WorldWideScience

Sample records for basic electrical circuits

  1. Basic electric circuit theory a one-semester text

    CERN Document Server

    Mayergoyz, Isaak D

    1996-01-01

    This is the only book on the market that has been conceived and deliberately written as a one-semester text on basic electric circuit theory. As such, this book employs a novel approach to the exposition of the material in which phasors and ac steady-state analysis are introduced at the beginning. This allows one to use phasors in the discussion of transients excited by ac sources, which makes the presentation of transients more comprehensive and meaningful. Furthermore, the machinery of phasors paves the road to the introduction of transfer functions, which are then used in the analysis of tr

  2. The Elusive Memristor: Properties of Basic Electrical Circuits

    Science.gov (United States)

    Joglekar, Yogesh N.; Wolf, Stephen J.

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge "q" and the magnetic flux [phi] in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of…

  3. The elusive memristor: properties of basic electrical circuits

    Energy Technology Data Exchange (ETDEWEB)

    Joglekar, Yogesh N; Wolf, Stephen J [Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 (United States)], E-mail: yojoglek@iupui.edu

    2009-07-15

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux {phi} in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML) and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students.

  4. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  5. The Electron Runaround: Understanding Electric Circuit Basics through a Classroom Activity

    Science.gov (United States)

    Singh, Vandana

    2010-01-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not…

  6. Basic electronic circuits

    CERN Document Server

    Buckley, P M

    1980-01-01

    In the past, the teaching of electricity and electronics has more often than not been carried out from a theoretical and often highly academic standpoint. Fundamentals and basic concepts have often been presented with no indication of their practical appli­ cations, and all too frequently they have been illustrated by artificially contrived laboratory experiments bearing little relationship to the outside world. The course comes in the form of fourteen fairly open-ended constructional experiments or projects. Each experiment has associated with it a construction exercise and an explanation. The basic idea behind this dual presentation is that the student can embark on each circuit following only the briefest possible instructions and that an open-ended approach is thereby not prejudiced by an initial lengthy encounter with the theory behind the project; this being a sure way to dampen enthusiasm at the outset. As the investigation progresses, questions inevitably arise. Descriptions of the phenomena encounte...

  7. Basic electricity

    CERN Document Server

    1967-01-01

    Originally a training course; best nontechnical coverage. Topics include batteries, circuits, conductors, AC and DC, inductance and capacitance, generators, motors, transformers, amplifiers, etc. Many questions with answers. 349 illustrations. 1969 edition.

  8. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  9. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 34: Linear Integrated Circuits. Study Booklet.

    Science.gov (United States)

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on linear integrated circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in…

  10. Electric circuits problem solver

    CERN Document Server

    REA, Editors of

    2012-01-01

    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av

  11. Electrical installation calculations basic

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo

  12. Electric circuit theory applied electricity and electronics

    CERN Document Server

    Yorke, R

    1981-01-01

    Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical

  13. Variational integrators for electric circuits

    Energy Technology Data Exchange (ETDEWEB)

    Ober-Blöbaum, Sina, E-mail: sinaob@math.upb.de [Computational Dynamics and Optimal Control, University of Paderborn (Germany); Tao, Molei [Courant Institute of Mathematical Sciences, New York University (United States); Cheng, Mulin [Applied and Computational Mathematics, California Institute of Technology (United States); Owhadi, Houman; Marsden, Jerrold E. [Control and Dynamical Systems, California Institute of Technology (United States); Applied and Computational Mathematics, California Institute of Technology (United States)

    2013-06-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator.

  14. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  15. Electrical circuit theory and technology

    CERN Document Server

    Bird, John

    2014-01-01

    This much-loved textbook explains the principles of electrical circuit theory and technology so that students of electrical and mechanical engineering can master the subject. Real-world situations and engineering examples put the theory into context. The inclusion of worked problems with solutions help you to learn and further problems then allow you to test and confirm you have fully understood each subject. In total the book contains 800 worked problems, 1000 further problems and 14 revision tests with answers online. This an ideal text for foundation and undergraduate degree students and those on upper level vocational engineering courses, in particular electrical and mechanical. It provides a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. This edition has been updated with developments in key areas such as semiconductors, transistors, and fuel cells, along with brand new material on ABCD parameters and Fourier's An...

  16. Fractional linear systems and electrical circuits

    CERN Document Server

    Kaczorek, Tadeusz

    2015-01-01

    This monograph covers some selected problems of positive and fractional electrical circuits composed of resistors, coils, capacitors and voltage (current) sources. The book consists of 8 chapters, 4 appendices and a list of references. Chapter 1 is devoted to fractional standard and positive continuous-time and discrete-time linear systems without and with delays. In chapter 2 the standard and positive fractional electrical circuits are considered and the fractional electrical circuits in transient states are analyzed.  Descriptor linear electrical circuits and their properties are investigated in chapter 3,  while chapter 4 is devoted to the stability of fractional standard and positive linear electrical circuits. The reachability, observability and reconstructability of fractional positive electrical circuits and their decoupling zeros are analyzed in chapter 5. The fractional linear electrical circuits with feedbacks are considered in chapter 6. In chapter 7 solutions of minimum energy control for standa...

  17. Quantum Electric Circuits Analogous to Ballistic Conductors

    OpenAIRE

    2007-01-01

    The conductance steps in a constricted two-dimensional electron gas and the minimum conductivity in graphene are related to a new uncertainty relation between electric charge and conductance in a quantized electric circuit that mimics the electric transport in mesoscopic systems. This uncertainty relation makes specific use of the discreteness of electric charge. Quantum electric circuits analogous to both constricted two-dimensional electron gas and graphene are introduced. In the latter cas...

  18. MESOSCOPIC ELECTRIC CIRCUITS WITH CHARGE DISCRETIZATION

    OpenAIRE

    2004-01-01

    MESOSCOPIC ELECTRIC CIRCUITS WITH CHARGE DISCRETIZATION Nanoscience is a modern aspect of electronic engineering with significant projections for applications on new devices. This project allowed presenting an innovative language and a rigorous vision on aspects of nanoscience. The theory of quantum electrical circuits with discrete charge corresponds to the description (in simple terms) of some aspects of nanoscience. Our results gather aspects of quantum mechanics, electrical circuit...

  19. Electric Circuit Theory--Computer Illustrated Text.

    Science.gov (United States)

    Riches, Brian

    1990-01-01

    Discusses the use of a computer-illustrated text (CIT) with integrated software to teach electric circuit theory to college students. Examples of software use are given, including simple animation, graphical displays, and problem-solving programs. Issues affecting electric circuit theory instruction are also addressed, including mathematical…

  20. Entropy production by simple electrical circuits

    CERN Document Server

    Miranda, E N

    2012-01-01

    The entropy production by simple electrical circuits (R, RC, RL) is analyzed. It comes out that the entropy production is minimal, in agreement with a well known theorem due to Prigogine. In this way, it is wrong a recent result by Zupanovic, Juretic and Botric (Physica Review E 70, 056198) who claimed that the entropy production in simple electrical circuits is a maximum

  1. Relaxation Based Electrical Simulation for VLSI Circuits

    Directory of Open Access Journals (Sweden)

    S. Rajkumar

    2012-06-01

    Full Text Available Electrical circuit simulation was one of the first CAD tools developed for IC design. The conventional circuit simulators like SPICE and ASTAP were designed initially for the cost effective analysis of circuits containing a few hundred transistors or less. A number of approaches have been used to improve the performances of congenital circuit simulators for the analysis of large circuits. Thereafter relaxation methods was proposed to provide more accurate waveforms than standard circuit simulators with up to two orders of magnitude speed improvement for large circuits. In this paper we have tried to highlights recently used waveform and point relaxation techniques for simulation of VLSI circuits. We also propose a simple parallelization technique and experimentally demonstrate that we can solve digital circuits with tens of million transistors in a few hours.

