WorldWideScience

Sample records for basic helix-loop-helix bhlh

  1. Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants

    OpenAIRE

    Pires, Nuno; Dolan, Liam

    2009-01-01

    Basic helix-loop-helix (bHLH) proteins are a class of transcription factors found throughout eukaryotic organisms. Classification of the complete sets of bHLH proteins in the sequenced genomes of Arabidopsis thaliana and Oryza sativa (rice) has defined the diversity of these proteins among flowering plants. However, the evolutionary relationships of different plant bHLH groups and the diversity of bHLH proteins in more ancestral groups of plants are currently unknown. In this study, we use wh...

  2. A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2015-01-01

    Full Text Available The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281 of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.

  3. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia

    Science.gov (United States)

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during...

  4. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant

    OpenAIRE

    Zhao, Fengli; Li, Gang; Hu, Panpan; Zhao, Xia; Li, Liangjie; Wei, Wei; Feng, Jiayue; Zhou, Houcheng

    2018-01-01

    As the second largest transcription factor family in plant, the basic helix-loop-helix (bHLH) transcription factor family, characterized by the conserved bHLH domain, plays a central regulatory role in many biological process. However, the bHLH transcription factor family of strawberry has not been systematically identified, especially for the anthocyanin biosynthesis. Here, we identified a total of 113 bHLH transcription factors and described their chromosomal distribution and bioinformatics...

  5. Genome-wide identification and analysis of the chicken basic helix-loop-helix factors.

    Science.gov (United States)

    Liu, Wu-Yi; Zhao, Chun-Jiang

    2010-01-01

    Members of the basic helix-loop-helix (bHLH) family of transcription factors play important roles in a wide range of developmental processes. In this study, we conducted a genome-wide survey using the chicken (Gallus gallus) genomic database, and identified 104 bHLH sequences belonging to 42 gene families in an effort to characterize the chicken bHLH transcription factor family. Phylogenetic analyses revealed that chicken has 50, 21, 15, 4, 8, and 3 bHLH members in groups A, B, C, D, E, and F, respectively, while three members belonging to none of these groups were classified as ''orphans". A comparison between chicken and human bHLH repertoires suggested that both organisms have a number of lineage-specific bHLH members in the proteomes. Chromosome distribution patterns and phylogenetic analyses strongly suggest that the bHLH members should have arisen through gene duplication at an early date. Gene Ontology (GO) enrichment statistics showed 51 top GO annotations of biological processes counted in the frequency. The present study deepens our understanding of the chicken bHLH transcription factor family and provides much useful information for further studies using chicken as a model system.

  6. A genome-wide survey on basic helix-loop-helix transcription factors in giant panda.

    Directory of Open Access Journals (Sweden)

    Chunwang Dang

    Full Text Available The giant panda (Ailuropoda melanoleuca is a critically endangered mammalian species. Studies on functions of regulatory proteins involved in developmental processes would facilitate understanding of specific behavior in giant panda. The basic helix-loop-helix (bHLH proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, mouse and human. Our present study identified 107 bHLH family members being encoded in giant panda genome. Phylogenetic analyses revealed that they belong to 44 bHLH families with 46, 25, 15, 4, 11 and 3 members in group A, B, C, D, E and F, respectively, while the remaining 3 members were assigned into "orphan". Compared to mouse, the giant panda does not encode seven bHLH proteins namely Beta3a, Mesp2, Sclerax, S-Myc, Hes5 (or Hes6, EBF4 and Orphan 1. These results provide useful background information for future studies on structure and function of bHLH proteins in the regulation of giant panda development.

  7. Genome-Wide Identification and Analysis of the Chicken Basic Helix-Loop-Helix Factors

    Directory of Open Access Journals (Sweden)

    Wu-yi Liu

    2010-01-01

    Full Text Available Members of the basic helix-loop-helix (bHLH family of transcription factors play important roles in a wide range of developmental processes. In this study, we conducted a genome-wide survey using the chicken (Gallus gallus genomic database, and identified 104 bHLH sequences belonging to 42 gene families in an effort to characterize the chicken bHLH transcription factor family. Phylogenetic analyses revealed that chicken has 50, 21, 15, 4, 8, and 3 bHLH members in groups A, B, C, D, E, and F, respectively, while three members belonging to none of these groups were classified as ‘‘orphans’’. A comparison between chicken and human bHLH repertoires suggested that both organisms have a number of lineage-specific bHLH members in the proteomes. Chromosome distribution patterns and phylogenetic analyses strongly suggest that the bHLH members should have arisen through gene duplication at an early date. Gene Ontology (GO enrichment statistics showed 51 top GO annotations of biological processes counted in the frequency. The present study deepens our understanding of the chicken bHLH transcription factor family and provides much useful information for further studies using chicken as a model system.

  8. The basic helix-loop-helix region of the transcriptional repressor hairy and enhancer of split 1 is preorganized to bind DNA

    NARCIS (Netherlands)

    Popovic, Matija; Wienk, Hans; Coglievina, Maristella; Boelens, Rolf; Pongor, Sándor; Pintar, Alessandro

    2014-01-01

    Hairy and enhancer of split 1, one of the main downstream effectors in Notch signaling, is a transcriptional repressor of the basic helix-loop-helix (bHLH) family. Using nuclear magnetic resonance methods, we have determined the structure and dynamics of a recombinant protein, H1H, which includes an

  9. Genome-wide identification and analysis of basic helix-loop-helix domains in dog, Canis lupus familiaris.

    Science.gov (United States)

    Wang, Xu-Hua; Wang, Yong; Liu, A-Ke; Liu, Xiao-Ting; Zhou, Yang; Yao, Qin; Chen, Ke-Ping

    2015-04-01

    The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif that defines a group of DNA-binding transcription factors. bHLH proteins play essential regulatory roles in a variety of biological processes in animal, plant, and fungus. The domestic dog, Canis lupus familiaris, is a good model organism for genetic, physiological, and behavioral studies. In this study, we identified 115 putative bHLH genes in the dog genome. Based on a phylogenetic analysis, 51, 26, 14, 4, 12, and 4 dog bHLH genes were assigned to six separate groups (A-F); four bHLH genes were categorized as ''orphans''. Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with positional conservation, other conserved domains flanking the bHLH motif, and highly conserved intron/exon patterns in other vertebrates. Our analytical results confirmed the GenBank annotations of 89 dog bHLH proteins and provided information that could be used to update the annotations of the remaining 26 dog bHLH proteins. These data will provide good references for further studies on the structures and regulatory functions of bHLH proteins in the growth and development of dogs, which may help in understanding the mechanisms that underlie the physical and behavioral differences between dogs and wolves.

  10. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Wuyi Liu

    2013-01-01

    Full Text Available The previous survey identified 70 basic helix-loop-helix (bHLH proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families.

  11. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop-Helix transcription factors of the anthocyanin pathway.

    NARCIS (Netherlands)

    Quattrocchio, F.M.; Verweij, C.W.; Spelt, C.E.; Mol, J.N.M.; Koes, R.E.

    2007-01-01

    The Petunia hybrids genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color,

  12. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development.

    Directory of Open Access Journals (Sweden)

    Chao Gao

    Full Text Available The basic/helix-loop-helix (bHLH proteins constitute a superfamily of transcription factors that are known to play a range of regulatory roles in eukaryotes. Over the past few decades, many bHLH family genes have been well-characterized in model plants, such as Arabidopsis, rice and tomato. However, the bHLH protein family in peanuts has not yet been systematically identified and characterized. Here, 132 and 129 bHLH proteins were identified from two wild ancestral diploid subgenomes of cultivated tetraploid peanuts, Arachis duranensis (AA and Arachis ipaensis (BB, respectively. Phylogenetic analysis indicated that these bHLHs could be classified into 19 subfamilies. Distribution mapping results showed that peanut bHLH genes were randomly and unevenly distributed within the 10 AA chromosomes and 10 BB chromosomes. In addition, 120 bHLH gene pairs between the AA-subgenome and BB-subgenome were found to be orthologous and 101 of these pairs were highly syntenic in AA and BB chromosomes. Furthermore, we confirmed that 184 bHLH genes expressed in different tissues, 22 of which exhibited tissue-specific expression. Meanwhile, we identified 61 bHLH genes that may be potentially involved in peanut-specific subterranean. Our comprehensive genomic analysis provides a foundation for future functional dissection and understanding of the regulatory mechanisms of bHLH transcription factors in peanuts.

  13. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos Taurus.

    Science.gov (United States)

    Li, Fengmei; Liu, Wuyi

    2017-06-01

    The basic helix-loop-helix (bHLH) transcription factors (TFs) form a huge superfamily and play crucial roles in many essential developmental, genetic, and physiological-biochemical processes of eukaryotes. In total, 109 putative bHLH TFs were identified and categorized successfully in the genomic databases of cattle, Bos Taurus, after removing redundant sequences and merging genetic isoforms. Through phylogenetic analyses, 105 proteins among these bHLH TFs were classified into 44 families with 46, 25, 14, 3, 13, and 4 members in the high-order groups A, B, C, D, E, and F, respectively. The remaining 4 bHLH proteins were sorted out as 'orphans.' Next, these 109 putative bHLH proteins identified were further characterized as significantly enriched in 524 significant Gene Ontology (GO) annotations (corrected P value ≤ 0.05) and 21 significantly enriched pathways (corrected P value ≤ 0.05) that had been mapped by the web server KOBAS 2.0. Furthermore, 95 bHLH proteins were further screened and analyzed together with two uncharacterized proteins in the STRING online database to reconstruct the protein-protein interaction network of cattle bHLH TFs. Ultimately, 89 bHLH proteins were fully mapped in a network with 67 biological process, 13 molecular functions, 5 KEGG pathways, 12 PFAM protein domains, and 25 INTERPRO classified protein domains and features. These results provide much useful information and a good reference for further functional investigations and updated researches on cattle bHLH TFs.

  14. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    Science.gov (United States)

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  15. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization.

    Directory of Open Access Journals (Sweden)

    Qian Yan

    Full Text Available Basic/helix-loop-helix (bHLH proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum, a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062 showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus.

  16. Classification and evolutionary analysis of the basic helix-loop-helix gene family in the green anole lizard, Anolis carolinensis.

    Science.gov (United States)

    Liu, Ake; Wang, Yong; Zhang, Debao; Wang, Xuhua; Song, Huifang; Dang, Chunwang; Yao, Qin; Chen, Keping

    2013-08-01

    Helix-loop-helix (bHLH) proteins play essential regulatory roles in a variety of biological processes. These highly conserved proteins form a large transcription factor superfamily, and are commonly identified in large numbers within animal, plant, and fungal genomes. The bHLH domain has been well studied in many animal species, but has not yet been characterized in non-avian reptiles. In this study, we identified 102 putative bHLH genes in the genome of the green anole lizard, Anolis carolinensis. Based on phylogenetic analysis, these genes were classified into 43 families, with 43, 24, 16, 3, 10, and 3 members assigned into groups A, B, C, D, E, and F, respectively, and 3 members categorized as "orphans". Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with highly conserved patterns observed for introns and additional domains. Results from phylogenetic analysis of the H/E(spl) family suggest that genome and tandem gene duplications have contributed to this family's expansion. Our classification and evolutionary analysis has provided insights into the evolutionary diversification of animal bHLH genes, and should aid future studies on bHLH protein regulation of key growth and developmental processes.

  17. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    Science.gov (United States)

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  18. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Matsushima, Ken-ichiro; Hara, Seiichi; Shinohara, Yasutomo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Koyama, Yasuji

    2011-07-01

    Most known basic-region helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors often involved in the control of growth and differentiation. Therefore, inappropriate expression of genes encoding bHLH proteins is frequently associated with developmental dysfunction. In our previously reported study, a novel bHLH protein-encoding gene (AO090011000215) of Aspergillus oryzae was identified. The gene-disrupted strain was found to produce dense conidia, but sparse sclerotia, relative to the parent strain. Here, to further analyze its function, we generated an overexpressing strain using the A. oryzae amyB gene promoter. Genetic overexpression led to a large number of initial hyphal aggregations and then the formation of mature sclerotia; it was therefore designated sclR (sclerotium regulator). At the same time, the sclR-overexpressing strain also displayed both delayed and decreased conidiation. Scanning electron microscopy indicated that the aerial hyphae of the sclR-overexpressing strain were extremely branched and intertwined with each other. In the generation of the SclR-enhanced green fluorescent protein (EGFP) expression strain, the SclR-EGFP protein fusion was conditionally detected in the nuclei. In addition, the loss of sclR function led to rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. Taken together, these observations indicate that SclR plays an important role in hyphal morphology, asexual conidiospore formation, and the promotion of sclerotial production, even retaining normal cell function, at least in submerged liquid culture.

  19. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop transcription factors of the anthocyanin pathway.

    NARCIS (Netherlands)

    Quattrocchio, F.M.; Verweij, C.W.; Kroon, A.R.; Spelt, C.E.; Mol, J.N.M.; Koes, R.E.

    2006-01-01

    The Petunia hybrids genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color,

  20. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-09-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.

  1. Constitutive Overexpression of the Basic Helix-Loop-Helix Nex1/MATH-2 Transcription Factor Promotes Neuronal Differentiation of PC12 Cells and Neurite Regeneration

    Science.gov (United States)

    Uittenbogaard, Martine; Chiaramello, Anne

    2009-01-01

    Elucidation of the intricate transcriptional pathways leading to neural differentiation and the establishment of neuronal identity is critical to the understanding and design of therapeutic approaches. Among the important players, the basic helix-loop-helix (bHLH) transcription factors have been found to be pivotal regulators of neurogenesis. In this study, we investigate the role of the bHLH differentiation factor Nex1/MATH-2 in conjunction with the nerve growth factor (NGF) signaling pathway using the rat phenochromocytoma PC12 cell line. We report that the expression of Nex1 protein is induced after 5 hr of NGF treatment and reaches maximal levels at 24 hr, when very few PC12 cells have begun extending neurites and ceased cell division. Furthermore, our study demonstrates that Nex1 has the ability to trigger neuronal differentiation of PC12 cells in the absence of neurotrophic factor. We show that Nex1 plays an important role in neurite outgrowth and has the capacity to regenerate neurite outgrowth in the absence of NGF. These results are corroborated by the fact that Nex1 targets a repertoire of distinct types of genes associated with neuronal differentiation, such as GAP-43, βIII-tubulin, and NeuroD. In addition, our findings show that Nex1 up-regulates the expression of the mitotic inhibitor p21WAF1, thus linking neuronal differentiation to cell cycle withdrawal. Finally, our studies show that overexpression of a Nex1 mutant has the ability to block the execution of NGF-induced differentiation program, suggesting that Nex1 may be an important effector of the NGF signaling pathway. PMID:11782967

  2. Genome-wide identification of basic helix-loop-helix and NF-1 motifs underlying GR binding sites in male rat hippocampus

    DEFF Research Database (Denmark)

    Pooley, John R.; Flynn, Ben P.; Grøntved, Lars

    2017-01-01

    linked to structural and organizational roles, an absence of major tethering partners for GRs, and little or no evidence for binding at negative glucocorticoid response elements. A basic helix-loop-helix motif closely resembling a NeuroD1 or Olig2 binding site was found underlying a subset of GR binding......Glucocorticoids regulate hippocampal function in part by modulating gene expression through the glucocorticoid receptor (GR). GR binding is highly cell type specific, directed to accessible chromatin regions established during tissue differentiation. Distinct classes of GR binding sites...

  3. Recognition and Binding of a Helix-Loop-Helix Peptide to Carbonic Anhydrase Occurs via Partly Folded Intermediate Structures

    Science.gov (United States)

    Lignell, Martin; Becker, Hans-Christian

    2010-01-01

    Abstract We have studied the association of a helix-loop-helix peptide scaffold carrying a benzenesulfonamide ligand to carbonic anhydrase using steady-state and time-resolved fluorescence spectroscopy. The helix-loop-helix peptide, developed for biosensing applications, is labeled with the fluorescent probe dansyl, which serves as a polarity-sensitive reporter of the binding event. Using maximum entropy analysis of the fluorescence lifetime of dansyl at 1:1 stoichiometry reveals three characteristic fluorescence lifetime groups, interpreted as differently interacting peptide/protein structures. We characterize these peptide/protein complexes as mostly bound but unfolded, bound and partly folded, and strongly bound and folded. Furthermore, analysis of the fluorescence anisotropy decay resulted in three different dansyl rotational correlation times, namely 0.18, 1.2, and 23 ns. Using the amplitudes of these times, we can correlate the lifetime groups with the corresponding fluorescence anisotropy component. The 23-ns rotational correlation time, which appears with the same amplitude as a 17-ns fluorescence lifetime, shows that the dansyl fluorophore follows the rotational diffusion of carbonic anhydrase when it is a part of the folded peptide/protein complex. A partly folded and partly hydrated interfacial structure is manifested in an 8-ns dansyl fluorescence lifetime and a 1.2-ns rotational correlation time. This structure, we believe, is similar to a molten-globule-like interfacial structure, which allows segmental movement and has a higher degree of solvent exposure of dansyl. Indirect excitation of dansyl on the helix-loop-helix peptide through Förster energy transfer from one or several tryptophans in the carbonic anhydrase shows that the helix-loop-helix scaffold binds to a tryptophan-rich domain of the carbonic anhydrase. We conclude that binding of the peptide to carbonic anhydrase involves a transition from a disordered to an ordered structure of the

  4. Elevated endogenous expression of the dominant negative basic helix-loop-helix protein ID1 correlates with significant centrosome abnormalities in human tumor cells

    Directory of Open Access Journals (Sweden)

    Gutmann Anja

    2010-01-01

    Full Text Available Abstract Background ID proteins are dominant negative inhibitors of basic helix-loop-helix transcription factors that have multiple functions during development and cellular differentiation. Ectopic (over-expression of ID1 extends the lifespan of primary human epithelial cells. High expression levels of ID1 have been detected in multiple human malignancies, and in some have been correlated with unfavorable clinical prognosis. ID1 protein is localized at the centrosomes and forced (over-expression of ID1 results in errors during centrosome duplication. Results Here we analyzed the steady state expression levels of the four ID-proteins in 18 tumor cell lines and assessed the number of centrosome abnormalities. While expression of ID1, ID2, and ID3 was detected, we failed to detect protein expression of ID4. Expression of ID1 correlated with increased supernumerary centrosomes in most cell lines analyzed. Conclusions This is the first report that shows that not only ectopic expression in tissue culture but endogenous levels of ID1 modulate centrosome numbers. Thus, our findings support the hypothesis that ID1 interferes with centrosome homeostasis, most likely contributing to genomic instability and associated tumor aggressiveness.

  5. Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.

    Science.gov (United States)

    Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A

    1999-10-10

    HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.

  6. Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons

    Directory of Open Access Journals (Sweden)

    Mitchell D’Rozario

    2016-04-01

    Full Text Available Proneural proteins of the class I/II basic-helix-loop-helix (bHLH family are highly conserved transcription factors. Class I bHLH proteins are expressed in a broad number of tissues during development, whereas class II bHLH protein expression is more tissue restricted. Our understanding of the function of class I/II bHLH transcription factors in both invertebrate and vertebrate neurobiology is largely focused on their function as regulators of neurogenesis. Here, we show that the class I bHLH proteins Daughterless and Tcf4 are expressed in postmitotic neurons in Drosophila melanogaster and mice, respectively, where they function to restrict neurite branching and synapse formation. Our data indicate that Daughterless performs this function in part by restricting the expression of the cell adhesion molecule Neurexin. This suggests a role for these proteins outside of their established roles in neurogenesis.

  7. A smallest 6 kda metalloprotease, mini-matrilysin, in living world: a revolutionary conserved zinc-dependent proteolytic domain- helix-loop-helix catalytic zinc binding domain (ZBD

    Directory of Open Access Journals (Sweden)

    Yu Wei-Hsuan

    2012-05-01

    Full Text Available Abstract Background The Aim of this study is to study the minimum zinc dependent metalloprotease catalytic folding motif, helix B Met loop-helix C, with proteolytic catalytic activities in metzincin super family. The metzincin super family share a catalytic domain consisting of a twisted five-stranded β sheet and three long α helices (A, B and C. The catalytic zinc is at the bottom of the cleft and is ligated by three His residues in the consensus sequence motif, HEXXHXXGXXH, which is located in helix B and part of the adjacent Met turn region. An interesting question is - what is the minimum portion of the enzyme that still possesses catalytic and inhibitor recognition?” Methods We have expressed a 60-residue truncated form of matrilysin which retains only the helix B-Met turn-helix C region and deletes helix A and the five-stranded β sheet which form the upper portion of the active cleft. This is only 1/4 of the full catalytic domain. The E. coli derived 6 kDa MMP-7 ZBD fragments were purified and refolded. The proteolytic activities were analyzed by Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 peptide assay and CM-transferrin zymography analysis. SC44463, BB94 and Phosphoramidon were computationally docked into the 3day structure of the human MMP7 ZBD and TAD and thermolysin using the docking program GOLD. Results This minimal 6 kDa matrilysin has been refolded and shown to have proteolytic activity in the Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 peptide assay. Triton X-100 and heparin are important factors in the refolding environment for this mini-enzyme matrilysin. This minienzyme has the proteolytic activity towards peptide substrate, but the hexamer and octamer of the mini MMP-7 complex demonstrates the CM-transferrin proteolytic activities in zymographic analysis. Peptide digestion is inhibited by SC44463, specific MMP7 inhibitors, but not phosphorimadon. Interestingly, the mini MMP-7 can be processed by autolysis and producing ~ 6

  8. Roles of bHLH genes in neural stem cell differentiation

    International Nuclear Information System (INIS)

    Kageyama, Ryoichiro; Ohtsuka, Toshiyuki; Hatakeyama, Jun; Ohsawa, Ryosuke

    2005-01-01

    Neural stem cells change their characteristics over time during development: they initially proliferate only and then give rise to neurons first and glial cells later. In the absence of the repressor-type basic helix-loop-helix (bHLH) genes Hes1, Hes3 and Hes5, neural stem cells do not proliferate sufficiently but prematurely differentiate into neurons and become depleted without making the later born cell types such as astrocytes and ependymal cells. Thus, Hes genes are essential for maintenance of neural stem cells to make cells not only in correct numbers but also in full diversity. Hes genes antagonize the activator-type bHLH genes, which include Mash1, Math and Neurogenin. The activator-type bHLH genes promote the neuronal fate determination and induce expression of Notch ligands such as Delta. These ligands activate Notch signaling and upregulate Hes1 and Hes5 expression in neighboring cells, thereby maintaining these cells undifferentiated. Thus, the activator-type and repressor-type bHLH genes regulate each other, allowing only subsets of cells to undergo differentiation while keeping others to stay neural stem cells. This regulation is essential for generation of complex brain structures of appropriate size, shape and cell arrangement

  9. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    Science.gov (United States)

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  10. MicroRNA-212 post-transcriptionally regulates oocyte-specific basic-helix-loop-helix transcription factor, factor in the germline alpha (FIGLA, during bovine early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Swamy K Tripurani

    Full Text Available Factor in the germline alpha (FIGLA is an oocyte-specific basic helix-loop-helix transcription factor essential for primordial follicle formation and expression of many genes required for folliculogenesis, fertilization and early embryonic survival. Here we report the characterization of bovine FIGLA gene and its regulation during early embryogenesis. Bovine FIGLA mRNA expression is restricted to gonads and is detected in fetal ovaries harvested as early as 90 days of gestation. FIGLA mRNA and protein are abundant in germinal vesicle and metaphase II stage oocytes, as well as in embryos from pronuclear to eight-cell stage but barely detectable at morula and blastocyst stages, suggesting that FIGLA might be a maternal effect gene. Recent studies in zebrafish and mice have highlighted the importance of non-coding small RNAs (microRNAs as key regulatory molecules targeting maternal mRNAs for degradation during embryonic development. We hypothesized that FIGLA, as a maternal transcript, is regulated by microRNAs during early embryogenesis. Computational predictions identified a potential microRNA recognition element (MRE for miR-212 in the 3' UTR of the bovine FIGLA mRNA. Bovine miR-212 is expressed in oocytes and tends to increase in four-cell and eight-cell stage embryos followed by a decline at morula and blastocyst stages. Transient transfection and reporter assays revealed that miR-212 represses the expression of FIGLA in a MRE dependent manner. In addition, ectopic expression of miR-212 mimic in bovine early embryos dramatically reduced the expression of FIGLA protein. Collectively, our results demonstrate that FIGLA is temporally regulated during bovine early embryogenesis and miR-212 is an important negative regulator of FIGLA during the maternal to zygotic transition in bovine embryos.

  11. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seol Ah, E-mail: s6022029@korea.ac.kr; Choi, Young-Im, E-mail: yichoi99@forest.go.kr; Cho, Jin-Seong, E-mail: jinsung3932@gmail.com; Lee, Hyoshin, E-mail: hslee@forest.go.kr

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.

  12. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    International Nuclear Information System (INIS)

    Noh, Seol Ah; Choi, Young-Im; Cho, Jin-Seong; Lee, Hyoshin

    2015-01-01

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem

  13. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Science.gov (United States)

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu

    2015-01-01

    An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  14. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis

    NARCIS (Netherlands)

    Verweij, W.; Spelt, C.E.; Bliek, M.; de Vries, M.; Wit, N.; Faraco, M.; Koes, R.; Quattrocchio, F.

    2016-01-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) fromArabidopsis thalianaand associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein

  15. TOWARDS UNDERSTANDING OF HELIX B BASED CONFORMATIONAL DISEASES IN SERPIN

    Directory of Open Access Journals (Sweden)

    Mohamad Aman Jairajpuri

    2012-12-01

    Full Text Available Serine protease inhibitors (serpins are a unique family of protease inhibitors that are prone to polymer formation due to their metastable nature and a complex inhibition mechanism that involves large scale conformational change. Helix B is in the shutter region near the strand 2A and strand 3A of �-sheet A, where reactive centre loop inserts during the serpin inhibition mechanism. Helix B region in serpins is a mutation hotspot for naturally occurring variants that result in pathological conditions due to polymerization. Helix B residues are completely buried in the native state and loop inserted latent state but not in the inhibitory loop inserted cleaved conformation. Native to cleaved transition during inhibition forms a large cavity in the shutter region, which invariably is the largest cavity in most serpins in native state. In a recent paper we had for the first time hypothesized that exposure of helix B at the N-terminal end is important for smooth insertion of the reactive center loop during serpin inhibition mechanism. It is therefore possible that natural variant that induces conformational deformation of helix B probably alter the cavity size which increases the rate of loop-sheet interaction between the monomers resulting in increased polymerization.

  16. Teaching helix and problems connected with helix using GeoGebra

    Science.gov (United States)

    Bímová, Daniela

    2017-12-01

    The contribution presents the dynamic applets created in GeoGebra that show the origin and main properties of a helix and it also presents some constructive problems connected with the helix. There are created the step by step algorithms of some constructions in the chosen applets. Three-dimensional applets include illustrative helix samples and spatial animations that help students better see problems concerning the helix spatially. There is mentioned the website in the contribution on which there is situated GeoGebra book dedicated to the topic "Helix" and containing the mentioned applets. The created applets and materials of the GeoGebra book "Helix" help in teaching and studying the course Constructive Geometry determined for the students of the Faculty of Mechanical Engineering of the Technical University of Liberec.

  17. Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress.

    Science.gov (United States)

    Mao, Ke; Dong, Qinglong; Li, Chao; Liu, Changhai; Ma, Fengwang

    2017-01-01

    The bHLH (basic helix-loop-helix) transcription factor family is the second largest in plants. It occurs in all three eukaryotic kingdoms, and plays important roles in regulating growth and development. However, family members have not previously been studied in apple. Here, we identified 188 MdbHLH proteins in apple "Golden Delicious" ( Malus × domestica Borkh.), which could be classified into 18 groups. We also investigated the gene structures and 12 conserved motifs in these MdbHLH s. Coupled with expression analysis and protein interaction network prediction, we identified several genes that might be responsible for abiotic stress responses. This study provides insight and rich resources for subsequent investigations of such proteins in apple.

  18. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor.

    Directory of Open Access Journals (Sweden)

    Jolene Read

    2015-06-01

    Full Text Available Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation.

  19. Hybrids of the bHLH and bZIP protein motifs display different DNA-binding activities in vivo vs. in vitro.

    Directory of Open Access Journals (Sweden)

    Hiu-Kwan Chow

    Full Text Available Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim protein Arnt fused to the leucine zipper (LZ dimerization domain from bZIP (basic region-leucine zipper protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H, transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed, as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (K(d 148.9 nM and 40.2 nM, respectively, but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly alpha-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60-70 aa. Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions.

  20. Computational modeling of the bHLH domain of the transcription factor TWIST1 and R118C, S144R and K145E mutants

    Directory of Open Access Journals (Sweden)

    Maia Amanda M

    2012-07-01

    Full Text Available Abstract Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47, MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS, which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro

  1. Genome-Wide Characterization of bHLH Genes in Grape and Analysis of their Potential Relevance to Abiotic Stress Tolerance and Secondary Metabolite Biosynthesis

    Science.gov (United States)

    Wang, Pengfei; Su, Ling; Gao, Huanhuan; Jiang, Xilong; Wu, Xinying; Li, Yi; Zhang, Qianqian; Wang, Yongmei; Ren, Fengshan

    2018-01-01

    Basic helix-loop-helix (bHLH) transcription factors are involved in many abiotic stress responses as well as flavonol and anthocyanin biosynthesis. In grapes (Vitis vinifera L.), flavonols including anthocyanins and condensed tannins are most abundant in the skins of the berries. Flavonols are important phytochemicals for viticulture and enology, but grape bHLH genes have rarely been examined. We identified 94 grape bHLH genes in a genome-wide analysis and performed Nr and GO function analyses for these genes. Phylogenetic analyses placed the genes into 15 clades, with some remaining orphans. 41 duplicate gene pairs were found in the grape bHLH gene family, and all of these duplicate gene pairs underwent purifying selection. Nine triplicate gene groups were found in the grape bHLH gene family and all of these triplicate gene groups underwent purifying selection. Twenty-two grape bHLH genes could be induced by PEG treatment and 17 grape bHLH genes could be induced by cold stress treatment including a homologous form of MYC2, VvbHLH007. Based on the GO or Nr function annotations, we found three other genes that are potentially related to anthocyanin or flavonol biosynthesis: VvbHLH003, VvbHLH007, and VvbHLH010. We also performed a cis-acting regulatory element analysis on some genes involved in flavonoid or anthocyanin biosynthesis and our results showed that most of these gene promoters contained G-box or E-box elements that could be recognized by bHLH family members. PMID:29449854

  2. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

    Science.gov (United States)

    Chiasson, David M; Loughlin, Patrick C; Mazurkiewicz, Danielle; Mohammadidehcheshmeh, Manijeh; Fedorova, Elena E; Okamoto, Mamoru; McLean, Elizabeth; Glass, Anthony D M; Smith, Sally E; Bisseling, Ton; Tyerman, Stephen D; Day, David A; Kaiser, Brent N

    2014-04-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.

  3. Genome-wide identification and characterization of the bHLH gene family in tomato.

    Science.gov (United States)

    Sun, Hua; Fan, Hua-Jie; Ling, Hong-Qing

    2015-01-22

    The basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. Tomato is an important vegetable crop, and its genome sequence has been published recently. However, the bHLH gene family of tomato has not been systematically identified and characterized yet. In this study, we identified 159 bHLH protein-encoding genes (SlbHLH) in tomato genome and analyzed their structures. Although bHLH domains were conserved among the bHLH proteins between tomato and Arabidopsis, the intron sequences and distribution of tomato bHLH genes were extremely different compared with Arabidopsis. The gene duplication analysis showed that 58.5% and 6.3% of SlbHLH genes belonged to low-stringency and high-stringency duplication, respectively, indicating that the SlbHLH genes are mainly generated via short low-stringency region duplication in tomato. Subsequently, we classified the SlbHLH genes into 21 subfamilies by phylogenetic tree analysis, and predicted their possible functions by comparison with their homologous genes of Arabidopsis. Moreover, the expression profile analysis of SlbHLH genes from 10 different tissues showed that 21 SlbHLH genes exhibited tissue-specific expression. Further, we identified that 11 SlbHLH genes were associated with fruit development and ripening (eight of them associated with young fruit development and three with fruit ripening). The evolutionary analysis revealed that 92% SlbHLH genes might be evolved from ancestor(s) originated from early land plant, and 8% from algae. In this work, we systematically identified SlbHLHs by analyzing the tomato genome sequence using a set of bioinformatics approaches, and characterized their chromosomal distribution, gene structures, duplication, phylogenetic relationship and expression profiles, as well predicted their possible biological functions via comparative analysis

  4. Triple Helix going abroad?

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull; Hu, Yimei

    2014-01-01

    The aim of the article is to explore to what extent the Tripple helix is being internationalized. Each of the helixes have their own internationalization rationale but the article show by small example that the helix itself is being internationalized and integrated with the host country tripple h...

  5. Effects of mutants in bHLH region on structure stability and protein-DNA binding energy in DECs.

    Science.gov (United States)

    Kong, Yi; Wang, Zhen; Jia, Yanfei; Li, Ping; Hao, Shuhua; Wang, Yunshan

    2017-07-01

    The human DEC subfamily contains two highly conserved members belonging to basic helix-loop-helix (bHLH) transcription factors. This conserved family is spread widely among various species with the function of regulating various crucial molecular signaling pathways. Due to the significance of DECs for important biological processes, their relationship with diseases and the lack of experimentally proven structures, we have implemented a comparative modeling for the bHLH region of DECs as homodimers with themselves and heterodimers with HES-1. Three mutants with predicted roles in reducing intramolecular binding (H57A, R65A, and LL7879AA in DEC1 and LL7071AA in DEC2) were investigated on DEC monomers. Molecular dynamics (MD) simulations were also employed to evaluate the behavior of the mutant molecules in aqueous solution. The monomer was divided into subregions for accurate investigation. The fluctuation in the basic region of mutants was higher than that of wild-type molecules. The binding energy value between protein and DNA obviously increased in the homodimer harboring R65A mutants, which led to more unstable status between protein and DNA. Thus, the mutant R65A interfered DNA-binding affinity. A study on the spatial structures of wild-type and mutant DECs may facilitate functional prediction for mutation effects and dynamic behavior under various conditions and may ultimately help in targeted drug design.

  6. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty, Babu A.; Halavaty, Andrei S.; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F.; Joachimiak, Andrzej

    2016-04-01

    Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56 Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices a4 and a7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix a4 is stabilized by the hydrogen bond between Glu67 (helix a4) and Gln130 (helix a7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix a4. This local conformational switch of helix a4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution smallmolecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.

  7. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity.

    Science.gov (United States)

    Manjasetty, Babu A; Halavaty, Andrei S; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F; Joachimiak, Andrzej

    2016-04-01

    Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol. Copyright © 2016. Published by Elsevier Inc.

  8. Basic Tilted Helix Bundle – A new protein fold in human FKBP25/FKBP3 and HectD1

    International Nuclear Information System (INIS)

    Helander, Sara; Montecchio, Meri; Lemak, Alexander; Farès, Christophe; Almlöf, Jonas; Li, Yanjun; Yee, Adelinda; Arrowsmith, Cheryl H.; Dhe-Paganon, Sirano; Sunnerhagen, Maria

    2014-01-01

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25 1–73 , a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains

  9. Basic Tilted Helix Bundle – A new protein fold in human FKBP25/FKBP3 and HectD1

    Energy Technology Data Exchange (ETDEWEB)

    Helander, Sara; Montecchio, Meri [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden); Lemak, Alexander [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Farès, Christophe [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Almlöf, Jonas [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden); Li, Yanjun [Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Yee, Adelinda [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Arrowsmith, Cheryl H. [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Dhe-Paganon, Sirano [Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Sunnerhagen, Maria, E-mail: maria.sunnerhagen@liu.se [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden)

    2014-04-25

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25{sub 1–73}, a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains.

  10. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif.

    Science.gov (United States)

    Maira, S M; Wurtz, J M; Wasylyk, B

    1996-11-01

    The three ternary complex factors (TCFs), Net (ERP/ SAP-2), ELK-1 and SAP-1, are highly related ets oncogene family members that participate in the response of the cell to Ras and growth signals. Understanding the different roles of these factors will provide insights into how the signals result in coordinate regulation of the cell. We show that Net inhibits transcription under basal conditions, in which SAP-1a is inactive and ELK-1 stimulates. Repression is mediated by the NID, the Net Inhibitory Domain of about 50 amino acids, which autoregulates the Net protein and also inhibits when it is isolated in a heterologous fusion protein. Net is particularly sensitive to Ras activation. Ras activates Net through the C-domain, which is conserved between the three TCFs, and the NID is an efficient inhibitor of Ras activation. The NID, as well as more C-terminal sequences, inhibit DNA binding. Net is more refractory to DNA binding than the other TCFs, possibly due to the presence of multiple inhibitory elements. The NID may adopt a helix-loop-helix (HLH) structure, as evidenced by homology to other HLH motifs, structure predictions, model building and mutagenesis of critical residues. The sequence resemblance with myogenic factors suggested that Net may form complexes with the same partners. Indeed, we found that Net can interact in vivo with the basic HLH factor, E47. We propose that Net is regulated at the level of its latent DNA-binding activity by protein interactions and/or phosphorylation. Net may form complexes with HLH proteins as well as SRF on specific promotor sequences. The identification of the novel inhibitory domain provides a new inroad into exploring the different roles of the ternary complex factors in growth control and transformation.

  11. A regulatory transcriptional loop controls proliferation and differentiation in Drosophila neural stem cells.

    Directory of Open Access Journals (Sweden)

    Tetsuo Yasugi

    Full Text Available Neurogenesis is initiated by a set of basic Helix-Loop-Helix (bHLH transcription factors that specify neural progenitors and allow them to generate neurons in multiple rounds of asymmetric cell division. The Drosophila Daughterless (Da protein and its mammalian counterparts (E12/E47 act as heterodimerization factors for proneural genes and are therefore critically required for neurogenesis. Here, we demonstrate that Da can also be an inhibitor of the neural progenitor fate whose absence leads to stem cell overproliferation and tumor formation. We explain this paradox by demonstrating that Da induces the differentiation factor Prospero (Pros whose asymmetric segregation is essential for differentiation in one of the two daughter cells. Da co-operates with the bHLH transcription factor Asense, whereas the other proneural genes are dispensible. After mitosis, Pros terminates Asense expression in one of the two daughter cells. In da mutants, pros is not expressed, leading to the formation of lethal transplantable brain tumors. Our results define a transcriptional feedback loop that regulates the balance between self-renewal and differentiation in Drosophila optic lobe neuroblasts. They indicate that initiation of a neural differentiation program in stem cells is essential to prevent tumorigenesis.

  12. Multiple helix ecosystems for sustainable competitiveness

    CERN Document Server

    Ferreira, João; Farinha, Luís; Fernandes, Nuno

    2016-01-01

    This book discusses the main issues, challenges, opportunities, and trends involving the interactions between academia, industry, government and society. Specifically, it aims to explore how these interactions enhance the ways in which companies deliver products and services in order to achieve sustainable competitiveness in the marketplace. Sustainable competitiveness has been widely discussed by academics and practitioners, considering the importance of protecting the environment while sustaining the economic goals of organizations. The Quintuple Helix innovation model is a framework for facilitating knowledge, innovation and sustainable competitive advantage. It embeds the Triple and the Quadruple Helix models by adding a fifth helix, the “natural environment.” The Triple Helix model focuses on the university-industry-government triad, while the Quadruple adds civil society (the media- and culture-driven public) as a fourth helix. The Quintuple Helix model facilitates research, public policy, and pract...

  13. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm

    Science.gov (United States)

    Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian

    2018-04-01

    Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.

  14. Nature of the Charged-Group Effect on the Stability of the C-Peptide Helix

    Science.gov (United States)

    Shoemaker, Kevin R.; Kim, Peter S.; Brems, David N.; Marqusee, Susan; York, Eunice J.; Chaiken, Irwin M.; Stewart, John M.; Baldwin, Robert L.

    1985-04-01

    The residues responsible for the pH-dependent stability of the helix formed by the isolated C-peptide (residues 1-13 of ribonuclease A) have been identified by chemical synthesis of analogues and measurement of their helix-forming properties. Each of the residues ionizing between pH 2 and pH 8 has been replaced separately by an uncharged residue. Protonation of Glu-2- is responsible for the sharp decrease in helix stability between pH 5 and pH 2, and deprotonation of His-12+ causes a similar decrease between pH 5 and pH 8. Glu-9- is not needed for helix stability. The results cannot be explained by the Zimm-Bragg model and host-guest data for α -helix formation, which predict that the stability of the C-peptide helix should increase when Glu-2- is protonated or when His-12+ is deprotonated. Moreover, histidine+ is a strong helix-breaker in host-guest studies. In proteins, acidic and basic residues tend to occur at opposite ends of α -helices: acidic residues occur preferentially near the NH2-terminal end and basic residues near the COOH-terminal end. A possible explanation, based on a helix dipole model, has been given [Blagdon, D. E. & Goodman, M. (1975) Biopolymers 14, 241-245]. Our results are consistent with the helix dipole model and they support the suggestion that the distribution of charged residues in protein helices reflects the helix-stabilizing propensity of those residues. Because Glu-9 is not needed for helix stability, a possible Glu-9-\\cdots His-12+ salt bridge does not contribute significantly to helix stability. The role of a possible Glu-2-\\cdots Arg-10+ salt bridge has not yet been evaluated. A charged-group effect on α -helix stability in water has also been observed in a different peptide system [Ihara, S., Ooi, T. & Takahashi, S. (1982) Biopolymers 21, 131-145]: block copolymers containing (Ala)20 and (Glu)20 show partial helix formation at low temperatures, pH 7.5, where the glutamic acid residues are ionized. (Glu)20(Ala)20Phe forms a

  15. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Ran

    Full Text Available Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1 All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2 the gymnosperm 'SPCH' genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm "SPCH" genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants.

  16. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting.

    Science.gov (United States)

    Liphardt, J; Napthine, S; Kontos, H; Brierley, I

    1999-05-07

    RNA pseudoknots are structural elements that participate in a variety of biological processes. At -1 ribosomal frameshifting sites, several types of pseudoknot have been identified which differ in their organisation and functionality. The pseudoknot found in infectious bronchitis virus (IBV) is typical of those that possess a long stem 1 of 11-12 bp and a long loop 2 (30-164 nt). A second group of pseudoknots are distinguishable that contain stems of only 5 to 7 bp and shorter loops. The NMR structure of one such pseudoknot, that of mouse mammary tumor virus (MMTV), has revealed that it is kinked at the stem 1-stem 2 junction, and that this kinked conformation is essential for efficient frameshifting. We recently investigated the effect on frameshifting of modulating stem 1 length and stability in IBV-based pseudoknots, and found that a stem 1 with at least 11 bp was needed for efficient frameshifting. Here, we describe the sequence manipulations that are necessary to bypass the requirement for an 11 bp stem 1 and to convert a short non-functional IBV-derived pseudoknot into a highly efficient, kinked frameshifter pseudoknot. Simple insertion of an adenine residue at the stem 1-stem 2 junction (an essential feature of a kinked pseudoknot) was not sufficient to create a functional pseudoknot. An additional change was needed: efficient frameshifting was recovered only when the last nucleotide of loop 2 was changed from a G to an A. The requirement for an A at the end of loop 2 is consistent with a loop-helix contact similar to those described in other RNA tertiary structures. A mutational analysis of both partners of the proposed interaction, the loop 2 terminal adenine residue and two G.C pairs near the top of stem 1, revealed that the interaction was essential for efficient frameshifting. The specific requirement for a 3'-terminal A residue was lost when loop 2 was increased from 8 to 14 nt, suggesting that the loop-helix contact may be required only in those

  17. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    Science.gov (United States)

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.

  18. Helix-Hopes on Finite Hyperfields

    Directory of Open Access Journals (Sweden)

    Thomas Vougiouklis

    2016-12-01

    Full Text Available Hyperstructure theory can overcome restrictions which ordinary algebraic structures have. A hyperproduct on non-square ordinary matrices can be defined by using the so called helix-hyperoperations. We study the helix-hyperstructures on the representations using ordinary fields. The related theory can be faced by defining the hyperproduct on the set of non square matrices. The main tools of the Hyperstructure Theory are the fundamental relations which connect the largest class of hyperstructures, the Hv-structures, with the corresponding classical ones. We focus on finite dimensional helix-hyperstructures and on small Hv-fields, as well.

  19. Structural Variation and Uniformity among Tetraloop-Receptor Interactions and Other Loop-Helix Interactions in RNA Crystal Structures

    Science.gov (United States)

    Wu, Li; Chai, Dinggeng; Fraser, Marie E.; Zimmerly, Steven

    2012-01-01

    Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48) were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the “standard” GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature. PMID:23152878

  20. Progesterone modulation of transmembrane helix-helix interactions between the α-subunit of Na/K-ATPase and phospholipid N-methyltransferase in the oocyte plasma membrane

    Directory of Open Access Journals (Sweden)

    Askari Amir

    2010-05-01

    Full Text Available Abstract Background Progesterone binding to the surface of the amphibian oocyte initiates the meiotic divisions. Our previous studies with Rana pipiens oocytes indicate that progesterone binds to a plasma membrane site within the external loop between the M1 and M2 helices of the α-subunit of Na/K-ATPase, triggering a cascade of lipid second messengers and the release of the block at meiotic prophase. We have characterized this site, using a low affinity ouabain binding isoform of the α1-subunit. Results Preparations of isolated plasma membranes from Rana oocytes demonstrate that physiological levels of progesterone (or the non-metabolizable progestin R5020 successively activate phosphatidylethanolamine-N-methyltransferase (PE-NMT and sphingomyelin synthase within seconds. Inhibition of PE-NMT blocks the progesterone induction of meiosis in intact oocytes, whereas its initial product, phosphatidylmonomethylethanolamine (PME, can itself initiate meiosis in the presence of the inhibitor. Published X-ray crystallographic data on Na/K-ATPase, computer-generated 3D projections, heptad repeat analysis and hydrophobic cluster analysis of the transmembrane helices predict that hydrophobic residues L, V, V, I, F and Y of helix M2 of the α1-subunit interact with F, L, G, L, L and F, respectively, of helix M3 of PE-NMT. Conclusion We propose that progesterone binding to the first external loop of the α1-subunit facilitates specific helix-helix interactions between integral membrane proteins to up-regulate PE-NMT, and, that successive interactions between two or more integral plasma membrane proteins induce the signaling cascades which result in completion of the meiotic divisions.

