway and a subset of bHLH proteins, possibly coordinating the activities of these two critical developmental pathways.

  19. Structural basis of nucleic acid recognition by FK506-binding protein 25 (FKBP25), a nuclear immunophilin. (United States)

    Prakash, Ajit; Shin, Joon; Rajan, Sreekanth; Yoon, Ho Sup


    The nuclear immunophilin FKBP25 interacts with chromatin-related proteins and transcription factors and is suggested to interact with nucleic acids. Currently the structural basis of nucleic acid binding by FKBP25 is unknown. Here we determined the nuclear magnetic resonance (NMR) solution structure of full-length human FKBP25 and studied its interaction with DNA. The FKBP25 structure revealed that the N-terminal helix-loop-helix (HLH) domain and C-terminal FK506-binding domain (FKBD) interact with each other and that both of the domains are involved in DNA binding. The HLH domain forms major-groove interactions and the basic FKBD loop cooperates to form interactions with an adjacent minor-groove of DNA. The FKBP25-DNA complex model, supported by NMR and mutational studies, provides structural and mechanistic insights into the nuclear immunophilin-mediated nucleic acid recognition.

  20. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development. (United States)

    Busch, Hauke; Boerries, Melanie; Bao, Jie; Hanke, Sebastian T; Hiss, Manuel; Tiko, Theodhor; Rensing, Stefan A


    Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems.

  1. Dose-dependent regulation of target gene expression and cell proliferation by c-Myc levels. (United States)

    Schuhmacher, Marino; Eick, Dirk


    The proto-oncogene c-myc encodes a basic helix-loop-helix leucine zipper transcription factor (c-Myc). c-Myc plays a crucial role in cell growth and proliferation. Here, we examined how expression of c-Myc target genes and cell proliferation depend on variation of c-Myc protein levels. We show that proliferation rates, the number of cells in S-phase, and cell size increased in a dose-dependent manner in response to increasing c-Myc levels. Likewise, the mRNA levels of c-Myc responsive genes steadily increased with rising c-Myc levels. Strikingly, steady-state mRNA levels of c-Myc target genes did not saturate even at highest c-Myc concentrations. These characteristics predestine c-Myc levels as a cellular rheostat for the control and fine-tuning of cell proliferation and growth rates.

  2. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. (United States)

    Tassabehji, M; Newton, V E; Read, A P


    Waardenburg syndrome type 2 (WS2) is a dominantly inherited syndrome of hearing loss and pigmentary disturbances. We recently mapped a WS2 gene to chromosome 3p12.3-p14.1 and proposed as a candidate gene MITF, the human homologue of the mouse microphthalmia (mi) gene. This encodes a putative basic-helix-loop-helix-leucine zipper transcription factor expressed in adult skin and in embryonic retina, otic vesicle and hair follicles. Mice carrying mi mutations show reduced pigmentation of the eyes and coat, and with some alleles, microphthalmia, hearing loss, osteopetrosis and mast cell defects. Here we show that affected individuals in two WS2 families have mutations affecting splice sites in the MITF gene.

  3. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. (United States)

    Walker, Elsbeth L; Connolly, Erin L


    Iron is an essential nutrient for plants, yet it often limits plant growth. On the contrary, overaccumulation of iron within plant cells leads to oxidative stress. As a consequence, iron-uptake systems are carefully regulated to ensure that iron homeostasis is maintained. In response to iron limitation, plants induce expression of sets of activities that function at the root-soil interface to solubilize iron and subsequently transfer it across the plasma membrane of root cells. Recent advances have revealed key players in the signaling pathways that function to induce these iron-uptake responses. Transcription factors belonging to the basic helix-loop-helix, ABI3/VP1(B3), and NAC families appear to function either directly or indirectly in the upregulation of iron deficiency responses.

  4. FHL2 Interacts with and Acts as a Functional Repressor of Id2 in Human Neuroblastoma Cells

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Han; Zhi-qiang Wu; Ya-li Zhao; Yi-ling Si; Xiao-bing Fu


    Objective: Id2 is a natural inhibitor of the basic helix-loop-helix(bHLH) transcription factors. Although it is well known that active Id2 prevents differentiation and promotes cell cycle progression and tumorigenesis, the molecular events that regulate Id2 activity remain to be investigated.Methods: Yeast two-hybrid, mammalian two-hybrid, GST-pulldown and immunoprecipitation (CoIP) assays were used to screen and identify novel Id2 interactors. Luciferase assays were used to detect E47-mediated transcription activity. Colony formation and BrdU incorporation assays were used to determine cellular proliferation abilities. Northorn blot, western blot and quantitative PCR methods were used to measure gene expression levels. Electrophoretic mobility shift assays (EMSAs) were performed to investigate protein/DNA binding.Results: The LIM-only protein FHL2 (four-and-a-half-LIM-only protein 2) was identified to be a novel Id2 interactor. The HLH domain within Id2 is not required for its interaction with FHL2. FHL2 antagonizes the inhibitory effect of Id2 on the basic helix-loop-helix protein E47-mediated transcription. FHL2 prevents the formation of Id2-E47 heterdimer, thus releasing E47 to its target DNA and restoring its transcriptional activity. FHL2 expression was remarkably up-regulated during retinoic acid-induced differentiation of neuroblastoma cells, during which the expression of Id2 is opposite to that. Ectopic FHL2 expression in neuroblastoma cells markedly reduces the transcriptional and cell-cycle promoting functions of Id2.Conclusion: These results indicate that FHL2 is an important repressor of the oncogenic activity of Id2 in neuroblastoma cells.

  5. Basic Fibroblast Growth Factor and Fibroblast Growth Factor Receptor-1in Human Meningiomas

    Institute of Scientific and Technical Information of China (English)

    YI Wei; CHEN Jian; Filimon H. Golwa; XUE Delin


    The expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1) in human meningiomas and the relationships between their expression and the tumors' histological features and angiogenesis were investigated by means of immunohistochemical technique. The expression of bFGF and FGFR-1 was detected by antibody of bFGF or FGFR-1.The tumors' angiogenesis was evaluated by microvascular density (MVD) and, which was observed by use of CD34-antibody immunohistochemically. The results showed that there were varied degrees of the expression of bFGF and FGFR-1 proteins in meningiomas. The expression was correlated with the tumors' histological characters and angiogenesis. It was concluded that bFGF and FGFR-1 might play important roles in meningiomas' angiogenesis and proliferation. The expression positive rate of bFGF and FGFR-1 may provide an indication of evaluating the histological and malignant degree of the tumor.

  6. Factors determining the effectiveness of basic training in calisthenics

    Directory of Open Access Journals (Sweden)

    Belokopitova J.A.


    Full Text Available The results of questionnaire of leading trainers of Ukraine are presented. The factors of initial preparation of gymnasts are exposed 7-9 years. The high level of influence on efficiency of trainings employments of such factors is set as: individual development of perception of time (on age, sporting preparation, in the period of mastering of simple and difficult elements, special preparation, morphophysiological signs, co-ordinating capabilities, optimum age of reception in child-youth sporting school, account of orientation of base preparation.

  7. [Work as a basic human need and health promoting factor]. (United States)

    Bertazzi, P A


    The Italian Constitution (1948) defines 'work' as the founding value of the Italian Republic. This choice was not motivated by mere economic reasons, but rather stemmed from the recognition that work is the most appropriate tool for the expression of the human personality in society, that it is an asset and a right that will increase the dignity of every person, and which corresponds to a fundamental human desire to fulfil oneself in relationship with other persons and the entire world This view of work, including its technical and manual aspects, was unknown to the ancient mentality and became familiar to us through the monastic orders of the early middle ages, which began to conceive and practise human work as a means of participating in the work of creation and transmitted this value over the centuries. As we experience today, if occupation is lacking, a basic condition for the development of the person and for his/her contribution to the growth of society is lost. Given the meaning of work in human experience, it is not surprising that unemployment represents not only a worrisome economic indicator, but also the cause of ill health. At the end of 2009 unemployment in the European Union reached 10%, similar to the rate in the US; in Italy it was estimated at 8.5% in December 2009 and is expected to reach 10% in 2010. In Lombardy, although employment had been constantly increasing between 1995 and 2008, and the current unemployment rate is as low as 4.9%, 100,000 jobs were lost in 2009. Several scientific papers have demonstrated the association between lack of occupation and lack of physical and mental health. In the present period of crisis, increases of 30% in cases of anxiety syndrome and of 15% in cases of depression have been reported. An increase in suicides among unemployed persons has been documented in several countries even if there are still problems of interpretation of the causal chain of events. Mortality among the unemployed increased, not only

  8. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. (research article)

    NARCIS (Netherlands)

    L. Schaeffer; R. Roy (Richard); S. Humbert; V. Moncollin; W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); P. Chambon; J-M. Egly (Jean-Marc)


    textabstractThe human BTF2 basic transcription factor (also called TFIIH), which is similar to the delta factor in rat and factor b in yeast, is required for class II gene transcription. A strand displacement assay was used to show that highly purified preparation of BTF2 had an adenosine triphospha

  9. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli



    International audience; This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarifi...

  10. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions

    DEFF Research Database (Denmark)

    Ulbrich, Claudia; Leder, Annekatrin; Pietsch, Jessica


    Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor...

  11. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mona Alibolandi


    Full Text Available This work describes the integration of expanded bed adsorption (EBA and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution.

  12. Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Junmei Zhou; Zhenfu Fang; Manxi Jiang; Xuejin Chen


    The difference between Noggin and basic fibroblast growth factor for the neural precursor differen-tiation from human embryonic stem cel s has not been studied. In this study, 100 µg/L Noggin or 20 µg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen-tiate human embryonic stem cel s H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro-scope. Immunofluorescence staining revealed expression levels of Nestin,β-III Tubulin and Sox-1 were higher in the induced cel s and reverse-transcription PCR showed induced cel s expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cel differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in-creases the differentiation of neural precursors.

  13. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor


    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina


    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD pol...

  14. Determination of specificity influencing residues for key transcription factor families

    DEFF Research Database (Denmark)

    Patel, Ronak Y.; Garde, Christian; Stormo, Gary D.


    -dimensional structure of protein. Structural restraints on the evolution of the amino-acid sequence lead to identification of false SIRs. In this manuscript we extended three methods (direct information, PSICOVand adjusted mutual information) that have been used to disentangle spurious indirect protein residue......-residue contacts from direct contacts, to identify SIRs from joint alignments of amino-acids and specificity. We predicted SIRs for homeodomain (HD), helix-loop-helix, LacI and GntR families of TFs using these methods and compared to MI. Using various measures, we show that the performance of these three methods...

  15. Effect of charge at an amino acid of basic fibroblast growth factor on its mitogenic activity

    Institute of Scientific and Technical Information of China (English)


    The amino acid at the 119th position of human basic fibroblast growth factor(hbFGF),lysine(K119),is a critical component for its mitogenic activity.However,little is known about the effects of the characteristics of this residue including charge on the mitogenic activity of hbFGF.Herein,this basic residue was replaced with neutral glutamine residue and acidic glutamic acid residue to construct mutants hbFGF~(K119Q) and hbFGF~(K119E),respectively.The mutants were produced by BL21(DE3)/pET3c expression sys...

  16. Basic fibroblast growth factor gene transfection in repair of internal carotid artery aneurysm wall

    Institute of Scientific and Technical Information of China (English)

    Lei Jiao; Ming Jiang; Jinghai Fang; Yinsheng Deng; Zejun Chen; Min Wu


    Surgery or interventional therapy has some risks in the treatment of cerebral aneurysm. We established an internal carotid artery aneurysm model by dripping elastase in the crotch of the right internal and external carotid arteries of New Zealand rabbits. Following model induction, lentivirus carrying basic fibroblast growth factor was injected through the ear vein. We found that the longer the action time of the lentivirus, the smaller the aneurysm volume. Moreover, platelet-derived growth factor expression in the aneurysm increased, but smooth muscle 22 alpha and hypertension-related gene 1 mRNA expression decreased. At 1, 2, 3, and 4 weeks following model establishment, following 1 week of injection of lentivirus carrying basic fibroblast growth factor, the later the intervention time, the more severe the blood vessel damage, and the bigger the aneurysm volume, the lower the smooth muscle 22 alpha and hypertension-related gene 1 mRNA expression. Simultaneously, platelet-derived growth factor expression decreased. These data suggest that recombinant lentivirus carrying basic fibroblast growth factor can repair damaged cells in the aneurysmal wall and inhibit aneurysm dynamic growth, and that the effect is dependent on therapeutic duration.

  17. Effects of Electromagnetic Field and Basic Fibroblast Growth Factor on Osteoblast's Growth

    Institute of Scientific and Technical Information of China (English)

    GUOYong; ZHANGXi-zheng; WANGHao; LIBin; LIRui-xin; WUJin-hui; ZHAOYun-shan; WUJi-min


    Osteoblasts of rat cultured in vitro were stimulated with pulsed 50 Hz electromagnetic field and basic fibroblast growth factor(bFGF). The MTT method, flow cytometry and histochemistry staining were used to detect cell proliferation, cell cycle and alkaline phosphatase. The results indicated : after stimulated by 1 mT electromagnetic field, the cells are more abundant,have more S phase percentages, 2 mT electromagnetic field have no evident effect on cells' growth;compared with electromagnetic field, the cells stimulated by bFGF are more abundant and have larger S phase ratios. Electromagnetic field and bFGF have no effect on cells, alkaline phosphatase. Therefore ,we concluded that electromagnetic field can enhance osteoblasts growth like some growth factor such as basic fibroblast growth factor, and the osteoblasts', characteristics was not changed.

  18. Basic fibroblast growth factor improves learning and memory functions in chronic stress mice

    Institute of Scientific and Technical Information of China (English)

    Xian Qu; Chunying Li; Hongchang Liu; Chang Su


    Four weeks of uncertain stress was used to establish an animal model of chronic stress.Basic fibroblast growth factor was injected daily for 15 days following stress induction.Cell morphology in the hippocampal CA3 region of chronic stress mice revealed cell damage.Nitric oxide content and calcium concentration were significantly increased in the hippocampus,and learning and memory functions were significantly decreased.After basic fibroblast growth factor intervention,Ca2+ overload was decreased and neuronal damage was relieved in hippocampal neurons,which improved learning and memory functions in chronic stress mice.Latency was prolonged and the number of errors was decreased in a passive avoidance test.

  19. Autocrine growth regulation of human glomerular mesangial cells is primarily mediated by basic fibroblast growth factor.


    Francki, A.; Uciechowski, P.; Floege, J; von der Ohe, J.; Resch, K.; Radeke, H. H.


    For various forms of human glomerulonephritis a close relationship between inflammatory injury and a local mesangial proliferative response has been described. Herein, we used primary cultures of human glomerular mesangial cells (HMCs) from five different donors to determine the autocrine growth-inducing capacity of their supernatants after stimulation with different cytokines and lipopolysaccharide (LPS) to determine whether this effect is due to basic fibroblast growth factor (bFGF). The ba...

  20. Basic fibroblast growth factor attenuates the degeneration of injured spinal cord motor endplates**

    Institute of Scientific and Technical Information of China (English)

    Jianlong Wang; Jianfeng Sun; Yongxiang Tang; Gangwen Guo; Xiaozhe Zhou; Yanliang Chen; Minren Shen


    The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage fol owing spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal cord injury, established using a modified Al en’s method, was injected with basic fibroblast growth factor solution via subarachnoid catheter. After injection, rats with spinal cord injury displayed higher scores on the Basso, Beattie and Bresnahan locomotor scale. Motor function was also wel recovered and hematoxylin-eosin staining showed that spinal glial scar hyperplasia was not apparent. Additional y, anterior tibial muscle fibers slowly, but progressively, atrophied. Immunohistochemical staining showed that the absorbance values of calcitonin gene related pep-tide and acetylcholinesterase in anterior tibial muscle and spinal cord were similar, and injection of basic fibroblast growth factor increased this absorbance. Results showed that after spinal cord injury, the distal motor neurons and motor endplate degenerated. Changes in calcitonin gene related pep-tide and acetylcholinesterase in the spinal cord anterior horn motor neurons and motor endplate then occurred that were consistent with this regeneration. Our findings indicate that basic fibroblast growth factor can protect the endplate through attenuating the decreased expression of calcitonin gene related peptide and acetylcholinesterase in anterior horn motor neurons of the injured spinal cord.

  1. Infant guinea pig retina model of glutamate toxicity and intervention of basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    Yunzhi Shi; Lihua Wei; Mingshan Song; Min Chen; Changqing Du; Baoliang Sun


    Impaired vision with oligemic ophthalmopathy is a result of excitotoxicity caused by excitatory amino acids, resulting in pathological changes, such as loss of retinal neurons and in particular retinal ganglionic cells. The present study utilized infant guinea pigs, aged 45-50 days, to establish injury models via intrapedtoneal injection of fixed sodium glutamate doses. Results from hematoxylin- eosin staining revealed significantly reduced retinal ganglionic cell numbers and retinal damage at 10 days after 7 consecutive days of 3 g/kg sodium glutamate treatment; these animals sewed as the injury model group. In addition, models of moderate injury (glutamate 3 g/kg daily, for 7 consecutive days) were intrapedtoneally pretreated with basic fibroblast growth factor (800 U/kg daily). Immunohistochemistry results confirmed reduced anti-apoptotic gene bcl-2 expression in the ganglion cell layer of glutamate-injured guinea pigs. Expression of the pro-apoptotic gene caspase-3 was increased in the ganglion cell layer and inner plexiform layer. Somatostatin expression was primadly distributed in the ganglion cell layer and inner nuclear layer. Expression of the presynaptic element synaptophysin was weak. However, following basic fibroblast growth factor injection, expressions of the above-described bioactive molecules were reversed, which suggested that basic fibroblast growth factor exerted protective effects on sodium glutamate-induced retinal injury in infant guinea pigs by regulating expression of synaptophysin, somatostatin, Bcl-2, and caspase-3.

  2. Applications of basic fibroblastic growth factor (FGF-2, bFGF) in dentistry. (United States)

    Sonmez, Ayse B; Castelnuovo, Jacopo


    Recent developments in research have been based on the maintenance and regeneration of natural organs and tissues; among such developments is the use of growth factors (GFs). The use of basic fibroblastic growth factors (bFGF) may be indicated in different disciplines of dentistry such as periodontics and dental traumatology. These cells' ability to induce proliferation and differentiation of cells may make GFs a useful source for the development of natural structures. This mini-review will discuss how bFGF can be beneficial to dentistry in relation to 1) re-implantation/autotransplantation of avulsed teeth and 2) periodontal regeneration.

  3. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai


    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  4. In situ formation of poly(vinyl alcohol–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Justine J Roberts


    Full Text Available Heparin-based hydrogels are attractive for controlled growth factor delivery, due to the native ability of heparin to bind and stabilize growth factors. Basic fibroblast growth factor and vascular endothelial growth factor are heparin-binding growth factors that synergistically enhance angiogenesis. Mild, in situ encapsulation of both basic fibroblast growth factor and vascular endothelial growth factor and subsequent bioactive dual release has not been demonstrated from heparin-crosslinked hydrogels, and the combined long-term delivery of both growth factors from biomaterials is still a major challenge. Both basic fibroblast growth factor and vascular endothelial growth factor were encapsulated in poly(vinyl alcohol-heparin hydrogels and demonstrated controlled release. A model cell line, BaF32, was used to show bioactivity of heparin and basic fibroblast growth factor released from the gels over multiple days. Released basic fibroblast growth factor promoted higher human umbilical vein endothelial cell outgrowth over 24 h and proliferation for 3 days than the poly(vinyl alcohol-heparin hydrogels alone. The release of vascular endothelial growth factor from poly(vinyl alcohol-heparin hydrogels promoted human umbilical vein endothelial cell outgrowth but not significant proliferation. Dual-growth factor release of basic fibroblast growth factor and vascular endothelial growth factor from poly(vinyl alcohol-heparin hydrogels resulted in a synergistic effect with significantly higher human umbilical vein endothelial cell outgrowth compared to basic fibroblast growth factor or vascular endothelial growth factor alone. Poly(vinyl alcohol-heparin hydrogels allowed bioactive growth factor encapsulation and provided controlled release of multiple growth factors which is beneficial toward tissue regeneration applications.

  5. Factors Influencing the Supply Efficiency of Basic Public Service at County Level

    Institute of Scientific and Technical Information of China (English)

    Zongbing; DENG; Junliang; ZHANG; Yonggang; FENG; Ju; WANG


    In this paper,we use DEA-Tobit model to conduct empirical study on the governmental supply efficiency of public service in Chongqing’s 38 counties and the influencing factors during the period 2008-2011.The results show that the supply efficiency of basic public service at county level is generally low,and there is significant regional differences and strong volatility;per capita GDP,population density and population size,and level of education of the residents,are significantly correlated with the supply efficiency of basic public service at county level,but traffic density,urbanization level,and the proportion of government spending on public service to total fiscal expenditure,have no significant effects on the efficiency of basic public service at county level.Based on this,we propose some policy recommendations for enhancing the level of local economic development and the level of education,and reasonably guiding the residents’agglomeration.

  6. Cloning, Expression and Functional Characterization of In-House Prepared Human Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Hassan Rassouli


    Full Text Available Objective: Human basic fibroblast growth factor (bFGF plays an important role in cellular proliferation, embryonic development, and angiogenesis as well as in several signaling pathways of various cell types. bFGF is an essential growth factor for the maintenance of undifferentiated human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs.Materials and Methods: In this experimental study, we present a straightforward method to produce biologically active recombinant human bFGF protein in E. coli that has long-term storage ability.Results: This procedure provides a rapid, cost effective purification of a soluble human bFGF protein that is biologically active and functional as measured in hESCs and hiPSCs in vitro and in vivo.Conclusion: The results show no significant difference in function between our in-house produced and commercialized bFGF.

  7. Effect of recombinant human basic fibroblast growth factor on angiogenesis during mandible fracture healing in rabbits

    Institute of Scientific and Technical Information of China (English)

    龚振宇; 周树夏; 顾晓明; 李涤尘; 孙明林


    Objective: To investigate the effect of recombinant human basic fibroblast growth factor (rhbFGF) on angiogenesis during mandible fracture healing in rabbit. Methods: Fifty adult white rabbits were used for animal model and randomly divided into a control group (25 rabbits) and an experimental group (25 rabbits). The membranous complex of rhbFGF and bovine type I collagen was prepared and implanted into the rabbit mandible fracture site under periosteum. The animals were sacrificed on 7, 14, 28, 56 and 84 days respectively after operation and the whole mandibles were harvested. The expression of factor VIII related antigen (F8-RA) in callus was examined with immunohistochemical staining. Results: The amounts of microvascular formation in calluses in the rhbFGF-treating group on days 7, 14, 28 and 56 were more than those of the control group (P<0.01).Conclusions: The results indicated that rhbFGF could stimulate microvascular formation during mandible fracture healing in rabbits.

  8. Constructing a blood vessel on the porous scaffold modified with vascular endothelial growth factor and basic fibroblast growth factor (United States)

    Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.


    Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.

  9. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter;


    gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  10. Functional and Structural Properties of a Novel Protein and Virulence Factor (sHIP) in Streptococcus pyogenes

    DEFF Research Database (Denmark)

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik;


    strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG......), and the name sHIP (streptococcal Histidine-rich glycoprotein Interacting Protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody...

  11. Hybrids of the bHLH and bZIP protein motifs display different DNA-binding activities in vivo vs. in vitro.

    Directory of Open Access Journals (Sweden)

    Hiu-Kwan Chow

    Full Text Available Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim protein Arnt fused to the leucine zipper (LZ dimerization domain from bZIP (basic region-leucine zipper protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H, transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed, as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (K(d 148.9 nM and 40.2 nM, respectively, but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly alpha-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60-70 aa. Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions.

  12. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants. (United States)

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo


    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  13. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)


    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  14. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang


    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  15. Basic fibroblast growth factor predicts cardiovascular disease occurrence in participants from the Veterans Affairs Diabetes Trial

    Directory of Open Access Journals (Sweden)

    Mark B Zimering


    Full Text Available Aim: Cardiovascular disease is a leading cause of morbidity and mortality in adults with type 2 diabetes mellitus. The aim of the present study was to test whether plasma basic fibroblast growth factor (bFGF levels predict future cardiovascular disease (CVD occurrence in adults from the Veterans Affairs Diabetes Trial. Methods: Nearly four- hundred veterans, 40 years of age or older, having a mean baseline diabetes duration of 11.4 years were recruited from outpatient clinics at six geographically distributed sites in the Veterans Affairs Diabetes Trial (VADT. Within the VADT, they were randomly assigned to intensive or standard glycemic treatment, with follow-up as much as seven and one-half years. Cardiovascular disease occurrence was examined at baseline in the patient population and during randomized treatment. Plasma bFGF was determined with a sensitive, specific two-site enzyme-linked immunoassay at the baseline study visit in all 399 subjects. Results: One hundred-five first cardiovascular events occurred in these 399 subjects. The best fit model of risk factors associated with the time to first cardiovascular disease occurrence (in the study over a seven and one-half year period had as significant predictors: prior cardiovascular event, (hazard ratio [HR] 3.378; 95% confidence intervals [CI] 3.079- 3.807; P < .0001, baseline plasma bFGF (HR 1.008; 95% CI 1.002-1.014; P =.01, age, (HR 1.027; 95% CI 1.004-1.051; P =.019, baseline plasma triglycerides, (HR 1.001; 95% CI 1.000-1.002; P =.02 and diabetes duration-treatment interaction (P =.03. Intensive glucose-lowering was associated with significantly decreased hazard ratios for CVD occurrence (0.38-0.63 in patients with known diabetes duration of 0-10 years, and non-significantly increased hazard ratios for CVD occurrence (0.82-1.78 in patients with longer diabetes duration. Conclusion: High level ofplasma basic fibroblast growth factor is a predictive biomarker of future cardiovascular

  16. Higher-order factors of the big five and basic values: empirical and theoretical relations. (United States)

    Vecchione, Michele; Alessandri, Guido; Barbaranelli, Claudio; Caprara, Gianvittorio


    The Big Five Model of personality and Schwartz's theory of basic values are two prominent taxonomies that offer a convenient way to organize the major individual differences in, respectively, personality traits and personal values. Both taxonomies provide a hierarchical framework, whose components can be traced back to a smaller number of broader dimensions. The current study investigated the relationship between the two superordinate factors of personality encompassing the Big Five dimensions (alpha and beta) and the four higher-level value types from Schwartz's theory (Self-transcendence, Self-enhancement, Conservation, and Openness to change). To examine the relations between higher-order traits and values, we relied on factor analysis and multidimensional scaling. Results indicated that alpha and beta were differently related to the Conservation versus Openness to change dimension. Alpha was positively related to values that emphasize protecting stability and respecting norms and traditions, and negatively related to values emphasizing receptiveness to change and independence of thought, feeling, and action. The opposite pattern of relations was found for beta.

  17. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor (United States)

    Nguyen, Thi H.; Kim, Sung-Hye; Decker, Caitlin G.; Wong, Darice Y.; Loo, Joseph A.; Maynard, Heather D.


    Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabilization of bFGF by covalent conjugation with a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors—such as heat, mild and harsh acidic conditions, storage and proteolytic degradation—unlike native bFGF. Following the application of stress, the conjugate was also significantly more active than the control conjugate system in which the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for the stabilization of heparin-binding growth factors in general.

  18. Analysis of trophic responses in lesioned brain: focus on basic fibroblast growth factor mechanisms

    Directory of Open Access Journals (Sweden)

    Chadi G.


    Full Text Available The actions of fibroblast growth factors (FGFs, particularly the basic form (bFGF, have been described in a large number of cells and include mitogenicity, angiogenicity and wound repair. The present review discusses the presence of the bFGF protein and messenger RNA as well as the presence of the FGF receptor messenger RNA in the rodent brain by means of semiquantitative radioactive in situ hybridization in combination with immunohistochemistry. Chemical and mechanical injuries to the brain trigger a reduction in neurotransmitter synthesis and neuronal death which are accompanied by astroglial reaction. The altered synthesis of bFGF following brain lesions or stimulation was analyzed. Lesions of the central nervous system trigger bFGF gene expression by neurons and/or activated astrocytes, depending on the type of lesion and time post-manipulation. The changes in bFGF messenger RNA are frequently accompanied by a subsequent increase of bFGF immunoreactivity in astrocytes in the lesioned pathway. The reactive astrocytes and injured neurons synthesize increased amount of bFGF, which may act as a paracrine/autocrine factor, protecting neurons from death and also stimulating neuronal plasticity and tissue repair

  19. In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

    Directory of Open Access Journals (Sweden)

    Postovit Lynne-Marie


    Full Text Available Abstract Basic fibroblast growth factor (bFGF, a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis.

  20. Basic fibroblast growth factor protects against excitotoxicity and chemical hypoxia in both neonatal and adult rats. (United States)

    Kirschner, P B; Henshaw, R; Weise, J; Trubetskoy, V; Finklestein, S; Schulz, J B; Beal, M F


    Basic fibroblast growth factor (bFGF) is a polypeptide growth factor that promotes neuronal survival. We recently found that systemic administration of bFGF protects against both excitotoxicity and hypoxia-ischemia in neonatal animals. In the present study, we examined whether systemically administered bFGF could prevent neuronal death induced by intrastriatal injection of N-methyl-D-aspartate (NMDA) or chemical hypoxia induced by intrastriatal injection of malonate in adult rats and 1-methyl-4-phenylpyridinium (MPP+) in neonatal rats. Systemic administration of bFGF (100 micrograms/kg) for three doses both before and after intrastriatal injection of either NMDA or malonate in adult rats produced a significant neuroprotective effect. In neonatal rats, bFGF produced dose-dependent significant neuroprotective effects against MPP+ neurotoxicity, with a maximal protection of approximately 50% seen with either a single dose of bFGF of 300 micrograms/kg or three doses of 100 micrograms/kg. These results show that systemic administration of bFGF is effective in preventing neuronal injury under circumstances in which the blood-brain barrier may be compromised, raising the possibility that this strategy could be effective in stroke.

  1. Effects of Basic Fibroblast Growth Factor and Insulin-like Growth Factor on Cultured Cartilage Cells from Skate Raja porasa

    Institute of Scientific and Technical Information of China (English)

    樊廷俊; 晋凌云; 汪小锋


    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24℃. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  2. Expression of vascular endothelial growth factor and basic fibroblast growth factor in acute rejection reaction following rat orthotopic liver transplantation. (United States)

    Zhang, Changsong; Yang, Guangshun; Lu, Dewen; Ling, Yang; Chen, Guihua; Zhou, Tianbao


    The aim of the present study was to investigate the expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in acute rejection reaction (ARR) following orthotopic liver transplantation in a rat model. Serum VEGF and bFGF levels were detected using ELISA, and their expression levels in liver and spleen tissues were determined using immunohistochemistry. The mRNA expression levels of VEGF and bFGF were detected by conducting a quantitative polymerase chain reaction during the ARR following orthotopic liver transplantation. The expression levels of VEGF and bFGF in the serum 3 days following liver transplantation were significantly higher compared with those in the other groups (1 and 7 days following transplantation; Pliver tissue that were shown to be positive for the expression VEGF and bFGF using immunohistochemistry were significantly higher 3 days following transplantation than at the other time points (Pspleen detected 3 days following the transplantation surgery were also significantly higher compared with those at the other time points (Pchanged dynamically, by peaking and then declining, in ARR following orthotopic liver transplantation. These changes may have an important impact on angiogenesis and the inflammatory reaction, and the identification of these changes increases the current understanding of ARR following orthotopic liver transplantation.

  3. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Weihui Huang; Yadan Li; Yufeng Lin; Xue Ye; Dawei Zang


    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion,and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment.Results showed that following administration,the number of endogenous neural stem cells in the infarct area significantly increased,malondialdehyde content in brain tissue homogenates significantly decreased,nitric oxide content,glutathione peroxidase and superoxide dismutase activity significantly elevated,and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests.In particular,the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant.Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels,improving the quantity of endogenous neural stem cells,and promoting neurological function of mice with cerebral infarction.

  4. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. (United States)

    Lu, Qiqi; Li, Mingming; Zou, Yu; Cao, Tong


    Scaffolds based on decellularized adipose tissue (DAT) are gaining popularity in adipose tissue engineering due to their high biocompatibility and adipogenic inductive property. However, previous studies involving DAT-derived scaffolds have not fully revealed their potentials for in vivo adipose tissue construction. With the aim of developing a more efficient adipose tissue engineering technique based on DAT, in this study, we investigated the in vivo adipogenic potential of a basic fibroblast growth factor (bFGF) delivery system based on heparinized DAT (Hep-DAT). To generate this system, heparins were cross-linked to mouse DATs by using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide and N-Hydroxysuccinimide. The bFGF-binding Hep-DATs were first tested for controlled release ability in vitro and then transplanted subcutaneously. Highly vascularized adipose tissues were formed 6weeks after transplantation. Histology and gene expression analysis revealed that majority of the Hep-DAT scaffolds were infiltrated with host-derived adipose tissues that possessed similar adipogenic and inflammatory gene expression as endogenous adipose tissues. Additionally, strong de novo adipogenesis could also be induced when bFGF-binding Hep-DATs were thoroughly minced and injected subcutaneously. In conclusion, our study demonstrated that bFGF-binding Hep-DAT could be an efficient, biocompatible and injectable adipogenic system for in vivo adipose tissue engineering.

  5. Proton electromagnetic form factors: Basic notions, present achievements and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pacetti, Simone, E-mail: [Dipartimento di Fisica e Geologia dell’Universitá degli Studi di Perugia and INFN Sezione di Perugia, 06123 Perugia (Italy); Baldini Ferroli, Rinaldo [INFN, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Tomasi-Gustafsson, Egle [CEA, IRFU, SPhN, Saclay, 91191 Gif-sur-Yvette Cedex (France); CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91406 Orsay (France)


    The aim of this report is to give basic notions on electromagnetic hadron form factors (FFs), as they are understood at the present time, to summarize and analyze the present experimental results and available theoretical models and to open a view on future perspectives. FFs are fundamental quantities, which describe the internal, dynamical structure of hadrons. Although the theoretical formalism was settled in the middle of last century, as well as the first experiments in electron–proton elastic scattering for which R. Hofstadter got the Nobel prize in 1961, a renewed activity is due to recent, surprising results and to the opening of new experimental possibilities. An elegant formalism was built on the assumption of a hadron electromagnetic interaction based on the exchange of a virtual photon of four-momentum q{sup 2}. In this case FFs are analytic functions of only one variable, q{sup 2}, and the electromagnetic vertex γ{sup ∗}hh (h is any hadron) is defined by two structure functions, which, in turn, are expressed in terms of (2S+1) FFs, S being the hadron spin, assuming parity and time-invariance. Our aim is to anticipate the potentiality contained in the future data, combined with the present knowledge, to point out the relevant observables and the most significative measurements, and to give predictions to be compared to the data when they will be available.

  6. Expression of a Functional Recombinant Human Basic Fibroblast Growth Factor from Transgenic Rice Seeds

    Directory of Open Access Journals (Sweden)

    Daichang Yang


    Full Text Available Basic fibroblast growth factor (FGF-2 is an important member of the FGF gene family. It is widely used in clinical applications for scald and wound healing in order to stimulate cell proliferation. Further it is applied for inhibiting stem cell differentiation in cultures. Due to a shortage of plasma and low expression levels of recombinant rbFGF in conventional gene expression systems, we explored the production of recombinant rbFGF in rice grains (Oryza sativa bFGF, OsrbFGF. An expression level of up to 185.66 mg/kg in brown rice was obtained. A simple purification protocol was established with final recovery of 4.49% and resulting in a yield of OsrbFGF reaching up to 8.33 mg/kg OsrbFGF. The functional assay of OsrbFGF indicated that the stimulating cell proliferation activity on NIH/3T3 was the same as with commercialized rbFGF. Wound healing in vivo of OsrbFGF is equivalent to commercialized rbFGF. Our results indicate that rice endosperm is capable of expressing small molecular mass proteins, such as bFGF. This again demonstrates that rice endosperm is a promising system to express various biopharmaceutical proteins.

  7. Roles of cyclooxygenase-2 in microvascular endothelial cell proliferation induced by basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)


    Background The level of basic fibroblast growth factor (bFGF) increases rapidly after cerebral ischemia. However, the molecular mechanisms for the effects of bFGF on cerebral microvascular endothelial cells (cMVECs) have not yet been fully elucidated. In this study, a murine cMVEC line, bend.3, was employed to study the effects of bFGF on cyclooxygenase (COX) expression and its downstream effects in cMVECs. Methods After treatment with bFGF, RT-PCR and Western blotting analyses were carried out to evaluate the changes in COX-2 mRNA and protein expression, respectively. Ml-r assays were performed to measure cell proliferation. The prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) concentrations in the culture medium were measured by enzyme-linked immunosorbent assay (ELISA). Results COX-2 mRNA and protein expressions in bEnd.3 cells were induced by bFGF in time- and dose-dependent manners. The bFGF-induced COX-2 upregulation led to enhanced PGE2 production by bEnd.3 cells, and this effect was abolished by the selective COX-2 inhibitor NS-398. bFGF also increased VEGF production by bend.3 cells, and this effect was blocked by NS-398 and the EP1/2 (PGE2 receptors) antagonist AH6809. Furthermore, exogenous PGE2 increased VEGF production in bend.3 cells, and AH6809 blocked this effect. Conclusion bFGF increases VEGF production in an autocrine manner by increasing COX-2-generated PGE2 in cMVECs and subsequently stimulates MVEC proliferation and angiogenesis.

  8. Effects of Nerve Growth Factor and Basic Fibroblast Growth Factor Promote Human Dental Pulp Stem Cells to Neural Differentiation. (United States)

    Zhang, Jinlong; Lian, Min; Cao, Peipei; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Wang, Lingling; Chen, Jiajia; Wang, Yi; Feng, Guijuan; Cui, Zhiming


    Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, βIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.

  9. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury. (United States)

    Huang, Siqin; Tang, Chenglin; Sun, Shanquan; Cao, Wenfu; Qi, Wei; Xu, Jin; Huang, Juan; Lu, Weitian; Liu, Qian; Gong, Biao; Zhang, Yi; Jiang, Jin


    Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.

  10. Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. (United States)

    Fukuda, Ryouichi


    A potent ability to assimilate hydrophobic compounds, including n-alkanes and fatty acids as carbon sources, is one of important characteristics of the yeast Yarrowia lipolytica, and has been studied for both basic microbiological interest and biotechnological applications. This review summarizes recent progress on the metabolism of n-alkanes and its transcriptional control in response to n-alkanes and to fatty acids in Y. lipolytica. In the metabolism of n-alkanes, cytochromes P450ALK catalyze their initial hydroxylation to fatty alcohols, which are subsequently converted to fatty acids and utilized. The transcription of ALK1, encoding a predominant cytochrome P450ALK, is regulated in response to n-alkanes by two basic helix-loop-helix transcription activators, Yas1p and Yas2p, and Opi1-family transcription repressor Yas3p. Transcription of the genes involved in fatty acid utilization and peroxisome biogenesis is controlled by Ctf1-family Zn2Cys6 type transcription factor Por1p in response to fatty acids in Y. lipolytica.

  11. Ontogeny of expression of basic fibroblast growth factor and its receptors in human fetal skin

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; FU Xiao-bing; GE Shi-li; SUN Tong-zhu; SHENG Zhi-yong


    Objective : To investigate the expression characteristics of basic fibroblast growth factor (bFGF)and its receptors, flg ( FGFR1 ) and bek ( FGFR2), in fetal skin at different gestational ages underlying the relevance of these 3 proteins to skin development and the mechanisms underlying the phenotypic transition from scarless to scarforming healing.Methods: Eighteen specimens of fetal skin biopsies of human embryo were obtained from spontaneous abortions at different gestational ages of 13-32 weeks. Gene expression of bFGF, bek and flg was examined with reverse transcription-polymerase chain reaction (RT-PCR). The dynamic expression and distribution of these 3 proteins were detected with streptavidin peroxidase ( SP )immunohistochemical staining method.Results: In the early gestational fetal skin, genes of bFGF and flg were strongly expressed and more protein contents of these 2 proteins were found as compared with the genes at late gestation fetal skin (2.446 ± 0.116 and 2.066 ± 0. 152 versus 2.157 ± 0. 101 and 1.818 ± 0.086,respectively, P < 0.05). On the contrary, the levels of gene expression and protein content of bek were not differently expressed in the early gestational fetal skin versus the late ones. Protein particles of bFGF were mainly distributed in the epidermal cells and some fibroblasts. Bek was mainly located in the cell membrane and cytoplasm of epidermal cells while flg protein was principally located in the epidermal cells, endothelial cells and some fibroblasts.Conclusions: The endogenous bFGF and their receptors might be involved in the cutaneous development at fetal stage. The differently expressing levels of bFGF and flg during gestation may be related to scarless or scarforming repair during gestation.

  12. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2. (United States)

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi


    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  13. Rbms3, an RNA-binding protein, mediates the expression of Ptf1a by binding to its 3'UTR during mouse pancreas development. (United States)

    Lu, Chung-Kuang; Lai, Yi-Chyi; Chen, Hau-Ren; Chiang, Ming-Ko


    The development of the pancreas is a complicated process that is regulated on several levels. Pancreas transcription factor 1, alpha subunit (Ptf1a), also known as p48, is a pancreas-specific basic helix-loop-helix transcription factor that is critical for both exocrine pancreas development and maintenance of acinar cell differentiation. Based on a differential screening assay, we identified Rbms3, a gene encoding a glycine-rich RNA-binding protein, to be specifically expressed in the neural tube and the pancreatic rudiment of e10.5 embryos. The presence of Rbms3 in the early developing pancreas suggests that specific post-transcriptional regulation mechanisms play an important role in controlling pancreas development. In this study, we show that Rbms3 binds to the 3'UTR of Ptf1a mRNA, but not the 3'UTR of Pdx1, which is another pancreatic transcription factor. The ectopic expression of Rbms3 stimulates the translation of a reporter gene carrying the Ptf1a 3'UTR. In addition, when Rbms3 expression is suppressed in the AR42J-B13 pancreatic exocrine cell line, the expression of Ptf1a is also down-regulated. These results suggest that binding of Rbms3 to the 3'UTR of Ptf1a regulates the production of the Ptf1a protein and, thereby, indirectly regulates the expression of the Ptf1a downstream target genes.

  14. Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant. (United States)

    Carey, Heather A; Bronisz, Agnieszka; Cabrera, Jennifer; Hildreth, Blake E; Cuitiño, Maria; Fu, Qi; Ahmad, Asrar; Toribio, Ramiro E; Ostrowski, Michael C; Sharma, Sudarshana M


    The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation.

  15. Proliferation of endothelial cells on surface-immobilized albumin-heparin conjugate loaded with basic fibroblast growth factor

    NARCIS (Netherlands)

    Bos, Gert W.; Scharenborg, Nicole M.; Poot, André A.; Engbers, Gerard H.M.; Beugeling, Tom; Aken, van Willem G.; Feijen, Jan


    Seeding of endothelial cells (ECs) on the luminal surface of small-diameter vascular grafts is a promising method to avoid occlusion of these prostheses. Immobilization of basic fibroblast growth factor (bFGF) to substrates used to coat or fill porous prostheses may enhance the formation of a conflu

  16. The DET1-COP1-HY5 Pathway Constitutes a Multipurpose Signaling Module Regulating Plant Photomorphogenesis and Thermomorphogenesis

    Directory of Open Access Journals (Sweden)

    Carolin Delker


    Full Text Available Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4 coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the DE-ETIOLATED 1 (DET1-CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1-ELONGATED HYPOCOTYL 5 (HY5-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes.