  2. Teaching an Electrical Circuits Course Using a Virtual Lab

    Science.gov (United States)

    Rahman, Md Zahidur

    2014-01-01

    This paper describes designing and implementing a scholarship of teaching and learning (SoTL) study in a basic electrical circuits course at LaGuardia Community College. Inspired by my understanding of Shulman's (2005) concept of "signature pedagogy" and Mazur's (2009) emphasis on student-centered approaches, and aware that our…

  3. Teaching an Electrical Circuits Course Using a Virtual Lab

    Science.gov (United States)

    Rahman, Md Zahidur

    2014-01-01

    This paper describes designing and implementing a scholarship of teaching and learning (SoTL) study in a basic electrical circuits course at LaGuardia Community College. Inspired by my understanding of Shulman's (2005) concept of "signature pedagogy" and Mazur's (2009) emphasis on student-centered approaches, and aware that our students…

  4. The global atmospheric electrical circuit and climate

    CERN Document Server

    Harrison, R G

    2004-01-01

    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultrafine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution ca...

  5. A Global Electric Circuit on Mars

    Science.gov (United States)

    Delory, G. T.; Farrell, W. M.; Desch, M. D.

    2001-01-01

    We describe conditions on the surface of Mars conducive to the formation of a martian global electric circuit, in a direct analogy to the terrestrial case where atmospheric currents and electric fields are generated worldwide through the charging in thunderstorms. Additional information is contained in the original extended abstract.

  6. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters c...

  7. 29 CFR 1915.181 - Electrical circuits and distribution boards.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Electrical circuits and distribution boards. 1915.181... Electrical Machinery § 1915.181 Electrical circuits and distribution boards. (a) The provisions of this... employee is permitted to work on an electrical circuit, except when the circuit must remain energized...

  8. Chemical Detection using Electrically Open Circuits having no Electrical Connections

    Science.gov (United States)

    Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.

    2008-01-01

    This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.

  9. Practical design of digital circuits basic logic to microprocessors

    CERN Document Server

    Kampel, Ian

    1983-01-01

    Practical Design of Digital Circuits: Basic Logic to Microprocessors demonstrates the practical aspects of digital circuit design. The intention is to give the reader sufficient confidence to embark upon his own design projects utilizing digital integrated circuits as soon as possible. The book is organized into three parts. Part 1 teaches the basic principles of practical design, and introduces the designer to his """"tools"""" - or rather, the range of devices that can be called upon. Part 2 shows the designer how to put these together into viable designs. It includes two detailed descriptio

  10. Biologically closed electrical circuits in venus flytrap.

    Science.gov (United States)

    Volkov, Alexander G; Carrell, Holly; Markin, Vladislav S

    2009-04-01

    The Venus flytrap (Dionaea muscipula Ellis) is a marvel of plant electrical, mechanical, and biochemical engineering. The rapid closure of the Venus flytrap upper leaf in about 0.1 s is one of the fastest movements in the plant kingdom. We found earlier that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. The Venus flytrap can accumulate small subthreshold charges and, when the threshold value is reached, the trap closes. Here, we investigated the electrical properties of the upper leaf of the Venus flytrap and proposed the equivalent electrical circuit in agreement with the experimental data.

  11. Demonstrating Boolean Logic Using Simple Electrical Circuits

    Science.gov (United States)

    McElhaney, Kevin W.

    2004-01-01

    While exploring the subject of geometric proofs, boolean logic operators AND and OR can be used to allow students to visualize their true-or-false patterns. An activity in the form of constructing electrical circuits is illustrated to explain the concept.

  12. Electric Current Circuits in Astrophysics

    CERN Document Server

    Kuijpers, Jan; Fletcher, Lyndsay

    2014-01-01

    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting flux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms.

  13. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  14. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection....

  15. Using graph theory for automated electric circuit solving

    Science.gov (United States)

    Toscano, L.; Stella, S.; Milotti, E.

    2015-05-01

    Graph theory plays many important roles in modern physics and in many different contexts, spanning diverse topics such as the description of scale-free networks and the structure of the universe as a complex directed graph in causal set theory. Graph theory is also ideally suited to describe many concepts in computer science. Therefore it is increasingly important for physics students to master the basic concepts of graph theory. Here we describe a student project where we develop a computational approach to electric circuit solving which is based on graph theoretic concepts. This highly multidisciplinary approach combines abstract mathematics, linear algebra, the physics of circuits, and computer programming to reach the ambitious goal of implementing automated circuit solving.

  16. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the...

  17. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  18. 30 CFR 56.4011 - Abandoned electric circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  19. 30 CFR 57.4011 - Abandoned electric circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be...

  20. Technological Literacy Learning with Cumulative and Stepwise Integration of Equations into Electrical Circuit Diagrams

    Science.gov (United States)

    Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.

    2012-01-01

    Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…

  1. Fractional RC and LC Electrical Circuits

    Directory of Open Access Journals (Sweden)

    Gómez-Aguilar José Francisco

    2014-04-01

    Full Text Available In this paper we propose a fractional differential equation for the electrical RC and LC circuit in terms of the fractional time derivatives of the Caputo type. The order of the derivative being considered is 0 < ɣ ≤1. To keep the dimensionality of the physical parameters R, L, C the new parameter σ is introduced. This parameter characterizes the existence of fractional structures in the system. A relation between the fractional order time derivative ɣ and the new parameter σ is found. The numeric Laplace transform method was used for the simulation of the equations results. The results show that the fractional differential equations generalize the behavior of the charge, voltage and current depending of the values of ɣ. The classical cases are recovered by taking the limit when ɣ = 1. An analysis in the frequency domain of an RC circuit shows the application and use of fractional order differential equations.

  2. How Young Children Understand Electric Circuits: Prediction, Explanation and Exploration

    Science.gov (United States)

    Glauert, Esme Bridget

    2009-01-01

    This paper reports findings from a study of young children's views about electric circuits. Twenty-eight children aged 5 and 6 years were interviewed. They were shown examples of circuits and asked to predict whether they would work and explain why. They were then invited to try out some of the circuit examples or make circuits of their own…

  3. Pupils' understanding of simple electrical circuits. Some implications for instruction

    Science.gov (United States)

    Shipstone, David

    1988-03-01

    There have been many studies worldwide of children's understanding of basic electrical concepts so that there is now quite a clear picture of many of their difficulties. By contrast, work on remediation is in its infancy. The article describes research findings concerning children's difficulties with the concepts of circuit, current and electrical energy and discusses some possible approaches to instruction which arise in the light of these findings. Much of the research carried out has been within the paradigm of constructivist psychology which views all human beings as prototypical scientists, constructing hypotheses and testing these against experience as their way of understanding the world around them. In seeking to understand electrical phenomena children construct a variety of explanatory conceptual models, some of which they then hold very tenaciously.

  4. Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons

    Science.gov (United States)

    Rabinovich, Mikhail; Huerta, Ramón; Bazhenov, Maxim; Kozlov, Alexander K.; Abarbanel, Henry D. I.

    1998-11-01

    We investigate the ability of oscillating neural circuits to switch between different states of oscillation in two basic neural circuits. We model two quite distinct small neural circuits. The first circuit is based on invertebrate central pattern generator (CPG) studies [A. I. Selverston and M. Moulins, The Crustacean Stomatogastric System (Springer-Verlag, Berlin, 1987)] and is composed of two neurons coupled via both gap junction and inhibitory synapses. The second consists of coupled pairs of interconnected thalamocortical relay and thalamic reticular neurons with both inhibitory and excitatory synaptic coupling. The latter is an elementary unit of the thalamic networks passing sensory information to the cerebral cortex [M. Steriade, D. A. McCormick, and T. J. Sejnowski, Science 262, 679 (1993)]. Both circuits have contradictory coupling between symmetric parts. The thalamocortical model has excitatory and inhibitory connections and the CPG has reciprocal inhibitory and electrical coupling. We describe the dynamics of the individual neurons in these circuits by conductance based ordinary differential equations of Hodgkin-Huxley type [J. Physiol. (London) 117, 500 (1952)]. Both model circuits exhibit bistability and hysteresis in a wide region of coupling strengths. The two main modes of behavior are in-phase and out-of-phase oscillations of the symmetric parts of the network. We investigate the response of these circuits, while they are operating in bistable regimes, to externally imposed excitatory spike trains with varying interspike timing and small amplitude pulses. These are meant to represent spike trains received by the basic circuits from sensory neurons. Circuits operating in a bistable region are sensitive to the frequency of these excitatory inputs. Frequency variations lead to changes from in-phase to out-of-phase coordination or vice versa. The signaling information contained in a spike train driving the network can place the circuit into one or

  5. Performance analysis of electrical circuits /PANE/

    Science.gov (United States)

    Johnson, K. L.; Steinberg, L. L.