  1. A Radish Basic Helix-Loop-Helix Transcription Factor, RsTT8 Acts a Positive Regulator for Anthocyanin Biosynthesis

    Directory of Open Access Journals (Sweden)

    Sun-Hyung Lim

    2017-11-01

    Full Text Available The MYB-bHLH-WDR (MBW complex activates anthocyanin biosynthesis through the transcriptional regulation. RsMYB1 has been identified as a key player in anthocyanin biosynthesis in red radish (Raphanus sativus L., but its partner bHLH transcription factor (TF remains to be determined. In this study, we isolated a bHLH TF gene from red radish. Phylogenetic analysis indicated that this gene belongs to the TT8 clade of the IIIF subgroup of bHLH TFs, and we thus designated this gene RsTT8. Subcellular localization analysis showed that RsTT8-sGFP was localized to the nuclei of Arabidopsis thaliana protoplasts harboring the RsTT8-sGFP construct. We evaluated anthocyanin biosynthesis and RsTT8 expression levels in three radish varieties (N, C, and D that display different red phenotypes in the leaves, root flesh, and root skins. The root flesh of the C variety and the leaves and skins of the D variety exhibit intense red pigmentation; in these tissues, RsTT8 expression showed totally positive association with the expression of RsMYB1 TF and of five of eight tested anthocyanin biosynthesis genes (i.e., RsCHS, RsCHI, RsF3H, RsDFR, and RsANS. Heterologous co-expression of both RsTT8 and RsMYB1 in tobacco leaves dramatically increased the expression of endogenous anthocyanin biosynthesis genes and anthocyanin accumulation. Furthermore, a yeast two-hybrid assay showed that RsTT8 interacts with RsMYB1 at the MYB-interacting region (MIR, and a transient transactivation assay indicated that RsTT8 activates the RsCHS and RsDFR promoters when co-expressed with RsMYB1. Complementation of the Arabidopsis tt8-1 mutant, which lacks red pigmentation in the leaves and seeds, with RsTT8 restored red pigmentation, and resulted in high anthocyanin and proanthocyanidin contents in the leaves and seeds, respectively. Together, these results show that RsTT8 functions as a regulatory partner with RsMYB1 during anthocyanin biosynthesis.

  2. Double-helix stellarator

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A ∼ 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-β MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications

  3. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  4. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    International Nuclear Information System (INIS)

    Dong, Yan; Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha; Xia, Xinli; Yin, Weilun

    2014-01-01

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  5. De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein.

    Science.gov (United States)

    Faiella, Marina; Maglio, Ornella; Nastri, Flavia; Lombardi, Angela; Lista, Liliana; Hagen, Wilfred R; Pavone, Vincenzo

    2012-12-07

    A new artificial metalloenzyme, MP3 (MiniPeroxidase 3), designed by combining the excellent structural properties of four-helix bundle protein scaffolds with the activity of natural peroxidases, was synthesised and characterised. This new hemeprotein model was developed by covalently linking the deuteroporphyrin to two peptide chains of different compositions to obtain an asymmetric helix-loop-helix/heme/helix-loop-helix sandwich arrangement, characterised by 1) a His residue on one chain that acts as an axial ligand to the iron ion; 2) a vacant distal site that is able to accommodate exogenous ligands or substrates; and 3) an Arg residue in the distal site that should assist in hydrogen peroxide activation to give an HRP-like catalytic process. MP3 was synthesised and characterised as its iron complex. CD measurements revealed the high helix-forming propensity of the peptide, confirming the appropriateness of the model procedure; UV/Vis, MCD and EPR experiments gave insights into the coordination geometry and the spin state of the metal. Kinetic experiments showed that Fe(III)-MP3 possesses peroxidase-like activity comparable to R38A-hHRP, highlighting the possibility of mimicking the functional features of natural enzymes. The synergistic application of de novo design methods, synthetic procedures, and spectroscopic characterisation, described herein, demonstrates a method by which to implement and optimise catalytic activity for an enzyme mimetic. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    Science.gov (United States)

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. The swimming of a perfect deforming helix

    Science.gov (United States)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  8. Conservation of Three-Dimensional Helix-Loop-Helix Structure through the Vertebrate Lineage Reopens the Cold Case of Gonadotropin-Releasing Hormone-Associated Peptide.

    Science.gov (United States)

    Pérez Sirkin, Daniela I; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M; Vissio, Paula G; Dufour, Sylvie

    2017-01-01

    GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.

  9. Conservation of Three-Dimensional Helix-Loop-Helix Structure through the Vertebrate Lineage Reopens the Cold Case of Gonadotropin-Releasing Hormone-Associated Peptide

    Directory of Open Access Journals (Sweden)

    Daniela I. Pérez Sirkin

    2017-08-01

    Full Text Available GnRH-associated peptide (GAP is the C-terminal portion of the gonadotropin-releasing hormone (GnRH preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH, despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.

  10. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    Science.gov (United States)

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-02-01

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia

    OpenAIRE

    Palomero, Teresa; Odom, Duncan T.; O'Neil, Jennifer; Ferrando, Adolfo A.; Margolin, Adam; Neuberg, Donna S.; Winter, Stuart S.; Larson, Richard S.; Li, Wei; Liu, X. Shirley; Young, Richard A.; Look, A. Thomas

    2006-01-01

    Aberrant expression of 1 or more transcription factor oncogenes is a critical component of the molecular pathogenesis of human T-cell acute lymphoblastic leukemia (T-ALL); however, oncogenic transcriptional programs downstream of T-ALL oncogenes are mostly unknown. TAL1/SCL is a basic helix-loop-helix (bHLH) transcription factor oncogene aberrantly expressed in 60% of human T-ALLs. We used chromatin immunoprecipitation (ChIP) on chip to identify 71 direct transcriptional targets of TAL1/SCL. ...

  12. Expression of the helix-loop-helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes

    International Nuclear Information System (INIS)

    Villano, C.M.; White, L.A.

    2006-01-01

    The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes. Retinoids, vitamin A analogues, are powerful regulators of cell growth and differentiation and are widely used in the prevention and treatment of a variety of cancers in humans. Furthermore, retinoic acid is necessary for the maintenance of epithelial differentiation and demonstrates an inhibitory action on skin carcinogenesis. We examined the effect of all-trans retinoic acid on expression of ID-1, -2, -3, and -4 in normal human keratinocytes and found that exposure of these cells to all-trans retinoic acid causes an increase in both ID-1 and ID-3 gene expression. Furthermore, our data show that this increase is mediated by increased transcription involving several cis-acting elements in the distal portion of the promoter, including a CREB-binding site, an Egr1 element, and an YY1 site. These data demonstrate that the ID proteins are direct targets of the retinoic acid signaling pathway. Given the importance of the ID proteins to epidermal differentiation, these results suggest that IDs may be mediating some of the effects of all-trans retinoic acid in normal human keratinocytes

  13. Designing cooperatively folded abiotic uni- and multimolecular helix bundles

    Science.gov (United States)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan

    2018-01-01

    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  14. Helix probe areas for the utilization of geothermal power. A practical example; Helix-Sondenfelder zur Nutzung von Erdwaerme. Ein Praxisbeispiel

    Energy Technology Data Exchange (ETDEWEB)

    Kuebert, Markus; Walker-Hertkorn, Simone [tewag Technologie - Erdwaermeanlagen - Umweltschutz GmbH, Starzach (Germany); Tietz, Jan [REHAU AG und Co., Erlangen-Eltersdorf (Germany); Riepold, Markus; Gloeckl, Andreas [MR Tiefbau GmbH, Brunnen (Germany)

    2013-02-01

    Thanks to their spiral shape so-called helix probes with a tube length of 40 meter have a height of only three meter: A lot of heat exchange area in a small space. Thus, helix probes are an ideal solution for the utilization of geothermal energy at places at which one cannot drill deeply due to geothermal reasons. Under this aspect, the contribution under consideration reports on the planning of a helix probe area being sustainably adapted to the user requirements for the new construction of a production facility.

  15. Interactions between the mixotrophic dinoflagellate Takayama helix and common heterotrophic protists.

    Science.gov (United States)

    Ok, Jin Hee; Jeong, Hae Jin; Lim, An Suk; Lee, Kyung Ha

    2017-09-01

    The phototrophic dinoflagellate Takayama helix that is known to be harmful to abalone larvae has recently been revealed to be mixotrophic. Although mixotrophy elevates the growth rate of T. helix by 79%-185%, its absolute growth rate is still as low as 0.3d -1 . Thus, if the mortality rate of T. helix due to predation is high, this dinoflagellate may not easily prevail. To investigate potential effective protistan grazers on T. helix, feeding by diverse heterotrophic dinoflagellates such as engulfment-feeding Oxyrrhis marina, Gyrodinium dominans, Gyrodinium moestrupii, Polykrikos kofoidii, and Noctiluca scintillans, peduncle-feeding Aduncodinium glandula, Gyrodiniellum shiwhaense, Luciella masanensis, and Pfiesteria piscicida, pallium-feeding Oblea rotunda and Protoperidinium pellucidum, and the naked ciliates Pelagostrobilidium sp. (ca. 40μm in cell length) and Strombidinopsis sp. (ca. 150μm in cell length) on T. helix was explored. Among the tested heterotrophic protists, O. marina, G. dominans, G. moestrupii, A. glandula, L. masanensis, P. kofoidii, P. piscicida, and Strombidinopsis sp. were able to feed on T. helix. The growth rates of all these predators except Strombidinopsis sp. with T. helix prey were lower than those without the prey. The growth rate of Strombidinopsis sp. on T. helix was almost zero although the growth rate of Strombidinopsis sp. with T. helix prey was higher than those without the prey. Moreover, T. helix fed on O. marina and P. pellucidum and lysed the cells of P. kofoidii and G. shiwhaense. With increasing the concentrations of T. helix, the growth rates of O. marina and P. kofoidii decreased, but those of G. dominans and L. masanensis largely did not change. Therefore, reciprocal predation, lysis, no feeding, and the low ingestion rates of the common protists preying on T. helix may result in a low mortality rate due to predation, thereby compensating for this species' low growth rate. Copyright © 2017 Elsevier B.V. All rights

  16. Comparative Study on the Adaptation and Growth Dynamics of the Helix pomatia and Helix aspersa Muller Terrestrial Snails Under Different Feeding Regimes

    Directory of Open Access Journals (Sweden)

    Adrian Toader-Williams

    2010-05-01

    Full Text Available We used Helix pomatia and Helix aspersa species and measure their growth as the snails were approaching the hibernation season. Helix pomatia 2yo shown a decrease in weight while being raised in enclosed parcels of 4sqm the younger Helix pomatia 1yo as well as Helix aspersa Muller demonstrated the ability to adapt relatively fast to the same conditions. We established 5 experimental lots in a Helix pomatia farm, GPS coordinates N46.606040 E23.599950. Control lot contained Taraxacum officinales, Sonchus oleraceus, Equisetum arvense and Atriplex hortensis, wild flora found within the farm. The other lots contained the same plants as the control lot plus different combinations of imported plants from other areals. The H. pomatia 2yo weight decreased in the control lot by a mean of -3.86% while H. aspersa 1yo marked an increase of +16.89% in the same lot during the same period. The lot containing lupinus polyphyllus delivered snails with weight gain of +24.66% for H. pomatia 2yo and an increase of only +1.98% for H. aspersa 1yo. As a contrast, H. pomatia 2yo gained only +7.72% while H. aspersa 1yo gained +28.89%, in the lot containing Lavanda officinalis, Foeniculum vulgare and Hyssopus officinalis among the other plants.

  17. Characterization of hey bHLH genes in teleost fish.

    Science.gov (United States)

    Winkler, Christoph; Elmasri, Harun; Klamt, Barbara; Volff, Jean-Nicolas; Gessler, Manfred

    2003-11-01

    Hairy-related basic helix-loop-helix (bHLH) transcription factors are targets of Delta-Notch signaling and represent essential components for a number of cell fate decisions during vertebrate embryogenesis. Hey genes encode a subfamily of hairy-related proteins that have been implicated in processes like somitogenesis, blood vessel and heart development. We have identified and characterized hey genes in three teleost fish lineages using degenerate PCR and database searches. Phylogenetic analysis of Hey proteins suggests a complex pattern of evolution with high divergence of hey2 in Takifugu rubripes (Fugu, Japanese pufferfish) and possibly loss in the related Tetraodon nigroviridis (the freshwater pufferfish). In addition, duplication of hey1 in both pufferfishes, Fugu and Tetraodon, was observed. Conversely, zebrafish (Danio rerio) has the same complement of three hey genes as known from mammals. All three hey genes show much more restricted gene expression profiles in zebrafish when compared to mouse. Importantly, while all three murine Hey genes are expressed in overlapping patterns in the presomitic mesoderm (PSM) and somites, in zebrafish only hey1 shows PSM and somite expression in a highly dynamic fashion. Therefore, while overlapping expression might account for redundancy of hey function in higher vertebrates, this is unlikely to be the case in zebrafish. In deltaD (dlD) deficient after-eight zebrafish mutants, the dynamic expression of hey1 in the PSM is impaired and completely lost in newly formed somitomeres. Overexpression of dlD on the other hand results in the ectopic expression of hey1 in the axial mesoderm. Hence, hey1 represents a target of Delta-Notch signaling dynamically expressed during somite formation in zebrafish.

  18. Government and Governance of Regional Triple Helix Interactions

    Science.gov (United States)

    Danson, Mike; Todeva, Emanuela

    2016-01-01

    This conceptual paper contributes to the discussion of the role of regional government and regional Triple Helix constellations driving economic development and growth within regional boundaries. The impact of regionalism and subsidiarity on regional Triple Helix constellations, and the questions of governmentality, governance and institutional…

  19. Double helix vortex breakdown in a turbulent swirling annular jet flow

    Science.gov (United States)

    Vanierschot, M.; Percin, M.; van Oudheusden, B. W.

    2018-03-01

    In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is investigated experimentally by means of time-resolved tomographic particle image velocimetry. Notwithstanding the axisymmetric nature of the time-averaged flow, analysis of the instantaneous three-dimensional (3D) vortical structures shows the existence of a vortex core along the central axis which breaks up into a double helix downstream. The winding sense of this double helix is opposite to the swirl direction (m =-2 ) and it is wrapped around a central vortex breakdown bubble. This structure is quite different from double helix breakdown found in laminar flows where the helix is formed in the wake of the bubble and not upstream. The double helix precesses around the central axis of the jet with a precessing frequency corresponding to a Strouhal number of 0.27.

  20. An α-Helix-Mimicking 12,13-Helix: Designed α/β/γ-Foldamers as Selective Inhibitors of Protein-Protein Interactions.

    Science.gov (United States)

    Grison, Claire M; Miles, Jennifer A; Robin, Sylvie; Wilson, Andrew J; Aitken, David J

    2016-09-05

    A major current challenge in bioorganic chemistry is the identification of effective mimics of protein secondary structures that act as inhibitors of protein-protein interactions (PPIs). In this work, trans-2-aminocyclobutanecarboxylic acid (tACBC) was used as the key β-amino acid component in the design of α/β/γ-peptides to structurally mimic a native α-helix. Suitably functionalized α/β/γ-peptides assume an α-helix-mimicking 12,13-helix conformation in solution, exhibit enhanced proteolytic stability in comparison to the wild-type α-peptide parent sequence from which they are derived, and act as selective inhibitors of the p53/hDM2 interaction. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. IFITM3 requires an amphipathic helix for antiviral activity.

    Science.gov (United States)

    Chesarino, Nicholas M; Compton, Alex A; McMichael, Temet M; Kenney, Adam D; Zhang, Lizhi; Soewarna, Victoria; Davis, Matthew; Schwartz, Olivier; Yount, Jacob S

    2017-10-01

    Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that blocks virus fusion with cell membranes. IFITM3 has been suggested to alter membrane curvature and fluidity, though its exact mechanism of action is unclear. Using a bioinformatic approach, we predict IFITM3 secondary structures and identify a highly conserved, short amphipathic helix within a hydrophobic region of IFITM3 previously thought to be a transmembrane domain. Consistent with the known ability of amphipathic helices to alter membrane properties, we show that this helix and its amphipathicity are required for the IFITM3-dependent inhibition of influenza virus, Zika virus, vesicular stomatitis virus, Ebola virus, and human immunodeficiency virus infections. The homologous amphipathic helix within IFITM1 is also required for the inhibition of infection, indicating that IFITM proteins possess a conserved mechanism of antiviral action. We further demonstrate that the amphipathic helix of IFITM3 is required to block influenza virus hemagglutinin-mediated membrane fusion. Overall, our results provide evidence that IFITM proteins utilize an amphipathic helix for inhibiting virus fusion. © 2017 The Authors.

  2. Effect of Hedera helix on lung histopathology in chronic asthma.

    Science.gov (United States)

    Hocaoglu, Arzu Babayigit; Karaman, Ozkan; Erge, Duygu Olmez; Erbil, Guven; Yilmaz, Osman; Kivcak, Bijen; Bagriyanik, H Alper; Uzuner, Nevin

    2012-12-01

    Hedera helix is widely used to treat bronchial asthma for many years. However, effects of this herb on lung histopathology is still far from clear. We aimed to determine the effect of oral administration of Hedera helix on lung histopathology in a murine model of chronic asthma.BALB/c mice were divided into four groups; I (Placebo), II (Hedera helix), III (Dexamethasone) and IV (Control). All mice except controls were sensitized and challenged with ovalbumin. Then, mice in group I received saline, group II 100 mg/kg Hedera helix and group III 1 mg/kg dexamethasone via orogastic gavage once daily for one week. Airway histopathology was evaluated by using light and electron microscopy in all groups.Goblet cell numbers and thicknesses of basement membrane were found significantly lower in group II, but there was no statistically significant difference in terms of number of mast cells, thicknesses of epithelium and subepithelial smooth muscle layers between group I and II. When Hedera helix and dexamethasone groups were compared with each other, thickness of epithelium, subepithelial muscle layers, number of mast cells and goblet cells of group III were significantly ameliorated when compared with the group II. Although Hedera helix administration reduced only goblet cell counts and the thicknesses of basement membrane in the asthmatic airways, dexamethasone ameliorated all histopathologic parameters except thickness of basement membrane better than Hedera helix.

  3. Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture

    OpenAIRE

    Lacroix-Labonté, Julie; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2011-01-01

    Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure–function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS riboz...

  4. Forced evolution of a regulatory RNA helix in the HIV-1 genome

    NARCIS (Netherlands)

    Berkhout, B.; Klaver, B.; Das, A. T.

    1997-01-01

    The 5'and 3'end of the HIV-1 RNA genome forms a repeat (R) element that encodes a double stem-loop structure (the TAR and polyA hairpins). Phylogenetic analysis of the polyA hairpin in different human and simian immunodeficiency viruses suggests that the thermodynamic stability of the helix is

  5. Analysis of eco-innovation with triple helix approach: case-study of biofloc catfish farming in Yogyakarta

    Science.gov (United States)

    Purwadi, D.; Nurlaily, I.

    2018-03-01

    Concerning environmental into focus of innovation process will expand the number of actor involved. Eco-innovation and triple helix are often frameworks applied to analyse how environmental concern are integrated in innovation process and how different stakeholder groups are having inter relation. Case study from biofloc catfish farming in Yogyakarta is presented to demonstrate a possible approach for researching the success of triple helix frameworks. This case is considered on basic of the result of a survey among farmers, academician and government. The paper concludes the creating of full triple helix encounters problem in practice. It also includes suggestion for further research on fisheries development.

  6. Mode conversions by a discontinuous junction of two helix loaded waveguides

    International Nuclear Information System (INIS)

    Choe, J.Y.; Ahn, S.; Ganquly, A.K.; Uhm, H.S.

    1983-01-01

    For various reasons, it is desirable to vary the primary propagating mode from one section of the waveguide to another. We choose the base structure to be the sheath helix loaded waveguide. Specifically, we join two physically different helix loaded waveguides axisymmetrically, thereby providing the required discontinuities at the junction (Z = 0). The helix loaded waveguide is more advantageous to the simple waveguide in that the helix mode that exists uniquely in the helix waveguide in addition to the usual fast wave hybrid modes, is without cutoff and thus behaves like a transmission line. In order to obtain the mode conversion rates, we expand the waves in the both sides of the junction with its own eigenmodes including the evanescent modes, and by matching fields at the junction (Z = 0) obtain the matrix equation for the coefficients for the eigenmodes in both sides. By choosing the propagating incident wave (Z = 0) the resulting outgoing waves in the other end (Z > 0) will be computed from the matrix equation. A computer program is devised to solve the suitably truncated matrix equation, and the numerical examples for the mode conversion rates with the parameter variations will be presented. The relevant physical parameters to yield discontinuities at the junction are the radii of the outer conductor and the helix wire and the pitch angle of the helix. Special emphases are on the conversion rates from the helix mode (Z 0) for the application to the tapered gyrotron amplifier

  7. Basic Helix-Loop-Helix Transcription Factor Bmsage Is Involved in Regulation of fibroin H-chain Gene via Interaction with SGF1 in Bombyx mori

    Science.gov (United States)

    Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix–loop–helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008

  8. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin.

    Directory of Open Access Journals (Sweden)

    Vasyl V Mykuliak

    2018-04-01

    Full Text Available Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins.

  9. DNA-like double helix formed by peptide nucleic acid

    DEFF Research Database (Denmark)

    Wittung, P; Nielsen, Peter E.; Buchardt, O

    1994-01-01

    Although the importance of the nucleobases in the DNA double helix is well understood, the evolutionary significance of the deoxyribose phosphate backbone and the contribution of this chemical entity to the overall helical structure and stability of the double helix is not so clear. Peptide nucleic...

  10. Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix

    Science.gov (United States)

    Ying Chow, W.; Bihan, Dominique; Forman, Chris J.; Slatter, David A.; Reid, David G.; Wales, David J.; Farndale, Richard W.; Duer, Melinda J.

    2015-07-01

    Collagens, the most abundant proteins in mammals, are defined by their triple-helical structures and distinctive Gly-Xaa-Yaa repeating sequence, where Xaa is often proline and Yaa, hydroxyproline (Hyp/O). It is known that hydroxyproline in the Yaa position stabilises the triple helix, and that lack of proline hydroxylation in vivo leads to dysfunctional collagen extracellular matrix assembly, due to a range of factors such as a change in hydration properties. In addition, we note that in model peptides, when Yaa is unmodified proline, the Xaa proline has a strong propensity to adopt an endo ring conformation, whilst when Yaa is hydroxyproline, the Xaa proline adopts a range of endo and exo conformations. Here we use a combination of solid-state NMR spectroscopy and potential energy landscape modelling of synthetic triple-helical collagen peptides to understand this effect. We show that hydroxylation of the Yaa proline causes the Xaa proline ring conformation to become metastable, which in turn confers flexibility on the triple helix.

  11. "Special Issue": Regional Dimensions of the Triple Helix Model

    Science.gov (United States)

    Todeva, Emanuela; Danson, Mike

    2016-01-01

    This paper introduces the rationale for the special issue and its contributions, which bridge the literature on regional development and the Triple Helix model. The concept of the Triple Helix at the sub-national, and specifically regional, level is established and examined, with special regard to regional economic development founded on…

  12. Podoplanin-mediated TGF-β-induced epithelial-mesenchymal transition and its correlation with bHLH transcription factor DEC in TE-11 cells.

    Science.gov (United States)

    Wu, Yunyan; Liu, Qiang; Yan, Xu; Kato, Yukio; Tanaka, Makiko; Inokuchi, Sadaki; Yoshizawa, Tadashi; Morohashi, Satoko; Kijima, Hiroshi

    2016-06-01

    Podoplanin is reported involved in the collective cell invasion, another tumor invasion style which is distinct from the single cell invasion, so-called epithelial-mesenchymal transition (EMT). In this study, we investigated the correlation between podoplanin and EMT-related markers in esophageal squamous cell carcinoma (ESCC), and evaluated its linkage with the basic helix-loop-helix (bHLH) transcription factor differentiated embryonic chondrocyte (DEC) 1 and DEC2. Three ESCC cell lines and human squamous cell carcinoma A431 cells were subjected to western blot analyses for podoplanin and EMT markers, as well as the expression of DEC1 and DEC2. By RT-qPCR and western blotting, we found that TGF-β increased the expression of podoplanin and mensenchymal markers (e.g., N-cadherin and vimentin), while decreased the expression of epithelial markers (e.g., Claudin-4 and E-cadherin), accompanied by Smad2 phosphorylation and slug activation. Moreover, TGF-β has different effects on the expression of DEC1 and DEC2, that is, it upregulates DEC1, but downregulates DEC2. Capability of cell proliferation, invasion and migration were further analyzed using CCK-8 assay, Matrigel-invasion assay, and the wound-healing assay, respectively. The proliferation, invasion and migration ability were significantly lost in podoplanin-knockdown cells when compared with the scrambled siRNA group. In addition to these changes, the expression of Claudin-4, but not that of Claudin-1 or E-cadherin, was induced by the siRNA against podoplanin. On the contrary, overexpression of DEC1 and DEC2 exhibits opposite effects on podoplanin, but only slight effect on Claudin-4 was detected. These data indicated that podoplanin is significantly associated with EMT of TE-11 cells, and may be directly or indirectly regulated by bHLH transcription factors DEC1 and DEC2.

  13. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube

    DEFF Research Database (Denmark)

    Hanotel, Julie; Bessodes, Nathalie; Thélie, Aurore

    2014-01-01

    The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes...... encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a...

  14. The C-Terminal RpoN Domain of sigma54 Forms an unpredictedHelix-Turn-Helix Motif Similar to domains of sigma70

    Energy Technology Data Exchange (ETDEWEB)

    Doucleff, Michaeleen; Malak, Lawrence T.; Pelton, Jeffrey G.; Wemmer, David E.

    2005-11-01

    The ''{delta}'' subunit of prokaryotic RNA-polymerase allows gene-specific transcription initiation. Two {sigma} families have been identified, {sigma}{sup 70} and {sigma}{sup 54}, which use distinct mechanisms to initiate transcription and share no detectable sequence homology. Although the {sigma}{sup 70}-type factors have been well characterized structurally by x-ray crystallography, no high-resolution structural information is available for the {sigma}{sup 54}-type factors. Here we present the NMR derived structure of the C-terminal domain of {sigma}{sup 54} from Aquifex aeolicus. This domain (Thr323 to Gly389), which contains the highly conserved RpoN box sequence, consists of a poorly structured N-terminal tail followed by a three-helix bundle, which is surprisingly similar to domains of the {sigma}{sup 70}-type proteins. Residues of the RpoN box, which have previously been shown to be critical for DNA binding, form the second helix of an unpredicted helix-turn-helix motif. This structure's homology with other DNA binding proteins, combined with previous biochemical data, suggest how the C-terminal domain of {sigma}{sup 54} binds to DNA.

  15. Nucleic acid helix structure determination from NMR proton chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Werf, Ramon M. van der; Tessari, Marco; Wijmenga, Sybren S., E-mail: S.Wijmenga@science.ru.nl [Radboud University Nijmegen, Department of Biophysical Chemistry, Institute of Molecules and Materials (Netherlands)

    2013-06-15

    We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.

  16. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.

    Science.gov (United States)

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian

    2016-05-01

    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Regional Dimensions of the Triple Helix Model: Setting the Context

    Science.gov (United States)

    Todeva, Emanuela; Danson, Mike

    2016-01-01

    This paper introduces the rationale for the special issue and its contributions, which bridge the literature on regional development and the Triple Helix model. The concept of the Triple Helix at the sub-national, and specifically regional, level is established and examined, with special regard to regional economic development founded on…

  18. FMRFamide receptors of Helix aspersa

    International Nuclear Information System (INIS)

    Payza, K.

    1988-01-01

    A receptor binding assay and an isolated heart bioassay were used to identify and characterize the FMRFamide receptors in Helix. In the heart bioassay, FMRFamide increased myocardial contraction force. A potent FMRFamide analog, desaminoTyr-Phe-norLeu-arg-Phe-amide (daYFnLRFamide), was used as a radioiodinated receptor ligand. The high affinity binding of 125 I-daYFnLRFamide at 0 degree C to Helix brain membranes was reversible, saturable, pH-dependent and specific, with a K D of 13-14 nM. A lower affinity (245 nM) site was also observed. Radioligand binding sites were also identified in the heart, male reproductive organs and digestive organs. The structure-activity relations (SAR) of cardiostimulation correlated with the specificity of 125 I-daYFnLRFamide binding to brain and heart receptors. The SAR were similar to those of other molluscan FMRFamide bioassays, except that they showed a marked preference for some analogs with blocked amino-terminals

  19. Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation

    International Nuclear Information System (INIS)

    Yunus, Abdul S.; Jackson, Trent P.; Crisafi, Katherine; Burimski, Irina; Kilgore, Nicole R.; Zoumplis, Dorian; Allaway, Graham P.; Wild, Carl T.; Salzwedel, Karl

    2010-01-01

    Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by the fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 deg. C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of

  20. Introduction of potential helix-capping residues into an engineered helical protein.

    Science.gov (United States)

    Parker, M H; Hefford, M A

    1998-08-01

    MB-1 is an engineered protein that was designed to incorporate high percentages of four amino acid residues and to fold into a four-alpha-helix bundle motif. Mutations were made in the putative loop I and III regions of this protein with the aim of increasing the stability of the helix ends. Four variants, MB-3, MB-5, MB-11 and MB-13, have replacements intended to promote formation of an 'N-capping box'. The loop I and III sequences of MB-3 (both GDLST) and MB-11 (GGDST) were designed to cause alphaL C-terminal 'capping' motifs to form in helices I and III. MB-5 has a sequence, GPDST, that places proline in a favourable position for forming beta-turns, whereas MB-13 (GLDST) has the potential to form Schellman C-capping motifs. Size-exclusion chromatography suggested that MB-1, MB-3, MB-5, MB-11 and MB-13 all form dimers, or possibly trimers. Free energies for the unfolding of each of these variants were determined by urea denaturation, with the loss of secondary structure followed by CD spectroscopy. Assuming an equilibrium between folded dimer and unfolded monomer, MB-13 had the highest apparent stability (40.5 kJ/mol, with +/-2.5 kJ/mol 95% confidence limits), followed by MB-11 (39.3+/-5.9 kJ/mol), MB-3 (36.4+/-1.7 kJ/mol), MB-5 (34.7+/-2.1 kJ/mol) and MB-1 (29.3+/-1.3 kJ/mol); the same relative stabilities of the variants were found when a folded trimer to unfolded monomer model was used to calculate stabilities. All of the variants were relatively unstable for dimeric proteins, but were significantly more stable than MB-1. These findings suggest that it might be possible to increase the stability of a protein for which the three-dimensional structure is unknown by placing amino acid residues in positions that have the potential to form helix- and turn-stabilizing motifs.

  1. Crosslinked Aspartic Acids as Helix-Nucleating Templates.

    Science.gov (United States)

    Zhao, Hui; Liu, Qi-Song; Geng, Hao; Tian, Yuan; Cheng, Min; Jiang, Yan-Hong; Xie, Ming-Sheng; Niu, Xiao-Gang; Jiang, Fan; Zhang, Ya-Ou; Lao, Yuan-Zhi; Wu, Yun-Dong; Xu, Nai-Han; Li, Zi-Gang

    2016-09-19

    Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. On the helix equation

    Directory of Open Access Journals (Sweden)

    Taouil Hajer

    2012-08-01

    Full Text Available This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω ↦ H(t, ω of the helix equation egin{eqnarray} H(0,o=0; quad H(s+t,o= H(s,Phi(t,o +H(t,oonumber end{eqnarray} H ( 0 ,ω = 0 ;   H ( s + t,ω = H ( s, Φ ( t,ω + H ( t,ω where Φ : ℝ × Ω → Ω, (t, ω ↦ Φ(t, ω is a dynamical system on a measurable space (Ω, ℱ. More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined by Φ, are investigated. Ce papier est consacré aux hélices, c’est-à-dire les solutions H : ℝ × Ω → ℝd, (t, ω ↦ H(t, ω de l’équation fonctionnelle egin{eqnarray} H(0,o=0; quad H(s+t,o= H(s,Phi(t,o +H(t,o onumber end{eqnarray} H ( 0 ,ω = 0 ;   H ( s + t,ω = H ( s, Φ ( t,ω + H ( t,ω où Φ : ℝ × Ω → Ω, (t, ω ↦ Φ(t, ω est un système dynamique défini sur un espace mesurable (Ω, ℱ. Plus présisément, nous déterminons d’abord les hélices dominées puis nous caractérisons les hélices non différentiables. Dans ce dernier cas, l’hélice de Wiener joue un rôle important. Nous précisons aussi quelques relations des hélices avec les cocycles définis par Φ.

  3. Organizing product innovation: hierarchy, market or triple-helix networks?

    Science.gov (United States)

    Fitjar, Rune Dahl; Gjelsvik, Martin; Rodríguez-Pose, Andrés

    This paper assesses the extent to which the organization of the innovation effort in firms, as well as the geographical scale at which this effort is pursued, affects the capacity to benefit from product innovations. Three alternative modes of organization are studied: hierarchy, market and triple-helix-type networks. Furthermore, we consider triple-helix networks at three geographical scales: local, national and international. These relationships are tested on a random sample of 763 firms located in five urban regions of Norway which reported having introduced new products or services during the preceding 3 years. The analysis shows that firms exploiting internal hierarchy or triple-helix networks with a wide range of partners managed to derive a significantly higher share of their income from new products, compared to those that mainly relied on outsourcing within the market. In addition, the analysis shows that the geographical scale of cooperation in networks, as well as the type of partner used, matters for the capacity of firms to benefit from product innovation. In particular, firms that collaborate in international triple-helix-type networks involving suppliers, customers and R&D institutions extract a higher share of their income from product innovations, regardless of whether they organize the processes internally or through the network.

  4. Double helix vortex breakdown in a turbulent swirling annular jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2018-01-01

    In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is

  5. Unraveling the Role of the C-terminal Helix Turn Helix of the Coat-binding Domain of Bacteriophage P22 Scaffolding Protein*

    Science.gov (United States)

    Padilla-Meier, G. Pauline; Gilcrease, Eddie B.; Weigele, Peter R.; Cortines, Juliana R.; Siegel, Molly; Leavitt, Justin C.; Teschke, Carolyn M.; Casjens, Sherwood R.

    2012-01-01

    Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the β-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the β-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction. PMID:22879595

  6. The Discovery of the Double Helix

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Professor James D. Watson has kindly agreed to make a presentation on the 1953 finding of the Double Helix at the Cavendish Laboratory by Francis Crick and himself. Being one of the greatest scientific discoveries in human history, little else needs to be added.

  7. Modulating Transmembrane α-Helix Interactions through pH-Sensitive Boundary Residues.

    Science.gov (United States)

    Ng, Derek P; Deber, Charles M

    2016-08-09

    Changes in pH can alter the structure and activity of proteins and may be used by the cell to control molecular function. This coupling can also be used in non-native applications through the design of pH-sensitive biomolecules. For example, the pH (low) insertion peptide (pHLIP) can spontaneously insert into a lipid bilayer when the pH decreases. We have previously shown that the α-helicity and helix-helix interactions of the TM2 α-helix of the proteolipid protein (PLP) are sensitive to the local hydrophobicity at its C-terminus. Given that there is an ionizable residue (Glu-88) at the C-terminus of this transmembrane (TM) segment, we hypothesized that changing the ionization state of this residue through pH may alter the local hydrophobicity of the peptide enough to affect both its secondary structure and helix-helix interactions. To examine this phenomenon, we synthesized peptide analogues of the PLP TM2 α-helix (wild-type sequence (66)AFQYVIYGTASFFFLYGALLLAEGF(90)). Using circular dichroism and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate, we found that a decrease in pH increases both peptide α-helicity and the extent of self-association. This pH-dependent effect is due specifically to the presence of Glu-88 at the C-terminus. Additional experiments in which Phe-90 was mutated to residues of varying hydrophobicities indicated that the strength of this effect is dependent on the local hydrophobicity near Glu-88. Our results have implications for the design of TM peptide switches and improve our understanding of how membrane protein structure and activity can be regulated through local molecular environmental changes.

  8. Exploring the membrane fusion mechanism through force-induced disassembly of HIV-1 six-helix bundle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kai [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yong [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Lou, Jizhong, E-mail: jlou@ibp.ac.cn [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-05-13

    Enveloped virus, such as HIV-1, employs membrane fusion mechanism to invade into host cell. HIV-1 gp41 ectodomain uses six-helix bundle configuration to accomplish this process. Using molecular dynamic simulations, we confirmed the stability of this six-helix bundle by showing high occupancy of hydrogen bonds and hydrophobic interactions. Key residues and interactions important for the bundle integration were characterized by force-induced unfolding simulations of six-helix bundle, exhibiting the collapse order of these groups of interactions. Moreover, our results in some way concerted with a previous theory that the formation of coiled-coil choose a route which involved cooperative interactions between the N-terminal and C-terminal helix. -- Highlights: •Unfolding of HIV-1 gp41 six-helix bundle is studied by molecular dynamics simulations. •Specific interactions responsible for the stability of HIV-1 envelope post-fusion conformation were identified. •The gp41 six-helix bundle transition inducing membrane fusion might be a cooperative process of the three subunits.

  9. FPGA helix tracking algorithm for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yutie; Galuska, Martin; Gessler, Thomas; Kuehn, Wolfgang; Lange, Jens Soeren; Muenchow, David; Spruck, Bjoern [II. Physikalisches Institut, Giessen University (Germany); Ye, Hua [Institute of High Energy Physics, Beijing (China); Collaboration: PANDA-Collaboration

    2015-07-01

    The PANDA detector is a general-purpose detector for physics with high luminosity cooled antiproton beams, planed to operate at the FAIR facility in Darmstadt, Germany. The central detector includes a silicon Micro Vertex Detector (MVD) and a Straw Tube Tracker (STT). Without any hardware trigger, large amounts of raw data are streaming into the data acquisition system. The data reduction task is performed in the online system by reconstruction algorithms programmed on FPGAs (Field Programmable Gate Arrays) as first level and on a farm of GPUs or PCs as a second level. One important part in the system is the online track reconstruction. In this presentation, an online tracking algorithm for helix tracking reconstruction in the solenoidal field is shown. The tracking algorithm is composed by two parts, a road finding module followed by an iterative helix parameter calculation module. A performance study using C++ and the status of the VHDL implementation are presented.

  10. Intersegment interactions and helix-coil transition within the generalized model of polypeptide chains approach

    Science.gov (United States)

    Badasyan, A. V.; Hayrapetyan, G. N.; Tonoyan, Sh. A.; Mamasakhlisov, Y. Sh.; Benight, A. S.; Morozov, V. F.

    2009-09-01

    The generalized model of polypeptide chains is extended to describe the helix-coil transition in a system comprised of two chains interacting side-by-side. The Hamiltonian of the model takes into account four possible types of interactions between repeated units of the two chains, i.e., helix-helix, helix-coil, coil-helix, and coil-coil. Analysis reveals when the energy Ihh+Icc of (h-h, c-c) interactions overwhelms the energy Ihc+Ich of mixed (h-c, c-h) interactions, the correlation length rises substantially, resulting in narrowing of the transition interval. In the opposite case, when Ihh+Icchelix formation and disfavored intersegment interactions from the same theoretical perspective.

  11. Selective intercalation of six ligands molecules in a self-assembled triple helix

    NARCIS (Netherlands)

    Mateos timoneda, Miguel; Kerckhoffs, J.M.C.A.; Reinhoudt, David; Crego Calama, Mercedes

    2007-01-01

    The addition of a ligand molecule to an artificial self-assembled triple helix leads to the selective intercalation of two hydrogen-bonded trimers in specific binding pockets. Furthermore, the triple helix suffers large conformational rearrangements in order to accommodate the ligand molecules in a

  12. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon.

    Science.gov (United States)

    Sionkowska, A; Kamińska, A

    1999-05-01

    The thermal helix-coil transition in UV irradiated collagen solution, collagen film and pieces of rat tail tendon (RTT) were compared. Their thermal stability's were determined by differential scanning calorimeter (DSC) and by viscometric measurements. The denaturation temperatures of collagen solution, film and pieces of RTT were different. The helix-coil transition occur near 40 degrees C in collagen solution, near 112 degrees C in collagen film, and near 101 degrees C in pieces of RTT. After UV irradiation the thermal helix-coil transition of collagen samples were changed. These changes depend on the degree of hydratation.

  13. Triple helix interactions for eco-innovation

    DEFF Research Database (Denmark)

    Hermann, Roberto Rivas; Riisgaard, Henrik; Remmen, Arne

    the role of science parks in promoting eco-innovation. This study uses qualitative data gathered in two units of analysis: Panama Canal Authority and City of Knowledge Science Park. The study examines how Triple Helix interactions have built the regional system of eco-innovation at the Panama Canal...

  14. Solitons in an isolated helix chain

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Zolotaryuk, Alexander; Savin, A.V.

    1997-01-01

    as a generalization of the well-known one-dimensional Fermi-Pasta-Ulam model to include transverse degrees of freedom of the chain molecules. In the particular case of the alpha-helix molecular chain, the intermolecular interactions involved into the model are the point-point bonds connecting the first-, second...

  15. A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit.

    Science.gov (United States)

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, Tina M; Meiler, Jens; Hamm, Heidi E

    2014-08-29

    G protein activation by G protein-coupled receptors is one of the critical steps for many cellular signal transduction pathways. Previously, we and other groups reported that the α5 helix in the G protein α subunit plays a major role during this activation process. However, the precise signaling pathway between the α5 helix and the guanosine diphosphate (GDP) binding pocket remains elusive. Here, using structural, biochemical, and computational techniques, we probed different residues around the α5 helix for their role in signaling. Our data showed that perturbing the Phe-336 residue disturbs hydrophobic interactions with the β2-β3 strands and α1 helix, leading to high basal nucleotide exchange. However, mutations in β strands β5 and β6 do not perturb G protein activation. We have highlighted critical residues that leverage Phe-336 as a relay. Conformational changes are transmitted starting from Phe-336 via β2-β3/α1 to Switch I and the phosphate binding loop, decreasing the stability of the GDP binding pocket and triggering nucleotide release. When the α1 and α5 helices were cross-linked, inhibiting the receptor-mediated displacement of the C-terminal α5 helix, mutation of Phe-336 still leads to high basal exchange rates. This suggests that unlike receptor-mediated activation, helix 5 rotation and translocation are not necessary for GDP release from the α subunit. Rather, destabilization of the backdoor region of the Gα subunit is sufficient for triggering the activation process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Democracy and environment as references for quadruple and quintuple helix innovation systems

    Science.gov (United States)

    Carayannis, Elias G.; Campbell, David F. J.; Orr, Barron J.

    2015-04-01

    The perspective of democracy and the ecological context define key references for knowledge production and innovation in innovation systems. Particularly under conditions of environmental change where enhancing the potential for adaptation is critical, this requires a closer look at ecological responsibility and sensitivity in the different innovation models and governance regimes. The "Quintuple Helix" innovation model is an approach that stresses the necessary socio-ecological transition of society and economy by adding an environment helix to an innovation system already made up of three (university-industry-government) or four (civil society relations) helices in a way that supports adaptation by incorporating global warming as both a challenge to and a driver of innovation. There is the proposition that knowledge production and innovation co-evolve with democracy (Carayannis and Campbell, 2014). In the Triple Helix model (Etzkowitz and Leydesdorff, 2000) the existence of a democracy does not appear to be necessary for knowledge production and innovation. However, the Quadruple Helix (Carayannis and Campbell, 2009, 2010 and 2014) is defined and represented by additional key attributes and components: "media-based and culture-based public", "civil society" and "arts, artistic research and arts-based innovation" (Bast, Carayannis and Campbell, 2015). Implications of this are that the fourth helix in the Quadruple Helix innovation systems brings in and represents the perspective of "dimension of democracy" or the "context of democracy" for knowledge in general and knowledge production and innovation in more particular. Within theories of democracy there is a competition between narrow and broader concepts of democracy (Campbell, 2013). This is particularly true when democracy is to be understood to transcend more substantially the narrow understanding of being primarily based on or being primarily rooted in government institutions (within a Triple Helix

  17. Structure of bacteriophage [phi]29 head fibers has a supercoiled triple repeating helix-turn-helix motif

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Ye; Rossmann, Michael G. (Purdue)

    2011-12-22

    The tailed bacteriophage {phi}29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 {angstrom} in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 {angstrom}. The structure is about 150 {angstrom} long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described. When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless {phi}29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.

  18. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes.

    Science.gov (United States)

    Teichmann, Martin; Dumay-Odelot, Hélène; Fribourg, Sébastien

    2012-01-01

    The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.

  19. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.

    Science.gov (United States)

    Best, Robert B; Hummer, Gerhard

    2009-07-02

    Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly in their alpha-helical propensities, a correction to match experimental results would be highly desirable. We have determined simple backbone energy corrections for two force fields to reproduce the fraction of helix measured in short peptides at 300 K. As validation, we show that the optimized force fields produce results in excellent agreement with nuclear magnetic resonance experiments for folded proteins and short peptides not used in the optimization. However, despite the agreement at ambient conditions, the dependence of the helix content on temperature is too weak, a problem shared with other force fields. A fit of the Lifson-Roig helix-coil theory shows that both the enthalpy and entropy of helix formation are too small: the helix extension parameter w agrees well with experiment, but its entropic and enthalpic components are both only about half the respective experimental estimates. Our structural and thermodynamic analyses point toward the physical origins of these shortcomings in current force fields, and suggest ways to address them in future force-field development.