  17. NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas. (United States)

    Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X; McMillan, Elizabeth A; Minna, John D; Cobb, Melanie H


    Cigarette smoking is a major risk factor for acquisition of small cell lung cancer (SCLC). A role has been demonstrated for the basic helix-loop-helix transcription factor NeuroD1 in the pathogenesis of neural and neuroendocrine lung cancer, including SCLC. In the present study we investigate the possible function of NeuroD1 in established tumors, as well as actions early on in pathogenesis, in response to nicotine. We demonstrate that nicotine up-regulates NeuroD1 in immortalized normal bronchial epithelial cells and a subset of undifferentiated carcinomas. Increased expression of NeuroD1 subsequently leads to regulation of expression and function of the nicotinic acetylcholine receptor subunit cluster of α3, α5, and β4. In addition, we find that coordinated expression of these subunits by NeuroD1 leads to enhanced nicotine-induced migration and invasion, likely through changes in intracellular calcium. These findings suggest that aspects of the pathogenesis of neural and neuroendocrine lung cancers may be affected by a nicotine- and NeuroD1-induced positive feedback loop.

  18. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2]. (United States)

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun


    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  19. Regulation of Sterol Biosynthesis in the Human Fungal Pathogen Aspergillus fumigatus: Opportunities for Therapeutic Development (United States)

    Dhingra, Sourabh; Cramer, Robert A.


    Sterols are a major component of eukaryotic cell membranes. For human fungal infections caused by the filamentous fungus Aspergillus fumigatus, antifungal drugs that target sterol biosynthesis and/or function remain the standard of care. Yet, an understanding of A. fumigatus sterol biosynthesis regulatory mechanisms remains an under developed therapeutic target. The critical role of sterol biosynthesis regulation and its interactions with clinically relevant azole drugs is highlighted by the basic helix loop helix (bHLH) class of transcription factors known as Sterol Regulatory Element Binding Proteins (SREBPs). SREBPs regulate transcription of key ergosterol biosynthesis genes in fungi including A. fumigatus. In addition, other emerging regulatory pathways and target genes involved in sterol biosynthesis and drug interactions provide additional opportunities including the unfolded protein response, iron responsive transcriptional networks, and chaperone proteins such as Hsp90. Thus, targeting molecular pathways critical for sterol biosynthesis regulation presents an opportunity to improve therapeutic options for the collection of diseases termed aspergillosis. This mini-review summarizes our current understanding of sterol biosynthesis regulation with a focus on mechanisms of transcriptional regulation by the SREBP family of transcription factors. PMID:28203225

  20. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. (United States)

    Esser, Charlotte; Rannug, Agneta


    The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.

  1. FHL2 Antagonizes Id1-Promoted Proliferation and Invasive Capacity of Human MCF-7 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Han; Zhi-qiang Wu; Ya-li Zhao; Yi-ling Si; Ming-zhou Guo; Xiao-bing Fu


    Objective:FHL2 was previously identified to be a novel interacting factor of Id family proteins.The aim of this study was to investigate,the effects of FHL2 on Id1-mediated transcriptional regulation activity and its oncogenic activity in human breast cancer cells.Methods:Cell transfection was performed by Superfect reagent.Id1 stably overexpressed MCF-7 cells was cloned by G418 screening.The protein level of Id1 was detected by western blot analysis.Dual relative luciferase assays were used to measure the effect of E47-mediated transcriptional activity in MCF-7 human breast cancer cells.MTT assay was used to measure cell proliferation.Transwell assay was used to measure the invasive capacity of MCF-7 cancer cells.Results:The basic helix-loop-helix(bHLH)factor E47-mediated transcription activity was markedly repressed by Id1 in MCF-7 cells.This Id1-mediated repression was effectively antagonized by FHL2 transduction.Overexpression of Id1 markedly promoted the proliferation rate and invasive capacity of MCF-7 cells; however,these effects induced by Id1 were significantly suppressed by overexpression of FHL2 in cells.Conclusion:FHL2 can inhibit the proliferation and invasiveness of human breast cancer cells by repressing the functional activity of Id1.These findings provide the basis for further investigating the functional roles of FHL2-Id1 signaling in the carcinogenesis and development of human breast cancer.

  2. Nato3 integrates with the Shh-Foxa2 transcriptional network regulating the differentiation of midbrain dopaminergic neurons. (United States)

    Nissim-Eliraz, Einat; Zisman, Sophie; Schatz, Omri; Ben-Arie, Nissim


    Mesencephalic dopaminergic (mesDA) neurons originate from the floor plate of the midbrain, a transient embryonic organizing center located at the ventral-most midline. Since the loss of mesDA leads to Parkinson's disease, the molecular mechanisms controlling the genesis and differentiation of dopaminergic progenitors are extensively studied and the identification and characterization of new genes is of interest. Here, we show that the expression of the basic helix-loop-helix transcription factor Nato3 (Ferd3l) increases in parallel to the differentiation of SN4741 dopaminergic cells in vitro. Nato3 transcription is directly regulated by the transcription factor Foxa2, a target and effector of the Sonic hedgehog (Shh) signaling cascade. Moreover, pharmacological inhibition of Shh signaling downregulated the expression of Nato3, thus defining Nato3 as a novel component of one of the major pathways controlling cell patterning and generation of mesDA. Furthermore, we show that Nato3 regulated Shh and Foxa2 through a novel feed-backward loop. Up- and downregulation of Nato3 further affected the transcription of Nurr1, implicated in the genesis of mesDA, but not of TH. Taken together, these data shed new light on the transcriptional networks controlling the generation of mesDA and may be utilized in the efforts to direct stem cells towards a dopaminergic fate.

  3. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube

    DEFF Research Database (Denmark)

    Hanotel, Julie; Bessodes, Nathalie; Thélie, Aurore


    The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing gene...... and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube....... and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural...... tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic...

  4. Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in Arabidopsis thaliana. (United States)

    Nomoto, Yuji; Kubozono, Saori; Miyachi, Miki; Yamashino, Takafumi; Nakamichi, Norihito; Mizuno, Takeshi


    In Arabidopsis thaliana, the circadian clock regulates the photoperiodic plant growth including the elongation of hypocotyls in a short-days (SDs)-specific manner. The clock-controlled PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) gene encoding a basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this regulation. The SDs-specific elongation of hypocotyls is best explained by accumulation of the active PIF4 proteins at the end of night specifically in SDs due to coincidence between internal (circadian clock) and external (photoperiod) cues. However, this external coincidence model was challenged with the recent finding that the elongation of hypocotyls is markedly promoted at high growth temperature (28˚C) even in long-days (LDs), implying that the model to explain the photoperiodic response of plant architecture appears to be conditional on ambient temperature. With regard to this problem, the results of this and previous studies showed that the model holds under a wide range of ambient temperature conditions (16˚C to 28˚C). We propose that the circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in natural habitats.

  5. SPATULA links daytime temperature and plant growth rate. (United States)

    Sidaway-Lee, Kate; Josse, Eve-Marie; Brown, Alanna; Gan, Yinbo; Halliday, Karen J; Graham, Ian A; Penfield, Steven


    Plants exhibit a wide variety of growth rates that are known to be determined by genetic and environmental factors, and different plants grow optimally at different temperatures, indicating that this is a genetically determined character. Moderate decreases in ambient temperature inhibit vegetative growth, but the mechanism is poorly understood, although a decrease in gibberellin (GA) levels is known to be required. Here we demonstrate that the basic helix-loop-helix transcription factor SPATULA (SPT), previously known to be a regulator of low temperature-responsive germination, mediates the repression of growth by cool daytime temperatures but has little or no growth-regulating role under warmer conditions. We show that only daytime temperatures affect vegetative growth and that SPT couples morning temperature to growth rate. In seedlings, warm temperatures inhibit the accumulation of the SPT protein, and SPT autoregulates its own transcript abundance in conjunction with diurnal effects. Genetic data show that repression of growth by SPT is independent of GA signaling and phytochrome B, as previously shown for PIF4. Our data suggest that SPT integrates time of day and temperature signaling to control vegetative growth rate.

  6. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness (United States)

    Schwartz, Robert J.


    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  7. The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. (United States)

    Fontemaggi, Giulia; Dell'Orso, Stefania; Trisciuoglio, Daniela; Shay, Tal; Melucci, Elisa; Fazi, Francesco; Terrenato, Irene; Mottolese, Marcella; Muti, Paola; Domany, Eytan; Del Bufalo, Donatella; Strano, Sabrina; Blandino, Giovanni


    ID4 (inhibitor of DNA binding 4) is a member of a family of proteins that function as dominant-negative regulators of basic helix-loop-helix transcription factors. Growing evidence links ID proteins to cell proliferation, differentiation and tumorigenesis. Here we identify ID4 as a transcriptional target of gain-of-function p53 mutants R175H, R273H and R280K. Depletion of mutant p53 protein severely impairs ID4 expression in proliferating tumor cells. The protein complex mutant p53-E2F1 assembles on specific regions of the ID4 promoter and positively controls ID4 expression. The ID4 protein binds to and stabilizes mRNAs encoding pro-angiogenic factors IL8 and GRO-alpha. This results in the increase of the angiogenic potential of cancer cells expressing mutant p53. These findings highlight the transcriptional axis mutant p53, E2F1 and ID4 as a still undefined molecular mechanism contributing to tumor neo-angiogenesis.

  8. Molecular cloning and its expression of trachealess gene (As-trh) during development in brine shrimp, Artemia sinica. (United States)

    Wang, Jia-Qing; Hou, Lin; Yi, Nan; Zhang, Riu-Feng; Zou, Xiang-Yang; Xiao, Qin; Guo, Ran


    Basic helix-loop-helix-PAS (bHLH-PAS) family transcription factors are implicated in multiple developmental and physiological regulatory processes. Herein, a full-length cDNA encoding a bHLH-PAS domain transcription factor trachealess gene (designated as As-trh) was cloned and characterized from brine shrimp (Artemia sinica) for the first time. The full-length cDNA of As-trh was 2,698 bp with a 2,319 bp open reading frame encoding a deduced protein of 772 amino acid polypeptide with a calculated molecular mass of 86.02 kDa and an isoelectric point of 5.87. Sequence alignment revealed that As-trh had high homology with other species trh gene, including the D-trh gene in Drosophila melanogaster and Bm-trh in Bombyx mori. The early and persistent expression of As-trh in the naupliar stages by whole-mount embryonic in situ hybridization and immunohistochemistry suggest that As-trh functions very early in the salt gland and may be required continuously in this tissue. Later in development, expression of As-trh begins to decrease and disappear in salt gland of the older nauplius and appears in the thoracic epipods of the sub-adult Artemia. These results indicated that As-trh might play an important role in osmoregulatiory organ development from the larvae stages through adult stages.

  9. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6-methylguanine-DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1 is a member of the basic helix-loop-helix (bHLH transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7 and O(6-methylguanine-DNA methyltransferase (MGMT. Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

  10. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells. (United States)

    Asanoma, Kazuo; Liu, Ge; Yamane, Takako; Miyanari, Yoko; Takao, Tomoka; Yagi, Hiroshi; Ohgami, Tatsuhiro; Ichinoe, Akimasa; Sonoda, Kenzo; Wake, Norio; Kato, Kiyoko


    BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors that play key roles in multiple cell behaviors. BHLHE40/41 were recently shown to be involved in an epithelial-to-mesenchymal transition (EMT). However, the precise mechanism of EMT control by BHLHE40/41 remains unclear. In the present study, we demonstrated that BHLHE40/41 expression was controlled in a pathological stage-dependent manner in human endometrial cancer (HEC). Our in vitro assays showed that BHLHE40/41 suppressed tumor cell invasion. BHLHE40/41 also suppressed the transcription of the EMT effectors SNAI1, SNAI2, and TWIST1. We identified the critical promoter regions of TWIST1 for its basal transcriptional activity. We elucidated that the transcription factor SP1 was involved in the basal transcriptional activity of TWIST1 and that BHLHE40/41 competed with SP1 for DNA binding to regulate gene transcription. This study is the first to report the detailed functions of BHLHE40 and BHLHE41 in the suppression of EMT effectors in vitro. Our results suggest that BHLHE40/41 suppress tumor cell invasion by inhibiting EMT in tumor cells. We propose that BHLHE40/41 are promising markers to predict the aggressiveness of each HEC case and that molecular targeting strategies involving BHLHE40/41 and SP1 may effectively regulate HEC progression.

  11. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. (United States)

    Morales, Daniver; Hatten, Mary E


    The cerebellum, like the cerebrum, includes a nuclear structure and an overlying cortical structure. Experiments in the past decade have expanded knowledge beyond the traditional function of the cerebellum to include critical roles in motor learning and memory and sensory discrimination. The initial steps in cerebellar development depend on inductive signaling involving FGF and Wnt proteins produced at the mesencephalic/metencephalic boundary. To address the issue of how individual cerebellar cell fates within the cerebellar territory are specified, we examined the expression of transcription factors, including mammalian homologues of LIM homeodomain-containing proteins, basic helix-loop-helix proteins, and three amino acid loop-containing proteins. The results of these studies show that combinatorial codes of transcription factors define precursors of the cerebellar nuclei, and both Purkinje cells and granule neurons of the cerebellar cortex. Examination of gene expression patterns in several hundred lines of Egfp-BAC (bacterial artificial chromosome) transgenic mice in the GENSAT Project revealed numerous genes with restricted expression in cerebellar progenitor populations, including genes specific for cerebellar nuclear precursors and Purkinje cell precursors. In addition, we identified patterns of gene expression that link granule and Purkinje cells to their precerebellar nuclei. These results identify molecular pathways that offer new insights on the development of the nuclear and cortical structures of the cerebellum, as well as components of the cerebellar circuitry.


    Directory of Open Access Journals (Sweden)

    Serumu Igberadja


    Full Text Available Similar to other science subjects, basic technology recorded poor secondary school students’ performance both in national and international examination. Furthermore, there are large variations in performances of Nigerian students that raise concerns. These differences in performance may be caused by multiple factors that need to be identified. The aim of this study is to identify the factors that influence students’ performance in basic technology. Four research questions guided the study and four hypotheses were tested at the .05 level of significance. The study used the survey research design method with 218 principals of secondary schools in Delta South Senatorial District in Delta State of Nigeria as the target population. The stratified random sampling technique was used to select 65 principals (32 from public and 33 from private secondary schools as sample of the study. The instrument for data collection was a questionnaire which was content and face validated by three lecturers. The test-retest method was used to ascertain the reliability based on 20 principals who were not part of the population under study. The estimated reliability r= 0.73. Data was collected personally by the researcher and was analysed using ANOVA (Analysis of variance. The result revealed that multiple factors; schools’, students’, government, and parents’ factors influenced students’ performance in basic technology with lack of resources underlying these factors.  Hence, it was recommended among others that Delta State Ministry of Basic Education should adequately provide the required resources for the teaching and learning of basic technology in secondary schools in Delta State.

  13. Basic fibroblast growth factor protects auditory neurons and hair cells from noise exposure and glutamate neurotoxicity

    Institute of Scientific and Technical Information of China (English)

    翟所强; 王大君; 王嘉陵


    The purpose of the present study was to determine protectivie effects of basic fibroblast growth factor (bFGF) on cochlear neurons and hair cells in vitro and in vivo. In experiment I, cultured spiral ganglion neurons (SGNs) prepared from P3 mice were exposed to 20mM glutamate for 2 hours before the culture medium was replaced with fresh medium containing 0, 25, 50, and 100 ng/ml bFGF, respectively. Fourteen days later, all cultures were fixed with 4% paraformaldehyde, and stained with 1% toluidine blue. The number of surviving SGNs were counted and the length of SGNs neurites were measured. Exposure to 20 mM glutamate for 24 hours resulted in an inhibition on neurite outgrowth of SGNs and elevated cell death. Treatment of the cultures with bFGF led to promotion of neurite outgrowth and elevated number of surviving SGNs. Effects of bFGF were dose dependent with the highest potency at 100 ng/ml. In experiment Ⅱ, in vivo studies were carried out with guinea pigs in which bFGF or artificial perilymph was perfused into the cochlea to assess possible protective effects of bFGF on cochlear hair cells and compound action potentials(CAP). The CAPs were measured before, immediatly and 48 hours after exposure to noise. Significant differences in CAP were observed (p<0. 05 ) among the bFGF perfused group, control group(t =3. 896 ) and artificial perilymph perfused group (t =2. 520) at 48 hours after noise exposure, Cochleae were removed and hair cell Loss was analyzed in surface preparations prepared from all experimental animals. Acoustic trauma caused loss of 651 and 687 inner hair cells in the control and artificial perilymph perfused group, respectively. In sharp contrast, only 31 inner hair cells were lost in the bFGF perfused ears. Similarly, more outer hair cells died in the control and perilymph perfuesed group (41830 and 41968, respectively) than in the group treated with bFGF (34258). Our results demonstrate that bFGF protected SGNs against glutmate

  14. Bimolecular fluorescence complementation as a tool to study interactions of regulatory proteins in plant protoplasts. (United States)

    Pattanaik, Sitakanta; Werkman, Joshua R; Yuan, Ling


    Protein-protein interactions are an important aspect of the gene regulation process. The expression of a gene in response to certain stimuli, within a specific cell type or at a particular developmental stage, involves a complex network of interactions between different regulatory proteins and the cis-regulatory elements present in the promoter of the gene. A number of methods have been developed to study protein-protein interactions in vitro and in vivo in plant cells, one of which is bimolecular fluorescence complementation (BiFC). BiFC is a relatively simple technique based upon the reconstitution of a fluorescent protein. The interacting protein complex can be visualized directly in a living plant cell when two non-fluorescent fragments, of an otherwise fluorescent protein, are fused to proteins found within that complex. Interaction of tagged proteins brings the two non-fluorescent fragments into close proximity and reconstitutes the fluorescent protein. In addition, the subcellular location of an interacting protein complex in the cell can be simultaneously determined. Using this approach, we have successfully demonstrated a protein-protein interaction between a R2R3 MYB and a basic helix-loop-helix MYC transcription factor related to flavonoid biosynthetic pathway in tobacco protoplasts.

  15. MDL-1, a growth- and tumor-suppressor, slows aging and prevents germline hyperplasia and hypertrophy in C. elegans. (United States)

    Riesen, Michèle; Feyst, Inna; Rattanavirotkul, Nattaphong; Ezcurra, Marina; Tullet, Jennifer M A; Papatheodorou, Irene; Ziehm, Matthias; Au, Catherine; Gilliat, Ann F; Hellberg, Josephine; Thornton, Janet M; Gems, David


    In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality.

  16. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich


    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  17. RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants. (United States)

    Proust, Hélène; Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Prescott, Helen; Kelly, Steve; Ishizaki, Kimitsune; Kohchi, Takayuki; Dolan, Liam


    The colonization of the land by plants, sometime before 470 million years ago, was accompanied by the evolution tissue systems [1-3]. Specialized structures with diverse functions-from nutrient acquisition to reproduction-derived from single cells in the outermost layer (epidermis) were important sources of morphological innovation at this time [2, 4, 5]. In extant plants, these structures may be unicellular extensions, such as root hairs or rhizoids [6-9], or multicellular structures, such as asexual propagules or secretory hairs (papillae) [10-12]. Here, we show that a ROOTHAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix-loop-helix transcription factor positively regulates the development of the unicellular and multicellular structures that develop from individual cells that expand out of the epidermal plane of the liverwort Marchantia polymorpha; mutants that lack MpRSL1 function do not develop rhizoids, slime papillae, mucilage papillae, or gemmae. Furthermore, we discovered that RSL class I genes are also required for the development of multicellular axillary hairs on the gametophyte of the moss Physcomitrella patens. Because class I RSL proteins also control the development of rhizoids in mosses and root hairs in angiosperms [13, 14], these data demonstrate that the function of RSL class I genes was to control the development of structures derived from single epidermal cells in the common ancestor of the land plants. Class I RSL genes therefore controlled the generation of adaptive morphological diversity as plants colonized the land from the water.

  18. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. (United States)

    Mendias, Christopher L; Gumucio, Jonathan P; Bakhurin, Konstantin I; Lynch, Evan B; Brooks, Susan V


    Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting fibroblast proliferation and matrix synthesis during the embryonic development of tendons. Mice with a targeted inactivation of scleraxis (Scx(-/-)) fail to properly form limb tendons, but the role that scleraxis has in regulating the growth and adaptation of tendons of adult organisms is unknown. To determine if scleraxis expression changes in response to a physiological growth stimulus to tendons, we subjected adult mice that express green fluorescent protein (GFP) under the control of the scleraxis promoter (ScxGFP) to a 6-week-treadmill training program designed to induce adaptive growth in Achilles tendons. Age matched sedentary ScxGFP mice were used as controls. Scleraxis expression was sparsely observed in the epitenon region of sedentary mice, but in response to treadmill training, scleraxis was robustly expressed in fibroblasts that appeared to be emerging from the epitenon and migrating into the superficial regions of tendon fascicles. Treadmill training also led to an increase in scleraxis, tenomodulin, and type I collagen gene expression as measured by qPCR. These results suggest that in addition to regulating the embryonic formation of limb tendons, scleraxis also appears to play an important role in the adaptation of adult tendons to physiological loading.

  19. Sterol Regulatory Element Binding Protein (Srb1) Is Required for Hypoxic Adaptation and Virulence in the Dimorphic Fungus Histoplasma capsulatum (United States)

    DuBois, Juwen C.; Smulian, A. George


    The Histoplasma capsulatum sterol regulatory element binding protein (SREBP), Srb1 is a member of the basic helix-loop-helix (bHLH), leucine zipper DNA binding protein family of transcription factors that possess a unique tyrosine (Y) residue instead of an arginine (R) residue in the bHLH region. We have determined that Srb1 message levels increase in a time dependent manner during growth under oxygen deprivation (hypoxia). To further understand the role of Srb1 during infection and hypoxia, we silenced the gene encoding Srb1 using RNA interference (RNAi); characterized the resulting phenotype, determined its response to hypoxia, and its ability to cause disease within an infected host. Silencing of Srb1 resulted in a strain of H. capsulatum that is incapable of surviving in vitro hypoxia. We found that without complete Srb1 expression, H. capsulatum is killed by murine macrophages and avirulent in mice given a lethal dose of yeasts. Additionally, silencing Srb1 inhibited the hypoxic upregulation of other known H. capsulatum hypoxia-responsive genes (HRG), and genes that encode ergosterol biosynthetic enzymes. Consistent with these regulatory functions, Srb1 silenced H. capsulatum cells were hypersensitive to the antifungal azole drug itraconazole. These data support the theory that the H. capsulatum SREBP is critical for hypoxic adaptation and is required for H. capsulatum virulence. PMID:27711233

  20. The effect of carbon monoxide integrating nitric oxide through auxin signal in Arabidopsis to modulate iron deficiency

    Directory of Open Access Journals (Sweden)

    Liming eYang


    Full Text Available Carbon monoxide (CO and nitric oxide (NO are essential modulators that regulate the plant response to iron deficiency (-Fe. Auxin is a phytohormone that plays important roles in plant growth and development. We report here that in Arabidopsis –Fe enhanced heme oxygenase-dependent CO generation and auxin transport through redistribution of PIN1 protein, which subsequently increased NO accumulation; NO signaling regulated the activity of ferric chelate reductase (FCR and the expression of Fe-uptake genes including basic helix-loop-helix transcription factor (FIT and the ferric reduction oxidase 2 (FRO2. Over-expression of HY1 encoding heme oxygenase, or treatment with CO donor enhanced basipetal auxin transport, FCR activity, and the expressions of FIT and FRO2 under –Fe. Such effects were compromised in the mutant aux1-7 impaired in auxin transport or in the mutant noa1 or nia1/nia2 defective in NO biosynthesis. -Fe failed to promote auxin transport and FCR activity in hy1 mutant; such inability was reversed in the double mutant of hy1/yucca1 with elevated auxin production, or in hy1/cue1 mutant with NO over-accumulation. Taken together, our results suggest that CO modulates NO signaling through auxin to cope with Fe deficiency in Arabidopsis.

  1. Neuronal differentiation of human iPS cells induced by baicalin via regulation of bHLH gene expression. (United States)

    Morita, Akihiro; Soga, Kohei; Nakayama, Hironobu; Ishida, Torao; Kawanishi, Shosuke; Sato, Eisuke F


    Efficient differentiation is important for regenerative medicine based on pluripotent stem cells, including treatment of neurodegenerative disorders and trauma. Baicalin promotes neuronal differentiation of neural stem/progenitor cells of rats and mice. To evaluate the suitability of baicalin for neuronal differentiation of human iPS cells, we investigated whether it promotes neuronal differentiation in human iPS cells and monitored basic helix-loop-helix (bHLH) gene expression during neuronal differentiation. Baicalin promoted neuronal differentiation and inhibited glial differentiation, suggesting that baicalin can influence the neuronal fate decision in human iPS cells. Notch signaling, which is upstream of bHLH proteins, was not involved in baicalin-induced neuronal differentiation. Baicalin treatment did not down-regulate Hes1 gene expression, but it reduced Hes1 protein levels and up-regulated Ascl1 gene expression. Thus, baicalin promoted neuronal differentiation via modulation of bHLH transcriptional factors. Therefore, baicalin has potential to be used as a small-molecule drug for regenerative treatment of neurodegenerative disorders.

  2. Tgfβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. (United States)

    Barnette, Damien N; Hulin, Alexia; Ahmed, A S Ishtiaq; Colige, Alain C; Azhar, Mohamad; Lincoln, Joy


    Mature heart valves are complex structures consisting of three highly organized extracellular matrix layers primarily composed of collagens, proteoglycans and elastin. Collectively, these diverse matrix components provide all the necessary biomechanical properties for valve function throughout life. In contrast to healthy valves, myxomatous valve disease is the most common cause of mitral valve prolapse in the human population and is characterized by an abnormal abundance of proteoglycans within the valve tri-laminar structure. Despite the clinical significance, the etiology of this phenotype is not known. Scleraxis (Scx) is a basic-helix-loop-helix transcription factor that we previously showed to be required for establishing heart valve structure during remodeling stages of valvulogenesis. In this study, we report that remodeling heart valves from Scx null mice express decreased levels of proteoglycans, particularly chondroitin sulfate proteoglycans (CSPGs), while overexpression in embryonic avian valve precursor cells and adult porcine valve interstitial cells increases CSPGs. Using these systems we further identify that Scx is positively regulated by canonical Tgfβ2 signaling during this process and this is attenuated by MAPK activity. Finally, we show that Scx is increased in myxomatous valves from human patients and mouse models, and overexpression in human mitral valve interstitial cells modestly increases proteoglycan expression consistent with myxomatous mitral valve phenotypes. Together, these studies identify an important role for Scx in regulating proteoglycans in embryonic and mature valve cells and suggest that imbalanced regulation could influence myxomatous pathogenesis.

  3. Molecular characterization and expression of As-nurp1 gene from Artemia sinica during development and in response to salinity and temperature stress. (United States)

    Li, Qiuying; Zhang, Qiaozhi; Han, Lulu; Yuan, Zhe; Tan, Jian; Du, Bin; Zou, Xiangyang; Hou, Lin


    Nuclear protein 1 (NURP1) is a stress-related protein and closely related to diapause in the development of Artemia. In the present paper, the full-length 568-bp cDNA sequence of the nurp1 homolog of Artemia sinica (As-nurp1) was isolated by RACE technology for the first time. The putative As-nurp1 protein consists of 66 amino acids with a basic helix-loop-helix (bHLH) motif and a bipartite nuclear localization signal (NLS). Multiple sequence alignments revealed that the putative As-nurp1 protein sequence was relatively conserved across species, especially in the bHLH domain. The expression of As-nurp1 is widely distributed during A. sinica development. This is followed by a dramatic downregulation after diapause and is newly upregulated from the larval nauplius stage. Furthermore, As-nurp1 transcripts are highly upregulated under conditions of high salinity and low temperature. These findings suggest that As-nurp1 is stress-related and may act as a protective factor in embryonic development.

  4. Diversity in the utilization of glucose and lactate in synthetic mammalian myotubes generated by engineered configurations of MyoD and E12 in otherwise non-differentiation growth conditions. (United States)

    Grubišić, Vladimir; Parpura, Vladimir


    We previously used the expression of various combinations and configurations of MyoD and E12, two basic helix-loop-helix transcription factors (TF), to produce populations of myotubes assuming distinct morphology, myofibrillar development and Ca2+ dynamics, from mammalian C2C12 myoblasts in non-differentiation growth conditions. Here, we assessed the synthetically generated myotubes in terms of energetics, otherwise necessary to sustain their mechanical output as bio-actuators. We found that the myotubes exhibit changed expression of key regulators for the uptake and utilization of two major cellular fuels, glucose and lactate. Furthermore, while lactate transport was uniformly slowed in all the populations of myotubes, glucose uptake and utilization were modified by particular TF configuration. Our approach allows the production of a class of biomaterials with predetermined energetics that could be applied in biorobotics, where fuel of choice could be used, and also in reparative medicine where, for example, particular population of myotubes could be additionally employed as glucose sinks to mitigate effects of secondary metabolic syndrome.

  5. Interhelical loops within the bHLH domain are determinant in maintaining TWIST1-DNA complexes. (United States)

    Bouard, Charlotte; Terreux, Raphael; Hope, Jennifer; Chemelle, Julie Anne; Puisieux, Alain; Ansieau, Stéphane; Payen, Léa


    The basic helix-loop-helix (bHLH) transcription factor TWIST1 is essential to embryonic development, and hijacking of its function contributes to the development of numerous cancer types. It forms either a homodimer or a heterodimeric complex with an E2A or HAND partner. These functionally distinct complexes display sometimes antagonistic functions during development, so that alterations in the balance between them lead to pronounced morphological alterations, as observed in mice and in Saethre-Chotzen syndrome patients. We, here, describe the structures of TWIST1 bHLH-DNA complexes produced in silico through molecular dynamics simulations. We highlight the determinant role of the interhelical loops in maintaining the TWIST1-DNA complex structures and provide a structural explanation for the loss of function associated with several TWIST1 mutations/insertions observed in Saethre-Chotzen syndrome patients. An animated interactive 3D complement (I3DC) is available in Proteopedia at

  6. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. (United States)

    el Ghouzzi, V; Le Merrer, M; Perrin-Schmitt, F; Lajeunie, E; Benit, P; Renier, D; Bourgeois, P; Bolcato-Bellemin, A L; Munnich, A; Bonaventure, J


    Saethre-Chotzen syndrome (acrocephalo-syndactyly type III, ACS III) is an autosomal dominant craniosynostosis with brachydactyly, soft tissue syndactyly and facial dysmorphism including ptosis, facial asymmetry and prominent ear crura. ACS III has been mapped to chromosome 7p21-22. Of interest, TWIST, the human counterpart of the murine Twist gene, has been localized on chromosome 7p21 as well. The Twist gene product is a transcription factor containing a basic helix-loop-helix (b-HLH) domain, required in head mesenchyme for cranial neural tube morphogenesis in mice. The co-localisation of ACS III and TWIST prompted us to screen ACS III patients for TWIST gene mutations especially as mice heterozygous for Twist null mutations displayed skull defects and duplication of hind leg digits. Here, we report 21-bp insertions and nonsense mutations of the TWIST gene (S127X, E130X) in seven ACS III probands and describe impairment of head mesenchyme induction by TWIST as a novel pathophysiological mechanism in human craniosynostoses.

  7. Saethre-Chotzen syndrome: a case report. (United States)

    Peña, William A; Slavotinek, Anne; Oberoi, Snehlata


    Saethre-Chotzen syndrome (acrocephalosyndactyly type III) is a craniosynostosis syndrome inherited in an autosomal dominant manner. Although similar to the other craniosynostosis syndromes in its clinical presentation, this syndrome is caused by a mutation in the TWIST1 gene. The TWIST1 gene product is a transcription factor containing a basic helix-loop-helix (bHLH) domain important in the development of the head and limbs. Clinical features of this syndrome include unilateral or bilateral coronal synostosis, ptosis, low-set ears, hearing loss, hypertelorism, maxillary hypoplasia, deviated nasal septum, broad great toes, clinodactyly, and syndactyly. We report a young girl with clinical features of Saethre-Chotzen syndrome who has a previously undescribed sequence variant in the TWIST1 gene, corresponding to p.R191M. The location of the altered amino acid in the Twist-box of TWIST1, the high conservation of this amino acid between different species, and the phenotype of the child all support a pathogenic role for this novel TWIST1 sequence alteration.

  8. Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome. (United States)

    Yousfi, M; Lasmoles, F; Lomri, A; Delannoy, P; Marie, P J


    The Saethre-Chotzen syndrome is characterized by premature fusion of cranial sutures resulting from mutations in Twist, a basic helix-loop-helix (bHLH) transcription factor. We have identified Twist target genes using human mutant calvaria osteoblastic cells from a child with Saethre-Chotzen syndrome with a Twist mutation that introduces a stop codon upstream of the bHLH domain. We observed that Twist mRNA and protein levels were reduced in mutant cells and that the Twist mutation increased cell growth in mutant osteoblasts compared with control cells. The mutation also caused increased alkaline phosphatase and type I collagen expression independently of cell growth. During in vitro osteogenesis, Twist mutant cells showed increased ability to form alkaline phosphatase-positive bone-like nodular structures associated with increased type I collagen expression. Mutant cells also showed increased collagen synthesis and matrix production when cultured in aggregates, as well as an increased capacity to form a collagenous matrix in vivo when transplanted into nude mice. In contrast, Twist mutant osteoblasts displayed a cell-autonomous reduction of osteocalcin mRNA expression in basal conditions and during osteogenesis. The data show that genetic deletion of Twist causing reduced Twist dosage increases cell growth, collagen expression, and osteogenic capability, but inhibits osteocalcin gene expression. This provides one mechanism that may contribute to the premature cranial ossification induced by deletion of the bHLH Twist domain in Saethre-Chotzen syndrome.

  9. Increased risk for developmental delay in Saethre-Chotzen syndrome is associated with TWIST deletions: an improved strategy for TWIST mutation screening. (United States)

    Cai, Juanliang; Goodman, Barbara K; Patel, Ankita S; Mulliken, John B; Van Maldergem, Lionel; Hoganson, George E; Paznekas, William A; Ben-Neriah, Ziva; Sheffer, Ruth; Cunningham, Michael L; Daentl, Donna L; Jabs, Ethylin Wang


    The majority of patients with Saethre-Chotzen syndrome have mutations in the TWIST gene, which codes for a basic helix-loop-helix transcription factor. Of the genetic alterations identified in TWIST, nonsense mutations, frameshifts secondary to small deletions or insertions, and large deletions implicate haploinsufficiency as the pathogenic mechanism. We identified three novel intragenic mutations and six deletions in our patients by using a new strategy to screen for TWIST mutations. We used polymerase chain reaction (PCR) amplification with subsequent sequencing to identify point mutations and small insertions or deletions in the coding region, and real-time PCR-based gene dosage analysis to identify large deletions encompassing the gene, with confirmation by microsatellite and fluorescence in situ hybridization (FISH) analyses. The size of the deletions can also be analyzed by using the gene dosage assay with "PCR walking" across the critical region. In 55 patients with features of Saethre-Chotzen syndrome, 11% were detected to have deletions by real-time gene dosage analysis. Two patients had a translocation or inversion at least 260 kb 3' of the gene, suggesting they had position-effect mutations. Of the 37 patients with classic features of Saethre-Chotzen syndrome, the overall detection rate for TWIST mutations was 68%. The risk for developmental delay in patients with deletions involving the TWIST gene is approximately 90% or eight times more common than in patients with intragenic mutations.

  10. Translocation breakpoint maps 5 kb 3' from TWIST in a patient affected with Saethre-Chotzen syndrome. (United States)

    Krebs, I; Weis, I; Hudler, M; Rommens, J M; Roth, H; Scherer, S W; Tsui, L C; Füchtbauer, E M; Grzeschik, K H; Tsuji, K; Kunz, J


    Saethre-Chotzen syndrome, a common autosomal dominant craniosynostosis in humans, is characterized by brachydactyly, soft tissue syndactyly and facial dysmorphism including ptosis, facial asymmetry, and prominent ear crura. Previously, we identified a yeast artificial chromosome that encompassed the breakpoint of an apparently balanced t(6;7) (q16.2;p15.3) translocation associated with a mild form of Saethre-Chotzen syndrome. We now describe, at the DNA sequence level, the region on chromosome 7 affected by this translocation event. The rearrangement occurred approximately 5 kb 3' of the human TWIST locus and deleted 518 bp of chromosome 7. The TWIST gene codes for a transcription factor containing a basic helix-loop-helix (b-HLH) motif and has recently been described as a candidate gene for Saethre-Chotzen syndrome, based on the detection of mutations within the coding region. Potential exon sequences flanking the chromosome 7 translocation breakpoint did not hit known genes in database searches. The chromosome rearrangement downstream of TWIST is compatible with the notion that this is a Saethre-Chotzen syndrome gene and implies loss of function of one allele by a positional effect as a possible mechanism of mutation to evoke the syndrome.

  11. Hand2 Function in Second Heart Field Progenitors is Essential for Cardiogenesis (United States)

    Tsuchihashi, Takatoshi; Maeda, Jun; Shin, Chong; Ivey, Kathryn N.; Black, Brian; Olson, Eric N.; Yamagishi, Hiroyuki; Srivastava, Deepak


    Cardiogenesis involves the contributions of multiple progenitor pools, including mesoderm-derived cardiac progenitors known as the first and second heart fields. Disruption of genetic pathways regulating individual subsets of cardiac progenitors likely underlies many forms of human cardiac malformations. Hand2 is a member of the basic helix loop helix (bHLH) family of transcription factors and is expressed in numerous cell lineages that contribute to the developing heart. However, the early embryonic lethality of Hand2-null mice has precluded lineage-specific study of its function in myocardial progenitors. Here, we generated and used a floxed allele of Hand2 to ablate its expression in specific cardiac cell populations at defined developmental points. We found that Hand2 expression within the mesoderm-derived second heart field progenitors was required for their survival and deletion in this domain recapitulated the complete Hand2-null phenotype. Loss of Hand2 at later stages of development and in restricted domains of the second heart field revealed a spectrum of cardiac anomalies resembling forms of human congenital heart disease. Molecular analyses of Hand2 mutant cells revealed several genes by which Hand2 may influence expansion of the cardiac progenitors. These findings demonstrate that Hand2 is essential for survival of second heart field progenitors and that the graded loss of Hand2 function in this cardiac progenitor pool can cause a spectrum of congenital heart malformation. PMID:21185281

  12. Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas type III effector XopD(Xcc8004). (United States)

    Tan, Choon Meng; Li, Meng-Ying; Yang, Pei-Yun; Chang, Shu Heng; Ho, Yi-Ping; Lin, Hong; Deng, Wen-Ling; Yang, Jun-Yi


    XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on salicylic acid and correlated with lesion-mimic phenotypes observed in XVE::XopDXcc8004 transgenic plants. Moreover, XopDXcc8004 was able to desumoylate HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, through SUMO protease activity. Interestingly, the hfr1-201 mutant increased the expression of host defense-response genes and displayed a resistance phenotype to Xcc8004. These data suggest that HFR1 is involved in plant innate immunity and is potentially regulated by XopDXcc8004.

  13. Arabidopsis HFR1 Is a Potential Nuclear Substrate Regulated by the Xanthomonas Type III Effector XopDXcc8004 (United States)

    Tan, Choon Meng; Li, Meng-Ying; Yang, Pei-Yun; Chang, Shu Heng; Ho, Yi-Ping; Lin, Hong; Deng, Wen-Ling; Yang, Jun-Yi


    XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on salicylic acid and correlated with lesion-mimic phenotypes observed in XVE::XopDXcc8004 transgenic plants. Moreover, XopDXcc8004 was able to desumoylate HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, through SUMO protease activity. Interestingly, the hfr1-201 mutant increased the expression of host defense-response genes and displayed a resistance phenotype to Xcc8004. These data suggest that HFR1 is involved in plant innate immunity and is potentially regulated by XopDXcc8004. PMID:25647296

  14. Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas type III effector XopD(Xcc8004.

    Directory of Open Access Journals (Sweden)

    Choon Meng Tan

    Full Text Available XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on salicylic acid and correlated with lesion-mimic phenotypes observed in XVE::XopDXcc8004 transgenic plants. Moreover, XopDXcc8004 was able to desumoylate HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, through SUMO protease activity. Interestingly, the hfr1-201 mutant increased the expression of host defense-response genes and displayed a resistance phenotype to Xcc8004. These data suggest that HFR1 is involved in plant innate immunity and is potentially regulated by XopDXcc8004.

  15. Hes-1, a known transcriptional repressor, acts as a transcriptional activator for the human acid alpha-glucosidase gene in human fibroblast cells. (United States)

    Yan, Bo; Raben, Nina; Plotz, Paul H


    Hes-1, the mammalian homologue 1 of Drosophila hairy and Enhancer of split proteins, belongs to a family of basic helix-loop-helix proteins that are essential to neurogenesis, myogenesis, hematopoiesis, and sex determination. Hes-1 is a transcriptional repressor for a number of known genes including the human acid alpha-glucosidase (GAA) gene as we have previously shown in Hep G2 cells. The human GAA gene encodes the enzyme for glycogen breakdown in lysosomes, deficiency of which results in Glycogen Storage Disease type II (Pompe syndrome). Using constructs containing the DNA element that demonstrates repressive activity in Hep G2 cells and conditions in which the same transcription factors, Hes-1 and YY1, bind, we have shown that this element functions as an enhancer in human fibroblasts. Site-directed mutagenesis and overexpression of Hes-1 showed that Hes-1 functions as a transcriptional activator. The dual function of Hes-1 we have found is likely to contribute to the subtle tissue-specific control of this housekeeping gene.

  16. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A


    Full Text Available Abstract Background ChIP-Seq, which combines chromatin immunoprecipitation (ChIP with high-throughput massively parallel sequencing, is increasingly being used for identification of protein-DNA interactions in vivo in the genome. However, to maximize the effectiveness of data analysis of such sequences requires the development of new algorithms that are able to accurately predict DNA-protein binding sites. Results Here, we present SIPeS (Site Identification from Paired-end Sequencing, a novel algorithm for precise identification of binding sites from short reads generated by paired-end solexa ChIP-Seq technology. In this paper we used ChIP-Seq data from the Arabidopsis basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS, which is expressed within the anther during pollen development, the results show that SIPeS has better resolution for binding site identification compared to two existing ChIP-Seq peak detection algorithms, Cisgenome and MACS. Conclusions When compared to Cisgenome and MACS, SIPeS shows better resolution for binding site discovery. Moreover, SIPeS is designed to calculate the mappable genome length accurately with the fragment length based on the paired-end reads. Dynamic baselines are also employed to effectively discriminate closely adjacent binding sites, for effective binding sites discovery, which is of particular value when working with high-density genomes.