    1968-01-01

    Automated statistical and worst case computer program has been designed to perform dc and ac steady circuit analyses. The program determines the worst case circuit performance by solving circuit equations.

  6. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and...-1 Electric equipment and circuits; overload and short circuit protection; minimum requirements... minimum requirements for protection of electric circuits and equipment of the National Electric Code, 1968....

  7. Device, system and method for a sensing electrical circuit

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.

  8. Fabrication, electrical characterization, and detection application of graphene-sheet-based electrical circuits.

    Science.gov (United States)

    Peng, Yitian; Lei, Jianping

    2014-01-01

    The distribution of potential, electric field, and gradient of square of electric field was simulated via a finite element method for dielectrophoresis (DEP) assembly. Then reduced graphene oxide sheets (RGOS)- and graphene oxide sheets (GOS)-based electrical circuits were fabricated via DEP assembly. The mechanically exfoliated graphene sheets (MEGS)-based electrical circuit was also fabricated for comparison. The electrical transport properties of three types of graphene-based electrical circuits were measured. The MEGS-based electrical circuit possesses the best electrical conductivity, and the GOS-based electrical circuit has the poorest electrical conductivity among all three circuits. The three types of electrical circuits were applied for the detection of copper ions (Cu(2+)). The RGOS-based electrical circuit can detect the Cu(2+) when the concentration of Cu(2+) was as low as 10 nM in solution. The GOS-based electrical circuit can only detect Cu(2+) after chemical reduction. The possible mechanism of electron transfer was proposed for the detection. The facile fabrication method and excellent performance imply the RGOS-based electrical circuit has great potential to be applied to metal ion sensors.

  9. Secondary School Students' Misconceptions about Simple Electric Circuits

    Science.gov (United States)

    Küçüközer, Hüseyin; Kocakülah, Sabri

    2007-01-01

    The aim of this study is to reveal secondary school students' misconceptions about simple electric circuits and to define whether specific misconceptions peculiar to Turkish students exist within those identified. Data were obtained with a conceptual understanding test for simple electric circuits and semi-structured interviews. Conceptual…

  10. Signal transduction in Mimosa pudica: biologically closed electrical circuits.

    Science.gov (United States)

    Volkov, Alexander G; Foster, Justin C; Markin, Vladislav S

    2010-05-01

    Biologically closed electrical circuits operate over large distances in biological tissues. The activation of such circuits can lead to various physiological and biophysical responses. Here, we analyse the biologically closed electrical circuits of the sensitive plant Mimosa pudica Linn. using electrostimulation of a petiole or pulvinus by the charged capacitor method, and evaluate the equivalent electrical scheme of electrical signal transduction inside the plant. The discharge of a 100 microF capacitor in the pulvinus resulted in the downward fall of the petiole in a few seconds, if the capacitor was charged beforehand by a 1.5 V power supply. Upon disconnection of the capacitor from Ag/AgCl electrodes, the petiole slowly relaxed to the initial position. The electrical properties of the M. pudica were investigated, and an equivalent electrical circuit was proposed that explains the experimental data.

  11. Design of two-channel oscilloscope and basic circuit simulations in LabView

    Science.gov (United States)

    Balzhiev, Plamen; Makal, Jaroslaw

    2008-01-01

    The project is realized as a diploma thesis in Bialystok Technical University, Poland). The main aim is to develop a useful educational tool which presents the time and frequency characteristics in basic electrical circuits. It is designed as a helpful instrument for lectures and laboratory classes. The predominant audience will be students of electrical engineering from first semester of the higher education. Therefore the level of knowledge at this stage of education is not high enough and different techniques are necessary to increase the students' interest and the efficiency of teaching process. This educational instrument provides the needed knowledge concerning the basic circuits and its parameters. Graphics and animations of the general processes in the electrical circuits make the problems more interesting, comprehensive and easier to understand. For designing such an instrument the National Instruments' programming environment LabView is used. It is preferred to the other simulation software because of its simplicity flexibility and also availability (the free demo version is sufficient to make a simple virtual instrument). LabView uses graphical programming language and has powerful mathematical functions for analysis and simulations. The useful visualization tools for presenting different diagrams are worth recommending, too. It is also specialized in measurement and control and it supports a wide variety of hardware. Therefore this software is suitable for laboratory classes to present the dependencies between the simulated characteristics in basic electrical circuits and the real one measured with the hardware device. For this purpose a two-channel oscilloscope is designed as part of the described project. The main purpose of this instrument as part of the educational process is to present the desired characteristics of the electrical circuits and to become familiar with the general functions of the oscilloscope. This project combines several important

  12. Promoting Active Learning in Electrical Engineering Basic Studies

    Directory of Open Access Journals (Sweden)

    Anu Lehtovuori

    2013-05-01

    Full Text Available Active learning, project-based teaching, and student collaboration are current trends in engineering education. Incorporating these have also been the goal of the basic studies development project EPOP started at the Aalto University School of Electrical Engineering in 2011. In the project, two obligatory basic courses in circuit analysis and electromagnetic field theory have been taught using interactive engagement during the spring of 2012. This paper presents the implementation of the teaching, including methods and evaluation with several concrete examples. As a result of the novel teaching, motivation and the engagement of students were at a high level during the whole course and learning results were better than those of the students participating the traditional lecture course.

  13. Electric circuit model for strained-layer epitaxy

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2016-11-01

    For the design and analysis of a strained-layer semiconductor device structure, the equilibrium strain profile may be determined numerically by energy minimization but this method is computationally intense and non-intuitive. Here we present an electric circuit model approach for the equilibrium analysis of an epitaxial stack, in which each sublayer may be represented by an analogous configuration involving a current source, a resistor, a voltage source, and an ideal diode. The resulting node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This new approach enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits may be translated to the relaxation of strained-layer structures. In this paper, we describe the mathematical foundation of the electrical circuit model and demonstrate its application to epitaxial layers of Si1-x Ge x grown on a Si (001) substrate.

  14. Analysis and calculation of lightning-induced voltages in aircraft electrical circuits

    Science.gov (United States)

    Plumer, J. A.

    1974-01-01

    Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.

  15. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  16. A figure of merit for neural electrical stimulation circuits.

    Science.gov (United States)

    Kolbl, Florian; Demosthenous, Andreas

    2015-01-01

    Electrical stimulators are widely used in neuro-prostheses. Many different implementations exist. However, no quantitative ranking criterion is available to allow meaningful comparison of the various stimulation circuits and systems to aid the designer. This paper presents a novel Figure of Merit (FOM) dedicated to stimulation circuits and systems. The proposed optimization performance metric takes into account tissue safety conditions and energy efficiency which can be evaluated by measurement. The FOM is used to rank several stimulator circuits and systems.

  17. Shuttle Electrical Power Analysis Program (SEPAP) distribution circuit analysis report

    Science.gov (United States)

    Torina, E. M.

    1975-01-01

    An analysis and evaluation was made of the operating parameters of the shuttle electrical power distribution circuit under load conditions encountered during a normal Sortie 2 Mission with emphasis on main periods of liftoff and landing.

  18. Note on homological modeling of the electric circuits

    OpenAIRE

    2014-01-01

    Based on a simple example, it is explained how the homological analysis may be applied for modeling of the electric circuits. The homological branch, mesh and nodal analyses are presented. Geometrical interpretations are given.

  19. Hamilton´s Principle and Electric Circuits Tudory

    OpenAIRE

    2006-01-01

    In the theory of electrical or electromechanical circuits different methods are known for construction of mathematical model. In this paper another, alternative method is introduced that is based on Hamilton variational principle that is generally valid in physics.

  20. Model of Pulsed Electrical Discharge Machining (EDM using RL Circuit

    Directory of Open Access Journals (Sweden)

    Ade Erawan Bin Minhat

    2014-10-01

    Full Text Available This article presents a model of pulsed Electrical Discharge Machining (EDM using RL circuit. There are several mathematical models have been successfully developed based on the initial, ignition and discharge phase of current and voltage gap. According to these models, the circuit schematic of transistor pulse power generator has been designed using electrical model in Matlab Simulink software to identify the profile of voltage and current during machining process. Then, the simulation results are compared with the experimental results.