  20. Inactivation of colicin Y by intramembrane helix–helix interaction with its immunity protein

    Czech Academy of Sciences Publication Activity Database

    Šmajs, D.; Doležalová, M.; Macek, Pavel; Žídek, L.

    2008-01-01

    Roč. 275, č. 21 (2008), s. 5325-5331 ISSN 1742-464X Institutional research plan: CEZ:AV0Z50200510 Keywords : colicin immunity * colicin y * helix-helix interaction Subject RIV: CE - Biochemistry Impact factor: 3.139, year: 2008

  1. Lysine as helix C-capping residue in a synthetic peptide.

    Science.gov (United States)

    Esposito, G; Dhanapal, B; Dumy, P; Varma, V; Mutter, M; Bodenhausen, G

    1997-01-01

    The structure of the synthetic peptide CH3CO(Leu-Ser-Leu-Leu-Leu-Ser-Leu)3Lys-NH2 in trifluoroethanol/water 60/40 (volume ratio) was characterized by two-dimensional nmr spectroscopy. The peptide, closely related to the amphiphilic helix models designed by W. F. De-Grado and co-workers to mimic protein ion channels [(1988) Science, Vol. 240, p. 1177-1181], folds into a regular helix spanning residues 1-20. Evidence for a helix C-terminal capping conformation, involving the terminal lysine residue, was observed from Overhauser effects and checked for consistency by restrained molecular dynamics simulations. The side-chain amino group of Lys22 forms a hydrogen bond with the carbonyl of Leu18, and the distorted helical geometry of the terminal dipeptide allows the inclusion of a water bridge between the backbone NH of the Lys22 residue and the carbonyls of Leu19 and Ser20.

  2. Thermodynamic Effects of Replacements of Pro Residues in Helix Interiors of Maltose-Binding Protein

    OpenAIRE

    Prajapati, RS; Lingaraju, GM; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-01-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by...

  3. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.

    Science.gov (United States)

    Jesus, Catarina S H; Cruz, Pedro F; Arnaut, Luis G; Brito, Rui M M; Serpa, Carlos

    2018-04-12

    The understanding of fast folding dynamics of single α-helices comes mostly from studies on rationally designed peptides displaying sequences with high helical propensity. The folding/unfolding dynamics and energetics of α-helix conformations in naturally occurring peptides remains largely unexplored. Here we report the study of a protein fragment analogue of the C-peptide from bovine pancreatic ribonuclease-A, RN80, a 13-amino acid residue peptide that adopts a highly populated helical conformation in aqueous solution. 1 H NMR and CD structural studies of RN80 showed that α-helix formation displays a pH-dependent bell-shaped curve, with a maximum near pH 5, and a large decrease in helical content in alkaline pH. The main forces stabilizing this short α-helix were identified as a salt bridge formed between Glu-2 and Arg-10 and the cation-π interaction involving Tyr-8 and His-12. Thus, deprotonation of Glu-2 or protonation of His-12 are essential for the RN80 α-helix stability. In the present study, RN80 folding and unfolding were triggered by laser-induced pH jumps and detected by time-resolved photoacoustic calorimetry (PAC). The photoacid proton release, amino acid residue protonation, and unfolding/folding events occur at different time scales and were clearly distinguished using time-resolved PAC. The partial unfolding of the RN80 α-helix, due to protonation of Glu-2 and consequent breaking of the stabilizing salt bridge between Glu-2 and Arg-10, is characterized by a concentration-independent volume expansion in the sub-microsecond time range (0.8 mL mol -1 , 369 ns). This small volume expansion reports the cost of peptide backbone rehydration upon disruption of a solvent-exposed salt bridge, as well as backbone intrinsic expansion. On the other hand, RN80 α-helix folding triggered by His-12 protonation and subsequent formation of a cation-π interaction leads to a microsecond volume contraction (-6.0 mL mol -1 , ∼1.7 μs). The essential role of two

  4. Conformational Diffusion and Helix Formation Kinetics

    International Nuclear Information System (INIS)

    Hummer, Gerhard; Garcia, Angel E.; Garde, Shekhar

    2000-01-01

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society

  5. Conformational Diffusion and Helix Formation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, Gerhard [Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States); Garcia, Angel E. [Theoretical Biology and Biophysics Group T-10, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Garde, Shekhar [Department of Chemical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)

    2000-09-18

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society.

  6. Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity.

    Science.gov (United States)

    Harper, Shannon M; Christie, John M; Gardner, Kevin H

    2004-12-28

    Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.

  7. Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis

    International Nuclear Information System (INIS)

    Patel, Divya; Chaudhary, Jaideep

    2012-01-01

    Highlights: ► E2A, considered as a tumor suppressor is highly expressed in prostate cancer. ► Silencing of E2A attenuates cell proliferation and promotes apoptosis. ► E2A regulates c-myc, Id1, Id3 and CDKN1A expression. ► Loss of E2A promotes doxorubicin dependent apoptosis in prostate cancer cells. ► Results suggest that E2A acts as a tumor promoter at least in prostate cancer. -- Abstract: E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.

  8. 13-Helix folding of a β/γ-peptide manifold designed from a "minimal-constraint" blueprint.

    Science.gov (United States)

    Grison, Claire M; Robin, Sylvie; Aitken, David J

    2016-06-14

    A bottom-up design rationale was adopted to devise β/γ-peptide foldamer manifolds which would adopt preferred 13-helix conformations, relying on minimal steric imposition brought by the constituent amino acid residues. In this way, a well-defined 13-helix conformer was revealed for short oligomers of trans-2-aminocyclobutanecarboxylic acid and γ(4)-amino acids in alternation, which gave good topological superposition upon an α-helix motif.

  9. Geometry of the toroidal N-helix: optimal-packing and zero-twist

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2012-01-01

    Two important geometrical properties of N-helix structures are influenced by bending. One is maximizing the volume fraction, which is called optimal-packing, and the other is having a vanishing strain-twist coupling, which is called zero-twist. Zero-twist helices rotate neither in one nor...... helix. General N-helices are discussed, as well as zero-twist helices for N > 1. The derived geometrical restrictions are gradually modified by changing the aspect ratio of the torus....

  10. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes

    International Nuclear Information System (INIS)

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H.; Prodromou, Chrisostomos

    2015-01-01

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90) 2 –Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes

  11. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H., E-mail: laurence.pearl@sussex.ac.uk; Prodromou, Chrisostomos, E-mail: laurence.pearl@sussex.ac.uk [University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom)

    2015-05-01

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90){sub 2}–Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes.

  12. Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET.

    Science.gov (United States)

    Khadria, Ambalika S; Senes, Alessandro

    2015-07-01

    Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations. © 2015 Wiley Periodicals, Inc.

  13. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins

    Science.gov (United States)

    Lin, Chih-Ying

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins. PMID:29381770

  14. Interactions between an alpha-helix and a beta-sheet. Energetics of alpha/beta packing in proteins.

    Science.gov (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A

    1985-12-05

    Conformational energy computations have been carried out to determine the favorable ways of packing a right-handed alpha-helix on a right-twisted antiparallel or parallel beta-sheet. Co-ordinate transformations have been developed to relate the position and orientation of the alpha-helix to the beta-sheet. The packing was investigated for a CH3CO-(L-Ala)16-NHCH3 alpha-helix interacting with five-stranded beta-sheets composed of CH3CO-(L-Val)6-NHCH3 chains. All internal and external variables for both the alpha-helix and the beta-sheet were allowed to change during energy minimization. Four distinct classes of low-energy packing arrangements were found for the alpha-helix interacting with both the parallel and the anti-parallel beta-sheet. The classes differ in the orientation of the axis of the alpha-helix relative to the direction of the strands of the right-twisted beta-sheet. In the class with the most favorable arrangement, the alpha-helix is oriented along the strands of the beta-sheet, as a result of attractive non-bonded side-chain-side-chain interactions along the entire length of the alpha-helix. A class with nearly perpendicular orientation of the helix axis to the strands is also of low energy, because it allows similarly extensive attractive interactions. In the other two classes, the helix is oriented diagonally relative to the strands of the beta-sheet. In one of them, it interacts with the convex surface near the middle of the saddle-shaped twisted beta-sheet. In the other, it is oriented along the concave diagonal of the beta-sheet and, therefore, it interacts only with the corner regions of the sheet, so that this packing is energetically less favorable. The packing arrangements involving an antiparallel and a parallel beta-sheet are generally similar, although the antiparallel beta-sheet has been found to be more flexible. The major features of 163 observed alpha/beta packing arrangements in 37 proteins are accounted for in terms of the computed

  15. The generalized model of polypeptide chain describing the helix-coil transition in biopolymers

    International Nuclear Information System (INIS)

    Mamasakhlisov, E.S.; Badasyan, A.V.; Tsarukyan, A.V.; Grigoryan, A.V.; Morozov, V.F.

    2005-07-01

    In this paper we summarize some results of our theoretical investigations of helix-coil transition both in single-strand (polypeptides) and two-strand (polynucleotides) macromolecules. The Hamiltonian of the Generalized Model of Polypeptide Chain (GMPC) is introduced to describe the system in which the conformations are correlated over some dimensional range Δ (it equals 3 for polypeptide, because one H-bond fixes three pairs of rotation, for double strand DNA it equals to one chain rigidity because of impossibility of loop formation on the scale less than Δ). The Hamiltonian does not contain any parameter designed especially for helix-coil transition and uses pure molecular microscopic parameters (the energy of hydrogen bond formation, reduced partition function of repeated unit, the number of repeated units fixed by one hydrogen bond, the energies of interaction between the repeated units and the solvent molecules). To calculate averages we evaluate the partition function using the transfer-matrix approach. The GMPC allowed to describe the influence of a number of factors, affecting the transition, basing on a unified microscopic approach. Thus we obtained, that solvents change transition temperature and interval in different ways, depending on type of solvent and on energy of solvent- macromolecule interaction; stacking on the background of H-bonding increases stability and decreases cooperativity of melting. For heterogeneous DNA we could analytically derive well known formulae for transition temperature and interval. In the framework of GMPC we calculate and show the difference of two order parameters of helix-coil transition - the helicity degree, and the average fraction of repeated units in helical conformation. Given article has the aim to review the results obtained during twenty years in the context of GMPC. (author)

  16. Aryl hydrocarbon receptor and intestinal immunity.

    Science.gov (United States)

    Lamas, Bruno; Natividad, Jane M; Sokol, Harry

    2018-04-07

    Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.

  17. Gate-controlled switching between persistent and inverse persistent spin helix states

    International Nuclear Information System (INIS)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J.

    2016-01-01

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  18. Gate-controlled switching between persistent and inverse persistent spin helix states

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J. [Department of Materials Science, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-28

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  19. The Quadruple Helix Model Enhancing Innovative Performance Of Indonesian Creative Industry

    Directory of Open Access Journals (Sweden)

    Sri Wahyu Lelly Hana Setyanti

    2017-11-01

    Full Text Available The creative industry in Indonesia has contributed positively to the national economic growth. Creative industry grows from the creativity and innovation performance of the business actors. The challenge of creative industry is how to completely understand the creative and innovative processes in business management. Therefore it requires an approach that combines the synergy between academicians entrepreneurs government and society in a quadruple helix model. The objective of this research is to develop a creativity model through a quadruple helix model in improving innovation performance of the creative industry.

  20. Design and synthesis of DNA four-helix bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail: kvg@chem.au.dk, E-mail: thl@cs.duke.edu [Department of Chemistry, Duke University, Durham, NC 27708 (United States)

    2011-06-10

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  1. Design and synthesis of DNA four-helix bundles

    International Nuclear Information System (INIS)

    Rangnekar, Abhijit; Gothelf, Kurt V; LaBean, Thomas H

    2011-01-01

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  2. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions.

    Science.gov (United States)

    Shaginian, Alex; Whitby, Landon R; Hong, Sukwon; Hwang, Inkyu; Farooqi, Bilal; Searcey, Mark; Chen, Jiandong; Vogt, Peter K; Boger, Dale L

    2009-04-22

    The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.

  3. pH-jump induced α-helix folding of poly-L-glutamic acid

    International Nuclear Information System (INIS)

    Donten, Mateusz L.; Hamm, Peter

    2013-01-01

    Highlights: ► pH-jump as truly biomimetic tool to initiate non-equilibrium dynamics of biomolecules. ► Design criteria to widen the applicability of pH-jumps are developed. ► Folding of poly-L-Glu in dependence of starting pH, pH jump size and helix length. ► Length dependence provides strong evidence for a nucleation–propagation scenario. - Abstract: pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation–propagation mechanism

  4. Mechanism of death at high temperatures in Helix and Patella

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, J N.R.

    1975-10-01

    In Patella vulgata and Helix aspersa which had been killed by exposure to high temperatures, the rates of oxygen consumption of gill, foot muscle and hepatopancreas are remarkably steady when measured at lower temperatures, although the absolute levels are in some cases different from normal animals. These tissues are thus substantially metabolically intact in heat dead individuals. In Helix there is a fall in blood sodium and a rise in blood potassium during heat death. In Patella there is a marked rise in blood Na/sup +/ and a consequent disturbance of the Na/sup +//K/sup +/ ratio. These ionic disturbances are thought to be a prime cause of heat death. The significance of the results is discussed.

  5. The N-terminal amphipathic helix of the topological specificity factor MinE is associated with shaping membrane curvature.

    Directory of Open Access Journals (Sweden)

    Yu-Ling Shih

    Full Text Available Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE(2-9, which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature.

  6. Ab initio theory of helix <-> coil phase transition

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2008-01-01

    In this paper, we suggest a theoretical method based on the statistical mechanics for treating the alpha-helix <-> random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely ...

  7. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    Energy Technology Data Exchange (ETDEWEB)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Bellan, Paul M. [Applied Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Li, Hui [Theoretical Division, Los Alamos National Laboratory, Mail Stop B227, Los Alamos, NM 87545 (United States); Li, Shengtai, E-mail: pwongwai@caltech.edu, E-mail: mhaw@caltech.edu [Mathematical Modeling and Analysis, Los Alamos National Laboratory, Mail Stop B284, Los Alamos, NM 87545 (United States)

    2017-10-20

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.

  8. Structural plasticity of the N-terminal capping helix of the TPR domain of kinesin light chain.

    Directory of Open Access Journals (Sweden)

    The Quyen Nguyen

    Full Text Available Kinesin1 plays a major role in neuronal transport by recruiting many different cargos through its kinesin light chain (KLC. Various structurally unrelated cargos interact with the conserved tetratricopeptide repeat (TPR domain of KLC. The N-terminal capping helix of the TPR domain exhibits an atypical sequence and structural features that may contribute to the versatility of the TPR domain to bind different cargos. We determined crystal structures of the TPR domain of both KLC1 and KLC2 encompassing the N-terminal capping helix and show that this helix exhibits two distinct and defined orientations relative to the rest of the TPR domain. Such a difference in orientation gives rise, at the N-terminal part of the groove, to the formation of one hydrophobic pocket, as well as to electrostatic variations at the groove surface. We present a comprehensive structural analysis of available KLC1/2-TPR domain structures that highlights that ligand binding into the groove can be specific of one or the other N-terminal capping helix orientations. Further, structural analysis reveals that the N-terminal capping helix is always involved in crystal packing contacts, especially in a TPR1:TPR1' contact which highlights its propensity to be a protein-protein interaction site. Together, these results underline that the structural plasticity of the N-terminal capping helix might represent a structural determinant for TPR domain structural versatility in cargo binding.

  9. Controlling chirality with helix inversion in cholesteric liquid crystals

    NARCIS (Netherlands)

    Katsonis, Nathalie Hélène; Lacaze, E.; Ferrarini, A.

    2012-01-01

    The helical organization of cholesteric liquid crystals is omnipresent in living matter. Achieving control over the structure of the cholesteric helix consequently holds great potential for developing stimuli-responsive materials matching the level of sophistication of biological systems. In

  10. Equilibrium shift in solution: molecular shape recognition and precipitation of a synthetic double helix using helicene-grafted silica nanoparticles.

    Science.gov (United States)

    Miyagawa, Masamichi; Ichinose, Wataru; Yamaguchi, Masahiko

    2014-01-27

    Chiral silica nanoparticles (70 nm) grafted with (P)-helicene recognized the molecular shape of double helix and random coil (P)-ethynylhelicene oligomers in solution. A mixture of the (P)-nanoparticles and double helix precipitated much faster than a mixture of the (P)-nanoparticles and random coil, and the precipitate contained only the double helix. The mixture of the (P)-nanoparticles and (P)-ethynylhelicene pentamer reversibly dispersed in trifluoromethylbenzene upon heating at 70 °C and precipitated upon cooling at 25 °C. When a 10:90 equilibrium mixture of the double helix and random coil in solution was treated with the (P)-nanoparticles, the double helix was precipitated in 53% yield and was accompanied by equilibrium shift. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin

    Science.gov (United States)

    Urano, Ryo; Okamoto, Yuko

    2015-12-01

    We applied a newly proposed prediction method for membrane protein structures to bacteriorhodopsin that has distorted transmembrane helices in the native structure. This method uses an implicit membrane model, which restricts sampling space during folding in a membrane region, and includes helix bending. Replica-exchange simulations were performed with seven transmembrane helices only without a retinal molecule. Obtained structures were classified into clusters of similar structures, which correspond to local-minimum free energy states. The two lowest free energy states corresponded to a native-like structure with the correct empty space for retinal and a structure with this empty space filled with a helix. Previous experiments of bacteriorhodopsin suggested that association of transmembrane helices enables them to make a room for insertion of a retinal. Our results are consistent with these results. Moreover, distortions of helices in the native-like structures were successfully reproduced. In the distortions, whereas the locations of kinks for all helices were similar to those of Protein Data Bank's data, the amount of bends was more similar for helices away from the retinal than for those close to the retinal in the native structure. This suggests a hypothesis that the amino-acid sequence specifies the location of kinks in transmembrane helices and that the amount of distortions depends on the interactions with the surrounding molecules such as neighboring helices, lipids, and retinal.

  12. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment

    Science.gov (United States)

    Conde, João; Oliva, Nuria; Atilano, Mariana; Song, Hyun Seok; Artzi, Natalie

    2016-03-01

    The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs--a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)--provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo, and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer.

  13. Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils.

    Science.gov (United States)

    Steinkruger, Jay D; Bartlett, Gail J; Woolfson, Derek N; Gellman, Samuel H

    2012-09-26

    Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.

  14. What can triple helix frameworks offer to the analysis of eco-innovation dynamics? Theoretical and methodological considerations

    DEFF Research Database (Denmark)

    Yang, Yan; Holgaard, Jette Egelund; Remmen, Arne

    2012-01-01

    stakeholder groups are interacting in this connection. Taking the triple helix as the theoretical departure point, this paper discusses the opportunities offered by these triple helix frameworks for analyzing eco-innovation dynamics from both theoretical and practical perspectives. It adds to the debate about......Bringing environmental concerns into focus of innovation processes will in several cases also expand the numbers of actors involved. Eco-innovation and triple helix are often frameworks applied to analyse how environmental concerns are integrated in the innovation processes and how different...

  15. Living Labs as boundary-spanners between Triple Helix actors

    NARCIS (Netherlands)

    van Geenhuizen, M.S.

    2016-01-01

    Living labs are an increasingly popular methodology to enhance innovation. Living labs aim to span boundaries between different organizations, among others Triple helix actors, by acting as a network organization typically in a real-life environment to foster co-creation by user-groups. This paper

  16. The Triple Helix Model and the Knowledge-Based Economy

    NARCIS (Netherlands)

    Leydesdorff, L.; Meyer, M.

    2010-01-01

    The Triple Helix model of university-industry-government relations can be generalized from a neo-institutional model of networks of relations to a neo-evolutionary model of how three selection environments operate upon one another. Two selection mechanisms operating upon each other can mutually

  17. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Directory of Open Access Journals (Sweden)

    Chan-Ki Min

    2008-11-01

    Full Text Available Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip of T lymphotropic Herpesvirus saimiri (HVS is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.

  18. An evolutionary triple helix to strengthen energy regulation: Implications for management

    Energy Technology Data Exchange (ETDEWEB)

    Rizzi, Francesco; Borzoni, Matteo

    2010-09-15

    Regulation is the basic tool to implement energy policy. The evolution of the regulation is influenced by its impacts on the industrial activities. Consequently, entrepreneurs acts in a continuously adapting-by-interacting environment. Both from a systemic and an atomistic perspective, this paper provides a theoretical framework for energy regulation development in order to support management implications. This work builds on the triple helix model and extends it to energy regulation development processes. It concludes that the analysis of intangible resources and their related services at inter-organizational level is fundamental to guide companies in designing win-win corporate strategies and in their operazionalization.

  19. A rare polyglycine type II-like helix motif in naturally occurring proteins.

    Science.gov (United States)

    Warkentin, Eberhard; Weidenweber, Sina; Schühle, Karola; Demmer, Ulrike; Heider, Johann; Ermler, Ulrich

    2017-11-01

    Common structural elements in proteins such as α-helices or β-sheets are characterized by uniformly repeating, energetically favorable main chain conformations which additionally exhibit a completely saturated hydrogen-bonding network of the main chain NH and CO groups. Although polyproline or polyglycine type II helices (PP II or PG II ) are frequently found in proteins, they are not considered as equivalent secondary structure elements because they do not form a similar self-contained hydrogen-bonding network of the main chain atoms. In this context our finding of an unusual motif of glycine-rich PG II -like helices in the structure of the acetophenone carboxylase core complex is of relevance. These PG II -like helices form hexagonal bundles which appear to fulfill the criterion of a (largely) saturated hydrogen-bonding network of the main-chain groups and therefore may be regarded in this sense as a new secondary structure element. It consists of a central PG II -like helix surrounded by six nearly parallel PG II -like helices in a hexagonal array, plus an additional PG II -like helix extending the array outwards. Very related structural elements have previously been found in synthetic polyglycine fibers. In both cases, all main chain NH and CO groups of the central PG II -helix are saturated by either intra- or intermolecular hydrogen-bonds, resulting in a self-contained hydrogen-bonding network. Similar, but incomplete PG II -helix patterns were also previously identified in a GTP-binding protein and an antifreeze protein. © 2017 Wiley Periodicals, Inc.

  20. LIN-32/Atonal Controls Oxygen Sensing Neuron Development in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Romanos, Teresa Rojo; Pladevall-Morera, David; Langebeck-Jensen, Kasper

    2017-01-01

    HLH) family of transcription factors has multiple functions in neurogenesis. Here, we identified the LIN-32/Atonal bHLH transcription factor as a key regulator of URXL/R oxygen-sensing neuron development in Caenorhabditis elegans. When LIN-32/Atonal expression is lost, the expression of URX specification......Development of complex nervous systems requires precisely controlled neurogenesis. The generation and specification of neurons occur through the transcriptional and post-Transcriptional control of complex regulatory networks. In vertebrates and invertebrates, the proneural basic-helix-loop-helix (b...... and terminal differentiation genes is abrogated. As such, lin-32 mutant animals are unable to respond to increases in environmental oxygen. The URX neurons are generated from a branch of the cell lineage that also produces the CEPDL/R and URADL/R neurons. We found development of these neurons is also defective...

  1. Efficient Fatigue Analysis of Helix Elements in Umbilicals and Flexible Risers: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Geir Skeie

    2012-01-01

    Full Text Available Fatigue analysis of structural components such as helix tensile armors and steel tubes is a critical design issue for dynamic umbilicals and flexible pipes. The basis for assessment of fatigue damage of such elements is the long-term stress cycle distribution at critical locations on the helix elements caused by long-term environmental loading on the system. The long-term stress cycle distribution will hence require global dynamic time domain analysis followed by a detailed cross-sectional analysis in a large number of irregular sea states. An overall computational consistent and efficient fatigue analysis scheme is outlined with due regard of the cross-sectional analysis technique required for fatigue stress calculation with particular attention to the helix elements. The global cross-section is exposed to pure bending, tensile, torsion, and pressure loading. The state of the different cross-section elements is based on the global response. Special emphasis is placed on assessment of friction stresses caused by the stick-slip behavior of helix elements in bending that are of special importance for fatigue life assessments. The described cross-sectional analysis techniques are based on an extensive literature survey and are hence considered to represent industry consensus. The performance of the described calculation scheme is illustrated by case studies.

  2. Nonlinear time-dependent simulation of helix traveling wave tubes

    International Nuclear Information System (INIS)

    Peng Wei-Feng; Yang Zhong-Hai; Hu Yu-Lu; Li Jian-Qing; Lu Qi-Ru; Li Bin

    2011-01-01

    A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory. (interdisciplinary physics and related areas of science and technology)

  3. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  4. Probing the mechanistic role of the long α-helix in subunit L of respiratory Complex I from Escherichia coli by site-directed mutagenesis

    Science.gov (United States)

    Belevich, Galina; Knuuti, Juho; Verkhovsky, Michael I; Wikström, Mårten; Verkhovskaya, Marina

    2011-01-01

    The C-terminus of the NuoL subunit of Complex I includes a long amphipathic α-helix positioned parallel to the membrane, which has been considered to function as a piston in the proton pumping machinery. Here, we have introduced three types of mutations into the nuoL gene to test the piston-like function. First, NuoL was truncated at its C- and N-termini, which resulted in low production of a fragile Complex I with negligible activity. Second, we mutated three partially conserved residues of the amphipathic α-helix: Asp and Lys residues and a Pro were substituted for acidic, basic or neutral residues. All these variants exhibited almost a wild-type phenotype. Third, several substitutions and insertions were made to reduce rigidity of the amphipathic α-helix, and/or to change its geometry. Most insertions/substitutions resulted in a normal growth phenotype, albeit often with reduced stability of Complex I. In contrast, insertion of six to seven amino acids at a site of the long α-helix between NuoL and M resulted in substantial loss of proton pumping efficiency. The implications of these results for the proton pumping mechanism of Complex I are discussed. PMID:22060017

  5. Kevlar: Transitioning Helix for Research to Practice

    Science.gov (United States)

    2016-03-01

    x86 binaries, although it can be targeted to any platform that is targeted by IDA Pro. Currently, IDA Pro targets more than 40 processors and...effects its own transformations. Helix/Kevlar then automatically generates SPRI rules for any program variants by essentially performing a “ smart diff...execute permission on the pages of memory it uses, leaving only execute (but not write) permission on the code cache. Strata also watches for attempts

  6. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  7. Rotational symmetry and the transformation of innovation systems in a Triple Helix of university-industry-government relations

    NARCIS (Netherlands)

    Ivanova, I.A.; Leydesdorff, L.

    2014-01-01

    Using a mathematical model, we show that a Triple Helix (TH) system contains self-interaction, and therefore self-organization of innovations can be expected in waves, whereas a Double Helix (DH) remains determined by its linear constituents. (The mathematical model is fully elaborated in the

  8. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress.

    Directory of Open Access Journals (Sweden)

    K C Babitha

    Full Text Available Basic helix-loop-helix (bHLH transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.

  9. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution.

    Science.gov (United States)

    Fidler, Aaron L; Boudko, Sergei P; Rokas, Antonis; Hudson, Billy G

    2018-04-09

    The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution. © 2018. Published by The Company of Biologists Ltd.

  10. Hydrated and Dehydrated Tertiary Interactions–Opening and Closing–of a Four-Helix Bundle Peptide

    Science.gov (United States)

    Lignell, Martin; Tegler, Lotta T.; Becker, Hans-Christian

    2009-01-01

    Abstract The structural heterogeneity and thermal denaturation of a dansyl-labeled four-helix bundle homodimeric peptide was studied with steady-state and time-resolved fluorescence spectroscopy and with circular dichroism (CD). At room temperature the fluorescence decay of the polarity-sensitive dansyl, located in the hydrophobic core region, can be described by a broad distribution of fluorescence lifetimes, reflecting the heterogeneous microenvironment. However, the lifetime distribution is nearly bimodal, which we ascribe to the presence of two major conformational subgroups. Since the fluorescence lifetime reflects the water content of the four-helix bundle conformations, we can use the lifetime analysis to monitor the change in hydration state of the hydrophobic core of the four-helix bundle. Increasing the temperature from 9°C to 23°C leads to an increased population of molten-globule-like conformations with a less ordered helical backbone structure. The fluorescence emission maximum remains constant in this temperature interval, and the hydrophobic core is not strongly affected. Above 30°C the structural dynamics involve transient openings of the four-helix bundle structure, as evidenced by the emergence of a water-quenched component and less negative CD. Above 60°C the homodimer starts to dissociate, as shown by the increasing loss of CD and narrow, short-lived fluorescence lifetime distributions. PMID:19619472

  11. Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.

    Science.gov (United States)

    Peterson, R W; Nicholson, E M; Thapar, R; Klevit, R E; Scholtz, J M

    1999-03-12

    In an effort to quantify the importance of hydrogen bonding and alpha-helix formation to protein stability, a capping box motif was introduced into the small phosphocarrier protein HPr. Previous studies had confirmed that Ser46, at the N-cap position of the short helix-B in HPr, serves as an N-cap in solution. Thus, only a single-site mutation was required to produce a canonical S-X-X-E capping box: Lys49 at the N3 position was substituted with a glutamic acid residue. Thermal and chemical denaturation studies on the resulting K49E HPr show that the designed variant is approximately 2 kcal mol-1 more stable than the wild-type protein. However, NMR studies indicate that the side-chain of Glu49 does not participate in the expected capping H-bond interaction, but instead forms a new tertiary H-bond that links helix-B to the four-stranded beta-sheet of HPr. Here, we demonstrate that a strategy in which new non-native H-bonds are introduced can generate proteins with increased stability. We discuss why the original capping box design failed, and compare the energetic consequences of the new tertiary side-chain to main-chain H-bond with a local (helix-capping) side-chain to main-chain H-bond on the protein's global stability. Copyright 1999 Academic Press.

  12. Helix Nebula Science Cloud pilot phase open session

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This Helix Nebula Science Cloud (HNSciCloud) public session is open to everyone and will be webcast. The session will provide the audience with an overview of the HNSciCloud pre-commercial procurement project and the innovative cloud platforms that have been developed. A number of practical use-cases from the physics community will be presented as well as the next steps to be undertaken.

  13. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2009-03-01

    Full Text Available Brome mosaic virus (BMV protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.

  14. RelB and RelE of Escherichia coli Form a Tight Complex That Represses Transcription via The Ribbon-Helix-Helix Motif in RelB

    DEFF Research Database (Denmark)

    Overgaard, Martin; Borch, Jonas; Gerdes, Kenn

    2009-01-01

    RelB, the Ribbon-Helix-Helix (RHH) repressor encoded by the relBE toxin-antitoxin locus of Escherichia coli, forms a tight complex with RelE and thereby counteracts the mRNA cleavage activity of RelE. In addition, RelB dimers repress the strong relBE promoter and this repression by RelB is enhanced...... by RelE - that is - RelE functions as a transcriptional co-repressor. RelB is a Lon protease substrate and Lon is required both for activation of relBE transcription and for activation of the mRNA cleavage activity of RelE. Here we characterize the molecular interactions important for transcriptional...... motif recognizes four 6 bp repeats within the bipartite binding site. The spacing between each half-site was found to be essential for cooperative interactions between adjacently bound RelB dimers stabilized by the co-repressor RelE. Kinetic and stoichiometric measurements of the interaction between Rel...

  15. From Family Based to Industrial Based Production: Local Economic Development Initiatives and the HELIX Model

    Directory of Open Access Journals (Sweden)

    Bartjan W Pennink

    2013-01-01

    Full Text Available To build a strong local economy, good practice tells us that each community should undertake a collaborative, strategically planned process to understand and then act upon its own strengths, weaknesses, opportunities and threats. From this perspective we start with the local communities but how is this related to the perspective from the Helix model in which three actors are explicitly introduced: the Government, the Industry and the Universities? The purpose of local economic development (LED is to build up the economic capacity of a local area to improve its economic future and the quality of life for all. To support  the Local Economic Development in remote areas,   a program  has been developed based on the LED frame work of the world bank. This approach and  the experiences over  the past years with this program are  described in the first part.  In the second part of the paper, We analyse work done with that program with the help of the social capital concept and the triple helix model.  In all cases it is important to pay attention to who is taken the initiative after the first move (and it is not always the governance as actor and for the triple helix we suggest  that the concepts of (national Government, Industry and University need a translation to Local Governance Agency, Cooperation or other ways of cooperation of local communities and Local Universities. Although a push from outside might help  a local region in development the endogenous factors are  also needed. Keywords: Triple Helix model, Local Economic Development, Local Actors, Double Triangle within the Helix Model

  16. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, Richard Wood [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by 31P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 Å of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an α-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  17. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  18. Extreme bendability of DNA double helix due to bending asymmetry

    NARCIS (Netherlands)

    Salari, H.; Eslami-Mossallam, B.; Nederi, S.; Ejtehadi, M.R.

    2015-01-01

    Experimental data of the DNA cyclization (J-factor) at short length scales exceed the theoretical expectation based on the wormlike chain (WLC) model by several orders of magnitude. Here, we propose that asymmetric bending rigidity of the double helix in the groove direction can be responsible for

  19. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1.

    Science.gov (United States)

    Herlo, Rasmus; Lund, Viktor K; Lycas, Matthew D; Jansen, Anna M; Khelashvili, George; Andersen, Rita C; Bhatia, Vikram; Pedersen, Thomas S; Albornoz, Pedro B C; Johner, Niklaus; Ammendrup-Johnsen, Ina; Christensen, Nikolaj R; Erlendsson, Simon; Stoklund, Mikkel; Larsen, Jannik B; Weinstein, Harel; Kjærulff, Ole; Stamou, Dimitrios; Gether, Ulrik; Madsen, Kenneth L

    2018-05-15

    BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. One-dimensional nonlinear theory for rectangular helix traveling-wave tube

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong; Ju, Yongfeng [Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai' an 223003 (China); Wei, Yanyu [School of Physical Electronics, University of Electronic and Technology of China, Chengdu 610054 (China)

    2016-08-15

    A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.

  1. Clear cell hidradenocarcinoma of the ear helix: report of primary ear helix adnexal carcinoma with regional lymph node metastasis.

    Science.gov (United States)

    Bae, Tae Hui; Kang, Shin Hyuk; Kim, Han Koo; Kim, Woo Seob; Kim, Mi Kyung

    2014-07-01

    Clear cell hidradenocarcinoma is a rare tumor of eccrine sweat gland origin that has a predilection for the head and neck. It has an indolent growth pattern and a higher incidence of regional and distant metastases. Metastasizing adnexal carcinomas are rare; thus, currently there is no uniform treatment guideline. We report a case of an 89-year-old female patient with clear cell hidradenocarcinoma manifesting in the right ear helix that metastasized to the right parotid gland who was treated by wide local excision and radiation therapy.

  2. The Effect of a Helix-Coil Transition on the Extension Elasticity

    Science.gov (United States)

    Buhot, Arnaud; Halperin, Avi

    2000-03-01

    The secondary structure of a polymer affects its deformation behavior in accordance with the Le Chatelier principle. An important example of such secondary structure is the alpha helix encountered in polypeptides. Similar structure was recently proposed for PEO in aqueous media. Our discussion concerns the coupling of the cooperative helix-coil transition and the extension elasticity. In particular, we analyze the extension of a long single chain by use of optical tweezers or AFM. We consider chains that exist in the coil-state when unperturbed. The transition nevertheless occurs because the extension favors the low entropy helical state. As a result, the corresponding force law exhibits a plateau. The analysis of this situation involves two ingredients: (I) the stretching free energy penalty for a rod-coil mutiblock copolymer (II) the entropy associated with the possible placements of the rod and coil blocks.

  3. Chiral transformation: From single nanowire to double helix

    KAUST Repository

    Wang, Yong

    2011-12-21

    We report a new type of water-soluble ultrathin Au-Ag alloy nanowire (NW), which exhibits unprecedented behavior in a colloidal solution. Upon growth of a thin metal (Pd, Pt, or Au) layer, the NW winds around itself to give a metallic double helix. We propose that the winding originates from the chirality within the as-synthesized Au-Ag NWs, which were induced to untwist upon metal deposition. © 2011 American Chemical Society.

  4. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity

    Science.gov (United States)

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M.

    2016-01-01

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (SC) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. The ease and efficiency of double-click helix stabilization chemistries is a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control SC absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034

  5. The human early-life exposome (HELIX): project rationale and design.

    Science.gov (United States)

    Vrijheid, Martine; Slama, Rémy; Robinson, Oliver; Chatzi, Leda; Coen, Muireann; van den Hazel, Peter; Thomsen, Cathrine; Wright, John; Athersuch, Toby J; Avellana, Narcis; Basagaña, Xavier; Brochot, Celine; Bucchini, Luca; Bustamante, Mariona; Carracedo, Angel; Casas, Maribel; Estivill, Xavier; Fairley, Lesley; van Gent, Diana; Gonzalez, Juan R; Granum, Berit; Gražulevičienė, Regina; Gutzkow, Kristine B; Julvez, Jordi; Keun, Hector C; Kogevinas, Manolis; McEachan, Rosemary R C; Meltzer, Helle Margrete; Sabidó, Eduard; Schwarze, Per E; Siroux, Valérie; Sunyer, Jordi; Want, Elizabeth J; Zeman, Florence; Nieuwenhuijsen, Mark J

    2014-06-01

    Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure-health effect relationships. The "exposome" concept encompasses the totality of exposures from conception onward, complementing the genome. The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the "early-life exposome." Here we describe the general design of the project. In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother-child pairs, and biomarkers will be measured in a subset of 1,200 mother-child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure-response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome.

  6. Right- and left-handed three-helix proteins. I. Experimental and simulation analysis of differences in folding and structure.

    Science.gov (United States)

    Glyakina, Anna V; Pereyaslavets, Leonid B; Galzitskaya, Oxana V

    2013-09-01

    Despite the large number of publications on three-helix protein folding, there is no study devoted to the influence of handedness on the rate of three-helix protein folding. From the experimental studies, we make a conclusion that the left-handed three-helix proteins fold faster than the right-handed ones. What may explain this difference? An important question arising in this paper is whether the modeling of protein folding can catch the difference between the protein folding rates of proteins with similar structures but with different folding mechanisms. To answer this question, the folding of eight three-helix proteins (four right-handed and four left-handed), which are similar in size, was modeled using the Monte Carlo and dynamic programming methods. The studies allowed us to determine the orders of folding of the secondary-structure elements in these domains and amino acid residues which are important for the folding. The obtained data are in good correlation with each other and with the experimental data. Structural analysis of these proteins demonstrated that the left-handed domains have a lesser number of contacts per residue and a smaller radius of cross section than the right-handed domains. This may be one of the explanations of the observed fact. The same tendency is observed for the large dataset consisting of 332 three-helix proteins (238 right- and 94 left-handed). From our analysis, we found that the left-handed three-helix proteins have some less-dense packing that should result in faster folding for some proteins as compared to the case of right-handed proteins. Copyright © 2013 Wiley Periodicals, Inc.

  7. An unusual helix-turn-helix protease inhibitory motif in a novel trypsin inhibitor from seeds of Veronica (Veronica hederifolia L.).

    Science.gov (United States)

    Conners, Rebecca; Konarev, Alexander V; Forsyth, Jane; Lovegrove, Alison; Marsh, Justin; Joseph-Horne, Timothy; Shewry, Peter; Brady, R Leo

    2007-09-21

    The storage tissues of many plants contain protease inhibitors that are believed to play an important role in defending the plant from invasion by pests and pathogens. These proteinaceous inhibitor molecules belong to a number of structurally distinct families. We describe here the isolation, purification, initial inhibitory properties, and three-dimensional structure of a novel trypsin inhibitor from seeds of Veronica hederifolia (VhTI). The VhTI peptide inhibits trypsin with a submicromolar apparent K(i) and is expected to be specific for trypsin-like serine proteases. VhTI differs dramatically in structure from all previously described families of trypsin inhibitors, consisting of a helix-turn-helix motif, with the two alpha helices tightly associated by two disulfide bonds. Unusually, the crystallized complex is in the form of a stabilized acyl-enzyme intermediate with the scissile bond of the VhTI inhibitor cleaved and the resulting N-terminal portion of the inhibitor remaining attached to the trypsin catalytic serine 195 by an ester bond. A synthetic, truncated version of the VhTI peptide has also been produced and co-crystallized with trypsin but, surprisingly, is seen to be uncleaved and consequently forms a noncovalent complex with trypsin. The VhTI peptide shows that effective enzyme inhibitors can be constructed from simple helical motifs and provides a new scaffold on which to base the design of novel serine protease inhibitors.

  8. Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.

    Science.gov (United States)

    Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua

    2018-06-11

    Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here, we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EG x )-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EG x DMA-Glu) ( x = 1, 2, and 3), show excellent aqueous solubility (>20 mg/mL) regardless of their charge states. Unlike poly-l-lysine that can form a helix only at pH above 10, P(EG x DMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within the physiological range (pH ∼5.3-6.5). Meanwhile, P(EG x DMA-Glu) exhibit an unusual salt-induced helical conformation presumably owing to the unique properties of EG x linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides and represents a facile approach toward stimuli-responsive biopolymers for advanced biological applications.

  9. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    Science.gov (United States)

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  10. Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix

    Science.gov (United States)

    Aberle, Daniel; Muhle-Goll, Claudia; Bürck, Jochen; Wolf, Moritz; Reißer, Sabine; Luy, Burkhard; Wenzel, Wolfgang; Ulrich, Anne S.; Meyers, Gregor

    2014-01-01

    Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact, processing and secretion. PMID:24586172

  11. Health and Environment Linked for Information Exchange in Atlanta (HELIX-Atlanta): A Pilot Tracking System

    Science.gov (United States)

    Rickman, Doug; Shire, J.; Qualters, J.; Mitchell, K.; Pollard, S.; Rao, R.; Kajumba, N.; Quattrochi, D.; Estes, M., Jr.; Meyer, P.; hide

    2009-01-01

    Objectives. To provide an overview of four environmental public health surveillance projects developed by CDC and its partners for the Health and Environment Linked for Information Exchange, Atlanta (HELIX-Atlanta) and to illustrate common issues and challenges encountered in developing an environmental public health tracking system. Methods. HELIX-Atlanta, initiated in October 2003 to develop data linkage and analysis methods that can be used by the National Environmental Public Health Tracking Network (Tracking Network), conducted four projects. We highlight the projects' work, assess attainment of the HELIX-Atlanta goals and discuss three surveillance attributes. Results. Among the major challenges was the complexity of analytic issues which required multidiscipline teams with technical expertise. This expertise and the data resided across multiple organizations. Conclusions:Establishing formal procedures for sharing data, defining data analysis standards and automating analyses, and committing staff with appropriate expertise is needed to support wide implementation of environmental public health tracking.

  12. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance

    DEFF Research Database (Denmark)

    Douthwaite, S; Powers, T; Lee, J Y

    1989-01-01

    The helix spanning nucleotides 1198 to 1247 (helix 1200-1250) in Escherichia coli 23 S ribosomal RNA (rRNA) is functionally important in protein synthesis, and deletions in this region confer erythromycin resistance. In order to define the structural requirements for resistance, we have dissected...... deletion mutants show a sensitive phenotype. Deletions that extend into the base-pairing between GCC1208 and GGU1240 result in non-functional 23 S RNAs, which consequently do not confer resistance. A number of phylogenetically conserved nucleotides have been shown to be non-essential for 23 S RNA function....... However, removal of either these or non-conserved nucleotides from helix 1200-1250 measurably reduces the efficiency of 23 S RNA in forming functional ribosomes. We have used chemical probing and a modified primer extension method to investigate erythromycin binding to wild-type and resistant ribosomes...

  13. Use of 1–4 interaction scaling factors to control the conformational equilibrium between α-helix and β-strand

    International Nuclear Information System (INIS)

    Pang, Yuan-Ping

    2015-01-01

    Highlights: • 1–4 interaction scaling factors are used to adjust conformational energy. • This article reports the effects of these factors on protein conformations. • Reducing these factors changes a helix to a strand in molecular dynamics simulation. • Increasing these factors causes the reverse conformational change. • These factors control the conformational equilibrium between helix and strand. - Abstract: 1–4 interaction scaling factors are used in AMBER forcefields to reduce the exaggeration of short-range repulsion caused by the 6–12 Lennard-Jones potential and a nonpolarizable charge model and to obtain better agreements of small-molecule conformational energies with experimental data. However, the effects of these scaling factors on protein secondary structure conformations have not been investigated until now. This article reports the finding that the 1–4 interactions among the protein backbone atoms separated by three consecutive covalent bonds are more repulsive in the α-helix conformation than in two β-strand conformations. Therefore, the 1–4 interaction scaling factors of protein backbone torsions ϕ and ψ control the conformational equilibrium between α-helix and β-strand. Molecular dynamics simulations confirm that reducing the ϕ and ψ scaling factors readily converts the α-helix conformation of AcO-(AAQAA) 3 -NH 2 to a β-strand conformation, and the reverse occurs when these scaling factors are increased. These results suggest that the ϕ and ψ scaling factors can be used to generate the α-helix or β-strand conformation in situ and to control the propensities of a forcefield for adopting secondary structure elements

  14. Facilitating Quintuple helix innovation with urban living labs

    OpenAIRE

    Baccarne, Bastiaan; Schuurman, Dimitri; De Marez, Lieven

    2015-01-01

    This paper discusses the Urban Living Lab approach as a way to put the Quintuple Helix model for innovation into practice. In this analysis we focus on the concepts innovation democracy, ‘mode 3’ knowledge production, the innovation ecosystem as a system of societal subsystems and socioecological transition. The empirical analysis is performed by means of a multidimensional case study design, applied on a project-based ad hoc collaborative innovation development process in an ecological doma...