  17. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. (United States)

    Jeong, Hee-Jin; Kang, Jin-Ho; Zhao, Meiai; Kwon, Jin-Kyung; Choi, Hak-Soon; Bae, Jung Hwan; Lee, Hyun-Ah; Joung, Young-Hee; Choi, Doil; Kang, Byoung-Cheorl


    Male fertility in flowering plants depends on proper cellular differentiation in anthers. Meiosis and tapetum development are particularly important processes in pollen production. In this study, we showed that the tomato male sterile (ms10(35)) mutant of cultivated tomato (Solanum lycopersicum) exhibited dysfunctional meiosis and an abnormal tapetum during anther development, resulting in no pollen production. We demonstrated that Ms10(35) encodes a basic helix-loop-helix transcription factor that is specifically expressed in meiocyte and tapetal tissue from pre-meiotic to tetrad stages. Transgenic expression of the Ms10(35) gene from its native promoter complemented the male sterility of the ms10(35) mutant. In addition, RNA-sequencing-based transcriptome analysis revealed that Ms10(35) regulates 246 genes involved in anther development processes such as meiosis, tapetum development, cell-wall degradation, pollen wall formation, transport, and lipid metabolism. Our results indicate that Ms10(35) plays key roles in regulating both meiosis and programmed cell death of the tapetum during microsporogenesis.

  18. Proneural proteins Achaete and Scute associate with nuclear actin to promote formation of external sensory organs. (United States)

    Hsiao, Yun-Ling; Chen, Yu-Ju; Chang, Yi-Jie; Yeh, Hsiao-Fong; Huang, Yi-Chun; Pi, Haiwei


    Basic helix-loop-helix (bHLH) proneural proteins promote neurogenesis through transcriptional regulation. Although much is known about the tissue-specific regulation of proneural gene expression, how proneural proteins interact with transcriptional machinery to activate downstream target genes is less clear. Drosophila proneural proteins Achaete (Ac) and Scute (Sc) induce external sensory organ formation by activating neural precursor gene expression. Through co-immunoprecipitation and mass spectrometric analyses, we found that nuclear but not cytoplasmic actin associated with the Ac and Sc proteins in Drosophila S2 cells. Daughterless (Da), the common heterodimeric partner of Drosophila bHLH proteins, was observed to associate with nuclear actin through proneural proteins. A yeast two-hybrid assay revealed that the binding specificity between actin and Ac or Sc was conserved in yeast nuclei without the presence of additional Drosophila factors. We further show that actin is required in external sensory organ formation. Reduction in actin gene activity impaired proneural-protein-dependent expression of the neural precursor genes, as well as formation of neural precursors. Furthermore, increased nuclear actin levels, obtained by expression of nucleus-localized actin, elevated Ac-Da-dependent gene transcription as well as Ac-mediated external sensory organ formation. Taken together, our in vivo and in vitro observations suggest a novel link for actin in proneural-protein-mediated transcriptional activation and neural precursor differentiation.

  19. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. (United States)

    Moon, Jihyun; Skibbe, David; Timofejeva, Ljudmilla; Wang, Chung-Ju Rachel; Kelliher, Timothy; Kremling, Karl; Walbot, Virginia; Cande, William Zacheus


    Male fertility in flowering plants relies on proper division and differentiation of cells in the anther, a process that gives rise to four somatic layers surrounding central germinal cells. The maize gene male sterility32 (ms32) encodes a basic helix-loop-helix (bHLH) transcription factor, which functions as an important regulator of both division and differentiation during anther development. After the four somatic cell layers are generated properly through successive periclinal divisions, in the ms32 mutant, tapetal precursor cells fail to differentiate, and, instead, undergo additional periclinal divisions to form extra layers of cells. These cells become vacuolated and expand, and lead to failure in pollen mother cell development. ms32 expression is specific to the pre-meiotic anthers and is distributed initially broadly in the four lobes, but as the anther develops, its expression becomes restricted to the innermost somatic layer, the tapetum. The ms32-ref mac1-1 double mutant is unable to form tapetal precursors and also exhibits excessive somatic proliferation leading to numerous, disorganized cell layers, suggesting a synergistic interaction between ms32 and mac1. Altogether, our results show that MS32 is a major regulator in maize anther development that promotes tapetum differentiation and inhibits periclinal division once a tapetal cell is specified.

  20. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana. (United States)

    Yamashino, Takafumi; Nomoto, Yuji; Lorrain, Séverine; Miyachi, Miki; Ito, Shogo; Nakamichi, Norihito; Fankhauser, Christian; Mizuno, Takeshi


    Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.

  1. A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis. (United States)

    Shin, Dong Ho; Choi, Myoung-Goo; Kang, Chon-Sik; Park, Chul-Soo; Choi, Sang-Bong; Park, Youn-Il


    Transcriptional activation of anthocyanin biosynthesis genes in vegetative tissues of monocotyledonous plants is mediated by cooperative activity of one component from each of the following two transcription factor families: MYB encoded by PURPLE PLANT1/COLORED ALEURONE1 (PL1/C1), and basic helix-loop-helix (bHLH) encoded by RED/BOOSTER (R1/B1). In the present study, putative PL cDNA was cloned from the wheat (Triticum aestivum) cultivar Iksan370, which preferentially expresses anthocyanins in coleoptiles. Phylogenetic tree analysis of deduced amino acid sequences showed that a putative TaPL1 is highly homologous to barley (Hordeum vulgare) HvPL1, but is distinct from wheat TaC1. Transgenic Arabidopsis thaliana stably expressing putative TaPL1 accumulated anthocyanin pigments in leaves and up-regulated structural genes involved in both early and late anthocyanin biosynthesis steps. TaPL1 transcript levels in Iksan370 were more prominent in vegetative tissues such as young coleoptiles than in reproductive tissues such as spikelets. TaPL1 expression was significantly up-regulated by environmental stresses including cold, salt, and light, which are known to induce anthocyanin accumulation. These combined results suggest that TaPL1 is an active positive regulator of anthocyanin biosynthesis in wheat coleoptiles.

  2. CCAR1 is required for Ngn3-mediated endocrine differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chung-Kuang [Department of Life Science, National Chung Cheng University, Chia-Yi, Taiwan, ROC (China); Lai, Yi-Chyi [Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC (China); Lin, Yung-Fu; Chen, Hau-Ren [Department of Life Science, National Chung Cheng University, Chia-Yi, Taiwan, ROC (China); Chiang, Ming-Ko, E-mail: [Department of Life Science, National Chung Cheng University, Chia-Yi, Taiwan, ROC (China)


    Highlights: Black-Right-Pointing-Pointer We identify CCAR1 to directly interact with Ngn3. Black-Right-Pointing-Pointer CCAR1 is co-localized with Ngn3 in the nucleus. Black-Right-Pointing-Pointer CCAR1 cooperates with Ngn3 in activating NeuroD expression. Black-Right-Pointing-Pointer CCAR1 is required for Ngn3-mediated PANC-1 transdifferentiation. -- Abstract: Neurogenin3 (Ngn3) is a basic helix-loop-helix transcription factor that specifies pancreatic endocrine cell fates during pancreas development. It can also initiate a transdifferentiation program when expressed in pancreatic exocrine and ductal cells. However, how Ngn3 initiates a transcriptional cascade to achieve endocrine differentiation is still poorly understood. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1), which is a transcriptional coactivator for nuclear receptors, also interacts with Ngn3. The association between Ngn3 and CCAR1 was verified by pull-down assays and co-immunoprecipitation analyses. Using gene reporter assays, we found that CCAR1 is essential for Ngn3 to activate the expression of the reporter genes containing the NeuroD promoter. Moreover, down-regulation of endogenous CCAR1 in the PANC-1 pancreatic ductal cell line inhibits the transdifferentiation program initiated by Ngn3. CCAR1 is, therefore, a novel partner of Ngn3 in mediating endocrine differentiation.

  3. Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways in Lotus corniculatus. (United States)

    Robbins, Mark Paske; Paolocci, Francesco; Hughes, John-Wayne; Turchetti, Valentina; Allison, Gordon; Arcioni, Sergio; Morris, Phillip; Damiani, Francesco


    Anthocyanins and condensed tannins are major flavonoid end-products in higher plants. While the transactivation of anthocyanins by basic helix-loop-helix (bHLH) transcription factors is well documented, very little is known about the transregulation of the pathway to condensed tannins. The present study analyses the effect of over-expressing an Sn transgene in Lotus corniculatus, a model legume, with the aim of studying the regulation of anthocyanin and tannin end-products. Contrary to expectation, effects on anthocyanin accumulation were subtle and restricted to the leaf midrib, leaf base and petiole tissues. However, the accumulation of condensed tannin polymers was dramatically enhanced in the leaf blade and this increase was accompanied by a 50-fold increase in the number of tannin-containing cells in this tissue. A detailed analysis of selected lines indicated that this transactivational phenotype correlated with high steady-state transcript levels of the introduced transgene and the introduction of a single copy of the CaMV35S-Sn construct into these clonal genotypes. While the levels of condensed tannins in leaves were increased by up to 1% of the dry weight, other major secondary end-products (flavonols, lignins and inducible phytoalexins) were unaltered in transactivated lines. These results give an initial insight into the developmental and higher-order regulation of polyphenolic metabolism in Lotus and other higher plant species.

  4. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura


    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  5. Origin of a Non-Clarke's Column Division of the Dorsal Spinocerebellar Tract and the Role of Caudal Proprioceptive Neurons in Motor Function. (United States)

    Yuengert, Rachel; Hori, Kei; Kibodeaux, Erin E; McClellan, Jacob X; Morales, Justin E; Huang, Teng-Wei P; Neul, Jeffrey L; Lai, Helen C


    Proprioception, the sense of limb and body position, is essential for generating proper movement. Unconscious proprioceptive information travels through cerebellar-projecting neurons in the spinal cord and medulla. The progenitor domain defined by the basic-helix-loop-helix (bHLH) transcription factor, ATOH1, has been implicated in forming these cerebellar-projecting neurons; however, their precise contribution to proprioceptive tracts and motor behavior is unknown. Significantly, we demonstrate that Atoh1-lineage neurons in the spinal cord reside outside Clarke's column (CC), a main contributor of neurons relaying hindlimb proprioception, despite giving rise to the anatomical and functional correlate of CC in the medulla, the external cuneate nucleus (ECu), which mediates forelimb proprioception. Elimination of caudal Atoh1-lineages results in mice with relatively normal locomotion but unable to perform coordinated motor tasks. Altogether, we reveal that proprioceptive nuclei in the spinal cord and medulla develop from more than one progenitor source, suggesting an avenue to uncover distinct proprioceptive functions.

  6. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  7. Tissue-Specific Regulation of Gibberellin Signaling Fine-Tunes Arabidopsis Iron-Deficiency Responses. (United States)

    Wild, Michael; Davière, Jean-Michel; Regnault, Thomas; Sakvarelidze-Achard, Lali; Carrera, Esther; Lopez Diaz, Isabel; Cayrel, Anne; Dubeaux, Guillaume; Vert, Grégory; Achard, Patrick


    Iron is an essential element for most living organisms. Plants acquire iron from the rhizosphere and have evolved different biochemical and developmental responses to adapt to a low-iron environment. In Arabidopsis, FIT encodes a basic helix-loop-helix transcription factor that activates the expression of iron-uptake genes in root epidermis upon iron deficiency. Here, we report that the gibberellin (GA)-signaling DELLA repressors contribute substantially in the adaptive responses to iron-deficient conditions. When iron availability decreases, DELLAs accumulate in the root meristem, thereby restraining root growth, while being progressively excluded from epidermal cells in the root differentiation zone. Such DELLA exclusion from the site of iron acquisition relieves FIT from DELLA-dependent inhibition and therefore promotes iron uptake. Consistent with this mechanism, expression of a non-GA-degradable DELLA mutant protein in root epidermis interferes with iron acquisition. Hence, spatial distribution of DELLAs in roots is essential to fine-tune the adaptive responses to iron availability.

  8. Molecular characterization and expression patterns of myogenin in compensatory growth of Megalobrama amblycephala. (United States)

    Zhu, Kecheng; Chen, Liping; Zhao, Jinkun; Wang, Huijuan; Wang, Weimin; Li, Zhong; Wang, Huanling


    Myogenin (myog) is a muscle-specific basic helix-loop-helix (bHLH) transcription factor that plays an essential role in regulating skeletal muscle development and growth. To investigate molecular characterization of myog and the effect of starvation/refeeding on the gene expression, we isolated the myog cDNA sequence and analyzed the expression patterns using quantitative real-time polymerase chain reaction in Megalobrama amblycephala. Sequence analysis indicated that M. amblycephala myog shared an analogous structure with the highly conserved His/Cys-rich, bHLH and C-terminal helix III domains with other vertebrates. Sequence alignment and phylogenetic tree showed that M. amblycephala myog had the highest identity with the homologues of Ctenopharyngodon idella and Cyprinus carpio. Spatio-temporal expression patterns revealed that myog mRNA levels at the segmentation period and 12 h post-hatching (hph) were significantly higher than at other development stages (Pgrowth possibly occurred in M. amblycephala; meanwhile, the relative somatic growth rate after refeeding was also dramatically higher than the control group. In addition, the myog expression decreased during 21days of starvation and then exhibited a strong rebound effect after 7days of refeeding and subsequently declined gradually to the control level by 21days of refeeding.

  9. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S


    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h......% of fetal, 20% of neonatal, and 2% of adult chromaffin cells. The ED50 value of IGF-I- and IGF-II-stimulated BrdUrd labeling in neonatal chromaffin cells was 0.3 nM and 0.8 nM, respectively. In neonatal and adult chromaffin cells, addition of 1 nM bFGF or 2 nM NGF stimulated nuclear BrdUrd incorporation...... to approximately the same level as 10 nM IGF-I or IGF-II. However, the response to bFGF or NGF in combination with either IGF-I or IGF-II was more than additive, indicating that the combined effect of the IGFs and bFGF or NGF is synergistic. The degree of synergism was 2- to 4-fold in neonatal chromaffin cells...

  10. Quantitative analysis using ELISA of vascular endothelial growth factor and basic fibroblast growth factor in human colorectal cancer, liver metastasis of colorectal cancer and hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Muriel Mathonnet; Bernard Descottes; Denis Valleix; Fran(c)ois Labrousse; Véronique Truffinet; Yves Denizot


    @@ TO THE EDITOR Angiogenesis consists of the sprouting of capillaries from pre-existing vessels[1]. It is well-known that tumor growth is angiogenesis-dependent. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)stimulated vascular endothelial cell proliferation and are involved in the neoplastic angiogenesis of several types of tumors including those of the intestinal tract[1-5].

  11. A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF (United States)

    Mansukhani, Alka; Moscatelli, David; Talarico, Daniela; Levytska, Vera; Basilico, Claudio


    We have cloned a murine cDNA encoding a tyrosine kinase receptor with about 90% similarity to the chicken fibroblast growth factor (FGF) receptor and the human fms-like gene (FLG) tyrosine kinase. This mouse receptor lacks 88 amino acids in the extracellular portion, leaving only two immunoglobulin-like domains compared to three in the chicken FGF receptor. The cDNA was cloned into an expression vector and transfected into receptor-negative CHO cells. We show that cells expressing the receptor can bind both basic FGF and Kaposi FGF. Although the receptor binds basic FGF with a 15- to 20-fold higher affinity, Kaposi FGF is able to induce down-regulation of the receptor to the same extent as basic FGF. The receptor is phosphorylated upon stimulation with both FGFs, DNA synthesis is stimulated, and a proliferative response is produced in cells expressing the receptor, whereas cells expressing the cDNA in the antisense orientation show none of these responses to basic FGF or Kaposi FGF. Thus this receptor can functionally interact with two growth factors of the FGF family.

  12. The Analysis of the Social Factors of the Inequality of Basic Education in China

    Institute of Scientific and Technical Information of China (English)



    <正>As the famous Chinese ancient theorist Guan Zi said,"A year’s plan,is the tree valley;ten years,plant trees;life plan,is nurturing people."From ancient times till now,China always highlights education and implements as long-term policy.Especially after the implement of Opening-up and Reform policy,Chinese basic education has achieved great development

  13. Gibberellins control fruit patterning in Arabidopsis thaliana. (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars


    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning.

  14. [Basic Research on Neurotrophic Factors and Its Application to Medical Uses]. (United States)

    Furukawa, Shoei


    The author has studied nerve growth factor (NGF) and its family of neurotrophic factors (neurotrophins) for over 40 years. During the first 20 years, my laboratory established a highly sensitive enzyme immunoassay for NGF and analyzed the regulatory mechanism of NGF synthesis in cultured primary cells. Fibroblast cells cultured from peripheral organs such as the heart and astrocytes from the brain produced a substantial amount of NGF in a growth-dependent manner. Furthermore, synthesis of NGF in these cells could be upregulated by catechol compounds including catecholamines. This observation might explain a physiological relation between the level of NGF mRNA and the density of innervation in the peripheral sympathetic nervous systems. Over the subsequent 20 years, my laboratory investigated the physiological functions of neurotrophic factors, including neurotrophins, during development or post-injury and found that brain-derived neurotrophic factor (BDNF) plays a role in the formation of the laminar structure of the cerebral cortex. In addition, my laboratory discovered that endogenous glial cell line-derived neurotrophic factor (GDNF) contributes to the amelioration of motor activity after spinal cord injury. Therefore we aimed to develop low-molecular weight compounds that generate neurotrophic factor-like intracellular signals to protect or ameliorate neurological/psychiatric diseases. 2-Decenoic acid derivatives and other similar molecules could protect or ameliorate in animal models of mood disorders such as depression and enhance recovery from spinal cord injury-induced motor paralysis. Compounds that can generate neurotrophin-like signals in neurons are expected to be developed as therapeutic drugs for certain neurological or psychiatric disorders.

  15. Mini Review: Basic Physiology and Factors Influencing Exogenous Enzymes Activity in the Porcine Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Strube, Mikael Lenz; Meyer, Anne S.; Boye, Mette


    tract of the adult pig and the piglet are discussed in relation to the stability of exogenous feed enzymes. Development of more consistent assessment methods which acknowledge such factors is warranted both in vitro and in vivo for proper evaluation and prediction of the efficiency of exogenous enzymes...

  16. Basic Social-Economic Factors Modelling Customer’s Psychological Behaviour

    Directory of Open Access Journals (Sweden)

    Ivan Krastev


    Full Text Available This paper deals with some social and economic factors influencing on customer’s behaviour – such as social class, social-economic status,occupation, education, income, referent groups, family, gender roles and marketing. Some comparisons are made between some factorsinfluencing on customer’s behaviour in the U.S. and in Bulgaria.

  17. Hair cortisol concentration is unaffected by basic military training, but related to sociodemographic and environmental factors. (United States)

    Boesch, Maria; Sefidan, Sandra; Annen, Hubert; Ehlert, Ulrike; Roos, Lilian; Van Uum, Stan; Russell, Evan; Koren, Gideon; La Marca, Roberto


    The analysis of hair cortisol concentrations (HCC) is a promising new biomarker for retrospective measurement of chronic stress. The effect of basic military training (BMT) on chronic stress has not yet been reported. The aim of this study was to investigate the effect of 10-week BMT on HCC, while further exploring the role of known and novel covariates. Young healthy male recruits of the Swiss Army participated twice, 10 weeks apart, in data collection (1st examination: n = 177; 2nd examination: n = 105). On two occasions, we assessed HCC, perceived stress and different candidate variables that may affect HCC (e.g. socioeconomic status, meteorological data). Military training increased perceived stress from the first to the second examination, but did not affect HCC. In line with this, there was no correlation between HCC and perceived stress ratings. This could be interpreted as a missing influence of mainly physical stress (e.g. exercise) on HCC. In contrast, significant correlations were found between HCC and ambient temperature, humidity and education. Future studies should control for meteorological data and educational status when examining HCC.


    Institute of Scientific and Technical Information of China (English)

    高尚风; 杨蓉; 高博; 刘惠喜


    fibroblast growth factor (bFGF), fibroblast growth factor receptor-1 (FGFR-1) and carcinogenesis and progression of ovarian epithelial neoplasm. Methods Ten cases of normal ovarian tissues and 75 cases of ovarian epithelial neoplasm tissues were detected by immunohistochemical methods: S-P for bFGF, FGFR-1,double immunohistochemistry Lab-SA for Ki-67 antigen and bFGF. Results The expression level of bFGF, FGFR-1in ovarian epithelium and ovarian epithelial neoplasm showed a step-wise increase in the following order:normal〈benign〈borderline〈malignant; The expression level and intensity of bFGF and FGFR-1 were increased with the decrease of differentiation degree and increase of clinical stage in ovarian carcinoma; There was no statistical difference between the expression of bFGF, FGFR-1 in serous cystadenocarcinoma and that of mucinous cystadenocarcinoma; The expression of bFGF was correlated with that of FGFR-1 in neoplastic tissues; There were positive expression rates of bFGF and Ki-67 antigen in ovarian epithelial neoplasm. Conclusion As an important proliferative factor, bFGF plays an important role in carcinogenisis and progression of ovarian epithelial neoplasm.

  19. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture. (United States)

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena


    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins.

  20. Effect of basic fibroblast growth factor combined with laser on content of a variety of cytokines in acne scar wound

    Institute of Scientific and Technical Information of China (English)

    Zi-Xuan Dong


    Objective:To study the effect of basic fibroblast growth factor combined with laser on the content of a variety of cytokines in acne scar wound.Methods:A total of 64 patients with facial acne scars who received laser treatment in Dermatology Department of our hospital from June 2012 to October 2015 were studied and divided into two groups. Experimental group received collagen dressing combined with bFGF dressing change after surgery, and control group only received collagen dressing change after surgery. Wound healing as well as the content of type I collagen, type III collagen, TGF-β1, TAK and VEGF in the wound of two groups were compared.Results:Five days after surgery, the wound of experimental group had apparently scabbed and the scabby area was significantly greater than that of control group while the wound of control group showed visible granulation tissue proliferation and the scabby area was smaller; the levels of type I collagen, type III collagen, TGF-β1, TAK and VEGF in scab tissue of experimental group were significantly lower than those of control group.Conclusions:Basic fibroblast growth factor combined with laser can promote the healing of acne scar wound, decrease the type I collagen, type III collagen, TGF-β1 and VEGF content and prevent scar healing.

  1. Basic fibroblast growth factor and its receptors in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Ales Hampl


    Full Text Available Human embryonic stem cells (hESCs are pluripotent stem cells with long-lasting capacity to self-renew and differentiate into various cell types of endodermal, ectodermal or mesodermal origin. Unlike mouse ESCs (mESCs, which can be maintained in an undifferentiated state simply by adding leukemia inhibitory factor (LIF into the culture medium, hESCs are notorious for the sustained willingness to differentiate and not yet clearly defined signaling pathways that are crucial for their "stemness". Presently, our knowledge involves only limited number of growth factor signaling pathways that appear to be biologically relevant for stem cell functions in vitro. These include BMP, TGFbeta, Wnt, and FGF signaling pathway. The purpose of this review is to summarize recent data on the expression of FGFs and their receptors in hESCs, and critically evaluate the potential effects of FGF signals for their undifferentiated growth and/or differentiation in context with our current understanding of FGF/FGFR biology.

  2. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue

    Directory of Open Access Journals (Sweden)

    Jennifer L. Kaplan


    Conclusions: This study provides the first in vivo evidence, to our knowledge, that committed AdPCs in VAT are the initial source of obesity-induced MCP-1 and identifies the helix-loop-helix transcription factor Id3 as a critical regulator of p21Cip1 expression, AdPC proliferation, MCP-1 expression and M1 macrophage accumulation in VAT. Inhibition of Id3 and AdPC expansion, as well as CD44 expression in human AdPCs, may serve as unique therapeutic targets for the regulation of adipose tissue inflammation.

  3. Localization of the human achaete-scute homolog gene (ASCL 1) distal to phenylalanine hydroxylase (PAH) and proximal to tumor rejection antigen (TRA 1) on chromosome 12q22-q23

    Energy Technology Data Exchange (ETDEWEB)

    Renault, B.; Kucherlapati, R.; Krauter, K. [Albert Einstein College of Medicine, Bronx, NY (United States); Lieman, J.; Ward, D. [Yale Univ. School of Medicine, New Haven, CT (United States)


    ASCL1, the human achaete-scute homolog, is a helix-loop-helix transcription factor that was previously assigned to chromosome 12 using a rodent-human somatic hybrid panel. We now placed this gene on a yeast artificial chromosome contig encompassing position 119 cM of the Genethon genetic map between the two genes phenylalanine hydroxylase (PAH) and tumor rejection antigen 1 (TRA1). We also localized ASCL1 in the 12q22-q23 cytogenetic interval by using fluorescence in situ hybridization. 13 refs., 2 figs.

  4. The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. (United States)

    Haley, Elizabeth M; Kim, Yonghyun


    Glioblastoma multiforme (GBM) is the most malignant form of central nervous system tumor, and current therapies are largely ineffective at treating the cancer. Developing a more complete understanding of the mechanisms controlling the tumor is important in order to explore new possible treatment options. It is speculated that the presence of glioblastoma stem or stem-like cells (GSCs), a rare type of pluripotent cancer cell that possesses the ability to self-renew and generate tumors, could be an important factor contributing to the resistance to treatment and deadliness of the cancer. A comprehensive knowledge of the mechanisms controlling the expression and properties of GSCs is currently lacking, and one promising area for further exploration is in the influence of basic fibroblast growth factor (FGF-2) on GSCs. Recent studies reveal that FGF-2 plays a significant part in regulating GBM, and the growth factor is commonly included as a supplement in media used to culture GSCs in vitro. However, the particular role that FGF-2 plays in GSCs has not been as extensively explored. Therefore, understanding how FGF-2 is involved in GSCs and in GBMs could be an important step towards a more complete comprehension of the managing the disease. In this review, we look at the structure, signaling pathways, and specific role of FGF-2 in GBM and GSCs. In addition, we explore the use of FGF-2 in cell culture and using its synthetic analogs as a potential alternative to the growth factor in culture medium.

  5. Basic fibroblast growth factor-loaded, mineralized biopolymer-nanofiber scaffold improves adhesion and proliferation of rat mesenchymal stem cells. (United States)

    Kim, Tae-Hyun; Kim, Jung-Ju; Kim, Hae-Won


    Nanofibrous matrices are attractive scaffolding platforms for tissue regeneration. Modification of the nanofiber surface, particularly with biological proteins, improves cellular interactions. Here, we loaded basic fibroblast growth factor (bFGF) onto mineralized nanofibers and investigated the effect on adhesion and proliferation of rat mesenchymal stem cells. bFGF loading was significantly higher on the mineralized nanofiber than on the non-mineralized one. Release of bFGF from the mineralized nanofibers was continuous over 2 weeks. Cells cultured on the bFGF-loaded nanofiber attached and proliferated in significantly higher numbers than those on the bFGF-free nanofiber. bFGF-receptor inhibition study confirmed the biological role played by the loaded bFGF. This study details the advantages of the mineralized nanofiber surface for the loading and delivery bFGF, and thus the bFGF-loaded nanofiber scaffold may be useful for tissue repair and regeneration.

  6. Basic soil properties as a factor controlling the occurrence and intensity of water repellency in rankers of the White Carpathians

    Directory of Open Access Journals (Sweden)

    Kořenková Lucia


    Full Text Available Water repellency in soils is controlled by many different factors, basic physical and chemical properties might be considered the crucial ones. For the purpose of this study, 12 sites were selected and sampled (0–20 cm depth in the White Carpathians. Repellency tests were conducted under laboratory conditions in triplicate using water drop penetration time (WDPT test and the molarity of ethanol droplet (MED test. Results of WDPT measurements showed that three samples were marked by slight to extreme water repellency. Regarding the relationship between WDPT/MED and tested soil properties, the highest value of correlation coefficient was calculated for soil organic carbon (r = 0.706; p < 0.05, suggesting there is a positive, statistically significant correlation between repellency severity and total carbon content. A negative relationship between repellency and soil reaction/silt/silt + clay contents of studied soils was found. Samples taken from the surface horizon of arable soils showed no repellency.

  7. Secreted proteoglycans directly mediate human embryonic stem cell-basic fibroblast growth factor 2 interactions critical for proliferation. (United States)

    Levenstein, Mark E; Berggren, W Travis; Lee, Ji Eun; Conard, Kevin R; Llanas, Rachel A; Wagner, Ryan J; Smith, Lloyd M; Thomson, James A


    Human embryonic stem (ES) cells can be maintained in an undifferentiated state if the culture medium is first conditioned on a layer of mouse embryonic fibroblast (MEF) feeder cells. Here we show that human ES cell proliferation is coordinated by MEF-secreted heparan sulfate proteoglycans (HSPG) in conditioned medium (CM). These HSPG and other heparinoids can stabilize basic fibroblast growth factor (FGF2) in unconditioned medium at levels comparable to those observed in CM. They also directly mediate binding of FGF2 to the human ES cell surface, and their removal from CM impairs proliferation. Finally, we have developed a purification scheme for MEF-secreted HSPG in CM. Using column chromatography, immunoblotting, and mass spectrometry-based proteomic analysis, we have identified multiple HSPG species in CM. The results demonstrate that HSPG are key signaling cofactors in CM-based human ES cell culture.

  8. Stimulation of chondrocytes in vitro by gene transfer with plasmids coding for epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF)

    DEFF Research Database (Denmark)

    Schmal, H; Mehlhorn, A T; Zwingmann, J


    Human epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF) influence critical characteristics of chondrocytes. The effects on metabolism and differentiation were evaluated following transfection using specific plasmids coding for both cytokines. Chondrocytes were isolated from...... of recombinant hEGF and bFGF resulted in a significant increase in cell proliferation and glucosaminoglycan production. Chondrocytes were transfected with vectors coding for either hEGF or bFGF and the production of these proteins was measured in supernatants by ELISA. Expression kinetics showed different...... patterns: hEGF was detectable 2.5 days following transfection and peaked at day 5.5, whereas bFGF-production reached its maximum 1.5 days after transfection, declining thereafter. Chondrocytes endogenously produced significant amounts of bFGF within 5 days following isolation. Proliferation of h...


    Institute of Scientific and Technical Information of China (English)

    WANG Dong; XIAO Hualiang; LI Zengpeng; CHEN Li


    Objective: To investigate the expression of angiogenic factors, basic fibroblast growth factor (bFGF)and transforming growth factor (TGF)-β1 in osteosarcoma, its association with neovascularization and prognosis. Methods: The expression of bFGF, TGFβ1 and their receptors, as well as intratumoral microvessel count (MVD) were studied in 80osteosarcomas by immunohistochemical staining and morphometry. The relationship between the angiogenic factors expression and prognosis was evaluated by a multivariate analysis using Cox proportion hazard model. Results: Among 80 cases of osteosarcoma, 46cases were positive for bFGF/bFGFr (57.5%), and 31cases for TGF-β1/TGF-β (RI)(38.8%) respectively. The MVD and bFGF, TGF-β1 were important indicators to predict the prognosis of patients with osteosarcoma by the Cox proportion hazard model analysis. Conclusion:The angiogenic factors bFGF and TGF-β1 are involved in the angiogenesis of osteosarcoma, and the angiogenesis influences the prognosis. Also they may be useful in the evaluation of the prognosis of patients with osteosarcoma.

  10. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects. (United States)

    Li, Dong; Xie, Kun; Zhang, Longzhen; Yao, Xuejing; Li, Hongwen; Xu, Qiaoyu; Wang, Xin; Jiang, Jing; Fang, Jianmin


    Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF or FGF-2) are potent pro-angiogenic factors and play a critical role in cancer development and progression. Clinical anti-VEGF therapy trials had a major challenge due to upregulated expression of other pro-angiogenic factor, like FGF-2. This study developed a novel chimeric decoy receptor VF-Trap fusion protein to simultaneously block activity of both VEGF and FGF pathways in order to achieve an additive or synergistic anti-tumor effect. Our in vitro data showed that VF-Trap potently blocked proliferation and migration of both VEGF- and FGF-2-induced vascular endothelial cells. In animal models, treatment of xenograft tumors with VF-Trap resulted in significant inhibition of tumor growth compared to blockage of the single molecule, like VEGF or FGF blocker. In addition, VF-Trap was also more potent in inhibition of ocular angiogenesis in a mouse oxygen-induced retinopathy (OIR) model. These data demonstrated the potent anti-angiogenic effects of this novel VF-Trap fusion protein on blockage of VEGF and FGF-2 activity in vitro and in animal models. Further study will assess its effects in clinic as a therapeutic agent for angiogenesis-related disorders, such as cancer and ocular vascular diseases.

  11. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells. (United States)

    Nakano, Shin-ichi; Nakamura, Katsuyuki; Teramoto, Naomi; Yamanouchi, Keitaro; Nishihara, Masugi


    Intramuscular adipose tissue (IMAT) formation is a hallmark of marbling in cattle. IMAT is considered to originate from skeletal muscle progenitor cells with adipogenic potential. However, the mechanism involved in IMAT formation from these progenitor cells in vivo remains unclear. In the present study, among the growth factors tested, which were known to be expressed in skeletal muscle, we found only basic fibroblast growth factor (bFGF) has a pro-adipogenic effect on skeletal muscle derived adipogenic progenitor clone, 2G11 cells. Pre-exposure of 2G11 cells to bFGF did not affect initial gene expressions of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ, while resulting in an enhancement of subsequent expressions of C/EBPα and proliferator-activated receptor gamma (PPARγ) during adipogenesis, indicating that bFGF is acting on the transcriptional regulation of C/EBPα and PPARγ. In addition, the effect of bFGF is mediated via two types of FGF receptor (FGFR) isoforms: FGFR1 and FGFR2 IIIc, and both receptors are prerequisite for bFGF to express its pro-adipogenic effect. These results suggest that bFGF plays an important role as a key trigger of IMAT formation in vivo.

  12. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA. (United States)

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim


    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα.

  13. The angiogenic peptide vascular endothelial growth factor-basic fibroblast growth factor signaling is up-regulated in a rat pressure ulcer model. (United States)

    Yang, Jing-Jin; Wang, Xue-Ling; Shi, Bo-Wen; Huang, Fang


    The purpose of this study is to investigate the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in pressure ulcers, and to elucidate the molecular mechanism by which VEGF and bFGF are involved in pressure ulcer formation. A rat model of ischemia-reperfusion pressure ulcer was established by magnetic disk circulating compression method. Real-time fluorescence quantitative PCR and Western blot assays were conducted to detect the mRNA and protein expression of VEGF and bFGF in the tissues of rat I-, II-, and III-degree pressure ulcers, the surrounding tissues, and normal skin. Our study confirmed that the mRNA and protein expression levels of VEGF and bFGF in the tissues of rat I-degree pressure ulcer were significantly higher than that in the II- and III-degree pressure ulcer tissues (P pressure ulcers were higher than the rats with normal skin. The expression of VEGF and bFGF in the tissues of rat III-degree pressure ulcer was lower than that in the surrounding tissues and normal skin (P pressure ulcers, the expression of VEGF and bFGF in pressure ulcers tissue are decreased. This leads to a reduction in angiogenesis and may be a crucial factor in the formation of pressure ulcers.

  14. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza saliva and Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    JI Qian; ZHANG Liang-sheng; WANG Yi-fei; WANG Jian


    The basic leucine zipper (bZIP) transcription factors form a large gene family that is important in pathogen defense, light and stress signaling, etc. The Completed whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana), rice (Oryza saliva) and poplar (Populus trichocarpa) constitute a valuable resource for genome-wide analysis and genomic comparative analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. In this study, bioinformatics analysis identified 74, 89 and 88 bZIP genes respectively in Arabidopsis, rice and poplar. Moreover, a comprehensive overview of this gene family is presented, including the gene structure, phylogeny, chromosome distribution, conserved motifs. As a result, the plant bZIPs were organized into 10 subfamilies on basis of phylogenetic relationship. Gene duplication events during the family evolution history were also investigated. And it was further concluded that chromosomal/segmental duplication might have played a key role in gene expansion of bZIP gene family.


    Institute of Scientific and Technical Information of China (English)

    朱洪生; 连锋; 郑家豪


    Objectives. To observe the effect of basic fibroblast growth factor (bFGF) slow-release microcapsules on angiogen esis in infarcted myocardial regions. Methods. Myocardial infarction was induced in 24 New Zealand rabbits by ligating the root of left anterior de scending coronary artery. Group Ⅰ (n = 8) served as control, group Ⅱ (n = 8) as a blank microcapsule group, group Ⅲ (n = 8, each microcapsule contains lμg bFGF) as micrpcapsule group. In group Ⅱ and Ⅲ, 5 blank microcapsules or bFGF slow-release microcapsules were implanted into myocardium underneath the epicardium between the left ante fior descending coronary artery and left circumflex artery. Infarct size was evaluated by infarcted weight/left ventricle weight ratio and angiogenesis was evaluated by immunohistochemical examinations 5 weeks later. Results. As compared with group Ⅰ and Ⅱ, rabbits treated with bFGF slow-release microcapsules showed higher microvessel counts (group Ⅰ 37.75 + 4.50, group Ⅱ 38.37 ± 4.98, vs. group Ⅲ 135.50 ± 4.81, P < 0. 001 ) and less infarcted weight/left ventricle weight (group Ⅰ 16.8% ± 0.4%, group Ⅱ 16.7% ± 0.5%, vs. group Ⅲ 7.0% ± 0.2% ,P< 0.001). Conclusions. Subepicardial administration of bFGF slow-release microcapsule in the infarcted rabbit model results in effective angiogenesis and reduction in infarct size.

  16. In vitro characteristics of poly(lactic-co-glycolic acid) microspheres incorporating gelatin particles loading basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    Shao-hong LI; Shao-xi CAI; Bing LIU; Kai-wang MA; Zhen-ping WANG; Xiao-kun LI


    Aim: To construct a sustained drug release system for basic fibroblast growth factor (bFGF). With this special system, bFGF can be used to repair an injured peripheral nerve, injured spinal cord, or as a carrier for other drugs that need to be released over a long time. Methods: Microsphere composite was prepared by encapsulating bFGF into gelatin particles with poly(lactic-co-glycolic acid) (PLGA) as its outer-coating. The encapsulation was conducted by a phase separation method. Results: The average diameter of the gelatin particle-PLGA microsphere composite was 5-18 μm, and bFGF-loading efficiency was up to 80.5%. The bFGF releasing experiment indicated that this new composite system could release bFGF continuously and protect bFGF from denaturation. Conclusion: A modified approach was successfully employed to develop a biodegradable system for sustained release of the drug of bFGF in vitro.

  17. The effect of basic fibroblast growth factor on regeneration in a surgical wound model of rat submandibular glands

    Institute of Scientific and Technical Information of China (English)

    Fumitaka Kobayashi; Kenichi Matsuzaka; Takashi Inoue


    This study developed an animal model of surgically wounded submandibular glands (SMGs) and investigated the effects of collagen gel with basic fibroblast growth factor (bFGF) on tissue regeneration of surgically wounded SMGs in vivo. The animal model was produced by creating a surgical wound using a 3-mm diameter biopsy punch in SMGs. The wound was filled with collagen gel with bFGF (bFGF group) or without bFGF (control group). In the animal model of surgically wounded SMGs, salivary glands without scar tissue around the wound area were observed with smaller areas of collagen gel. Small round and spindle-shape cells invaded the collagen gel in both groups after operation day (AOD) 5, and this invasion dramatically increased at AOD 7. Host tissue completely replaced the collagen gel at AOD 21. The invading immune cells in the group treated with collagen gel with bFGF were positive for vimentin, a-smooth muscle actin (aSMA), CD49f, c-kit and AQP5 at AOD 7. Similarly, the mRNA expression of vimentin, aSMA, CD49f, keratin19 and AQP5 was also increased. This study suggests that the use of collagen gels with bFGF improves salivary gland regeneration.

  18. Effect of basic fibroblast growth factor on the proliferation, migration and phenotypic modulation of airway smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    ZOU Hui; NIE Xiu-hong; ZHANG Yi; HU Mu; ZHANG Yu Alex


    Background Proliferation,cell migration and phenotypic modulation of airway smooth muscle cells(ASMCs)are important features of airway remodelling in asthma.The precise cellular and molecular mechanisms that regulate ASMCs proliferation,migration and phenotypic modulation in the lung remain unknown.Basic fibroblast growth factor(bFGF),a highly specific chemotactic and mitogenic factor for many cell types,appears to be involved in the development of airway remodelling.Our study assessed whether bFGF directly stimulates the proliferation,migration and phenotypic modulation of ASMCs.Methods Confluent and growth arrested human ASMCs were treated with human recombinant FGF.Proliferation was measured by BrdU incorporation and cell counting.Migration was examined using Boyden chamber apparatus.Expressions of smooth muscle(sm)-α-actin and sm-myosin heavy chain(MHC)isoform 1 were determined by RT-PCR and Western blot analysis.Results It was found that hrbFGF(10 ng/ml),when added to ASMCs,induced a significant increase in BrdU uptake and cell number by ASMCS as compared to controls and a significant increase in ASMCs migration with respect to controls.The mRNA and protein expressions of sm-α-actin and sm-MHC in ASMCs that were stimulated with hrbFGF decreased with respect to controls.Conclusion It appears that bFGF can directly stimulate proliferation and migration of ASMCs.however,the expressions of cells'contractive phenotype decreased.

  19. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca). (United States)

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei


    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  20. Induction of Neuronal Differentiation of Rat Muscle-Derived Stem Cells in Vitro Using Basic Fibroblast Growth Factor and Ethosuximide

    Directory of Open Access Journals (Sweden)

    Jin Seon Kwon


    Full Text Available Several studies have demonstrated that basic fibroblast growth factor (bFGF can induce neural differentiation of mesenchymal stem cells. In this study, we investigated the neural differentiation of muscle-derived stem cells (MDSCs following treatment with bFGF and ethosuximide, a small molecule used as an anticonvulsant in humans. Stem cells isolated from rat skeletal muscle (rMDSCs were pre-induced by culturing with 25 ng/mL bFGF for 24 h and then were transferred to a medium supplemented with or without 4 mM ethosuximide. Neuronal differentiation was assessed by immunocytochemical and western blotting analyses of marker expression. Immunocytochemistry of rMDSCs treated with bFGF and ethosuximide identified abundant cells expressing neuronal markers (TuJ1, neuron-specific class III β-tubulin; NeuN, neuronal nuclear antigen; and NF-MH; neurofilament M and H. Olig2 (oligodendrocyte transcription factor 2-positive cells were also observed, indicating the presence of oligodendrocyte lineage cells. These findings were substantiated by western blotting analysis of marker proteins. In particular, the expression of NeuN and TuJ1 was significantly higher in rMDSCs treated with ethosuximide and bFGF than in cells stimulated with bFGF alone (NeuN, p < 0.05 and TuJ1, p < 0.001. Expression of the astrocyte marker GFAP (glial fibrillary acidic protein was not detected in this study. Collectively, the results showed that treatment with bFGF and ethosuximide induced effective transdifferentiation of rMDSCs into cells with a neural-like phenotype. Notably, rMDSCs treated with a combination of bFGF plus ethosuximide showed enhanced differentiation compared with cells treated with bFGF alone, implying that ethosuximide may stimulate neuronal differentiation.