  1. Enhancing student learning and conceptual understanding of electric circuits

    OpenAIRE

    2010-01-01

    Prior research has highlighted that students have many conceptual difficulties regarding electric circuits and that traditional teaching methods are not successful in overcoming these difficulties. In addressing this issue, this research project placed its primary focus on the development of research based and research validated curriculum which systematically promotes the development of a scientific model for electric circuits. Over the last four years, the project focussed on deve...

  2. Electrical circuits in biomedical engineering problems with solutions

    CERN Document Server

    Keskin, Ali Ümit

    2017-01-01

    This authored monograph presents a comprehensive and in-depth analysis of electrical circuit theory in biomedical engineering, ideally suited as textbook for a course program. The book contains methods and theory, but the topical focus is placed on practical applications of circuit theory, including problems, solutions and case studies. The target audience primarily comprises researchers and experts in electrical engineering who intend to embark on biomedical applications. The book is also very well suited for graduate students in the field. .

  3. Preschool children learn about electric circuit

    OpenAIRE

    Jarc, Nina

    2015-01-01

    In the theoretical part of my thesis, I first summarized what can be found in literature concerning electricity treatment (Labinowicz, Driver) and particularities of topics treatment in a preschool period, as well. I presented the concepts of electricity and electrical current, respectively, and several simple devices that operate on the basis of electricity, sources and the concept of electric energy. In the empirical part I first presented the questionnaire for identification of childr...

  4. Electrical engineering. Basic knowledge. 2. ed.; Elektrotechnik. Allgemeine Grundbildung

    Energy Technology Data Exchange (ETDEWEB)

    Frielingsdorf, H.; Lintermann, F.J.

    2001-07-01

    The textbook provides information on the following subjects: Fundamentals of electric circuits, connection of electric resistors, technical circuits, electric fields and condensers, magnetic fields and coils, fundamentals of a.c. engineering, dangerous body currents, fundamentals of electronical and control engineering. [German] Lehrbuch mit folgendem Inhalt: Grundbegriffe des elektrischen Stromkreises, Zusammenschaltung elektrischer Widerstaende, technischer Stromkreis, elektrisches Feld und Kondensator, magnetisches Feld und Spule, Grundlagen der Wechselstromtechnik, gefaehrliche Koerperstroeme, Grundlagen der Elektronik und Steuerungstechnik.(GL)

  5. Power and heat fluctuation theorems for electric circuits.

    Science.gov (United States)

    van Zon, R; Ciliberto, S; Cohen, E G D

    2004-04-02

    Using recent fluctuation theorems from nonequilibrium statistical mechanics, we extend the theory for voltage fluctuations in electric circuits to power and heat fluctuations. They could be of particular relevance for the functioning of small circuits. This is done for a parallel resistor and capacitor with a constant current source for which we use the analogy with a Brownian particle dragged through a fluid by a moving harmonic potential, where circuit-specific analogs are needed on top of the Brownian-Nyquist analogy. The results may also hold for other circuits as another example shows.

  6. Energy pumping in electrical circuits under avalanche noise.

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  7. Using Electrical Simulation Software to Understand Electrical Quantities in Resistive Circuits

    Directory of Open Access Journals (Sweden)

    André Schwantes

    2016-02-01

    Full Text Available This paper describes the development and application of a workshop presented for high school physics teachers, in order to apply the use of electrical simulation software for teaching the basics of resistive circuits. The workshop was developed aiming at the use of active learning strategies and the concepts of David Ausubel’s Meaningful Learning theory. These activities workshops were developed in a practical way, using the electrical simulation software to illustrate a scenario where students are encouraged to engage more actively in their learning. As a result of this workshop, an increase in the importance of the use of new technologies in the classroom was evidenced when used in accordance with the teaching-learning methodologies that promote a more active participation of students.

  8. Using Hydraulic Network Models to Teach Electric Circuit Principles

    Science.gov (United States)

    Jones, Irvin; EERC (Engineering Education Research Center) Collaboration

    2013-11-01

    Unlike other engineering disciplines, teaching electric circuit principles is difficult for some students because there isn't a visual context to rely on. So concepts such as electric potential, current, resistance, capacitance, and inductance have little meaning outside of their definition and the derived mathematical relationships. As a work in progress, we are developing a tool to support teaching, learning, and research of electric circuits. The tool will allow the user to design, build, and operate electric circuits in the form of hydraulic networks. We believe that this system will promote greater learning of electric circuit principles by visually realizing the conceptual and abstract concepts of electric circuits. Furthermore, as a teaching and learning tool, the hydraulic network system can be used to teach and improve comprehension of electrical principles in K through 12 classrooms and in cross-disciplinary environments such as Bioengineering, Mechanical Engineering, Industrial Engineering, and Aeronautical Engineering. As a research tool, the hydraulic network can model and simulate micro/nano bio-electro-chemical systems. Organization within the Swanson School of Engineering at the University of Pittsburgh.

  9. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY...-UNDERGROUND COAL MINES Electrical Equipment-General § 75.518-1 Electric equipment and circuits; overload...

  10. Fundamental electric circuit elements based on the linear and nonlinear magnetoelectric effects (Presentation Recording)

    Science.gov (United States)

    Sun, Young; Shang, Dashan; Chai, Yisheng; Cao, Zexian; Lu, Jun

    2015-09-01

    From the viewpoint of electric circuit theory, the three fundamental two-terminal passive circuit elements, resistor R , capacitor C, and inductor L, are defined in terms of a relationship between two of the four basic circuit variables, charge q, current i, voltage v, and magnetic flux φ. From a symmetry concern, there should be a fourth fundamental element defined from the relationship between charge q and magnetic flux φ. Here we present both theoretical analysis and experimental evidences to demonstrate that a two-terminal passive device employing the magnetoelectric (ME) effects can exhibit a direct relationship between charge q and magnetic flux φ, and thus is able to act as the fourth fundamental circuit element. The ME effects refer to the induction of electric polarization by a magnetic field or magnetization by an electric field, and have attracted enormous interests due to their promise in many applications. However, no one has linked the ME effects with fundamental circuit theory. Both the linear and nonlinear-memory devices, termed transtor and memtranstor, respectively, have been experimentally realized using multiferroic materials showing strong ME effects. Based on our work, a full map of fundamental two-terminal circuit elements is constructed, which consists of four linear and four nonlinear-memory elements. This full map provides an invaluable guide to developing novel circuit functionalities in the future.

  11. Quantized amplitudes in a nonlinear resonant electrical circuit

    CERN Document Server

    Cretin, B

    2008-01-01

    We present a simple nonlinear resonant analog circuit which demonstrates quantization of resonating amplitudes, for a given excitation level. The system is a simple RLC resonator where C is an active capacitor whose value is related to the current in the circuit. This variation is energetically equivalent to a variation of the potential energy and the circuit acts as a pendulum in the gravitational field. The excitation voltage, synchronously switched at the current frequency, enables electrical supply and keeping the oscillation of the system. The excitation frequency has been set to high harmonic of the fundamental oscillation so that anisochronicity can keep constant the amplitude of the circuit voltage and current. The behavior of the circuit is unusual: different stable amplitudes have been measured depending on initial conditions and excitation frequency, for the same amplitude of the excitation. The excitation frequency is naturally divided by the circuit and the ratio is kept constant without external...

  12. Stochastic Resonance Induced by Dichotomous Resistor in an Electric Circuit

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Hui; HAN Yin-Xia

    2007-01-01

    An electric circuit with dichotomous resistor is investigated.It is shown that the amplitude of the average electric current washing the resistor represents the phenomenon of stochastic resonance,which is the response as a function of the correlation time of the dichotomous resistor.