  15. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation

    DEFF Research Database (Denmark)

    Charni-Ben Tabassi, N; Desmarais, S; Jensen, Anne-Christine Bay

    2008-01-01

    human recombinant cathepsins (Cats) and matrix-metalloproteases (MMPs). Next, we analyzed the spontaneous release of Helix-II and CTX-II from cartilage sections of patients with knee OA who were immediately deep frozen after joint replacement to preserve endogenous enzyme activity until assay. Cartilage....... Cat D was unable to digest intact cartilage. MMPs-1, -3, -7, -9, and -13 efficiently released CTX-II, but only small amount of Helix-II. Neither CTX-II nor Helix-II alone was able to reflect accurately the collagenolytic activity of Cats and MMPs as reflected by the release of hydroxyproline. In OA...

  16. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    CERN Document Server

    Barreiro Megino, Fernando Harald; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-01-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain ...

  17. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    CERN Multimedia

    Barreiro Megino, Fernando Harald; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2013-01-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D; investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain...

  18. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    Science.gov (United States)

    Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-06-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  19. The Impact of the ‘Austrian’ Mutation of the Amyloid Precursor Protein Transmembrane Helix is Communicated to the Hinge Region

    DEFF Research Database (Denmark)

    Stelzer, Walter; Scharnagl, Christina; Leurs, Ulrike

    2016-01-01

    The transmembrane helix of the amyloid precursor protein is subject to proteolytic cleavages by γ-secretase at different sites resulting in Aβ peptides of different length and toxicity. A number of point mutations within this transmembrane helix alter the cleavage pattern thus enhancing production...... destabilizes amide hydrogen bonds in the hinge which connects dimerization and cleavage regions. Weaker intrahelical hydrogen bonds at the hinge may enhance helix bending and thereby affect recognition of the transmembrane substrate by the enzyme and/or presentation of its cleavage sites to the catalytic cleft....

  20. Rendezvous of the "Third Kind": Triple Helix Origins and Future Possibilities

    Science.gov (United States)

    Etzkowitz, Henry

    2015-01-01

    The Triple Helix, representing university-industry-government interactions, was rooted in a 1993 International Workshop on University-Industry Relations at UNAM's Centro Para la Innovacion Technologica in Mexico City. Impelled by Mexican reality, where university-industry interactions and the institutions themselves operated within a governmental…

  1. Unpredictable responses of garden snail (Helix aspersa) populations to climate change

    NARCIS (Netherlands)

    Bezemer, T.M.; Knight, K.J.

    2001-01-01

    We studied the impact of climate change on the population dynamics of the garden snail (Helix aspersa) in the Ecotron controlled environment facility. The experimental series ran for three plant generations, allowing the snails to reproduce. We investigated the isolated and combined effects of

  2. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Wang, Feibing; Zhu, Hong; Kong, Weili; Peng, Rihe; Liu, Qingchang; Yao, Quanhong

    2016-07-01

    A basic helix-loop-helix (bHLH) transcription factor gene from Antirrhinum, AmDEL , increases flavonoids accumulation and enhances salt and drought tolerance via up-regulating flavonoid biosynthesis, proline biosynthesis and ROS scavenging genes in transgenic Arabidopsis. In plants, transcriptional regulation is the most important tools for increasing flavonoid biosynthesis. The AmDEL gene, as a basic helix-loop-helix transcription factor gene from Antirrhinum, has been shown to increase flavonoids accumulation in tomato. However, its role in tolerance to abiotic stresses has not yet been investigated. In this study, the codon-optimized AmDEL gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AmDEL protein was localized to the nucleus. Expression analysis in yeast showed that the full length of AmDEL exhibited transcriptional activation. Overexpression of AmDEL significantly increased flavonoids accumulation and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR analysis showed that overexpression of AmDEL resulted in the up-regulation of genes involved in flavonoid biosynthesis, proline biosynthesis and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol reductase, pyrroline-5-carboxylate synthase, superoxide dismutase and peroxidase were also increased. Further components analyses indicated that the significant increase of proline and relative water content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. These findings imply functions of AmDEL in accumulation of flavonoids and tolerance to salt and drought stresses. The AmDEL gene has the potential to be used to increase

  3. Use of 1–4 interaction scaling factors to control the conformational equilibrium between α-helix and β-strand

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yuan-Ping, E-mail: pang@mayo.edu

    2015-02-06

    Highlights: • 1–4 interaction scaling factors are used to adjust conformational energy. • This article reports the effects of these factors on protein conformations. • Reducing these factors changes a helix to a strand in molecular dynamics simulation. • Increasing these factors causes the reverse conformational change. • These factors control the conformational equilibrium between helix and strand. - Abstract: 1–4 interaction scaling factors are used in AMBER forcefields to reduce the exaggeration of short-range repulsion caused by the 6–12 Lennard-Jones potential and a nonpolarizable charge model and to obtain better agreements of small-molecule conformational energies with experimental data. However, the effects of these scaling factors on protein secondary structure conformations have not been investigated until now. This article reports the finding that the 1–4 interactions among the protein backbone atoms separated by three consecutive covalent bonds are more repulsive in the α-helix conformation than in two β-strand conformations. Therefore, the 1–4 interaction scaling factors of protein backbone torsions ϕ and ψ control the conformational equilibrium between α-helix and β-strand. Molecular dynamics simulations confirm that reducing the ϕ and ψ scaling factors readily converts the α-helix conformation of AcO-(AAQAA){sub 3}-NH{sub 2} to a β-strand conformation, and the reverse occurs when these scaling factors are increased. These results suggest that the ϕ and ψ scaling factors can be used to generate the α-helix or β-strand conformation in situ and to control the propensities of a forcefield for adopting secondary structure elements.

  4. The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic acid-dependent defence signalling response.

    Science.gov (United States)

    Aparicio, Frederic; Pallás, Vicente

    2017-02-01

    During virus infection, specific viral component-host factor interaction elicits the transcriptional reprogramming of diverse cellular pathways. Alfalfa mosaic virus (AMV) can establish a compatible interaction in tobacco and Arabidopsis hosts. We show that the coat protein (CP) of AMV interacts directly with transcription factor (TF) ILR3 of both species. ILR3 is a basic helix-loop-helix (bHLH) family member of TFs, previously proposed to participate in diverse metabolic pathways. ILR3 has been shown to regulate NEET in Arabidopsis, a critical protein in plant development, senescence, iron metabolism and reactive oxygen species (ROS) homeostasis. We show that the AMV CP-ILR3 interaction causes a fraction of this TF to relocate from the nucleus to the nucleolus. ROS, pathogenesis-related protein 1 (PR1) mRNAs, salicylic acid (SA) and jasmonic acid (JA) contents are increased in healthy Arabidopsis loss-of-function ILR3 mutant (ilr3.2) plants, which implicates ILR3 in the regulation of plant defence responses. In AMV-infected wild-type (wt) plants, NEET expression is reduced slightly, but is induced significantly in ilr3.2 mutant plants. Furthermore, the accumulation of SA and JA is induced in Arabidopsis wt-infected plants. AMV infection in ilr3.2 plants increases JA by over 10-fold, and SA is reduced significantly, indicating an antagonist crosstalk effect. The accumulation levels of viral RNAs are decreased significantly in ilr3.2 mutants, but the virus can still systemically invade the plant. The AMV CP-ILR3 interaction may down-regulate a host factor, NEET, leading to the activation of plant hormone responses to obtain a hormonal equilibrium state, where infection remains at a level that does not affect plant viability. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  5. The N-terminal tail of hERG contains an amphipathic α-helix that regulates channel deactivation.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS domain (residues 26-135 as well as an amphipathic α-helix (residues 13-23 and an initial unstructured segment (residues 2-9. Deletion of residues 2-25, only the unstructured segment (residues 2-9 or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel.

  6. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    Science.gov (United States)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  7. Restrictions on TWT Helix Voltage Ripple for Acceptable Notch Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Hyslop, B.

    1984-12-01

    An ac ripple on the helix voltage of the 1-2 GHz TWT's creates FM sidebands that cause amplitude and phase modulation of the microwave TWT output signal. A limit of 16 volts peak-to-peak is required for acceptable superconducting notch filter performance.

  8. Glass-like dynamics of the strain-induced coil/helix transition on a permanent polymer network.

    Science.gov (United States)

    Ronsin, O; Caroli, C; Baumberger, T

    2016-02-14

    We study the stress response to a step strain of covalently bonded gelatin gels in the temperature range where triple helix reversible crosslink formation is prohibited. We observe slow stress relaxation towards a T-dependent finite asymptotic level. We show that this is assignable to the strain-induced coil → helix transition, previously evidenced by Courty et al. [Proc. Natl. Acad. Sci. U. S. A. 102, 13457 (2005)], of a fraction of the polymer strands. Relaxation proceeds, in a first stage, according to a stretched exponential dynamics, then crosses over to a terminal simple exponential decay. The respective characteristic times τK and τf exhibit an Arrhenius-like T-dependence with an associated energy E incompatibly larger than the activation barrier height for the isomerisation process which sets the clock for an elementary coil → helix transformation event. We tentatively assign this glass-like slowing down of the dynamics to the long-range couplings due to the mechanical noise generated by the local elementary events in this random elastic medium.

  9. Structure of the membrane anchor of pestivirus glycoprotein E(rns, a long tilted amphipathic helix.

    Directory of Open Access Journals (Sweden)

    Daniel Aberle

    2014-02-01

    Full Text Available E(rns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the E(rns membrane contact, processing and secretion.

  10. Structure of the membrane anchor of pestivirus glycoprotein E(rns), a long tilted amphipathic helix.

    Science.gov (United States)

    Aberle, Daniel; Muhle-Goll, Claudia; Bürck, Jochen; Wolf, Moritz; Reißer, Sabine; Luy, Burkhard; Wenzel, Wolfgang; Ulrich, Anne S; Meyers, Gregor

    2014-02-01

    E(rns) is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the E(rns) membrane contact, processing and secretion.

  11. Unfolding four-helix bundles

    Science.gov (United States)

    Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-03-01

    A geometrical model has been developed to describe the early stages of unfolding of cytochromes c‧ and c-b562 . Calculations are based on a step-wise extension of the polypeptide chain subject to the constraint that the spatial relationship among the residues of each triplet is fixed by the native-state crystallographic data. The response of each protein to these structural perturbations allows the evolution of each of the four helices in these two proteins to be differentiated. It is found that the two external helices in c‧ unfold before its two internal helices, whereas exactly the opposite behaviour is demonstrated by c-b562 . Each of these cytochromes has an extended, internal, non-helical ('turning') region that initially lags behind the most labile helix but then, at a certain stage (identified for each cytochrome), unravels before any of the four helices present in the native structure. It is believed that these predictions will be useful in guiding future experimental studies on the unfolding of these two cytochromes.

  12. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions

    DEFF Research Database (Denmark)

    Perez-Moreno, M A; Locascio, A; Rodrigo, I

    2001-01-01

    Down-regulation of E-cadherin expression is a determinant of tumor cell invasiveness, an event frequently associated with epithelial-mesenchymal transitions. Here we show that the mouse E12/E47 basic helix-loop-helix transcription factor (the E2A gene product) acts as a repressor of E-cadherin ex......Down-regulation of E-cadherin expression is a determinant of tumor cell invasiveness, an event frequently associated with epithelial-mesenchymal transitions. Here we show that the mouse E12/E47 basic helix-loop-helix transcription factor (the E2A gene product) acts as a repressor of E...

  13. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    International Nuclear Information System (INIS)

    Megino, Fernando H Barreiro; Jones, Robert; Llamas, Ramón Medrano; Ster, Daniel van der; Kucharczyk, Katarzyna

    2014-01-01

    The recent paradigm shift toward cloud computing in IT, and general interest in 'Big Data' in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R and D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula – the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  14. Identification of a Basic Helix-Loop-Helix-Type Transcription Regulator Gene in Aspergillus oryzae by Systematically Deleting Large Chromosomal Segments▿ †

    OpenAIRE

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-01-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We con...

  15. CFD analysis and flow model reduction for surfactant production in helix reactor

    NARCIS (Netherlands)

    Nikačević, N.M.; Thielen, L.; Twerda, A.; Hof, P.M.J. van den

    2014-01-01

    Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR) were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD) simulations. Non-reactive flow is

  16. Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker.

    Directory of Open Access Journals (Sweden)

    Paloma Aivar

    Full Text Available Kv7.2 and Kv7.3 are the main components of the neuronal voltage-dependent M-current, which is a subthreshold potassium conductance that exerts an important control on neuronal excitability. Despite their predominantly intracellular distribution, these channels must reach the plasma membrane in order to control neuronal activity. Thus, we analyzed the amino acid sequence of Kv7.2 to identify intrinsic signals that may control its surface expression. Removal of the interlinker connecting helix A and helix B of the intracellular C-terminus produces a large increase in the number of functional channels at the plasma membrane. Moreover, elimination of this linker increased the steady-state amount of protein, which was not associated with a decrease of protein degradation. The magnitude of this increase was inversely correlated with the number of helix A - helix B linkers present in the tetrameric channel assemblies. In contrast to the remarkable effect on the amount of Kv7.2 protein, removal of the Kv7.2 linker had no detectable impact on the steady-state levels of Kv7.3 protein.

  17. Helix-helix inversion of an optically-inactive π-conjugated foldamer triggered by concentration changes of a single enantiomeric guest leading to a change in the helical stability.

    Science.gov (United States)

    Liu, Lijia; Ousaka, Naoki; Horie, Miki; Mamiya, Fumihiko; Yashima, Eiji

    2016-09-27

    A preferred-handed helicity induced in an optically-inactive poly(phenyleneethynylene)-based foldamer bearing carboxylic acid pendants upon complexation with a single enantiomeric diamine was subsequently inverted into the opposite helix upon further addition of the diamine, accompanied by a remarkable change in the stability of the helices.

  18. Cesium-134 assimilation and retention in the landsnail Helix aspersa Muller 1974. Its potential usefulness as bioindicator for radioactive contamination

    International Nuclear Information System (INIS)

    Alfonso, L.A.; Carvalho, F.P.

    1986-01-01

    Cesium-134 retention was experimentally studied on two groups (n=20 in each) of the land-snail Helix aspersa, labelled either through ingestion of labelled food or the radionuclide injection into the foot muscle. Cesium elimination was found to be not dependent from the labelling technique used. The mean biological half-life for Cs retention in both Helix groups was 53.6+- 0.8 d for the largest retention component, accounting for 0.88 of the initally absorbed Cs. Another experiment runned on a similar size Helix group allowed the gravimetric determination of food ingestion rate (8.8 mg/ g/day) and food assimilation efficiency (0.70+-0.20). Predictive modelling of Cs accumulation by Helix indicates a relatively high bioaccumulation potential in this species. This fact, together with the long biological half-life found for Cs retention, indicate that land snails could be used as suitable bioindicators for radioactive pollution in restrict terrestrial areas. (author)

  19. Contact Stress Analysis for Gears of Different Helix Angle Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Patil Santosh

    2014-07-01

    Full Text Available The gear contact stress problem has been a great point of interest for many years, but still an extensive research is required to understand the various parameters affecting this stress. Among such parameters, helix angle is one which has played a crucial role in variation of contact stress. Numerous studies have been carried out on spur gear for contact stress variation. Hence, the present work is an attempt to study the contact stresses among the helical gear pairs, under static conditions, by using a 3D finite element method. The helical gear pairs on which the analysis is carried are 0, 5, 15, 25 degree helical gear sets. The Lagrange multiplier algorithm has been used between the contacting pairs to determine the stresses. The helical gear contact stress is evaluated using FE model and results have also been found at different coefficient of friction, varying from 0.0 to 0.3. The FE results have been further compared with the analytical calculations. The analytical calculations are based upon Hertz and AGMA equations, which are modified to include helix angle. The commercial finite element software was used in the study and it was shown that this approach can be applied to gear design efficiently. The contact stress results have shown a decreasing trend, with increase in helix angle.

  20. Bacterial morphogenesis and the enigmatic MreB helix.

    Science.gov (United States)

    Errington, Jeff

    2015-04-01

    Work over the past decade has highlighted the pivotal role of the actin-like MreB family of proteins in the determination and maintenance of rod cell shape in bacteria. Early images of MreB localization revealed long helical filaments, which were suggestive of a direct role in governing cell wall architecture. However, several more recent, higher-resolution studies have questioned the existence or importance of the helical structures. In this Opinion article, I navigate a path through these conflicting reports, revive the helix model and summarize the key questions that remain to be answered.

  1. Mechanical evaluation of quad-helix appliance made of low-nickel stainless steel wire.

    Science.gov (United States)

    dos Santos, Rogério Lacerda; Pithon, Matheus Melo

    2013-01-01

    The objective of this study was to test the hypothesis that there is no difference between stainless steel and low-nickel stainless steel wires as regards mechanical behavior. Force, resilience, and elastic modulus produced by Quad-helix appliances made of 0.032-inch and 0.036-inch wires were evaluated. Sixty Quad-helix appliances were made, thirty for each type of alloy, being fifteen for each wire thickness, 0.032-in and 0.036-in. All the archwires were submitted to mechanical compression test using an EMIC DL-10000 machine simulating activations of 4, 6, 9, and 12 mm. Analysis of variance (ANOVA) with multiple comparisons and Tukey's test were used (p nickel stainless steel alloy had force, resilience, and elastic modulus similar to those made of stainless steel alloy.

  2. The Penta Helix Model of Innovation in Oman: An HEI Perspective

    Directory of Open Access Journals (Sweden)

    Alrence S Halibas

    2017-05-01

    Full Text Available Aim/Purpose: Countries today strategically pursue regional development and economic diversification to compete in the world market. Higher Education Institutions (HEIs are at the crux of this political strategy. The paper reviews how HEIs can propel regional socio-economic growth and development by way of research innovation and entrepreneurship. Background: Offering an academic perspective about the role of HEIs using the Penta Helix innovation network for business and social innovation, the paper discusses opportunities and challenges in gestating an innovation culture. It likewise seeks, identifies and details strategies and workable programs. Methodology: Best-practice innovation campaigns initiated by Omani HEIs in collaboration with capstone programs organized by the government were parsed from selected local and international literature. The study includes a causal analysis of innovation information contained in 40 out of 44 published OAAA Quality Audit reports about HEIs from 2009 to 2016. The best-practice programs serve as success indicators and will be used as a field metric effect a Penta Helix blueprint for innovation. Contribution: The paper discusses how HEIs can engender, nurture, drive, and sustain innovation and entrepreneurial activity by using an innovation strategic blueprint like the Penta Helix model. It gathers together the recent historical attempts at promoting innovation by HEIs. It likewise suggests the creation of a network channel to allow key players in the innovation network to share innovation information and to collaborate with each other. Furthermore, it contributes to the development of innovation culture in HEIs. Findings: Expectations run high in academia. For one, universities believe that all innovations embryonically begin within their halls. Universities–too–believe it is naturally incumbent on them to stimulate and advance innovation despite that most innovation programs are initiated by the

  3. Lead reduces shell mass in juvenile garden snails (Helix aspersa)

    International Nuclear Information System (INIS)

    Beeby, Alan; Richmond, Larry; Herpe, Florian

    2002-01-01

    A high Pb diet causes differential depression of juvenile shell mass in populations of Helix. - In an earlier paper examining inherited tolerance to Pb, the shell growth of laboratory-bred offspring of Helix aspersa from contaminated sites was compared with that of juveniles from naieve populations on dosed and undosed diets. Eight-week-old snails were fed either 500 μg g -1 Pb or a control food in competitive trials between two populations. In the first series of trials, a parental history of exposure to Pb did not confer any advantage to either of two populations (BI and MI) competing with a naieve population (LE), whether Pb was present in the diet or not. However, in the analysis of their metal concentrations reported here, LE are found to retain higher levels of Pb in the soft tissues than either BI or MI. Compared to their siblings on the unleaded diet, dosed LE and BI juveniles had lower soft tissue concentrations of Ca and Mg. Although the growth in shell height is unaffected by diet, LE and BI juveniles build lighter shells on the Pb-dosed diet, achieving around 75% of the shell mass of their controls. In contrast, the shell weights of dosed MI juveniles are depressed by only 15% and show no change in the essential metal concentrations of their soft tissues. A second experiment using five populations fed only the dosed food show that the shell weight/soft tissue weight ratios are comparable to the dosed snails of the previous experiment. Building a lighter shell thus appears to be the common response of all Helix populations to a high Pb diet, at least amongst juveniles. The reduction in its mass means that less Ca and Mg is added to the shell and, along with the lowered soft tissue concentrations observed in some populations, may be a consequence of an increased effort to excrete Pb. The possibility that the MI population shows a genotypic adaptation, perhaps as some form of modification of its Ca metabolism, is briefly discussed

  4. Antimicrobial Effects of Helix D-derived Peptides of Human Antithrombin III*

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Bhongir, Ravi K. V.; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2014-01-01

    Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix d-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense. PMID:25202017

  5. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.

    Science.gov (United States)

    Honda, Ryo; Kuwata, Kazuo

    2018-02-01

    Amyloid fibrils are filamentous protein aggregates associated with the pathogenesis of a wide variety of human diseases. The formation of such aggregates typically follows nucleation-dependent kinetics, wherein the assembly and structural conversion of amyloidogenic proteins into oligomeric aggregates (nuclei) is the rate-limiting step of the overall reaction. In this study, we sought to gain structural insights into the oligomeric nuclei of the human prion protein (PrP) by preparing a series of deletion mutants lacking 14-44 of the C-terminal 107 residues of PrP and examined the kinetics and thermodynamics of these mutants in amyloid formation. An analysis of the experimental data using the concepts of the Φ-value analysis indicated that the helix 2 region (residues 168-196) acquires an amyloid-like β-sheet during nucleation, whereas the other regions preserves a relatively disordered structure in the nuclei. This finding suggests that the helix 2 region serves as the nucleation site for the assembly of amyloid fibrils.-Honda, R., Kuwata, K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.

  6. Human telomeric DNA: G-quadruplex, i-motif and Watson–Crick double helix

    Science.gov (United States)

    Phan, Anh Tuân; Mergny, Jean-Louis

    2002-01-01

    Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson–Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C·C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[AGGG(TTAGGG)3] and d[(CCCTAA)3CCCT], we defined which structures existed and which would be the predominant species under a variety of experimental conditions. Under near-physiological conditions of pH, temperature and salt concentration, telomeric DNA was predominantly in a double-helix form. However, at lower pH values or higher temperatures, the G-quadruplex and/or the i-motif efficiently competed with the duplex. We also present kinetic and thermodynamic data for duplex association and for G-quadruplex/i-motif unfolding. PMID:12409451

  7. Academic Spin-off as Triple Helix Element: Case-Study of Russian Regions

    Directory of Open Access Journals (Sweden)

    Konstantin Ivanovich Grasmik

    2016-10-01

    Full Text Available The innovation process is becoming more open. According to the concept of the Triple Helix, this requires the creation of institutions capable of mediating the interaction of agents, primarily related to the different elements of the innovation system. The academic spin-off is not only a form of technology transfer, set up at the university but also the institution that provides the interaction of scientists and entrepreneurs. This article gives an analysis of the implementation of the program of creating academic spin-offs in Russia. The main focus of the study is to analyze the affiliation of university spin-off with other companies, including personal links of founders. Research reveals that linkages are substantially personal: University staff member at the same time could be an entrepreneur. This finding allows not only clarifying the concept of the Triple Helix but also increasing the effectiveness of innovation policy, focusing on employees who can combine science and entrepreneurship.

  8. Salt bridge interactions within the β2 integrin α7 helix mediate force-induced binding and shear resistance ability.

    Science.gov (United States)

    Zhang, Xiao; Li, Linda; Li, Ning; Shu, Xinyu; Zhou, Lüwen; Lü, Shouqin; Chen, Shenbao; Mao, Debin; Long, Mian

    2018-01-01

    The functional performance of the αI domain α 7 helix in β 2 integrin activation depends on the allostery of the α 7 helix, which axially slides down; therefore, it is critical to elucidate what factors regulate the allostery. In this study, we determined that there were two conservative salt bridge interaction pairs that constrain both the upper and bottom ends of the α 7 helix. Molecular dynamics (MD) simulations for three β 2 integrin members, lymphocyte function-associated antigen-1 (LFA-1; α L β 2 ), macrophage-1 antigen (Mac-1; α M β 2 ) and α x β 2 , indicated that the magnitude of the salt bridge interaction is related to the stability of the αI domain and the strength of the corresponding force-induced allostery. The disruption of the salt bridge interaction, especially with double mutations in both salt bridges, significantly reduced the force-induced allostery time for all three members. The effects of salt bridge interactions of the αI domain α 7 helix on β 2 integrin conformational stability and allostery were experimentally validated using Mac-1 constructs. The results demonstrated that salt bridge mutations did not alter the conformational state of Mac-1, but they did increase the force-induced ligand binding and shear resistance ability, which was consistent with MD simulations. This study offers new insight into the importance of salt bridge interaction constraints of the αI domain α 7 helix and external force for β 2 integrin function. © 2017 Federation of European Biochemical Societies.

  9. Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.

    Science.gov (United States)

    Xue, Gongda; Hemmings, Brian A

    2012-02-01

    The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.

  10. The Helix Nebula Viewed in HCO+: Large-scale Mapping of the J = 1 → 0 Transition

    Science.gov (United States)

    Zeigler, N. R.; Zack, L. N.; Woolf, N. J.; Ziurys, L. M.

    2013-11-01

    The J = 1 → 0 transition of HCO+ at 89 GHz has been mapped across the Helix Nebula (NGC 7293) with 70'' spatial resolution (1.68 km s-1 velocity resolution) using the Arizona Radio Observatory 12 m telescope. This work is the first large-scale mapping project of a dense gas tracer (n(H2) ~ 105 cm-3) in old planetary nebulae. Observations of over 200 positions encompassing the classical optical image were conducted with a 3σ noise level of ~20 mK. HCO+ was detected at most positions, often exhibiting multiple velocity components indicative of complex kinematic structures in dense gas. The HCO+ spectra suggest that the Helix is composed of a bipolar, barrel-like structure with red- and blue-shifted halves, symmetric with respect to the central star and oriented ~10° east from the line of sight. A second bipolar, higher velocity outflow exists as well, situated along the direction of the Helix "plumes." The column density of HCO+ across the Helix is N tot ~ 1.5 × 1010-5.0 × 1011 cm-2, with an average value N ave ~ 1 × 1011 cm-2, corresponding to an abundance, relative to H2, of f ~ 1.4 × 10-8. This value is similar to that observed in young PN, and contradicts chemical models, which predict that the abundance of HCO+ decreases with nebular age. This study indicates that polyatomic molecules readily survive the ultraviolet field of the central white dwarf, and can be useful in tracing nebular morphology in the very late stages of stellar evolution.

  11. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    Science.gov (United States)

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  12. Involvement of Na,K-pump in SEPYLRFamide-mediated reduction of cholinosensitivity in Helix neurons.

    Science.gov (United States)

    Pivovarov, Arkady S; Foreman, Richard C; Walker, Robert J

    2007-02-01

    SEPYLRFamide acts as an inhibitory modulator of acetylcholine (ACh) receptors in Helix lucorum neurones. Ouabain, a specific inhibitor of Na,K-pump, (0.1 mM, bath application) decreased the ACh-induced inward current (ACh-current) and increased the leak current. Ouabain decreased the modulatory SEPYLRFamide effect on the ACh-current. There was a correlation between the effects of ouabain on the amplitude of the ACh-current and on the modulatory peptide effect. Ouabain and SEPYLRFamide inhibited the activity of Helix aspersa brain Na,K-ATPase. Activation of Na,K-pump by intracellular injection of 3 M Na acetate or 3 M NaCl reduced the modulatory peptide effect on the ACh-current. An inhibitor of Na/Ca-exchange, benzamil (25 muM, bath application), and an inhibitor of Ca(2+)-pump in the endoplasmic reticulum, thapsigargin (TG, applied intracellularly), both prevented the effect of ouabain on SEPYLRFamide-mediated modulatory effect. Another inhibitor of Ca(2+)-pump in the endoplasmic reticulum, cyclopiazonic acid (applied intracellularly), did not prevent the effect of ouabain on SEPYLRFamide-mediated modulatory effect. These results indicate that Na,K-pump is responsible for the SEPYLRFamide-mediated inhibition of ACh receptors in Helix neurons. Na/Ca-exchange and intracellular Ca(2+) released from internal pools containing TG-sensitive Ca(2+)-pump are involved in the Na,K-pump pathway for the SEPYLRFamide-mediated inhibition of ACh receptors.

  13. Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein.

    Science.gov (United States)

    Prajapati, R S; Lingaraju, G M; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-12-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein. Copyright 2003 Wiley-Liss, Inc.

  14. Praevalensen afhud- og slimhindesymptomer blandt gartnere der omgås Ficus benjamina (stuebirk) og Hedera helix (vedbend). Et tvaersnitsstudie

    DEFF Research Database (Denmark)

    Jørs, Erik

    2003-01-01

    Allergic and toxic initiative symptoms from skin, eyes and respiratory tract are well known among gardeners This study reports the prevalence of these symptoms among gardeners working with Ficus Benjamina (Fb) and Hedera helix (Hh).......Allergic and toxic initiative symptoms from skin, eyes and respiratory tract are well known among gardeners This study reports the prevalence of these symptoms among gardeners working with Ficus Benjamina (Fb) and Hedera helix (Hh)....

  15. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning.

    Science.gov (United States)

    Albert, Nick W; Lewis, David H; Zhang, Huaibi; Schwinn, Kathy E; Jameson, Paula E; Davies, Kevin M

    2011-03-01

    We present an investigation of anthocyanin regulation over the entire petunia plant, determining the mechanisms governing complex floral pigmentation patterning and environmentally induced vegetative anthocyanin synthesis. DEEP PURPLE (DPL) and PURPLE HAZE (PHZ) encode members of the R2R3-MYB transcription factor family that regulate anthocyanin synthesis in petunia, and control anthocyanin production in vegetative tissues and contribute to floral pigmentation. In addition to these two MYB factors, the basic helix-loop-helix (bHLH) factor ANTHOCYANIN1 (AN1) and WD-repeat protein AN11, are also essential for vegetative pigmentation. The induction of anthocyanins in vegetative tissues by high light was tightly correlated to the induction of transcripts for PHZ and AN1. Interestingly, transcripts for PhMYB27, a putative R2R3-MYB active repressor, were highly expressed during non-inductive shade conditions and repressed during high light. The competitive inhibitor PhMYBx (R3-MYB) was expressed under high light, which may provide feedback repression. In floral tissues DPL regulates vein-associated anthocyanin pigmentation in the flower tube, while PHZ determines light-induced anthocyanin accumulation on exposed petal surfaces (bud-blush). A model is presented suggesting how complex floral and vegetative pigmentation patterns are derived in petunia in terms of MYB, bHLH and WDR co-regulators. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  16. Hierarchical axon targeting of Drosophila olfactory receptor neurons specified by the proneural transcription factors Atonal and Amos.

    Science.gov (United States)

    Okumura, Misako; Kato, Tomoko; Miura, Masayuki; Chihara, Takahiro

    2016-01-01

    Sensory information is spatially represented in the brain to form a neural map. It has been suggested that axon-axon interactions are important for neural map formation; however, the underlying mechanisms are not fully understood. We used the Drosophila antennal lobe, the first olfactory center in the brain, as a model for studying neural map formation. Olfactory receptor neurons (ORNs) expressing the same odorant receptor target their axons to a single glomerulus out of approximately 50 glomeruli in the antennal lobe. Previous studies have showed that the axons of Atonal ORNs, specified by Atonal, a basic helix-loop-helix (bHLH) transcription factor, pioneer antennal lobe formation; however, the details remain to be elucidated. Here, we show that genetic ablation of Atonal ORNs affects antennal lobe structure and axon targeting of Amos ORNs, another type of ORN specified by the bHLH transcription factor Amos. During development, Atonal ORNs reach the antennal lobe and form the axon commissure before Amos ORNs. We also found that N-cadherin knockdown specifically in Atonal ORNs disrupts the glomerular boundary in the whole antennal lobe. Our results suggest that Atonal ORNs function as pioneer axons. Thus, correct axon targeting of Atonal ORNs is essential for formation of the whole antennal lobe. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  17. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    Science.gov (United States)

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. © 2016 American Society of Plant Biologists. All rights reserved.

  18. High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers.

    Science.gov (United States)

    Doherty, Tim; Su, Yongchao; Hong, Mei

    2010-08-27

    The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional (15)N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40 degrees and two possible rotation angles differing by 180 degrees around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. (13)C-(31)P distances between the S4 backbone and the lipid (31)P indicate a approximately 9 A local thinning and 2 A average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 A from the guanidinium C(zeta) of the second Arg to (31)P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Antimicrobial effects of helix D-derived peptides of human antithrombin III.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Bhongir, Ravi K V; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2014-10-24

    Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix D-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The close-packed triple helix as a possible new structural motif for collagen

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2010-01-01

    that close packing form the underlying principle behind the structure of collagen, and the implications of this suggestion are considered. Further, it is shown that the unique zero-twist structure with no strain-twist coupling is practically identical to the close-packed triple helix. Some...

  1. Helix Nebula - the Science Cloud: a public-private partnership to build a multidisciplinary cloud platform for data intensive science

    Science.gov (United States)

    Jones, Bob; Casu, Francesco

    2013-04-01

    The feasibility of using commercial cloud services for scientific research is of great interest to research organisations such as CERN, ESA and EMBL, to the suppliers of cloud-based services and to the national and European funding agencies. Through the Helix Nebula - the Science Cloud [1] initiative and with the support of the European Commission, these stakeholders are driving a two year pilot-phase during which procurement processes and governance issues for a framework of public/private partnership will be appraised. Three initial flagship use cases from high energy physics, molecular biology and earth-observation are being used to validate the approach, enable a cost-benefit analysis to be undertaken and prepare the next stage of the Science Cloud Strategic Plan [2] to be developed and approved. The power of Helix Nebula lies in a shared set of services for initially 3 very different sciences each supporting a global community and thus building a common e-Science platform. Of particular relevance is the ESA sponsored flagship application SuperSites Exploitation Platform (SSEP [3]) that offers the global geo-hazard community a common platform for the correlation and processing of observation data for supersites monitoring. The US-NSF Earth Cube [4] and Ocean Observatory Initiative [5] (OOI) are taking a similar approach for data intensive science. The work of Helix Nebula and its recent architecture model [6] has shown that is it technically feasible to allow publicly funded infrastructures, such as EGI [7] and GEANT [8], to interoperate with commercial cloud services. Such hybrid systems are in the interest of the existing users of publicly funded infrastructures and funding agencies because they will provide "freedom of choice" over the type of computing resources to be consumed and the manner in which they can be obtained. But to offer such freedom-of choice across a spectrum of suppliers, various issues such as intellectual property, legal responsibility

  2. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sitakanta ePattanaik

    2014-06-01

    Full Text Available Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors: the R2R3 MYB, basic helix-loop-helix (bHLH and WD40 repeat (WDR protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS, highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay

  3. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.

    Science.gov (United States)

    Shelar, Ashish; Bansal, Manju

    2014-12-01

    α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. © 2014 Wiley Periodicals, Inc.

  4. Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator

    International Nuclear Information System (INIS)

    Zhang, Y.; Liu, J.L.; Feng, J.H.

    2012-01-01

    In this paper, the tape-helix model is introduced in the field of intense electron beam accelerator to analyze the dispersion effects on the electromagnetic parameters of helical Blumlein pulse forming line (PFL). Work band and dispersion relation of the PFL are analyzed, and the normalized coefficients of spatial harmonics are calculated. Dispersion effects on the important electromagnetic parameters of PFL, such as phase velocity, slow-wave coefficient, electric length and pulse duration, are analyzed as the central topic. In the PFL, electromagnetic waves with different frequencies in the work band of PFL have almost the same phase velocity. When de-ionized water, transformer oil and air are used as the PFL filling dielectric, respectively, the pulse duration of the helical Blumlein PFL is calculated as 479.6 ns, 81.1 ns and 53.1 ns in order. Electromagnetic wave simulation and experiments are carried out to demonstrate the theoretical calculations of the electric length and pulse duration which directly describe the phase velocity and dispersion of the PFL. Simulation results prove the theoretical analysis and calculation on pulse duration. Experiment is carried out based on the tape-helix Blumlein PFL and magnetic switch system. Experimental results show that the pulse durations are tested as 460 ns, 79 ns and 49 ns in order when de-ionized water, transformer oil and air are used respectively. Experimental results basically demonstrate the theoretical calculations and the analyses of dispersion. (authors)

  5. FPGA helix tracking algorithm for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yutie; Galuska, Martin; Gessler, Thomas; Hu, Jifeng; Kuehn, Wolfgang; Lange, Jens Soeren; Muenchow, David; Spruck, Bjoern [II. Physikalisches, Giessen University (Germany); Ye, Hua [II. Physikalisches, Giessen University (Germany); Institute of High Energy Physics, Beijing (China); Collaboration: PANDA-Collaboration

    2014-07-01

    The PANDA detector is a general-purpose detector for physics with high luminosity cooled antiproton beams, planed to operate at the FAIR facility in Darmstadt, Germany. The central detector includes a silicon Micro Vertex Detector (MVD) and a Straw Tube Tracker (STT). Without any hardware trigger, large amounts of raw data are streaming into the data acquisition system. The data reduction task is performed in the online system by reconstruction algorithms programmed in VHDL (Very High Speed Integrated Circuit Hardware Description Language) on FPGAs (Field Programmable Gate Arrays) as first level and on a farm of GPUs or PCs as a second level. One important part in the system is the online track reconstruction. In this presentation, an online tracking finding algorithm for helix track reconstruction in the solenoidal field is shown. A performance study using C++ and the status of the VHDL implementation are presented.

  6. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    Science.gov (United States)

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  7. The basic tilted helix bundle domain of the prolyl isomerase FKBP25 is a novel double-stranded RNA binding module

    Science.gov (United States)

    Dilworth, David; Bonnafous, Pierre; Edoo, Amiirah Bibi; Bourbigot, Sarah; Pesek-Jardim, Francy; Gudavicius, Geoff; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.

    2017-01-01

    Abstract Prolyl isomerases are defined by a catalytic domain that facilitates the cis–trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets. PMID:29036638

  8. Mechanical evaluation of space closure loops in orthodontics.

    Science.gov (United States)

    Rodrigues, Eduardo Uggeri; Maruo, Hiroshi; Guariza Filho, Odilon; Tanaka, Orlando; Camargo, Elisa Souza

    2011-01-01

    This study evaluated the mechanical performance of teardrop-shaped loops and teardrop-shaped loops with helix used in orthodontic space closure. Sixty retraction loops made with 0.019" x 0.025" stainless steel (SS) and beta-titanium (BT) wires were used. They were attached to a testing machine to measure the magnitudes of the sagittal force and the load-deflection ratio necessary for 1 mm, 2 mm and 3 mm activation. The results demonstrated that the BT alloy presented significantly smaller mean values (p < 0.01) of sagittal force and load-deflection than the SS alloy. The loop with the highest mean value of sagittal force and load-deflection was the teardrop-shaped loop (p < 0.01). Differences were observed in the mean values of sagittal force and load-deflection among activations, and the highest mean value was found in the activation of 3 mm, while the smallest mean value was evident in the activation of 1 mm (p < 0.01). It could be concluded that the metallic alloy used and the presence of a helix in configuration of the loops may have a strong influence on the sagittal force produced and on the load-deflection ratio; the teardrop-shaped loops and teardrop-shaped loops with helix in BT presented the release of lighter forces; the teardrop-shaped loop in SS generated a high load-deflection ratio, providing high magnitudes of horizontal force during its deactivation.

  9. Mechanical evaluation of space closure loops in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Uggeri Rodrigues

    2011-02-01

    Full Text Available This study evaluated the mechanical performance of teardrop-shaped loops and teardrop-shaped loops with helix used in orthodontic space closure. Sixty retraction loops made with 0.019" x 0.025" stainless steel (SS and beta-titanium (BT wires were used. They were attached to a testing machine to measure the magnitudes of the sagittal force and the load-deflection ratio necessary for 1 mm, 2 mm and 3 mm activation. The results demonstrated that the BT alloy presented significantly smaller mean values (p < 0.01 of sagittal force and load-deflection than the SS alloy. The loop with the highest mean value of sagittal force and load-deflection was the teardrop-shaped loop (p < 0.01. Differences were observed in the mean values of sagittal force and load-deflection among activations, and the highest mean value was found in the activation of 3 mm, while the smallest mean value was evident in the activation of 1 mm (p < 0.01. It could be concluded that the metallic alloy used and the presence of a helix in configuration of the loops may have a strong influence on the sagittal force produced and on the load-deflection ratio; the teardrop-shaped loops and teardrop-shaped loops with helix in BT presented the release of lighter forces; the teardrop-shaped loop in SS generated a high load-deflection ratio, providing high magnitudes of horizontal force during its deactivation.

  10. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab and single chain variable fragment (ScFv antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations.

    Directory of Open Access Journals (Sweden)

    John M Louis

    Full Text Available We previously reported a series of antibodies, in fragment antigen binding domain (Fab formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066 and non-neutralizing (8062 antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥ 150-fold in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.

  11. FPGA helix tracking algorithm for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yutie; Galuska, Martin; Gessler, Thomas; Kuehn, Wolfgang; Lange, Jens Soeren; Muenchow, David [II. Physikalisches Institut, University of Giessen (Germany); Ye, Hua [Institute of High Energy Physics, CAS (China); Collaboration: PANDA-Collaboration

    2016-07-01

    The PANDA detector is a general-purpose detector for physics with high luminosity cooled antiproton beams, planed to operate at the FAIR facility in Darmstadt, Germany. The central detector includes a silicon Micro Vertex Detector (MVD) and a Straw Tube Tracker (STT). Without any hardware trigger, large amounts of raw data are streaming into the data acquisition system. The data reduction task is performed in the online system by reconstruction algorithms programmed on FPGAs (Field Programmable Gate Arrays) as first level and on a farm of GPUs or PCs as a second level. One important part in the system is the online track reconstruction. In this presentation, an online tracking algorithm for helix tracking reconstruction in the solenoidal field is shown. The VHDL-based algorithm is tested with different types of events, at different event rate. Furthermore, a study of T0 extraction from the tracking algorithm is performed. A concept of simultaneous tracking and T0 determination is presented.

  12. Triple helix networks matching knowledge demand and supply in seven Dutch horticulture Greenport regions

    NARCIS (Netherlands)

    Geerling-Eiff, Florentien A.; Hoes, Anne-Charlotte; Dijkshoorn-Dekker, Marijke

    2017-01-01

    This paper investigates the triple helix (industry, knowledge workers and governments) cooperation on knowledge co-production and valorisation for innovation, which took place in seven horticultural regions in the Netherlands. It thus provides more empirical insight into the functioning of this form

  13. Networks of entrepreneurs driving the Triple Helix: two cases of the Dutch energy system

    NARCIS (Netherlands)

    Werker, C.; Ubacht, J.; Ligtvoet, A.

    2017-01-01

    Entrepreneurs are often envisioned as small private start-up firms operating against all odds. Here, we investigate how in the context of the Triple Helix various entrepreneurs form communities and drive institutional and technological change. To theoretically shape a socialized view of

  14. Influence of season, temperature, and photoperiod on growth of the land snail Helix aperta

    NARCIS (Netherlands)

    Benbellil-Tafoughalt, S.; Koene, J.M.

    2015-01-01

    Growth strategies are often plastic and influenced by environmental conditions. Terrestrial gastropods are particularly affected by seasonal and climatic variables, and growth rate and size at maturity are key traits in their life history. Therefore, we investigated juvenile growth of Helix aperta

  15. PRESSURE - WATER and Other Data from ALPHA HELIX from 19981002 to 19990513 (NODC Accession 9900149)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profiles were collected from CTD casts from the Alpha Helix from 02 October 1998 to 13 May 1999. These 6 CTD data sets are from two...

  16. Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell

    Directory of Open Access Journals (Sweden)

    Chia-Hua Yu

    2017-10-01

    Full Text Available This work demonstrates a simple approach for obtaining a well-aligned uniform lying helix (ULH texture and a tri-bistable feature at ambient temperature in a typical 90°-twisted cell filled with a short-pitch cholesteric liquid crystal. This ULH texture is obtained at room temperature from initially field-induced helix-free homeotropic state by gradually decreasing the applied voltage. Depending on the way and rate of reducing the voltage, three stable states (i.e., Grandjean planar, focal conic, and ULH are generated and switching between any two of them is realized. Moreover, the electrical operation of the cell in the ULH state enables the tunability in phase retardation via the deformation of the ULH. The observations made in this work may be useful for applications such as tunable phase modulators and energy-efficient photonic devices.

  17. BAROMETRIC PRESSURE and Other Data from ALPHA HELIX from 19971010 to 19980514 (NODC Accession 9800119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hydrophysical, hydrochemical, and other data were collected from CTD casts in the Gulf of Alaska from the R/V Alpha Helix from 10 October 1997 to 14 May 1998. Data...

  18. Evaluation of a Pilot Surveillance System: Health and Environment Linked for Information Exchange in Atlanta (HELIX-Atlanta)

    Science.gov (United States)

    Meyer, P.; Shire, J.; Qualters, Judy; Daley, Randolph; Fiero, Leslie Todorov; Autry, Andy; Avchen, Rachel; Stock, Allison; Correa, Adolofo; Siffel, Csaba; hide

    2007-01-01

    CDC and its partners established the Health and Environment Linked for Information Exchange, Atlanta (HELIX-Atlanta) demonstration project, to develop linking and analysis methods that could be used by the National Environmental Public Health Tracking (EPHT) Network. Initiated in October 2003, the Metropolitan Atlanta-based collaborative conducted four projects: asthma and particulate air pollution, birth defects and ozone and particulate air pollution, childhood leukemia and traffic emissions, and children's blood lead testing and neighborhood risk factors for lead poisoning. This report provides an overview of the HELIX-Atlanta projects' goals, methods and outcomes. We discuss priority attributes and common issues and challenges and offer recommendations for implementation of the nascent national environmental public health tracking network.