  1. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration. (United States)

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen


    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  2. Delayed treatment with intravenous basic fibroblast growth factor reduces infarct size following permanent focal cerebral ischemia in rats. (United States)

    Fisher, M; Meadows, M E; Do, T; Weise, J; Trubetskoy, V; Charette, M; Finklestein, S P


    Basic fibroblast growth factor (bFGF) is a polypeptide that supports the survival of brain cells (including neurons, glia, and endothelia) and protects neurons against a number of toxins and insults in vitro. This factor is also a potent dilator of cerebral pial arterioles in vivo. In previous studies, we found that intraventricularly administered bFGF reduced infarct volume in a model of focal cerebral ischemia in rats. In the current study, bFGF (45 micrograms/kg/h) in vehicle, or vehicle alone, was infused intravenously for 3 h, beginning at 30 min after permanent middle cerebral artery occlusion by intraluminal suture in mature Sprague-Dawley rats. After 24 h, neurological deficit (as assessed by a 0- to 5-point scale, with 5 = most severe) was 2.6 +/- 1.0 in vehicle-treated and 1.5 +/- 1.3 in bFGF-treated rats (mean +/- SD; N = 12 vs. 11; p = 0.009). Infarct volume was 297 +/- 65 mm3 in vehicle- and 143 +/- 135 mm3 in bFGF-treated animals (p = 0.002). During infusion, there was a modest decrease in mean arterial blood pressure but no changes in arterial blood gases or core or brain temperature in bFGF-treated rats. Autoradiography following intravenous administration of 111In-labeled bFGF showed that labeled bFGF crossed the damaged blood-brain barrier to enter the ischemic (but not the nonischemic) hemisphere. Whether the infarct-reducing effects of bFGF depend on intraparenchymal or intravascular mechanisms requires further study.

  3. Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling. (United States)

    Berk, B-A; Vogler, S; Pannicke, T; Kuhrt, H; Garcia, T B; Wiedemann, P; Reichenbach, A; Seeger, J; Bringmann, A


    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Intravitreal administration of neurotrophins such as brain-derived neurotrophic factor (BDNF) is known to promote survival of retinal neurons. Here, we show that exogenous BDNF inhibits the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices or freshly isolated cells with a hypoosmotic solution containing barium ions. BDNF also inhibited the osmotic swelling of bipolar cell somata in retinal slices, but failed to inhibit the osmotic soma swelling of freshly isolated bipolar cells. The inhibitory effect of BDNF on Müller cell swelling was mediated by activation of tropomyosin-related kinase B (TrkB) and transactivation of fibroblast growth factor receptors. Exogenous basic fibroblast growth factor (bFGF) fully inhibited the osmotic swelling of Müller cell somata while it partially inhibited the osmotic swelling of bipolar cell somata. Isolated Müller cells displayed immunoreactivity of truncated TrkB, but not full-length TrkB. Isolated rod bipolar cells displayed immunoreactivities of both TrkB isoforms. Data suggest that the neuroprotective effect of exogenous BDNF in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. While BDNF directly acts on Müller cells by activation of TrkB, BDNF indirectly acts on bipolar cells by inducing glial release of factors like bFGF that inhibit bipolar cell swelling.

  4. Regulatory Role of a Receptor-Like Kinase in Specifying Anther Cell Identity1[OPEN (United States)

    Yang, Li; Qian, Xiaoling; Chen, Mingjiao


    In flowering plants, sequential formation of anther cell types is a highly ordered process that is essential for successful meiosis and sexual reproduction. Differentiation of meristematic cells and cell-cell communication are proposed to coordinate anther development. Among the proposed mechanisms of cell fate specification are cell surface-localized Leu-rich repeat receptor-like kinases (LRR-RLKs) and their putative ligands. Here, we present the genetic and biochemical evidence that a rice (Oryza sativa) LRR-RLK, MSP1 (MULTIPLE SPOROCYTE1), interacts with its ligand OsTDL1A (TPD1-like 1A), specifying the cell identity of anther wall layers and microsporocytes. An in vitro assay indicates that the 21-amino acid peptide of OsTDL1A has a physical interaction with the LRR domain of MSP1. The ostdl1a msp1 double mutant showed the defect in lacking middle layers and tapetal cells and having an increased number of microsporocytes similar to the ostdl1a or msp1 single mutant, indicating the same pathway of OsTDL1A-MSP1 in regulating anther development. Genome-wide expression profiles showed the altered expression of genes encoding transcription factors, particularly basic helix-loop-helix and basic leucine zipper domain transcription factors in ostdl1a and msp1. Among these reduced expressed genes, one putatively encodes a TGA (TGACGTCA cis-element-binding protein) factor OsTGA10, and another one encodes a plant-specific CC-type glutaredoxin OsGrx_I1. OsTGA10 was shown to interact with OsGrx_I1, suggesting that OsTDL1A-MSP1 signaling specifies anther cell fate directly or indirectly affecting redox status. Collectively, these data point to a central role of the OsTDL1A-MSP1 signaling pathway in specifying somatic cell identity and suppressing overproliferation of archesporial cells in rice. PMID:27208278

  5. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts. (United States)

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai


    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine(9) (pGSK3β Ser(9)) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts.

  6. Basic Fibroblast Growth Factor Contributes to a Shift in the Angioregulatory Activity of Retinal Glial (Müller) Cells (United States)

    Yafai, Yousef; Iandiev, Ianors; Lange, Johannes; Yang, Xiu Mei; Wiedemann, Peter; Bringmann, Andreas; Eichler, Wolfram


    Basic fibroblast growth factor (bFGF) is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Müller) cells, and to determine conditions under which glial bFGF may stimulate the proliferation of retinal microvascular endothelial cells. Immunofluorescence labeling detected bFGF in Müller cells of the rat retina and in acutely isolated Müller cells with bFGF levels, which increased after ischemia-reperfusion in postischemic retinas. In patients with proliferative diabetic retinopathy or myopia, the immunoreactivity of bFGF co-localized to glial fibrillary acidic protein (GFAP)-positive cells in surgically excised retinal tissues. RT-PCR and ELISA analyses indicated that cultured Müller cells produce bFGF, which is elevated under hypoxia or oxidative stress, as well as under stimulation with various growth factors and cytokines, including pro-inflammatory factors. When retinal endothelial cells were cultured in the presence of media from hypoxia (0.2%)-conditioned Müller cells, a distinct picture of endothelial cell proliferation emerged. Media from 24-h cultured Müller cells inhibited proliferation, whereas 72-h conditioned media elicited a stimulatory effect. BFGF-neutralizing antibodies suppressed the enhanced endothelial cell proliferation to a similar extent as anti-VEGF antibodies. Furthermore, phosphorylation of extracellular signal-regulated kinases (ERK−1/−2) in retinal endothelial cells was increased when the cells were cultured in 72-h conditioned media, while neutralizing bFGF attenuated the activation of this signaling pathway. These data provide evidence that retinal (glial) Müller cells are major sources of bFGF in the ischemic retina. Müller cells under

  7. Basic fibroblast growth factor contributes to a shift in the angioregulatory activity of retinal glial (Muller cells.

    Directory of Open Access Journals (Sweden)

    Yousef Yafai

    Full Text Available Basic fibroblast growth factor (bFGF is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Müller cells, and to determine conditions under which glial bFGF may stimulate the proliferation of retinal microvascular endothelial cells. Immunofluorescence labeling detected bFGF in Müller cells of the rat retina and in acutely isolated Müller cells with bFGF levels, which increased after ischemia-reperfusion in postischemic retinas. In patients with proliferative diabetic retinopathy or myopia, the immunoreactivity of bFGF co-localized to glial fibrillary acidic protein (GFAP-positive cells in surgically excised retinal tissues. RT-PCR and ELISA analyses indicated that cultured Müller cells produce bFGF, which is elevated under hypoxia or oxidative stress, as well as under stimulation with various growth factors and cytokines, including pro-inflammatory factors. When retinal endothelial cells were cultured in the presence of media from hypoxia (0.2%-conditioned Müller cells, a distinct picture of endothelial cell proliferation emerged. Media from 24-h cultured Müller cells inhibited proliferation, whereas 72-h conditioned media elicited a stimulatory effect. BFGF-neutralizing antibodies suppressed the enhanced endothelial cell proliferation to a similar extent as anti-VEGF antibodies. Furthermore, phosphorylation of extracellular signal-regulated kinases (ERK-1/-2 in retinal endothelial cells was increased when the cells were cultured in 72-h conditioned media, while neutralizing bFGF attenuated the activation of this signaling pathway. These data provide evidence that retinal (glial Müller cells are major sources of bFGF in the ischemic retina. Müller cells under

  8. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. (United States)

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi


    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  9. 酵母双杂交诱饵载体pGBKT7_MYC2构建及表达鉴定%Construction and Expressional Identification of Yeast Two - hybrid Bait Expression Vector pGBKT7_MYC2

    Institute of Scientific and Technical Information of China (English)

    刘武; 肖牧; 阮颖; 刘春林


    MYC2是一类含有helix - loop - helix (bHLH)结构域的转录因子.为进一步研究MYC2因子在植物防御抗性中的作用及其参与植物JA,SA等信号途径的作用机制,克隆了拟南芥的MYC2基因,以此构建了pGBKT7_MYC2酵母双杂交载体,通过Western blotting验证表明,该载体能在酵母细胞里正常表达.%MYC2, a basic helix - loop - helix (bHLH) domain - containing TF, acts as a positive regulator of abseisic acid - dependent drought responses and is also induced in JA - mediated responses. Taking the cDNA from Arabidophsis as the template, full - length COS of MYC2 had been cloned and then was ligated into the bait expression vector pG-BKT7. After verified by digestion, the bait vector was transformed into Clod yeast cells, and the expression of MYC2 gene was checked by Western blotting. As a result, the bait expression vector pGBKT7_MYC2 was constructed successfully, which laid the foundation for screening target proteins interacting and mapping the network with the MYC2 protein.

  10. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Hailun [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Faguang [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail:; Yu Chunyan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Chu Dongling [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Lin [Department of Internal Medicine, 316 Hospital of PLA, Beijing 100093 (China); Lu Xian [93942 Unit Hospital of PLA, Xianyang 710012 (China)


    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 {+-} 3.56 {mu}m and the network gelatin sponges were characterized with an average pore size of 80-160 {mu}m. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm{sup 2} pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer.

  11. Pharmacokinetics of recombinant human basic fibroblast growth factor in rabbits and mice serum and rabbits aqueous humor

    Institute of Scientific and Technical Information of China (English)

    Qi ZHANG; Guang-ji WANG; Jian-guo SUN


    AIM: To study the pharmacokinetics of recombinant human basic fibroblast growth factor (rhbFGF) in rabbits and mice after iv and postocular administration, and the changes of rhbFGF in rabbits aqueous humor after postocular administration. METHODS: After iv or postocular administration three doses of rhbFGF in rabbits and mice,rhbFGF concentration in serum and rabbit aqueous humor was determined by enzyme-linked immunosorbent .assay. RESULTS: Serum concentration-time data of rabbits after iv administration of rhbFGF 1, 2, and 4 μg/kg were fitted to bi-exponential equations with half-lives of 0.9, 0.9, and 0.6 min for T1/2α and 7, 8, and 4.7 min for T1/2β.Plasma concentration-time data of mice after iv administration of rhbFGF 2.5, 5 and 10 μg/kg were fitted to biexponential equations with half-lives of 0.4, 0.6, and 0.9 min for T1/2α and 6, 5, and 7 min for T1/2β. The AUCs were linearly correlated to doses in both cases (rrabbit=0.997, rmouse=0.999). The serum concentrations of rhbFGF were very low, near to the background after postocular administration of 2 or 5 μg/kg, in both rabbits and mice. The rhbFGF levels in rabbits aqueous humor were higher than control 8 h postdose (P<0.01). CONCLUSION: rhbFGF within the examined doses had a linear pharmacokinetics in rabbits and mice. High concentration of rhbFGF was found in rabbits aqueous humor after postocular administration.

  12. The role of calcineurin in the lung fibroblasts proliferation and collagen synthesis induced by basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 符民桂; 姚婉贞; 唐朝枢


    Objective To investigate the role of calcineurin (CaN) in the lung fibroblast proliferation and collagen synthesis induced by basic fibroblast growth factor (bFGF).Methods We used Western blot and immunohistochemical methods for investigating the content and distribution of calcineurin in the lung tissue. Calcineurin activity in different tissues was measured using 32P-labelled substrate. In the primary culture of lung fibroblasts, 3H-thymidine (3H-TdR) and 3H-proline incorporation methods were used to study the effect of cyclosporin A(CsA), an inhibitor of calcineurin, on the lung fibroblast DNA and collagen synthesis stimulated by bFGF. Results We found that calcineurin was expressed in lung tissue and has phosphatase activity (7.1±2.0 pmol Pi/mg pr/min). CsA(10-8-10-6mol/L) inhibited lung fibroblast,3H-TdR incorporation induced by bFGF in a dose-dependent manner, with the inhibitory rates by20%, 46% and 66%(P<0.01). CsA(10-7-10-6mol/L) inhibited 3H-proline incorporation in lung fibroblasts stimulated by bFGF, with the inhibitory rates by 21% and 37%(P<0.01). In a culture medium, CsA (10-8-10-6mol/L) inhibited 3H-proline secretion induced by bFGF in a dose-dependent manner, with the inhibitory rates by 19%,29%(P<0.05) and 56% (P<0.01). CsA (10-7mol/L) could inhibit calcineurin activity by 44% in lung fibroblasts(P<0.01). Conclusions Calcineurin is expressed in lung tissue and has phosphatase activity. It is involved in the bFGF stimulated lung fibroblast DNA and collagen synthesis.

  13. Using basic fibroblast growth factor nanoliposome combined with ultrasound-introduced technology to early intervene the diabetic cardiomyopathy. (United States)

    Zhao, Ying-Zheng; Zhang, Ming; Tian, Xin-Qiao; Zheng, Lei; Lu, Cui-Tao


    Basic fibroblast growth factor (bFGF)-loaded liposome (bFGF-lip) combined with ultrasound-targeted microbubble destruction (UTMD) technique was investigated to prevent diabetic cardiomyopathy (DCM). Cardiac function and myocardial ultrastructure were assessed. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, immunohistochemistry staining, and Western blot assay were used to investigate the signal pathway underlying the expression of bFGF in DCM treatment. From Mason staining and TUNEL staining, bFGF-lip + UTMD group showed significant differences from the diabetes group and other groups treated with bFGF or bFGF-lip. The diabetes group showed similar results (myocardial capillary density, collagen volume fraction, and cardiac myocyte apoptosis index) to other bFGF treatment groups. Indexes from transthoracic echocardiography and hemodynamic evaluation also proved the same conclusion. These results confirmed that the abnormalities including diastolic dysfunctions, myocardial fibrosis, and metabolic disturbances could be suppressed by the different extents of twice-weekly bFGF treatments for 12 consecutive weeks (free bFGF or bFGF-lip +/- UTMD), with the strongest improvements observed in the bFGF-lip + UTMD group. The group combining bFGF-lip with UTMD demonstrated the highest level of bFGF expression among all the groups. The bFGF activated the PI3K/AKT signal pathway, causing the reduction of myocardial cell apoptosis and increase of microvascular density. This strategy using bFGF-lip and UTMD is a potential strategy in early intervention of DCM in diabetes.


    Institute of Scientific and Technical Information of China (English)

    朱洪生; 连锋; 郑家豪


    Objectives. To observe the effect of basic flbroblast growth factor (bFGF) slow-release mierocapsules on angiogen-esis in infarcted myocardial regions.Methods. Myocardial infarction was induced in 24 New Zealand rabbits by ligating the root of left anterior de-scending coronary artery. Group Ⅰ (n=8) served as control, group Ⅱ (n=8) as a blank mieroeapsule group, group Ⅲ (n= 8, each mierocapsule contains 1μg bFGF) as mierpcapsule group. In group Ⅱ and Ⅲ, 5 blank mierocapsules or bFGF slow-release mierocapsules were implanted into myocardium underneath the epieardium between the left ante-rior descending coronary artery and left circumflex artery. Infarct size was evaluated by infarcted weight/left ventricle weight ratio and angiogenesis was evaluated by immunohistochemieal examinations 5 weeks later.Results. As compared with group Ⅰ and Ⅱ , rabbits treated with bFGF slow-release mierocapsules showed higher microvessel counts (group Ⅰ37.75±4.50, group Ⅱ8.37 ±4.98, Ⅲ 135.50±4.81,P<0.001) and lessinfarcted weight/left ventricle weight ( group Ⅰ 16.8 % ± 0.4 %, group Ⅱ 16.7 % ± 0.5 %, vs. group Ⅲ 7.0 % ±0.2%,P< 0.001).Conclusions. Subepicardial administration of bFGF slow-release microcapsule in the infarcted rabbit model results in effective angiogenesis and reduction in infarct size.

  15. Comprehensive Analysis of Expressed Sequence Tags from the Pulp of the Red Mutant 'Cara Cara' Navel Orange(Citrus sinensis Osbeck)

    Institute of Scientific and Technical Information of China (English)

    Jun-Li Ye; An-Dan Zhu; Neng-Guo Tao; Qiang Xu; Juan Xu; Xiu-Xin Deng


    Expressed sequence tag(EST)analysis of the pulp of the red-fleshed mutant 'Cara Cara' navel orange provided a starting point for gene discovery and transcriptome survey during citrus fruit maturation. Interpretation of the EST datasets revealed that the mutant pulp transcriptome held a high section of stress responses related genes,such as the type Ⅲ metallothionein-like gene(6.0%),heat shock protein(2.8%),Cu/Zn superoxide dismutase(0.8%),late embryogenesis abundant protein 5(0.8%),etc. 133transcripts were detected to be differentially expressed between the red mutant and its orange-color wild genotype 'Washington' via digital expression analysis. Among them,genes involved in metabolism,defense/stress and signal transduction were statistical overrepresented. Fifteen transcription factors,composed of NAM,ATAF,and CUC transcription factor(NAC); myeloblastosis(MYB); myelocytomatosis(MYC); basic helix-loop-helix(bHLH); basic leucine zipper(bZIP)domain members,were also included. The data reflected the distinct expression profile and the unique regulatory module associated with these two genotypes. Eight differently expressed genes analyzed in digital were validated by quantitative realtime polymerase chain reaction. For structural polymorphism,both simple sequence repeats and single nucleotide polymorphisms(SNP)loci were surveyed; dinucleotide presentation revealed a bias toward AG/GA/TC/CT repeats(52.5%),against GC/CG repeats(0%). SNPs analysis found that transitions(73%)outnumbered transversions(27%). Seventeen potential cultivar-specific and 387 heterozygous SNP loci were detected from 'Cara Cara' and 'Washington' EST pool.

  16. Characteristic expression of HTLV-1 basic zipper factor (HBZ transcripts in HTLV-1 provirus-positive cells

    Directory of Open Access Journals (Sweden)

    Yamada Yasuaki


    Full Text Available Abstract Background HTLV-1 causes adult T-cell leukemia (ATL. Although there have been many studies on the oncogenesis of the viral protein Tax, the precise oncogenic mechanism remains to be elucidated. Recently, a new viral factor, HTLV-1 basic Zip factor (HBZ, encoded from the minus strand mRNA was discovered and the current models of Tax-centered ATL cell pathogenesis are in conflict with this discovery. HBZs consisting of non-spliced and spliced isoforms (HBZ-SI are thought to be implicated in viral replication and T-cell proliferation but there is little evidence on the HBZ expression profile on a large scale. Results To investigate the role of HBZ-SI in HTLV-1 provirus-positive cells, the HBZ-SI and Tax mRNA loads in samples with a mixture of infected and non-infected cells were measured and then adjusted by dividing by the HTLV-I proviral load. We show here that the HBZ-SI mRNA level is 4-fold higher than non-spliced HBZ and is expressed by almost all cells harboring HTLV-1 provirus with variable intensity. The proviral-adjusted HBZ-SI and Tax quantification revealed a characteristic imbalanced expression feature of high HBZ and low Tax expression levels in primary ATL cells or high HBZ and very high Tax levels in HTLV-1-related cell lines (cell lines compared with a standard expression profile of low HBZ and low Tax in infected cells. Interestingly, according to the mutual Tax and HBZ expression status, HTLV-1-related cell lines were subcategorized into two groups, an ATL cell type with high HBZ and low Tax levels and another type with high Tax and either high or low HBZ, which was closely related to its cell origin. Conclusion This is the first comprehensive study to evaluate the mutual expression profile of HBZ and Tax in provirus-positive cells, revealing that there are quantitative and relative characteristic features among infected cells, primary ATL cells, and cell lines.

  17. 人转录因子hASH4的表达纯化及其DNA结合活性%Expression,Purification and DNA Binding Activity of Human Transcription Factor hASH4

    Institute of Scientific and Technical Information of China (English)

    苏琢磊; 楼田甜; 王远东; 季朝能


    hASH4 is a member of Helix-Loop-Helix(HLH)proteins which are an important group of transcription factors that exert such a determinative influence on a variety of cell proliferation, determination and differentiation from yeast to human. hASH4 has been reported closely related to skin differentiation and development, but the exact mechanism is unknown. In this study, the expression plasmid of pET28b-his-hASH4 was restructured and successfully expressed in BL21(DE3). After the optimization of temperature, time, IPTG concentration of expression, we ascertain that 1mmol/L IPTG expressed 4 hours at 37℃can get the best expression. and we got the electrophoretic purity of the target protein by Ni-NTA affinity chromatography and ion cation exchange chromatography. The non-radioactive EMSA experiment between DNA and protein showed that the hASH4 protein only has the non-sepcific DNA binding activity without specific DNA binding activity. The play of transcription factors by hASH4 in the body may be need to form a heterodimer or multimer to further specific binding to DNA and act on the downstream genes. This study provided clues for the really function in vivo of hASH4 and laid the foundation for the further crystallization conditions screening, structural analysis and functional studies.%hASH4蛋白所属的HLH转录因子家族在调节基因表达,调控细胞周期,决定细胞分化中起了重要作用。有研究表明hASH4蛋白可能与皮肤的分化发育有着密切的关系,但具体机制不明。成功构建了pET28b-hASH4表达质粒,并在大肠杆菌BL21(DE3)中诱导表达。经过对温度、时间、IPTG浓度等表达条件的优化,确定在37℃下1 mmol/L IPTG诱导表达4 h可达到最佳表达效果,并通过亲和层析和弱阳离子交换层析纯化蛋白,得到了电泳纯的目的蛋白。通过非放射性凝胶滞留试验发现hASH4蛋白单体只具有非特异性的DNA结合活性,而不具有特异性的DNA结

  18. Effect of the combination of basic fibroblast growth factor and cysteine on corneal epithelial healing after photorefractive keratectomy in patients affected by myopia

    Directory of Open Access Journals (Sweden)

    Alessandro Meduri


    Full Text Available Background: This study sought to evaluate the effect of basic fibroblast growth factor eye drops and cysteine oral supplements on corneal healing in patients treated with photorefractive keratectomy (PRK. Materials and Methods: One hundred and twenty patients treated bilaterally with PRK for myopia were enrolled at one of two eye centers (Clinica Santa Lucia, Bologna, Italy and Department of Ophthalmology, University of Magna Graecia, Catanzaro, Italy and were treated at the former center. Sixty patients included in the study group (Group 1 were treated postoperatively with topical basic fibroblast growth factor plus oral L-cysteine supplements, whereas 60 subjects included in the control group (Group 2 received basic fibroblast growth factor eye drops. We recorded the rate of corneal re-epithelialization and patients were followed-up every 30 days for 6 months. Statistical analyses were performed on the collected data. Results: The eyes in Group 1 demonstrated complete re-epithelialization at Day 5, whereas the eyes in Group 2 achieved this status on Day 6. No side-effects were reported. Conclusions : Patients treated with basic fibroblast growth factor eye drops and L-cysteine oral supplements benefit from more rapid corneal re-epithelialization. In human eyes, this combination treatment appeared to be safe and effective in accelerating corneal surfacing after surgery. Financial Disclosure: No author has any financial or proprietary interest in any material or method used in this study. Trial Registration: Current Controlled Trials ISRCTN73824458.

  19. Effect of the combination of basic fibroblast growth factor and cysteine on corneal epithelial healing after photorefractive keratectomy in patients affected by myopia (United States)

    Meduri, Alessandro; Scorolli, Lucia; Scalinci, Sergio Zaccaria; Grenga, Pier Luigi; Lupo, Stefano; Rechichi, Miguel; Meduri, Enrico


    Background: This study sought to evaluate the effect of basic fibroblast growth factor eye drops and cysteine oral supplements on corneal healing in patients treated with photorefractive keratectomy (PRK). Materials and Methods: One hundred and twenty patients treated bilaterally with PRK for myopia were enrolled at one of two eye centers (Clinica Santa Lucia, Bologna, Italy and Department of Ophthalmology, University of Magna Graecia, Catanzaro, Italy) and were treated at the former center. Sixty patients included in the study group (Group 1) were treated postoperatively with topical basic fibroblast growth factor plus oral L-cysteine supplements, whereas 60 subjects included in the control group (Group 2) received basic fibroblast growth factor eye drops. We recorded the rate of corneal re-epithelialization and patients were followed-up every 30 days for 6 months. Statistical analyses were performed on the collected data. Results: The eyes in Group 1 demonstrated complete re-epithelialization at Day 5, whereas the eyes in Group 2 achieved this status on Day 6. No side-effects were reported. Conclusions: Patients treated with basic fibroblast growth factor eye drops and L-cysteine oral supplements benefit from more rapid corneal re-epithelialization. In human eyes, this combination treatment appeared to be safe and effective in accelerating corneal surfacing after surgery. Financial Disclosure: No author has any financial or proprietary interest in any material or method used in this study. Trial Registration: Current Controlled Trials ISRCTN73824458. PMID:24145571

  20. The impact of hyperbaric oxygen therapy on serological values of vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF

    Directory of Open Access Journals (Sweden)

    Ziebura Thomas


    Full Text Available Abstract Background Hyperbaric oxygen (HBO therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. It combines hyperoxic effects with the stimulating potential of post-therapeutic reactive hypoxia. As its crucial effects, stimulation of fibroblast growth, induction of collagen synthesis and the initiation of angiogenesis are discussed. Angiogenesis is a multistage process resulting in the growth of blood vessels. It includes degradation of extracellular matrix, proliferation and migration of different cell populations and finally formation of new vessel structures. This complex chain of procedures is orchestrated by different cytokines and growth factors. Crucial mediators of angiogenesis are basic fibroblast growth factor (bFGF and vascular endothelial growth factor (VEGF; their in-vivo function is still not fully understood. Methods Forty-three patients suffering from sudden sensorineural hearing loss or tinnitus were treated with HBO. The therapy included 10 sessions of 90 minutes each, one session a day. Serological levels of bFGF and VEGF were assessed by enzyme-linked immunosorbent assays performed according to the manufacturer's instructions on day 1, 2, 5 and 10 of HBO therapy and were compared to mean values of the control group, related to the patient's age and sex, and their development observed over the ten days of HBO. Results There was no sex- or age dependency of bFGF observed in the present study, whereas under HBO our results showed a significant mitigation of the bFGF concentration. In the present data, there was no connection between the VEGF concentration and the patients' ages. Women showed significantly higher levels of VEGF. There was no significant change of VEGF concentration or the VEGF/bFGF ratio during HBO. All scored results varied within the range of standard values as described in the current literature. Conclusions A significant effect of HBO on serum

  1. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl


    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  2. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang


    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  3. Characterization and expression analysis of AH receptors in aquatic mammals and birds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young [Ehime Prefectural Institute of Public Health and Environmental Science, Matsuyama (Japan); Yasui, Tomoko; Hisato, Iwata; Shinsuke, Tanabe [Ehime Univ., Matsuyama (Japan)


    The magnitude of the risk that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) pose to the health of aquatic birds and mammals is uncertain, because of the lack of direct information on the sensitivity and toxicity to these chemicals. Exposure to PHAHs is speculated to produce toxicity through changes in the expression of genes involved in the control of cell growth and differentiation. These changes are initiated by the binding to the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor. The AHR and its dimerization partner ARNT belong to the basic-helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulation proteins. The bHLH domain was involved in protein-DNA and protein-protein interactions, and the PAS domain forms a secondary dimerization surface for heteromeric interactions between AHR and ARNT. Although the presence and basic function of AHR are known to be conserved in most vertebrates, only a limited number of studies on the structure and functional diversity of AHR in aquatic mammals and birds have been reported, in spite of their high exposure to dioxins and other related chemicals. To understand the molecular mechanism of susceptibility to dioxin exposure and toxic effects that PHAHs pose in wild animals, we investigated the molecular and functional characterization of AHRs from aquatic mammals and birds. Initially, the AHR cDNAs from the livers of Baikal seal (Pusa sibirica), black-footed albatross (Diomedea nigripes) and common cormorant (Phalacrocorax carbo) were cloned and sequenced. We also clarified the tissue-specific expression pattern of AHR mRNA and the relationships among PHAHs, AHR and CYP expression levels in the liver of Baikal seals and common cormorants.

  4. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  5. Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation. (United States)

    Obayashi, Shinya; Tabunoki, Hiroko; Kim, Seung U; Satoh, Jun-ichi


    Neural stem cells (NSC) with self-renewal and multipotent properties could provide an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. However, the majority of transplanted NSC and neural progenitor cells (NPC) differentiate into astrocytes in vivo under pathological environments in the central nervous system, which potentially cause reactive gliosis. Because the serum is a potent inducer of astrocyte differentiation of rodent NPC in culture, we studied the effect of the serum on gene expression profile of cultured human NPC to identify the gene signature of astrocyte differentiation of human NPC. Human NPC spheres maintained in the serum-free culture medium were exposed to 10% fetal bovine serum (FBS) for 72 h, and processed for analyzing on a Whole Human Genome Microarray of 41,000 genes, and the microarray data were validated by real-time RT-PCR. The serum elevated the levels of expression of 45 genes, including ID1, ID2, ID3, CTGF, TGFA, METRN, GFAP, CRYAB and CSPG3, whereas it reduced the expression of 23 genes, such as DLL1, DLL3, PDGFRA, SOX4, CSPG4, GAS1 and HES5. Thus, the serum-induced astrocyte differentiation of human NPC is characterized by a counteraction of ID family genes on Delta family genes. Coimmunoprecipitation analysis identified ID1 as a direct binding partner of a proneural basic helix-loop-helix (bHLH) transcription factor MASH1. Luciferase assay indicated that activation of the DLL1 promoter by MASH1 was counteracted by ID1. Bone morphogenetic protein 4 (BMP4) elevated the levels of ID1 and GFAP expression in NPC under the serum-free culture conditions. Because the serum contains BMP4, these results suggest that the serum factor(s), most probably BMP4, induces astrocyte differentiation by upregulating the expression of ID family genes that repress the proneural bHLH protein-mediated Delta expression in human NPC.

  6. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). (United States)

    Shen, Xinjie; Zhao, Kai; Liu, Linlin; Zhang, Kaichun; Yuan, Huazhao; Liao, Xiong; Wang, Qi; Guo, Xinwei; Li, Fang; Li, Tianhong


    The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin.

  7. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. (United States)

    Hallam, S; Singer, E; Waring, D; Jin, Y


    The basic helix-loop-helix transcription factor NeuroD (Neurod1) has been implicated in neuronal fate determination, differentiation and survival. Here we report the expression and functional analysis of cnd-1, a C. elegans NeuroD homolog. cnd-1 expression was first detected in neuroblasts of the AB lineage in 14 cell embryos and maintained in many neuronal descendants of the AB lineage during embryogenesis, diminishing in most terminally differentiated neurons prior to hatching. Specifically, cnd-1 reporter genes were expressed in the precursors of the embryonic ventral cord motor neurons and their progeny. A loss-of-function mutant, cnd-1(ju29), exhibited multiple defects in the ventral cord motor neurons. First, the number of motor neurons was reduced, possibly caused by the premature withdrawal of the precursors from mitotic cycles. Second, the strict correlation between the fate of a motor neuron with respect to its lineage and position in the ventral cord was disrupted, as manifested by the variable expression pattern of motor neuron fate specific markers. Third, motor neurons also exhibited defects in terminal differentiation characteristics including axonal morphology and synaptic connectivity. Finally, the expression patterns of three neuronal type-specific transcription factors, unc-3, unc-4 and unc-30, were altered. Our data suggest that cnd-1 may specify the identity of ventral cord motor neurons both by maintaining the mitotic competence of their precursors and by modulating the expression of neuronal type-specific determination factors. cnd-1 appears to have combined the functions of several vertebrate neurogenic bHLH proteins and may represent an ancestral form of this protein family.

  8. I-mfa domain proteins interact with Axin and affect its regulation of the Wnt and c-Jun N-terminal kinase signaling pathways. (United States)

    Kusano, Shuichi; Raab-Traub, Nancy


    I-mfa has been identified as an inhibitor of myogenic basic helix-loop-helix transcription factors, and a related human I-mfa domain-containing protein (HIC) also has been identified as a protein that regulates Tat- and Tax-mediated expression of viral promoters. HIC and I-mfa represent a family of proteins that share a highly conserved cysteine-rich domain, termed the I-mfa domain. We show here that both I-mfa domain proteins, HIC and I-mfa, interacted in vivo with the Axin complex through their C-terminal I-mfa domains. This interaction inhibited Axin-mediated downregulation of free levels of cytosolic beta-catenin. I-mfa and HIC also both directly interacted with lymphocyte enhancer factor (LEF); however, I-mfa but not HIC significantly inhibited reporter constructs regulated by beta-catenin. The overexpression of HIC but not I-mfa decreased the inhibitory effects of Axin on beta-catenin-regulated reporter constructs, while both HIC and I-mfa decreased Axin-mediated c-Jun N-terminal kinase (JNK) activation. These data reveal for the first time that I-mfa domain proteins interact with the Axin complex and affect Axin regulation of both the Wnt and the JNK activation pathways. Interestingly, HIC differs from I-mfa in that I-mfa affects both Axin function and T-cell factor- or LEF-regulated transcription in the Wnt signaling pathway while HIC affects primarily Axin function.

  9. Molecular cloning of a novel human I-mfa domain-containing protein that differently regulates human T-cell leukemia virus type I and HIV-1 expression. (United States)

    Thébault, S; Gachon, F; Lemasson, I; Devaux, C; Mesnard, J M


    Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.

  10. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. (United States)

    Hanotel, Julie; Bessodes, Nathalie; Thélie, Aurore; Hedderich, Marie; Parain, Karine; Van Driessche, Benoit; Brandão, Karina De Oliveira; Kricha, Sadia; Jorgensen, Mette C; Grapin-Botton, Anne; Serup, Palle; Van Lint, Carine; Perron, Muriel; Pieler, Tomas; Henningfeld, Kristine A; Bellefroid, Eric J


    The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.

  11. Targeting the bHLH transcriptional networks by mutated E proteins in experimental glioma. (United States)

    Beyeler, Sarah; Joly, Sandrine; Fries, Michel; Obermair, Franz-Josef; Burn, Felice; Mehmood, Rashid; Tabatabai, Ghazaleh; Raineteau, Olivier


    Glioblastomas (GB) are aggressive primary brain tumors. Helix-loop-helix (HLH, ID proteins) and basic HLH (bHLH, e.g., Olig2) proteins are transcription factors that regulate stem cell proliferation and differentiation throughout development and into adulthood. Their convergence on many oncogenic signaling pathways combined with the observation that their overexpression in GB correlates with poor clinical outcome identifies these transcription factors as promising therapeutic targets. Important dimerization partners of HLH/bHLH proteins are E proteins that are necessary for nuclear translocation and DNA binding. Here, we overexpressed a wild type or a dominant negative form of E47 (dnE47) that lacks its nuclear localization signal thus preventing nuclear translocation of bHLH proteins in long-term glioma cell lines and in glioma-initiating cell lines and analyzed the effects in vitro and in vivo. While overexpression of E47 was sufficient to induce apoptosis in absence of bHLH proteins, dnE47 was necessary to prevent nuclear translocation of Olig2 and to achieve similar proapoptotic responses. Transcriptional analyses revealed downregulation of the antiapoptotic gene BCL2L1 and the proproliferative gene CDC25A as underlying mechanisms. Overexpression of dnE47 in glioma-initiating cell lines with high HLH and bHLH protein levels reduced sphere formation capacities and expression levels of Nestin, BCL2L1, and CDC25A. Finally, the in vivo induction of dnE47 expression in established xenografts prolonged survival. In conclusion, our data introduce a novel approach to jointly neutralize HLH and bHLH transcriptional networks activities, and identify these transcription factors as potential targets in glioma.

  12. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq

    Directory of Open Access Journals (Sweden)

    Wei Chen


    Full Text Available Drought and flooding are two major causes of severe yield loss in soybean worldwide. A lack of knowledge of the molecular mechanisms involved in drought and flood stress has been a limiting factor for the effective management of soybeans; therefore, it is imperative to assess the expression of genes involved in response to flood and drought stress. In this study, differentially expressed genes under drought and flooding conditions were investigated using Illumina RNA-Seq transcriptome profiling. A total of 2,724 and 3,498 differentially expressed genes (DEGs were identified under drought and flooding treatments, respectively. These genes comprise 289 Transcription Factors (TFs representing Basic Helix-loop Helix (bHLH, Ethylene Response Factors (ERFs, myeloblastosis (MYB, No apical meristem (NAC, and WRKY amino acid motif (WRKY type major families known to be involved in the mechanism of stress tolerance. The expression of photosynthesis and chlorophyll synthesis related genes were significantly reduced under both types of stresses, which limit the metabolic processes and thus help prolong survival under extreme conditions. However, cell wall synthesis related genes were up-regulated under drought stress and down-regulated under flooding stress. Transcript profiles involved in the starch and sugar metabolism pathways were also affected under both stress conditions. The changes in expression of genes involved in regulating the flux of cell wall precursors and starch/sugar content can serve as an adaptive mechanism for soybean survival under stress conditions. This study has revealed the involvement of TFs, transporters, and photosynthetic genes, and has also given a glimpse of hormonal cross talk under the extreme water regimes, which will aid as an important resource for soybean crop improvement.

  13. CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. (United States)

    Ray, Subir K; Li, H Joyce; Metzger, Eric; Schüle, Roland; Leiter, Andrew B


    Gene expression programs required for differentiation depend on both DNA-bound transcription factors and surrounding histone modifications. Expression of the basic helix-loop-helix (bHLH) protein NeuroD1 is restricted to endocrine cells in the gastrointestinal (GI) tract, where it is important for endocrine differentiation. RREB1 (RAS-responsive element binding protein 1), identified as a component of the CtBP corepressor complex, binds to nearby DNA elements to associate with NeuroD and potentiate transcription of a NeuroD1 target gene. Transcriptional activation by RREB1 depends on recruitment of CtBP with its associated proteins, including LSD1, through its PXDLS motifs. The mechanism of transcriptional activation by CtBP has not been previously characterized. Here we found that activation was dependent on the histone H3 lysine 9 (H3K9) demethylase activity of LSD1, which removes repressive methyl marks from dimethylated H3K9 (H3K9Me2), to facilitate subsequent H3K9 acetylation by the NeuroD1-associated histone acetyltransferase, P300/CBP-associated factor (PCAF). The secretin, β-glucokinase, insulin I, and insulin II genes, four known direct targets of NeuroD1 in intestinal and pancreatic endocrine cells, all show similar promoter occupancy by CtBP-associated proteins and PCAF, with acetylation of H3K9. This work may indicate a mechanism for selective regulation of transcription by CtBP and LSD1 involving their association with specific transcription factors and cofactors to drive tissue-specific transcription.

  14. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sitakanta ePattanaik


    Full Text Available Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors: the R2R3 MYB, basic helix-loop-helix (bHLH and WD40 repeat (WDR protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS, highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay

  15. Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless

    Directory of Open Access Journals (Sweden)

    Laura Tamberg


    Full Text Available Pitt-Hopkins syndrome (PTHS is caused by haploinsufficiency of Transcription factor 4 (TCF4, one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da, homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder.

  16. Characterization of the promoter region of biosynthetic enzyme genes involved in berberine biosynthesis in Coptis japonica

    Directory of Open Access Journals (Sweden)

    Yasuyuki Yamada


    Full Text Available The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs, a plant-specific WRKY-type transcription factor, CjWRKY1, and a basic helix-loop-helix (bHLH transcription factor, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4’OMT and CYP719A1 were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay (EMSA and by a chromatin immunoprecipitation (ChIP assay. In addition, CjbHLH1 also activated transcription from truncated 4’OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed.

  17. Basic Fibroblast Growth Factor-Mediated Overexpression of Vascular Endothelial Growth Factor in 1F6 Human Melanoma Cells is Regulated by Activation of PI-3K and p38 MAPK

    Directory of Open Access Journals (Sweden)

    Dennis Fontijn


    Full Text Available Background: 1F6 human melanoma xenografts overexpressing either the 18 kD (18kD form or all (ALL forms of human basic fibroblast growth factor (bFGF demonstrate an abundant number of microvessels and accelerated growth. We now examined whether bFGF mediates vascular endothelial growth factor (VEGF expression.

  18. Angiogenic synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in an in vitro quantitative microcarrier-based three-dimensional fibrin angiogenesis system

    Institute of Scientific and Technical Information of China (English)

    Xi-Tai Sun; Yi-Tao Ding; Xiao-Gui Yan; Ling-Yun Wu; Qiang Li; Ni Cheng; Yu-Dong Qiu; Min-Yue Zhang


    AIM: To develop an in vitro three-dimensional (3-D)angiogenesis system to analyse the capillary sprouts induced in response to the concentration ranges of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) and to quantify their synergistic activity.METHODS: Microcarriers (MCs) coated with human microvascular endothelial cells (HMVECs) were embedded in fibrin gel and cultured in 24-well plates with assay media. The growth factors bFGF, or VEGF, or both were added to the system. The wells (n = 8/group) were digitally photographed and the average length of capillary-like sprouts (ALS) from each microcarrier was quantitated.RESULTS: In aprotinin-stabilized fibrin matrix, human microvascular endothelial cells on the MCs invaded fibrin,forming sprouts and capillary networks with lumina. The angiogenic effects of bFGF or VEGF were dose-dependent in the range from 10 to 40 ng/mL. At d 1, 10 ng/mL of bFGF and VEGF induced angiogenesis with an ALS of 32.13±16.6 μm and 43.75±27.92 μm, respectively, which were significantly higher than that of the control (5.88±4.45 μm, P<0.01),and the differences became more significant as the time increased. In addition, the combination of 10 ng/mL of bFGF and VEGF each induced a more significant effect than the summed effects of bFGF (10 ng/mL) alone and VEGF (10 ng/mL) alone when analyzed using SPSS system for general linear model (GLM) (P= 0.011), and that also exceeded the effects by 20 ng/mL of either bFGF or VEGF.CONCLUSION: A microcarrier-based in vitro threedimensional angiogenesis model can be developed in fibrin.It offers a unique system for quantitative analysis of angiogenesis. Both bFGF and VEGF exert their angiogenic effects on HMVECs synergistically and in a dose-dependent manner.