  13. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  14. An Unsolved Electric Circuit: A Common Misconception

    Science.gov (United States)

    Harsha, N. R. Sree; Sreedevi, A.; Prakash, Anupama

    2015-01-01

    Despite a number of theories in circuit analysis, little is known about the behaviour of ideal equal voltage sources in parallel, connected across a resistive load. We neither have any theory that can predict the voltage source that provides the load current, nor is there any method to test it experimentally. In a series of experiments performed…

  15. An Unsolved Electric Circuit: A Common Misconception

    Science.gov (United States)

    Harsha, N. R. Sree; Sreedevi, A.; Prakash, Anupama

    2015-01-01

    Despite a number of theories in circuit analysis, little is known about the behaviour of ideal equal voltage sources in parallel, connected across a resistive load. We neither have any theory that can predict the voltage source that provides the load current, nor is there any method to test it experimentally. In a series of experiments performed…

  16. 49 CFR 236.308 - Mechanical or electric locking or electric circuits; requisites.

    Science.gov (United States)

    2010-10-01

    ...; requisites. Mechanical or electric locking or electric circuits shall be installed to prevent signals from... 49 Transportation 4 2010-10-01 2010-10-01 false Mechanical or electric locking or electric... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS,...

  17. Circadian rhythms in electrical circuits of Clivia miniata.

    Science.gov (United States)

    Volkov, Alexander G; Wooten, Joseph D; Waite, Astian J; Brown, Corydon R; Markin, Vladislav S

    2011-10-15

    The biological clock regulates a wide range of physiological processes in plants. Here we show circadian variation of the Clivia miniata responses to electrical stimulation. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), which regulate its physiology, were analyzed in vivo using the charge stimulation method. The electrostimulation was provided with different voltages and electrical charges. Resistance between Ag/AgCl electrodes in the leaf of C. miniata was higher at night than during the day or the following day in the darkness. The biologically closed electrical circuits with voltage gated ion channels in C. miniata are activated the next day, even in the darkness. C. miniata memorizes daytime and nighttime. At continuous light, C. miniata recognizes nighttime and increases the input resistance to the nighttime value even under light. These results show that the circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate voltage gated ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge and speed of transmission of electrical energy from the electrostimulator to the C. miniata leaves. We present the equivalent electrical circuits in C. miniata and its circadian variation to explain the experimental data.

  18. 30 CFR 77.501 - Electric distribution circuits and equipment; repair.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric distribution circuits and equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.501 Electric distribution circuits and equipment; repair. No electrical work shall be performed on electric distribution circuits or...

  19. Estimating π using an electrical circuit

    Science.gov (United States)

    Ocaya, R. O.

    2017-01-01

    The constant pi, or π, is one of the oldest and most recognizable irrational constants. It was known from the earliest days of mathematics and the sciences. Over the ages, many methods of varying complexity have been used to estimate π. This article presents a novel experimental method to estimate π using direct, digital voltmeter measurements on a simple precision full-wave rectifier circuit. We discuss the method in the context of error encroachment, and suggest the possibility to estimate total harmonic distortion simply. The experiment is repeatable and of value to the undergraduate physics and electronics laboratory, while adding to a celebration of π.

  20. Electrical overstress (EOS) devices, circuits and systems

    CERN Document Server

    Voldman, Steven H

    2013-01-01

    Electrical Overstress (EOS) continues to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics.  This bookteaches the fundamentals of electrical overstress  and how to minimize and mitigate EOS failures. The text provides a clear picture of EOS phenomena, EOS origins, EOS sources, EOS physics, EOS failure mechanisms, and EOS on-chip and system design.  It provides an illuminating insight into the sources of EOS in manufacturing, integration of on-chip, and system level EOS protection networks, followed by examples in spe

  1. Biologically Closed Electrical Circuits in Venus Flytrap[OA

    Science.gov (United States)

    Volkov, Alexander G.; Carrell, Holly; Markin, Vladislav S.

    2009-01-01

    The Venus flytrap (Dionaea muscipula Ellis) is a marvel of plant electrical, mechanical, and biochemical engineering. The rapid closure of the Venus flytrap upper leaf in about 0.1 s is one of the fastest movements in the plant kingdom. We found earlier that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. The Venus flytrap can accumulate small subthreshold charges and, when the threshold value is reached, the trap closes. Here, we investigated the electrical properties of the upper leaf of the Venus flytrap and proposed the equivalent electrical circuit in agreement with the experimental data. PMID:19211696

  2. The atmospheric electric global circuit. [thunderstorm activity

    Science.gov (United States)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  3. Quantum interface between an electrical circuit and a single atom

    CERN Document Server

    Kielpinski, D; Woolley, M J; Milburn, G J; Taylor, J M

    2011-01-01

    We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.

  4. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration ...... as examples. Finally, it is concluded that the VIP-2 process is suitable technology for creating circuits for 100 Gb/s communication networks. Keywords: Indium Phosphide (InP), DHBT, VCO, Colpitt, Static Divider, CDR, PLL, Transceiver...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  5. Circadian rhythms in biologically closed electrical circuits of plants.

    Science.gov (United States)

    Volkov, Alexander; Waite, Astian J; Wooten, Joseph D; Markin, Vladislav S

    2012-02-01

    The circadian clock regulates a wide range of electrophysiological and developmental processes in plants. Here, we discuss the direct influence of a circadian clock on biologically closed electrochemical circuits in vivo. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), Aloe vera and Mimosa pudica, which regulate their physiology, were analyzed using the charge stimulation method. Plants are able to memorize daytime and nighttime. Even at continuous light or darkness, plants recognize nighttime or daytime and change the input resistance. The circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge, and the speed of transmission of electrical energy from the electrostimulator to plants.

  6. On the Possibility of the Jerk Derivative in Electrical Circuits

    Directory of Open Access Journals (Sweden)

    J. F. Gómez-Aguilar

    2016-01-01

    Full Text Available A subclass of dynamical systems with a time rate of change of acceleration are called Newtonian jerky dynamics. Some mechanical and acoustic systems can be interpreted as jerky dynamics. In this paper we show that the jerk dynamics are naturally obtained for electrical circuits using the fractional calculus approach with order γ. We consider fractional LC and RL electrical circuits with 1⩽γ<2 for different source terms. The LC circuit has a frequency ω dependent on the order of the fractional differential equation γ, since it is defined as ω(γ=ω0γγ1-γ, where ω0 is the fundamental frequency. For γ=3/2, the system is described by a third-order differential equation with frequency ω~ω03/2, and assuming γ=2 the dynamics are described by a fourth differential equation for jerk dynamics with frequency ω~ω02.

  7. Web-Based Trainer for Electrical Circuit Analysis

    Science.gov (United States)

    Weyten, L.; Rombouts, P.; De Maeyer, J.

    2009-01-01

    A Web-based system for training electric circuit analysis is presented in this paper. It is centered on symbolic analysis techniques and it not only verifies the student's final answer, but it also tracks and coaches him/her through all steps of his/her reasoning path. The system mimics homework assignments, enhanced by immediate personalized…

  8. Simulating Harmonic Oscillator and Electrical Circuits: A Didactical Proposal

    Science.gov (United States)

    Albano, Giovannina; D'Apice, Ciro; Tomasiello, Stefania

    2002-01-01

    A Mathematica[TM] package is described that uses simulations and animations to illustrate key concepts in harmonic oscillation and electric circuits for students not majoring in physics or mathematics. Students are not required to know the Mathematica[TM] environment: a user-friendly interface with buttons functionalities and on-line help allows…

  9. Hamilton´s Principle and Electric Circuits Tudory

    Directory of Open Access Journals (Sweden)

    Daniel Mayer

    2006-01-01

    Full Text Available In the theory of electrical or electromechanical circuits different methods are known for construction of mathematical model. In this paper another, alternative method is introduced that is based on Hamilton variational principle that is generally valid in physics.

  10. Turkish Students' Conceptions about the Simple Electric Circuits

    Science.gov (United States)

    Cepni, Salih; Keles, Esra

    2006-01-01

    In this study, the Turkish students' understanding level of electric circuits consisting of two bulbs and one battery was investigated by using open-ended questions. Two-hundred fifty students, whose ages range from 11 to 22, were chosen from five different groups at primary, secondary and university levels in Trabzon in Turkey. In analyzing…

  11. Modelling a river catchment using an electrical circuit analogue

    Directory of Open Access Journals (Sweden)

    C. G. Collier

    1998-01-01

    Full Text Available An electrical circuit analogue of a river catchment is described from which is derived an hydrological model of river flow called the River Electrical Water Analogue Research and Development (REWARD model. The model is based upon an analytic solution to the equation governing the flow of electricity in an inductance-capacitance-resistance (LCR circuit. An interpretation of L, C and R in terms of catchment parameters and physical processes is proposed, and tested for the River Irwell catchment in northwest England. Hydrograph characteristics evaluated using the model are compared with observed hydrographs, confirming that the modelling approach does provide a reliable framework within which to investigate the impact of variations in model input data.