  19. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Saikat; Shi, Heliang; Habte, Habtom H.; Qin, Yali; Cho, Michael W., E-mail: mcho@iastate.edu

    2016-03-15

    The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; {sup 671}NWFDITNWLWYIK{sup 683}) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies in rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies. - Highlights: • Four gp41 MPER-based immunogens that resemble fusion intermediates were generated. • C-terminal region of MPER that contains 4E10/10E8 epitopes was highly immunogenic. • Altering 6HB structure can influence immunogenic properties of the MPER. • Induced antibodies targeted multiple residues critical for 4E10/10E8 binding. • Development of immunogens based on fusion intermediates is a promising strategy.

  20. Enhancing the innovative capacity of small firms through triple helix interactions : challenges and opportunities

    NARCIS (Netherlands)

    Ranga, Liana Marina; Miedema, Joost; Jorna, Rene

    2008-01-01

    This paper presents the results of a recent exploratory study aiming to enhance the innovative capacity of small firms in the Northern Netherlands, a region lagging behind the rest of the country in terms of economic growth and innovative capacity. The triple helix perspective is adopted to examine

  1. Microbiological and chemical evaluation of Helix spp. snails from local and non-EU markets, utilised as food in Sardinia

    Directory of Open Access Journals (Sweden)

    Arianna Corda

    2014-04-01

    Full Text Available With this study, 28 pools of snails of the genus Helix, respectively Helix aspersa (n=24 and Helix vermiculata (n=4 were analysed. They were taken from snail farming and stores. The snails were from Sardinia, other regions of Italy, and from abroad. All the samples were examined as pool looking for these microbiological target: Salmonella spp., Listeria monocytogenes, Escherichia coli O157, Clostridium perfringens, Norovirus and Hepatitis A Virus (HAV. In the same pools, the concentration of cadmium and lead by inductively coupled plasma mass spectrometry was also determined. The levels of these heavy metals were quite high, especially for cadmium. Two samples were positive for Salmonella spp., while no sample was positive for Escherichia coli O157, HAV and Norovirus. Two samples were positive for Clostridium perfringens and 8 for Listeria monocytogenes. The microrganisms related to Listeria monocytogenes were identified using biochemical techniques, then serotyped and gene sequenced by multiple loci sequence typing technique. Furthermore, antimicrobial restistence was tested on the same samples.

  2. The Birth of a Black Rice Gene and Its Local Spread by Introgression.

    Science.gov (United States)

    Oikawa, Tetsuo; Maeda, Hiroaki; Oguchi, Taichi; Yamaguchi, Takuya; Tanabe, Noriko; Ebana, Kaworu; Yano, Masahiro; Ebitani, Takeshi; Izawa, Takeshi

    2015-09-01

    The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice. © 2015 American Society of Plant Biologists. All rights reserved.

  3. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1 transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding.

  4. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.

    Science.gov (United States)

    Liu, Yujia; Ji, Xiaoyu; Nie, Xianguang; Qu, Min; Zheng, Lei; Tan, Zilong; Zhao, Huimin; Huo, Lin; Liu, Shengnan; Zhang, Bing; Wang, Yucheng

    2015-08-01

    Plant basic helix-loop-helix (bHLH) transcription factors play essential roles in abiotic stress tolerance. However, most bHLHs have not been functionally characterized. Here, we characterized the functional role of a bHLH transcription factor from Arabidopsis, AtbHLH112, in response to abiotic stress. AtbHLH112 is a nuclear-localized protein, and its nuclear localization is induced by salt, drought and abscisic acid (ABA). In addition, AtbHLH112 serves as a transcriptional activator, with the activation domain located at its N-terminus. In addition to binding to the E-box motifs of stress-responsive genes, AtbHLH112 binds to a novel motif with the sequence 'GG[GT]CC[GT][GA][TA]C' (GCG-box). Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by increasing the expression of P5CS genes and reducing the expression of P5CDH and ProDH genes to increase proline levels. AtbHLH112 also increases the expression of POD and SOD genes to improve reactive oxygen species (ROS) scavenging ability. We present a model suggesting that AtbHLH112 is a transcriptional activator that regulates the expression of genes via binding to their GCG- or E-boxes to mediate physiological responses, including proline biosynthesis and ROS scavenging pathways, to enhance stress tolerance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Synergistic nuclear import of NeuroD1 and its partner transcription factor, E47, via heterodimerization

    International Nuclear Information System (INIS)

    Mehmood, Rashid; Yasuhara, Noriko; Oe, Souichi; Nagai, Masahiro; Yoneda, Yoshihiro

    2009-01-01

    The transition from undifferentiated pluripotent cells to terminally differentiated neurons is coordinated by a repertoire of transcription factors. NeuroD1 is a type II basic helix loop helix (bHLH) transcription factor that plays critical roles in neuronal differentiation and maintenance in the central nervous system. Its dimerization with E47, a type I bHLH transcription factor, leads to the transcriptional regulation of target genes. Mounting evidence suggests that regulating the localization of transcription factors contributes to the regulation of their activity during development as defects in their localization underlie a variety of developmental disorders. In this study, we attempted to understand the nuclear import mannerisms of NeuroD1 and E47. We found that the nuclear import of NeuroD1 and E47 is energy-dependent and involves the Ran-mediated pathway. Herein, we demonstrate that NeuroD1 and E47 can dimerize inside the cytoplasm before their nuclear import. Moreover, this dimerization promotes nuclear import as the nuclear accumulation of NeuroD1 was enhanced in the presence of E47 in an in vitro nuclear import assay, and NLS-deficient NeuroD1 was successfully imported into the nucleus upon E47 overexpression. NeuroD1 also had a similar effect on the nuclear accumulation of NLS-deficient E47. These findings suggest a novel role for dimerization that may promote, at least partially, the nuclear import of transcription factors allowing them to function efficiently in the nucleus.

  6. Novel Plasma Reactor with Rotary Helix Electrode Used in Coupling of CH4 at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Wang Dawang; Ma Tengcai

    2006-01-01

    At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C 2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C 2 yield per pass was 69.85% and C 2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate

  7. Trace metallic elements in Helix aspersa terrestrial snails of a semiarid ecosystem; Elementos metalicos traza en caracoles terrestres Helix aspersa de un ecosistema semiarido

    Energy Technology Data Exchange (ETDEWEB)

    Gaso P, M.I.; Segovia, N.; Zarazua, G.; Montes, F. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Morton, O.; Armienta, M.A.; Hernandez, E. [IGF-UNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2001-07-01

    The concentration of some major elements and traces in soil samples and of Helix aspersa eatable terrestrial snails were analysed at the Radioactive Wastes Storage Center (CADER) and in other reference sites. The methodology includes the use of an atomic absorption spectrophotometer, an X-ray fluorescence equipment and an Icp-mass spectroscope. The concentrations of some toxic elements (Ba, Cd, Cr, Ni, Pb and V) in the soft tissue of the snails were greater than the toxic levels reported in the literature for such trace elements. The snails compared with another wild eatable foods present transfer coefficients soil-snail high relatively. (Author)

  8. Open Innovation, Triple Helix and Regional Innovation Systems: Exploring CATAPULT Centres in the UK

    Science.gov (United States)

    Kerry, Christopher; Danson, Michael

    2016-01-01

    Through the lens of UK CATAPULT Centres this conceptual paper presents an examination of the links between open innovation, the Triple Helix model and regional innovation systems. Highlighting the importance of boundary-spanning intermediaries, the combined role of these concepts is explored in detail. A conceptual model is then proposed which…

  9. Health and Environment Linked for Information Exchange (HELIX)-Atlanta: A CDC-NASA Joint Environmental Public Health Tracking Collaborative Project

    Science.gov (United States)

    Al-Hamdan, Mohammad; Luvall, Jeff; Crosson, Bill; Estes, Maury; Limaye, Ashutosh; Quattrochi, Dale; Rickman, Doug

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstration projects which could be part of the CDC EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  10. Private Venture Capital’s Investment on University Spin-Offs: A Case Study of Tsinghua University Based on Triple Helix Model

    DEFF Research Database (Denmark)

    Gao, Yuchen; Hu, Yimei; Wang, Jingyi

    2015-01-01

    and transition economies where governments are transforming their roles. Thus the main purpose of this study is to investigate how private venture capitals’ investment willingness on university spin-offs are influenced by universities and governments under the Chinese context based on the triple helix model....... Through an in-depth case study on the interactions of triple helix actors of Tsinghua University’s spin-offs, it is found that government and university developing an environment of marketization exert positive influences on the investment willingness of private venture capitals. Whilst financial direct...

  11. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  12. Identification of helix capping and β-turn motifs from NMR chemical shifts

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13 C β chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  13. Frictional pressure drop of steam-water two-phase flow in helical coils with small helix diameter of HTR-10

    International Nuclear Information System (INIS)

    Bi Qincheng; Chen Tingkuan; Luo Yushan; Zheng Jianxue

    1996-01-01

    Experiments of steam-water two-phase flow frictional pressure drop through five vertically and horizontally positioned helical coils were carried out in the high pressure steam water test loop of Xi'an Jiaotong University. Two kinds of tube with inner diameters of 10 mm and 12 mm were used to form the coils. The helix diameter was 115 mm with coil pitch 22.5 mm. The experimental conditions were: pressure p = 4-14 MPa, mass velocity G = 400-2000 kg/(m 2 ·s), and inner wall heat flux q = 0-750 kW/m 2 . Theoretical analysis with a semi-empirical correlation was made to predict the two-phase flow fictional pressure drop through these kinds of helical coils

  14. Determination of the force systems produced by different configurations of tear drop orthodontic loops

    Directory of Open Access Journals (Sweden)

    Guilherme Thiesen

    2013-04-01

    Full Text Available OBJECTIVE: To determine the mechanical characteristics of teardrop loop with and without helix fabricated using different metal alloy compositions (stainless steel and beta-titanium, submitted to different intensities of bends preactivation (0º and 40º, and with different cross-sectional dimension of the wire used to build these loops (0.017 x 0.025-in and 0.019 x 0.025-in. METHODS: Eighty loops used to close spaces were submitted to mechanical tests. The magnitudes of horizontal force, the moment/force ratio, and the load/deflection ratio produced by the specimens were quantified. Loops were submitted to a total activation of 5.0 mm and the values were registered for each 1.0 mm of activation. For statistic data analysis, a analysis of variance was performed and a Tukey's Multiple Comparison test was used as supplement, considering a 5% level of significance. RESULTS: In general, teardrop loops with helix produced lower magnitudes of horizontal force and load/deflection ratio, and higher moment/force ratio than teardrop loops without helix. Among all analyzed variables, metal alloy composition presented greater influence in the horizontal force and in the load/deflection ratio. The moment/force ratio showed to be more influenced by the preactivation of loops for space closure.

  15. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France); Boublik, Yvan [CNRS, UMR5237, Centre de Recherche de Biochimie Macromoléculaire (CRBM), 34293 Montpellier (France); Pérez, Efrèn [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Germain, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), BP 10142, 67404 Illkirch CEDEX (France); Lera, Angel R. de [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Bourguet, William, E-mail: bourguet@cbs.cnrs.fr [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France)

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  16. Fabrication experiments for large helix heat exchangers

    International Nuclear Information System (INIS)

    Burgsmueller, P.

    1978-01-01

    The helical tube has gained increasing attention as a heat transfer element for various kinds of heat exchangers over the last decade. Regardless of reactor type and heat transport medium, nuclear steam generators of the helix type are now in operation, installlation, fabrication or in the project phase. As a rule, projects are based on the extrapolation of existing technologies. In the particlular case of steam generators for HTGR power stations, however, existing experience is with steam generators of up to about 2 m diameter whereas several projects involve units more than twice as large. For this reason it was felt that a fabrication experiment was necessary in order to verify the feasibility of modern steam generator designs. A test rig was erected in the SULZER steam generator shops at Mantes, France, and skilled personnel and conventional production tools were employed in conducting experiments relating to the coiling, handling and threading of large helices. (Auth.)

  17. Chain length dependence of the helix orientation in Langmuir-Blodgett monolayers of alpha-helical diblock copolypeptides

    NARCIS (Netherlands)

    Nguyen, Le-Thu T.; Ardana, Aditya; Vorenkamp, Eltjo J.; ten Brinke, Gerrit; Schouten, Arend J.

    2010-01-01

    The effect of chain length on the helix orientation of alpha-helical diblock copolypeptides in Langmuir and Langmuir-Blodgett monolayers is reported for the first time. Amphiphilic diblock copolypeptides (PLGA-b-PMLGSLGs) of poly(alpha-L-glutamic acid) (PLGA) and

  18. "helix Nebula - the Science Cloud", a European Science Driven Cross-Domain Initiative Implemented in via AN Active Ppp Set-Up

    Science.gov (United States)

    Lengert, W.; Mondon, E.; Bégin, M. E.; Ferrer, M.; Vallois, F.; DelaMar, J.

    2015-12-01

    Helix Nebula, a European science cross-domain initiative building on an active PPP, is aiming to implement the concept of an open science commons[1] while using a cloud hybrid model[2] as the proposed implementation solution. This approach allows leveraging and merging of complementary data intensive Earth Science disciplines (e.g. instrumentation[3] and modeling), without introducing significant changes in the contributors' operational set-up. Considering the seamless integration with life-science (e.g. EMBL), scientific exploitation of meteorological, climate, and Earth Observation data and models open an enormous potential for new big data science. The work of Helix Nebula has shown that is it feasible to interoperate publicly funded infrastructures, such as EGI [5] and GEANT [6], with commercial cloud services. Such hybrid systems are in the interest of the existing users of publicly funded infrastructures and funding agencies because they will provide "freedom and choice" over the type of computing resources to be consumed and the manner in which they can be obtained. But to offer such freedom and choice across a spectrum of suppliers, various issues such as intellectual property, legal responsibility, service quality agreements and related issues need to be addressed. Finding solutions to these issues is one of the goals of the Helix Nebula initiative. [1] http://www.egi.eu/news-and-media/publications/OpenScienceCommons_v3.pdf [2] http://www.helix-nebula.eu/events/towards-the-european-open-science-cloud [3] e.g. https://sentinel.esa.int/web/sentinel/sentinel-data-access [5] http://www.egi.eu/ [6] http://www.geant.net/

  19. Effect of TFE on the Helical Content of AK17 and HAL-1 Peptides: Theoretical Insights into the Mechanism of Helix Stabilization.

    Science.gov (United States)

    Vymětal, Jiří; Bednárová, Lucie; Vondrášek, Jiří

    2016-02-18

    Fluorinated alcohols such as 2,2,2-trifluoroethanol (TFE) are among the most frequently used cosolvents in experiment studies of peptides. They have significant effects on secondary structure and a particularly strong promotion of α-helix is induced by TFE. In this study we validated recently proposed force field parameters for TFE in molecular dynamics simulations with two model peptides-alanine-rich AK-17 and antimicrobial peptide halictine-1 (HAL-1). In the case of HAL-1, we characterized the effect of TFE on this peptide experimentally by ECD spectroscopy. Our TFE model in question reproduced the helix-promoting effect of TFE and provided insight into the mechanisms of TFE action on peptides. Our simulations confirmed the preferential interaction of TFE molecules with α-helices, although the TFE molecules accumulate in the vicinity of the peptides in various conformations. Moreover, we observed a significant effect of TFE on the thermodynamics of the helix-coil transition and a change in local conformational preferences in the unfolded (coil) state induced by TFE. In addition, our simulation-based analysis suggests that different mechanisms participate in helix stabilization in both model peptides in water and TFE solution. Our results thus support the picture of complex TFE action on peptides that is further diversified by the identity and intrinsic properties of the peptide.

  20. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yo Han; Woo, Sang-Wook; Jung, Hye-Ran; Yu, Hyung Kyun; Kim, Kitae; Oh, Byung Hun; Ahn, Soonho; Kim, Je Young [Battery R and D, LG Chem, Ltd., 104-1 Moonji-dong, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Sang-Young [School of Chemical Engineering, Kangwon National University, Chuncheon, Kangwondo (Korea, Republic of); Song, Seung-Wan [Graduate School of Green Energy Technology, Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon (Korea, Republic of); Cho, Jaephil [School of Energy Engineering and Converging Research Center for Innovative Battery Technologies, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of); Shin, Heon-Cheol [School of Materials Science and Engineering, Pusan National University, Busan (Korea, Republic of)

    2012-10-02

    The mechanical flexibility of a cable-type battery reaches levels far beyond what is possible with conventional designs. The hollow-spiral (helical) multi-helix anode architecture is critical to the robustness under mechanical stress and facilitates electrolyte wetting of the battery components. This design enables the battery to reliably power an LED screen or an MP3 player even under severe mechanical twisting and bending. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Modeling of arylamide helix mimetics in the p53 peptide binding site of hDM2 suggests parallel and anti-parallel conformations are both stable.

    Directory of Open Access Journals (Sweden)

    Jonathan C Fuller

    Full Text Available The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix.

  2. CAXIAS DO SUL TECHNOLOGY INCUBATOR: TECHNOLOGICAL INNOVATION THROUGH THE TRIPLE HELIX

    Directory of Open Access Journals (Sweden)

    Priscila Bresolin Tisott

    2014-09-01

    on investment in the form of registered patents, attracting new students and recognition as a technological, entrepreneurial and innovative university. The perceived benefits for the industrial sector are training and development for businesses and entrepreneurs, while the municipal government perceives the reduced number of businesses failing and the financial returns, in the form of taxes, as benefits. The findings show that the Triple Helix concept developed by Etzkowitz (2009 plays a cooperative and participatory role in the Technology Incubator, even though it could be applied to more segments of society.

  3. Phason thermal transport of three-helix state in insulating chiral magnets

    Science.gov (United States)

    Tatara, Gen

    2018-06-01

    Thermal dynamics of the three-helix state in a chiral magnet is studied based on a phason representation. Although phason representation is convenient for intuitive description, it is not straightforwardly compatible with microscopic linear response calculation of transport phenomena, because it is a (semi)macroscopic picture obtained by a coarse graining. By separating the slow phason mode and fast magnon mode, we show that phason thermal dynamics is driven by thermal magnon flow via the spin-transfer effect. The magnon and phason velocities are calculated by use of thermal vector potential formalism.

  4. Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.

    Science.gov (United States)

    Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning

    2017-12-01

    The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.

  5. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  6. When Triple Helix Unravels: A Multi-Case Analysis of Failures in Industry-University Cooperative Research Centres

    Science.gov (United States)

    Gray, Denis; Sundstrom, Eric; Tornatzky, Louis G.; McGowen, Lindsey

    2011-01-01

    Cooperative research centres (CRCs) increasingly foster Triple Helix (industry-university-government) collaboration and represent significant vehicles for cooperation across sectors, the promotion of knowledge and technology transfer and ultimately the acceleration of innovation. A growing social science literature on CRCs focuses on their…

  7. Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Ying; Xu, Zhixiong; Xie, Jingping [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Ham, Amy-Joan L. [Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Koury, Mark J. [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Tennessee Valley VA Healthcare System, Nashville, TN 37212 (United States); Hiebert, Scott W. [Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Brandt, Stephen J., E-mail: stephen.brandt@vanderbilt.edu [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Tennessee Valley VA Healthcare System, Nashville, TN 37212 (United States)

    2009-12-11

    The TAL1 (or SCL) gene, originally discovered through its involvement by a chromosomal translocation in T-cell acute lymphoblastic leukemia, encodes a basic helix-loop-helix (bHLH) transcription factor essential for hematopoietic and vascular development. To identify its interaction partners, we expressed a tandem epitope-tagged protein in murine erythroleukemia (MEL) cells and characterized affinity-purified Tal1-containing complexes by liquid chromatography-tandem mass spectrometry analysis. In addition to known interacting proteins, two proteins related to the Eight-Twenty-One (ETO) corepressor, Eto2/Mtg16 and Mtgr1, were identified from the peptide fragments analyzed. Tal1 interaction with Eto2 and Mtgr1 was verified by coimmunoprecipitation analysis in Tal1, Eto2-, and Mtgr1-transfected COS-7 cells, MEL cells expressing V5 epitope-tagged Tal1 protein, and non-transfected MEL cells. Mapping analysis with Gal4 fusion proteins demonstrated a requirement for the bHLH domain of Tal1 and TAF110 domain of Eto2 for their interaction, and transient transfection and glutathione S-transferase pull-down analysis showed that Mtgr1 and Eto2 enhanced the other's association with Tal1. Enforced expression of Eto2 in differentiating MEL cells inhibited the promoter of the Protein 4.2 (P4.2) gene, a direct target of TAL1 in erythroid progenitors, and transduction of Eto2 and Mtgr1 augmented Tal1-mediated gene repression. Finally, chromatin immunoprecipitation analysis revealed that Eto2 occupancy of the P4.2 promoter in MEL cells decreased with differentiation, in parallel with a decline in Eto2 protein abundance. These results identify Eto2 and Mtgr1 as authentic interaction partners of Tal1 and suggest they act as heteromeric corepressors of this bHLH transcription factor during erythroid differentiation.

  8. Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors

    International Nuclear Information System (INIS)

    Cai, Ying; Xu, Zhixiong; Xie, Jingping; Ham, Amy-Joan L.; Koury, Mark J.; Hiebert, Scott W.; Brandt, Stephen J.

    2009-01-01

    The TAL1 (or SCL) gene, originally discovered through its involvement by a chromosomal translocation in T-cell acute lymphoblastic leukemia, encodes a basic helix-loop-helix (bHLH) transcription factor essential for hematopoietic and vascular development. To identify its interaction partners, we expressed a tandem epitope-tagged protein in murine erythroleukemia (MEL) cells and characterized affinity-purified Tal1-containing complexes by liquid chromatography-tandem mass spectrometry analysis. In addition to known interacting proteins, two proteins related to the Eight-Twenty-One (ETO) corepressor, Eto2/Mtg16 and Mtgr1, were identified from the peptide fragments analyzed. Tal1 interaction with Eto2 and Mtgr1 was verified by coimmunoprecipitation analysis in Tal1, Eto2-, and Mtgr1-transfected COS-7 cells, MEL cells expressing V5 epitope-tagged Tal1 protein, and non-transfected MEL cells. Mapping analysis with Gal4 fusion proteins demonstrated a requirement for the bHLH domain of Tal1 and TAF110 domain of Eto2 for their interaction, and transient transfection and glutathione S-transferase pull-down analysis showed that Mtgr1 and Eto2 enhanced the other's association with Tal1. Enforced expression of Eto2 in differentiating MEL cells inhibited the promoter of the Protein 4.2 (P4.2) gene, a direct target of TAL1 in erythroid progenitors, and transduction of Eto2 and Mtgr1 augmented Tal1-mediated gene repression. Finally, chromatin immunoprecipitation analysis revealed that Eto2 occupancy of the P4.2 promoter in MEL cells decreased with differentiation, in parallel with a decline in Eto2 protein abundance. These results identify Eto2 and Mtgr1 as authentic interaction partners of Tal1 and suggest they act as heteromeric corepressors of this bHLH transcription factor during erythroid differentiation.

  9. Mathematical modeling and design parameters of crushing machines with variable-pitch helix of the screw

    Directory of Open Access Journals (Sweden)

    Pelenko V. V.

    2017-11-01

    Full Text Available From the point of view of the effectiveness of the top cutting unit, the helix angle in the end portion of the screw is the most important and characteristic parameter, as it determines the pressure of the meat material in the zone of interaction of a knife and grate. The importance of solving the problem of mathematical modeling of geometry is due to the need to address the problem of minimizing the reverse flow of the food material when injecting into the cutting zone, as the specified effect of "locking" significantly reduces the performance of the transfer process, increases energy consumption of the equipment and entails the deterioration of the quality of the raw materials output. The problem of determining the length of the helix variable pitch for screw chopper food materials has been formulated and solved by methods of differential geometry. The task of correct description of the law of changing the angle of helix inclination along its length has been defined in this case as a key to provide the required dependence of this angle tangent on the angle of the radius-vector of the circle. It has been taken into account that the reduction in the pitch of the screw in the direction of the product delivery should occur at a decreasing rate. The parametric equation of the helix has been written in the form of three functional dependencies of the corresponding cylindrical coordinates. Based on the wide range analysis and significant number of models of tops from different manufacturers the boundaries of possible changes in the angles of inclination of the helical line of the first and last turns of the screw have been identified. The auger screw length is determined mathematically in the form of an analytical relationship and both as a function of the variable angle of its rise, and as a function of the rotation angle of the radius-vector of the circle generatrix, which makes it possible to expand the design possibilities of this node. Along

  10. Fluctuations in the DNA double helix

    Science.gov (United States)

    Peyrard, M.; López, S. C.; Angelov, D.

    2007-08-01

    DNA is not the static entity suggested by the famous double helix structure. It shows large fluctuational openings, in which the bases, which contain the genetic code, are temporarily open. Therefore it is an interesting system to study the effect of nonlinearity on the physical properties of a system. A simple model for DNA, at a mesoscopic scale, can be investigated by computer simulation, in the same spirit as the original work of Fermi, Pasta and Ulam. These calculations raise fundamental questions in statistical physics because they show a temporary breaking of equipartition of energy, regions with large amplitude fluctuations being able to coexist with regions where the fluctuations are very small, even when the model is studied in the canonical ensemble. This phenomenon can be related to nonlinear excitations in the model. The ability of the model to describe the actual properties of DNA is discussed by comparing theoretical and experimental results for the probability that base pairs open an a given temperature in specific DNA sequences. These studies give us indications on the proper description of the effect of the sequence in the mesoscopic model.

  11. Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-Helix and beta-sheet conformations

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, J.J.; Blanch, H.W.; Prausnitz, J.M.

    2001-10-30

    Because poly-L-lysine (PLL) can exist in the {alpha}-helix or {beta}-sheet conformation depending on solution preparation and solution conditions, PLL is a suitable candidate to probe the dependence of protein interactions on secondary structure. The osmotic second virial coefficient and weight-average molecular weight are reported from low-angle laser-light scattering measurements for PLL as a function of NaCl concentration, pH, and {alpha}-helix or {beta}-sheet content. Interactions between PLL molecules become more attractive as salt concentration increases due to screening of PLL charge by salt ions and at low salt concentration become more attractive as pH increases due to decreased net charge on PLL. The experimental results show that interactions are stronger for the {beta}-sheet conformation than for the {alpha}-helix conformation. A spherically-symmetric model for the potential of mean force is used to account for specific interactions not described by DLVO theory and to show how differences in secondary structure affect PLL interactions.

  12. Antibacterial Activity of Silver Nanoparticles Synthesized by Using Extracts of Hedera helix

    Directory of Open Access Journals (Sweden)

    Ahmadreza Abbasifar

    2017-01-01

    Full Text Available Background Silver nanoparticles (AgNPs are one of the most widely applicable particles whose application is increasing in Nano world daily. Silver nanoparticles have expressed significant advances owing to wide range of applications in the field of bio-medical, sensors, antimicrobials, catalysts, electronics, optical fibers, agricultural, bio-labeling and the other areas. Green synthesis is the safe and easiest method of producing silver nanoparticles. Because of the production of the silver ions, silver nanoparticles are found to have the antibacterial activity. Objectives The aim of this study was to investigate antibacterial activity of silver nanoparticles synthesized by using extracts of Hedera helix against Bacillus subtilis and Klebsiella pneumoniae. Methods In this experimental study AgNPs were prepared by the reaction of 1mM silver nitrate and extracts of Hedera helix. Antibacterial activity of AgNPs was assessed by using disc diffusion method against Bacillus subtilis and Klebsiella pneumoniae. The AgNPs were characterized by UV-visible (vis spectrophotometer, particle size analyzer by dynamic light scattering (DLS method, transmission electron microscopy (TEM. Results AgNPs obtained showed significantly higher antimicrobial activities against B. subtilis and K. pneumonia in comparison to both AgNO3 and raw plant extracts. Conclusions Biological methods are a good competent for the chemical procedures, which are environment friendly and convenient.

  13. The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation

    Directory of Open Access Journals (Sweden)

    Andrés Miguel-Arribas

    2017-11-01

    Full Text Available Bacterial conjugation is the process by which a conjugative element (CE is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer (oriT, where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis. We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1LS20 and aux2LS20, and which we show are essential for conjugation. Both Aux1LS20 and Aux2LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1LS20 and Aux2LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriTLS20, although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1LS20 and/or Aux2LS20 are located upstream of almost 400 relaxase genes of the RelLS20 family (MOBL of relaxases. Thus, Aux1LS20 and Aux2LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.

  14. The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation.

    Science.gov (United States)

    Miguel-Arribas, Andrés; Hao, Jian-An; Luque-Ortega, Juan R; Ramachandran, Gayetri; Val-Calvo, Jorge; Gago-Córdoba, César; González-Álvarez, Daniel; Abia, David; Alfonso, Carlos; Wu, Ling J; Meijer, Wilfried J J

    2017-01-01

    Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer ( oriT ), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis . We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1 LS20 and aux2 LS20 , and which we show are essential for conjugation. Both Aux1 LS20 and Aux2 LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1 LS20 and Aux2 LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriT LS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1 LS20 and/or Aux2 LS20 are located upstream of almost 400 relaxase genes of the Rel LS20 family (MOB L ) of relaxases. Thus, Aux1 LS20 and Aux2 LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.

  15. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

    DEFF Research Database (Denmark)

    Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte Stahl

    2016-01-01

    Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain ...

  16. Regulation of anthocyanin biosynthesis in peach fruits.

    Science.gov (United States)

    Rahim, Md Abdur; Busatto, Nicola; Trainotti, Livio

    2014-11-01

    MYB10.1 and MYB10.3, with bHLH3, are the likely regulators of anthocyanin biosynthesis in peach fruit. MYB10.1/2/3 forms a cluster on the same genomic fragment where the Anther color ( Ag ) trait is located. Anthocyanins are bioactive compounds responsible for the pigmentation of many plant parts such as leaves, flowers, fruits and roots, and have potential benefits to human health. In peach [Prunus persica (L.) Batsch], peel color is a key determinant for fruit quality and is regulated by flavonoids including anthocyanins. The R2R3 MYB transcription factors (TFs) control the expression of anthocyanin biosynthetic genes with the help of co-activators belonging to the basic-helix-loop-helix (bHLH) and WD40 repeat families. In the peach genome six MYB10-like and three bHLH-like TFs were identified as candidates to be the regulators of the anthocyanin accumulation, which, in yellow flesh fruits, is highest in the peel, abundant in the part of the mesocarp surrounding the stone and lowest in the mesocarp. The expression of MYB10.1 and MYB10.3 correlates with anthocyanin levels of different peach parts. They also have positive correlation with the expression of key structural genes of the anthocyanin pathway, such as CHS, F3H, and UFGT. Functions of peach MYB10s were tested in tobacco and shown to activate key genes in the anthocyanin pathway when bHLHs were co-expressed as partners. Overexpression of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin production by up-regulating NtCHS, NtDFR and NtUFGT while other combinations were not, or much less, effective. As three MYB10 genes are localized in a genomic region where the Ag trait, responsible for anther pigmentation, is localized, it is proposed they are key determinant to introduce new peach cultivars with higher antioxidant level and pigmented fruit.

  17. Impairment of different protein domains causes variable clinical presentation within Pitt-Hopkins syndrome and suggests intragenic molecular syndromology of TCF4.

    Science.gov (United States)

    Bedeschi, Maria Francesca; Marangi, Giuseppe; Calvello, Maria Rosaria; Ricciardi, Stefania; Leone, Francesca Pia Chiara; Baccarin, Marco; Guerneri, Silvana; Orteschi, Daniela; Murdolo, Marina; Lattante, Serena; Frangella, Silvia; Keena, Beth; Harr, Margaret H; Zackai, Elaine; Zollino, Marcella

    2017-11-01

    Pitt-Hopkins syndrome is a neurodevelopmental disorder characterized by severe intellectual disability and a distinctive facial gestalt. It is caused by haploinsufficiency of the TCF4 gene. The TCF4 protein has different functional domains, with the NLS (nuclear localization signal) domain coded by exons 7-8 and the bHLH (basic Helix-Loop-Helix) domain coded by exon 18. Several alternatively spliced TCF4 variants have been described, allowing for translation of variable protein isoforms. Typical PTHS patients have impairment of at least the bHLH domain. To which extent impairment of the remaining domains contributes to the final phenotype is not clear. There is recent evidence that certain loss-of-function variants disrupting TCF4 are associated with mild ID, but not with typical PTHS. We describe a frameshift-causing partial gene deletion encompassing exons 4-6 of TCF4 in an adult patient with mild ID and nonspecific facial dysmorphisms but without the typical features of PTHS, and a c.520C > T nonsense variant within exon 8 in a child presenting with a severe phenotype largely mimicking PTHS, but lacking the typical facial dysmorphism. Investigation on mRNA, along with literature review, led us to suggest a preliminary phenotypic map of loss-of-function variants affecting TCF4. An intragenic phenotypic map of loss-of-function variants in TCF4 is suggested here for the first time: variants within exons 1-4 and exons 4-6 give rise to a recurrent phenotype with mild ID not in the spectrum of Pitt-Hopkins syndrome (biallelic preservation of both the NLS and bHLH domains); variants within exons 7-8 cause a severe phenotype resembling PTHS but in absence of the typical facial dysmorphism (impairment limited to the NLS domain); variants within exons 9-19 cause typical Pitt-Hopkins syndrome (impairment of at least the bHLH domain). Understanding the TCF4 molecular syndromology can allow for proper nosology in the current era of whole genomic investigations. Copyright

  18. Analysis of α-helix unfolding in the pine nut peptide Lys-Cys-His-Lys-Pro induced by pulsed electric field.

    Science.gov (United States)

    Xing, Jie; Zhang, Sitian; Zhang, Mingdi; Lin, Songyi

    2017-09-01

    A variety of analytical techniques were applied to explore the effects of pulsed electric field (PEF) on α-helix structural changes in the novel antioxidant peptide Lys-Cys-His-Lys-Pro (KCHKP, 611.76 Da). The relative α-helix content of the KCHKP peptide was significantly altered from 100% to 89.91 ± 0.97% when the electric pulse frequency was 1800 Hz and the field intensity was 10 kV cm -1 . Moreover, the 1,1-diphenyl-2-pycryl-hydrazyl (DPPH) and 2,2-azinobis diammonium salt (ABTS) radical-scavenging activities of PEF-treated KCHKP were increased from 56.31% ± 0.74% to 84.33% ± 1.23% and from 40.56% ± 0.78% to 51.33% ± 0.27%, respectively. PEF treatment increased peptide linkage stretch vibration and altered hydrogen bonding of KCHKP. The stability of the α-helix structure was influenced by hydrogen bonds within the peptide linkage of KCHKP induced by PEF and was related to changes in antioxidant activity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Estudio del hepatopáncreas de Helix Aspersa en situación normal y tras ayuno

    OpenAIRE

    Almendros Gallego, Antonio Manuel

    2013-01-01

    Se hace un estudio a microscopia electrónica de los diversos tipos celulares que componen el hepatopancreas de Helix Aspersa atendiendo a los componentes celulares característicos de cada uno de ellos tanto en situación normal como a diversos periodos de ayuno

  20. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    International Nuclear Information System (INIS)

    Shaharun, M A; Yusoff, A R; Reza, M S; Jalal, K A

    2012-01-01

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  1. Right- and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins.

    Science.gov (United States)

    Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V

    2014-01-01

    Here, we study mechanical properties of eight 3-helix proteins (four right-handed and four left-handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right-handed three-helix domains are more mechanically resistant than the left-handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.1, 0.05, and 0.01 Å ps(-1) , T = 300 K) and under constant stretching force (64 trajectories, F = 800 pN, T = 300 K). We can explain this by the fact, at least in part, that the right-handed domains have a larger number of contacts per residue and the radius of cross section than the left-handed domains. Copyright © 2013 Wiley Periodicals, Inc.

  2. Conservation of a helix-stabilizing dipole moment in the PP-fold family of regulatory peptides

    DEFF Research Database (Denmark)

    Bjørnholm, B; Jørgensen, Flemming Steen; Schwartz, T W

    1993-01-01

    arrangement were performed in two ways: (1) by the use of a Poisson-Boltzmann approach which allows for an estimate of the screening effect, and (2) by the use of a uniform dielectric model (Coulomb's law). It is found that the alpha-helix is stabilized by approximately 5-10 kcal/mol due to electrostatic...

  3. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    Science.gov (United States)

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  4. Assembly of Liposomes Controlled by Triple Helix Formation

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla

    2013-01-01

    Attachment of DNA to the surface of different solid nanoparticles (e.g. gold- and silica nanoparticles) is well established and a number of DNA-modified solid nanoparticle systems have been applied to thermal denaturation analysis of oligonucleotides. We report herein the non-covalent immobilizat...... analysis (NTA) and dynamic light scattering (DLS) show independently from ultraviolet spectroscopy experiments the formation of liposome aggregates.......-covalent immobilization of oligonucleotides on the surface of soft nanoparticles (e.g. liposomes) and the subsequent controlled assembly by DNA triple helix formation. The non-covalent approach avoids tedious surface chemistry and necessary purification procedures and can simplify and extend the available methodology...... sequences (G or C-rich) to explore the applicability of the method for different triple helical assembly modes. We demonstrate advantages and limitations of the approach and proof the reversible and reproducible formation of liposome aggregates during thermal denaturation cycles. Nanoparticle tracking...

  5. Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae cultivar MG/BR46 (Conquista under two water deficit induction systems

    Directory of Open Access Journals (Sweden)

    Polyana K. Martins

    2008-01-01

    Full Text Available Drought cause serious yield losses in soybean (Glycine max, roots being the first plant organ to detect the water-stress signals triggering defense mechanisms. We used two drought induction systems to identify genes differentially expressed in the roots of the drought-tolerant soybean cultivar MG/BR46 (Conquista and characterize their expression levels during water deficit. Soybean plants grown in nutrient solution hydroponically and in sand-pots were submitted to water stress and gene expression analysis was conducted using the differential display (DD and real time polymerase chain reaction (PCR techniques. Three differentially expressed mRNA transcripts showed homology to the Antirrhinum majus basic helix-loop-helix transcription factor bHLH, the Arabidopsis thaliana phosphatidylinositol transfer protein PITP and the auxin-independent growth regulator 1 (axi 1. The hydroponic experiments showed that after 100 min outside the nutrient solution photosynthesis completely stopped, stomata closed and leaf temperature rose. Both stress induction treatments produced significant decrease in the mitotic indices of root cells. Axi 1, PITP and bHLH were not only differentially expressed during dehydration in the hydroponics experiments but also during induced drought in the pot experiments. Although, there were differences between the two sets of experiments in the time at which up or down regulation occurred, the expression pattern of all three transcripts was related. Similar gene expression and cytological analysis results occurred in both systems, suggesting that hydroponics could be used to simulate drought detection by roots growing in soil and thus facilitate rapid and easy root sampling.

  6. Modified Quad Helix for Correction of Severely Rotated Incisors in Cleft Cases

    Directory of Open Access Journals (Sweden)

    Aneesha Ashok Shetty

    2014-01-01

    Full Text Available Clefts of the lip, alveolus and/or palate are often associated with several dental anomalies, the most common of which are severely rotated maxillary incisors. Patients with such congenital deformities seek orthodontic treatment as early as possible, for an esthetic as well as psychosocial benefit. Here, a new clinical technique is demonstrated for correction of a severely rotated maxillary central incisor which can be carried out in the mixed dentition phase itself, by modifying a commonly used palatal expansion appliance: the quad helix.

  7. Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes

    NARCIS (Netherlands)

    Sengupta, Durba; Marrink, Siewert J.

    2010-01-01

    The specific and non-specific driving forces of helix association within membranes are still poorly understood. Here, we use coarse-grain molecular dynamics simulations to study the association behavior of glycophorin A and two disruptive mutants, T87F and a triple mutant of the GxxxG motif

  8. Preparation and evaluation of appertized from snail Helix aspersa M

    Directory of Open Access Journals (Sweden)

    Nelson Loyola López

    2015-01-01

    Full Text Available This study includes the development and evaluation of snails (Helix aspersa M. appertized, collected at a heliciculture breeding center, located in Los Niches sector, Curico, Maule region, South-central of Chile. The test was conducted at the Laboratory of Sciences of the Catholic University of Maule, Nuestra Señora del Carmen Campus, Curico. The main objective of this work was to study the influence of appertized on sensory attributes and commercial durability of snail Helix aspersa M. Additionally, some specific objectives were proposed as follow: to provide this mollusc with a commercial alternative for it consume, to evaluate its organoleptic characteristics and guarantee the product from both the microbiological and nutritional points of view. Three media cover were used (T0: water + NaCl 2%; T1: Water + NaCl 2% + citric acid 0.5% + kilol and T2: extra virgin olive oil + spices + tocopherol. The product was assessed at two different times, after 30 and 90 days of storage. Two sensory evaluations were conducted to measure various organoleptic attributes and acceptability of the appertized by 14 trained panelists. Amino acid, vitamins, cholesterol, acidity, heavy metals, phosphorus and organochlorines analysis were performed. The presence of both total and fecal contaminant microorganisms was determined. Attributes such as color, flavor, aroma, texture and overall acceptability were also measured. Preserves made by T0 and T1 treatments were equally accepted by the panelists. However, preserve from treatment T2 was rejected because of the detection in them of a very dark color, odor and mealy texture. Positive results regarding the content of amino acids, vitamin C and low cholesterol, as well as the absence of pathogenic microorganisms were obtained for the three treatments.

  9. Coherent helix vacancy phonon and its ultrafast dynamics waning in topological Dirac semimetal C d3A s2

    Science.gov (United States)

    Sun, Fei; Wu, Q.; Wu, Y. L.; Zhao, H.; Yi, C. J.; Tian, Y. C.; Liu, H. W.; Shi, Y. G.; Ding, H.; Dai, X.; Richard, P.; Zhao, Jimin

    2017-06-01

    We report an ultrafast lattice dynamics investigation of the topological Dirac semimetal C d3A s2 . A coherent phonon beating among three evenly spaced A1 g optical phonon modes (of frequencies 1.80, 1.96, and 2.11 THz, respectively) is unambiguously observed. The two side modes originate from the counter helixes composing Cd vacancies. Significantly, such helix vacancy-induced phonon (HVP) modes experience prominent extra waning in their ultrafast dynamics as temperature increases, which is immune to the central mode. Above 200 K, the HVP becomes inactive, which may potentially affect the topological properties. Our results in the lattice degree of freedom suggest the indispensable role of temperature in considering topological properties of such quantum materials.

  10. Disruption of the TCF4 gene in a girl with mental retardation but without the classical Pitt-Hopkins syndrome.

    NARCIS (Netherlands)

    Kalscheuer, V.M.M.; Feenstra, I.; Ravenswaaij-Arts, C.M.A. van; Smeets, D.F.C.M.; Menzel, C.; Ullmann, R.; Musante, L.; Ropers, H.H.

    2008-01-01

    We have characterized a de novo balanced translocation t(18;20)(q21.1;q11.2) in a female patient with mild to moderate mental retardation (MR) and minor facial anomalies. Breakpoint-mapping by fluorescence in situ hybridization indicated that on chromosome 18, the basic helix-loop-helix

  11. Disruption of the TCF4 gene in a girl with mental retardation but without the classical Pitt-Hopkins syndrome

    NARCIS (Netherlands)

    Kalscheuer, Vera M.; Feenstra, Ilse; Van Ravenswaaij Arts, Conny M. A.; Smeets, Dominique F. C. M.; Menzel, Corinna; Ullmann, Reinhard; Musante, Luciana; Ropers, Hans-Hilger

    2008-01-01

    We have characterized a de novo balanced translocation (18;20)(q21.1;q11.2) in a female patient with mild to moderate mental retardation (MR) and minor facial anomalies. Breakpoint-mapping by fluorescence in situ hybridization indicated that on chromosome 18, the basic helix-loop-helix transcription

  12. Behavioural modification of the optic tentacle of Helix pom atia; effect of puromycin, activity of S-100

    DEFF Research Database (Denmark)

    Christoffersen, Gert Rene Juul; Frederiksen, K; Johansen, Jørgen

    1981-01-01

    1. 1. A long-term learning phenomenon in the tentacle of Helix pomatia has been observed.   2. 2. Repeated mechanical stimulation of the optic tentacle led to habituation of the associated withdrawal-extension action pattern whereas repeated combined mechanical and electrical stimulation potentia...

  13. Circularly Polarized Planar Helix Phased Antenna Array for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a planar helix mobile phased antenna array is proposed for 5th generation communication systems with operating frequency of 28GHz. The proposed array displays circular polarization in the endfire direction. Over 65 degrees of axial ratio beamwidth and 7GHz of axial ratio bandwidth...... has been achieved in the proposed design. The coverage performance of the proposed phased antenna array has also been studied by using the coverage efficiency metric. Coverage efficiency of 50 % at 5 dBi gain is achieved by the proposed phased mobile antenna array....

  14. Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination

    DEFF Research Database (Denmark)

    Ejby, Morten; Sørensen, Michael A; Pedersen, Steen

    2007-01-01

    Escherichia coli strains with inactivated rluD genes were previously found to lack the conserved pseudouridines in helix 69 of 23S ribosomal RNA and to grow slowly. A suppressor mutant was isolated with a near normal growth rate that had changed the conserved Glu-172 codon to a Lys codon in prf...