  19. Using basic fibroblast growth factor nanoliposome combined with ultrasound-introduced technology to early intervene the diabetic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Zhao YZ


    Full Text Available Ying-Zheng Zhao,1,2 Ming Zhang,1 Xin-Qiao Tian,3 Lei Zheng,4 Cui-Tao Lu1,2 1College of Pharmaceutical Sciences, Wenzhou Medical University, 2Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 3Department of Ultrasonic Diagnosis, Henan Provincial People’s Hospital, Zhengzhou City, Henan, 4Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China Abstract: Basic fibroblast growth factor (bFGF-loaded liposome (bFGF-lip combined with ultrasound-targeted microbubble destruction (UTMD technique was investigated to prevent diabetic cardiomyopathy (DCM. Cardiac function and myocardial ultrastructure were assessed. Terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick-end labeling (TUNEL staining, immunohistochemistry staining, and Western blot assay were used to investigate the signal pathway underlying the expression of bFGF in DCM treatment. From Mason staining and TUNEL staining, bFGF-lip + UTMD group showed significant differences from the diabetes group and other groups treated with bFGF or bFGF-lip. The diabetes group showed similar results (myocardial capillary density, collagen volume fraction, and cardiac myocyte apoptosis index to other bFGF treatment groups. Indexes from transthoracic echocardiography and hemodynamic evaluation also proved the same conclusion. These results confirmed that the abnormalities including diastolic dysfunctions, myocardial fibrosis, and metabolic disturbances could be suppressed by the different extents of twice-weekly bFGF treatments for 12 consecutive weeks (free bFGF or bFGF-lip +/- UTMD, with the strongest improvements observed in the bFGF-lip + UTMD group. The group combining bFGF-lip with UTMD demonstrated the highest level of bFGF expression among all the groups. The bFGF activated the PI3K/AKT signal pathway, causing the reduction of myocardial cell

  20. Effects of basic fibroblast growth factor on superoxide dismutase activity and malondialdehyde content in the rat brain following intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Hongqiao Wei; Juen Huang; Junjie Huang; Bing Li; Qianming Li


    BACKGROUND: Studies have confirmed that basic fibroblast growth factor (bFGF) promotes neuronal survival and neurite outgrowth. OBJECTIVE: To compare and verify the effects of bFGF on superoxide dismutase activity and malondialdehyde content in rat brain tissues surrounding a hemorrhagic lesion, as well as the hippocampus at the hemorrhagic side. DESIGN, TIME AND SETTING: The randomized, controlled, neurobiological study was performed at the Science Experimental Center and Research Laboratory, Guangxi Medical University, China, from September to December 2006. MATERIALS: Ninety-two adult, healthy, Wistar rats of equal gender were used to establish intraeerebral hemorrhage by infusing type VII collagenase into the left internal capsule. Type Ⅶ collagenase (Sigma, USA), superoxide dismutase and malondialdehyde kits (Jiancheng, China), and bFGF (Institute of Bioengineering, Ji'nan University, China) were used for this study. METHODS: Ninety successfully lesioned rats were equally and randomly divided into three groups. Rats in the bFGF group were intramuscularly injected daily with bFGF (8μg/kg). Rats in the saline control group received an equal volume of saline. The rats in the model group did not receive other interventions. Superoxide dismutase activity was measured using the xanthine oxidase method. Malondialdehyde contents were detected using the thiobarbituric acid method. MAIN OUTCOME MEASURES: At 1, 3, and 7 days following intracerebral hemorrhage, superoxide dismutase and malondialdehyde were determined in the brain tissue surrounding the hematoma and in the hippocampus in the affected hemisphere. RESULTS: In brain tissue surrounding the hematoma, superoxide dismutase activity was significantly increased in the bFGF group at 3 and 7 days after intracerebral hemorrhage compared with the saline control group, whereas malondialdehyde content was significantly decreased (P 0.05). CONCLUSION: Increased superoxide dismutase activity and decreased

  1. SREBP-2 negatively regulates FXR-dependent transcription of FGF19 in human intestinal cells. (United States)

    Miyata, Masaaki; Hata, Tatsuya; Yamazoe, Yasushi; Yoshinari, Kouichi


    Sterol regulatory element-binding protein-2 (SREBP-2) is a basic helix-loop-helix-leucine zipper transcription factor that positively regulates transcription of target genes involved in cholesterol metabolism. In the present study, we have investigated a possible involvement of SREBP-2 in human intestinal expression of fibroblast growth factor (FGF)19, which is an endocrine hormone involved in the regulation of lipid and glucose metabolism. Overexpression of constitutively active SREBP-2 decreased FGF19 mRNA levels in human colon-derived LS174T cells. In reporter assays, active SREBP-2 overexpression suppressed GW4064/FXR-mediated increase in reporter activities in regions containing the IR-1 motif (+848 to +5200) in the FGF19 gene. The suppressive effect disappeared in reporter activities in the region containing the IR-1 motif when the mutation was introduced into the IR-1 motif. In electrophoretic mobility shift assays, binding of the FXR/retinoid X receptor α heterodimer to the IR-1 motif was attenuated by adding active SREBP-2, but SREBP-2 binding to the IR-1 motif was not observed. In chromatin immunoprecipitation assays, specific binding of FXR to the IR-1-containing region of the FGF19 gene (+3214 to +3404) was increased in LS174T cells by treatment with cholesterol and 25-hydroxycholesterol. Specific binding of SREBP-2 to FXR was observed in glutathione-S-transferase (GST) pull-down assays. These results suggest that SREBP-2 negatively regulates the FXR-mediated transcriptional activation of the FGF19 gene in human intestinal cells.

  2. Early genetic responses in rat vascular tissue after simulated diving. (United States)

    Eftedal, Ingrid; Jørgensen, Arve; Røsbjørgen, Ragnhild; Flatberg, Arnar; Brubakk, Alf O


    Diving causes a transient reduction of vascular function, but the mechanisms behind this are largely unknown. The aim of this study was therefore to analyze genetic reactions that may be involved in acute changes of vascular function in divers. Rats were exposed to 709 kPa of hyperbaric air (149 kPa Po(2)) for 50 min followed by postdive monitoring of vascular bubble formation and full genome microarray analysis of the aorta from diving rats (n = 8) and unexposed controls (n = 9). Upregulation of 23 genes was observed 1 h after simulated diving. The differential gene expression was characteristic of cellular responses to oxidative stress, with functions of upregulated genes including activation and fine-tuning of stress-responsive transcription, cytokine/cytokine receptor signaling, molecular chaperoning, and coagulation. By qRT-PCR, we verified increased transcription of neuron-derived orphan receptor-1 (Nr4a3), plasminogen activator inhibitor 1 (Serpine1), cytokine TWEAK receptor FN14 (Tnfrsf12a), transcription factor class E basic helix-loop-helix protein 40 (Bhlhe40), and adrenomedullin (Adm). Hypoxia-inducible transcription factor HIF1 subunit HIF1-α was stabilized in the aorta 1 h after diving, and after 4 h there was a fivefold increase in total protein levels of the procoagulant plasminogen activator inhibitor 1 (PAI1) in blood plasma from diving rats. The study did not have sufficient power for individual assessment of effects of hyperoxia and decompression-induced bubbles on postdive gene expression. However, differential gene expression in rats without venous bubbles was similar to that of all the diving rats, indicating that elevated Po(2) instigated the observed genetic reactions.

  3. Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. (United States)

    Zorrilla-Fontanesi, Yasmín; Rambla, José-Luis; Cabeza, Amalia; Medina, Juan J; Sánchez-Sevilla, José F; Valpuesta, Victoriano; Botella, Miguel A; Granell, Antonio; Amaya, Iraida


    Improvement of strawberry (Fragaria × ananassa) fruit flavor is an important goal in breeding programs. To investigate genetic factors controlling this complex trait, a strawberry mapping population derived from genotype '1392', selected for its superior flavor, and '232' was profiled for volatile compounds over 4 years by headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. More than 300 volatile compounds were detected, of which 87 were identified by comparison of mass spectrum and retention time to those of pure standards. Parental line '1392' displayed higher volatile levels than '232', and these and many other compounds with similar levels in both parents segregated in the progeny. Cluster analysis grouped the volatiles into distinct chemically related families and revealed a complex metabolic network underlying volatile production in strawberry fruit. Quantitative trait loci (QTL) detection was carried out over 3 years based on a double pseudo-testcross strategy. Seventy QTLs covering 48 different volatiles were detected, with several of them being stable over time and mapped as major QTLs. Loci controlling γ-decalactone and mesifurane content were mapped as qualitative traits. Using a candidate gene approach we have assigned genes that are likely responsible for several of the QTLs. As a proof of concept we show that one homoeolog of the O-methyltransferase gene (FaOMT) is the locus responsible for the natural variation of mesifurane content. Sequence analysis identified 30 bp in the promoter of this FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and BZIP transcription factors. This polymorphism fully cosegregates with both the presence of mesifurane and the high expression of FaOMT during ripening.

  4. In vitro differentiation profile of osteoblasts derived from patients with Saethre-Chotzen syndrome. (United States)

    Ratisoontorn, Chootima; Seto, Marianne L; Broughton, Kristen M; Cunningham, Michael L


    Seathre-Chotzen syndrome (SCS) is an autosomal dominant craniosynostosis syndrome, associated with loss-of-function mutations in the basic helix-loop-helix transcription factor, TWIST1. The biologic activity of TWIST1 has been implicated in the inhibition of differentiation of multiple cell lineages. Therefore, premature fusion of cranial sutures (craniosynostosis) in SCS may be mediated by altered differentiation of calvarial osteoblasts. In this study, we evaluated osteoblasts derived from calvarial bone of three patients with SCS and three unaffected individuals as controls to investigate the principle stages of osteoblast differentiation: (1) proliferation, (2) matrix maturation, and (3) mineralization. Using a BrdU-Hoechst flow cytometry assay, we found that the percent of proliferating cells was significantly reduced in cells derived from patients with SCS compared with those derived from controls (P < or = 0.05). In the matrix maturation stage, alkaline phosphatase (ALP) enzyme activity and the expression of extracellular matrix genes, collagen I alpha 2 (COL1A2), osteopontin (OPN), osteocalcin (OC), and the runt-related transcription factor RUNX2 were examined by enzymatic assay and real-time quantitative RT-PCR, respectively. We identified no significant differences in the expression of matrix related transcripts. However, we found significant reductions in ALP activity on days 3 and 7 and in RUNX2 expression on days 14 and 21 (P < or = 0.05). Quantitative alizarin red S mineralization assays showed a trend toward increased mineralization in osteoblasts derived from patients with SCS at days 21 and 28, although not statistically significant. Our results demonstrated that loss-of-function mutations of TWIST1 led to reduced proliferation regardless of the functional domain affected. We did not find any conclusive differences in matrix maturation or mineralization in these primary osteoblasts. It is plausible that mutations in different functional domains of

  5. Angiopoietin-2 is a direct transcriptional target of TAL1, LYL1 and LMO2 in endothelial cells. (United States)

    Deleuze, Virginie; El-Hajj, Rawan; Chalhoub, Elias; Dohet, Christiane; Pinet, Valérie; Couttet, Philippe; Mathieu, Danièle


    The two related basic helix-loop-helix, TAL1 and LYL1, and their cofactor LIM-only-2 protein (LMO2) are present in blood and endothelial cells. While their crucial role in early hematopoiesis is well established, their function in endothelial cells and especially in angiogenesis is less understood. Here, we identified ANGIOPOIETIN-2 (ANG-2), which encodes a major regulator of angiogenesis, as a direct transcriptional target of TAL1, LYL1 and LMO2. Knockdown of any of the three transcription factors in human blood and lymphatic endothelial cells caused ANG-2 mRNA and protein down-regulation. Transient transfections showed that the full activity of the ANG-2 promoter required the integrity of a highly conserved Ebox-GATA composite element. Accordingly, chromatin immunoprecipitation assays demonstrated that TAL1, LYL1, LMO2 and GATA2 occupied this region of ANG-2 promoter in human endothelial cells. Furthermore, we showed that LMO2 played a central role in assembling TAL1-E47, LYL1-LYL1 or/and LYL1-TAL1 dimers with GATA2. The resulting complexes were able to activate endogenous ANG-2 expression in endothelial cells as well as in non-endothelial cells. Finally, we showed that ANG-2 gene activation during angiogenesis concurred with the up-regulation of TAL1 and LMO2. Altogether, we identified ANG-2 as a bona fide target gene of LMO2-complexes with TAL1 and/or LYL1, highlighting a new function of the three hematopoietic factors in the endothelial lineage.

  6. Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mangalakumar Veerasamy

    Full Text Available The basic-Helix-Loop-Helix family (bHLH of transcriptional factors plays a major role in regulating cellular proliferation, differentiation and phenotype maintenance. The downregulation of one of the members of bHLH family protein, inhibitor of DNA binding 2 (Id2 has been shown to induce de-differentiation of epithelial cells. Opposing regulators of epithelial/mesenchymal phenotype in renal proximal tubule epithelial cells (PTEC, TGFβ1 and BMP7 also have counter-regulatory effects in models of renal fibrosis. We investigated the regulation of Id2 by these growth factors in human PTECs and its implication in the expression of markers of epithelial versus myofibroblastic phenotype. Cellular Id2 levels were reduced by TGFβ1 treatment; this was prevented by co-incubation with BMP7. BMP7 alone increased cellular levels of Id2. TGFβ1 and BMP7 regulated Id2 through Smad2/3 and Smad1/5 dependent mechanisms respectively. TGFβ1 mediated Id2 suppression was essential for α-SMA induction in PTECs. Although Id2 over-expression prevented α-SMA induction, it did not prevent E-cadherin loss under the influence of TGFβ1. This suggests that the loss of gate keeper function of E-cadherin alone may not necessarily result in complete EMT and further transcriptional re-programming is essential to attain mesenchymal phenotype. Although BMP7 abolished TGFβ1 mediated α-SMA expression by restoring Id2 levels, the loss of Id2 was not sufficient to induce α-SMA expression even in the context of reduced E-cadherin expression. Hence, a reduction in Id2 is critical for TGFβ1-induced α-SMA expression in this model of human PTECs but is not sufficient in it self to induce α-SMA even in the context of reduced E-cadherin.

  7. Characterization of progenitor domains in the developing mouse thalamus. (United States)

    Vue, Tou Yia; Aaker, Joshua; Taniguchi, Aya; Kazemzadeh, Christina; Skidmore, Jennifer M; Martin, Donna M; Martin, James F; Treier, Mathias; Nakagawa, Yasushi


    To understand the molecular basis of the specification of thalamic nuclei, we analyzed the expression patterns of various transcription factors and defined progenitor cell populations in the embryonic mouse thalamus. We show that the basic helix-loop-helix (bHLH) transcription factor Olig3 is expressed in the entire thalamic ventricular zone and the zona limitans intrathalamica (ZLI). Next, we define two distinct progenitor domains within the thalamus, which we name pTH-R and pTH-C, located caudal to the ZLI. pTH-R is immediately caudal to the ZLI and expresses Nkx2.2, Mash1, and Olig3. pTH-C is caudal to pTH-R and expresses Ngn1, Ngn2, and Olig3. Short-term lineage analysis of Olig3-, Mash1-, Ngn1-, and Ngn2-expressing progenitor cells as well as tracing the Pitx2 cell lineage suggests that pTH-C is the only major source of thalamic nuclei containing neurons that project to the cerebral cortex, whereas pTH-R and ZLI are likely to produce distinct postmitotic populations outside of the cortex-projecting part of the thalamus. To determine if pTH-C is composed of subdomains, we characterized expression of the homeodomain protein Dbx1 and the bHLH protein Olig2. We show that Dbx1 is expressed in caudodorsal-high to rostroventral-low gradient within pTH-C. Analysis of heterozygous Dbx1(nlslacZ) knockin mice demonstrated that Dbx1-expressing progenitors preferentially give rise to caudodorsal thalamic nuclei. Olig2 is expressed in an opposite gradient within pTH-C to that of Dbx1. These results establish the molecular heterogeneity within the progenitor cells of the thalamus, and suggest that such heterogeneity contributes to the specification of thalamic nuclei.

  8. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Qian Qin; Young Xu; Tao He; Chunlin Qin; Jianming Xu


    This article reviews the molecular structure,expression pattern,physiological function,pathological roles and molecular mechanisms of Twist1 in development,genetic disease and cancer.Twist1 is a basic helix-loop-helix domaincontaining transcription factor.It forms homo- or hetero-dimers in order to bind the Nde1 E-box element and activate or repress its target genes.During development,Twistl is essential for mesoderm specification and differentiation.Heterozygous loss-of-function mutations of the human Twist1 gene cause several diseases including the SaethreChotzen syndrome.The Twist1-null mouse embryos die with unclosed cranial neural tubes and defective head mesenchyme,somites and limb buds.Twist1 is expressed in breast,liver,prostate,gastric and other types of cancers,and its expression is usually associated with invasive and metastatic cancer phenotypes.In cancer cells,Twistl is upregulated by multiple factors including SRC-1,STAT3,MSX2,HIF-1α,integrin-linked kinase and NF-κB.Twist1 significantly enhances epithelial-mesenchymal transition (EMT) and cancer cell migration and invasion,hence promoting cancer metastasis.Twistl promotes EMT in part by directly repressing E-cadherin expression by recruiting the nucleosome remodeling and deacetylase complex for gene repression and by upregulating Bmil,AKT2,YB-1,etc.Emerging evidence also suggests that Twist1 plays a role in expansion and chemotherapeutic resistance of cancer stem cells.Further understanding of the mechanisms by which Twist1 promotes metastasis and identification of Twist1 functional modulators may hold promise for developing new strategies to inhibit EMT and cancer metastasis.

  9. Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing. (United States)

    Sun, Yuyan; Qiu, Yang; Duan, Mengmeng; Wang, Jinglei; Zhang, Xiaohui; Wang, Haiping; Song, Jiangping; Li, Xixiang


    Anthocyanins are widely distributed water-soluble phytochemical pigments belonging to the flavonoid group. To date, limited knowledge is available about the regulatory roles of miRNAs in anthocyanin biosynthesis in plants. To identify the miRNAs associated with anthocyanin biosynthesis in radish, five small RNA (sRNA) libraries constructed from 'Xinlimei' radish roots at 11, 21, 44, 56 and 73 days (d) were examined using high-throughput sequencing technology. A total of 102.02 million (M) clean reads were generated, from which 483 known and 1415 novel miRNAs were identified. Combined with target prediction and annotation, 72 differentially expressed miRNAs (52 known and 20 novel miRNAs) were more likely to participate in anthocyanin biosynthesis. Several target genes for these miRNAs encode a few transcription factors, including Myb domain (MYB), basic helix-loop-helix (bHLH), WD40 repeat, squamosa promoter binding protein like (SPL), auxin response factor (ARF), ethylene insensitive 3 (EIN3), WRKY and MADS-box proteins. Furthermore, the expression patterns of some anthocyanin biosynthesis related miRNAs and their corresponding targets were validated by RT-qPCR. Based on the characterization of anthocyanin biosynthesis related miRNAs and their target genes, a putative miRNA-target module regulating anthocyanin biosynthesis was proposed. This study represents the first genome-wide identification of miRNAs associated with anthocyanin biosynthesis in radish, and provides insights into the molecular mechanisms underlying regulation of anthocyanin biosynthesis in radish and other crops.

  10. Insulin gene: organisation, expression and regulation. (United States)

    Dumonteil, E; Philippe, J


    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  11. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas. (United States)

    Ciribilli, Yari; Singh, Prashant; Spanel, Reinhard; Inga, Alberto; Borlak, Jürgen


    The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays.Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies.

  12. Asthma Basics (United States)

    ... Old Feeding Your 1- to 2-Year-Old Asthma Basics KidsHealth > For Parents > Asthma Basics A A ... Asthma Categories en español Asma: aspectos fundamentales About Asthma Asthma is a common lung condition in kids ...

  13. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. (United States)

    Hu, Yang; Zhang, Yan; Tian, Kang; Xun, Chong; Wang, Shouyu; Lv, Decheng


    Recent studies regarding regenerative medicine have focused on bone marrow mesenchymal stem cells (BMSCs), which have the potential to undergo neural differentiation, and may be transfected with specific genes. BMSCs can differentiate into neuron‑like cells in certain neurotropic circumstances in vitro. Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are often used to induce neural differentiation in BMSCs in vitro. However, previous studies regarding their combined actions are insufficient. The present study is the first, to the best of our knowledge, to thoroughly assess the enhancement of neural differentiation of BMSCs following transfection with bFGF and NGF. Sprague‑Dawley (SD) rat BMSCs were separated through whole bone marrow adherence, and were then passaged to the third generation. The cells were subsequently divided into five groups: The control group, which consisted of untransfected BMSCs; the plv‑blank‑transfected BMSCs group; the plv‑bFGF‑transfected BMSCs group; the plv‑NGF‑transfected BMSCs group; and the plv‑NGF‑bFGF co‑transfected BMSCs group. Cell neural differentiation was characterized in terms of stem cell molecular expression, and the neuronal morphology and expression of neural‑like molecules was detected in each of the groups. A total of 72 h post‑transfection, the expression levels of neuron‑specific enolase, glial fibrillary acidic protein, and nestin protein, were higher in the co‑transfected group, as compared with the other groups, the expression levels of β‑tubulin III were also increased in the co‑transfected cells, thus suggesting the maturation of differentiated neuron‑like cells. Furthermore, higher neuronal proliferation was observed in the co‑transfected group, as compared with the other groups at passages 2, 4, 6 and 8. Western blotting demonstrated that the transfected groups exhibited a simultaneous increase in phosphorylation of the AKT and extracellular signal

  14. Rapid mitogen-activated protein kinase by basic fibroblast growth factor in rat intestin after ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bing Fu; Yin-Hui Yang; Tong-Zhu Sun; Wei Chen; Jun-You Li; Zhi-Yong Sheng


    AIM: Previous studies showed that exogenous basic fibroblast growth factor (bFGF or FGF-2) could improve physiological dysfunction after intestinal ischemia/reperfusion (I/R) injury. However, the mechanisms of this protective effect of bFGF are still unclear. The present study was to detect the effect of bFGF on the activities of mitogen-activated protein kinase (MlAPK) signaling pathway in rat intestine after I/R injury, and to investigate the protective mechanisms of bFGF on intestinal ischemia injury. METttODS: Rat intestinal I/R injury was produced by clamping the superior mesenteric artery (SMA) for 45minutes and followed by repeffusion for 48 hours. Seventyeight Wistar rats were used and divided randomly into sham-operated group (A), normal saline control group (B),bFGF antibody pre-treated group (C), and bFGF treated group (D). Tn group A, SMA was separated without occlusion. In groups B, C and D, SMA was separated and occluded for 45 minutes, then, released for reperfusion for 48 hours. After the animals were sacrificed, blood and tissue samples were taken from the intestine 45 minutes after ischemia in group A and 2, 6, 24, and 48 hours after reperfusion in the other groups. Phosphorylated forms of p42/p44 MAPK, p38 MAPK and stress activated protein kinase/C-Jun N-terminal kinase (SAPK/JNK) were measured by immunohistochemistry. Plasma levels of D-lactate were examined and histological changes were observed under the light microscope. RESULTS: Intestinal I/R injury induced the expression of p42/p44 MAPK, p38 MAPK, and SAPK/JNK pathways and exogenous bFGF stimulated the early activation of p42/p44 MAPK and p38 MlAPK pathways. The expression of phosphorylated forms of p42/p44 MAPK was primarily localized in the nuclei of crypt cells and in the cytoplasm and nuclei of villus cells. The positive expression of p38MAPK was localized mainly in the nuclei of crypt cells, very few in villus cells. The activities of p42/p44 MAPK and p38MAPK peaked 6 hours after

  15. Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae cultivar MG/BR46 (Conquista under two water deficit induction systems

    Directory of Open Access Journals (Sweden)

    Polyana K. Martins


    Full Text Available Drought cause serious yield losses in soybean (Glycine max, roots being the first plant organ to detect the water-stress signals triggering defense mechanisms. We used two drought induction systems to identify genes differentially expressed in the roots of the drought-tolerant soybean cultivar MG/BR46 (Conquista and characterize their expression levels during water deficit. Soybean plants grown in nutrient solution hydroponically and in sand-pots were submitted to water stress and gene expression analysis was conducted using the differential display (DD and real time polymerase chain reaction (PCR techniques. Three differentially expressed mRNA transcripts showed homology to the Antirrhinum majus basic helix-loop-helix transcription factor bHLH, the Arabidopsis thaliana phosphatidylinositol transfer protein PITP and the auxin-independent growth regulator 1 (axi 1. The hydroponic experiments showed that after 100 min outside the nutrient solution photosynthesis completely stopped, stomata closed and leaf temperature rose. Both stress induction treatments produced significant decrease in the mitotic indices of root cells. Axi 1, PITP and bHLH were not only differentially expressed during dehydration in the hydroponics experiments but also during induced drought in the pot experiments. Although, there were differences between the two sets of experiments in the time at which up or down regulation occurred, the expression pattern of all three transcripts was related. Similar gene expression and cytological analysis results occurred in both systems, suggesting that hydroponics could be used to simulate drought detection by roots growing in soil and thus facilitate rapid and easy root sampling.

  16. Folic acid supplementation changes the fate of neural progenitors in mouse embryos of hyperglycemic and diabetic pregnancy. (United States)

    Yuan, Qiuhuan; Zhao, Shidou; Liu, Shangming; Zhang, Yanmin; Fu, Jie; Wang, Fuwu; Liu, Qian; Ling, Eng-Ang; Hao, Aijun


    Folic acid has been shown to decrease the incidence of neural tube defects (NTDs) in normal and hyperglycemic conditions, but the influence of folic acid on the development of central nervous system is not fully understood. Here, we aimed to explore the effects of folic acid, especially high dose of folic acid, on the characteristics of neural progenitors in embryos of hyperglycemic and diabetic mouse. Hyperglycemic and diabetic pregnant mice were given 3 mg/kg or 15 mg/kg folic acid from embryonic day 0.5 (E0.5) and were euthanased on E11.5, E13.5 or E18.5. The incidence of NTDs at E13.5 was counted. The proliferation, apoptosis and differentiation of neural progenitors and neuronal migration were determined using BrdU incorporation assay, TUNEL assay, immunofluorescence, Western blot and real-time reverse transcriptase polymerase chain reaction. Both normal and high doses of folic acid decreased the incidence of NTDs, promoted proliferation and reduced apoptosis of neuroepithelial cells in embryos of hyperglycemic and diabetic mice. Importantly, folic acid, especially at high dose, might affect the premature differentiation of neural progenitors in embryos of hyperglycemic and diabetic pregnancy. This may be attributed to changes of messenger RNA expression levels of some basic-helix-loop-helix transcription factors. In addition, folic acid might be involved in regulating neuronal migration in embryos of hyperglycemic and diabetic pregnancy. These findings suggest that periconceptional supplementation of folic acid, especially at high dose, may be a double-edged sword because it may result in undesirable outcomes affecting both the neuronal and glial differentiation in hyperglycemic and diabetic pregnancy.

  17. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A

    Energy Technology Data Exchange (ETDEWEB)

    Nobukuni, Yoshitaka; Watanabe, A.; Takeda, Kazushisa; Skarka, Hana; Tachibana, Masayoshi [National Inst. of Health, Bethesda, MD (United States)


    Waardenburg syndrome type 2 (WS2) is a dominantly inherited disorder characterized by a pigmentation anomaly and hearing impairment due to lack of melanocyte. Previous work has linked a subset of families with WS2 (WS2A) to the MITF gene that encodes a transcription factor with a basic-helix-loop-helix-leucine zipper (bHLH-Zip) motif and that is involved in melanocyte differentiation. Several splice-site and missense mutations have been reported in individuals affected with WS2A. In this report, we have identified two novel point mutations in the MITF gene in affected individuals from two different families with WS2A. The two mutations (C760{r_arrow}T and C895{r_arrow}T) create stop codons in exons 7 and 8, respectively. Corresponding mutant alleles predict the truncated proteins lacking HLH-Zip or Zip structure. To understand how these mutations cause WS2 in heterozygotes, we generated mutant MITF cDNAs and used them for DNA-binding and luciferase reporter assays. The mutated MITF proteins lose the DNA-binding activity and fail to transactivate the promoter of tyrosinase, a melanocyte-specific enzyme. However, these mutated proteins do not appear to interfere with the activity of wild-type MITF protein in these assays, indicating that they do not show a dominant-negative effect. These findings suggest that the phenotypes of the two families with WS2A in the present study are caused by loss-of-function mutations in one of the two alleles of the MITF gene, resulting in haploinsufficiency of the MITF protein, the protein necessary for normal development of melanocytes. 37 refs., 4 figs.

  18. Down-regulation of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Xinghua Liu

    Full Text Available BACKGROUND: AP-4 belongs to the basic helix-loop-helix leucine-zipper subgroup; it controls target gene expression, regulates growth, development and cell apoptosis and has been implicated in tumorigenesis. Our previous studies indicated that AP-4 was frequently overexpressed in gastric cancers and may be associated with the poor prognosis. The purpose of this study is to examine whether silencing of AP-4 can alter biological characteristics of gastric cancer cells. METHODS: Two specific siRNAs targeting AP-4 were designed, synthesized, and transfected into gastric cancer cell lines and human normal mucosa cells. AP-4 expression was measured with real-time quantitative PCR and Western blot. Cell proliferation and chemo-sensitivity were detected by CCK-8 assay. Cell cycle assay and apoptosis assay were performed by flow cytometer, and relative expression of cell cycle regulators were detected by real-time quantitative PCR and Western blot, expression of the factors involved in the apoptosis pathway were examined in mRNA and protein level. RESULTS: The expression of AP-4 was silenced by the siRNAs transfection and the effects of AP-4 knockdown lasted 24 to 96 hrs. The siRNA-mediated silencing of AP-4 suppressed the cellular proliferation, induced apoptosis and sensitized cancer cells to anticancer drugs. In addition, the expression level of p21, p53 and Caspase-9 were increased when AP-4 was knockdown, but the expression of cyclin D1, Bcl-2 and Bcl-x(L was inhibited. It didn't induce cell cycle arrest when AP-4 was knockdown in p53 defect gastric cancer cell line Kato-III. CONCLUSIONS: These results illustrated that gene silencing of AP-4 can efficiently inhibited cell proliferation, triggered apoptosis and sensitized cancer cells to anticancer drugs in vitro, suggesting that AP-4 siRNAs mediated silencing has a potential value in the treatment of human gastric cancer.

  19. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation. (United States)

    Sun, Tong; Fu, Junjiang; Shen, Tao; Lin, Xia; Liao, Lan; Feng, Xin-Hua; Xu, Jianming


    Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)(68)-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)(68)-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)(68)-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43-63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)(68)-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)(68)-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser(68)-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells.

  20. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. (United States)

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L


    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.

  1. Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development

    Directory of Open Access Journals (Sweden)

    Chin Michael T


    Full Text Available Abstract Background During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5. Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene. Results We report that a putative Notch target gene, hairy-related basic helix-loop-helix (bHLH transcriptional factor Hey2, is expressed in the cochlear epithelium prior to terminal differentiation. Its expression is subsequently restricted to supporting cells, overlapping with the expression domains of two known Notch target genes, Hairy and enhancer of split homolog genes Hes1 and Hes5. In combination with the loss of Hes1 or Hes5, genetic inactivation of Hey2 leads to increased numbers of mis-patterned inner or outer hair cells, respectively. Surprisingly, the ectopic hair cells in Hey2 mutants are accompanied by ectopic supporting cells. Furthermore, Hey2-/-;Hes1-/- and Hey2-/-;Hes1+/- mutants show a complete penetrance of early embryonic lethality. Conclusion Our results indicate that Hey2 functions in parallel with Hes1 and Hes5 in patterning the organ of Corti, and interacts genetically with Hes1 for early embryonic development and survival. Our data implicates expansion of the progenitor pool and/or the boundaries of the developing sensory organ to account for patterning defects observed in Hey2 mutants.

  2. Twist-1 Up-Regulation in Carcinoma Correlates to Poor Survival

    Directory of Open Access Journals (Sweden)

    Alimujiang Wushou


    Full Text Available Epithelial-to-mesenchymal transition (EMT facilitates tumor metastasis. Twist is a basic helix-loop-helix protein that modulates many target genes through E-box-responsive elements. There are two twist-like proteins, Twist-1 and Twist-2, sharing high structural homology in mammals. Twist-1 was found to be a key factor in the promotion of metastasis of cancer cells, and is known to induce EMT. Twist-1 participation in carcinoma progression and metastasis has been reported in a variety of tumors. However, controversy exists concerning the correlation between Twist-1 and prognostic value with respect to carcinoma. A systematic review and meta-analysis were performed to determine whether the expression of Twist-1 was associated with the prognosis of carcinoma patients. This analysis included 17 studies: four studies evaluated lung cancer, three evaluated head and neck cancer, two evaluated breast cancer, two evaluated esophageal cancer, two evaluated liver cancer and one each evaluated osteosarcoma, bladder, cervical and ovarian cancer. A total of 2006 patients were enrolled in these studies, and the median trial sample size was 118 patients. Twist-1 expression was associated with worse overall survival (OS at both 3 years (hazard ratio “HR” for death = 2.13, 95% CI = 1.86 to 2.45, p < 0.001 and 5 years (HR for death = 2.01, 95% CI = 1.76 to 2.29, p < 0.001. Expression of Twist-1 is associated with worse survival in carcinoma.

  3. Adenosine Triphosphate (ATP Is a Candidate Signaling Molecule in the Mitochondria-to-Nucleus Retrograde Response Pathway

    Directory of Open Access Journals (Sweden)

    Zhengchang Liu


    Full Text Available Intracellular communication from the mitochondria to the nucleus is achieved via the retrograde response. In budding yeast, the retrograde response, also known as the RTG pathway, is regulated positively by Rtg1, Rtg2, Rtg3 and Grr1 and negatively by Mks1, Lst8 and two 14-3-3 proteins, Bmh1/2. Activation of retrograde signaling leads to activation of Rtg1/3, two basic helix-loop-helix leucine zipper transcription factors. Rtg1/3 activation requires Rtg2, a cytoplasmic protein with an N-terminal adenosine triphosphate (ATP binding domain belonging to the actin/Hsp70/sugar kinase superfamily. The critical regulatory step of the retrograde response is the interaction between Rtg2 and Mks1. Rtg2 binds to and inactivates Mks1, allowing for activation of Rtg1/3 and the RTG pathway. When the pathway is inactive, Mks1 has dissociated from Rtg2 and bound to Bmh1/2, preventing activation of Rtg1/3. What signals association or disassociation of Mks1 and Rtg2 is unknown. Here, we show that ATP at physiological concentrations dissociates Mks1 from Rtg2 in a highly cooperative fashion. We report that ATP-mediated dissociation of Mks1 from Rtg2 is conserved in two other fungal species, K. lactis and K. waltii. Activation of Rtg1/3 upregulates expression of genes encoding enzymes catalyzing the first three reactions of the Krebs cycle, which is coupled to ATP synthesis through oxidative phosphorylation. Therefore, we propose that the retrograde response is an ATP homeostasis pathway coupling ATP production with ATP-mediated repression of the retrograde response by releasing Mks1 from Rtg2.

  4. Recurrence of Chromosome Rearrangements and Reuse of DNA Breakpoints in the Evolution of the Triticeae Genomes

    Directory of Open Access Journals (Sweden)

    Wanlong Li


    Full Text Available Chromosomal rearrangements (CRs play important roles in karyotype diversity and speciation. While many CR breakpoints have been characterized at the sequence level in yeast, insects, and primates, little is known about the structure of evolutionary CR breakpoints in plant genomes, which are much more dynamic in genome size and sequence organization. Here, we report identification of breakpoints of a translocation between chromosome arms 4L and 5L of Triticeae, which is fixed in several species, including diploid wheat and rye, by comparative mapping and analysis of the draft genome and chromosome survey sequences of the Triticeae species. The wheat translocation joined the ends of breakpoints downstream of a WD40 gene on 4AL and a gene of the PMEI family on 5AL. A basic helix-loop-helix transcription factor gene in 5AL junction was significantly restructured. Rye and wheat share the same position for the 4L breakpoint, but the 5L breakpoint positions are not identical, although very close in these two species, indicating the recurrence of 4L/5L translocations in the Triticeae. Although barley does not carry the translocation, collinearity across the breakpoints was violated by putative inversions and/or transpositions. Alignment with model grass genomes indicated that the translocation breakpoints coincided with ancient inversion junctions in the Triticeae ancestor. Our results show that the 4L/5L translocation breakpoints represent two CR hotspots reused during Triticeae evolution, and support breakpoint reuse as a widespread mechanism in all eukaryotes. The mechanisms of the recurrent translocation and its role in Triticeae evolution are also discussed.

  5. Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7. (United States)

    Mao, Chai-An; Cho, Jang-Hyeon; Wang, Jing; Gao, Zhiguang; Pan, Ping; Tsai, Wen-Wei; Frishman, Laura J; Klein, William H


    The specification of the seven retinal cell types from a common pool of retina progenitor cells (RPCs) involves complex interactions between the intrinsic program and the environment. The proneural basic helix-loop-helix (bHLH) transcriptional regulators are key components for the intrinsic programming of RPCs and are essential for the formation of the diverse retinal cell types. However, the extent to which an RPC can re-adjust its inherent program and the mechanisms through which the expression of a particular bHLH factor influences RPC fate is unclear. Previously, we have shown that Neurod1 inserted into the Atoh7 locus activates the retinal ganglion cell (RGC) program in Atoh7-expressing RPCs but not in Neurod1-expressing RPCs, suggesting that Atoh7-expressing RPCs are not able to adopt the cell fate determined by Neurod1, but rather are pre-programmed to produce RGCs. Here, we show that Neurod1-expressing RPCs, which are destined to produce amacrine and photoreceptor cells, can be re-programmed into RGCs when Atoh7 is inserted into the Neurod1 locus. These results suggest that Atoh7 acts dominantly to convert a RPC subpopulation not destined for an RGC fate to adopt that fate. Thus, Atoh7-expressing and Neurod1-expressing RPCs are intrinsically different in their behavior. Additionally, ChIP-Seq analysis identified an Atoh7-dependent enhancer within the intronic region of Nrxn3. The enhancer recognized and used Atoh7 in the developing retina to regulate expression of Nrxn3, but could be forced to use Neurod1 when placed in a different regulatory context. The results indicate that Atoh7 and Neurod1 activate distinct sets of genes in vivo, despite their common DNA-binding element.

  6. Women with Saethre-Chotzen syndrome are at increased risk of breast cancer. (United States)

    Sahlin, Pelle; Windh, Per; Lauritzen, Claes; Emanuelsson, Monica; Grönberg, Henrik; Stenman, Göran


    The Saethre-Chotzen syndrome is an autosomal, dominantly inherited craniosynostosis caused by mutations in the basic helix-loop-helix transcription factor gene TWIST1. This syndrome has hitherto not been associated with an increased risk of cancer. However, recent studies, using a murine breast tumor model, have shown that Twist may act as a key regulator of metastasis and that the gene is overexpressed in subsets of sporadic human breast cancers. Here, we report a novel association between the Saethre-Chotzen syndrome and breast cancer. In 15 Swedish Saethre-Chotzen families, 15 of 29 (52%) women carriers over the age of 25 had developed breast cancer. At least four patients developed breast cancer before 40 years of age, and five between 40 and 50 years of age. The observed cases with breast cancer (n = 15) are significantly higher than expected (n = 0.89), which gives a standardized incidence ratio (SIR) of 16.80 (95% CI 1.54-32.06). Our finding of a high frequency of breast cancer in women with the Saethre-Chotzen syndrome identifies breast cancer as an important and previously unrecognized symptom characteristic of this syndrome. The results strongly suggest that women carriers of this syndrome would benefit from genetic counseling and enrolment in surveillance programs including yearly mammography. Our results also indicate that the TWIST1 gene may be a novel breast cancer susceptibility gene. Additional studies are, however, necessary to reveal the mechanism by which TWIST1 may predispose to early onset breast cancer in Saethre-Chotzen patients.

  7. Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system. (United States)

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko


    During neural development, members of MTG family of transcriptional repressors are induced by proneural basic helix-loop-helix (bHLH) transcription factors and in turn inhibit the activity of the bHLH proteins, forming a negative feedback loop that regulates the normal progression of neurogenesis. Three MTG genes, MTG8, MTG16 and MTGR1, are expressed in distinct patterns in the developing nervous system. Various bHLH proteins are also expressed in distinct patterns. We asked whether there is a functional relationship between specific MTG and bHLH proteins in developing chick spinal cord. First, we examined if each MTG gene is induced by specific bHLH proteins. Although expression of NEUROG2, ASCL1 and MTG genes overlapped, the boundaries of gene expression did not match. Ectopic expression analysis showed that MTGR1 and NEUROD4, which show similar expression patterns, are regulated differently by NEUROG2 and ASCL1. Thus, our results show that expression of MTG genes is not regulated by a single upstream bHLH protein, but represents an integration of the activity of multiple regulators. Next, we asked if each MTG protein inhibits specific bHLH proteins. Transcription assay showed that NEUROG2 and ASCL1 are inhibited by MTGR1 and MTG16, and less efficiently by MTG8. Deletion mapping of MTGR1 showed that MTGR1 binds NEUROG2 and ASCL1 using multiple interaction surfaces, and all conserved domains are required for its repressor activity. These results support the model that MTG proteins form a higher-order repressor complex and modulate transcriptional activity of bHLH proteins during neurogenesis.

  8. Cellular and developmental adaptations to hypoxia: a Drosophila perspective. (United States)

    Romero, Nuria Magdalena; Dekanty, Andrés; Wappner, Pablo


    The fruit fly Drosophila melanogaster, a widely utilized genetic model, is highly resistant to oxygen starvation and is beginning to be used for studying physiological, developmental, and cellular adaptations to hypoxia. The Drosophila respiratory (tracheal) system has features in common with the mammalian circulatory system so that an angiogenesis-like response occurs upon exposure of Drosophila larvae to hypoxia. A hypoxia-responsive system homologous to mammalian hypoxia-inducible factor (HIF) has been described in the fruit fly, where Fatiga is a Drosophila oxygen-dependent HIF prolyl hydroxylase, and the basic helix-loop-helix Per/ARNT/Sim (bHLH-PAS) proteins Sima and Tango are, respectively, the Drosophila homologues of mammalian HIF-alpha (alpha) and HIF-beta (beta). Tango is constitutively expressed regardless of oxygen tension and, like in mammalian cells, Sima is controlled at the level of protein degradation and subcellular localization. Sima is critically required for development in hypoxia, but, unlike mammalian model systems, it is dispensable for development in normoxia. In contrast, fatiga mutant alleles are all lethal; however, strikingly, viability to adulthood is restored in fatiga sima double mutants, although these double mutants are not entirely normal, suggesting that Fatiga has Sima-independent functions in fly development. Studies in cell culture and in vivo have revealed that Sima is activated by the insulin receptor (InR) and target-of-rapamycin (TOR) pathways. Paradoxically, Sima is a negative regulator of growth. This suggests that Sima is engaged in a negative feedback loop that limits growth upon stimulation of InR/TOR pathways.

  9. Twist1 activity thresholds define multiple functions in limb development. (United States)

    Krawchuk, Dayana; Weiner, Shoshana J; Chen, You-Tzung; Lu, Benson C; Costantini, Frank; Behringer, Richard R; Laufer, Ed


    The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1(-/-) embryos die at midgestation. However, studies on early limb buds found that Twist1(-/-) mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity.