  12. Toast, Anyone? Project Teaches Electricity Basics and Math

    Science.gov (United States)

    Quagliana, David F.

    2010-01-01

    This article describes an electrical technology experiment that shows students how to determine the cost of using an electrical appliance. The experiment also provides good math practice and teaches basic electricity terms and concepts, such as volt, ampere, watt, kilowatt, and kilowatt-hour. This experiment could be expanded to calculate the cost…

  13. Adaptation of an Evolutionary Algorithm in Modeling Electric Circuits

    Directory of Open Access Journals (Sweden)

    J. Hájek

    2010-01-01

    Full Text Available This paper describes the influence of setting control parameters of a differential evolutionary algorithm (DE and the influence of adapting these parameters on the simulation of electric circuits and their components. Various DE algorithm strategies are investigated, and also the influence of adapting the controlling parameters (Cr, F during simulation and the effect of sample size. Optimizing an equivalent circuit diagram is chosen as a test task. Several strategies and settings of a DE algorithm are evaluated according to their convergence to the right solution. 

  14. The Role of Anomalous Data in Restructuring Fourth Graders' Frameworks for Understanding Electric Circuits.

    Science.gov (United States)

    Shepardson, Daniel P.; Moje, Elizabeth B.

    1999-01-01

    Focuses on students' understanding of electric circuits. Findings suggest that children's interpretive frameworks of electric circuits are reflected in the specificity of the details, consistency, and coherence of their understanding. Contains 23 references. (DDR)

  15. Teaching Electric Circuits: Teachers' Perceptions and Learners' Misconceptions

    Science.gov (United States)

    Moodley, Kimera; Gaigher, Estelle

    2017-06-01

    An exploratory case study involving six grade 9 science teachers was undertaken to probe how teachers' understanding of learners' misconceptions relate to their perceptions about teaching simple circuits. The participants' understanding of documented misconceptions in electricity were explored by means of a questionnaire, while their perceptions about teaching electric circuits were also explored in the questionnaire, followed by a semi-structured interview. Results were analysed using content analysis and interpreted using pedagogical content knowledge as a theoretical lens. The results indicated that understanding learners' misconceptions did not always correlate with conceptual perceptions about teaching electric circuits. While fair understanding of misconceptions was demonstrated by teachers who studied Physics at undergraduate level, only those who also held qualifications in Education showed conceptual perceptions about teaching electricity. Teachers who did not study Science Education revealed technical perceptions, focused on facts, demonstrations and calculations. From these results, a developmental model for pedagogical content knowledge was proposed. It was recommended that teacher education programs should involve misconceptions and also facilitate the development of conceptual perceptions about teaching.

  16. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  17. 49 CFR 236.16 - Electric lock, main track releasing circuit.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electric lock, main track releasing circuit. 236... Rules and Instructions: All Systems General § 236.16 Electric lock, main track releasing circuit. When an electric lock releasing circuit is provided on the main track to permit a train or an engine...

  18. Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices

    CERN Document Server

    Merten, K; Bulirsch, R

    1990-01-01

    Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in­ cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con­ nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues dis...

  19. Transformer Winding Deformation Profile using Modified Electrical Equivalent Circuit

    Directory of Open Access Journals (Sweden)

    M. Arul Sathya

    2015-02-01

    Full Text Available This study presents a generalized methodology to predict the transformer winding deformation profile through Sweep Frequency Response Analysis using Finite Element Method based Magneto Structural Analysis and proposed modified equivalent circuit. Monitoring and diagnosis of fault in any power apparatus is necessary to increase the quality life of the apparatus. In general all the power transformers are designed to withstand the mechanical forces due to short circuit faults. However, mechanical forces may exceed the specified limits during severe incidents leading to winding deformation. Winding deformation is one of the causes for the power transformer outages. In the present work, deformation profile of the winding for different short circuit currents are computed using Finite Element Method based Magneto-structural analysis. The change in circuit parameters of the deformed windings are computed using Finite Element Method based field analyses and the corresponding Sweep Frequency Responses are obtained using the modified electrical equivalent circuit. From the change in resonance frequencies, the displacement profile of the winding can be predicted which will be useful for design engineers to check the withstand capability of transformer.

  20. Competitive Learning in Electric Circuit Theory Using MOODLE

    Science.gov (United States)

    Barroso, Ramón J. Durán; Bahillo, Alfonso; Fernández, Patricia; Merayo, Noemí; de Miguel, Ignacio; Aguado, Juan Carlos; Lorenzo, Rubén M.; Domi, Evaristo J. Abril

    We have recently introduced an activity based on competitive learning in the subject of "Electric Circuit Theory", which is taught in the first year of the 3-year degree of Technical Telecommunication Engineering at the University of Valladolid. Students are divided into groups and compete in a tournament through a series of knockout rounds. In each of these rounds, a contending group solves an electric circuit problem, and proposes an update on it, which must then be solved by the other contending team, and so on until one of them fails. In order to facilitate the management of the game, the open-source MOODLE platform has been employed. This paper describes the experience and the learning benefits that it brings, as well as how the method has been implemented using the MOODLE platform. Moreover, the satisfaction of the students and the time required by the students and by the teacher when using this technique are also analyzed. While the experience focuses on the subject of "Electric Circuit Theory", it is worthy to note that it may be easily extended to other subjects.

  1. Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.

    Science.gov (United States)

    Bureau of Naval Personnel, Washington, DC.

    The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…

  2. Analogy for Drude's Free Electron Model to Promote Students' Understanding of Electric Circuits in Lower Secondary School

    Science.gov (United States)

    de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.

    2014-01-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…

  3. Justification of equivalent substitution circuits used to optimize the dissipative properties of electroelastic bodies with external electric circuits

    Science.gov (United States)

    Ivanov, A. S.; Matvienko, V. P.; Oshmarin, D. A.; Sevodina, N. V.; Yurlov, M. A.; Yurlova, N. A.

    2016-05-01

    We consider elastoplastic systems which are piecewise homogeneous bodies composed of piezoelectric elements some of which have piezoelectrical properties. Electric series circuits consisting of resistors, capacitors, and inductance coils are applied to piezoelectric elements through the electrode coating on the body surface. The goal of the study is to develop efficient methods of mathematical modelling for determining the parameters of elements of the external electric circuit, which ensure, at prescribed resonance frequencies, the maximum damping properties of electroelastic bodies with external electric circuits. To choose effective circuits for solving the problem posed above, we suggest to pose the problem of natural vibrations of elastic bodies whose elements exhibit piezoeffect and have external electric circuits.As the most efficient approaches for calculating the electric circuit parameters necessary for the maximal damping, we propose some versions of equivalent circuits, which can be used to substitute elastic systems with piezoelectric elements. The most reliable equivalent substitution circuits are justified on the basis of the proposed problem of natural vibrations. Numerical results are obtained for a cantilever plate with a piezoelement connected through the electrode coated surface with a series electric circuit consisting of resistors, capacitors and inductance coils.

  4. Electrical machine PWM loss evaluation basics

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, A. [The School of Engineering, Bar-Ilan Univ., Ramat-Gan (Israel); Welch, R. Jr. [IEEE, Welch Enterprise, Oakdale (United States)

    2005-07-01

    Modern power converters utilize pulse-width modulation (PWM) voltage control. Output voltage high frequency harmonics induce additional electrical machine loss. As there is no accepted PWM loss theory, PWM loss is usually accounted for by machine power de-rating. In-depth understanding of PWM loss mechanisms is important for predicting losses and improving energy efficiency of electrical machines. In this paper we suggest a new time domain PWM loss approach. It assumes that PWM eddy current iron loss dominates over PWM copper and hysteresis iron losses and comprises theoretical normalized PWM loss evaluation and experimental characterization. Once maximal PWM loss is measured, it can be scaled for an arbitrary operating point using simple formula. Theoretical results are shown to be in a good agreement with a published experimental data. (orig.)