  15. A Grounded Theory for Regional Development through the IT Offshoring Industry with the Triple-Helix Involvment

    Science.gov (United States)

    Villarreal de la Garza, Sonia

    2011-01-01

    The purpose of this qualitative grounded study was to explore the thoughts, experiences, and needs of potential clients and of the triple-helix members with the intention to establish a framework to support the development of the regional economy through the information technology (IT) and business processing outsourcing (BPO) offshoring industry.…

  16. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  17. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Directory of Open Access Journals (Sweden)

    Shitong Mao

    2018-05-01

    Full Text Available Many medical implants need to be designed in the shape of a cylinder (rod, a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT direction is from the external power transmission pad (a planar coil to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT. The power transfer efficiency (PTE relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  18. Role of the future creative universities in the triple helix of science and technology corridors

    Directory of Open Access Journals (Sweden)

    Iraj nabipour

    2015-01-01

    Full Text Available The science and technology corridor is a complex cluster containing universities, science parks, research centers, high-tech companies, venture capital, institutional and physical infrastructures, and human capital in a defined geography with its unique management and legal structure in association with the business space and knowledge-based products. In fact, the science and technology corridor reflects the concept of development based on the knowledge region (the especial region for science and technology. The knowledge region is clearly a triple helix phenomenon par excellence: universities, governments and businesses combine their efforts to construct a common advantage which they would not be able to offer on their own. The future creative universities in connection with the knowledge city-regions not only will deal with innovation and entrepreneurial training but also produce a competitive, vibrant environment with high indices for quality of life and full of green technologies. In this article, we will present functional interactions of the creative universities in the triple helix, particularly the missions for the Iranian universities of medical sciences. As a theoretical model, the complex interactions of Bushehr University of Medical Sciences and Health Services with Bushehr Science and Technology Corridor will be discussed.

  19. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    Science.gov (United States)

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Changes in the reproductive system of the snail Helix aspersa caused by mucus from the love dart

    NARCIS (Netherlands)

    Koene, J M; Chase, R.

    The function of the love dart in certain species of terrestrial snails is unknown. In Helix aspersa, the dart is a sharp calcareous structure that is used to pierce the partner's skin during courtship. When expelled, the dart is covered with a thick mucus. The hypothesis tested here is that the

  1. Trace metallic elements in Helix aspersa terrestrial snails of a semiarid ecosystem

    International Nuclear Information System (INIS)

    Gaso P, M.I.; Segovia, N.; Zarazua, G.; Montes, F.; Morton, O.; Armienta, M.A.; Hernandez, E.

    2001-01-01

    The concentration of some major elements and traces in soil samples and of Helix aspersa eatable terrestrial snails were analysed at the Radioactive Wastes Storage Center (CADER) and in other reference sites. The methodology includes the use of an atomic absorption spectrophotometer, an X-ray fluorescence equipment and an Icp-mass spectroscope. The concentrations of some toxic elements (Ba, Cd, Cr, Ni, Pb and V) in the soft tissue of the snails were greater than the toxic levels reported in the literature for such trace elements. The snails compared with another wild eatable foods present transfer coefficients soil-snail high relatively. (Author)

  2. The effect of k-cubic Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases

    International Nuclear Information System (INIS)

    Chai Zheng; Hu Mao-Jin; Wang Rui-Qiang; Hu Liang-Bin

    2014-01-01

    We study the theoretical effect of k-cubic (i.e. cubic-in-momentum) Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin—orbit coupling, and after taking the effect of k-cubic Dresselhaus spin—orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Space confinement and rotation stress induced self-organization of double-helix nanostructure: a nanotube twist with a moving catalyst head.

    Science.gov (United States)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Huang, Jia-Qi; Wei, Fei

    2012-05-22

    Inorganic materials with double-helix structure have attracted intensive attention due to not only their elegant morphology but also their amazing morphology-related potential applications. The investigation on the formation mechanism of the inorganic double-helix nanostructure is the first step for the fundamental studies of their materials or physical properties. Herein, we demonstrated the space confinement and rotation stress induced self-organization mechanism of the carbon nanotube (CNT)-array double helices under scanning electron microscopy by directly observing their formation process from individual layered double hydroxide flakes, which is a kind of hydrotalcite-like material composed of positively charged layers and charge-balancing interlayer anions. Space confinement is considered to be the most important extrinsic factor for the formation of CNT-array double helices. Synchronous growth of the CNT arrays oppositely from LDH flakes with space confinement on both sides at the same time is essential for the growth of CNT-array double helices. Coiling of the as-grown CNT arrays into double helices will proceed by self-organization, tending to the most stable morphology in order to release their internal rotation stress. Based on the demonstrated mechanism, effective routes were carried out to improve the selectivity for CNT-array double helices. The work provides a promising method for the fabrication of double-helix nanostructures with their two helices connected at the end by self-assembly.

  4. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes

    Science.gov (United States)

    Léger, Sandy; Balguerie, Xavier; Goldenberg, Alice; Drouin-Garraud, Valérie; Cabot, Annick; Amstutz-Montadert, Isabelle; Young, Paul; Joly, Pascal; Bodereau, Virginie; Holder-Espinasse, Muriel; Jamieson, Robyn V; Krause, Amanda; Chen, Hongsheng; Baumann, Clarisse; Nunes, Luis; Dollfus, Hélène; Goossens, Michel; Pingault, Véronique

    2012-01-01

    The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor, which regulates melanocyte development and the biosynthetic melanin pathway. A notable relationship has been described between non-truncating mutations of its basic domain and Tietz syndrome, which is characterized by albinoid-like hypopigmentation of the skin and hair, rather than the patchy depigmentation seen in Waardenburg syndrome, and severe hearing loss. Twelve patients with new or recurrent non-truncating mutations of the MITF basic domain from six families were enrolled in this study. We observed a wide range of phenotypes and some unexpected features. All the patients had blue irides and pigmentation abnormalities that ranged from diffuse hypopigmentation to Waardenburg-like patches. In addition, they showed congenital complete hearing loss, diffuse hypopigmentation of the skin, freckling and ocular abnormalities, more frequently than patients with MITF mutations outside the basic domain. In conclusion, the non-truncating mutations of the basic domain do not always lead to Tietz syndrome but rather to a large range of phenotypes. Sun-exposed freckles are interestingly observed more frequently in Asian populations. This variability argues for the possible interaction with modifier loci. PMID:22258527

  5. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix

    International Nuclear Information System (INIS)

    Ikura, Mitsuhiko; Kay, L.E.; Bax, A.; Krinks, M.

    1991-01-01

    Heteronuclear 3D and 4D NMR experiments have been used to obtain 1 H, 13 C, and 15 N backbone chemical shift assignments in Ca 2+ -loaded clamodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-bionding domain (residues 577-602) of rabbit skeletal muscle muosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca 2+ -binding site 1 (E11-E14), the N-terminal portion of the central helix (M72-D78), and the second helix of the Ca 2+ -binding site 4 (F141-M145). Analysis of backbone NOE connectivities indicates a change from α-helical to an extended conformation for residues 75-77 upon complexation with M13. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site 3

  6. NEUROD2 and NEUROD3 genes map to human chromosomes 17q12 and 5q23-q31 and mouse chromosomes 11 and 13, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Tamimi, R.M.; Montgomery-Dyer, K.; Tapscott, S.J. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)] [and others

    1997-03-01

    NEUROD2 and NEUROD3 are transcription factors involved in neurogenesis that are related to the basic helix-loop-helix protein NEUROD. NEUROD2 maps to human chromosome 17q12 and mouse chromosome 11. NEUROD3 maps to human chromosome 5q23-q31 and mouse chromosome 13. 16 refs., 2 figs.

  7. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus.

    Directory of Open Access Journals (Sweden)

    Clint L Miller

    Full Text Available Coronary heart disease (CHD is the leading cause of mortality in both developed and developing countries worldwide. Genome-wide association studies (GWAS have now identified 46 independent susceptibility loci for CHD, however, the biological and disease-relevant mechanisms for these associations remain elusive. The large-scale meta-analysis of GWAS recently identified in Caucasians a CHD-associated locus at chromosome 6q23.2, a region containing the transcription factor TCF21 gene. TCF21 (Capsulin/Pod1/Epicardin is a member of the basic-helix-loop-helix (bHLH transcription factor family, and regulates cell fate decisions and differentiation in the developing coronary vasculature. Herein, we characterize a cis-regulatory mechanism by which the lead polymorphism rs12190287 disrupts an atypical activator protein 1 (AP-1 element, as demonstrated by allele-specific transcriptional regulation, transcription factor binding, and chromatin organization, leading to altered TCF21 expression. Further, this element is shown to mediate signaling through platelet-derived growth factor receptor beta (PDGFR-β and Wilms tumor 1 (WT1 pathways. A second disease allele identified in East Asians also appears to disrupt an AP-1-like element. Thus, both disease-related growth factor and embryonic signaling pathways may regulate CHD risk through two independent alleles at TCF21.

  8. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2008-12-01

    Full Text Available Abstract Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE or methyl jasmonate (MJ. From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2 and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.

  9. Alteration of keratinocyte differentiation and senescence by the tumor promoter dioxin

    International Nuclear Information System (INIS)

    Ray, Soma S.; Swanson, Hollie I.

    2003-01-01

    Exposure to the environmental contaminant dioxin, elicits a variety of responses, which includes tumor promotion, embryotoxicity/teratogenesis, and carcinogenesis in both animals and humans. Many of the effects of dioxin are mediated by the aryl hydrocarbon receptor (AHR), a ligand-activated bHLH (basic helix-loop-helix)/PAS transcription factor. We initiated this study to determine whether dioxin's tumor-promoting activities may lie in its ability to alter proliferation, differentiation, and/or senescence using normal human epidermal keratinocytes (HEKs). Here, we report that dioxin appears to accelerate differentiation as measured by flow cytometry and by increased expression of the differentiation markers involucrin and filaggrin. In addition, dioxin appears to increase proliferation as indicated by an increase in NADH/NADPH production and changes in cell cycle. Finally, dioxin decreases SA (senescence associated) β-galactosidase staining, an indicator of senescence, in the differentiating keratinocytes. These changes were accompanied by decreases in the expression levels of key cell cycle regulatory proteins p53, p16 INK4a , and p14 ARF . Our findings support the idea that dioxin may exert its tumor-promoting actions, in part, by downregulating the expression levels of key tumor suppressor proteins, which may impair the cell's ability to maintain its appropriate cellular status

  10. Membrane-Dependent Effects of a Cytoplasmic Helix on the Structure and Drug Binding of the Influenza Virus M2 Protein

    Science.gov (United States)

    Cady, Sarah; Wang, Tuo; Hong, Mei

    2011-01-01

    The influenza A M2 protein forms a proton channel for virus infection and also mediates virus assembly and budding. The minimum protein length that encodes both functions contains the transmembrane (TM) domain (roughly residues 22 to 46) for the amantadine-sensitive proton-channel activity and an amphipathic cytoplasmic helix (roughly residues 45 to 62) for curvature induction and virus budding. However, structural studies involving the TM domain with or without the amphipathic helix differed on the drug-binding site. Here we use solid-state NMR spectroscopy to determine the amantadine binding site in the cytoplasmic-helix-containing M2(21–61). 13C-2H distance measurements of 13C-labeled protein and 2H-labeled amantadine showed that in DMPC bilayers, the first equivalent of drug bound S31 inside the M2(21–61) pore, similar to the behavior of M2TM in DMPC bilayers. The non-specific surface site of D44 observed in M2TM is disfavored in the longer peptide. Thus, the pharmacologically relevant drug-binding site in the fully functional M2(21–61) is S31 in the TM pore. Interestingly, when M2(21–61) was reconstituted into a virus-mimetic membrane containing 30% cholesterol, no chemical shift perturbation was observed for pore-lining residues, while M2TM in the same membrane exhibited drug-induced chemical shift changes. Reduction of the cholesterol level and the use of unsaturated phospholipids shifted the conformational equilibrium of M2TM fully to the bound state, but did not rescue drug binding to M2(21–61). These results suggest that the amphipathic helix, together with cholesterol, modulates the ability of the TM helices to bind amantadine. Thus, the M2 protein interacts with the lipid membrane and small-molecule inhibitors in a complex fashion, and a careful examination of the environmental dependence of the protein conformation is required to fully understand the structure-function relation of this protein. PMID:21661724

  11. BAROMETRIC PRESSURE and Other Data from ALPHA HELIX From Chukchi Sea and Others from 19930709 to 19930807 (NODC Accession 9400062)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Bering Sea, Chukchi Sea. Data was collected from Ship ALPHA HELIX cruise Aleutian...

  12. Temperature, salinity and transmissivity data from the Alpha Helix in the Arctic Ocean, 2000 - 2004 (NODC Accession 0059005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is calibrated CTD downcast data from five Alpha Helix cruises: HX235, 8/1/2000 - 9/30/2000 HX250, 9/1/2001 - 9/30/2001 HX260, 6/1/2002 - 6/30/2002 HX274,...

  13. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-10-01

    Full Text Available This paper reports on the deposition of crystalline single-helix carbon microcoils, in the as-deposited state, by the hot-wire chemical vapor deposition process without any special preparation of nano-sized transition metal catalysts and subsequent...

  14. Identification of the roles of individual amino acid residues of the helix E of the major antenna of photosystem II (LHCII) by alanine scanning mutagenesis.

    Science.gov (United States)

    Liu, Cheng; Rao, Yan; Zhang, Lei; Yang, Chunhong

    2014-10-01

    The functions of the helix E (W97-F105), an amphiphilic lumenal 310 helix of the major antenna of photosystem II (LHCII), are still unidentified. To elucidate the roles of individual amino acid residue of the helix E, alanine scanning mutagenesis has been performed to mutate every residue of this domain to alanine. The influence of every alanine substitution on the structure and function of LHCII has been investigated biochemically and spectroscopically. The results show that all mutations have little impact on the pigment binding and configuration. However, many mutants presented decreased thermo- or photo-stability compared with the wild type, highlighting the significance of this helix to the stability of LHCII. The most critical residue for stability is W97. The mutant W97A yielded very fragile trimeric pigment protein complexes. The structural analysis revealed that the hydrogen bonding and aromatic interactions between W97, F195, F194 and a water molecule contributed greatly to the stability of LHCII. Moreover, Q103A and F105A have been identified to be able to reinforce the tendency of aggregation in vitro. The structural analysis suggested that the enhancement in aggregation formation for Q103A and F105A might be attributed to the changing hydrophobicity of the region. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  15. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  16. Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range

    NARCIS (Netherlands)

    Schwob, Lucas; Lalande, Mathieu; Rangama, Jimmy; Egorov, Dmitrii; Hoekstra, Ronnie; Pandey, Rahul; Eden, Samuel; Schlathölter, Thomas; Vizcaino, Violaine; Poully, Jean-Christophe

    2017-01-01

    Cartilage and tendons owe their special mechanical properties to the fibrous collagen structure. These strong fibrils are aggregates of a sub-unit consisting of three collagen proteins wound around each other in a triple helix. Even though collagen is the most abundant protein in the human body, the

  17. Stakeholder engagement in quattro helix model for mobile phone reverse logistics in Indonesia: a conceptual framework

    Science.gov (United States)

    Maheswari, H.; Yudoko, G.; Adhiutama, A.

    2017-12-01

    The number of e-waste from mobile phone industry is still dominating until now. This is happened because there is no mutual commitment from all of parties i.e. businesses, government, and societies to reduce the use of mobile phone that has the shortest product life cycle. There are many researches study about firms’ motivation and government’s role, other discuss about actions of communities in supporting reverse logistics implementation. Unfortunately, research about engagement mechanism that involving all parties is still rare. Therefore, it is important to find the engagement model through this conceptual paper and it is expected useful to build the novel model. Through literature review, the results of this research are establishing the Quattro helix model as the appropriate structure to build the robust team by exploring stakeholder theories; mapping the engagement model either in form of collaboration or participation that consider stakeholders’ role and motivation and finding six types of engagement that consider their interest; and determining the novel model of engagement through Quattro helix model for implementing reverse logistics in handling e-waste by describing the linkage and the gaps among existing model.

  18. An α‐Helix‐Mimicking 12,13‐Helix: Designed α/β/γ‐Foldamers as Selective Inhibitors of Protein–Protein Interactions

    Science.gov (United States)

    Grison, Claire M.; Miles, Jennifer A.; Robin, Sylvie

    2016-01-01

    Abstract A major current challenge in bioorganic chemistry is the identification of effective mimics of protein secondary structures that act as inhibitors of protein–protein interactions (PPIs). In this work, trans‐2‐aminocyclobutanecarboxylic acid (tACBC) was used as the key β‐amino acid component in the design of α/β/γ‐peptides to structurally mimic a native α‐helix. Suitably functionalized α/β/γ‐peptides assume an α‐helix‐mimicking 12,13‐helix conformation in solution, exhibit enhanced proteolytic stability in comparison to the wild‐type α‐peptide parent sequence from which they are derived, and act as selective inhibitors of the p53/hDM2 interaction. PMID:27467859

  19. An Intramolecular Salt Bridge in Bacillus thuringiensis Cry4Ba Toxin Is Involved in the Stability of Helix α-3, Which Is Needed for Oligomerization and Insecticidal Activity.

    Science.gov (United States)

    Pacheco, Sabino; Gómez, Isabel; Sánchez, Jorge; García-Gómez, Blanca-Ines; Soberón, Mario; Bravo, Alejandra

    2017-10-15

    Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity. Copyright © 2017 American Society for Microbiology.

  20. Temperature, salinity, conductivity, pressure, transmissivity measurements collected using CTD from the Alpha Helix in the Chukchi Sea during 1996 (NODC Accession 0061042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, conductivity, pressure, and transmissivity data gathered by CTD from the Alpha Helix (cruise HX194), September 1996

  1. The soluble loop BC region guides, but not dictates, the assembly of the transmembrane cytochrome b6.

    Directory of Open Access Journals (Sweden)

    Lydia Tome-Stangl

    Full Text Available Studying folding and assembly of naturally occurring α-helical transmembrane proteins can inspire the design of membrane proteins with defined functions. Thus far, most studies have focused on the role of membrane-integrated protein regions. However, to fully understand folding pathways and stabilization of α-helical membrane proteins, it is vital to also include the role of soluble loops. We have analyzed the impact of interhelical loops on folding, assembly and stability of the heme-containing four-helix bundle transmembrane protein cytochrome b6 that is involved in charge transfer across biomembranes. Cytochrome b6 consists of two transmembrane helical hairpins that sandwich two heme molecules. Our analyses strongly suggest that the loop connecting the helical hairpins is not crucial for positioning the two protein "halves" for proper folding and assembly of the holo-protein. Furthermore, proteolytic removal of any of the remaining two loops, which connect the two transmembrane helices of a hairpin structure, appears to also not crucially effect folding and assembly. Overall, the transmembrane four-helix bundle appears to be mainly stabilized via interhelical interactions in the transmembrane regions, while the soluble loop regions guide assembly and stabilize the holo-protein. The results of this study might steer future strategies aiming at designing heme-binding four-helix bundle structures, involved in transmembrane charge transfer reactions.

  2. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer

    NARCIS (Netherlands)

    Forrest, LR; Tieleman, DP; Sansom, MSP

    Integral membrane proteins containing at least one transmembrane (TM) alpha-helix are believed to account for between 20% and 30% of most genomes. There are several algorithms that accurately predict the number and position of TM helices within,a membrane protein sequence. However, these methods

  3. A Triple Helix Strategy for Promoting SME Development: The Case of a Dried Banana Community Enterprise in Thailand

    Science.gov (United States)

    Yuwawutto, Sauwapa; Smitinont, Thitapha; Charoenanong, Numtip; Yokakul, Nattaka; Chatratana, Sonchai; Zawdie, Girma

    2010-01-01

    This paper examines the university-industry-government relationship as a mechanism for enhancing the efficiency and competitiveness of small and medium-sized enterprises (SMEs). The case of a community enterprise producing dried banana products in the north of Thailand is used to demonstrate the significance of the Triple Helix model for business…

  4. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1.

    Science.gov (United States)

    Lim, Sun-Hyung; Song, Ji-Hye; Kim, Da-Hye; Kim, Jae Kwang; Lee, Jong-Yeol; Kim, Young-Mi; Ha, Sun-Hwa

    2016-03-01

    RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene

  5. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai

    2016-02-01

    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  6. BAROMETRIC PRESSURE and Other Data from ALPHA HELIX From North Pacific Ocean and Others from 19931016 to 19931103 (NODC Accession 9400051)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Bering Sea and North Pacific Ocean. Data was collected from Ship ALPHA HELIX cruise...

  7. Characterization of the biomechanical properties of T4 pili expressed by Streptococcus pneumoniae--a comparison between helix-like and open coil-like pili.

    Science.gov (United States)

    Castelain, Mickaël; Koutris, Efstratios; Andersson, Magnus; Wiklund, Krister; Björnham, Oscar; Schedin, Staffan; Axner, Ove

    2009-07-13

    Bacterial adhesion organelles, known as fimbria or pili, are expressed by gram-positive as well as gram-negative bacteria families. These appendages play a key role in the first steps of the invasion and infection processes, and they therefore provide bacteria with pathogenic abilities. To improve the knowledge of pili-mediated bacterial adhesion to host cells and how these pili behave under the presence of an external force, we first characterize, using force measuring optical tweezers, open coil-like T4 pili expressed by gram-positive Streptococcus pneumoniae with respect to their biomechanical properties. It is shown that their elongation behavior can be well described by the worm-like chain model and that they possess a large degree of flexibility. Their properties are then compared with those of helix-like pili expressed by gram-negative uropathogenic Escherichia coli (UPEC), which have different pili architecture. The differences suggest that these two types of pili have distinctly dissimilar mechanisms to adhere and sustain external forces. Helix-like pili expressed by UPEC bacteria adhere to host cells by single adhesins located at the distal end of the pili while their helix-like structures act as shock absorbers to dampen the irregularly shear forces induced by urine flow and to increase the cooperativity of the pili ensemble, whereas open coil-like pili expressed by S. pneumoniae adhere to cells by a multitude of adhesins distributed along the pili. It is hypothesized that these two types of pili represent different strategies of adhering to host cells in the presence of external forces. When exposed to significant forces, bacteria expressing helix-like pili remain attached by distributing the external force among a multitude of pili, whereas bacteria expressing open coil-like pili sustain large forces primarily by their multitude of binding adhesins which presumably detach sequentially.

  8. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    Science.gov (United States)

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  10. On the mechanism of irradiation effect on the function of Helix pomatia neuron Na+, K+-pump

    International Nuclear Information System (INIS)

    Ajrapetyan, S.N.; Egorova, E.G.; Sagiyan, A.A.; Dadalyan, S.S.; Dvoretskij, A.I.; Sulejmonyan, M.A.

    1987-01-01

    Mechanism of irradiation effect on passive permeability, Na + /Ca 2+ exchange, Na + , K + -pump function intensity, the number of membrane functionally active pump units (Na + , K + -ATP-ase molecules) was determined using Helix pomatia and nervous ganglions isolated from them and irradiated by 5.16 Kl/kg dose. The data obtained show that ionizing radiation leads to obvious destructions in the mechanisms of neuron Na + , K + -pump functioning

  11. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix.

    Science.gov (United States)

    Pley, H W; Flaherty, K M; McKay, D B

    1994-11-03

    In large structured RNAs, RNA hairpins in which the strands of the duplex stem are connected by a tetraloop of the consensus sequence 5'-GNRA (where N is any nucleotide, and R is either G or A) are unusually frequent. In group I introns there is a covariation in sequence between nucleotides in the third and fourth positions of the loop with specific distant base pairs in putative RNA duplex stems: GNAA loops correlate with successive 5'-C-C.G-C base pairs in stems, whereas GNGA loops correlate with 5'-C-U.G-A. This has led to the suggestion that GNRA tetraloops may be involved in specific long-range tertiary interactions, with each A in position 3 or 4 of the loop interacting with a C-G base pair in the duplex, and G in position 3 interacting with a U-A base pair. This idea is supported experimentally for the GAAA loop of the P5b extension of the group I intron of Tetrahymena thermophila and the L9 GUGA terminal loop of the td intron of bacteriophage T4 (ref. 4). NMR has revealed the overall structure of the tetraloop for 12-nucleotide hairpins with GCAA and GAAA loops and models have been proposed for the interaction of GNRA tetraloops with base pairs in the minor groove of A-form RNA. Here we describe the crystal structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. The interactions we observe correlate with the specificity of GNRA tetraloops inferred from phylogenetic studies, suggesting that this complex is a legitimate model for intramolecular tertiary interactions mediated by GNRA tetraloops in large structured RNAs.

  12. A de novo designed monomeric, compact three helix bundle protein on a carbohydrate template

    DEFF Research Database (Denmark)

    Malik, Leila; Nygård, Jesper; Christensen, Niels Johan

    2015-01-01

    De novo design and chemical synthesis of proteins and of other artificial structures, which mimic them, is a central strategy for understanding protein folding and for accessing proteins with novel functions. We have previously described carbohydrates as templates for the assembly of artificial...... the template could facilitate protein folding. Here we report the design and synthesis of 3-helix bundle carboproteins on deoxy-hexopyranosides. The carboproteins were analyzed by CD, AUC, SAXS, and NMR, which revealed the formation of the first compact, and folded monomeric carboprotein distinctly different...

  13. Triple Helix and European Union (EU Funding: The case of Latin America, especially Mexico and the Seventh European Framework Program

    Directory of Open Access Journals (Sweden)

    Jürgen Haberleithner

    2010-05-01

    Full Text Available The following analysis not only seeks to develop new potential intervention models; it also aims to create a detailed analysis of the existing problems with regards to communication among the active participants of Triple Helix (especially in Mexico. The special situation in Latin America with regards to existing corruption, the unequal distribution of power between the government and the private sector, dependence on other economies and other social issues will be analysed in accordance with the main focus of the investigation. The subsequent linking of potential partners to the development of an initiative for submitting a future Triple Helix/FP7 project represent an important contribution to a longer-term perspective on the preceding investigation. The potential partnerships between Europe and Latin America (in addition to other possible world regions, such as, for example, Pacific Asia will create an initial project draft within the scope of the conference.

  14. Genotoxicity of Nicotiana tabacum leaves on Helix aspersa.

    Science.gov (United States)

    da Silva, Fernanda R; Erdtmann, Bernardo; Dalpiaz, Tiago; Nunes, Emilene; Ferraz, Alexandre; Martins, Tales L C; Dias, Johny F; da Rosa, Darlan P; Porawskie, Marilene; Bona, Silvia; da Silva, Juliana

    2013-07-01

    Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L) leaves (control group). All of the snails received leaves (tobacco and lettuce leaves were the only food provided) and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.

  15. Genotoxicity of Nicotiana tabacum leaves on Helix aspersa

    Directory of Open Access Journals (Sweden)

    Fernanda R. da Silva

    2013-01-01

    Full Text Available Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L leaves (control group. All of the snails received leaves (tobacco and lettuce leaves were the only food provided and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.

  16. Steady-state configurations and dynamics of the MreB helix within bacteria

    Science.gov (United States)

    Rutenberg, Andrew; Allard, Jun

    2007-03-01

    We present a quantitative model of the actin-like MreB cytoskeleton that is present in many prokaryotes. Individual MreB polymers are bundled into a supra-molecular array to make up helical cables. The cell wall imposes constraint forces through a global elasticity model. With variational techniques and stochastic simulations we obtain relationships between observable quantities such as the pitch of the helix, the total abundance of MreB molecules, and the thickness of the MreB cables. We address changes expected with slow cell growth, as well as turnover dynamics that are relevant to FRAP studies. We also address polarized macromolecular trafficking along the MreB cables without motor proteins.

  17. Studies on the Edible Terrestrial Snails Helix aspersa Muller Food Conversion Ratio in a Confined Microclimate System

    Directory of Open Access Journals (Sweden)

    Adrian Toader-Williams

    2010-05-01

    Full Text Available Terrestrial edible snail breeding is an agricultural activity that finds itself at pioneering stage in Romania. One of the species used in snail farming is Helix aspersa Muller. In order to accelerate their growth, farmers feed the snails with pumpkins as well as concentrated forage consisting of mix of flours to which calcium carbonate is added in order to supplement snails need for shell’s development. In a controlled microclimate environment we measured the average growth of six weeks old Helix aspersa Muller snails placed in four different plastic enclosures. The consumption of different type of foods within 24 hours period was measured. The wheat (60%, corn flour (20% and calcium carbonate (20% mix had a superior food conversion ratio (FCR of 4.80, whereas the second FCR registered 6.04 in the case of 53% pumpkin and 47% flour mix served in the same time followed by the pure fresh vegetable mix accounting for a FCR of 8.00 and by 19.02 when only the pumpkin has been administrated as meal. During the experiments the snails did not have access to soil, being known that soil is an integral part of their diet.

  18. Innovative Development of Kazakhstan on The Basis of Triple Helix and Cluster Approach

    Directory of Open Access Journals (Sweden)

    Farkhat Musayevich Dnishev

    2015-06-01

    Full Text Available The aim of the research is to study the Triple Helix model feasibility in developing innovations and using cluster approach in Kazakhstan. There are possible points of the emergence of clusters in Kazakhstan. However, there are a lot of constraining factors. First of all, institutional and social factors: the culture of business, unfair competition, low trust of economic agents to each other and to power institutes, low psychological readiness for cooperation of the enterprises of various branches and regions, poor development of chambers of commerce, and industrial associations. For the time being, the majority of regions of Kazakhstan are characterized by a limited set of high technology industrial branches, and a sharp shortage of universities generating innovation and research institutes. The research results show that the open innovation model is realized in a limited scale that does not allow to export innovations into external markets, to participate in global technology chains and international research networks. At the same time, some interaction schemes and preconditions for the development of the Triple Helix model are emerging. However, in general, the innovation policy is not systemic; it does not unite actions in the sphere of science and technology, education, industry, and regional initiatives. As the result of the research, some policy implications are given. For the development of clusters in Kazakhstan, it is desirable to use such a way, as integration into global cluster networks. It is necessary to make use of foreign experience at which various specialized state agencies become participants of clusters. It is necessary to focus not only on science but also industry, which should play the central role in the innovation process.

  19. Oxidation of Helix-3 methionines precedes the formation of PK resistant PrP.

    Directory of Open Access Journals (Sweden)

    Tamar Canello

    2010-07-01

    Full Text Available While elucidating the peculiar epitope of the alpha-PrP mAb IPC2, we found that PrPSc exhibits the sulfoxidation of residue M213 as a covalent signature. Subsequent computational analysis predicted that the presence of sulfoxide groups at both Met residues 206 and 213 destabilize the alpha-fold, suggesting oxidation may facilitate the conversion of PrPC into PrPSc. To further study the effect of oxidation on prion formation, we generated pAbs to linear PrP peptides encompassing the Helix-3 region, as opposed to the non-linear complexed epitope of IPC2. We now show that pAbs, whose epitopes comprise Met residues, readily detected PrPC, but could not recognize most PrPSc bands unless they were vigorously reduced. Next, we showed that the alpha-Met pAbs did not recognize newly formed PrPSc, as is the case for the PK resistant PrP present in lines of prion infected cells. In addition, these reagents did not detect intermediate forms such as PK sensitive and partially aggregated PrPs present in infected brains. Finally, we show that PrP molecules harboring the pathogenic mutation E200K, which is linked to the most common form of familial CJD, may be spontaneously oxidized. We conclude that the oxidation of methionine residues in Helix-3 represents an early and important event in the conversion of PrPC to PrPSc. We believe that further investigation into the mechanism and role of PrP oxidation will be central in finally elucidating the mechanism by which a normal cell protein converts into a pathogenic entity that causes fatal brain degeneration.

  20. Helix Nebula: Enabling federation of existing data infrastructures and data services to an overarching cross-domain e-infrastructure

    Science.gov (United States)

    Lengert, Wolfgang; Farres, Jordi; Lanari, Riccardo; Casu, Francesco; Manunta, Michele; Lassalle-Balier, Gerard

    2014-05-01

    Helix Nebula has established a growing public private partnership of more than 30 commercial cloud providers, SMEs, and publicly funded research organisations and e-infrastructures. The Helix Nebula strategy is to establish a federated cloud service across Europe. Three high-profile flagships, sponsored by CERN (high energy physics), EMBL (life sciences) and ESA/DLR/CNES/CNR (earth science), have been deployed and extensively tested within this federated environment. The commitments behind these initial flagships have created a critical mass that attracts suppliers and users to the initiative, to work together towards an "Information as a Service" market place. Significant progress in implementing the following 4 programmatic goals (as outlined in the strategic Plan Ref.1) has been achieved: × Goal #1 Establish a Cloud Computing Infrastructure for the European Research Area (ERA) serving as a platform for innovation and evolution of the overall infrastructure. × Goal #2 Identify and adopt suitable policies for trust, security and privacy on a European-level can be provided by the European Cloud Computing framework and infrastructure. × Goal #3 Create a light-weight governance structure for the future European Cloud Computing Infrastructure that involves all the stakeholders and can evolve over time as the infrastructure, services and user-base grows. × Goal #4 Define a funding scheme involving the three stake-holder groups (service suppliers, users, EC and national funding agencies) into a Public-Private-Partnership model to implement a Cloud Computing Infrastructure that delivers a sustainable business environment adhering to European level policies. Now in 2014 a first version of this generic cross-domain e-infrastructure is ready to go into operations building on federation of European industry and contributors (data, tools, knowledge, ...). This presentation describes how Helix Nebula is being used in the domain of earth science focusing on geohazards. The

  1. Triple-helix molecular switch-based aptasensors and DNA sensors.

    Science.gov (United States)

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mechanical evaluation of space closure loops in Orthodontics

    OpenAIRE

    Rodrigues, Eduardo Uggeri; Maruo, Hiroshi; Guariza Filho, Odilon; Tanaka, Orlando; Camargo, Elisa Souza

    2011-01-01

    This study evaluated the mechanical performance of teardrop-shaped loops and teardrop-shaped loops with helix used in orthodontic space closure. Sixty retraction loops made with 0.019" x 0.025" stainless steel (SS) and beta-titanium (BT) wires were used. They were attached to a testing machine to measure the magnitudes of the sagittal force and the load-deflection ratio necessary for 1 mm, 2 mm and 3 mm activation. The results demonstrated that the BT alloy presented significantly smaller mea...

  3. Constraining the Lateral Helix of Respiratory Complex I by Cross-linking Does Not Impair Enzyme Activity or Proton Translocation.

    Science.gov (United States)

    Zhu, Shaotong; Vik, Steven B

    2015-08-21

    Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441-445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu(2+) ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50-90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10-20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; /Stanford U., Phys. Dept. /Tsinghua U., Beijing; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  5. Helix Nebula: sunshine and clouds on the CERN computing horizon

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    23 petabytes is how much data CERN recorded during 2011, and this number will rise in 2012. In order to respond to the challenge, the IT department is upping its game, amongst other things by participating in the Helix Nebula project, a public-private partnership to create a European cloud-computing platform, as announced in a recent CERN press release.   “We’re not replacing the Grid,” clarifies Bob Jones, responsible for CERN openlab who is also responsible for EC-funded projects in IT, “but looking at three complementary ways of increasing CERN’s computing capacity, so that as demand goes up we can continue to satisfy our users.” “First we are upgrading the electrical and cooling infrastructure of the computer centre in order to increase the availability of critical IT services needed for the Laboratory. This will also provide more floor space in the area called The Barn, allowing for more servers to fit in.”...

  6. Portrait of a discovery. Watson, Crick, and the double helix.

    Science.gov (United States)

    de Chadarevian, Soraya

    2003-03-01

    This essay examines an iconic image of twentieth-century science: Antony Barrington Brown's photograph of James Watson, Francis Crick, and the double-helical model of DNA. The detailed reconstruction of the production, reception, and uses of the photograph reveals the central role of the image in making the discovery it portrays. Taken in May 1953, two full months after the scientists built the model, to accompany a report on the structure in Time magazine, the photograph (like the report) was never published. It came into circulation only fifteen years later, as an illustration in Watson's best-selling book The Double Helix. While the image served as a historical document and advertisement for the book, only the book provided the description that made the image as well as the people and the model it represented famous. The history of the image provides insights into the retrospective construction of the discovery, which has since been celebrated as the origin of a new science of life.

  7. A "bulged" double helix in a RNA-protein contact site

    DEFF Research Database (Denmark)

    Peattie, D A; Douthwaite, S; Garrett, R A

    1981-01-01

    as a singly bulged nucleotide extending the Fox and Woese central helix by two base pairs in the E. coli sequence (to positions 16-23/60-68) as well as in each of 61 (prokaryotic and eukaryotic) aligned 5S RNA sequences. In each case, the single bulged nucleotide is at the relative position of adenosine-66...... in the RNA sequences. The presence of this putative bulged nucleotide appears to have been conserved in 5S RNA sequences throughout evolution, and its identity varies with major phylogenetic divisions. This residue is likely involved in specific 5S RNA-protein recognition or interaction in prokaryotic...... and eukaryotic ribosomes. The uridine-65 to adenosine-66 internucleotide bond is protected from RNase A digestion in the complex, and carbethoxylation of E. coli adenosine-66 prior to L18 binding affects formation of a stable RNA-protein complex. Thus, we identify a region of E. coli 5S RNA protected...

  8. Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications

    DEFF Research Database (Denmark)

    Monshupanee, Tanakarn; Gregory, Steven T; Douthwaite, Stephen

    2008-01-01

    of previously reported capreomycin resistance base substitutions. Capreomycin resistance in other bacteria has been shown to result from inactivation of the TlyA methyltransferase which 2'-O methylates C1920 of 23S rRNA. Inactivation of the tlyA gene in T. thermophilus does not affect its sensitivity...... for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G, and a single base deletion, DeltamU1915, were identified in helix 69 of 23S rRNA, a structural element that forms part of an interribosomal subunit bridge with the decoding center of 16S rRNA, the site...... to capreomycin. Finally, none of the mutations in helix 69 interferes with methylation at C1920 or with pseudouridylation at positions 1911 and 1917. We conclude that the resistance phenotype is a consequence of structural changes introduced by the mutations....

  9. Intermediate conformation between native β-sheet and non-native α-helix is a precursor of trifluoroethanol-induced aggregation of Human Carbonic Anhydrase-II

    International Nuclear Information System (INIS)

    Gupta, Preeti; Deep, Shashank

    2014-01-01

    Highlights: • HCAII forms amyloid-like aggregates at moderate concentration of trifluoroethanol. • Protein adopts a state between β-sheet and α-helix at moderate % of TFE. • Hydrophobic surface(s) of partially structured conformation forms amyloid. • High % of TFE induces stable α-helical state preventing aggregation. - Abstract: In the present work, we examined the correlation between 2,2,2-trifluoroethanol (TFE)-induced conformational transitions of human carbonic anhydrase II (HCAII) and its aggregation propensity. Circular dichroism data indicates that protein undergoes a transition from β-sheet to α-helix on addition of TFE. The protein was found to aggregate maximally at moderate concentration of TFE at which it exists somewhere between β-sheet and α-helix, probably in extended non-native β-sheet conformation. Thioflavin-T (ThT) and Congo-Red (CR) assays along with fluorescence microscopy and transmission electron microscopy (TEM) data suggest that the protein aggregates induced by TFE possess amyloid-like features. Anilino-8-naphthalene sulfonate (ANS) binding studies reveal that the exposure of hydrophobic surface(s) was maximum in intermediate conformation. Our study suggests that the exposed hydrophobic surface and/or the disruption of the structural features protecting a β-sheet protein might be the major reason(s) for the high aggregation propensity of non-native intermediate conformation of HCAII

  10. Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mangalakumar Veerasamy

    Full Text Available The basic-Helix-Loop-Helix family (bHLH of transcriptional factors plays a major role in regulating cellular proliferation, differentiation and phenotype maintenance. The downregulation of one of the members of bHLH family protein, inhibitor of DNA binding 2 (Id2 has been shown to induce de-differentiation of epithelial cells. Opposing regulators of epithelial/mesenchymal phenotype in renal proximal tubule epithelial cells (PTEC, TGFβ1 and BMP7 also have counter-regulatory effects in models of renal fibrosis. We investigated the regulation of Id2 by these growth factors in human PTECs and its implication in the expression of markers of epithelial versus myofibroblastic phenotype. Cellular Id2 levels were reduced by TGFβ1 treatment; this was prevented by co-incubation with BMP7. BMP7 alone increased cellular levels of Id2. TGFβ1 and BMP7 regulated Id2 through Smad2/3 and Smad1/5 dependent mechanisms respectively. TGFβ1 mediated Id2 suppression was essential for α-SMA induction in PTECs. Although Id2 over-expression prevented α-SMA induction, it did not prevent E-cadherin loss under the influence of TGFβ1. This suggests that the loss of gate keeper function of E-cadherin alone may not necessarily result in complete EMT and further transcriptional re-programming is essential to attain mesenchymal phenotype. Although BMP7 abolished TGFβ1 mediated α-SMA expression by restoring Id2 levels, the loss of Id2 was not sufficient to induce α-SMA expression even in the context of reduced E-cadherin expression. Hence, a reduction in Id2 is critical for TGFβ1-induced α-SMA expression in this model of human PTECs but is not sufficient in it self to induce α-SMA even in the context of reduced E-cadherin.

  11. NMR studies of abasic sites in DNA duplexes: deoxyadenosine stacks into the helix opposite the cyclic analog of 2-deoxyribose

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Chang, C.N.; Grollman, A.P.; Patel, D.J.

    1988-01-01

    Proton and phosphorus NMR studies are reported for the complementary d(C-A-T-G-A-G-T-A-C) x d(G-T-A-C-F-C-A-T-G) nonanucleotide duplex (designated AP/sub F/ 9-mer duplex) which contains a stable abasic site analog, F, in the center of the helix. This oligodeoxynucleotide contains a modified tetrahydrofuran moiety, isosteric with 2-deoxyribofuranose, which serves as a structural analog of a natural apurinic/apyrimidinic site. Exchangeable and nonexchangeable base and sugar protons, including those located at the abasic site, have been assigned in the complementary AP/sub F/ 9-mer duplex by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H 2 O and D 2 O solution at low temperature (0 0 C). These studies indicate that A5 inserts into the helix opposite the abasic site F14 and stacks with flanking G4 x C15 and G6 x C13 Watson-Crick base pairs. Base-sugar proton NOE connectivities were measured through G4-A5-G6 on the unmodified strand and between the base protons of C15 and the sugar protons of the 5'-flanking residue F14 on the modified strand. These studies establish that all glycosidic torsion angles are anti and that the helix is right-handed at and adjacent to the abasic site in the AP/sub F/ 9-mer duplex. Two of the 16 phosphodiester groups exhibit phosphorus resonances outside the normal spectral dispersion indicative of altered torsion angles at two of the phosphate groups in the backbone of the AP/sub F/ 9-mer duplex

  12. Oceanographic profile Biomass, temperature salinity and other measurements collected using bottle from Alpha Helix in the Pacific Ocean from 1976 (NODC Accession 0002070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle casts from the ALPHA HELIX in the Pacific Ocean. Data were collected from 06...

  13. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi.

    Science.gov (United States)

    Shim, Joong-Youn; Ahn, Kwang H; Kendall, Debra A

    2013-11-08

    The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.

  14. Locating the fourth helix: Rethinking the role of civil society in developing smart learning cities

    Science.gov (United States)

    Borkowska, Katarzyna; Osborne, Michael

    2018-06-01

    In the Global North and increasingly in the Global South, smart city technologies are enthusiastically seen as a solution to urban problems and as an alternative to austerity. However, to move beyond a narrow technological focus, it is necessary to explore the degree to which smart initiatives are committed to building socially inclusive innovation with learning at its core. Using the particular case of the Future City Demonstrator Initiative in Glasgow, United Kingdom, the most high-profile initiative of its kind funded by government, the authors of this article assess the extent to which this smart city adopts such an inclusive approach. They use the quadruple helix model (government - academia - industry - civil society) as a starting point and develop an analytic framework composed of four strands: (1) supporting participation of citizens in decision-making; (2) implementing technological innovation which positions citizens as active users; (3) implementing technological innovation to benefit the community; and (4) evaluating technological innovation in the light of the experiences and needs of citizens. Unlike most analyses, the principal focus of this article is on the fourth element of the helix, civil society. The authors argue that Glasgow's rhetoric of smart urbanism, while aspiring to problem-solving, devalues certain principles of human agency. They emphasise that urban change, including the city's desire to become technologically innovative, would more fully facilitate active citizenship, social inclusion and learning opportunities for all if it were underpinned by the broader conceptions and frameworks of learning cities.

  15. Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2.

    Science.gov (United States)

    Ozen, Ilknur; Galichet, Christophe; Watts, Colin; Parras, Carlos; Guillemot, François; Raineteau, Olivier

    2007-05-01

    Little is known of the transcription factors expressed by adult neural progenitors produced in the hippocampal neurogenic niche. Here, we study the expression of the proneural basic helix-loop-helix (bHLH) transcription factor Neurogenin-2 (Ngn2) in the adult hippocampus. We have characterized the pattern of expression of Ngn2 in the adult hippocampus using immunostaining for Ngn2 protein and a Ngn2-green fluorescent protein (GFP) reporter mouse strain. A significant proportion of Ngn2-expressing cells were mitotically active. Ngn2-GFP expression was restricted to the subgranular zone and declined with age. Neuronal markers were used to determine the phenotype of Ngn2-expressing cells. The vast majority of Ngn2-GFP-positive cells expressed the immature neuronal markers, doublecortin (DCX) and polysialic acid-neural cell adhesion molecule (PSA-NCAM). Finally, the pattern of Ngn2 expression was studied following seizure induction. Our data show an increase in neurogenesis, detected in these animals by bromodeoxyuridine (BrdU) and DCX staining that was contemporaneous with a marked increase in Ngn2-GFP-expression. Taken together, our results show that Ngn2-GFP represents a specific marker for neurogenesis and its modulation in the adult hippocampus. Ngn2 transient expression in proliferating neuronal progenitors supports the idea that it plays a significant role in adult neurogenesis.

  16. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6-methylguanine-DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1 is a member of the basic helix-loop-helix (bHLH transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7 and O(6-methylguanine-DNA methyltransferase (MGMT. Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

  17. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum.