  10. Notch signaling induces rapid degradation of achaete-scute homolog 1. (United States)

    Sriuranpong, Virote; Borges, Michael W; Strock, Christopher L; Nakakura, Eric K; Watkins, D Neil; Blaumueller, Christine M; Nelkin, Barry D; Ball, Douglas W


    In neural development, Notch signaling plays a key role in restricting neuronal differentiation, promoting the maintenance of progenitor cells. Classically, Notch signaling causes transactivation of Hairy-enhancer of Split (HES) genes which leads to transcriptional repression of neural determination and differentiation genes. We now report that in addition to its known transcriptional mechanism, Notch signaling also leads to rapid degradation of the basic helix-loop-helix (bHLH) transcription factor human achaete-scute homolog 1 (hASH1). Using recombinant adenoviruses expressing active Notch1 in small-cell lung cancer cells, we showed that the initial appearance of Notch1 coincided with the loss of hASH1 protein, preceding the full decay of hASH1 mRNA. Overexpression of HES1 alone was capable of down-regulating hASH1 mRNA but could not replicate the acute reduction of hASH1 protein induced by Notch1. When adenoviral hASH1 was coinfected with Notch1, we still observed a dramatic and abrupt loss of the exogenous hASH1 protein, despite high levels of ongoing hASH1 RNA expression. Notch1 treatment decreased the apparent half-life of the adenoviral hASH1 protein and increased the fraction of hASH1 which was polyubiquitinylated. The proteasome inhibitor MG132 reversed the Notch1-induced degradation. The Notch RAM domain was dispensable but a lack of the OPA and PEST domains inactivated this Notch1 action. Overexpression of the hASH1-dimerizing partner E12 could protect hASH1 from degradation. This novel function of activated Notch to rapidly degrade a class II bHLH protein may prove to be important in many contexts in development and in cancer.

  11. Identification of interacting proteins with aryl hydrocarbon receptor in scallop Chlamys farreri by yeast two hybrid screening. (United States)

    Cai, Yuefeng; Pan, Luqing; Miao, Jingjing; Liu, Tong


    The aryl hydrocarbon receptor (AhR) belongs to the basic-helix-loop helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors. AhR has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes, as well as the mediation of the toxicity of certain xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Although the AhR is well-studied as a mediator of the toxicity of certain xenobiotics in marine bivalves, the normal physiological function remains unknown. In order to explore the function of the AhR, the bait protein expression plasmid pGBKT7-CfAhR and the cDNA library of gill from Chlamys farreri were constructed. By yeast two hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the CfAhR with receptor for activated protein kinase C 1 (RACK1), thyroid peroxidase-like protein (TPO), Toll-like receptor 4(TLR 4), androglobin-like, store-operated Ca(2+) entry (SocE), ADP/ATP carrier protein, cytochrome b, thioesterase, actin, ferritin subunit 1, poly-ubiquitin, short-chain collagen C4-like and one hypothetical protein in gill cells were identified. This study suggests that the CfAhR played fundamental roles in immune system homeostasis, oxidative stress response, and in grow and development of C. farreri. The elucidation of these protein interactions is of much importance both in understanding the normal physiological function of AhR, and as potential targets for further research on protein function in AhR interactions.

  12. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Aftab Ahmad

    Full Text Available An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8 as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'. The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  13. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence.

    Directory of Open Access Journals (Sweden)

    Dawoon Chung


    Full Text Available The Aspergillus fumigatus sterol regulatory element binding protein (SREBP SrbA belongs to the basic Helix-Loop-Helix (bHLH family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA. How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence.

  14. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. (United States)

    Ogo, Yuko; Itai, Reiko N; Kobayashi, Takanori; Aung, May Sann; Nakanishi, Hiromi; Nishizawa, Naoko K


    Iron (Fe) deficiency, a worldwide agricultural problem on calcareous soil with low Fe availability, is also a major human nutritional deficit. Plants induce Fe acquisition systems under conditions of low Fe availability. Previously, we reported that an Fe-deficiency-inducible basic helix-loop-helix (bHLH) transcription factor, OsIRO2, is responsible for regulation of the genes involved in Fe homeostasis in rice. Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant's lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation. During germination, OsIRO2 expression was detected in embryos. OsIRO2 expression in vegetative tissues was restricted almost exclusively to vascular bundles of roots and leaves, and to the root exodermis under Fe-sufficient conditions, and expanded to all tissues of roots and leaves in response to Fe deficiency. OsIRO2 expression was also detected in flowers and developing seeds. Plants overexpressing OsIRO2 grew better, and OsIRO2-repressed plants showed poor growth compared to non-transformant rice after germination. OsIRO2 overexpression also resulted in improved tolerance to low Fe availability in calcareous soil. In addition to increased Fe content in shoots, the overexpression plants accumulated higher amounts of Fe in seeds than non-transformants when grown on calcareous soil. These results suggest that OsIRO2 is synchronously expressed with genes involved in Fe homeostasis, and performs a crucial function in regulation not only of Fe uptake from soil but also Fe transport during germination and Fe translocation to grain during seed maturation.

  15. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.

    Directory of Open Access Journals (Sweden)

    Guillaume Rey


    Full Text Available The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

  16. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain (United States)

    Kimura, Eiki; Tohyama, Chiharu


    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  17. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. (United States)

    Buehler, Darya; Hardin, Heather; Shan, Weihua; Montemayor-Garcia, Celina; Rush, Patrick S; Asioli, Sofia; Chen, Herbert; Lloyd, Ricardo V


    Epithelial-mesenchymal transition is an important mechanism of epithelial tumor progression, local invasion and metastasis. The E-cadherin (CDH1) repressor SLUG (SNAI2) and the basic helix-loop-helix transcription factor TWIST1 inhibit CDH1 expression in poorly differentiated malignancies as inducers of epithelial-mesenchymal transition. Epithelial-mesenchymal transition has been implicated in progression from well to poorly differentiated/anaplastic thyroid carcinoma but the expression of SNAI2 and TWIST1 proteins and their phenotypic association in human thyroid cancers has not been extensively studied. We examined the expression of SNAI2, TWIST1 and CDH1 by immunohistochemistry in a panel of well-differentiated and anaplastic thyroid cancers and by qRT-PCR in thyroid cell lines. Ten normal thyroids, 33 follicular adenomas, 56 papillary thyroid carcinomas including 28 follicular variants, 27 follicular carcinomas and 10 anaplastic thyroid carcinomas were assembled on a tissue microarray and immunostained for SNAI2, TWIST1 and CDH1. Most (8/10) anaplastic thyroid carcinomas demonstrated strong nuclear immunoreactivity for SNAI2 with associated absence of CDH1 in 6/8 cases (75%). TWIST1 was expressed in 5/10 anaplastic thyroid carcinomas with absence of CDH1 in 3/5 (60%) cases. These findings were confirmed in whole sections of all anaplastic thyroid carcinomas and in a separate validation set of 10 additional anaplastic thyroid carcinomas. All normal thyroids, follicular adenomas, papillary and follicular thyroid carcinomas were negative for SNAI2 and TWIST1 (Pcarcinoma and two anaplastic thyroid carcinoma cell lines tested, but the highest levels of CDH1 mRNA were detected in the normal thyroid cell line while the anaplastic thyroid carcinoma cell line demonstrated the highest levels of SNAI2 and TWIST1 mRNA. Our findings support the role of epithelial-mesenchymal transition in the development of anaplastic thyroid carcinoma.

  18. The importance of basic factors in innovation processes and their effects on innovation capability of Malaysian-owned manufacturing companies (United States)

    Suradi, Nur Riza Mohd; Omar, Aminuddin; Shahabuddin, Faridatulazna Ahmad


    Innovation is the core ingredient in the competitiveness of today's businesses. Any company that cannot innovate will be losing its competitiveness. While the study on innovation at conceptual level is widely available, there is still lack of deep understanding of how innovation factors impact each stage of the processes of innovation that happen in Malaysian companies. This process-factor approach and understanding may help the government focuses its assistance on relevant factors at relevant process according to the size of the company. This study examines how companies are affected by fundamental factors needed in innovation. Based on results of MYTIC Study 2012 on the level of Technological Innovation Capability (TIC) of Malaysian companies using the RDCB framework, the significance of each innovation factor in each innovation process is determined. This study shows that human resource factor gives more impact than other factors in most processes. Also, financial and human resource factors are likely dictated by the size of the company.

  19. Basic electrotechnology

    CERN Document Server

    Ashen, R A


    BASIC Electrotechnology discusses the applications of Beginner's All-purpose Symbolic Instruction Code (BASIC) in engineering, particularly in solving electrotechnology-related problems. The book is comprised of six chapters that cover several topics relevant to BASIC and electrotechnology. Chapter 1 provides an introduction to BASIC, and Chapter 2 talks about the use of complex numbers in a.c. circuit analysis. Chapter 3 covers linear circuit analysis with d.c. and sinusoidal a.c. supplies. The book also discusses the elementary magnetic circuit theory. The theory and performance of two windi

  20. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng; Rose, Robert B [Z; (W Elec.); (NCSU)


    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G–5C–4 and central C0/G0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.

  1. Health Literacy Basics (United States)

    ... have the capacity to obtain, process, and understand basic health information and services needed to make appropriate health decisions. 1 Health literacy is dependent on individual and systemic factors: Communication skills of lay persons and professionals Lay and professional ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  3. Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors. (United States)

    González, Antonia Sandoval; Martínez, Susana Silva


    The sonophotocatalytic degradation of basic blue 9 industrial textile dye has been studied in the presence of ultrasound (20 kHz) over a TiO(2) slurry employing an UV lamp (15 W, 352 nm). It was observed that the color removal efficiency was influenced by the pH of the solution, initial dye concentration and TiO(2) amount. It was found that the dye degradation followed apparent first order kinetics. The rate constant increased by decreasing dye concentration and was affected by the pH of the solution with the highest degradation obtained at pH 7. The first order rate constants obtained with sonophotocatalysis were twofold and tenfold than those obtained under photocatalysis and sonolysis, respectively. The chemical oxygen demand was abated over 80%.

  4. Basic hydraulics

    CERN Document Server

    Smith, P D


    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  5. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  7. Schizophrenia Basics (United States)

    ... I know with schizophrenia? For More Information Share Schizophrenia Basics Download PDF Download ePub Order a free hardcopy What is schizophrenia? Schizophrenia is a serious mental disorder that affects ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  9. Brain Basics (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  10. Fluoridation Basics (United States)

    ... Page Basic Information About Fluoride Benefits: Strong Teeth History of Fluoride in Water Cost: Saves Money, Saves Teeth Fluoride in the Water Today The mineral fluoride occurs naturally on earth and is released from rocks into the soil, ...

  11. Basic Finance (United States)

    Vittek, J. F.


    A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.

  12. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  14. The role of insulin-like and basic fibroblast growth factors on ischemic and infarcted myocardium: a mini review. (United States)

    Scheinowitz, M; Abramov, D; Eldar, M


    Current therapeutic techniques in acute myocardial infarction (AMI) are inadequate since restoration of blood flow through the obstructed coronary artery does not always preserve the ischemic myocardium. Therefore, deterioration of cardiac function and detrimental left ventricular remodeling may follow. Alternative therapeutic modalities are now being actively sought. Insulin-like growth factor (IGF) and fibroblast growth factor (FGF) are two polypeptides found in wide distribution and high concentrations in the normal myocardium. They play a key role in vascular growth (FGF) and affect the differentiation of cardiac myocytes (IGF). IGF has been found to promote physiological forms of cardiac hypertrophy, and FGF induces neovascularization. During myocardial ischemia and infarction there is a marked elevation in the concentration of these growth promoting factors in the myocardium concomitant with increased coronary collateral blood flow, neovascularization and peri-infarct hypertrophy. In animal models of myocardial infarction, exogenous administration of FGF and IGF induced neovascularization and cardiac hypertrophy thus, preserving cardiac function. We assume that these growth factors may become an additional tool in the future treatment of patients with AMI.

  15. Effect of Nonviral Plasmid Delivered Basic Fibroblast Growth Factor and Low Intensity Pulsed Ultrasound on Mandibular Condylar Growth: A Preliminary Study


    Harmanpreet Kaur; Hasan Uludağ; Tarek El-Bialy


    Objective. Basic fibroblast growth factor (bFGF) is an important regulator of tissue growth. Previous studies have shown that low intensity pulsed ultrasound (LIPUS) stimulates bone growth. The objective of this study was to evaluate the possible synergetic effect of LIPUS and local injection of nonviral bFGF plasmid DNA (pDNA) on mandibular growth in rats. Design. Groups were control, blank pDNA, bFGF pDNA, LIPUS, and bFGF pDNA + LIPUS. Treatments were performed for 28 days. Significant incr...

  16. Research on Influencing Factors of Basic Public Service Standardization%基本公共服务标准化影响要素研究

    Institute of Scientific and Technical Information of China (English)



    Basic public service standardization is a synthesis of the interaction among many correlated factors. The involved key factors can be summarized as subject, supply and demand, worth, theoretical model, technology and institution. The six key factors are respectively answers to the core questions that what is effecting and dominating of the standardization, what is the target of the standard-ization, what are the precipitating and motivating factors, what are the basis and strategy and what are the foundation and guarantee of the standardization. With interrelation and interaction, the six key factors affect the developmental level of the basic public service stan-dardization.%基本公共服务标准化实质上是诸多关联要素相互作用的综合体。它涉及的要素可以概括为主体要素、供需要素、价值要素、理论要素、技术要素和制度要素,六要素分别回应了谁在影响和主导基本公共服务标准化、其目标和旨归是什么、诱发和促动因素是什么、依据和策略是什么、方法和手段是什么、依循和保障是什么等核心问题。六要素相互联系、相互作用,共同影响着基本公共服务标准化的发展水平。

  17. Clarification of basic factorization identity is for the almost semi-continuous latticed Poisson processes on the Markov chain

    Directory of Open Access Journals (Sweden)

    Gerich M. S.


    Full Text Available Let ${xi(t, x(t}$ be a homogeneous semi-continuous lattice Poisson process on the Markov chain.The jumps of one sign are geometrically distributed, and jumps of the opposite sign are arbitrary latticed distribution. For a suchprocesses the relations for the components of two-sided matrix factorization are established.This relations define the moment genereting functions for extremumf of the process and their complements.

  18. Clarification of basic factorization identity is for the almost semi-continuous latticed Poisson processes on the Markov chain



    Let ${xi(t), x(t)}$ be a homogeneous semi-continuous lattice Poisson process on the Markov chain.The jumps of one sign are geometrically distributed, and jumps of the opposite sign are arbitrary latticed distribution. For a suchprocesses the relations for the components of two-sided matrix factorization are established.This relations define the moment genereting functions for extremumf of the process and their complements.

  19. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns. (United States)

    Su, Tung-Hsin; Yang, Huai-Jen; Shau, Yen-Hong; Takazawa, Eiichi; Lee, Yu-Chen


    Basic-oxygen furnace slag (BOF-slag) contains >35% CaO, a potential component for CO2 sequestration. In this study, slag-water-CO2 reaction experiments were conducted with the longest reaction duration extending to 96hr under high CO2 pressures of 100-300kg/cm(2) to optimize BOF-slag carbonation conditions, to address carbonation mechanisms, and to evaluate the extents of V and Cr release from slag carbonation. The slag carbonation degree generally reached the maximum values after 24hr slag-water-CO2 reaction and was controlled by slag particle size and reaction temperature. The maximum carbonation degree of 71% was produced from the experiment using fine slag of ≤0.5mm under 100°C and a CO2 pressure of 250kg/cm(2) with a water/slag ratio of 5. Vanadium release from the slag to water was significantly enhanced (generally >2 orders) by slag carbonation. In contrast, slag carbonation did not promote chromium release until the reaction duration exceeded 24hr. However, the water chromium content was generally at least an order lower than the vanadium concentration, which decreased when the reaction duration exceeded 24hr. Therefore, long reaction durations of 48-96hr are proposed to reduce environmental impacts while keeping high carbonation degrees. Mineral textures and water compositions indicated that Mg-wüstite, in addition to CaO-containing minerals, can also be carbonated. Consequently, the conventional expression that only considered carbonation of the CaO-containing minerals undervalued the CO2 sequestration capability of the BOF-slag by ~20%. Therefore, the BOF-slag is a better CO2 storage medium than that previously recognized.

  20. Effect of Basic Fibroblast Growth Factor on in Vitro Maturation of Oocytes of Mouse at the Stage of Germinal Vesicle

    Directory of Open Access Journals (Sweden)

    R Khanbabaee


    Full Text Available Introduction: In vitro maturation (IVM of oocytes, providing oocytes maturation out of normal conditions, is an appropriate infertility treatment system, though the clinical use of IVM is limited due to low rate of success. Accordingly, this study aimed to analyze the effect of fibroblast growth factor on in vitro maturation of immature oocytes. Methods: Immature oocytes of 20 female mice of NMRI strain aged 8-10 weeks were obtained 46-48 hours after intraperitoneal injection of 10 units of Pregnant Mare`s Serum Gonadotrophin (PMSG. The oocytes were treated within Modified Essential Medium (MEM-α supplemented with 0 ng/ml, 10 ng/ml, 20 ng/ml and 40 ng/ml doses of fibroblast growth factor respectively. After 24 hours, Oocyte maturation stage was scrutinized by an invert microscope and its growth rate was analyzed via SPSS software utilizing ANOVA test. Results: The resumption percentage of meiosis was reported as 23 in the first control group, while it was 25.7, 26.2, 27.3 % respectively for the second, third and fourth experimental groups; thus, no significant differences was observed among control groups and experimental groups. Yet in vitro maturation of the control group, a significant difference was observed compared to those of the second and third experimental groups (p<0.01. In fact, the rate of vitro metaphase matured oocytes were reported as 45, 60.8, 62.6 and 45.2 % respectively in the control group and the second, third, and fourth experimental groups. Conclusion: The obtained results of study illustrated that 10 ng/ml and 20 ng/ml concentrations of fibroblast growth factor have a major impact on resumption of meiosis, nucleus break down and extrusion of the first polar body, whereas the effect of 40 mg/ml concentration on improvement of oocyte maturation was trivial.

  1. Autonomy supportive environments and mastery as basic factors to motivate physical activity in children: a controlled laboratory study

    Directory of Open Access Journals (Sweden)

    Roemmich James N


    Full Text Available Abstract Background Choice promotes the experience of autonomy, which enhances intrinsic motivation. Providing a greater choice of traditional active toys may increase children's activity time. Mastery also increases intrinsic motivation and is designed into exergames, which may increase play time of a single exergame, reducing the need for choice to motivate activity compared to traditional active toys. Providing both choice and mastery could be most efficacious at increasing activity time. The energy expenditure (EE of an active play session is dependent on the duration of play and the rate of EE during play. The rate of EE of exergames and the same game played in traditional fashion is not known. The purpose was to test the basic parameters of choice and mastery on children's physical activity time, activity intensity, and energy expenditure. Methods 44 children were assigned to low (1 toy or high (3 toys choice groups. Children completed 60 min sessions with access to traditional active toys on one visit and exergame versions of the same active toys on another visit. Results Choice had a greater effect on increasing girls' (146% than boys' (23% activity time and on girls' (230% than boys' (minus 24% activity intensity. When provided choice, girls' activity time and intensity were no longer lower than boys' activity time and intensity. The combination of choice and mastery by providing access to 3 exergames produced greater increases in physical activity time (1 toy 22.5 min, 3 toys 41.4 min than choice alone via access to 3 traditional games (1 toy 13.6 min, 3 toys 19.5 min. Energy expenditure was 83% greater when engaging in traditional games than exergames. Conclusions Boys and girls differ in their behavioral responses to autonomy supportive environments. By providing girls with greater autonomy they can be motivated to engage in physical activity equal to boys. An environment that provides both autonomy and mastery is most efficacious at

  2. Expression of Basic Fibroblast Growth Factor Results in the Decrease of Myostatin mRNA in Murine C2C12 Myoblasts

    Institute of Scientific and Technical Information of China (English)

    Hua-Zhong LIU; Qing LI; Xing-Yuan YANG; Lin LIU; Lei LIU; Xiao-Rong AN; Yong-Fu CHEN


    During the development and regeneration of skeletal muscle, many growth factors, such as basic fibroblast growth factor (bFGF, FGF-2) and myostatin, have been shown to play regulating roles.bFGF contributes to promote proliferation and to inhibit differentiation of skeletal muscle, whereas myostatin plays a series of contrasting roles. In order to elucidate whether the expression of bFGF has any relationship with the expression of myostatin in skeletal muscle cells, we constructed a eukaryotic expression vector for the expression of exogenous bFGF in murine C2C12 myoblasts. Quantitative RT-PCR assays indicated that with the increase of the expression of exogenous bFGF gene, the expression of endogenous myostatin gene was suppressed at mRNA level and protein level.

  3. Basic electronics

    CERN Document Server

    Holbrook, Harold D


    Basic Electronics is an elementary text designed for basic instruction in electricity and electronics. It gives emphasis on electronic emission and the vacuum tube and shows transistor circuits in parallel with electron tube circuits. This book also demonstrates how the transistor merely replaces the tube, with proper change of circuit constants as required. Many problems are presented at the end of each chapter. This book is comprised of 17 chapters and opens with an overview of electron theory, followed by a discussion on resistance, inductance, and capacitance, along with their effects on t

  4. Effects of recombinant human basic fibroblast growth factor on cell proliferation during mandibular fracture healing in rabbits

    Institute of Scientific and Technical Information of China (English)


    Objective: To investigate the effects of recombinant human basicfibroblast growth factor (rhbFGF) on the cell proliferation during mandibular fracture healing in rabbits.Methods: The complex of rhbFGF and bovine type I collagen was implanted into the mandibular fracture site under periosteum of the animal. The whole mandible was harvested at 7, 14, 28, 56 and 84 days respectively after operation. The expression of proliferating cell nuclear antigen (PCNA) in callus was examined with immunohistochemical staining.Results: PCNA-positive cells in callus in the rhbFGF-treated group on days 7 and 14 were more than that in the control group (P<0.01).Conclusions: It indicates that rhbFGF can stimulate cell proliferation during mandibular fracture healing in rabbits.

  5. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)



    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  6. Body Basics (United States)

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System Heart and Circulatory System Immune ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit ... final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons make connections with each other ...

  8. Insulin Basics (United States)

    ... Honor Become a Member En Español Type 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are You At Risk? Diabetes Basics Living with Diabetes Food & Fitness In My ... Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy ...

  9. Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-γ. (United States)

    Lee, Byung-Jae; Moon, Hyung-Geun; Shin, Tae-Seop; Jeon, Seong Gyu; Lee, Eun-Young; Gho, Yong Song; Lee, Chun Geun; Zhu, Zhou; Elias, Jack A; Kim, Yoon-Keun


    Recent clinical evidence indicates that the non-eosinophilic subtype of severe asthma is characterized by fixed airway obstruction, which may be related to emphysema. Transgenic studies have demonstrated that high levels of IFN-γ in the airways induce emphysema. Fibroblast growth factor 2 (FGF2), which is the downstream mediator of TGF-β, is important in wound healing. We investigated the role of FGF2 in IFN-γ-induced emphysema and the therapeutic effects of recombinant FGF2 in the prevention of emphysema in a severe non-eosinophilic asthma model. To evaluate the role of FGF2 in IFN-γ-induced emphysema, lung targeted IFN-γ transgenic mice were cross-bred with FGF2-deficient mice. A severe non-eosinophilic asthma model was generated by airway application of LPS-containing allergens twice a week for 4 weeks. To evaluate protective effects of FGF2, recombinant FGF2 (10 μg) was injected subcutaneously during allergen challenge in the severe asthma model. We found that non-eosinophilic inflammation and emphysema induced by transgenic overexpression of IFN-γ in the airways were aggravated by the absence of FGF2. Airway challenge with LPS-containing allergens induced more inflammation in mice sensitized with LPS-containing allergens compared to challenge with allergens alone. In addition, LPS-induced lung inflammation and emphysema depended on IFN-γ but not on IL-13. Interestingly, emphysema in the severe asthma model was significantly inhibited by treatment with recombinant FGF2 during allergen challenge, whereas lung inflammation was unaffected. Therefore, our present data suggest that FGF2 may help protect against IFN-γ-induced emphysema, and that recombinant FGF2 may help lessen the severity of emphysema.

  10. The Elusive Multiplying Factor for Sustainable Development: The Case for Integrating Scientific Research and Basic Education in the MAP Region, SW Amazonia. (United States)

    Brown, I.; de Los Rios, M.; Mendoza, E.; Reis, V. L.


    The Region of Madre de Dios-Peru, the State of Acre-Brazil, and the Department of Pando-Bolivia, known collectively as the trinational MAP Region, lies at the heart of Southwestern Amazonia. This region covers over 300,000 km2 with a population of 700,000 that ranges from urban dwellers to indigenous groups trying to avoid contact with industrial society. This region, home of incredible biological and cultural wealth, represents some of the economically poorest areas of the respective countries. It is also a site of accelerating global change in land-use, with three highways being developed for all-weather transport between central Brazil and Pacific ports. Our group has engaged in pilot experiments to provide regional societies with access to recent scientific results. Our objective is to help these societies in their quest to develop through: a) the use of GPS and satellite imagery for land use planning by small rural producers; b) municipal-level meetings in two countries to evaluate current problems and future land use along the inter-oceanic highway; c) the analysis of deforestation in the trinational river basin; d) dissemination via the media of imagery and analysis of fires during the burning season; and e) incorporation of nearby forests into the rural educational system. While most of these experiments have proven successful, they pale before the challenge of expanding them to become significant in changing land use and promoting sustainable development in this region. The multiplying factors need to be in the range of ten to a thousand times the size of the pilot experiments. Public policy and economic initiatives are crucial, but are often treated as the only means for such multiplication. The basic education system represents another, complementary multiplying factor. In the State of Acre, about a third of the population, 200,000, are in the K-12 school system and of these over 80% are in the 1- to 8-year series. Currently, we are helping local school

  11. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into ... factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone ...

  12. Wavelet basics

    CERN Document Server

    Chan, Y T


    Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...

  13. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity. (United States)

    Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina


    In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.

  14. Sequential treatment with basic fibroblast growth factor and PTH is more efficacious than treatment with PTH alone for increasing vertebral bone mass and strength in osteopenic ovariectomized rats

    DEFF Research Database (Denmark)

    Iwaniec, U.T.; Mosekilde, Li.; Mitova-Caneva, N.G.


    The study was designed 1) to determine whether treatment with basic fibroblast growth factor (bFGF) and PTH is more efficacious than treatment with PTH alone for increasing bone mass and strength and improving trabecular microarchitecture in osteopenic ovariectomized rats, and 2) to assess whether...... prior and concurrent administration of the antiresorptive agents estrogen and risedronate suppresses the bone anabolic response to treatment with bFGF alone and sequential treatment with bFGF and PTH. Three-month-old female Sprague Dawley rats were ovariectomized (OVX) or sham-operated (sham...... into the jugular veins of all rats, and vehicle or bFGF at a dose of 250 microg/kg was injected daily for 14 d. Three groups of rats were killed at the end of bFGF treatment. The remaining rats were continued on their respective antiresorptive therapy and injected sc with vehicle or synthetic human PTH-(1...

  15. One-stage, simultaneous skin grafting with artificial dermis and basic fibroblast growth factor successfully improves elasticity with maturation of scar formation. (United States)

    Hamuy, Rodrigo; Kinoshita, Naoshi; Yoshimoto, Hiroshi; Hayashida, Kenji; Houbara, Seiji; Nakashima, Masahiro; Suzuki, Keiji; Mitsutake, Norisato; Mussazhanova, Zhanna; Kashiyama, Kazuya; Hirano, Akiyoshi; Akita, Sadanori


    The efficacy of one-stage artificial dermis and skin grafting was tested in a nude rat model. Reconstruction with artificial dermis is usually a two-stage procedure with 2- to 3-week intermission. If one-stage use of artificial dermis and split-thickness skin grafting are effective, the overall burden on patients and the medical cost will markedly decrease. The graft take rate, contraction rate, tissue elasticity, histology, morphometric analysis of the dermal thickness, fibroblast counting, immunohistochemistry of α-smooth muscle actin, matrix metalloproteinase-2, CD31, and F4/80, as well as gelatin zymography, real-time reverse transcriptase polymerase chain reaction for matrix metalloproteinase-2, and electron microscopy, were investigated from day 3 to 3 months postoperatively. The graft take rate was good overall in one-stage artificial dermis and skin grafting groups up to 3 weeks, and the contraction rate was greater in the two-staged artificial dermis and skin grafting group than in the skin grafting alone or one stage of artificial dermis and skin grafting groups. Split-thickness skin grafting with artificial dermis and basic fibroblast growth factor at a concentration of 1 μg/cm(2) showed significantly greater elasticity by Cutometer, and the dermal thickness was significantly thinner, fibroblast counting was significantly greater, and the α-smooth muscle actin expression level was more notable with a more mature blood supply in the dermis and more organized dermal fibrils by electron microscopy at 3 weeks. Thus, one-stage artificial dermis and split-thickness skin grafting with basic fibroblast growth factor show a high graft take rate and better tissue elasticity determined by Cutometer analysis, maturity of the dermis, and increased fibroblast number and blood supply compared to a standard two-stage reconstruction.

  16. Basic electronics

    CERN Document Server

    Tayal, DC


    The second edition of this book incorporates the comments and suggestions of my friends and students who have critically studied the first edition. In this edition the changes and additions have been made and subject matter has been rearranged at some places. The purpose of this text is to provide a comprehensive and up-to-date study of the principles of operation of solid state devices, their basic circuits and application of these circuits to various electronic systems, so that it can serve as a standard text not only for universities and colleges but also for technical institutes. This book

  17. Regression Basics

    CERN Document Server

    Kahane, Leo H


    Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition Offers greater coverage of simple panel-data estimation:

  18. Basic Research in Human Factors (United States)


    increasingly used in a variety of civilian and military systems including aircraft, ships, and omand , control and commnication centers. These displays have...IL Julian Hochberg (NAS), Columbia University David Lwargrebe, Purdue University David Neri, U.S. Navy Submarine Base, Groton, CT J.J. Rennilscn...Timothy A. Salthouse, Georgia Institute of Technology Harold L. Sheppard, University of South Florida David B.D. Smith, University of Southern California

  19. Transcription of a zebrafish gene of the hairy-Enhancer of split family delineates the midbrain anlage in the neural plate. (United States)

    Müller, M; von Weizsäcker, E; Campos-Ortega, J A


    her5 encodes a basic helix-loop-helix (bHLH) protein with all features characteristic of the Drosophila hairy-E(spl) family. her5 is expressed in a band of cells within the neural anlage from about 90% epiboly on to at least 36 h postfertilization (hpf). After completion of brain morphogenesis, her5-expressing cells are located in the caudal region of the midbrain, at the boundary with the rhombencephalon. Labelling of cells within the her5 expression domain in the neural plate by injection of fluorescein-dextran allows their labelled progeny to be localized in the 36-hpf-old embryo using an anti-fluorescein antibody. This shows that the her5 expression domain corresponds to the midbrain primordium, including both the tectum and the tegmentum, in the neural plate. A possible function for her5 in regionalization of the brain and/or control of the midbrain-hindbrain boundary is discussed.

  20. Canadian Adult Basic Education. (United States)

    Brooke, W. Michael, Comp.

    "Trends," a publication of the Canadian Association for Adult Education, is a collection of abstracts on selected subjects affecting adult education; this issue is on adult basic education (ABE). It covers teachers and teacher training, psychological factors relating to the ABE teacher and students, manuals for teachers, instructional…

  1. Roles of HTLV-1 basic Zip Factor (HBZ in Viral Chronicity and Leukemic Transformation. Potential New Therapeutic Approaches to Prevent and Treat HTLV-1-Related Diseases

    Directory of Open Access Journals (Sweden)

    Jean-Michel Mesnard


    Full Text Available More than thirty years have passed since human T-cell leukemia virus type 1 (HTLV-1 was described as the first retrovirus to be the causative agent of a human cancer, adult T-cell leukemia (ATL, but the precise mechanism behind HTLV-1 pathogenesis still remains elusive. For more than two decades, the transforming ability of HTLV-1 has been exclusively associated to the viral transactivator Tax. Thirteen year ago, we first reported that the minus strand of HTLV-1 encoded for a basic Zip factor factor (HBZ, and since then several teams have underscored the importance of this antisense viral protein for the maintenance of a chronic infection and the proliferation of infected cells. More recently, we as well as others have demonstrated that HBZ has the potential to transform cells both in vitro and in vivo. In this review, we focus on the latest progress in our understanding of HBZ functions in chronicity and cellular transformation. We will discuss the involvement of this paradigm shift of HTLV-1 research on new therapeutic approaches to treat HTLV-1-related human diseases.

  2. The neurogenic basic helix–loop–helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Kristin Kathleen Baxter


    Full Text Available Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.

  3. Quantitative estimates of vascularity in a collagen-based cell scaffold containing basic fibroblast growth factor by non-invasive near-infrared spectroscopy for regenerative medicine (United States)

    Kushibiki, Toshihiro; Awazu, Kunio


    Successful tissue regeneration required both cells with high proliferative and differentiation potential and an environment permissive for regeneration. These conditions can be achieved by providing cell scaffolds and growth factors that induce angiogenesis and cell proliferation. Angiogenenis within cell scaffolds is typically determined by histological examination with immunohistochemical markers for endothelium. Unfortunately, this approach requires removal of tissue and the scaffold. In this study, we examined the hemoglobin content of implanted collagen-based cell scaffolds containing basic fibroblast growth factor (bFGF) in vivo by non-invasive near infrared spectroscopy (NIRS). We also compared the hemoglobin levels measured by NIRS to the hemoglobin content measured with a conventional biological assay. Non-invasive NIRS recordings were performed with a custom-built near-infrared spectrometer using light guide-coupled reflectance measurements. NIRS recordings revealed that absorbance increased after implantation of collagen scaffolds containing bFGF. This result correlated (R2=0.93) with our subsequent conventional hemoglobin assay. The NIRS technique provides a non-invasive method for measuring the degree of vascularization in cell scaffolds. This technique may be advantageous for monitoring angiogenesis within different cell scaffolds, a prerequisite for effective tissue regeneration.

  4. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). (United States)

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh


    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with

  5. Brain Basics

    Medline Plus

    Full Text Available ... affect our bodies, such as sleep, diet, or stress. These factors may act alone or together in ... for anxiety disorders like phobias or post-traumatic stress disorder (PTSD) . Prefrontal cortex (PFC) —Seat of the ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... the way messages are conducted in the body. Epigenetics is the study of how environmental factors can ... a given gene operates. But unlike gene mutations, epigenetic changes do not change the code for a ...

  7. Neural Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells Treated with Sex Steroid Hormones and Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Kazem Parivar


    Full Text Available Objective: There are several factors, like environmental agents, neurotrophic factors, serotonin and some hormones such as estrogen, affecting neurogenesis and neural differentiation. Regarding to importance of proliferation and regeneration in central nervous system, and a progressive increase in neurodegenerative diseases, cell therapy is an attractive approach in neuroscience. The aim of the present study was to investigate the effects of sex steroid hormones and basic fibroblast growth factor (bFGF on neuronal differentiation of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs. Materials and Methods: This experimental study was established in Kharazmi University. BM was isolated from the bones of femur and tibia of 4-6-week old Naval Medical Research Institute (NMRI mice, and the cells were cultured. The cells were divided into following 4 groups based on the applied treatments: I. control (no treatment, II. steroid hormones (β-estradiol, progesterone and testosterone, III. bFGF and IV. combination of steroid hormones and bFGF. Immunocytochemistry and flow cytometery analyses were applied for beta III-tubulin (β-III tubulin and microtubule-associated proteins-2 (MAP-2 in 4 days of treatment for all groups. Results: The cells treated with combination of bFGF and steroid hormones represented more expressions of neural markers as compared to control and to other two groups treated with either bFGF or steroid hormones. Conclusion: This study showed that BM-MSCs can express specific neural markers after receiving bFGF pretreatment that was followed by sex steroid hormones treatment. More investigations are necessary to specify whether steroid hormones and bFGF can be considered for treatment of CNS diseases and disorders.

  8. Inflation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    inflation since metrical fluctuations, both scalar and tensor, are also produced in inflationary models. Thus, the time appears to be appropriate for a very basic and simple exposition of the inflationary model written from a particle physics perspective. Only the simplest scalar model will be explored because it is easy to understand and contains all the basic elements of the inflationary model.

  9. Inflation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    inflation since metrical fluctuations, both scalar and tensor, are also produced in inflationary models. Thus, the time appears to be appropriate for a very basic and simple exposition of the inflationary model written from a particle physics perspective. Only the simplest scalar model will be explored because it is easy to understand and contains all the basic elements of the inflationary model.

  10. Factores del cuidador familiar que influyen en el cumplimiento de los cuidados básicos del usuario postrado Factors of the caregiver that influence the fulfillment of the elegant basic ones of the humbled user

    Directory of Open Access Journals (Sweden)

    Carolina Elena Luengo Martínez


    Full Text Available El número de usuarios postrados va en aumento; sólo una parte de los cuidados que requieren es proporcionada por los profesionales sanitarios, la mayor parte están siendo atendidos en su entorno familiar y comunitario, resultando de ello, muchas veces, un cuidado inadecuado. Objetivo: asociar factores del cuidador familiar con el cumplimiento de los cuidados básicos del usuario postrado. Metodología: estudio cuantitativo, descriptivo, analítico, correlacional de corte transversal. Población de estudio: 98 cuidadores familiares pertenecientes a Centros de Salud de Chillán-Chile. Resultados: se determinó que la mayoría de los cuidadores familiares de usuarios postrados, cumplen moderadamente los cuidados básicos que necesita el paciente, presentan una sobrecarga intensa y existe evidencia para afirmar que los factores del cuidador familiar que influyen en el cumplimiento de los cuidados básicos son: edad, escolaridad, tiempo a cargo del paciente y enfermedades crónicas no transmisibles sin síntomas de ansiedad.The number of postrados users it increases; only one part of the cares that they require is provided by the sanitary professionals, most are being taken care of in its familiar and communitarian surroundings, being from it, often, cares inadequate. Objective: To associate factors of the caregiver with the fulfillment of the basic cares of the postrado user. Methodology: Quantitative, descriptive, analytical, corelational study of cross section. Population of study: 98 caregiver pertaining to Centers of Health of Chillán- Chile. Results: I determine that most of the caregiver of postrados users, they moderately fulfill the cares basic that the patient needs, present/display an intense overload and exists evidence to affirm that the factors of the informal caretaker that influence in the fulfillment of the basic cares they are: age, schooling, time in charge of the patient and nontransmissible chronic diseases without anxiety

  11. ERT basics

    Energy Technology Data Exchange (ETDEWEB)

    Butters, M. [MBC Energy and Environment, Ottawa, ON (Canada)]|[National Round Table on the Environment and the Economy, Ottawa, ON (Canada)


    ERT is an economic instrument which helps power companies achieve emission reduction compliance cost-effectively. This paper presents the basics of ERT with reference to trading concepts, types of systems and types of emissions. The paper also describes the state of the Canadian energy market regarding greenhouse gases (GHG), nitrogen oxides, sulphur dioxide and volatile organic compounds. The association between ERT and district energy is also explained. By 2010, the global market for GHG trading is expected to be worth $10 billion to $3 trillion U.S. Canada has committed to reducing its GHG to 6 per cent below 1990 levels by 2012, but currently emits 705 Mt per year. This is expected to increase to 770 Mt by 2010. Therefore, in order to meet its commitment, GHGs will have to be reduced 200 Mt per year. Canada is currently considering ratifying the Kyoto agreement and a trading system is being developed. There are several abatement technologies currently under consideration for district energy systems, including adding scrubbers, improving efficiency, and fuel switching. The marginal cost of abatement was also discussed. tabs., figs.

  12. 当前乌克兰政治基本特征与影响因素%Basic Characteristics and Influencing Factors of the Current Ukraine Politics

    Institute of Scientific and Technical Information of China (English)



    After the Euromaidan “Revolution Square”, the politics of Ukraine has presented the following basic characteristics: the political system is back to parliament presidential system; the political power rises in the west but falls in the east; political polarization; political oligarch; homogenization of internal affairs, affinity to the west but confrontation with Russia in diplomacy; weakened political independence, and strengthened external dependency. The current stage of political development, political party system, political elite, political culture, economic factors and external power are the important reasons for the current tortuous development of Ukraine.%“广场革命”以后,乌克兰政治呈现出以下基本特征:政治制度回归议会总统制;政治力量西升东落;政治极化;政治寡头化;内政同质化,外交亲西抗俄;政治的独立性减弱,对外依附性增强。政治发展所处阶段、政党制度、政治精英、政治文化、经济因素和外部力量,是乌克兰目前政治曲折发展的重要原因。

  13. Effect of Nonviral Plasmid Delivered Basic Fibroblast Growth Factor and Low Intensity Pulsed Ultrasound on Mandibular Condylar Growth: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Harmanpreet Kaur


    Full Text Available Objective. Basic fibroblast growth factor (bFGF is an important regulator of tissue growth. Previous studies have shown that low intensity pulsed ultrasound (LIPUS stimulates bone growth. The objective of this study was to evaluate the possible synergetic effect of LIPUS and local injection of nonviral bFGF plasmid DNA (pDNA on mandibular growth in rats. Design. Groups were control, blank pDNA, bFGF pDNA, LIPUS, and bFGF pDNA + LIPUS. Treatments were performed for 28 days. Significant increase was observed in mandibular height and condylar length in LIPUS groups. MicroCT analysis showed significant increase in bone volume fraction in bFGF pDNA + LIPUS group. Histomorphometric analysis showed increased cell count and condylar proliferative and hypertrophic layers widths in bFGF pDNA group. Results. Current study showed increased mandibular condylar growth in either bFGF pDNA or LIPUS groups compared to the combined group that showed only increased bone volume fraction. Conclusion. It appears that there is an additive effect of bFGF + LIPUS on the mandibular growth.

  14. Effect of nerve growth factor on changes of myelin basic protein and functional repair of peripheral nerve following sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    邵阳; 马海涵; 伍亚民; 陈恒胜; 曾琳; 李民; 龙在云; 李应玉; 杨恒文


    To investigate the therapeutic effect of nerve growth factor ( NGF ) on changes of myelin basic protein (MBP) and functional repair of sensory and motor nerve following sciatic nerve injury. Methods: The sciatic nerves of rats were injured by sectioning with shaver, and divided into 3 groups: NGF group ( Group A ), group of normal saline solution ( Group B), untreated group (Group C). The time point of observation was at the 4th week after operation. Sensory evoked potential (SEP) and motor evoked potential (MEP) were detected by Model WD-4000 nerve potential working diagnosis system. Immunohistochemical analysis was used for identification of MBP. Results: The latency of SEP in the Group A at the 4th week after operation was shorter than that in the Group B ( P < 0.05). The MEP was elicited in 76 % of the Group A and was higher than that in the Group B. Results of immunohistochemistry showed that there were less MBP-positive cells in the Group A than in the Group B in one and four weeks respectively. Conclusions: NGF can improve the conductive function of injured peripheral nerve and facilitate regeneration of nerve.