  5. Section I: Basic Electricity. Syllabus in Trade Electricity-Electronics.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    This section describes the first of a three part curriculum in trade electricity-electronics (each part is described in a separate volume). It presents a unit of 6 to 10 weeks duration which develops only those competencies necessary to all electricity or electronics employment. A flow chart indicates how an individual student's program can be…

  6. Basic electrical installation work level 2

    CERN Document Server

    Linsley, Trevor

    2015-01-01

    Everything needed to pass the first part of the City & Guilds 2365 Diploma in Electrical InstallationsUpdated in line with the 3rd Amendment of the 17th Edition IET Wiring Regulations, this new edition covers the City & Guilds 2365-02 course. Written in an accessible style with a chapter dedicated to each unit of the syllabus, this book helps you to master each topic before moving on to the next. End of chapter revision questions enable learners to check their understanding and consolidate key concepts learnt in each chapter. With a companion website containing videos, animations, worksheets a

  7. Tin Whisker Electrical Short Circuit Characteristics. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.

    2009-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  8. Basic knowledge in electrical engineering; Basiswissen Elektrotechnik

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, D. [Technische Bundeslehranstalt, Braunau (Austria)

    1999-05-01

    The fundamentals of electronics are made transparent to students in order to promote understanding instead of just learning. For example, the scalar electric field variables used in engineering are traced back to the spatial electromagnetic field variables, and the various induction phenomena are put on a sound scientific basis. Interested readers are given a multitude of details, e.g. exact introduction of scientific system analogies with particular consideration of thermal substitute wiring diagrams, a physical explanation of the three fundamental methods of analysis suported by electronic data processes, the scaling laws of electric machines, and many more. [Deutsch] Aussergewoehnlich transparent werden die Grundlagen der Elektronik dargestellt: Fuer Studierende der Technik und Naturwissenschaften tritt das Verstehen von Zusammenhaengen an die Stelle des blossen Lernens. So werden die in der Technik angewandten skalaren elektrischen Feldgroessen lueckenlos auf die raeumlichen elektromagnetischen Feldgroessen zurueckgefuehrt und die verschiedenen Induktionserscheinungen auf eine solide naturwissenschaftliche Basis gestellt. Interessierte finden ausserdem eine Fuelle ausgearbeiteter Details: Die exakte Einfuehrung naturwissenschaftlicher Systemanalogien mit besonderer Beachtung thermischer Ersatzschaltbilder, eine physikalische Begruendung der drei fundamentalen Analysenmethoden mit EDV-Unterstuetzung, die Wachstumsgesetze elektrischer Maschinen und vieles mehr. (orig.)

  9. Electric power system basics for the nonelectrical professional

    CERN Document Server

    Blume, Steven W

    2016-01-01

    The second edition of Steven W. Blume’s bestseller provides a comprehensive treatment of power technology for the non-electrical engineer working in the electric power industry. This book aims to give non-electrical professionals a fundamental understanding of large interconnected electrical power systems, better known as the “Power Grid”, with regard to terminology, electrical concepts, design considerations, construction practices, industry standards, control room operations for both normal and emergency conditions, maintenance, consumption, telecommunications and safety. The text begins with an overview of the terminology and basic electrical concepts commonly used in the industry then it examines the generation, transmission and distribution of power. Other topics discussed include energy management, conservation of electrical energy, consumption characteristics and regulatory aspects to help readers understand modern electric power systems.

  10. ELECTRICAL EQUIVALENT CIRCUIT OF BIOLOGICAL OBJECTS OF VEGETABLE

    Directory of Open Access Journals (Sweden)

    I. M. Golev

    2014-01-01

    Full Text Available Summary.The results of measurements of complex biological tissues electrical resistance of vegetable origin are presented. The measurements were performed at T=296 K in the frequency range from 5 to 500 kHz. As the electrodes were covered with tin (purity of 99.9% copper plates.. Experimentally investigated the following objects: samples parenchymal tissue of Apple in the form of cylinders with a diameter of 20 mm and a length of 20 mm; Apple juice, obtained by mechanical destruction of cells; pressed Apple pulp (juice content of not more than 20%obtained by the centrifugal separation, which destroyed the system of cells. For plant tissue with a holistic system of cells in the field 103 - 105 Hz is observed pronounced minimum angle of phase shift. In the absence of cells and its value is greatly reduced .The equivalent electrical circuit fabrics are considered. The calculation of all its elements is made. The equivalent capacitance of the electrical double layer at the interface of metal measuring electrode and extracellular fluid is element of C1 . The electrical resistance of this layer alternating current is characterized by the element R1 . Chain parallel connected resistance and capacitance describes the system of plant cells. The capacitance C2 is due to the electrical capacity of the cell membranes, and the resistance R2 is the electrical resistance of the membranes and intracellular space.The coincidence of experimental and calculated data in a frequency range of more than 103 Hz satisfactory. In the region of lower frequencies is observed differences. This may be due to the specific behavior of the electrical double layer. However, in the frequency region where the electrical properties of the cell structure of the investigated tissue match good, which proves the validity of the considered equivalent circuit. It is shown that the value of the complex electrical impedance of vegetable tissue in the frequency range from 103 Hz to 105

  11. Oscillatory localization of quantum walks analyzed by classical electric circuits

    Science.gov (United States)

    Ambainis, Andris; PrÅ«sis, Krišjānis; Vihrovs, JevgÄ`nijs; Wong, Thomas G.

    2016-12-01

    We examine an unexplored quantum phenomenon we call oscillatory localization, where a discrete-time quantum walk with Grover's diffusion coin jumps back and forth between two vertices. We then connect it to the power dissipation of a related electric network. Namely, we show that there are only two kinds of oscillating states, called uniform states and flip states, and that the projection of an arbitrary state onto a flip state is bounded by the power dissipation of an electric circuit. By applying this framework to states along a single edge of a graph, we show that low effective resistance implies oscillatory localization of the quantum walk. This reveals that oscillatory localization occurs on a large variety of regular graphs, including edge-transitive, expander, and high-degree graphs. As a corollary, high edge connectivity also implies localization of these states, since it is closely related to electric resistance.

  12. Inductive-resistive circuits with constant current: analysis of its treatment in University Basic Level textbooks

    OpenAIRE

    Giacosa, Norah Silvana; Facultad de Ciencias Exactas, Químicas y Naturales - Universidad Nacional de Misiones Misiones; Zang, Claudia Mariela; Facultad de Ciencias Exactas, Químicas y Naturales - Universidad Nacional de Misiones Misiones; Giorgi, Silvia María; Facultad de Ingeniería Química - Universidad Nacional del Litoral (UNL) Santa Fe; Maidana, Jorge Armando; Facultad de Ciencias Exactas, Químicas y Naturales - Universidad Nacional de Misiones Misiones; Such, Alejandro; Estudiante de Ingeniería Química – Universidad Nacional de Misiones Misiones

    2013-01-01

    This study is formulated from the recognition of certain difficulties that University students experience in learning time-dependent electromagnetic phenomena. It describes, through content analysis of twelve-frequently used College textbooks in Argentina, the perspective from which electrical circuits formed by inductor, resistor and constant current source connected in series are approached. We found out that in most texts, the circuit is implicitly modeled as an isolated system, and the de...

  13. The principle of elaboration of the relay protection against short circuits between the closely placed phases of high voltage electrical line

    Directory of Open Access Journals (Sweden)

    Kiorsak M.

    2015-12-01

    Full Text Available The article is devoted to the elaboration of the principle of relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation, based on the six phase’s symmetrical components. It is shown that the unsymmetrical short circuits between the closely placed phases are characterized by appearance of zero and tertiary sequences of symmetrical components. This fact can be used to choose them for relay protection. The electrical basic circuits and formulas for calculation of the passive parameters of zero and tertiary filters of currents (voltages are done. It is presented the structural-functional basic circuit scheme for relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation.

  14. 30 CFR 18.51 - Electrical protection of circuits and equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical protection of circuits and equipment... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.51 Electrical protection of circuits and equipment. (a) An...