    Science.gov (United States)

    Obana, Edwin A; Lundell, Travis G; Yi, Kevin J; Radomski, Kryslaine L; Zhou, Qiong; Doughty, Martin L

    2015-06-01

    Neurog1 is a pro-neural basic helix-loop-helix (bHLH) transcription factor expressed in progenitor cells located in the ventricular zone and subsequently the presumptive white matter tracts of the developing mouse cerebellum. We used genetic inducible fate mapping (GIFM) with a transgenic Neurog1-CreER allele to characterize the contributions of Neurog1 lineages to cerebellar circuit formation in mice. GIFM reveals Neurog1-expressing progenitors are fate-mapped to become Purkinje cells and all GABAergic interneuron cell types of the cerebellar cortex but not glia. The spatiotemporal sequence of GIFM is unique to each neuronal cell type. GIFM on embryonic days (E) 10.5 to E12.5 labels Purkinje cells with different medial-lateral settling patterns depending on the day of tamoxifen delivery. GIFM on E11.5 to P7 labels interneurons and the timing of tamoxifen administration correlates with the final inside-to-outside resting position of GABAergic interneurons in the cerebellar cortex. Proliferative status and long-term BrdU retention of GIFM lineages reveals Purkinje cells express Neurog1 around the time they become post-mitotic. In contrast, GIFM labels mitotic and post-mitotic interneurons. Neurog1-CreER GIFM reveals a correlation between the timing of Neurog1 expression and the spatial organization of GABAergic neurons in the cerebellar cortex with possible implications for cerebellar circuit assembly.

  18. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.

    Science.gov (United States)

    Domingues-Hamdi, Elisa; Vasseur, Corinne; Fournier, Jean-Baptiste; Marden, Michael C; Wajcman, Henri; Baudin-Creuza, Véronique

    2014-01-01

    Alpha-Hemoglobin Stabilizing Protein (AHSP) binds to α-hemoglobin (α-Hb) or α-globin and maintains it in a soluble state until its association with the β-Hb chain partner to form Hb tetramers. AHSP specifically recognizes the G and H helices of α-Hb. To investigate the degree of interaction of the various regions of the α-globin H helix with AHSP, this interface was studied by stepwise elimination of regions of the α-globin H helix: five truncated α-Hbs α-Hb1-138, α-Hb1-134, α-Hb1-126, α-Hb1-123, α-Hb1-117 were co-expressed with AHSP as two glutathione-S-transferase (GST) fusion proteins. SDS-PAGE and Western Blot analysis revealed that the level of expression of each truncated α-Hb was similar to that of the wild type α-Hb except the shortest protein α-Hb1-117 which displayed a decreased expression. While truncated GST-α-Hb1-138 and GST-α-Hb1-134 were normally soluble; the shorter globins GST-α-Hb1-126 and GST-α-Hb1-117 were obtained in very low quantities, and the truncated GST-α-Hb1-123 provided the least material. Absorbance and fluorescence studies of complexes showed that the truncated α-Hb1-134 and shorter forms led to modified absorption spectra together with an increased fluorescence emission. This attests that shortening the H helix leads to a lower affinity of the α-globin for the heme. Upon addition of β-Hb, the increase in fluorescence indicates the replacement of AHSP by β-Hb. The CO binding kinetics of different truncated AHSPWT/α-Hb complexes showed that these Hbs were not functionally normal in terms of the allosteric transition. The N-terminal part of the H helix is primordial for interaction with AHSP and C-terminal part for interaction with heme, both features being required for stability of α-globin chain.

  19. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    Science.gov (United States)

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  1. Structural Characterization of the Loop at the Alpha-Subunit C-Terminus of the Mixed Lineage Leukemia Protein Activating Protease Taspase1.

    Directory of Open Access Journals (Sweden)

    Johannes van den Boom

    Full Text Available Type 2 asparaginases, a subfamily of N-terminal nucleophile (Ntn hydrolases, are activated by limited proteolysis. This activation yields a heterodimer and a loop region at the C-terminus of the α-subunit is released. Since this region is unresolved in all type 2 asparaginase crystal structures but is close to the active site residues, we explored this loop region in six members of the type 2 asparaginase family using homology modeling. As the loop model for the childhood cancer-relevant protease Taspase1 differed from the other members, Taspase1 activation as well as the conformation and dynamics of the 56 amino acids loop were investigated by CD and NMR spectroscopy. We propose a helix-turn-helix motif, which can be exploited as novel anticancer target to inhibit Taspase1 proteolytic activity.

  2. Electrostatic bending response of a charged helix

    Science.gov (United States)

    Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.

    2018-04-01

    We explore the electrostatic bending response of a chain of charged particles confined on a finite helical filament. We analyze how the energy difference Δ E between the bent and the unbent helical chain scales with the length of the helical segment and the radius of curvature and identify features that are not captured by the standard notion of the bending rigidity, normally used as a measure of bending tendency in the linear response regime. Using Δ E to characterize the bending response of the helical chain we identify two regimes with qualitatively different bending behaviors for the ground state configuration: the regime of small and the regime of large radius-to-pitch ratio, respectively. Within the former regime, Δ E changes smoothly with the variation of the system parameters. Of particular interest are its oscillations with the number of charged particles encountered for commensurate fillings which yield length-dependent oscillations in the preferred bending direction of the helical chain. We show that the origin of these oscillations is the nonuniformity of the charge distribution caused by the long-range character of the Coulomb interactions and the finite length of the helix. In the second regime of large values of the radius-to-pitch ratio, sudden changes in the ground state structure of the charges occur as the system parameters vary, leading to complex and discontinuous variations in the ground state bending response Δ E .

  3. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    Science.gov (United States)

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  4. Inactivation of Mechanically Activated Piezo1 Ion Channels Is Determined by the C-Terminal Extracellular Domain and the Inner Pore Helix

    Directory of Open Access Journals (Sweden)

    Jason Wu

    2017-11-01

    Full Text Available Piezo proteins form mechanically activated ion channels that are responsible for our sense of light touch, proprioception, and vascular blood flow. Upon activation by mechanical stimuli, Piezo channels rapidly inactivate in a voltage-dependent manner through an unknown mechanism. Inactivation of Piezo channels is physiologically important, as it modulates overall mechanical sensitivity, gives rise to frequency filtering of repetitive mechanical stimuli, and is itself the target of numerous human disease-related channelopathies that are not well understood mechanistically. Here, we identify the globular C-terminal extracellular domain as a structure that is sufficient to confer the time course of inactivation and a single positively charged lysine residue at the adjacent inner pore helix as being required for its voltage dependence. Our results are consistent with a mechanism for inactivation that is mediated through voltage-dependent conformations of the inner pore helix and allosteric coupling with the C-terminal extracellular domain.

  5. A cosmic double helix in the archetypical quasar 3C273.

    Science.gov (United States)

    Lobanov, A P; Zensus, J A

    2001-10-05

    Finding direct evidence for plasma instability in extragalactic jets is crucial for understanding the nature of relativistic outflows from active galactic nuclei. Our radio interferometric observations of the quasar 3C273 made with the orbiting radio telescope, HALCA, and an array of ground telescopes have yielded an image in which the emission across the jet is resolved, revealing two threadlike patterns that form a double helix inside the jet. This double helical structure is consistent with a Kelvin-Helmholtz instability, and at least five different instability modes can be identified and modeled by a light jet with a Lorentz factor of 2 and Mach number of 3.5. The model reproduces in detail the internal structure of the jet on scales of up to 30 milli-arc seconds ( approximately 300 parsecs) and is consistent with the general morphology of the jet on scales of up to 1 kiloparsec.

  6. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses.

    Directory of Open Access Journals (Sweden)

    Sandra Fonseca

    Full Text Available Cell reprogramming in response to jasmonates requires a tight control of transcription that is achieved by the activity of JA-related transcription factors (TFs. Among them, MYC2, MYC3 and MYC4 have been described as activators of JA responses. Here we characterized the function of bHLH003, bHLH013 and bHLH017 that conform a phylogenetic clade closely related to MYC2, MYC3 and MYC4. We found that these bHLHs form homo- and heterodimers and also interact with JAZ repressors in vitro and in vivo. Phenotypic analysis of JA-regulated processes, including root and rosette growth, anthocyanin accumulation, chlorophyll loss and resistance to Pseudomonas syringae, on mutants and overexpression lines, suggested that these bHLHs are repressors of JA responses. bHLH003, bHLH013 and bHLH017 are mainly nuclear proteins and bind DNA with similar specificity to that of MYC2, MYC3 and MYC4, but lack a conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Moreover, expression of bHLH017 is induced by JA and depends on MYC2, suggesting a negative feed-back regulation of the activity of positive JA-related TFs. Our results suggest that the competition between positive and negative TFs determines the output of JA-dependent transcriptional activation.

  7. Precise determination of cosmogenic Ne in CREU-1 quartz standard, using the Helix-MC Plus mass spectrometer

    Science.gov (United States)

    Hamilton, D.; Honda, M.; Zhang, X.; Phillips, D.; Matchan, E.

    2017-12-01

    The Helix-MC Plus multi-collector noble gas mass spectrometer at the Australian National University is uniquely equipped with three high mass resolution collectors on H2, Axial and L2 positions. Their mass resolution and mass resolving power are as high as 1,800 and 8,000, respectively. The Helix-MC Plus can totally separate 20Ne+ from 40Ar++ isobaric interference and also partially separate 21Ne+ from 20NeH+ and 22Ne+ from 12C16O2++. By adjusting collector positions, we are able to measure interference-free Ne isotope intensities and have re-determined the 21Ne abundance in air [1]. Analyses by Honda et al. [1] demonstrated that 20Ne1H contributes approximately 2% to previously determined atmospheric 21Ne values [2], and a new atmospheric 21Ne/20Ne ratio of 0.002906 was calculated. Using the Helix-MC Plus mass spectrometer, we measured Ne abundances in the CREU-1 quartz standard [3] and determined cosmogenic concentrations by subtraction of atmospheric Ne with the new atmospheric 21Ne/20Ne value. The average concentration of cosmogenic 21Ne determined from four repeated analyses is 338 ± 12 × 106 atom/g (2σ). This compares with the average concentration of 348 ± 10 × 106 atom/g (2σ) from 45 analyses determined by several laboratories [3], where Ne isotope analyses were undertaken by conventional low resolution mass spectrometers and atmospheric Ne was subtracted using the conventional atmospheric 21Ne/20Ne [2]. On this basis, for a sample with abundant cosmogenic Ne, like CREU-1 quartz, previously measured by low mass resolution mass spectrometers are likely valid and their geological implications are unaffected. However, for low 21Ne concentration samples, combining new generation of mass spectrometers as well as the new atmospheric ratio may have significance for cosmogenic 21Ne surface exposure dating. References: [1] Honda M., et. al., International Journal of Mass Spectrometry, 387, 1 (2015). [2] Eberhardt P., et. al., Zeitschrift fur Naturforschung, 20

  8. Crystallization and preliminary electron diffraction study to 3. 7 A of DNA helix-destabilizing protein gp32*I

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, W; Hosoda, J

    1978-01-01

    A two-dimensionally large and thin crystal has been obtained from gp32*I, a proteolytically digested product of a DNA helix-destabilizing protein coded by gene 32 in bacteriophage T4. High-resolution electron diffraction patterns (approx. 3.7 A) are recorded from both unstained and stained protein crystals embedded in glucose. The crystal is of orthorhombic space group with a = 62.9 A and b = 47.3 A.

  9. Effect of ionizing radiation on the functional status of Helix pomatia neurons. Glucose metabolism and atp level

    International Nuclear Information System (INIS)

    Dvoretskij, A.I.; Egorova, E.G.; Shainskaya, A.M.; Stepchenko, L.N.; Ajrapetyan, S.N.; AN Armyanskoj SSR, Erevan. Inst. Ehksperimental'noj Biologii)

    1988-01-01

    The ATP level in nerve ganglia of Helix pomatia was shown to decrease 15 and 30 min, and 1 and 3 h following irradiation (5.16 C/kg). The decrease was maximum in 60 min. The absorption and utilization of glucose via a pentose-phosphate route and in the Kerbs cycle did not substantially change. It is concluded that the energy supply of nerve cells under study is not responsible for the decrease in the ATP level

  10. The third helix of the murine Hoxc8 homeodomain facilitates protein transduction in mammalian cells

    International Nuclear Information System (INIS)

    Kong, Kyoung-Ah; Gadi, Jogeswar; Park, Hyoung Woo; Bok, Jinwoong; Kim, Myoung Hee

    2008-01-01

    Previously, we have demonstrated that purified Hoxc8 homeoprotein has the ability to penetrate the cellular membrane and can be transduced efficiently into COS-7 cells. Moreover, the Hoxc8 protein is able to form a complex with DNA molecules in vitro and helps the DNA be delivered intracellularly, serving as a gene delivery vehicle. Here, we further analyzed the membrane transduction activity of Hoxc8 protein and provide the evidence that the 16 amino acid (a.a.191-206, 2.23 kDa) third helix of murine Hoxc8 protein is an efficient protein transduction domain (PTD). When the 16 amino acid peptide was fused at the carboxyl terminal of enhanced green fluorescence protein (EGFP), the fusion proteins were transduced efficiently into the primary pig fetal fibroblast cells. The transduction efficiency increased in a concentration-dependent manner up to 1 μM, and appeared to plateau above a concentration of 1 μM. When tandem multimers of PTD, EGFP-PTD(2), EGFP-PTD(3), EGFP-PTD(4), and EGFP-PTD(5), were analyzed at 500 nM of concentration, the penetrating efficiency increased in a dose-dependent manner. As the number of PTDs increased, the EGFP signal also increased, although the signal maintained plateau after EGFP-PTD(3). These results indicate that the 16 amino acid third helix is the key element responsible for the membrane transduction activity of Hoxc8 proteins, and further suggest that the small peptide could serve as a therapeutic delivery vehicle for large cargo proteins

  11. The double helix revisited: a paradox of science and a paradigm of human behaviour

    Directory of Open Access Journals (Sweden)

    Argüelles, Juan Carlos

    2007-06-01

    Full Text Available In the modern history of Science, few breakthroughs have caused an impact comparative to the Double Helix, the three-dimensional structure of DNA proposed by Watson & Crick in 1953, an event whose 50th anniversary was widely celebrated in the non-specialist media, three years ago. Although the discovery had little transcendence at the time, it has unquestionably been of great importance ever since. The Double Helix has underlined the true biological value of nucleic acids compared with proteins, demonstrating that genes are not amorphous entities but have a specific chemical composition and adopt an ordered spatial folding pattern. Elucidation of this key configuration made it possible to establish a direct relationship between the structure and the function of macromolecules, a relationship which is not so clear in the case of proteins. During these last fifty years much has been written and argued about the circumstances surrounding the discovery and about the behaviour and attitudes of many of the protagonists. Besides Watson & Crick, other scientists, whose contribution has not been adequately recognised, played an important part in solving the Double Helix mystery. This article contains some ethical and scientific reflections which revise some of these essential contributions and throws light on the role played in history by these comparatively «unknown soldiers» of science. The Double Helix story is undoubtedly a manifestation of the human side of science and many scientists believe that the available evidence taken as a whole permits an alternative story to be written.

    En la desarrollo histórico de la Ciencia moderna, pocos descubrimientos han causado un impacto comparativo a las repercusiones de la Doble Hélice, la estructura tridimensional del ADN, propuesta por Watson y Crick en 1953. El 50º aniversario de aquel evento fue ampliamente celebrado hace tres años, incluso por los medios no especializados en informaci

  12. clockwork orange encodes a transcriptional repressor important for circadian clock amplitude in Drosophila

    OpenAIRE

    Lim, Chunghun; Chung, Brian Y.; Pitman, Jena L.; McGill, Jermaine J.; Pradhan, Suraj; Lee, Jongbin; Keegan, Kevin P.; Choe, Joonho; Allada, Ravi

    2007-01-01

    Gene transcription is a central timekeeping process in animal clocks. In Drosophila, the basic helix-loop helix (bHLH)-PAS transcription factor heterodimer, CLOCK (CLK)/CYCLE(CYC) transcriptionally activates the clock components period (per), timeless (tim), Par domain protein 1 (Pdp1), and vrille (vri) that feedback and regulate distinct features of CLK/CYC function [1]. Microarray studies have identified numerous rhythmically expressed transcripts [2-7], some of which are potential direct C...

  13. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  14. Nutrients data collected from the ALPHA HELIX from the coastal waters of Alaska from 03 March 1998 to 07 December 1999 (NODC Accession 0000637)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients data were collected from bottle casts from the ALPHA HELIX in the coastal waters of Alaska from 08 March 1998 to 07 December 1999. Data include...

  15. PROTEOLYTIC REMOVAL OF THE CARBOXYL TERMINUS OF THE T4 GENE 32 HELIX-DESTABILIZING PROTEIN ALTERS THE T4 IN VITRO REPLICATION COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Burke, R.L.; Alberts, B.M.; Hosoda, J.

    1980-07-01

    The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. (1) Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32*I protein for this synthesis. (2) Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. (3) Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. (4) The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3{prime}-OH end of a

  16. Communication: Role of explicit water models in the helix folding/unfolding processes

    Science.gov (United States)

    Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele

    2016-09-01

    In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

  17. Biochemical characterization of a heterotrimeric G(i)-protein activator peptide designed from the junction between the intracellular third loop and sixth transmembrane helix in the m4 muscarinic acetylcholine receptor.

    Science.gov (United States)

    Terawaki, Shin-ichi; Matsubayashi, Rina; Hara, Kanako; Onozuka, Tatsuki; Kohno, Toshiyuki; Wakamatsu, Kaori

    Muscarinic acetylcholine receptors (mAChRs) are G-protein coupled receptors (GPCRs) that are activated by acetylcholine released from parasympathetic nerves. The mAChR family comprises 5 subtypes, m1-m5, each of which has a different coupling selectivity for heterotrimeric GTP-binding proteins (G-proteins). m4 mAChR specifically activates the Gi/o family by enhancing the guanine nucleotide exchange factor (GEF) reaction with the Gα subunit through an interaction that occurs via intracellular segments. Here, we report that the m4 mAChR mimetic peptide m4i3c(14)Gly, comprising 14 residues in the junction between the intracellular third loop (i3c) and transmembrane helix VI (TM-VI) extended with a C-terminal glycine residue, presents GEF activity toward the Gi1 α subunit (Gαi1). The m4i3c(14)Gly forms a stable complex with guanine nucleotide-free Gαi1 via three residues in the VTI(L/F) motif, which is conserved within the m2/4 mAChRs. These results suggest that this m4 mAChR mimetic peptide, which comprises the amino acid of the mAChR intracellular segments, is a useful tool for understanding the interaction between GPCRs and G-proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Technology Entreprenurship in the Changing Business Environment – A Triple Helix Performance Model

    Directory of Open Access Journals (Sweden)

    Maja Levi Jaksić

    2015-02-01

    Full Text Available In this paper the contribution of technology management and entrepreneurship to sustainable development is emphasized and the Triple Helix (TH model is used to analyse the performance of different actors in accomplishing the activities of Technology Innovation Management and Entrepreneurship (TIME. By analysing TH model (Government – University – Industry in relation to accomplishing TIME main functions: Planning, Organizing and Control (POC, we created a general model which measures TIME effectiveness related to the key elements of the TH model. The general model – TMD-TH (Technology Management and Development – Triple Helix represents the framework for further more specific research into the relations of the observed dimensions. From the general model, three sub-models are excluded: TMD-G (Government, TMD-U (University and TMD-I (Industry, and each of TH dimensions is observed by a set of indicators classified from the perspective of the specific function (POC of TIME. This provides better categorization of TIME indicators and linkage with the actors in the TH model. The applicability of the suggested general model was tested by a set of indicators at the example of Serbia, Austria and Finland and comparison of these countries was made from a perspective of innovativeness and sustainable development. Since technology, innovation and entrepreneurship are considered as the main forces leading to sustainable development at different levels of the economy and society, it is of paramount importance to develop our capacities to better monitor, analyse and develop these forces. A model is developed with a set of indicators that enables the systematic analysis in concrete situations in practice. In this paper, the model is applied at the level of the national economy, the results obtained point to the most critical activities of the actors in the TH model in accomplishing TIME. The performance model represents a base for developing policies

  19. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Chukchi Sea from 1992-09-21 to 1992-10-04 (NODC Accession 9300097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Chukchi Sea. Data was collected from Ship ALPHA HELIX. The data was collected over a...

  20. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Bering Sea from 1993-06-12 to 1993-07-01 (NODC Accession 9400026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Bering Sea. Data was collected from Ship ALPHA HELIX cruise HX 171. The data was...

  1. DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain.

    Science.gov (United States)

    Northall, Sarah J; Buckley, Ryan; Jones, Nathan; Penedo, J Carlos; Soultanas, Panos; Bolt, Edward L

    2017-09-01

    Hel308 helicases promote genome stability linked to DNA replication in archaea, and have homologues in metazoans. In the crystal structure of archaeal Hel308 bound to a tailed DNA duplex, core helicase domains encircle single-stranded DNA (ssDNA) in a "ratchet" for directional translocation. A winged helix domain (WHD) is also present, but its function is mysterious. We investigated the WHD in full-length Hel308, identifying that mutations in a solvent exposed α-helix resulted in reduced DNA binding and unwinding activities. When isolated from the rest of Hel308, the WHD protein alone bound to duplex DNA but not ssDNA, and DNA binding by WHD protein was abolished by the same mutations as were analyzed in full-length Hel308. Isolated WHD from a human Hel308 homologue (HelQ) also bound to duplex DNA. By disrupting the interface between the Hel308 WHD and a RecA-like domain, a topology typical of Ski2 helicases, we show that this is crucial for ATPase and helicase activities. The data suggest a model in which the WHD promotes activity of Hel308 directly, through binding to duplex DNA that is distinct from ssDNA binding by core helicase, and indirectly through interaction with the RecA-like domain. We propose how the WHD may contribute to ssDNA translocation, resulting in DNA helicase activity or in removal of other DNA bound proteins by "reeling" ssDNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    Science.gov (United States)

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rhythmic expression of DEC2 protein in vitro and in vivo.

    Science.gov (United States)

    Sato, Fuyuki; Muragaki, Yasuteru; Kawamoto, Takeshi; Fujimoto, Katsumi; Kato, Yukio; Zhang, Yanping

    2016-06-01

    Basic helix-loop-helix (bHLH) transcription factor DEC2 (bHLHE41/Sharp1) is one of the clock genes that show a circadian rhythm in various tissues. DEC2 regulates differentiation, sleep length, tumor cell invasion and apoptosis. Although studies have been conducted on the rhythmic expression of DEC2 mRNA in various tissues, the precise molecular mechanism of DEC2 expression is poorly understood. In the present study, we examined whether DEC2 protein had a rhythmic expression. Western blot analysis for DEC2 protein revealed a rhythmic expression in mouse liver, lung and muscle and in MCF-7 and U2OS cells. In addition, AMP-activated protein kinase (AMPK) activity (phosphorylation of AMPK) in mouse embryonic fibroblasts (MEFs) exhibited a rhythmic expression under the condition of medium change or glucose-depleted medium. However, the rhythmic expression of DEC2 in MEF gradually decreased in time under these conditions. The medium change affected the levels of DEC2 protein and phosphorylation of AMPK. In addition, the levels of DEC2 protein showed a rhythmic expression in vivo and in MCF-7 and U2OS cells. The results showed that the phosphorylation of AMPK immunoreactivity was strongly detected in the liver and lung of DEC2 knockout mice compared with that of wild-type mice. These results may provide new insights into rhythmic expression and the regulation between DEC2 protein and AMPK activity.

  4. A Speculation into the Origin of Neutral Globules In Planetary Nebulae: Could the Helix's Comets Really Be Comets?

    OpenAIRE

    Gussie, Grant

    1995-01-01

    A novel explanation for the origin of the cometary globules within NGC 7293 (the "Helix" planetary nebula) is examined; that these globules originate as massive cometary bodies at large astrocentric radii. The mass of such hypothetical cometary bodies would have to be several orders of magnitude larger than any such bodies observed in our solar system in order to supply the observed mass of neutral gas. It is however shown that comets at "outer Oort cloud" like distances are likely to survive...

  5. Chemical and depth data from the ALPHA HELIX using bottle casts in the Bering Sea from 1987-09-07 to 1988-06-11 (NODC Accession 0000263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and depth data were collected from the ALPHA HELIX from September 7, 1987 to June 11, 1988. Data were submitted by the University of Alaska - Fairbanks;...

  6. After the double helix: Rosalind Franklin's research on Tobacco mosaic virus.

    Science.gov (United States)

    Creager, Angela N H; Morgan, Gregory J

    2008-06-01

    Rosalind Franklin is best known for her informative X-ray diffraction patterns of DNA that provided vital clues for James Watson and Francis Crick's double-stranded helical model. Her scientific career did not end when she left the DNA work at King's College, however. In 1953 Franklin moved to J. D. Bernal's crystallography laboratory at Birkbeck College, where she shifted her focus to the three-dimensional structure of viruses, obtaining diffraction patterns of Tobacco mosaic virus (TMV) of unprecedented detail and clarity. During the next five years, while making significant headway on the structural determination of TMV, Franklin maintained an active correspondence with both Watson and Crick, who were also studying aspects of virus structure. Developments in TMV research during the 1950s illustrate the connections in the emerging field of molecular biology between structural studies of nucleic acids and of proteins and viruses. They also reveal how the protagonists of the "race for the double helix" continued to interact personally and professionally during the years when Watson and Crick's model for the double-helical structure of DNA was debated and confirmed.

  7. Helix-coil transition of a four-way DNA junction observed by multiple fluorescence parameters.

    Science.gov (United States)

    Vámosi, György; Clegg, Robert M

    2008-10-16

    The thermal denaturation of immobile four-way DNA ("Holliday-") junctions with 17 base pair arms was studied via fluorescence spectroscopic measurements. Two arms of the molecule were labeled at the 5'-end with fluorescein and tetramethylrhodamine, respectively. Melting was monitored by the fluorescence intensity of the dyes, the fluorescence anisotropy of tetramethylrhodamine, and Forster resonance energy transfer (FRET) between fluorescein and rhodamine. To fit the thermal denaturation curves of the four-way junctions, two basic thermodynamic models were tested: (1) all-or-none transitions assuming a molecularity of one, two, or four and (2) a statistical "zipper" model. The all-or-none models correspond to reaction mechanisms assuming that the cooperative melting unit (that is, the structure changing from complete helix to complete coil) consists of (1) one arm, (2) two neighboring arms (which have one continuous strand common to the two arms), or (3) all four arms. In each case, the melting of the cooperative unit takes place in a single step. The tetramolecular reaction model (four-arm melting) yielded unrealistically low van't Hoff enthalpy and entropy values, whereas the monomolecular model (one-arm melting) resulted in a poor fit to the experimental data. The all-or-none bimolecular (two neighboring arm model) fit gave intermediate standard enthalpy change (Delta H) values between those expected for the melting of a duplex with a total length between the helix lengths of one and two arms (17 and 34 base pairs). Simulations according to the zipper model fit the experimental curves best when the length of the simulated duplex was assumed to be 34 base pairs, the length of a single strand. This suggests that the most important parameter determining the melting behavior of the molecule is the end-to-end distance of the strands (34 bases) rather than the length of the individual arms (17 base pairs) and that the equilibrium concentration of partially denatured

  8. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Gulf of Alaska from 1990-09-11 to 1990-12-16 (NODC Accession 9100042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) data were collected from Gulf of Alaska using Ship ALPHA HELIX during three cruises HX14-HX145. The data was collected...

  9. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Gulf of Alaska from 1988-09-14 to 1988-09-29 (NODC Accession 8800279)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Alaska, Institute of Marine Science is responsible for this data collected aboard the R/V Alpha Helix on cruise number HX118 between September 14,...

  10. Temperature and salinity profiles from CTD casts from ALPHA HELIX from NE Pacific (limit-180) from 09 February 1991 to 25 February 1991 (NODC Accession 9100097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD data was collected from the R/V ALPHA HELIX from the NE Pacific (limit-180). Data were collected by the University of Alaska - Fairbanks; Institute of Marine...

  11. CFD analysis and flow model reduction for surfactant production in helix reactor

    Directory of Open Access Journals (Sweden)

    Nikačević N.M.

    2015-01-01

    Full Text Available Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD simulations. Non-reactive flow is simulated, though viscosity is treated as variable in the direction of flow, as it increases during the reaction. The design and operating parameters (reactor diameter, number of coils and inlet velocity are varied in CFD simulations, in order to examine the effects on the flow pattern. Given that 3D simulations are not practical for fast computations needed for optimization, scale-up and control, CFD flow model is reduced to one-dimensional axial dispersion (AD model with spatially variable dispersion coefficient. Dimensionless dispersion coefficient (Pe is estimated under different conditions and results are analyzed. Finally, correlation which relates Pe number with Reynolds number and number of coils from the reactor entrance is proposed for the particular reactor application and conditions.

  12. Deoxycholate-Enhanced Shigella Virulence Is Regulated by a Rare π-Helix in the Type Three Secretion System Tip Protein IpaD.

    Science.gov (United States)

    Bernard, Abram R; Jessop, T Carson; Kumar, Prashant; Dickenson, Nicholas E

    2017-12-12

    Type three secretion systems (T3SS) are specialized nanomachines that support infection by injecting bacterial proteins directly into host cells. The Shigella T3SS has uniquely evolved to sense environmental levels of the bile salt deoxycholate (DOC) and upregulate virulence in response to DOC. In this study, we describe a rare i + 5 hydrogen bonding secondary structure element (π-helix) within the type three secretion system tip protein IpaD that plays a critical role in DOC-enhanced virulence. Specifically, engineered mutations within the π-helix altered the pathogen's response to DOC, with one mutant construct in particular exhibiting an unprecedented reduction in virulence following DOC exposure. Fluorescence polarization binding assays showed that these altered DOC responses are not the result of differences in affinity between IpaD and DOC, but rather differences in the DOC-dependent T3SS tip maturation resulting from binding of IpaD to translocator/effector protein IpaB. Together, these findings begin to uncover the complex mechanism of DOC-enhanced Shigella virulence while identifying an uncommon structural element that may provide a much needed target for non-antibiotic treatment of Shigella infection.

  13. BAROMETRIC PRESSURE and Other Data from ALPHA HELIX From Prince William Sound (Gulf of Alaska) from 1989-05-05 to 1989-05-11 (NODC Accession 8900192)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Alaska, Institute of Marine Science is responsible for this data collected aboard the R/V Alpha Helix on cruise number HX123 between May 5, 1989 to...

  14. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  15. Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C.

    Science.gov (United States)

    Brown, Nathan J; Wu, Cindy W; Seurynck-Servoss, Shannon L; Barron, Annelise E

    2008-02-12

    The hydrophobic proteins of lung surfactant (LS), SP-B and SP-C, are critical constituents of an effective surfactant replacement therapy for the treatment of respiratory distress syndrome. Because of concerns and difficulties associated with animal-derived surfactants, recent investigations have focused on the creation of synthetic analogues of the LS proteins. However, creating an accurate mimic of SP-C that retains its biophysical surface activity is extraordinarily challenging given the lipopeptide's extreme hydrophobicity and propensity to misfold and aggregate. One successful approach that overcomes these difficulties is the use of poly-N-substituted glycines, or peptoids, to mimic SP-C. To develop a non-natural, bioactive mimic of SP-C and to investigate the effects of side chain chemistry and length of the helical hydrophobic region, we synthesized, purified, and performed in vitro testing of two classes of peptoid SP-C mimics: those having a rigid alpha-chiral aromatic helix and those having a biomimetic alpha-chiral aliphatic helix. The length of the two classes of mimics was also systematically altered. Circular dichroism spectroscopy gave evidence that all of the peptoid-based mimics studied here emulated SP-C's secondary structure, forming stable helical structures in solution. Langmuir-Wilhelmy surface balance, fluorescence microscopy, and pulsating bubble surfactometry experiments provide evidence that the aromatic-based SP-C peptoid mimics, in conjunction with a synthetic lipid mixture, have superior surface activity and biomimetic film morphology in comparison to the aliphatic-based mimics and that there is an increase in surface activity corresponding to increasing helical length.

  16. Structural factors involved in the recognition of helix distortions in uv-damaged DNA by model peptides

    Energy Technology Data Exchange (ETDEWEB)

    Lang, H; Zimmer, C [Akademie der Wissenschaften der DDR, Jena. Forschungszentrum fuer Molekularbiologie und Medizin

    1977-02-28

    On the basis of our previous and present results concerning conformational changes of DNA after uv-irradiation some conclusions on the structure of DNA double helix in uv-damaged regions were drawn. From the results it appears that local distortions like denaturation or premelting should be excluded. Furthermore it was shown that the thymine dimerization strongly depends on the adjacent nucleic acid bases. By means of a strong binding effect of the oligopeptide netropsin to DNA irradiated at low uv-doses it is concluded that such local distortions in DNA together with a specific sequence-dependent variation of the conformation could act as recognition sites for endonucleases.

  17. CHEMICAL COMPLEXITY IN THE HELIX NEBULA: MULTI-LINE OBSERVATIONS OF H{sub 2}CO, HCO{sup +}, AND CO

    Energy Technology Data Exchange (ETDEWEB)

    Zack, L. N.; Ziurys, L. M., E-mail: lziurys@email.arizona.edu [Department of Chemistry, University of Arizona, P.O. Box 210041, Tucson, AZ 85721 (United States)

    2013-03-10

    Observations of CO, HCO{sup +}, and H{sub 2}CO have been carried out at nine positions across the Helix Nebula (NGC 7293) using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. Measurements of the J = 1 {yields} 0, 2 {yields} 1, and 3 {yields}2 transitions of CO, two transitions of HCO{sup +} (J = 1 {yields} 0 and 3 {yields}2), and five lines of H{sub 2}CO (J{sub Ka,Kc} = 1{sub 0,1} {yields} 0{sub 0,0}, 2{sub 1,2} {yields} 1{sub 1,1}, 2{sub 0,2} {yields} 1{sub 0,1}, 2{sub 1,1} {yields} 1{sub 1,0}, and 3{sub 0,3} {yields}2{sub 0,2}) were conducted in the 0.8, 1, 2, and 3 mm bands toward this highly evolved planetary nebula. HCO{sup +} and H{sub 2}CO were detected at all positions, along with three transitions of CO. From a radiative transfer analysis, the kinetic temperature was found to be T{sub K} {approx} 15-40 K across the Helix with a gas density of n(H{sub 2}) {approx} 0.1-5 Multiplication-Sign 10{sup 5} cm{sup -3}. The warmer gas appears to be closer to the central star, but high density material is distributed throughout the nebula. For CO, the column density was found to be N{sub tot} {approx} 0.25-4.5 Multiplication-Sign 10{sup 15} cm{sup -2}, with a fractional abundance of f (CO/H{sub 2}) {approx} 0.3-6 Multiplication-Sign 10{sup -4}. Column densities for HCO{sup +} and H{sub 2}CO were determined to be N{sub tot} {approx} 0.2-5.5 Multiplication-Sign 10{sup 11} cm{sup -2} and 0.2-1.6 Multiplication-Sign 10{sup 12} cm{sup -2}, respectively, with fractional abundances of f (HCO{sup +}/H{sub 2}) {approx} 0.3-7.3 Multiplication-Sign 10{sup -8} and f (H{sub 2}CO/H{sub 2}) {approx} 0.3-2.1 Multiplication-Sign 10{sup -7}-several orders of magnitude higher than predicted by chemical models. Polyatomic molecules in the Helix appear to be well-protected from photodissociation and may actually seed the diffuse interstellar medium.

  18. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation.

    Science.gov (United States)

    Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing

    2014-07-01

    Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.

  19. Yang-Lee zeros for a Potts model of helix-coil transition with nontrivial topology

    International Nuclear Information System (INIS)

    Ananikian, N.; Ananikyan, L.; Artuso, R.; Sargsyan, K.

    2007-07-01

    The Yang-Lee partition function zeros of the Q-state Potts model on a zigzag ladder are studied by a transfer-matrix approach. This Q-state model has a non-trivial topology induced by three-site interactions on a zigzag ladder and is proposed as a description of helix-coil transition in homo-polymers. The Yang-Lee zeros are associated to complex values of the solvent-related coupling constant K (magnetic field) and they are exactly derived for arbitrary values of the system parameters: Q, J (coupling constant of hydrogen binding) and temperature. It is shown that there is only a quasi-phase transition for all temperatures. The densities of the Yang-Lee zeros are singular at the edge singularity points and the critical exponent σ = -1/2. (author)

  20. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    Science.gov (United States)

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  1. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.

    Science.gov (United States)

    Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich

    2004-03-01

    By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.

  2. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Bering Sea and Chukchi Sea from 1993-09-09 to 1993-10-10 (NODC Accession 9400036)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Bering Sea and Chukchi Sea. Data was collected from Ship ALPHA HELIX. The data was...

  3. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Coastal Waters of S. Alaska from 1991-07-24 to 1991-11-14 (NODC Accession 9200039)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Coastal Waters of S. Alaska. Data was collected in five cruises from Ship ALPHA HELIX....

  4. Physical profile data from CTD casts in the Gulf of Alaska from the R/V ALPHA HELIX from 2001-04-18 to 2001-12-11 (NODC Accession 0000739)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical profile data were collected from CTD casts in the Gulf of Alaska from the R/V Alpha Helix. Data were collected by Western Washington University (WWU) and...

  5. Probing α-3(10) transitions in a voltage-sensing S4 helix.

    Science.gov (United States)

    Kubota, Tomoya; Lacroix, Jérôme J; Bezanilla, Francisco; Correa, Ana M

    2014-09-02

    The S4 helix of voltage sensor domains (VSDs) transfers its gating charges across the membrane electrical field in response to changes of the membrane potential. Recent studies suggest that this process may occur via the helical conversion of the entire S4 between α and 310 conformations. Here, using LRET and FRET, we tested this hypothesis by measuring dynamic changes in the transmembrane length of S4 from engineered VSDs expressed in Xenopus oocytes. Our results suggest that the native S4 from the Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) does not exhibit extended and long-lived 310 conformations and remains mostly α-helical. Although the S4 of NavAb displays a fully extended 310 conformation in x-ray structures, its transplantation in the Ci-VSP VSD scaffold yielded similar results as the native Ci-VSP S4. Taken together, our study does not support the presence of long-lived extended α-to-310 helical conversions of the S4 in Ci-VSP associated with voltage activation. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Isolation and chemical analysis of nanoparticles from English ivy (Hedera helix L.)

    Science.gov (United States)

    Lenaghan, Scott C.; Burris, Jason N.; Chourey, Karuna; Huang, Yujian; Xia, Lijin; Lady, Belinda; Sharma, Ritin; Pan, Chongle; LeJeune, Zorabel; Foister, Shane; Hettich, Robert L.; Stewart, C. Neal; Zhang, Mingjun

    2013-01-01

    Bio-inspiration for novel adhesive development has drawn increasing interest in recent years with the discovery of the nanoscale morphology of the gecko footpad and mussel adhesive proteins. Similar to these animal systems, it was discovered that English ivy (Hedera helix L.) secretes a high strength adhesive containing uniform nanoparticles. Recent studies have demonstrated that the ivy nanoparticles not only contribute to the high strength of this adhesive, but also have ultraviolet (UV) protective abilities, making them ideal for sunscreen and cosmetic fillers, and may be used as nanocarriers for drug delivery. To make these applications a reality, the chemical nature of the ivy nanoparticles must be elucidated. In the current work, a method was developed to harvest bulk ivy nanoparticles from an adventitious root culture system, and the chemical composition of the nanoparticles was analysed. UV/visible spectroscopy, inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy and electrophoresis were used in this study to identify the chemical nature of the ivy nanoparticles. Based on this analysis, we conclude that the ivy nanoparticles are proteinaceous. PMID:23883948

  7. Role of collagen triple helix repeat containing-1 in tumor and inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2017-01-01

    Full Text Available Initially, collagen triple helix repeat containing-1 (CTHRC1 is expressed mainly in adventitial fibroblasts and neointimal smooth muscle cells of balloon-injured vessels, and increases cell migration, promotes tissue repair in response to injury. A variety of studies demonstrated that over-expression of CTHRC1 in solid tumors results in enhancement of migration and invasion of tumor cells, and is associated with decreased overall survival and disease-free survival. CTHRC1 expression is elevated in hepatitis B virus-infected patients and highly correlated with hepatocellular carcinoma progression as well. Furthermore, CTHRC1 plays a pivotal role in a great many fields, including increases bone mass, prevents myelination, reverses collagen synthesis in keloid fibroblasts, and increases fibroblast-like synoviocytes migration speed and abundant production of arthritic pannus in rheumatoid arthritis. Therefore, it will provide new insight into the pathogenesis of tumor and autoimmune diseases, and will shed new light on the therapy of related clinical diseases.

  8. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.

    Science.gov (United States)

    Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona

    2016-04-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.

  9. Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding.

    Science.gov (United States)

    Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander

    2014-03-06

    Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu - and Arg + are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

  10. Strain-induced large spin splitting and persistent spin helix at LaAlO$_3$/SrTiO$_3$ interface

    OpenAIRE

    Yamaguchi, Naoya; Ishii, Fumiyuki

    2017-01-01

    We investigated the effect of the tensile strain on the spin splitting at the n-type interface in LaAlO$_3$/SrTiO$_3$ in terms of the spin-orbit coupling coefficient $\\alpha$ and spin texture in the momentum space using first-principles calculations. We found that the $\\alpha$ could be controlled by the tensile strain and be enhanced up to 5 times for the tensile strain of 7%, and the effect of the tensile strain leads to a persistent spin helix, which has a long spin lifetime. These results ...

  11. Variabilidade genética em algumas criações comerciais brasileiras de escargots (Helix aspersa, Müller, 1774 Genetic variation at eight isoenzyme loci in subpopulations of the edible snail (Helix aspersa, Müller, 1774

    Directory of Open Access Journals (Sweden)

    B.F. Vasconcellos

    2006-04-01

    Full Text Available Descreveram-se os marcadores isoenzimáticos e estimou-se a variabilidade genética de 20 subpopulações brasileiras de escargots (Helix aspersa. O estudo dos oito locos foi feito por eletroforese em gel de amido, em amostras com 30 indivíduos cada, obtidas em criatórios dos estados de Santa Catarina, São Paulo e Rio de Janeiro (uma, duas e 17 amostras, respectivamente. Observou-se polimorfismo nos locos das enzimas LAP, 6-PGD, PEP 2, PEP 1 e MDH, com três alelos nos três primeiros locos e dois nos demais. Os locos da ME, da SOD e da PGI apresentaram-se monomórficos. As freqüências gênicas de sete amostras ajustaram-se ao modelo de Hardy-Weinberg (PIn order to assess genetic variability in subpopulations of Helix aspersa, eight isoenzyme loci in 30 individuals in each of 20 subpopulations, obtained from breeders in Santa Catarina (1, São Paulo(2 and Rio de Janeiro (17 states of Brazil, were examined. Polymorphic loci included LAP, 6-PGD, PEP 2, PEP 1 and MDH, with three alelles at each of the first three loci and two at each of the others. The ME, SOD and PGI loci were monomorphic. Gene frequencies in 7 of 20 subpopulations were consistent with the Hardy-Wienberg equilibrium (P<0.05, and 6 were consistent with Wright model, indicating that these subpopulations did not meet requirements for genotypic equilibrium to be achieved. Despite the fact that some F values were high, F IS and F IT were not significantly different from zero (P³0.05. Although small, the F ST value (0.0485 was significant, suggesting small differences among populations. Most of the low genetic variation at isoenzyme loci was observed within subpopulations rather than among subpopulations, suggesting a small genetic basis for these samples. Estimated genetic distances among pairs of subpopulations also were low.

  12. DNA with Parallel Strand Orientation: A Nanometer Distance Study with Spin Labels in the Watson-Crick and the Reverse Watson-Crick Double Helix.

    Science.gov (United States)

    Wunnicke, Dorith; Ding, Ping; Yang, Haozhe; Seela, Frank; Steinhoff, Heinz-Jürgen

    2015-10-29

    Parallel-stranded (ps) DNA characterized by its sugar-phosphate backbones pointing in the same direction represents an alternative pairing system to antiparallel-stranded (aps) DNA with the potential to inhibit transcription and translation. 25-mer oligonucleotides were selected containing only dA·dT base pairs to compare spin-labeled nucleobase distances over a range of 10 or 15 base pairs in ps DNA with those in aps DNA. By means of the copper(I)-catalyzed Huisgen-Meldal-Sharpless alkyne-azide cycloaddition, the spin label 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl was clicked to 7-ethynyl-7-deaza-2'-deoxyadenosine or 5-ethynyl-2'-deoxyuridine to yield 25-mer oligonucleotides incorporating two spin labels. The interspin distances between spin labeled residues were determined by pulse EPR spectroscopy. The results reveal that in ps DNA these distances are between 5 and 10% longer than in aps DNA when the labeled DNA segment is located near the center of the double helix. The interspin distance in ps DNA becomes shorter compared with aps DNA when one of the spin labels occupies a position near the end of the double helix.

  13. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. The zinc finger E-box-binding homeobox 1 (Zeb1) promotes the conversion of mouse fibroblasts into functional neurons.

    Science.gov (United States)

    Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei

    2017-08-04

    The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Turbidity, cloud amount/frequency and other data from ALPHA HELIX in the Gulf of Alaska and Bering Sea from 1989-10-04 to 1990-06-26 (NODC Accession 9100032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and Benthic data were collected from Gulf of Alaska and Bering Sea using NOAA Ship Alpha Helix. The data was collected...

  16. Cloud amount/frequency, TRANSMISSIVITY and other data from ALPHA HELIX and LITTLE DIPPER in the Gulf of Alaska from 1992-01-28 to 1992-04-22 (NODC Accession 9200146)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Gulf of Alaska. Data was collected from Ships ALPHA HELIX and LITTLE DIPPER. The data...