  15. Evaluation of polycaprolactone scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction. (United States)

    Leong, Natalie Luanne; Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Wu, Ben; Petrigliano, Frank A; McAllister, David R


    Anterior cruciate ligament (ACL) rupture is a common ligamentous injury often necessitating surgery. Current surgical treatment options include ligament reconstruction with autograft or allograft, which have their inherent limitations. Thus, there is interest in a tissue-engineered substitute for use in ACL regeneration. However, there have been relatively few in vivo studies to date. In this study, an athymic rat model of ACL reconstruction was used to evaluate electrospun polycaprolactone (PCL) grafts, with and without the addition of basic fibroblast growth factor (bFGF) and human foreskin fibroblasts. We examined the regenerative potential of tissue-engineered ACL grafts using histology, immunohistochemistry, and mechanical testing up to 16 weeks postoperatively. Histology showed infiltration of the grafts with cells, and immunohistochemistry demonstrated aligned collagen deposition with minimal inflammatory reaction. Mechanical testing of the grafts demonstrated significantly higher mechanical properties than immediately postimplantation. Acellular grafts loaded with bFGF achieved 58.8% of the stiffness and 40.7% of the peak load of healthy native ACL. Grafts without bFGF achieved 31.3% of the stiffness and 28.2% of the peak load of healthy native ACL. In this in vivo rodent model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regenerative potential of our electrospun PCL ligament graft.

  16. Sequential treatment with basic fibroblast growth factor and parathyroid hormone restores lost cancellous bone mass and strength in the proximal tibia of aged ovariectomized rats

    DEFF Research Database (Denmark)

    Wronski, T.J.; Ratkus, A.M.; Thomsen, Jesper Skovhus


    This study was designed to determine whether sequential treatment with basic fibroblast growth factor (bFGF) and parathyroid hormone (PTH) can restore lost cancellous bone mass and strength at a severely osteopenic skeletal site in aged ovariectomized (OVX) rats. Female Sprague-Dawley rats were...... intravenously (iv) daily with bFGF for 14 days at a dose of 200 microg/kg body weight. At the end of bFGF treatment, one group was killed whereas the other group was subjected to 8 weeks of treatment with synthetic human PTH 1-34 [hPTH(1-34)] consisting of subcutaneous (sc) injections 5 days/week at a dose......-treated control rats, respectively. Treatment of OVX rats for 2 weeks with bFGF alone did not significantly increase tibial cancellous bone volume but induced marked increases in osteoid volume, osteoblast surface, and osteoid surface. Sequential treatment of aged OVX rats with bFGF and PTH increased tibial...

  17. Accelerating proliferation of neural stem/progenitor cells in collagen sponges immobilized with engineered basic fibroblast growth factor for nervous system tissue engineering. (United States)

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Han, Jin; Zhao, Yannan; Dai, Jianwu; Xu, Ruxiang


    Neural stem/progenitor cells (NS/PCs) play a therapeutic role in nervous system diseases and contribute to functional recovery. However, their efficacy is limited as the majority of cells die post-transplantation. In this study, collagen sponges were utilized as carriers for NS/PCs. Basic fibroblast growth factor (bFGF), a mitogen for NS/PCs, was incorporated into the collagen sponges to stimulate NS/PC proliferation. However, the effect of native bFGF is limited because it diffuses into the culture medium and is lost following medium exchange. To overcome this problem, a collagen-binding polypeptide domain, which has high affinity to collagen, was fused with bFGF to sustain the exposure of NS/PCs within the collagen sponges to bFGF. The results indicated that the number of NS/PCs was significantly higher in collagen sponges incorporating engineered bFGF than in those with native bFGF or the PBS control after 7 days in culture. Here, we designed a natural biological neural scaffold consisting of collagen sponges, engineered bFGF, and NS/PCs. In addition to the effect of proliferated NS/PCs, the engineered bFGF retained in the natural biological neural scaffolds could have a direct effect on nervous system reconstruction. The two aspects of the natural biological neural scaffolds may produce synergistic effects, and so they represent a promising candidate for nervous system repair.

  18. Basic fibroblast growth factor increases the number of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice

    Institute of Scientific and Technical Information of China (English)

    Weihui Huang; Dawei Zang; Yi Lu; Ping Jiang


    This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) re-ceptors and production of endogenous neural stem cells in the SOD1G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice.

  19. Influence of the valine zipper region on the structure and aggregation of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5). (United States)

    Ciaccio, Natalie A; Reynolds, T Steele; Middaugh, C Russell; Laurence, Jennifer S


    Protein aggregation is a major problem for biopharmaceuticals. While the control of aggregation is critically important for the future of protein pharmaceuticals, mechanisms of aggregate assembly, particularly the role that structure plays, are still poorly understood. Increasing evidence indicates that partially folded intermediates critically influence the aggregation pathway. We have previously reported the use of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5) as a partially folded model system to investigate protein aggregation. This domain contains three regions with differing structural propensity: a N-terminal polybasic region, a central helical leucine zipper region, and a C-terminal extended valine zipper region. Additionally, a centrally positioned cysteine residue readily forms an intermolecular disulfide bond that reduces aggregation. Computational analysis of ATF5 predicts that the valine zipper region facilitates self-association. Here we test this hypothesis using a truncated mutant lacking the C-terminal valine zipper region. We compare the structure and aggregation of this mutant to the wild-type (WT) form under both reducing and nonreducing conditions. Our data indicate that removal of this region results in a loss of α-helical structure in the leucine zipper and a change in the mechanism of self-association. The mutant form displays increased association at low temperature but improved resistance to thermally induced aggregation.

  20. mRNA Expression of Basic Fibroblast Growth Factor from A Single Intratracheal Instillation of Papain-induced Emphysema in Rats

    Institute of Scientific and Technical Information of China (English)

    FU; Juan(


    [1]Snider G L Boston M A Kleinerman J et al.The definition of emphysema.Report of a national heart lung and blood institute.Division of lung disease workshop.Am Rev Respir Dis 1985 132:182[2]杜敏捷 王辰 曹大德等.慢性阻塞性肺疾病合并肺间质纤维化的病理学研究.中华结核和呼吸杂志 1999 22:30[3]单兆运 陈治安 马文富等.慢性阻塞性肺疾病的光镜、电镜及免疫病理研究.中华结核和呼吸杂志 1990 13:311[4]Kobrle V Hurych J Halusa R et al.Changes in pulmonary connective tissue after a single intratracheal instillation of papain in the rat.Am Rev Respir Dis 1982 125:239[5]Gospodarowicz D.Fibroblast growth factor chemical structure and biologic function.Clin Orthop Relat Res 1990 257:231[6]Sannes P L Khosla J Johnson S et al.Basic fibroblast growth factor in fibrosing alveolitis induced by oxygen stress.Chest 1996 109 (Suppl):44[7]Jay M Schlessinger J Graig A et al.FGFR tyrosine kinases molecular analysis and signal transduction.Biochem Biophy Acta 1992 1135:185[8]Edgar C Ronald H Phillip J et al.Remodeling of alveolar walls after elastase treatment of hamsters.Am J Respir Crit Care Med 1998 158:555

  1. Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels. (United States)

    Müller, Isabelle; Rössler, Oliver G; Thiel, Gerald


    The neurosteroid pregnenolone sulfate activates a signaling cascade in insulinoma cells involving activation of extracellular signal-regulated protein kinase and enhanced expression of the transcription factor Egr-1. Here, we show that pregnenolone sulfate stimulation leads to a significant elevation of activator protein-1 (AP-1) activity in insulinoma cells. Expression of the basic region leucine zipper (bZIP) transcription factors c-Jun and c-Fos is up-regulated in insulinoma cells and pancreatic β-cells in primary culture after pregnenolone sulfate stimulation. Up-regulation of a chromatin-embedded c-Jun promoter/luciferase reporter gene transcription in pregnenolone sulfate-stimulated insulinoma cells was impaired when the AP-1 binding sites were mutated, indicating that these motifs function as pregnenolone sulfate response elements. In addition, phosphorylation of cAMP response element (CRE)-binding protein is induced and transcription of a CRE-controlled reporter gene is stimulated after pregnenolone sulfate treatment, indicating that the CRE functions as a pregnenolone sulfate response element as well. Pharmacological and genetic experiments revealed that both L-type Ca(2+) channels and transient receptor potential melastatin 3 (TRPM3) channels are essential for connecting pregnenolone sulfate stimulation with enhanced AP-1 activity and bZIP-mediated transcription in insulinoma cells. In contrast, pregnenolone sulfate stimulation did not enhance AP-1 activity or c-Jun and c-Fos expression in pituitary corticotrophs that express functional L-type Ca(2+) channels but only trace amounts of TRPM3. We conclude that expression of L-type Ca(2+) channels is not sufficient to activate bZIP-mediated gene transcription by pregnenolone sulfate. Rather, additional expression of TRPM3 or depolarization of the cells is required to connect pregnenolone sulfate stimulation with enhanced gene transcription.

  2. ECOG Phase II trial of graded-dose peginterferon α-2b in patients with metastatic melanoma over-expressing basic fibroblast growth factor (E2602) (United States)

    Go, Ronald S.; Lee, Sandra J.; Shin, Donghoon; Callister, Steven M.; Jobe, Dean A.; Conry, Robert M.; Tarhini, Ahmad A.; Kirkwood, John M.


    Purpose We investigated use of graded-dose peginterferon α-2b (Peg-IFN) in patients with stage IV melanoma overexpressing basic fibroblast growth factor (FGF-2). The primary objective was suppression of plasma FGF-2 to within normal range (≤7.5 pg/mL). Experimental Design Plasma FGF-2 was measured at baseline (Step 1), and patients with concentrations ≥15 pg/mL were eligible for study treatment (Step 2). Peg-IFN was given weekly at starting dose of 0.5 μg/kg/wk with increment every 3 weeks based on serial FGF-2 concentrations. Results Two hundred seven patients entered Step 1; 45 (22%) overexpressed FGF-2 (median=22 pg/dL). Twenty-nine eligible patients entered Step 2 and received treatment. Patients’ median age was 64 years (range, 29–84 years). Most had >2 prior therapies. FGF-2 decreased in 28 (97%) patients, with suppression to normal range in 10 (35%). Median time to FGF-2 suppression was 30 days. The best clinical responses were partial response (7%) and stable disease (17%). Median progression-free survival (PFS) and overall survival (OS) were 2.0 and 9.7 months, respectively. Patients who achieved FGF-2 suppression were more likely than those who did not to have a response or stable disease (P = 0.03). Vascular endothelial growth factor (VEGF) concentrations decreased in 27 patients (93%) during treatment and paralleled those of FGF-2 over time. We found no compensatory rise in VEGF among those with FGF-2 suppression. Conclusions Graded-dose Peg-IFN suppresses FGF-2 in patients with metastatic melanoma who overexpress FGF-2. Over a third of patients had complete suppression of plasma FGF-2, which correlated with clinical response to this therapy. PMID:24122792

  3. Neuronal-like differentiation of single versus multiple treatments with human amnion-derived mesenchymal stem cells induced by basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    Hongliang Jiao; Fangxia Guan; Xiang Hu; Jianbin Li; Hong Shan; Wei Li; Jun Li; Ying Du; Bo Yang; Yunfan Zhou


    BACKGROUND: Cultures from multiple portions of umbilical cord blood mesenchymal stem cells have been shown to undergo more rapid proliferation and attachment than single portions. OBJECTIVE: To observe growth of basic fibroblast growth factor (bFGF)-induced cultures of human amnion-derived mesenchymal stem cells (AMSCs) and differentiation into neuronal-like cells. DESIGN, TIME AND SETTING: Comparative observation. The study was performed at the Laboratory of Microbiology and Immunology, Basic Medical School of Zhengzhou University from January to May 2008.METHODS: Amnia from full-term, uterine-incision delivery were donated by 12 healthy women. AMSCs were obtained by cell separation and culture techniques, and were passaged and induced by bFGF. From the third passage, a total of 1 mL AMSCs, at a density of 1.0 ×10 4/mL, was separately harvested from six samples, which served as group A. A total of 1 mL AMSCs, at a density of 1.0×10 4 /mL, was harvested separately from the remaining six samples, which served as group B. A total of 0.5 mL from the six samples of group A and 0.5 mL from the six samples of group B were combined to form group C. MAIN OUTCOME MEASURES: Differences in cell quantity among the three groups were compared by cell quantification and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)analysis. Expression of a glial cell marker, neuron-specific enolase, and nestin was detected in the three groups by immunocytochemistry. RESULTS: Cell quantification and MTT analysis of live cells, as well as AMSC absorbance, were significantly greater in group C compared with groups A and B at 18 days of culture (P<0.05), and no significant difference was observed between groups A and B. Glial fibrillary acidic protein, neuron-specific enolase, and nestin were expressed in all groups following bFGF induction. CONCLUSION: Mixed AMSC cultures promoted proliferation, and bFGF-induced AMSCs differentiated into neuronal-like cells.

  4. Solitons and Collapse in the lambda-repressor protein

    CERN Document Server

    Krokhotin, Andrey; Niemi, Antti J


    The enterobacteria lambda phage is a paradigm temperate bacteriophage. Its lysogenic and lytic life cycles echo competition between the DNA binding $\\lambda$-repressor (CI) and CRO proteins. Here we scrutinize the structure, stability and folding pathways of the $\\lambda$-repressor protein, that controls the transition from the lysogenic to the lytic state. We first investigate the super-secondary helix-loop-helix composition of its backbone. We use a discrete Frenet framing to resolve the backbone spectrum in terms of bond and torsion angles. Instead of four, there appears to be seven individual loops. We model the putative loops using an explicit soliton Ansatz. It is based on the standard soliton profile of the continuum nonlinear Schr\\"odinger equation. The accuracy of the Ansatz far exceeds the B-factor fluctuation distance accuracy of the experimentally determined protein configuration. We then investigate the folding pathways and dynamics of the $\\lambda$-repressor protein. We introduce a coarse-graine...

  5. Mutations in the human TWIST gene. (United States)

    Gripp, K W; Zackai, E H; Stolle, C A


    Saethre-Chotzen syndrome is a relatively common craniosynostosis disorder with autosomal dominant inheritance. Mutations in the TWIST gene have been identified in patients with Saethre-Chotzen syndrome. The TWIST gene product is a transcription factor with DNA binding and helix-loop-helix domains. Numerous missense and nonsense mutations cluster in the functional domains, without any apparent mutational hot spot. Two novel point mutations and one novel polymorphism are included in this review. Large deletions including the TWIST gene have been identified in some patients with learning disabilities or mental retardation, which are not typically part of the Saethre-Chotzen syndrome. Comprehensive studies in patients with the clinical diagnosis of Saethre-Chotzen syndrome have demonstrated a TWIST gene abnormality in about 80%, up to 37% of which may be large deletions [Johnson et al., 1998]. The gene deletions and numerous nonsense mutations are suggestive of haploinsufficiency as the disease-causing mechanism. No genotype phenotype correlation was apparent.

  6. emc has a role in dorsal appendage fate formation in Drosophila oogenesis. (United States)

    Papadia, Sofia; Tzolovsky, George; Zhao, Debiao; Leaper, Kevin; Clyde, Dorothy; Taylor, Paul; Asscher, Eva; Kirk, Graeme; Bownes, Mary


    extramacrochaetae (emc) functions during many developmental processes in Drosophila, such as sensory organ formation, sex determination, wing vein differentiation, regulation of eye photoreceptor differentiation, cell proliferation and development of the Malpighian tubules, trachea and muscles in the embryo. It encodes a Helix-Loop-Helix transcription factor that negatively regulates bHLH proteins. We show here that emc mRNA and protein are present throughout oogenesis in a dynamic expression pattern and that emc is involved in the regulation of chorionic appendage formation during late oogenesis. Expression of sense and antisense emc constructs as well as emc follicle cell clones leads to eggs with shorter, thicker dorsal appendages that are closer together at base than in the wild type. We demonstrate that emc lies downstream of fs(1)K10, gurken and EGFR in the Grk/EGFR signalling pathway and that it participates in controlling Broad-Complex expression at late stages of oogenesis.

  7. Menstrual Cycle: Basic Biology



    The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations (Chapter X), X chromosome abnormalities (Chapter X), and galactose-1-phosphate uridyltransferase (GALT) point mutati...

  8. Thermodynamics - basic conception

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Eul Bok


    This book tells of basic conception of thermodynamics, condition and property of matter, work and power, thermal efficiency, the principle of the conservation of energy, relationship between work and heat, enthalpy, Jouel's law, complete gasification, the second low of thermodynamics such as thermal efficiency and quality factor, carnot cycle, and entropy, condensation of gas like press of internal combustion engine, vapor, steam power plant and structure, internal combustion cycle, freeze cycle, flow of fluid, combustion and heat transfer.

  9. Multiple Factors Logistic Regression Analysis on the Basic Syndromes Related Factors in Patients with Chronic Prostatitis%慢性前列腺炎基本证型相关因素多元逐步Logistic回归分析

    Institute of Scientific and Technical Information of China (English)

    李兰群; 张强; 李海松; 郭军; 孙松; 邢建民; 周强; 谢春雨; 杨杰; 王彬


    目的 探讨慢性前列腺炎基本证型的相关因素.方法 制定调查表,在北京3家医院的中医男科收集慢性前列腺炎连续病例,采用Epidata 3.02建立数据库,SPSS 17.0软件统计分析,对基本证型的可能相关因素分别进行单因素和多因素Logistic回归分析.结果 从事脑力工种为湿热下注证的主要危险因素;西医分类ⅢA型、从事脑力和体力工种、工作时间≤8 h为气滞血瘀证的主要危险因素;病程12个月、居住不舒适、不饮用刺激性饮料、消化不良为肝气郁结证的主要危险因素;年龄增大、工作压力减小、冬季发病为肾阳虚损证的主要危险因素.结论 年龄、病程、西医分类、工种、工作时间、工作压力、发病季节、居住舒适度、消化不良和饮用刺激性饮料等因素与慢性前列腺炎基本证型有关.%Objective To explore the basic syndrome related factors in patients with chronic prostatitis (CP).Methods Using questionnaire to collect data of CP patients from three hospitals in Beijing, Epidata 3.02 to establish database, the uni-variate and multiple Logistic regression analysis was performed with SPSS 17.0 software to determine the basic syndrome related factors.Results Engagement in brainwork was the main risk factor for suffering from dampness-heat downward-flow syndrome; CP of type Ⅲ A (classified by Western medicine), employed on brainwork or physical work, and working time ≤ 8 h were risk factors for suffering from qi-stagnancy and blood-stasis syndrome; illness duration > 12 months, uncomfortable habitat, dislike for irritative beverages and poor digestive function were risk factors for Gan-qi stagnation syndrome; and aging, decreased burden from work, winter onset of the illness were those for Shen-yang deficiency syndrome.Conclusions The basic syndrome related factors in patients with CP are age of patient, duration and type of illness, occupational type, daily working time, burden

  10. Roles of extracellular signal-regulated kinase 1/2 on the suppression of myostatin gene expression induced by basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    Huazhoag Liu; Xiaorong An; Yongfu Chen; Jieping Zhong


    Basic fibmblast growth factor (bFGF, FG F-2 ) has an inhibitory effect on the expression of the myostatin gene in murine C2C12 myoblasts, as shown in our recent investigation. To further verify the regulatory effects of bFGF on the myostalin gene and to better understand its mechanism in skeletal muscle, and to promote clinical applications of bFGF to treat skeletal muscle diseases correlated to muscular dystrophy or AIDS and so on, recombinant human bFGF (rh-bFGF) was added into media and stimulated murine C2C12 myoblasts to investigate the dose-dependent effect ofbFGF on suppression of myostatin gene expression and the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulatory mechanism. Simultaneously, complete coding sequence of ovine 18 kDa-bFGF gene was inserted into eukaryotic vector pCMV-neo (originated from pEGFP-N1 vector, from which the EGFP gene has been removed), the recombinant plasmid pCMV-neo-bFGF was harvested and injected into the mouse skeletal muscle of posterior limb. Expression levels of bFGF,myostatin, and ERKI/2 genes in murine C2C12 myoblasts and the skeletal muscle were analyzed by real-time reverse transcription-polymerase chain reaction and Western blotting analysis, respectively. The results showed that bFGFimpaired the expression ofmyostatin gene in a dose-dependent manner in C2C12 cells, with increasing concentration of rh-bFGF,myostatin mRNA declined gradually. In addition, results in skeletal muscle indicated that bFGF also suppressed the expression of the myostatin gene in vivo. Furthermore, we found ERKI/2 participated in the regulatory mechanism of bFGF on the expression of the myostatin gene.

  11. Effect of basic fibroblast growth factor on the expression of glial fibrillary acidic protein after tractive spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; L(U) Bo; TU Chong-qi; CHI Lei-ting; WANG Guang-lin; PEI Fu-xing


    Objective: To investigate the effects of basic fibroblast growth factor (bFGF) on the expression of glial fibrillary acidic protein (GFAP) after tractive spinal cord injury in rats and to explore the recovery of spinal cord function.Methods: The rats were subjected to tractive spinal cord injury at T13-L2. Cortical somatosensory-evoked potential (CSEP) was closely monitored and when P1-N1 wave amplitude decreased to 70% of that before operation, a small-bore catheter was inserted below the injured plane through subarachnoid cavity. In the treatment groups, 20 μl of bFGF solution (containing 20 μg of bFGF) was injected through the catheter right after the operation and 1,2, 3, 4, 8, 12 and 24 h postoperatively. In the control group, same volume of normal saline was injected and every four rats were killed at 1, 4, 7, 14 and 21 d after the operation. Combined behavior score (CBS) and electro-physiological examination were adopted to evaluate function recovery. Expression of GFAP was observed by immuno-histochemical staining and was analyzed quantitatively by computer image analysis.Results: There was statistically significant difference in GFAP-positive cells between bFGF treatment group and the control group (P<0.01). Similar tendency was indicated by the results of CBS and CSEP.Conclusions: bFGF can induce large expression of GFAP after tractive spinal cord injury in rats and promote spinal function recovery, which is highly important for spinal cord regeneration.

  12. The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar. (United States)

    Hiwatashi, Nao; Hirano, Shigeru; Mizuta, Masanobu; Kobayashi, Toshiki; Kawai, Yoshitaka; Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Ito, Juichi; Kawai, Katsuya; Suzuki, Shigehiko


    Vocal fold scar remains a therapeutic challenge. Basic fibroblast growth factor (bFGF) was reported to have regenerative effects for vocal fold scar, although it has the disadvantage of rapid absorption in vivo. A collagen-gelatin sponge (CGS) can compensate for the disadvantage by providing a sustained release system. The current study evaluated the efficacy of CGS combined with bFGF on vocal fold scar, using rat fibroblasts for an in vitro model and a canine in vivo model. We prepared fibroblasts from scarred vocal folds (sVFs) in rats and showed that bFGF accelerated cell proliferation and suppressed expression levels of cleaved caspase 3 and α-smooth muscle actin. Has 1, Has 3, Fgf2, Hgf and Vegfa mRNA levels were significantly upregulated, while Col1a1 and Col3a1 were dose-dependently downregulated, with a maximum effect at 100 ng/ml bFGF. In an in vivo assay, 6 weeks after lamina propria stripping, beagles were divided into three groups: CGS alone (CGS group); CGS with bFGF (7 µg/cm(2) ; CGS + bFGF group); or a sham-treated group. Vibratory examination revealed that the glottal gap was significantly reduced in the bFGF group and the two implanted groups, whereas the CGS + bFGF group showed higher mucosal wave amplitude. Histological examination revealed significantly restored hyaluronic acid and elastin redistribution in the CGS + bFGF group and reductions in dense collagen deposition. These results provide evidence that CGS and bFGF combination therapy may have therapeutic potential and could be a promising tool for treating vocal fold scar. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Changes in bone regeneration by trehalose coating and basic fibroblast growth factor after implantation of tailor-made bone implants in dogs. (United States)

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Liu, I-Li; Honnami, Muneki; Suzuki, Shigeki; Nishimura, Ryohei; Chung, Ung-Il; Sasaki, Nobuo; Mochizuki, Manabu


    In this study, we aimed to determine the effect of trehalose coating and the optimal dose of basic fibroblast growth factor (bFGF), an osteoinductive protein, loaded onto tailor-made bone implants for implant-induced bone formation in vivo. We fabricated tailor-made α-tricalcium phosphate bone implants (11 mm diameter with 2 parallel cylindrical holes). bFGF 0, 1, 10, 100 or 200 μg/implant was incorporated into implants with and without a trehalose coating, and these were subsequently implanted into dogs to correct temporal bone defects of the same size and shape. Four weeks after implantation, we analyzed the bone implants and surrounding tissues by using micro-computed tomography imaging and histological analyses, as well as gross evaluation. No significant difference in new bone formation was observed between implants with and without a trehalose coating at any of the bFGF doses. Bone implants with 100 and 200 μg bFGF showed significantly more new bone formation at the implant site and within the cylindrical holes of the implants than those without bFGF (P<0.05). However, heterotopic bone formation on the skull near the implant was observed in the group that received 200 μg bFGF. These results suggest that 100 μg bFGF is the optimal dose for this implant in dogs, and that the trehalose coating may not be necessary in vivo, probably due to the presence of blood proteins and electrolytes at the implant site.

  14. Co-localization and regulation of basic fibroblast growth factor and arginine vasopressin in neuroendocrine cells of the rat and human brain

    Directory of Open Access Journals (Sweden)

    Gonzalez Ana M


    Full Text Available Abstract Background Adult rat hypothalamo-pituitary axis and choroid plexus are rich in basic fibroblast growth factor (FGF2 which likely has a role in fluid homeostasis. Towards this end, we characterized the distribution and modulation of FGF2 in the human and rat central nervous system. To ascertain a functional link between arginine vasopressin (AVP and FGF2, a rat model of chronic dehydration was used to test the hypothesis that FGF2 expression, like that of AVP, is altered by perturbed fluid balance. Methods Immunohistochemistry and confocal microscopy were used to examine the distribution of FGF2 and AVP neuropeptides in the normal human brain. In order to assess effects of chronic dehydration, Sprague-Dawley rats were water deprived for 3 days. AVP neuropeptide expression and changes in FGF2 distribution in the brain, neural lobe of the pituitary and kidney were assessed by immunohistochemistry, and western blotting (FGF2 isoforms. Results In human hypothalamus, FGF2 and AVP were co-localized in the cytoplasm of supraoptic and paraventricular magnocellular neurons and axonal processes. Immunoreactive FGF2 was associated with small granular structures distributed throughout neuronal cytoplasm. Neurohypophysial FGF2 immunostaining was found in axonal processes, pituicytes and Herring bodies. Following chronic dehydration in rats, there was substantially-enhanced FGF2 staining in basement membranes underlying blood vessels, pituicytes and other glia. This accompanied remodeling of extracellular matrix. Western blot data revealed that dehydration increased expression of the hypothalamic FGF2 isoforms of ca. 18, 23 and 24 kDa. In lateral ventricle choroid plexus of dehydrated rats, FGF2 expression was augmented in the epithelium (Ab773 as immunomarker but reduced interstitially (Ab106 immunostaining. Conclusions Dehydration altered FGF2 expression patterns in AVP-containing magnocellular neurons and neurohypophysis, as well as in choroid

  15. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Im


    Full Text Available Hee-Jeong Im,1–4 Andrew D Sharrocks,5 Xia Lin,6 Dongyao Yan,1 Jaesung Kim,1 Andre J van Wijnen,7 Robert A Hipskind81Departments of Biochemistry, 2Internal Medicine, 3Section of Rheumatology, Orthopedic Surgery, 4Rush University Medical Center, and Department of Bioengineering; University of Illinois at Chicago, IL USA; 5Faculty of Life Sciences, University of Manchester, Oxford Rd, Manchester, UK; 6Michael D DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA; 7Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA; 8Institute De Genetique Moleculaire de Montpellier, FranceAbstract: Degradation of the extracellular matrix (ECM by matrix metalloproteinases (MMPs and release of basic fibroblast growth factor (bFGF are principal aspects of the pathology of osteoarthritis (OA. ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation

  16. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Rei Nakano

    Full Text Available Bone marrow stromal cells (BMSCs are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2 and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR, phosphatidylinositol 3-kinase (PI3K and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs.

  17. 脑膜瘤组织中bFGF及FGFR-1蛋白表达的研究%Expression of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human meningiomas

    Institute of Scientific and Technical Information of China (English)

    陈坚; 易伟


    目的探讨碱性成纤维生长因子(basic fibroblast growth factor, bFGF)及成纤维生长因子受体1(fibroblast growth factor receptor-1, FGFR-1)在脑膜瘤中的表达及其与脑膜瘤组织病理学和复发的关系.方法用免疫组化技术检测bFGF、FGFR-1在不同类型的脑膜瘤组织中的蛋白表达,用组织病理学判断脑膜瘤的良恶性.结果脑膜瘤细胞有不同程度的bFGF及FGFR-1表达,其表达阳性率与肿瘤的良恶性和复发有关.结论 bFGF和FGFR具有促进脑膜瘤细胞的增殖和生长的作用.脑膜瘤表达bFGF、FGFR的阳性率可作为鉴别肿瘤良恶性的有用指标,并对脑膜瘤的预后和术后复发起提示作用.

  18. 酒精依赖与MMPI相关因子分析%Correlation analysis of alcohol dependent patients and factors of clinical basical scale of MMPI

    Institute of Scientific and Technical Information of China (English)



    目的:探讨酒精依赖与明尼苏达多相人格测验( MMPI)临床基本量表各因子的相关性。方法研究组系2008年6月-2010年6月在临沂市精神卫生中心就诊的酒精依赖患者。采用MMPI计算机测试软件,对酒精依赖组(n=162)和正常对照组(n=99)进行测试,对两组MMPI的疑病、抑郁、癔症、人格偏离、男子气、偏执、精神衰弱、精神分裂、躁狂、社会内向10个因子标准分进行统计分析,并进行logistic回归分析。结果除男子气因子外,酒精依赖组MMPI临床基本量表各因子标准分均高于对照组(P<0.01);多因素logistic回归分析发现酒精依赖与抑郁、癔症呈正相关,与精神分裂呈负相关(P均<0.05) 。结论酒精依赖患者可能存在心理及躯体症状,尤其与抑郁、癔症关系密切。%Objective To discuss relationship between alcohol dependent patients and factors of clinical basical scale of MMPI. Methods The study group was 162 alcohol dependent patients for treatment in Linyi mental health center from 2008,6 to 2010,6. The control group was 99 physical examination men. The current adopted MMPI computer testing software and measured alcohol de-pendent patients and normal subjects to statistically analyze MMPI coarse marks of ten factors ,which included Hypochondriasis Depres-sion Hysteria Psychopathic deviate Masculinity-femininity Paranoia Psychasthenia Schizophrenia Hypomania and Social introversion ( Hs,D,Hy,Pd,Mf,Pa,Pt,Sc,Ma and Si) between the two groups,then did the logistic regression. Results In addition to male fac-tor,the coarse scores of nine factors in alcohol dependent groups were all significantly higher than those of compare groups (P<0. 01), and it was found that alcohol dependent was relative to Hy,D and Sc positively by logistic regression analysis. Conclusion Alcohol dependent patients probably have psychological and physical symptoms,especially Hysteria and Depression.

  19. A mutein of human basic fibroblast growth factor TGP-580 accelerates colonic ulcer healing by stimulating angiogenesis in the ulcer bed in rats. (United States)

    Satoh, H; Szabo, S


    Previously, we reported that TGP-580, a mutein of human basic fibroblast growth factor (bFGF), accelerated the healing of gastric and duodenal ulcers in rats. In the present study, we examined the effect of TGP-580 on the healing of colonic ulcers. In male Sprague Dawley rats, ulcers were induced in the colon 6 cm from the anus by enema of 50 μl of 3% N-ethylmaleimide, a sulfhydryl alkylator. The lesions were examined under a dissecting microscope (x10). The concentration of bFGF in the ulcerated colon was measured by enzyme immunoassay, and both the distribution of bFGF and the density of microvessels in the ulcer bed were examined by immunohistochemical staining. The content of bFGF in the ulcerated colon was markedly increased associated with ulcer healing, and ulcer healing was significantly delayed by intravenous administration of a monoclonal antibody for bFGF (MAb 3H3) once daily for 10 days. In the ulcer bed, many cells such as fibroblasts, vascular endothelial cells and macrophages were positively stained with bFGF antiserum. TGP-580, human bFGF or dexamethasone was given intracolonally twice daily for 10 days, starting the day after ulcer induction. TGP-580 (0.2 - 20 μg/ml, 200 μl/rat) dose-dependently accelerated ulcer healing, and its effect was more than 10 times stronger than that of human bFGF. Density (μm/0.01 mm(2)) of microvessels in the ulcer bed was significantly increased by treatment with TGP-580, and there was a good correlation between the density of microvessels and the decrease of ulcerated area (R(2) = 0.633). On the other hand dexamethasone (20 μg/ml) inhibited angiogenesis in the ulcer bed and delayed ulcer healing. These results suggest that angiogenesis in the ulcer bed plays an important role in ulcer healing, and that bFGF mutein TGP-580 accelerated colonic ulcer healing, at least in part, by stimulating angiogenesis, whereas glucocorticoids may delay the healing by inhibiting angiogenesis.

  20. Diagnostic and prognostic value of serum nitric oxide, tumor necrosis factor-alpha, basic fibroblast growth factor and copper as angiogenic markers in premenopausal breast cancer patients: a case-control study. (United States)

    Hewala, T I; Abd El-Moneim, N A; Ebied, S Abd El-Moneim; Sheta, M I; Soliman, K; Abu-Elenean, A


    Many studies demonstrate that increased microvessel density (MVD) surrounding primary tumour is associated with decreased overall survival in patients with breast cancer. This study compares the diagnostic and prognostic values of the angiogenic serum factors nitric oxide (NO), tumour necrosis factor-alpha (TNFalpha), basic fibroblast growth factor (bFGF) and copper with those of serum CA15-3 as the standard tumour marker in breast cancer patients. Microvessel density was estimated in CD31-immunostained sections from breast cancer patients. Before surgery, NO, TNFalpha, bFGF, copper and CA 15-3 were measured in serum samples from 30 premenopausal breast cancer patients in comparison with 15 healthy controls. The diagnostic values of the assayed parameters were compared using receiver operating characteristic (ROC) curve analysis. Univariate survival analysis of patients was assessed using the Kaplan-Meier method. Breast cancer tissues showed higher MVD than did normal breast tissues adjacent to the tumour (P = 0.008). Before surgery, tumour MVD correlated significantly with serum NO, TNFalpha, bFGF and copper (r = 0.458, P = .011; r = 0.379, P = .039; r = 0.513, P = .004 and r = 0.613, P = 0.000, respectively). Serum NO, TNFalpha, bFGF, copper and CA 15-3 levels in patients were significantly elevated compared with controls (P = 0.011, P = 0.004, P = 0.039, P = 0.000 and P = 0.001, respectively). Kaplan-Meier analysis revealed that patients with elevated serum TNFalpha, CA 15-3 and copper (P = 0.035, P = 0.040, P = 0.0339, respectively) had an overall survival significantly shorter than those who had lower levels of these parameters. These data suggest that serum TNFalpha, CA 15-3 and copper are useful predictive markers for overall survival in premenopausal breast cancer patients.

  1. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation.

    Directory of Open Access Journals (Sweden)

    Clint L Miller


    Full Text Available Genome-wide association studies (GWAS have identified chromosomal loci that affect risk of coronary heart disease (CHD independent of classical risk factors. One such association signal has been identified at 6q23.2 in both Caucasians and East Asians. The lead CHD-associated polymorphism in this region, rs12190287, resides in the 3' untranslated region (3'-UTR of TCF21, a basic-helix-loop-helix transcription factor, and is predicted to alter the seed binding sequence for miR-224. Allelic imbalance studies in circulating leukocytes and human coronary artery smooth muscle cells (HCASMC showed significant imbalance of the TCF21 transcript that correlated with genotype at rs12190287, consistent with this variant contributing to allele-specific expression differences. 3' UTR reporter gene transfection studies in HCASMC showed that the disease-associated C allele has reduced expression compared to the protective G allele. Kinetic analyses in vitro revealed faster RNA-RNA complex formation and greater binding of miR-224 with the TCF21 C allelic transcript. In addition, in vitro probing with Pb2+ and RNase T1 revealed structural differences between the TCF21 variants in proximity of the rs12190287 variant, which are predicted to provide greater access to the C allele for miR-224 binding. miR-224 and TCF21 expression levels were anti-correlated in HCASMC, and miR-224 modulates the transcriptional response of TCF21 to transforming growth factor-β (TGF-β and platelet derived growth factor (PDGF signaling in an allele-specific manner. Lastly, miR-224 and TCF21 were localized in human coronary artery lesions and anti-correlated during atherosclerosis. Together, these data suggest that miR-224 interaction with the TCF21 transcript contributes to allelic imbalance of this gene, thus partly explaining the genetic risk for coronary heart disease associated at 6q23.2. These studies implicating rs12190287 in the miRNA-dependent regulation of TCF21, in

  2. NPAS3 Regulates Transcription and Expression of VGF: Implications for Neurogenesis and Psychiatric Disorders (United States)

    Yang, Dongxue; Zhang, Wenbo; Padhiar, Arshad; Yue, Yao; Shi, Yonghui; Zheng, Tiezheng; Davis, Kaspar; Zhang, Yu; Huang, Min; Li, Yuyuan; Sha, Li


    Neuronal PAS domain protein 3 (NPAS3) and VGF (VGF Nerve Growth Factor (NGF) Inducible) are important for neurogenesis and psychiatric disorders. Previously, we have demonstrated that NPAS3 regulates VGF at the transcriptional level. In this study, VGF (non-acronymic) was found regulated by NPAS3 in neuronal stem cells. However, the underlying mechanism of this regulation remains unclear. The aim of this study was to explore the correlation of NPAS3 and VGF, and their roles in neural cell proliferation, in the context of psychiatric illnesses. First, we focused on the structure of NPAS3, to identify the functional domain of NPAS3. Truncated NPAS3 lacking transactivation domain was also found to activate VGF, which suggested that not only transactivation domain but other structural motifs were also involved in the regulation. Second, Mutated enhancer box (E-box) of VGF promoter showed a significant response to this basic helix-loop-helix (bHLH) transcription factor, which suggested an indirect regulatory mechanism for controlling VGF expression by NPAS3. κB site within VGF promoter was identified for VGF activation induced by NPAS3, apart from direct binding to E-box. Furthermore, ectopically expressed NPAS3 in PC12 cells produced parallel responses for nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB (P65)] expression, which specifies that NPAS3 regulates VGF through the NF-κB signaling pathway. Over-expression of NPAS3 also enhances the cell proliferation, which can be blocked by knockdown of VGF. Finally, NPAS3 was found to influence proliferation of neural cells through VGF. Therefore, downstream signaling pathways that are responsible for NPAS3-VGF induced proliferation via glutamate receptors were explored. Combining this work and published literature, a potential network composed by NPAS3, NF-κB, Brain-Derived Neurotrophic Factor (BDNF), NGF and VGF, was proposed. This network collectively detailed how NPAS3 connects with VGF and

  3. Twist haploinsufficiency in Saethre-Chotzen syndrome induces calvarial osteoblast apoptosis due to increased TNFalpha expression and caspase-2 activation. (United States)

    Yousfi, Malika; Lasmoles, Francoise; El Ghouzzi, Vincent; Marie, Pierre J


    Saethre-Chotzen syndrome (SCS) is a human autosomal dominant disorder characterized by premature fusion of cranial sutures caused by mutations of the Twist gene encoding a basic helix-loop-helix (bHLH) transcription factor. We previously showed that Twist haploinsufficiency caused by a Y103X nonsense mutation in SCS alters both proliferation and osteoblast gene expression in human calvarial osteoblasts, indicating that Twist is an important regulator of osteoblast differentiation. Here we show that Twist haploinsufficiency alters osteoblast apoptosis in SCS. Analysis of terminal deoxynucleotidyl transferase-mediated nick-end labelling (TUNEL) demonstrated increased osteoblast and osteocyte apoptosis in coronal sutures from two SCS patients with nonsense mutations (Y103X and Q109X) that result in the synthesis of bHLH-truncated proteins, and one patient with a missense mutation in the basic domain (R118C) that abolishes Twist DNA binding. To assess the mechanisms involved, we studied osteoblast apoptosis in mutant (M-Tw) calvarial cells bearing the Y103X mutation resulting in decreased Twist mRNA and protein levels. M-Tw cells cultured in low serum conditions showed enhanced DNA fragmentation compared to normal (Nl) age-matched calvarial cells. Biochemical analysis showed increased activity of initiator caspases-2 and -8 and downstream effector caspases-3, -6 and -7 in mutant osteoblasts. Caspase-2 was upstream of caspase-8 and effector caspases-3, -6 and -7 because their activities were suppressed by a specific caspase-2 inhibitor. M-Tw osteoblasts also showed increased cytochrome c release from the mitochondria. However, the activity of the downstream effector caspase-9 was not increased due to overexpression of the antagonist protein Hsp70. Detection of differentially expressed genes using cDNA expression array revealed increased Bax and TNFalpha mRNA levels in M-Tw compared to Nl cells, a finding confirmed by RT-PCR and western blot analyses. Neutralization of

  4. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    Directory of Open Access Journals (Sweden)

    Luo Hongmei


    Full Text Available Abstract Background Panax notoginseng (Burk F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS, which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158 and UDP-glycosyltransferase (Pn00082 gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH, and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next

  5. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2.

    Directory of Open Access Journals (Sweden)

    Dhananjay Dhokane

    Full Text Available Fusarium head blight (FHB caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance.In our study recombinant inbred lines (RILs carrying resistant (R-RIL and susceptible (S-RIL alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL, callose synthase (CS, basic Helix Loop Helix (bHLH041 transcription factor, glutathione S-transferase (GST, ABC transporter-4 (ABC4 and cinnamyl alcohol dehydrogenase (CAD as putative resistance genes localized within the QTL-Fhb2 region.Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat

  6. Agencia de autocuidado y factores básicos condicionantes en adultos mayores Autocuidado e fatores básicos condicionantes em adultos maiores Self-care agency and basic conditioning factors in the elderly

    Directory of Open Access Journals (Sweden)

    Alba Rosa Fernández


    participacao de 240 adultos maiores, feito em julho de 2009. A Escala ASA foi utilizada para valorar a capacidade de autocuidado e a ficha de dados sócio-demográficos e de saúde (DSDS. Os dados foram analisados no SPSS, versao 15.0. Resultados: A média total ASA dos adultos maiores foi de 46,8; mostrando um desvio padrao de 4,6. 99,6% da populacao apresentaram uma "baixa capacidade do autocuidado", numa faixa de 24 a 59 pontos. A média de idade foi de 71,6 anos; o desvio padrao foi de 6,7; 48,8% da populacao pertenciam á faixa etária de 60-70 anos; 76,7% eram mulheres, 49,2% nao tinham educacao escolar; 42,5% eram viúvos, 70,4% trabalhavam como empregados domésticos; 53,3% pertenciam ao estrato social 1; 73,8% moravam com as suas famílias. 21,7% estavam afiliados ao Caprecom. 23,8% apresentaram problemas renais; 71,3% reportaram deficiencias visuais; 78,3% apresentavam uma média de tensao arterial normal e 84,2% apresentavam um pulso normal. 72% das femeas da populacao apresentam um diámetro abdominal que as poe em risco (mais de 80 cm. Conclusáo: Os adultos maiores apresentaram umabaixa capacidade de autocuidado e dos fatores básicos condicionantes que precisam da atencao da enfermaria.Self-care agency is the capacity of an individual to take care of him/ herself; elements of the individual or the environment he/she lives in may have influence, these are called basic conditioning factors. Purpose: To determine the self-care agency and basic conditioning factors in old patients with hypertension in Tunja, Boyacá, Colombia. Methods: Descriptive cross section study with 240 senior patients carried out in July 2009. ASA scale was used to assess self-care agency and the social-demographic and health data card (DSDS. Data were analyzed in SPSS, version 15.0. Results: The total ASA mean of seniors was 46,8, standard deviation of 4,6; 99,6% showed "low self-care agency", within a range of 24 to 59 points. Average age was 71,6, standard deviation of 6,7; 48,8% were

  7. Menstrual Cycle: Basic Biology (United States)

    Hawkins, Shannon M.; Matzuk, Martin M.


    The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations (Chapter X), X chromosome abnormalities (Chapter X), and galactose-1-phosphate uridyltransferase (GALT) point mutations (galactosemia) also contribute to perturbations of the menstrual cycle. Although not perfect, mouse model have helped to identify and confirm additional components and pathways in menstrual cycle function and dysfunction in humans. PMID:18574203

  8. Multiple upstream modules regulate zebrafish myf5 expression

    Directory of Open Access Journals (Sweden)

    Weng Chih-Wei


    Full Text Available Abstract Background Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. Results We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1 the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2 the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3 the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4 the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5 the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. Conclusion We suggest

  9. Analysis of interactions between heterologously produced bHLH and MYB proteins that regulate anthocyanin biosynthesis: quantitative interaction kinetics by Microscale Thermophoresis. (United States)

    Nemie-Feyissa, Dugassa; Heidari, Behzad; Blaise, Mickael; Lillo, Cathrine


    The two Arabidopsis basic-helix-loop-helix transcription factors GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) are positive regulators of anthocyanin biosynthesis, and form protein complexes (MBW complexes) with various R2R3 MYB transcription factors and a WD40 repeat protein TRANSPARENT TESTA GLABROUS1 (TTG1). In earlier studies, GL3, in contrast to EGL3, was shown to be essential for accumulation of anthocyanins in response to nitrogen depletion. This could not be fully explained by the strong induction of GL3 in response to nitrogen depletion because the EGL3 transcripts were constitutively at a relatively high level and transcripts levels of the two genes were similar under nitrogen depletion. Here the GL3 and EGL3 proteins were characterized with respect to their affinities for PRODUCTION OF ANTHOCYANIN PIGMENT2 (PAP2), a R2R3-MYB which is induced by nitrogen depletion and is part of MBW complexes promoting anthocyanin synthesis. GL3 and EGL3 were also tested for their binding to MYBL2, a negative regulator of anthocyanin synthesis and MBW complexes. Using heterologously expressed proteins and Microscale Thermophoresis, GL3 showed binding constants (Kd) of 3.5±1.7 and 22.7±3.7 μM, whereas EGL3 showed binding constants of 7.5±2.3 and 8.9±1.4 μM for PAP2 and MYBL2, respectively. This implies that MYBL2 will not inhibit a MBW complex containing GL3 as easily as for a complex containing EGL3. In transgenic plants where EGL3 reaches high concentrations compared with MYBL2 the equilibrium is shifted and MYBL2 is not likely to be an efficient competitor, hence anthocyanin formation could be restored by either EGL3 or GL3 genes when overexpressed by help of the 35S promoter. The present work underpins that GL3 is essential for anthocyanin accumulation under nitrogen depletion not only due to transcriptional activation, but also because of binding properties to proteins promoting or inhibiting the activity of the MBW complex.

  10. Transcriptomic analysis of the underground renewal buds during dormancy transition and release in 'Hangbaishao' peony (Paeonia lactiflora.

    Directory of Open Access Journals (Sweden)

    Jiaping Zhang

    Full Text Available Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora 'Hangbaishao' to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy and release (the period from ecodormancy to bud elongation and sprouting. Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp and 51,481 (mean length = 1250 bp unigenes using two assembly methods named "Trinity" and "Trinity+PRICE", respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN. A total of 17,705 simple sequence repeat (SSR motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA and abscisic acid (ABA, and activities of guaiacol peroxidase (POD and catalase (CAT were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP, histone, late elongated hypocotyl (LHY, and phytochrome (PHY, and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be

  11. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells. (United States)

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H


    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  12. Stem Cell Basics (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  13. Basics of SCI Rehabilitation (United States)

    ... Donate Experts \\ The Basics of Spinal Cord Injury Rehabilitation Topics Adult Injuries Spinal Cord Injury 101 Spinal ... Injury 101 The Basics of Spinal Cord Injury Rehabilitation The Basics of Spinal Cord Injury Rehabilitation Preventing ...

  14. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    cellular proliferation via regulation of oxidative stress, and also promotes cellular differentiation by modulating the expression of basic helix-loop-helix transcription factors via an unidentified mechanism different from antioxidant action.

  15. Systematic analysis of the achaete-scute complex-like gene signature in clinical cancer patients. (United States)

    Wang, Chih-Yang; Shahi, Payam; Huang, John Ting Wei; Phan, Nam Nhut; Sun, Zhengda; Lin, Yen-Chang; Lai, Ming-Derg; Werb, Zena


    The achaete-scute complex-like (ASCL) family, also referred to as 'achaete-scute complex homolog' or 'achaete-scute family basic helix-loop-helix transcription factor', is critical for proper development of the nervous system and deregulation of ASCL plays a key role in psychiatric and neurological disorders. The ASCL family consists of five members, namely ASCL1, ASCL2, ASCL3, ASCL4 and ASCL5. The ASCL1 gene serves as a potential oncogene during lung cancer development. There is a correlation between increased ASCL2 expression and colon cancer development. Inhibition of ASCL2 reduced cellular proliferation and tumor growth in xenograft tumor experiments. Although previous studies demonstrated involvement of ASCL1 and ASCL2 in tumor development, little is known on the remaining ASCL family members and their potential effect on tumorigenesis. Therefore, a holistic approach to investigating the expression of ASCL family genes in diverse types of cancer may provide new insights in cancer research. In this study, we utilized a web-based microarray database (Oncomine; to analyze the transcriptional expression of the ASCL family in clinical cancer and normal tissues. Our bioinformatics analysis revealed the potential involvement of multiple ASCL family members during tumor onset and progression in multiple types of cancer. Compared to normal tissue, ASCL1 exhibited a higher expression in cancers of the lung, pancreas, kidney, esophagus and head and neck, whereas ASCL2 exhibited a high expression in cancers of the breast, colon, stomach, lung, head and neck, ovary and testis. ASCL3, however, exhibited a high expression only in breast cancer. Interestingly, ASCL1 expression was downregulated in melanoma and in cancers of the bladder, breast, stomach and colon. ASCL2 exhibited low expression levels in sarcoma, melanoma, brain and prostate cancers. Reduction in the expression of ASCL3 was detected in lymphoma, bladder, cervical, kidney and epithelial

  16. NPAS 3基因在精神分裂症中的研究进展

    Institute of Scientific and Technical Information of China (English)

    徐志忠; 章家新


    NPAS3 is a member of the basic helix-loop-helix family of transcription factors expressed in the brain. The gene is located at 14q13 and a reciprocal balanced translocation between chromosomes 9 and 14 was identified in schizophrenia. A number of behavioural abnormalities associated with schizophrenia were identified in Npas3-⁄ - mice including locomotor hyperactivity, subtle gait defects, impairment of prepulse inhibition of acoustic startle. Correlative evidence suggests that neurogenesis may play an important role in schizophrenia, NPAS3 gene may regulates the hippocampal neurogenesis through the FGF signal pathway. The transcription regulation mechanisms of NPAS3 protein expression level might be involved dominant negative, haploinsufficiency and posttranscriptional regulation.%NPAS3是一种主要存在于大脑中的转录因子,属于碱性螺旋-环-螺旋超家族。NPAS3基因位于14号染色体(14q13),在精神分裂症患者中发现,NPAS 3基因在染色体9与14间[t(9;14)(q 34;q 13)]具有平衡易位现象;NPAS 3基因敲除小鼠具有多动、步态有缺陷、前脉冲抑制功能减弱等行为活动,这与精神分裂症症状相类似;NPAS 3基因有可能通过FGF信号通路调节海马区的神经发生,神经发生在精神分裂症的发生发展中具有重要的作用;显性负效、单倍剂量不足效应、转录后调控等有可能是调节NPAS 3蛋白表达水平的不同机制。

  17. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    Full Text Available BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl-N-methyl-(3E-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice

  18. Inhibitor of differentiation 4 (Id4 is a potential tumor suppressor in prostate cancer

    Directory of Open Access Journals (Sweden)

    Carey Jason PW


    Full Text Available Abstract Background Inhibitor of differentiation 4 (Id4, a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Methods Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS, expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Results Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR, p21, p27 and p53 expression in DU145 cells. Conclusion The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously

  19. Combined effects of brain-derived neurotrophic factor immobilized poly-lactic-co-glycolic acid membrane with human adipose-derived stem cells and basic fibroblast growth factor hydrogel on recovery of erectile dysfunction. (United States)

    Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean; Lee, Ji Youl


    Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with

  20. 人表皮生长因子的基础和应用研究%The Basic and Applied Study on the Epidermal Growth Factor

    Institute of Scientific and Technical Information of China (English)

    黄秉仁; 蔡良婉; 等


    本文报道了有关人表皮生长因子(hEGF)及其受体(EGFR)的基础研究结果,以及在此基础上进行新药开发的有关工作:hEGF的基因合成、表达载体的构建和转化宿主细胞、表达产物的纯化和中试规模三批样品的生产和检验等的有关研究结果、hEGF滴眼液的动物实验和临床实验等新药研制过程。有关基础研究表明,编码51个氨基酸的hEGF可以在α因子前导肽的引导下在酵母体系中分泌性表达,表达产物可促进角膜缘上皮细胞的增殖,可促进角膜碱烧伤的愈合,可用于口腔溃疡和皮肤烧伤的治疗,可对大鼠十二指肠溃疡有预防作用等,并用之制备了抗血清以测定血尿中EGF的浓度。研究表明EGF在大于l0ng/ml浓度下对神经胶质瘤细胞株BT325和人阴道上皮癌细胞株A431的生长具有抑制作用,并用差异显示方法对此现象进行了分子机制的探讨。研究肾癌EGFR表达和DNA含量检测具有临床意义。对EGF的晶体进行了初步的结构分析。中试产品检测表明hEGF相对分子质量为6000、等电点为4.6、氨基端15个氨基酸顺序正确、具有EGF的免疫原性和生物活性。产品中无酵母细胞的残余DNA。动物实验表明EFG在体内无蓄积,有明确的促进角膜上皮细胞增殖的作用,无急毒和长毒副作用,对眼无刺激和局部毒性作用。在四家医院进行的多中心双盲的临床实验以证实该滴眼液安全性、耐受量和有效性。在200例角膜移植和247例翼状胬肉切除术中有明显促进角膜损伤恢复的作用,其效果强于国外产阳性对照药素高捷疗(Solcoseryl Eye Gel)。所有这些研制工作促成了利用酵母体系表达的人表皮生长因子制成的滴眼液获得了国家I类新药证书,这是我国首次批准的酵母体系表达的基因工程药物。%This article reviews the resultsof the basic research about epidermal growth factor and

  1. Basic and clinical immunology (United States)

    Chinen, Javier; Shearer, William T.


    Progress in immunology continues to grow exponentially every year. New applications of this knowledge are being developed for a broad range of clinical conditions. Conversely, the study of primary and secondary immunodeficiencies is helping to elucidate the intricate mechanisms of the immune system. We have selected a few of the most significant contributions to the fields of basic and clinical immunology published between October 2001 and October 2002. Our choice of topics in basic immunology included the description of T-bet as a determinant factor for T(H)1 differentiation, the role of the activation-induced cytosine deaminase gene in B-cell development, the characterization of CD4(+)CD25(+) regulatory T cells, and the use of dynamic imaging to study MHC class II transport and T-cell and dendritic cell membrane interactions. Articles related to clinical immunology that were selected for review include the description of immunodeficiency caused by caspase 8 deficiency; a case series report on X-linked agammaglobulinemia; the mechanism of action, efficacy, and complications of intravenous immunoglobulin; mechanisms of autoimmunity diseases; and advances in HIV pathogenesis and vaccine development. We also reviewed two articles that explore the possible alterations of the immune system caused by spaceflights, a new field with increasing importance as human space expeditions become a reality in the 21st century.

  2. On the Uniqueness of the Canonical Polyadic Decomposition of third-order tensors --- Part I: Basic Results and Uniqueness of One Factor Matrix


    Domanov, Ignat; De Lathauwer, Lieven


    Canonical Polyadic Decomposition (CPD) of a higher-order tensor is decomposition in a minimal number of rank-1 tensors. We give an overview of existing results concerning uniqueness. We present new, relaxed, conditions that guarantee uniqueness of one factor matrix. These conditions involve Khatri-Rao products of compound matrices. We make links with existing results involving ranks and k-ranks of factor matrices. We give a shorter proof, based on properties of second compound matrices, of ex...

  3. Basic research in kidney cancer

    NARCIS (Netherlands)

    Oosterwijk, E.; Rathmell, W.K.; Junker, K.; Brannon, A.R.; Pouliot, F.; Finley, D.S.; Mulders, P.F.A.; Kirkali, Z.; Uemura, H.; Belldegrun, A.


    CONTEXT: Advances in basic research will enhance prognosis, diagnosis, and treatment of renal cancer patients. OBJECTIVE: To discuss advances in our understanding of the molecular basis of renal cancer, targeted therapies, renal cancer and immunity, and genetic factors and renal cell carcinoma (RCC)

  4. Basic Income on the Agenda

    NARCIS (Netherlands)

    Groot, Loek; Veen, van der Robert-Jan


    Persisting unemployment, poverty and social exclusion, labour market flexibility, job insecurity and higher wage inequality, changing patterns of work and family life are among the factors that exert pressure on welfare states in Europe. This book explores the potential of an unconditional basic inc

  5. Isolation, functional characterization and proteomic identification of CC2-PLA₂ from Cerastes cerastes venom: a basic platelet-aggregation-inhibiting factor. (United States)

    Chérifi, Fatah; Namane, Abdelkader; Laraba-Djebari, Fatima


    Three-step chromatography and proteomic analysis have been used to purify and characterize a new basic phospholipase A₂ named CC2-PLA₂ from the venom of Cerastes cerastes. This phospholipase A₂ has been isolated to an extent of about 50-folds and its molecular weight was estimated at 13,534 Da. For CC2-PLA₂ identification and LC-MALDI-MS/MS analysis, the protein was reduced, alkylated and double hydrolyzed by lysine-C endopeptidase and trypsin. Tryptic fragments of LC-MS/MS analyzed CC2-PLA₂ showed sequence similarities with other snake venom PLA₂. This presents only 51 % (61/120 amino acid residues) sequence homology with the first PLA₂ (gi |129506|) previously purified from the same venom. The isolated CC2-PLA₂ displayed anti-aggregative effect on platelets and induced an inflammatory response characterized by leukocytosis in the peripheral blood. This inflammatory response is accompanied by a release of inflammatory mediators such as IL-6, eosinophil peroxidase and complement system. Obtained results indicate that CC2-PLA₂ induced a release of high level of pro-inflammatory (IL-6) cytokine and no effect on the level of anti-inflammatory cytokine (IL-10) in blood sera. Furthermore, eosinophil peroxidase activity and hemolytic complement effect increased in peripheral blood. Mononuclear and neutrophil cells were found predominant in the induced leucocytosis following CC2-PLA₂ administration into animals.

  6. Basic Research Firing Facility (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  7. 骨保护素和碱性成纤维细胞生长因子在牙周组织再生中的应用%Application of osteoprotegerin and basic fibroblast growth factor in periodontal regeneration

    Institute of Scientific and Technical Information of China (English)

    何世海; 陈乔尔


    背景:利用组织工程和基因治疗技术,联合应用骨保护素和碱性成纤维细胞生长因子可以促进牙周组织修复再生,是治疗重症牙周病的新方法.目的:探讨联合应用骨保护素和碱性成纤维细胞生长因子以促进牙周组织修复再生的理论依据.方法:应用计算机检索PubMed 数据库(1996/2009)和中国知网数据库(1999/2009),分别以"osteoprotegerin,basicfibroblast growth factor,tissue engineering,gene therapy,periodontal regeneration"和"骨保护素、碱性成纤维细胞生长因子、组织工程、基因治疗、牙周组织修复再生"为检索词,通过阅读标题和摘要进行初筛,排除较陈旧和重复研究文献,保留符合纳入标准的文献29 篇.结果与结论:使牙槽骨、牙周膜和牙骨质获得再生,形成牙周新附着一直是口腔医学研究的热点.骨保护素是一种能阻止破骨细胞分化、促进骨形成的关键因子.碱性成纤维细胞生长因子在胚胎发育,血管生成,骨的形成和修复,促进细胞增生等有广泛的作用.2 者都可促进牙周组织的修复和再生.组织工程技术和基因治疗技术的出现显著促进了牙周组织修复再生研究的发展,有选择地复合这2 种生长因子促进牙周支持组织的再生和修复可成为治疗牙周病的一种新方法.%BACKGROUND: Combination of osteoprotegerin and basic fibroblast growth factor can improve periodontal regeneration applying tissue engineering and gene therapy.OBJECTIVE: To summarize theoretical basis for applying osteoprotegerin and basic fibroblast growth factor to improve periodontal regeneration.METHODS: Relevant articles in PubMed (1996-2009) and CNKI (1999-2009) were searched by computer with the key words of "osteoprotegerin, basic fibroblast growth factor, tissue engineering, gene therapy, periodontal regeneration". Articles addressing originality identification, reliability, general analysis, and high correlation were included

  8. Body Basics Library (United States)

    ... of Healthy Breakfasts Shyness About the Body Basics Library KidsHealth > For Teens > About the Body Basics Library A A A Did you ever wonder what ... system, part, and process works. Use this medical library to find out about basic human anatomy, how ...

  9. Body Basics Library (United States)

    ... of Healthy Breakfasts Shyness About the Body Basics Library KidsHealth > For Teens > About the Body Basics Library Print A A A Did you ever wonder ... system, part, and process works. Use this medical library to find out about basic human anatomy, how ...

  10. Basic Cake Decorating Workbook. (United States)

    Bogdany, Mel

    Included in this student workbook for basic cake decorating are the following: (1) Drawings of steps in a basic way to ice a layer cake, how to make a paper cone, various sizes of flower nails, various sizes and types of tin pastry tubes, and special rose tubes; (2) recipes for basic decorating icings (buttercream, rose paste, and royal icing);…

  11. The influence of compositional and contextual factors on non-receipt of basic vaccines among children of 12-23-month old in India: a multilevel analysis.

    Directory of Open Access Journals (Sweden)

    Daouda Sissoko

    Full Text Available BACKGROUND: Children unreached by vaccination are at higher risk of poor health outcomes and India accounts for nearly a quarter of unvaccinated children worldwide. The objective of this study was to investigate compositional and contextual determinants of non-receipt of childhood vaccines in India using multilevel modelling. METHODS AND FINDINGS: We studied characteristics of unvaccinated children using the District Level Health and Facility Survey 3, a nationally representative probability sample containing 65 617 children aged 12-23 months from 34 Indian states and territories. We developed four-level Bayesian binomial regression models to examine the determinants of non-vaccination. The analysis considered two outcomes: completely unvaccinated (CUV children who had not received any of the eight vaccine doses recommended by India's Universal Immunization Programme, and children who had not received any dose from routine immunisation services (no RI. The no RI category includes CUV children and those who received only polio doses administered via mass campaigns. Overall, 4.83% (95% CI: 4.62-5.06 of children were CUV while 12.01% (11.68-12.35 had received no RI. Individual compositional factors strongly associated with CUV were: non-receipt of tetanus immunisation for mothers during pregnancy (OR = 3.65 [95% CrI: 3.30-4.02], poorest household wealth index (OR = 2.44 [1.81-3.22] no maternal schooling (OR = 2.43 [1.41-4.05] and no paternal schooling (OR = 1.83 [1.30-2.48]. In rural settings, the influence of maternal illiteracy disappeared whereas the role of household wealth index was reinforced. Factors associated with no RI were similar to those for CUV, but effect sizes for individual compositional factors were generally larger. Low maternal education was the strongest risk factor associated with no RI in all models. All multilevel models found significant variability at community, district, and state levels net of

  12. Myelin basic protein as a novel genetic risk factor in rheumatoid arthritis--a genome-wide study combined with immunological analyses.

    Directory of Open Access Journals (Sweden)

    Chikashi Terao

    Full Text Available Rheumatoid arthritis (RA is a major cause of adult chronic inflammatory arthritis and a typical complex trait. Although several genetic determinants have been identified, they account for only a part of the genetic susceptibility. We conducted a genome-wide association study of RA in Japanese using 225,079 SNPs genotyped in 990 cases and 1,236 controls from two independent collections (658 cases and 934 controls in collection1; 332 cases and 302 controls in collection2, followed by replication studies in two additional collections (874 cases and 855 controls in collection3; 1,264 cases and 948 controls in collection4. SNPs showing p<0.005 in the first two collections and p<10(-4 by meta-analysis were further genotyped in the latter two collections. A novel risk variant, rs2000811, in intron2 of the myelin basic protein (MBP at chromosome 18q23 showed strong association with RA (p = 2.7×10(-8, OR 1.23, 95% CI: 1.14-1.32. The transcription of MBP was significantly elevated with the risk allele compared to the alternative allele (p<0.001. We also established by immunohistochemistry that MBP was expressed in the synovial lining layer of RA patients, the main target of inflammation in the disease. Circulating autoantibody against MBP derived from human brain was quantified by ELISA between patients with RA, other connective tissue diseases and healthy controls. As a result, the titer of anti-MBP antibody was markedly higher in plasma of RA patients compared to healthy controls (p<0.001 and patients with other connective tissue disorders (p<0.001. ELISA experiment using citrullinated recombinant MBP revealed that a large fraction of anti-MBP antibody in RA patients recognized citrullinated MBP. This is the first report of a genetic study in RA implicating MBP as a potential autoantigen and its involvement in pathogenesis of the disease.

  13. Genome-wide Expansion and Expression Divergence of the Basic Leucine Zipper Transcription Factors in Higher Plants with an Emphasis on Sorghum

    Institute of Scientific and Technical Information of China (English)

    Jizhou Wang; Junxia Zhou; Baolan Zhang; Jeevanandam Vanitha; Srinivasan Ramachandran; Shu-Ye Jiang


    Plant bZIP transcription factors play crucial roles in multiple biological processes. However,little is known about the sorghum bZIP gene family although the sorghum genome has been completely sequenced. In this study,we have carried out a genome-wide identification and characterization of this gene family in sorghum.Our data show that the genome encodes at least 92 bZIP transcription factors. These bZIP genes have been expanded mainly by segmental duplication. Such an expansion mechanism has also been observed in rice,arabidopsis and many other plant organisms,suggesting a common expansion mode of this gene family in plants. Further investigation shows that most of the bZIP members have been present in the most recent common ancestor of sorghum and rice and the major expansion would occur before the sorghum-rice split era. Although these bZIP genes have been duplicated with a long history,they exhibited limited functional divergence as shown by nonsynonymous substitutions (Ka)/synonymous substitutions (Ks) analyses. Their retention was mainly due to the high percentages of expression divergence. Our data also showed that this gene family might play a role in multiple developmental stages and tissues and might be regarded as important regulators of various abiotic stresses and sugar signaling.

  14. Research on the basic factors and strategies for solving mathematical problems%数学问题解决的基本要素和策略研究

    Institute of Scientific and Technical Information of China (English)



    数学问题解决,是以思考为内涵,以问题目标为定向的心理活动及心理过程。数学问题的解决受到很多方面的影响,现就知识结构、技能因素和情感因素这三方面来谈它们对数学问题解决的影响并对其提出一些改进的策略。%The mathematical problem solving,is its connotation is thinking to problem of goal orientation,the psychological activity and psychological process.Mathematical problem solving is influenced by many aspects,the structure of knowledge, skills and emotional factors of these three aspects to discuss their influence on mathematical problem solving,and puts forward some strategies to improve on it.

  15. Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. (United States)

    Morioka, Norimitsu; Harano, Sakura; Tokuhara, Masato; Idenoshita, Yuko; Zhang, Fang Fang; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro


    The α7 nicotinic acetylcholine (nACh) receptor expressed in microglia has a crucial role in neuroprotection. Simulation of α7 nACh receptor leads to increased expression of glutamate/aspartate transporter (GLAST), which in turn decreases synaptic glutamate levels. However, the upregulation of GLAST in cultured rat cortical microglia appears long after (over 18 h) stimulation of the α7 nACh receptor with nicotine. Thus, the current study elucidated the pathway responsible for the induction of GLAST expression in cultured cortical microglia. Nicotine-induced GLAST mRNA expression was significantly inhibited by cycloheximide pretreatment, indicating that a protein intermediary, such as a growth factor, is required for GLAST expression. The expression of fibroblast growth factor-2 (FGF-2) mRNA in cortical microglia was significantly increased 6 and 12h after treatment with nicotine, and this increase was potently inhibited by pretreatment with methyllycaconitine, a selective α7 nACh receptor antagonist. The treatment with nicotine also significantly increased FGF-2 protein expression. Furthermore, treatment with recombinant FGF-2 increased GLAST mRNA, protein expression and (14)C-glutamate uptake, a functional measurement of GLAST activity. Conversely, pretreatment with PD173074, an inhibitor of FGF receptor (FGFR) tyrosine kinase, significantly prevented the nicotine-induced expression of GLAST mRNA, its protein and (14)C-glutamate uptake. Reverse transcription polymerase chain reaction confirmed FGFR1 mRNA expression was confined to cultured cortical microglia. Together, the current findings demonstrate that the neuroprotective effect of activation of microglial α7 nACh receptors could be due to the expression of FGF-2, which in turn increases GLAST expression, thereby clearing glutamate from synapse and decreasing glutamate neurotransmission.

  16. Basics of Bayesian Learning - Basically Bayes

    DEFF Research Database (Denmark)

    Larsen, Jan

    Tutorial presented at the IEEE Machine Learning for Signal Processing Workshop 2006, Maynooth, Ireland, September 8, 2006. The tutorial focuses on the basic elements of Bayesian learning and its relation to classical learning paradigms. This includes a critical discussion of the pros and cons...

  17. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA


    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  18. Basic digital signal processing

    CERN Document Server

    Lockhart, Gordon B


    Basic Digital Signal Processing describes the principles of digital signal processing and experiments with BASIC programs involving the fast Fourier theorem (FFT). The book reviews the fundamentals of the BASIC program, continuous and discrete time signals including analog signals, Fourier analysis, discrete Fourier transform, signal energy, power. The text also explains digital signal processing involving digital filters, linear time-variant systems, discrete time unit impulse, discrete-time convolution, and the alternative structure for second order infinite impulse response (IIR) sections.

  19. Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1 on nitrogen and light regulation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Obertello Mariana


    Full Text Available Abstract Background Nitrogen and light are two major regulators of plant metabolism and development. While genes involved in the control of each of these signals have begun to be identified, regulators that integrate gene responses to nitrogen and light signals have yet to be determined. Here, we evaluate the role of bZIP1, a transcription factor involved in light and nitrogen sensing, by exposing wild-type (WT and bZIP1 T-DNA null mutant plants to a combinatorial space of nitrogen (N and light (L treatment conditions and performing transcriptome analysis. We use ANOVA analysis combined with clustering and Boolean modeling, to evaluate the role of bZIP1 in mediating L and N signaling genome-wide. Results This transcriptome analysis demonstrates that a mutation in the bZIP1 gene can alter the L and/or N-regulation of several gene clusters. More surprisingly, the bZIP1 mutation can also trigger N and/or L regulation of genes that are not normally controlled by these signals in WT plants. This analysis also reveals that bZIP1 can, to a large extent, invert gene regulation (e.g., several genes induced by N in WT plants are repressed by N in the bZIP1 mutant. Conclusion These findings demonstrate that the bZIP1 mutation triggers a genome-wide de-regulation in response to L and/or N signals that range from i a reduction of the L signal effect, to ii unlocking gene regulation in response to L and N combinations. This systems biology approach demonstrates that bZIP1 tunes L and N signaling relationships genome-wide, and can suppress regulatory mechanisms hypothesized to be needed at different developmental stages and/or environmental conditions.

  20. [Basic research in pulmonology]. (United States)

    Gea, Joaquim


    This is a review of the articles dealing with basic science published in recent issues of Archivos de Bronconeumología. Of particular interest with regard to chronic obstructive pulmonary disease were an article on extrapulmonary inflammation and oxidative stress and another on bronchial remodeling. The articles relating to asthma included a review on the use of drugs that block free immunoglobulin-E and an article about the contribution of experimental models to our knowledge of this disease. Two of the most interesting articles on the topic of lung cancer dealt with gene therapy and resistance to chemotherapy. Also notable were 2 studies that investigated ischemia-reperfusion injury. One evaluated tissue resistance to injury while the other analyzed the role played by interleukin-8 in this process. On the topic of pulmonary fibrosis, an article focused on potential biomarkers of progression and prognosis; others dealt with the contribution of experimental models to our understanding of this disorder and the fibrogenic role of transforming growth factor b. In the context of both sleep apnea syndrome and pulmonary infection, studies investigating the role of oxidative stress were published. Finally, 2 studies analyzed the diagnosis and treatment of tuberculosis and other pulmonary infections.

  1. Gastric cancer: basic aspects. (United States)

    Resende, Carlos; Thiel, Alexandra; Machado, José C; Ristimäki, Ari


    Gastric cancer (GC) is a world health burden, ranging as the second cause of cancer death worldwide. Etiologically, GC arises not only from the combined effects of environmental factors and susceptible genetic variants but also from the accumulation of genetic and epigenetic alterations. In the last years, molecular oncobiology studies brought to light a number of genes that are implicated in gastric carcinogenesis. This review is intended to focus on the recently described basic aspects that play key roles in the process of gastric carcinogenesis. Genetic variants of the genes IL-10, IL-17, MUC1, MUC6, DNMT3B, SMAD4, and SERPINE1 have been reported to modify the risk of developing GC. Several genes have been newly associated with gastric carcinogenesis, both through oncogenic activation (GSK3β, CD133, DSC2, P-Cadherin, CDH17, CD168, CD44, metalloproteinases MMP7 and MMP11, and a subset of miRNAs) and through tumor suppressor gene inactivation mechanisms (TFF1, PDX1, BCL2L10, XRCC, psiTPTE-HERV, HAI-2, GRIK2, and RUNX3). It also addressed the role of the inflammatory mediator cyclooxygenase-2 (COX-2) in the process of gastric carcinogenesis and its importance as a potential molecular target for therapy.

  2. Basic science of osteoarthritis. (United States)

    Cucchiarini, Magali; de Girolamo, Laura; Filardo, Giuseppe; Oliveira, J Miguel; Orth, Patrick; Pape, Dietrich; Reboul, Pascal


    Osteoarthritis (OA) is a prevalent, disabling disorder of the joints that affects a large population worldwide and for which there is no definitive cure. This review provides critical insights into the basic knowledge on OA that may lead to innovative end efficient new therapeutic regimens. While degradation of the articular cartilage is the hallmark of OA, with altered interactions between chondrocytes and compounds of the extracellular matrix, the subchondral bone has been also described as a key component of the disease, involving specific pathomechanisms controlling its initiation and progression. The identification of such events (and thus of possible targets for therapy) has been made possible by the availability of a number of animal models that aim at reproducing the human pathology, in particular large models of high tibial osteotomy (HTO). From a therapeutic point of view, mesenchymal stem cells (MSCs) represent a promising option for the treatment of OA and may be used concomitantly with functional substitutes integrating scaffolds and drugs/growth factors in tissue engineering setups. Altogether, these advances in the fundamental and experimental knowledge on OA may allow for the generation of improved, adapted therapeutic regimens to treat human OA.

  3. [Dynamics of local expression of connexin-43 and basic fibroblast growth factor receptors in patients with skin and soft-tissue infections against the background of diabetes mellitus type II]. (United States)

    Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Malinovskaia, N A; Pozhilenkova, E A; Morgun, A V; Gitlina, A G


    Clinical results of wound healing dynamics were studied in 60 patients with soft-tissue infection against the background of diabetes mellitus type II. At the same time the study considered indices of intercellular contacts protein tissue expression such as connexin 43 (Cx43) and basic fibroblast growth factor receptors (bFGFR). The basic therapy of biopsy material of wound borders was applied. The reduction of bFGFR expression and the minor growth of Cx43 expression were observed. The pain syndrome proceeded for a long time and there were signs of perifocal inflammation, retard wound healing with granulation tissue. The application of combined method of ozone therapy which included autohemotherapy with ozone and an external management of wound by ozone-oxygen mixture facilitated to considerable shortening of inflammatory phase and regeneration. It was associated with increased Cx43 expression (in 1.9 times) in comparison with initial level and bFGFR was enlarged in 1.7 times to eighth day of postoperative period.

  4. Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. (United States)

    Awad, H S; Galwa, N Abo


    Electrocatalytic degradation of Acid Blue and Basic Brown dyes from simulated wastewater on lead dioxide anode was investigated in different conductive electrolytes. It was shown that complete degradation of these dyes is dependent primarily on type and concentration of the conductive electrolyte. The highest electrocatalytic activity was achieved in the presence of NaCl (2g/l) and could be attributed to indirect oxidation of the investigated dyes by the electrogenerated hypochlorite ions formed from the chloride oxidation. In addition, contribution from direct oxidation could also be possible via reaction of these organic compounds with the electrogenerated hydroxyl radicals adsorbed on the lead dioxide surface. In the presence of NaOH, the electrocatalytic activity of the employed anode was not comparable to that in NaCl due primarily to the absence of chloride. This indicates that dyes degradation in NaOH occurs exclusively via direct electrochemical process. However, in H2SO4, the electrode performance was poor due partially to the absence of chloride from the conductive solution. The possibility of electrode poisoning as a result of growth of adherent film on the anode surface or production of stable intermediates not easily further oxidized by direct electrolysis in H2SO4 might also be accountable for the poor performance observed in this conductive electrolyte. Optimizing the conditions that ensure effective electrochemical degradation of Acid Blue and Basic Brown dyes on lead dioxide electrode necessitates the control of all the operating factors.

  5. Expressions of basic fibroblast growth factor and fibroblast growth factor receptor in hemangiomas%碱性成纤维细胞生长因子及其受体mRNA在血管瘤组织中的表达

    Institute of Scientific and Technical Information of China (English)

    雷红召; 董长宪; 马玉春; 孙斌; 刘大看; 肖莉


    目的 通过检测不同时期血管瘤组织中碱性成纤维细胞生长因子(bFGF)及其受体(FGFR)的mRNA表达水平,初步探讨bFGF及其受体对血管瘤生长的影响,以进一步探讨血管瘤增生退化的机制.方法 取不同时期血管瘤组织及其邻近组织标本,其中增生期20例,退化期12例,正常皮肤组织8例作为对照.根据NCBI基因库中bFGF和FGFR的cDNA序列设计引物,以β-actin为内参照,应用逆转录聚合酶链式反(RT-PCR)方法半定量测定组织中bFGFmRNA和FGFRmRNA表达水平.并分析FGFRmRNA与bFGFmRNA表达的相关性.结论 琼脂糖凝胶电泳显示增生期血管瘤、退化期血管瘤、正常组织中bFGFmRNA和FGFRmRNA电泳条带亮度均依次降低;bFGFmRNA表达的相对量分别为增生期1.8495±0.0950、退化期1.3569±0.0417、正常组0.7188±0.0271;FGFRmRNA表达的相对量依次分别为增生期1.4858±0.1034、退化期0.9225±0.0532、正常组0.4144±0.0272;3组组织中bFGFmRNA和FGFRmRNA表达的相对量以增生期为最高,正常组最少.两组血管瘤组织与正常组织相比差异有显著统计学意义(P<0.01),增生期与退化期之间比较差异亦有统计学意义(P<0.01).经Pearson检验分析,FGFRmRNA与bFGFmRNA在增生期和退化期血管瘤组织中的表达具有显著正相关关系(r=0.850,P<0.01;r=0.812,P<0.01),在对照组亦呈正相关(r=0.804,P<0.05).结论 bFGF及其受体在增生期血管瘤组织中高水平表达,在退化期中表达减弱,在正常组织中几乎无表达;FGFRmRNA与bFGFmRNA基因表达在3组组织中具有正相关关系,提示bFGF及其受体参与调控血管瘤的发展过程.%Objective To investigate the expressions of basic fibroblast growth factor(bFGF) and its receptor(FGFR) in different phases of hemangiomas,to probe into the role of bFGF and FGFR in the development of hemangiomas,and to explore the mechanism of hemangiomatous proliferation and regression.Methods The fresh tissue from

  6. Basic Research Objectives Reaffirmed

    Institute of Scientific and Technical Information of China (English)

    Guo Haiyan; Zhao Baohua


    @@ As a national institution for scientific research and a component of the national innovation system, CAS should and must make key contributions to the great national rejuvenation of the country. Keeping this in mind, CAS has developed four developmental targets for its basic research. This was revealed at a CAS conference on basic research held June 11-12 in Beijing.

  7. Cycles in basic innovations

    NARCIS (Netherlands)

    Groot, de E.A. (Bert); Franses, P.H.P.H.


    Basic innovations are often believed to be the drivers of economic growth. It has been widely documented that economic growth follows cyclical patterns of varying length. In this paper we examine if such patterns are also present in basic innovations. For an annual time series of count data covering

  8. Basic Science Training Program. (United States)

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  9. Basic principle of superconductivity


    De Cao, Tian


    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  10. 重组牛碱性成纤维细胞生长因子凝胶预防拔牙后干槽症%Recombinant bovine basic fibroblast growth factor gel prevents dry socket syndrome after toothextraction

    Institute of Scientific and Technical Information of China (English)

    薛令法; 许尧祥; 岳金; 王双义; 肖文林; 张春阳


      背景:重组牛碱性成纤维细胞生长因子是一种多效能的细胞因子,具有促进血管生成,创面愈合和组织修复及促进骨再生的能力,并有具有组织相容性好、易操作的特性,在口腔颌面外科领域应用广泛。  目的:将重组牛碱性成纤维细胞生长因子凝胶植入下颌阻生牙拔除后牙槽窝,评价其预防干槽症的效果。  方法:纳入拔除下颌阻生牙的患者160例,随机数字表法均分成2组,试验组在拔除阻生牙后放入重组牛碱性成纤维细胞生长因子,对照组不放任何材料任其自行愈合,拔牙后3 d,5 d和1周门诊复诊观察干槽症的发生情况,比较两组干槽症的发病率。  结果与结论:试验组有1例干槽症发生,发生率为1.25%。对照组有10例干槽症发生,发生率为12.5%。两组干槽症发生率比较差异有显著性意义(P OBJECTIVE:To evaluate the effect of recombinant bovine basic fibroblast growth factor against dry socket syndrome after tooth extraction. METHODS:A total of 160 patients who had been extracted mandibular third molar were selected and randomly divided into two groups. In the experimental group, recombinant bovine basic fibroblast growth factor was put into the sockets after mandibular third molars were extracted, while in the control group, we let the wounds to be healed natural y without any materials. The incidence of dry socket syndrome was observed and compared between two groups at 3 days, 5 days and 1 week after tooth extraction. RESULTS AND CONCLUSION:One patient had dry socket after operation in the experimental group, and the incidence was 1.25%. In the control group, 10 patients suffered from dry socket, and the incidence was 12.5%. There was a significant difference in the incidence of dry socket between the two groups (P<0.01). There was visible granulation tissue within the tooth socket after tooth extraction in the experimental group

  11. Assessment of Retrograde Coronary Venous Infusion of Mesenchymal Stem Cells Combined with Basic Fibroblast Growth Factor in Canine Myocardial Infarction Using Strain Values Derived from Speckle-Tracking Echocardiography. (United States)

    Sun, Qi-Wei; Zhen, Lei; Wang, Qin; Sun, Yan; Yang, Jiao; Li, Yi-Jia; Li, Rong-Juan; Ma, Ning; Li, Zhi-An; Wang, Lu-Ya; Nie, Shao-Ping; Yang, Ya


    Speckle-tracking echocardiography was used to assess retrograde coronary venous infusion of mesenchymal stem cells (MSCs) combined with basic fibroblast growth factor (bFGF) in a canine model of acute myocardial infarction (AMI). AMI was induced by ligation of the left anterior descending coronary artery. Coronary venous retroperfusion was performed at 1 wk after AMI. Twenty-eight animals were randomized into four groups: saline, bFGF+saline, saline+MSCs and bFGF+MSCs. Echocardiography was performed before AMI, at 7 d post-AMI and 40 d after retroperfusion. Apoptotic cardiomyocytes in the border zone of the ischemic region were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Vascular endothelial growth factor and factor VIII concentrations were measured by western blotting. The left ventricular end-systolic volume increased significantly, whereas the left ventricular ejection fraction and global and segmental strain values decreased significantly after AMI. After retroperfusion, the strain values of the infarct zone, but not conventional echocardiographic parameters, were significantly different between control and bFGF+MSC groups. Cardiomyocyte apoptosis decreased, whereas vascular endothelial growth factor and factor VIII concentrations were higher in the bFGF+MSC, bFGF and MSC groups. Cardiomyocyte apoptosis was well correlated with the strain values. Although retrograde coronary venous infusion of bFGF and MSCs promoted neo-vascularization of the infarcted myocardium and inhibited apoptosis, there was only a slight strain improvement without a substantial increase in global cardiac functions.

  12. 转OsbHLH1和Bar基因水稻及相关特性分析%Transgenic Rice with Bar and OsbHLH1 Genes and Its Agronomic Trait Analyses

    Institute of Scientific and Technical Information of China (English)

    罗伯祥; 肖自友; 肖国樱


    The OsbHLHl gene encoded one of transcription factors in bHLH (basic helix-loop-helix) family, which is involved in cold tolerance. The expression of Bar gene can relieve the toxicity of glufosinate, a highly effective and low toxicity herbicide.The OsbHLHl and Bar genes were transformed into rice cultivar Huai C17 {Oryza saliva L. Subsp. Japonica Kato) by Agrobacterium tumefaciens mediation. The herbicide resistance, cold tolerance and agronomic traits of transformants with Bar and OsbHLHl genes were identified in this study. The existance of Bar gene and its expression in transgenic lines were identified by stress of glufosinate. The integration of OsbHLHl gene and its expression were also detected and confirmed by PCR, Southern blot, RT-PCR and Real-time PQR. The T3 generation of the transgenic line No. 6 had been treated with 2°C for 6 days at the germination stage. And the dead seedling of this transgenic line was 17.8% while that of control was 61.1%. Under stress of 8~10°C for 7 days at the seedling stage, the root length of transgenic lines No. 5, 6, 9 and 11 of T3 generation were longer than that of control (P<0.05), and the root number of line No. 3, 5 and 11 were more than that of control (P<0.05) and the fresh weight of No. 3 line was higher than that of control (PO.05). The increase of cold tolerance at germination and seedling stage of transgenic lines showed that the over-expression of OsbHLHl gene could improve the cold tolerance of rice. Based on the investigation of the main agronomic traits, there were differences (P<0.05) in plant height, panicle length, 1000-grain weight, seed setting and theoretical yield between transgenic lines of T2 generation and control, which indicated that the over-expression of exogenous gene had obvious influence on rice agronomic traits. The new germplasm created in this study will be available for breeding of new japonica hybrid rice with cold and herbicide tolerance.%OsbHLH1基因编码bHLH(basic helix-loop-helix

  13. Agencia d