  17. Stomatal Responses to Light and Drought Stress in Variegated Leaves of Hedera helix1

    Science.gov (United States)

    Aphalo, Pedro J.; Sánchez, Rodolfo A.

    1986-01-01

    Direct and indirect mechanisms underlying the light response of stomata were studied in variegated leaves of the juvenile phase of Hedera helix L. Dose response curves of leaf conductance were measured with blue and red light in leaves kept in normal or in an inverted position. In the green portions of the leaves, the sensitivity to blue light was nearly 100 times higher than that to red light. No response to red light was observed in the white portions of the leaves up to 90 micromoles per square meter per second. Red light indirectly affected leaf conductance while blue light had a direct effect. Leaf conductance was found to be more sensitive to drought stress and showed a more persistent aftereffect in the white portions of the leaves. A differential effect of drought stress on the responses to blue and red light was also observed. PMID:16664900

  18. Spatial attributes of the four-helix bundle group of bacteriocins – The high-resolution structure of BacSp222 in solution

    KAUST Repository

    Nowakowski, Michał

    2017-11-01

    BacSp222 is a multifunctional bacteriocin produced by Staphylococcus pseudintermedius strain 222, an opportunistic pathogen of domestic animals. At micromolar concentrations, BacSp222 kills Gram-positive bacteria and is cytotoxic toward mammalian cells, while at nanomolar doses, it acts as an immunomodulatory factor, enhancing nitric oxide release in macrophage-like cell lines. The bacteriocin is a cationic, N-terminally formylated, 50-amino-acid-long linear peptide that is rich in tryptophan residues.In this study, the solution structure of BacSp222 was determined and compared to the currently known structures of similar bacteriocins. BacSp222 was isolated from a liquid culture medium in a uniformly 13C- and 15N-labeled form, and NMR data were collected. The structure was calculated based on NMR-derived constraints and consists of a rigid and tightly packed globular bundle of four alpha-helices separated by three short turns.Although the amino acid sequence of BacSp222 has no significant similarity to any known peptide or protein, a 3D structure similarity search indicates a close relation to other four-helix bundle-motif bacteriocins, such as aureocin A53, lacticin Q and enterocins 7A/7B. Assuming similar functions, biology, structure and physicochemical properties, we propose to distinguish the four-helix bundle bacteriocins as a new Type A in subclass IId of bacteriocins, containing linear, non-pediocin-like peptides.

  19. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes.

    Science.gov (United States)

    Yoshida, Kazuko; Ma, Dawei; Constabel, C Peter

    2015-03-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Physical and nutrient profile data from bottle casts from the R/V ALPHA HELIX in Gulf of Alaska from 03 December 1990 to 11 December 1998 (NODC Accession 0000221)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and nutrients data were collected using bottle casts from the R/V ALPHA HELIX in Gulf of Alaska from December 3, 1980 to December 11, 1998. These data were...

  1. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    Science.gov (United States)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  2. Characterization and expression analysis of AH receptors in aquatic mammals and birds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young [Ehime Prefectural Institute of Public Health and Environmental Science, Matsuyama (Japan); Yasui, Tomoko; Hisato, Iwata; Shinsuke, Tanabe [Ehime Univ., Matsuyama (Japan)

    2004-09-15

    The magnitude of the risk that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) pose to the health of aquatic birds and mammals is uncertain, because of the lack of direct information on the sensitivity and toxicity to these chemicals. Exposure to PHAHs is speculated to produce toxicity through changes in the expression of genes involved in the control of cell growth and differentiation. These changes are initiated by the binding to the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor. The AHR and its dimerization partner ARNT belong to the basic-helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulation proteins. The bHLH domain was involved in protein-DNA and protein-protein interactions, and the PAS domain forms a secondary dimerization surface for heteromeric interactions between AHR and ARNT. Although the presence and basic function of AHR are known to be conserved in most vertebrates, only a limited number of studies on the structure and functional diversity of AHR in aquatic mammals and birds have been reported, in spite of their high exposure to dioxins and other related chemicals. To understand the molecular mechanism of susceptibility to dioxin exposure and toxic effects that PHAHs pose in wild animals, we investigated the molecular and functional characterization of AHRs from aquatic mammals and birds. Initially, the AHR cDNAs from the livers of Baikal seal (Pusa sibirica), black-footed albatross (Diomedea nigripes) and common cormorant (Phalacrocorax carbo) were cloned and sequenced. We also clarified the tissue-specific expression pattern of AHR mRNA and the relationships among PHAHs, AHR and CYP expression levels in the liver of Baikal seals and common cormorants.

  3. NMR studies of abasic sites in DNA duplexes: Deoxyadenosine stacks into the helix opposite acyclic lesions

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Chang, Chienneng; Johnson, F.; Grollman, A.P.; Patel, D.J.

    1989-01-01

    Proton and phosphorus NMR studies are reported for two complementary nonanucleotide duplexes containing acyclic abasic sites. The first duplex, d(C-A-T-G-A-G-T-A-C)·d(G-T-A-C-P-C-A-T-G), contains an acyclic propanyl moiety, P, located opposite a deoxyadenosine at the center of the helix (designated AP P 9-mer duplex). The second duplex, d(C-A-T-G-A-G-T-A-C-)·d(G-T-A-C-E-C-A-T-G), contains a similarly located acyclic ethanyl moiety, E (designated AP E 9-mer duplex). The ethanyl moiety is one carbon shorter than the natural carbon-phosphodiester backbone of a single nucleotide unit of DNA. The majority of the exchangeable and nonexchangeable base and sugar protons in both the AP P 9-mer and AP E 9-mer duplexes, including those at the abasic site, have been assigned by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H 2 O and D 2 O solution between -5 and 5 degree C. These spectroscopic observations establish that A5 inserts into the helix opposite the abasic site (P14 and El14) and stacks between the flanking G4·C15 and G6·C13 Watson-Crick base pairs in both the AP P 9-mer and AP E 9-mer duplexes. Proton NMR parameters for the Ap P 9-mer and AP E 9-mer duplexes are similar to those reported previously. These proton NMR experiments demonstrate that the structures at abasic sites are very similar whether the five-membered ring is open or closed or whether the phosphodiester backbone is shortened by one carbon atom. Phosphorus spectra of the AP P 9-mer and AP E 9-mer duplexes (5 degree C) indicate that the backbone conformation is similarly perturbed at three phosphodiester backbone torsion angles

  4. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    Science.gov (United States)

    Antoulinakis, F.; Chen, Y.; Dutton, A.; Rossi De La Fuente, E.; Haupert, S.; Ljungman, E. A.; Myers, P. D.; Thompson, J. K.; Tai, A.; Aidala, C. A.; Courant, E. D.; Krisch, A. D.; Leonova, M. A.; Lorenzon, W.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Yang, T.; Derbenev, Y. S.; Morozov, V. S.; Kondratenko, A. M.

    2017-09-01

    Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven's 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab's 120 GeV /c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9 - 120 GeV /c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  5. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    International Nuclear Information System (INIS)

    Antoulinakis, F.; Chen, Y.; Dutton, A.; Rossi De La Fuente, E.; Haupert, S.

    2017-01-01

    Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120 GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120 GeV/c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. Here, this snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  6. The Role of Triple Helix Actors for Agro-Tourism Development in West Sumatera

    Directory of Open Access Journals (Sweden)

    Widya Fitriana

    2017-12-01

    Full Text Available Agricultural sector as a main contributor to GDP formation in West Sumatera is required to be able to diversify its business in order to highest achieving economic and social development. One diversified agricultural business prospective to be developed is agro-tourism. The development of agro-tourism requires collaboration and synergy between academician, businessman and government as known as triple helix actors. This study is designed with aim to (i map the agro-tourism potential in west Sumatera; (ii analyze the role of each actors, so they may take action in accelerating Agro-tourism development. This research uses observation, depth interview method, literature study and focus group discussion. The result shows that agro-tourism in West Sumatra is more prominent of great natural and cultural value, small scale and lack of local facilities. It also requires relatively high level of investment relative to its return. Therefore government support is likely an essential element of agro-tourism development and the effort may be better directed toward consolidating with intellectual and business also.

  7. Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m2 raceway ponds under purified carbon dioxide from a coal chemical flue gas.

    Science.gov (United States)

    Cheng, Jun; Guo, Wangbiao; Ameer Ali, Kubar; Ye, Qing; Jin, Guiyong; Qiao, Zhanshan

    2018-08-01

    The helix pitch and trichome length of Spirulina sp. were promoted to improve the biomass harvesting efficiency and CO 2 fixation rate in 660 m 2 raceway ponds aerated with food-grade CO 2 purified from a coal chemical flue gas. The CO 2 fixation rate was improved with increased trichome length of the Spirulina sp. in a raceway pond with double paddlewheels, baffles, and CO 2 aerators (DBA raceway pond). The trichome length has increased by 33.3 μm, and CO 2 fixation rate has increased by 42.3% and peaked to 51.3 g/m 2 /d in a DBA raceway pond. Biomass harvesting efficiency was increased with increased helix pitch. When the day-average greenhouse temperature was 33 °C and day-average sunlight intensity was 72,100 lu×, the helix pitch of Spirulina sp. was increased to 56.2 μm. Hence the biomass harvesting efficiency was maximized to 75.6% and biomass actual yield was increased to 35.9 kg in a DBA raceway pond. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Physical and nutrients profile data from the R/V ALPHA HELIX using bottle casts in the Gulf of Alaska from 06 April 1989 to 11 April 1989 (NODC Accession 0000223)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and nutrient profile data were collected using bottle casts from the R/V ALPHA HELIX in the Gulf of Alaska from April 6, 1989 to April 11, 1989. Data were...

  9. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.

    Science.gov (United States)

    Serre, Marie-Claude; El Arnaout, Toufic; Brooks, Mark A; Durand, Dominique; Lisboa, Johnny; Lazar, Noureddine; Raynal, Bertrand; van Tilbeurgh, Herman; Quevillon-Cheruel, Sophie

    2013-01-01

    Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.

  10. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Serre

    Full Text Available Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i repositioning of the catalytic Tyr in the active site in cis and (ii dimer stabilisation via αN contacts in trans between monomers.

  11. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    Science.gov (United States)

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  12. Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue

    KAUST Repository

    Da, Lin-Tai; Pardo-Avila, Fá tima; Xu, Liang; Silva, Daniel-Adriano; Zhang, Lu; Gao, Xin; Wang, Dong; Huang, Xuhui

    2016-01-01

    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation.

  13. Topotactic conversion of β-helix-layered silicate into AST-type zeolite through successive interlayer modifications.

    Science.gov (United States)

    Asakura, Yusuke; Takayama, Ryosuke; Shibue, Toshimichi; Kuroda, Kazuyuki

    2014-02-10

    AST-type zeolite with a plate morphology can be synthesized by topotactic conversion of a layered silicate (β-helix-layered silicate; HLS) by using N,N-dimethylpropionamide (DPA) to control the layer stacking of silicate layers and the subsequent interlayer condensation. Treatment of HLS twice with 1) hydrochloric acid/ethanol and 2) dimethylsulfoxide (DMSO) are needed to remove interlayer hydrated Na ions and tetramethylammonium (TMA) ions in intralayer cup-like cavities (intracavity TMA ions), both of which are introduced during the preparation of HLS. The utilization of an amide molecule is effective for the control of the stacking sequence of silicate layers. This method could be applicable to various layered silicates that cannot be topotactically converted into three-dimensional networks by simple interlayer condensation by judicious choice of amide molecules. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue

    KAUST Repository

    Da, Lin-Tai

    2016-04-19

    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation.

  15. Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix

    Directory of Open Access Journals (Sweden)

    Kuo Lillian S

    2012-05-01

    proteins. To the N- and C- terminal sides of the polyproline helix are multifunctional protein interaction sites. The polyproline segment is also adapted to downregulate MHCI with a non-canonical binding surface. Our results demonstrate that Nef polyproline helix is highly adapted to directly interact with multiple host cell proteins.

  16. Does unpaired adenosine-66 from helix II of Escherichia coli 5S RNA bind to protein L18?

    DEFF Research Database (Denmark)

    Christiansen, J; Douthwaite, S R; Christensen, A

    1985-01-01

    Adenosine-66 is unpaired within helix II of Escherichia coli 5S RNA and lies in the binding site of ribosomal protein L18. It has been proposed as a recognition site for protein L18. We have investigated further the structural importance of this nucleotide by deleting it. The 5S RNA gene of the rrn...... plasmid derived from pKK3535. Binding studies with protein L18 revealed that the protein bound much more weakly to the mutated 5S RNA. We consider the most likely explanation of this result is that L18 interacts with adenosine-66, and we present a tentative model for an interaction between the unpaired...

  17. Physics and application of persistent spin helix state in semiconductor heterostructures

    Science.gov (United States)

    Kohda, Makoto; Salis, Gian

    2017-07-01

    In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

  18. Physical profile data from the R/V ALPHA HELIX in the Gulf of Alaska as part of the GLOBEC Project from 02 October 1998 to 07 December 1999 (NODC Accession 0000238)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical profile data were collected from the R/V ALPHA HELIX in the Gulf of Alaska from October 2, 1998 to December 7, 1999. Data were submitted by the University...

  19. Biophysical properties of regions flanking the bHLH-Zip motif in the p22 Max protein

    International Nuclear Information System (INIS)

    Pursglove, Sharon E.; Fladvad, Malin; Bellanda, Massimo; Moshref, Ahmad; Henriksson, Marie; Carey, Jannette; Sunnerhagen, Maria

    2004-01-01

    The Max protein is the central dimerization partner in the Myc-Max-Mad network of transcriptional regulators, and a founding structural member of the family of basic-helix-loop-helix (bHLH)-leucine zipper (Zip) proteins. Biologically important regions flanking its bHLH-Zip motif have been disordered or absent in crystal structures. The present study shows that these regions are resistant to proteolysis in both the presence and absence of DNA, and that Max dimers containing both flanking regions have significantly higher helix content as measured by circular dichroism than that predicted from the crystal structures. Nuclear magnetic resonance measurements in the absence of DNA also support the inferred structural order. Deletion of both flanking regions is required to achieve maximal DNA affinity as measured by EMSA. Thus, the previously observed functionalities of these Max regions in DNA binding, phosphorylation, and apoptosis are suggested to be linked to structural properties

  20. Mirror symmetry breaking of silicon polymers--from weak bosons to artificial helix.

    Science.gov (United States)

    Fujiki, Michiya

    2009-01-01

    From elemental particles to human beings, matter and living worlds in our universe are dissymmetric with respect to mirror symmetry. Since the early 19th century, the origin of biomolecular handedness has been puzzling scientists. Nature's elegant bottom-up preference, however, sheds light on new concepts of generating, amplifying, and switching artificial polymers, supramolecules, liquid crystals, and organic crystals that can exhibit ambidextrous circular dichroism in the UV/Visible region with efficiency in production under milder ambient conditions. In the 1920s, Kipping, who first synthesized polysilanes with phenyl groups, had much interest in the handedness of inorganic and organic substances from 1898 to 1909 in his early research life. Polysilanes--which are soluble Si-Si bonded chain-like near-UV chromophores that carry a rich variety of organic groups--may become a bridge between animate and inanimate polymer systems. The present account focuses on several mirror symmetry breaking phenomena exemplified in polysilanes carrying chiral and/or achiral side groups, which are in isotropic dilute solution, as polymer particles dispersed in solution, and in a double layer film immobilized at the solid surface, and subtle differences in the helix, by dictating ultimately ultraweak chiral forces at subatomic, atomic, and molecular levels. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  1. Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn. by association mapping and cross species synteny analysis.

    Directory of Open Access Journals (Sweden)

    M Ramakrishnan

    Full Text Available A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for seedling-stage phosphorus (P responses by growing them in P sufficient (Psuf and P deficient (Pdef treatments. Majority of the genotypes showed adaptive responses to low P condition. Based on phenotype behaviour using the best linear unbiased predictors for each trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive types. Based on the overall phenotype performance under Pdef, 10 genotypes were identified as low P tolerants. The low P tolerant genotypes were characterised by increased shoot and root length and increased root hair induction with longer root hairs under Pdef, than under Psuf. Association mapping of P response traits using mixed linear models revealed four quantitative trait loci (QTLs. Two QTLs (qLRDW.1 and qLRDW.2 for low P response affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH. The QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1 and root length (qHRL.1. Putative associations of these QTLs over the syntenous regions on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and pectin methylesterase inhibitor (PMEI genes. This is the first report of the extent of phenotypic variability for P response in finger millet genotypes during seedling-stage, along with the QTLs and putative candidate genes associated with P starvation tolerance.

  2. Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis.

    Science.gov (United States)

    Ramakrishnan, M; Ceasar, S Antony; Vinod, K K; Duraipandiyan, V; Ajeesh Krishna, T P; Upadhyaya, Hari D; Al-Dhabi, N A; Ignacimuthu, S

    2017-01-01

    A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for seedling-stage phosphorus (P) responses by growing them in P sufficient (Psuf) and P deficient (Pdef) treatments. Majority of the genotypes showed adaptive responses to low P condition. Based on phenotype behaviour using the best linear unbiased predictors for each trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive types. Based on the overall phenotype performance under Pdef, 10 genotypes were identified as low P tolerants. The low P tolerant genotypes were characterised by increased shoot and root length and increased root hair induction with longer root hairs under Pdef, than under Psuf. Association mapping of P response traits using mixed linear models revealed four quantitative trait loci (QTLs). Two QTLs (qLRDW.1 and qLRDW.2) for low P response affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH). The QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1) and root length (qHRL.1). Putative associations of these QTLs over the syntenous regions on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and pectin methylesterase inhibitor (PMEI) genes. This is the first report of the extent of phenotypic variability for P response in finger millet genotypes during seedling-stage, along with the QTLs and putative candidate genes associated with P starvation tolerance.

  3. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence.

    Directory of Open Access Journals (Sweden)

    Dawoon Chung

    2014-11-01

    Full Text Available The Aspergillus fumigatus sterol regulatory element binding protein (SREBP SrbA belongs to the basic Helix-Loop-Helix (bHLH family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA. How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence.

  4. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  5. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    Directory of Open Access Journals (Sweden)

    F. Antoulinakis

    2017-09-01

    Full Text Available Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC, use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120  GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120  GeV/c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  6. Theoretical study for volume changes associated with the helix-coil transition of peptides.

    Science.gov (United States)

    Imai, T; Harano, Y; Kovalenko, A; Hirata, F

    2001-12-01

    We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001

  7. Kinks, loops, and protein folding, with protein A as an example

    International Nuclear Information System (INIS)

    Krokhotin, Andrey; Liwo, Adam; Maisuradze, Gia G.; Scheraga, Harold A.; Niemi, Antti J.

    2014-01-01

    The dynamics and energetics of formation of loops in the 46-residue N-terminal fragment of the B-domain of staphylococcal protein A has been studied. Numerical simulations have been performed using coarse-grained molecular dynamics with the united-residue (UNRES) force field. The results have been analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger (DNLS) equation. In the case of proteins, the DNLS equation arises from a C α -trace-based energy function. Three individual kink profiles were identified in the experimental three-α-helix structure of protein A, in the range of the Glu16-Asn29, Leu20-Asn29, and Gln33-Asn44 residues, respectively; these correspond to two loops in the native structure. UNRES simulations were started from the full right-handed α-helix to obtain a clear picture of kink formation, which would otherwise be blurred by helix formation. All three kinks emerged during coarse-grained simulations. It was found that the formation of each is accompanied by a local free energy increase; this is expressed as the change of UNRES energy which has the physical sense of the potential of mean force of a polypeptide chain. The increase is about 7 kcal/mol. This value can thus be considered as the free energy barrier to kink formation in full α-helical segments of polypeptide chains. During the simulations, the kinks emerge, disappear, propagate, and annihilate each other many times. It was found that the formation of a kink is initiated by an abrupt change in the orientation of a pair of consecutive side chains in the loop region. This resembles the formation of a Bloch wall along a spin chain, where the C α backbone corresponds to the chain, and the amino acid side chains are interpreted as the spin variables. This observation suggests that nearest-neighbor side chain–side chain interactions are responsible for initiation of loop formation. It was also found that the individual kinks are

  8. Antiproliferation effects of an androgen receptor triple-helix forming oligonucleotide on prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Weizhen; Xie Yao; Gao Jinhui

    2005-01-01

    Objective: To provide experimental basis for antigene radiation therapy through exploring the effects of antigene strategy on androgen receptor (AR) expression and proliferation of prostate cancer cells. Methods: The triple-helix forming oligonucleotide (TFO) targeting 2447-2461nt of AR cDNA was designed and transfected LNCaP prostate cancer cells with liposome. 24-72 h after transfection, the cellular proliferation was detected by 3 H-thymidine (TdR) incorporation test, the expression of AR gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) and expression of AR protein was performed by radioligand binding assay. The results of TFO were compared with antisense oligonucleotide (ASON). Results: At all time points, the AR expression levels in TFO group were markedly lower than that of ASON group (P<0.05). The inhibitory rate of TFO for cellular proliferation was significantly higher than that of ASON (P<0.05). Conclusion: The TFO was a potent inhibitor for AR expression and cell proliferation of LNCaP cells , and could be used in antigene radiotherapy. (authors)

  9. Lead pollution due to exhaust gases. [Celtis occidentalis; fraxinus angustifolia; aesculus hippocastanum; hedera helix

    Energy Technology Data Exchange (ETDEWEB)

    Klinscek, P

    1976-01-01

    An investigation was carried out to establish the changes in the lead content of trees and shrubs on the Margaret island in Budapest as a response to the reduction in motor-vehicle traffic introduced in 1974. Compared to samples of the control area (Vacratot) the Margaret island samples were found to have a considerable higher lead content. As a consequence of the traffic modifying measure a 30% decrease in the lead content of the samples was verified. The lead pollution did not involve changes in the chlorophyll content of samples. Accumulation of lead pollution is a specific feature. Lead pollution is accumulated to a great extent (multiple of other plants) by the pilose-leaved CELTIS occidentalis, the pinnate-leaved FRAXINUS angustifolia, ssp. pannonica and the undulate-leaved AESCULUS hippocastanum as well as from among the evergreen by the stellate-hair HEDERA helix. The green belt bordering the roads by its active lead cumulation plays an important role in lessening the plumb pollution of areas more distant from the road. 14 references 3 tables.

  10. Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments

    International Nuclear Information System (INIS)

    Sternberg, Troy; Viles, Heather; Cathersides, Alan; Edwards, Mona

    2010-01-01

    The potential bio-protective role of urban greenery and how it interacts with airborne dust and pollutants has been the subject of much recent research. As particulate pollution has been implicated in both the deterioration of building materials and in damaging human health, understanding how it interacts with urban greenery is of great applied interest. Common or English Ivy (Hedera helix L) grows widely on urban walls in many parts of the world, and thus any bio-protective role it might play is of broad relevance. Using Scanning Electron Microscopy ivy leaves collected on roadways were examined to determine if ivy can absorb dust and pollutants that can instigate decay processes on stone walls and impact human health in urban environments. Results showed that ivy acts as a 'particle sink', absorbing particulate matter, particularly in high-traffic areas. It was effective in adhering fine ( 10 per m 2 . Our findings suggest that through absorbing pollutant particles ivy can retard bio-deteriorative processes on historic walls and reduce human exposure to respiratory problems caused by vehicle pollutants.

  11. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization

    Directory of Open Access Journals (Sweden)

    Vuthy Ea

    2015-07-01

    Full Text Available Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains’ organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization.

  12. Profile nutrients data from bottle casts from the R/V Alpha Helix in the Bering Sea, Gulf of Alaska and Northeast Pacific from 16 August 1983 to 30 July 1989 (NODC Accession 0000252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profile nutrients and other data were collected from the R/V ALPHA HELIX from August 16, 1983 to July 30, 1989. Data were submitted by University of Alaska -...

  13. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage

    DEFF Research Database (Denmark)

    Stella, Stefano; Alcón, Pablo; Montoya, Guillermo

    2017-01-01

    involved in DNA unwinding to form a CRISPR RNA (crRNA)-DNA hybrid and a displaced DNA strand. The protospacer adjacent motif (PAM) is recognized by the PAM-interacting domain. The loop-lysine helix-loop motif in this domain contains three conserved lysine residues that are inserted in a dentate manner...... and the crRNA-DNA hybrid, avoiding DNA re-annealing. Mutations in key residues reveal a mechanism linking the PAM and DNA nuclease sites. Analysis of the Cpf1 structures proposes a singular working model of RNA-guided DNA cleavage, suggesting new avenues for redesign of Cpf1....

  14. Measurements of Drag Coefficients and Rotation Rates of Free-Falling Helixes

    KAUST Repository

    Al-Omari, Abdulrhaman A.

    2016-05-01

    The motion of bacteria in the environment is relevant to several fields. At very small scales and with simple helical shapes, we are able to describe experimentally and mathematically the motion of solid spirals falling freely within a liquid pool. Using these shapes we intend to mimic the motion of bacteria called Spirochetes. We seek to experimentally investigate the linear and the rotational motion of such shapes. A better understanding of the dynamics of this process will be practical not only on engineering and physics, but the bioscience and environmental as well. In the following pages, we explore the role of the shape on the motion of passive solid helixes in different liquids. We fabricate three solid helical shapes and drop them under gravity in water, glycerol and a mixture of 30% glycerol in water. That generated rotation due to helical angle in water. However, we observe the rotation disappear in glycerol. The movement of the solid helical shapes is imaged using a high-speed video camera. Then, the images are analyzed using the supplied software and a computer. Using these simultaneous measurements, we examine the terminal velocity of solid helical shapes. Using this information we computed the drag coefficient and the drag force. We obtain the helical angular velocity and the torque applied to the solid. The results of this study will allow us to more accurately predict the motion of solid helical shape. This analysis will also shed light onto biological questions of bacteria movement.

  15. Nutrients data from the R/V ALPHA HELIX and T.G. THOMPSON as part of the Inner Shelf Transfer and Recycling Project from 17 April 1987 to 21 July 1988 (NODC Accession 0000296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nitrate, nitrite, phosphate, silicate, and other data were collected from the R/V ALPHA HELIX and THOMAS G. THOMPSON from April 17, 1987 to July 21, 1988. Data were...

  16. Kinetics for exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine, d(C-G-C-A-G-A-A-T-T-C-G-C-G).

    Science.gov (United States)

    Pardi, A; Morden, K M; Patel, D J; Tinoco, I

    1982-12-07

    The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.

  17. The Foreign Factor within the Triple Helix Model: Interactions of National and International Innovation Systems, Technology Transfer and Implications for the Region: The Case of the Electronics Cluster in Guadalajara, Jalisco, México

    Directory of Open Access Journals (Sweden)

    Maria Isabel Rivera

    2006-10-01

    Full Text Available Within the context of global production the interactions among endogenous and foreign firms and their respective innovation systems, as well as strategic governmental policies favouring the exchange, may give rise to either virtuous or vicious circles of development through technological spillovers (Cantwell 1989, 1995a; Perez 1998, therefore, the foreign factor should be considered an important component within the triple helix paradigm in developing countries. This paper argues that in developing countries foreign direct investment is a factor needed within the triple helix paradigm as it may catalyzes some technology transfer and through its operations may create certain synergy that favours innovation, entrepreneurship and even the planning of a technological learning process in the host country. In order to develop the argument, this paper presents the case of the electronics cluster of Jalisco, Mexico.

  18. Helical Propensity Affects the Conformational Properties of the Denatured State of Cytochrome c'.

    Science.gov (United States)

    Danielson, Travis A; Bowler, Bruce E

    2018-01-23

    Changing the helical propensity of a polypeptide sequence might be expected to affect the conformational properties of the denatured state of a protein. To test this hypothesis, alanines at positions 83 and 87 near the center of helix 3 of cytochrome c' from Rhodopseudomonas palustris were mutated to serine to decrease the stability of this helix. A set of 13 single histidine variants in the A83S/A87S background were prepared to permit assessment of the conformational properties of the denatured state using histidine-loop formation in 3 M guanidine hydrochloride. The data are compared with previous histidine-heme loop formation data for wild-type cytochrome c'. As expected, destabilization of helix 3 decreases the global stabilities of the histidine variants in the A83S/A87S background relative to the wild-type background. Loop stability versus loop size data yields a scaling exponent of 2.1 ± 0.2, similar to the value of 2.3 ± 0.2 obtained for wild-type cytochrome c'. However, the stabilities of all histidine-heme loops, which contain the helix 3 sequence segment, are increased in the A83S/A87S background compared to the wild-type background. Rate constants for histidine-heme loop breakage are similar for the wild-type and A83S/A87S variants. However, for histidine-heme loops that contain the helix 3 sequence segment, the rate constants for loop formation increase in the A83S/A87S background compared to the wild-type background. Thus, residual helical structure appears to stiffen the polypeptide chain slowing loop formation in the denatured state. The implications of these results for protein folding mechanisms are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Nutrients data from bottle casts in the Bering Sea from the R/V ALPHA HELIX as part of the Inner Shelf Transport and Recycling Project 04 July 1986 to 25 September 1986 (NODC Accession 0000293)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nitrate, nitrite, phosphate, silicate, and other data were collected from the R/V ALPHA HELIX from July 4, 1986 to September 25, 1986. Data were submitted by...

  20. Current components, physical, and other data from moored current meters and CTD casts from the ALPHA HELIX and other platforms from Gulf of Alaska from 1988-04-28 to 1988-06-29 (NODC Accession 8800237)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, and other data were collected by moored current meters and CTD casts in the Gulf of Alaska from the ALPHA HELIX and other platforms....

  1. DISCOVERY OF A HALO AROUND THE HELIX NEBULA NGC 7293 IN THE WISE ALL-SKY SURVEY

    International Nuclear Information System (INIS)

    Zhang Yong; Hsia, Chih-Hao; Kwok, Sun

    2012-01-01

    We report the discovery of an extended halo (∼40' in diameter) around the planetary nebula NGC 7293 (the Helix Nebula) observed in the 12 μm band from the Wide-field Infrared Survey Explorer all-sky survey. The mid-infrared halo has an axisymmetric structure with a sharp boundary to the northeast and a more diffuse boundary to the southwest, suggesting an interaction between the stellar wind and the interstellar medium (ISM). The symmetry axis of the halo is well aligned with that of a northeast arc, suggesting that the two structures are physically associated. We have attempted to fit the observed geometry with a model of a moving steady-state stellar wind interacting with the ISM. Possible combinations of the ISM density and the stellar velocity are derived from these fittings. The discrepancies between the model and the observations suggest that the stellar mass loss has a more complicated history, including possible time and angle dependences.

  2. Helix and Drugs: Snails for Western Health Care From Antiquity to the Present

    Directory of Open Access Journals (Sweden)

    Bruno Bonnemain

    2005-01-01

    Full Text Available The land helix, or snail, has been used in medicine since antiquity and prepared according to several formulations. This historical report traces the understanding of their properties from the time of Hippocrates, who proposed the use of snail mucus against protoccle and Pliny who thought that the snail increased the speed of delivery and was “a sovereign remedy to treat pain related to burns, abscesses and other wounds”, Galien recommended snails against hydrops foetails. In the 18th century, various snail “preparations” were also recommended for external use with dermatological disorders and internally for symptoms associated with tuberculosis and nephritis. Surprisingly, the 19th century saw a renewed interest in the pharmaceutical and medical use of snails with numerous indications for snail preparations. This interest in snails did not stop at the end of the 19th century. The 1945 edition of Dorvault devotes an entire paragraph to snails, indicating that the therapeutic usage of snails was still alive at that time. Recently the FDA has also shown an interest in snails. Ziconotide (SNXIII, a synthetic peptide coming from snail venom, has been under FDA review since 1999. Pre-clinical and clinical studies of this new drug are promising.

  3. Nutrients profile data from the R/V ALPHA HELIX in the Bering Sea in support of the Inner Shelf Transport and Recycling Project (ISHTAR) from 13 July 1985 to 14 October 1985 (NODC Accession 0000276)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ammonium, nitrate, nitrite, phosphate, silicate, and urea data were collected from the R/V ALPHA HELIX from July 13, 1985 to October 14, 1985. Data were submitted by...

  4. [Selected adjuvants as carriers of a dry extract of common ivy (Hedera helix L.)].

    Science.gov (United States)

    Marczyński, Zbigniew; Zgoda, Marian Mikołaj; Bodek, Kazimiera Henryka

    2011-01-01

    The usefulness was tested of selected adjuvants: Vivapur 112, Carmellose calcium, Calcium carbonate CA 740, Calcium carbonate CA 800, Hypromellose as carriers of a dry extract of common ivy (Hedera helix L.) leaves in the process of direct tableting. The quality of the produced tablets was determined by examining their appearance, diameter, thickness, mass resistance to abrasion, crushing and disintegration time. Furthermore, the rate of release of biologically active components from the produced drug form to acceptor fluid was tested in accordance with the requirements of Polish Pharmacopoeia VII (PPVII). An attempt was made to estimate the effect of the used adjuvants on the course of this process. The applied adjuvants and acceptor fluid osmolarity decide significantly about the pharmaceutical availability of the therapeutic agents contained in the extract. The obtained model tablets are characterized by controlled release of biologically active substances, in majority of batches they fulfil the requirements as regards physicochemical properties. The formulation composition of the first batch (Extr. Hederae helices e fol.spir. sicc., Vivapur 112, Carmellose calcium, Sodium Stearyl Fumarate) appeared to be the most effective. The worked out method is optimal and provides technological reproducibility and high durability of the drug form.

  5. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA.

    Science.gov (United States)

    Saraiya, Ashesh A; Lamichhane, Tek N; Chow, Christine S; SantaLucia, John; Cunningham, Philip R

    2008-02-22

    The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.

  6. CTD, current meter, meteorological buoy, and bottle data from the Gulf of Mexico from the ALPHA HELIX and other platforms in support of LATEX A from 18 March 1993 to 23 September 1993 (NODC Accession 9400149)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, current meter, meteorological buoy, and bottle data were collected from the Gulf of Mexico from the ALPHA HELIX and other platforms. Data were collected by...

  7. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse.

    Science.gov (United States)

    Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong

    2011-12-01

    The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.

  8. Efeito da endogamia sobre a maturidade sexual e fecundidade do escargot da espécie Helix aspersa

    Directory of Open Access Journals (Sweden)

    Soares E.D.R.

    2003-01-01

    Full Text Available Estudou-se o efeito da endogamia sobre a maturidade sexual e fecundidade de escargot da espécie Helix aspersa, em três gerações consecutivas de irmãos perfeitos. Os animais foram criados em laboratório com temperatura entre 20 e 25ºC e umidade relativa entre 70 e 90%. O efeito da endogamia foi negativo para as duas características. Quando o valor de F aumentou de 0,25 para 0,50, o percentual de animais sexualmente maduros aos 120 dias diminuiu de 59 para 18% e o número de animais nascidos por postura diminuiu de 94 para 53. Para evitar o efeito negativo, recomenda-se o início de uma criação com pelo menos 100 reprodutores não aparentados, introduzindo-se novas matrizes após a 10ª geração.

  9. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    International Nuclear Information System (INIS)

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-01-01

    The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix. The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family

  10. Emergence of the persistent spin helix in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2008-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH) .2 SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (alpha) and linear Dresselhaus (beta 1), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (beta 3) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as alpha approaches beta 1. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning alpha and beta 1. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying beta 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics

  11. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Koralek, Jake

    2011-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (α) and linear Dresselhaus (β 1 ), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (β 3 ) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as α → β 1 . Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning α and β 1 . Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying β 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  12. α-helix to β-hairpin transition of human amylin monomer

    Science.gov (United States)

    Singh, Sadanand; Chiu, Chi-cheng; Reddy, Allam S.; de Pablo, Juan J.

    2013-04-01

    The human islet amylin polypeptide is produced along with insulin by pancreatic islets. Under some circumstances, amylin can aggregate to form amyloid fibrils, whose presence in pancreatic cells is a common pathological feature of Type II diabetes. A growing body of evidence indicates that small, early stage aggregates of amylin are cytotoxic. A better understanding of the early stages of the amylin aggregation process and, in particular, of the nucleation events leading to fibril growth could help identify therapeutic strategies. Recent studies have shown that, in dilute solution, human amylin can adopt an α-helical conformation, a β-hairpin conformation, or an unstructured coil conformation. While such states have comparable free energies, the β-hairpin state exhibits a large propensity towards aggregation. In this work, we present a detailed computational analysis of the folding pathways that arise between the various conformational states of human amylin in water. A free energy surface for amylin in explicit water is first constructed by resorting to advanced sampling techniques. Extensive transition path sampling simulations are then employed to identify the preferred folding mechanisms between distinct minima on that surface. Our results reveal that the α-helical conformer of amylin undergoes a transformation into the β-hairpin monomer through one of two mechanisms. In the first, misfolding begins through formation of specific contacts near the turn region, and proceeds via a zipping mechanism. In the second, misfolding occurs through an unstructured coil intermediate. The transition states for these processes are identified. Taken together, the findings presented in this work suggest that the inter-conversion of amylin between an α-helix and a β-hairpin is an activated process and could constitute the nucleation event for fibril growth.

  13. Transcriptome profiling of pumpkin (Cucurbita moschata Duch. leaves infected with powdery mildew.

    Directory of Open Access Journals (Sweden)

    Wei-Li Guo

    Full Text Available Cucurbit powdery mildew (PM is one of the most severe fungal diseases, but the molecular mechanisms underlying PM resistance remain largely unknown, especially in pumpkin (Cucurbita moschata Duch.. The goal of this study was to identify gene expression differences in PM-treated plants (harvested at 24 h and 48 h after inoculation and untreated (control plants of inbred line "112-2" using RNA sequencing (RNA-Seq. The inbred line "112-2" has been purified over 8 consecutive generations of self-pollination and shows high resistance to PM. More than 7600 transcripts were examined in pumpkin leaves, and 3129 and 3080 differentially expressed genes (DEGs were identified in inbred line "112-2" at 24 and 48 hours post inoculation (hpi, respectively. Based on the KEGG (Kyoto Encyclopedia of Genes and Genomes pathway database and GO (Gene Ontology database, a complex regulatory network for PM resistance that may involve hormone signal transduction pathways, transcription factors and defense responses was revealed at the transcription level. In addition, the expression profiles of 16 selected genes were analyzed using quantitative RT-PCR. Among these genes, the transcript levels of 6 DEGs, including bHLH87 (Basic Helix-loop-helix transcription factor, ERF014 (Ethylene response factor, WRKY21 (WRKY domain, HSF (heat stress transcription factor A, MLO3 (Mildew Locus O, and SGT1 (Suppressor of G-Two Allele of Skp1, in PM-resistant "112-2" were found to be significantly up- or down-regulated both before 9 hpi and at 24 hpi or 48 hpi; this behavior differed from that observed in the PM-susceptible material (cultivar "Jiujiangjiaoding". The transcriptome data provide novel insights into the response of Cucurbita moschata to PM stress and are expected to be highly useful for dissecting PM defense mechanisms in this major vegetable and for improving pumpkin breeding with enhanced resistance to PM.

  14. Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer

    International Nuclear Information System (INIS)

    Sharma, Pankaj; Chinaranagari, Swathi; Patel, Divya; Carey, Jason; Chaudhary, Jaideep

    2012-01-01

    The inhibitor of DNA-binding (Id) proteins, Id1–4 are negative regulators of basic helix-loop-helix (bHLH) transcription factors. As key regulators of cell cycle and differentiation, expression of Id proteins are increasingly observed in many cancers and associated with aggressiveness of the disease. Of all the four Id proteins, the expression of Id1, Id2, and to a lesser extent, Id3 in prostate cancer and the underlying molecular mechanism is relatively well known. On the contrary, our previous results demonstrated that Id4 acts as a potential tumor suppressor in prostate cancer. In the present study, we extend these observations and demonstrate that Id4 is down-regulated in prostate cancer due to promoter hypermethylation. We used prostate cancer tissue microarrays to investigate Id4 expression. Methylation specific PCR on bisulfite treated DNA was used to determine methylation status of Id4 promoter in laser capture micro-dissected normal, stroma and prostate cancer regions. High Id4 expression was observed in the normal prostate epithelial cells. In prostate cancer, a stage-dependent decrease in Id4 expression was observed with majority of high grade cancers showing no Id4 expression. Furthermore, Id4 expression progressively decreased in prostate cancer cell line LNCaP and with no expression in androgen-insensitive LNCaP-C81 cell line. Conversely, Id4 promoter hypermethylation increased in LNCaP-C81 cells suggesting epigenetic silencing. In prostate cancer samples, loss of Id4 expression was also associated with promoter hypermethylation. Our results demonstrate loss of Id4 expression in prostate cancer due to promoter hypermethylation. The data strongly support the role of Id4 as a tumor suppressor

  15. Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development

    Directory of Open Access Journals (Sweden)

    Chin Michael T

    2008-02-01

    Full Text Available Abstract Background During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5. Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene. Results We report that a putative Notch target gene, hairy-related basic helix-loop-helix (bHLH transcriptional factor Hey2, is expressed in the cochlear epithelium prior to terminal differentiation. Its expression is subsequently restricted to supporting cells, overlapping with the expression domains of two known Notch target genes, Hairy and enhancer of split homolog genes Hes1 and Hes5. In combination with the loss of Hes1 or Hes5, genetic inactivation of Hey2 leads to increased numbers of mis-patterned inner or outer hair cells, respectively. Surprisingly, the ectopic hair cells in Hey2 mutants are accompanied by ectopic supporting cells. Furthermore, Hey2-/-;Hes1-/- and Hey2-/-;Hes1+/- mutants show a complete penetrance of early embryonic lethality. Conclusion Our results indicate that Hey2 functions in parallel with Hes1 and Hes5 in patterning the organ of Corti, and interacts genetically with Hes1 for early embryonic development and survival. Our data implicates expansion of the progenitor pool and/or the boundaries of the developing sensory organ to account for patterning defects observed in Hey2 mutants.

  16. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    Science.gov (United States)

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-10-27

    2,3,7,8-Tetrachlorodibenzo- p -dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Transcriptome profiling of pumpkin (Cucurbita moschata Duch.) leaves infected with powdery mildew.

    Science.gov (United States)

    Guo, Wei-Li; Chen, Bi-Hua; Chen, Xue-Jin; Guo, Yan-Yan; Yang, He-Lian; Li, Xin-Zheng; Wang, Guang-Yin

    2018-01-01

    Cucurbit powdery mildew (PM) is one of the most severe fungal diseases, but the molecular mechanisms underlying PM resistance remain largely unknown, especially in pumpkin (Cucurbita moschata Duch.). The goal of this study was to identify gene expression differences in PM-treated plants (harvested at 24 h and 48 h after inoculation) and untreated (control) plants of inbred line "112-2" using RNA sequencing (RNA-Seq). The inbred line "112-2" has been purified over 8 consecutive generations of self-pollination and shows high resistance to PM. More than 7600 transcripts were examined in pumpkin leaves, and 3129 and 3080 differentially expressed genes (DEGs) were identified in inbred line "112-2" at 24 and 48 hours post inoculation (hpi), respectively. Based on the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database and GO (Gene Ontology) database, a complex regulatory network for PM resistance that may involve hormone signal transduction pathways, transcription factors and defense responses was revealed at the transcription level. In addition, the expression profiles of 16 selected genes were analyzed using quantitative RT-PCR. Among these genes, the transcript levels of 6 DEGs, including bHLH87 (Basic Helix-loop-helix transcription factor), ERF014 (Ethylene response factor), WRKY21 (WRKY domain), HSF (heat stress transcription factor A), MLO3 (Mildew Locus O), and SGT1 (Suppressor of G-Two Allele of Skp1), in PM-resistant "112-2" were found to be significantly up- or down-regulated both before 9 hpi and at 24 hpi or 48 hpi; this behavior differed from that observed in the PM-susceptible material (cultivar "Jiujiangjiaoding"). The transcriptome data provide novel insights into the response of Cucurbita moschata to PM stress and are expected to be highly useful for dissecting PM defense mechanisms in this major vegetable and for improving pumpkin breeding with enhanced resistance to PM.

  18. BuD, a helix–loop–helix DNA-binding domain for genome modification

    Energy Technology Data Exchange (ETDEWEB)

    Stella, Stefano [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark); Molina, Rafael; López-Méndez, Blanca [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Campos-Olivas, Ramon [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Duchateau, Phillippe [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Montoya, Guillermo, E-mail: guillermo.montoya@cpr.ku.dk [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark)

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  19. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

    Science.gov (United States)

    Schwinn, Kathy E.; Boase, Murray R.; Bradley, J. Marie; Lewis, David H.; Deroles, Simon C.; Martin, Cathie R.; Davies, Kevin M.

    2014-01-01

    Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related basic helix-loop-helix TF transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high-light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1 × 35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment in the petal throat region, and the anthers changed from yellow to purple pigmentation. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1 × 35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants. PMID:25414715

  20. Involvement of Mζ-Like Protein Kinase in the Mechanisms of Conditioned Food Aversion Memory Reconsolidation in the Helix lucorum.

    Science.gov (United States)

    Solntseva, S V; Kozyrev, S A; Nikitin, V P

    2015-06-01

    We studied the involvement of Mζ-like protein kinase (PKMζ) into mechanisms of conditioned food aversion memory reconsolidation in Helix lucorum. Injections PKMζ inhibitor ZIP in a dose of 5 mg/kg on day 2 or 10 after learning led to memory impairment and amnesia development. Injections of the inhibitor in doses of 1.5 or 2.5 mg/kg had no effect. Repeated training on day 11 after induction of amnesia resulted in the formation of memory on the same type of food aversion similar to first training. The number of combinations of conditional (food) and reinforcing (electrical shock) stimuli was similar during initial and repeated training. We hypothesize that the inhibition of Mζ-like protein kinase erases the memory trace and a new memory is formed during repeated training.