  15. An investigation of algebraic quantum dynamics for mesoscopic coupled electric circuits with mutual inductance

    Energy Technology Data Exchange (ETDEWEB)

    Pahlavani, H., E-mail: h-pahlavani@qom.ac.ir; Kolur, E. Rahmanpour

    2016-08-15

    Based on the electrical charge discreteness, the Hamiltonian operator for the mutual inductance coupled quantum mesoscopic LC circuits has been found. The persistent current on two driven coupled mesoscopic electric pure L circuits (two quantum loops) has been obtained by using algebraic quantum dynamic approach. The influence of the mutual inductance on energy spectrum and quantum fluctuations of the charge and current for two coupled quantum electric mesoscopic LC circuits have been investigated.

  16. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Science.gov (United States)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  17. On Parameterization of the Global Electric Circuit Generators

    Science.gov (United States)

    Slyunyaev, N. N.; Zhidkov, A. A.

    2016-08-01

    We consider the problem of generator parameterization in the global electric circuit (GEC) models. The relationship between the charge density and external current density distributions inside a thundercloud is studied using a one-dimensional description and a three-dimensional GEC model. It is shown that drastic conductivity variations in the vicinity of the cloud boundaries have a significant impact on the structure of the charge distribution inside the cloud. Certain restrictions on the charge density distribution in a realistic thunderstorm are found. The possibility to allow for conductivity inhomogeneities in the thunderstorm regions by introducing an effective external current density is demonstrated. Replacement of realistic thunderstorms with equivalent current dipoles in the GEC models is substantiated, an equation for the equivalent current is obtained, and the applicability range of this equation is analyzed. Relationships between the main GEC characteristics under variable parameterization of GEC generators are discussed.

  18. Analogue Electrical Circuit for Simulation of the Duffing-Holmes Equation

    DEFF Research Database (Denmark)

    Tamaseviciute, E.; Tamasevicius, A.; Mykolaitis, G.

    2008-01-01

    An extremely simple second order analogue electrical circuit for simulating the two-well Duffing-Holmes mathematical oscillator is described. Numerical results and analogue electrical simulations are illustrated with the snapshots of chaotic waveforms, phase portraits (Lissajous figures...

  19. Method of boundary testing of the electric circuits and its application for calculating electric tolerances. [electric equipment tests

    Science.gov (United States)

    Redkina, N. P.

    1974-01-01

    Boundary testing of electric circuits includes preliminary and limiting tests. Preliminary tests permit determination of the critical parameters causing the greatest deviation of the output parameter of the system. The boundary tests offer the possibility of determining the limits of the fitness of the system with simultaneous variation of its critical parameters.

  20. The global atmospheric electric circuit and its effects on cloud microphysics

    Science.gov (United States)

    Tinsley, B. A.

    2008-06-01

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, Jz, on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in Jz. Variations in Jz affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated Jz changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the inferred global circuit

  1. Organic Circuits and Their Basic Elements%有机电路及其基本元器件

    Institute of Scientific and Technical Information of China (English)

    蔡晓舟; 江浪; 董焕丽; 李晶泽; 胡文平

    2012-01-01

    basic elements of organic circuits such as organic field-effect transistor sensors, the basic logic gates, coding devices, signal conversion devices, flash memories, resistance-type memories, electronic paper, OLEDs, and organic light-emitting transistors. The key progresses of the devices based on the organic field-effect transistors are highlighted, including the the frontier researches, the optimization of electrical properties and main challenges.

  2. Factors Mediating the Effect of Gender on Ninth-Grade Turkish Students' Misconceptions Concerning Electric Circuits

    Science.gov (United States)

    Sencar, Selen; Eryilmaz, Ali

    2004-01-01

    This study was designed to identify and analyze possible factors that mediate the effect of gender on ninth-grade Turkish students' misconceptions concerning electric circuits. A Simple Electric Circuit Concept Test (SECCT), including items with both practical and theoretical contexts, and an Interest-Experience Questionnaire about Electricity…

  3. Pre-Service and In-Service Physics Teachers' Ideas about Simple Electric Circuits

    Science.gov (United States)

    Kucukozer, Huseyin; Demirci, Neset

    2008-01-01

    The aim of the study is to determine pre-service and high school physics teachers' ideas about simple electric circuits. In this study, a test containing eight questions related to simple electric circuits was given to the pre-service physics teachers (32 subjects) that had graduated from Balikesir University, Necatibey Faculty of Education, the…

  4. Analogy for Drude’s free electron model to promote students’ understanding of electric circuits in lower secondary school

    Directory of Open Access Journals (Sweden)

    Maria José BM de Almeida

    2014-09-01

    Full Text Available Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude’s free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students’ understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students’ understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students’ predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  5. New equivalent lumped electrical circuit for piezoelectric transformers.

    Science.gov (United States)

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  6. A bistable microelectronic circuit for sensing extremely low electric field

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Liu, Norman; Kho, Andy; Neff, Joseph D.; Palacios, Antonio; Bulsara, Adi R.

    2010-01-01

    Bistable systems are prevalently found in many sensor systems. Recently, we have explored (unidirectionally) coupled overdamped bistable systems that admit self-sustained oscillations when the coupling parameter is swept through the critical points of bifurcations [V. In et al., Phys. Rev. E 68, 045102-R (2003); A. R. Bulsara et al., Phys. Rev. E 70, 036103 (2004); V. In et al., Phys. Rev. E 72, 045104-R (2005); Phys Rev. Lett. 91, 244101 (2003); A. Palacios et al., Phys. Rev. E 72, 026211 (2005); V. In et al., Phys. Rev. E 73, 066121 (2006)]. Complex behaviors emerge, in addition, from these (relatively simple) coupled systems when an external signal (ac or dc) is applied uniformly to all the elements in the array. In particular, we have demonstrated this emergent behavior for a coupled system comprised of mean-field hysteretic elements describing a "single-domain" ferromagnetic sample. The results are being used to develop extremely sensitive magnetic sensors capable of resolving field changes as low as 150 pT by observing the changes in the oscillation characteristics of the coupled sensors. In this paper, we explore the underlying dynamics of a coupled bistable system realized by coupling microelectronic circuits, which belong to the same class of dynamics as the aforementioned (ferromagnetic) system, with the nonlinear features and coupling terms modeled by hyperbolic tangent nonlinearities; these nonlinearities stem from the operational transconductance amplifiers used in constructing the microcircuits. The emergent behavior is being applied to develop an extremely sensitive electric-field sensor.

  7. On a fractal LC-electric circuit modeled by local fractional calculus

    Science.gov (United States)

    Yang, Xiao-Jun; Machado, J. A. Tenreiro; Cattani, Carlo; Gao, Feng

    2017-06-01

    A non-differentiable model of the LC-electric circuit described by a local fractional differential equation of fractal dimensional order is addressed in this article. From the fractal electrodynamics point of view, the relaxation oscillator, defined on Cantor sets in LC-electric circuit, and its exact solution using the local fractional Laplace transform are obtained. Comparative results among local fractional derivative, Riemann-Liouville fractional derivative and conventional derivative are discussed. Local fractional calculus is proposed as a new tool suitable for the study of a large class of electric circuits.

  8. Acquiring Knowledge in Learning Concepts from Electrical Circuits: The Use of Multiple Representations in Technology-Based Learning Environments

    Directory of Open Access Journals (Sweden)

    Abdeljalil Métioui

    2012-04-01

    Full Text Available The constructivists approach on the conception of relative software of modelling to training and teaching of the concepts of current and voltage requires appraisal of several disciplinary fields in order to provide to the learners a training adapted to their representations. Thus, this approach requires the researchers to have adequate knowledge or skills in data processing, didactics and science content. In this regard, several researches underline that the acquisition of basic concepts that span a field of a given knowledge, must take into account the student and the scientific representations. The present research appears in this perspective, and aims to present the interactive computer environments that take into account the students (secondary and college and scientific representations related to simple electric circuits. These computer environments will help the students to analyze the functions of the electric circuits adequately.

  9. Acquiring Knowledge in Learning Concepts from Electrical Circuits: The Use of Multiple Representations in Technology-Based Learning Environments

    Directory of Open Access Journals (Sweden)

    Abdeljalil Métioui

    2012-04-01

    Full Text Available The constructivists approach on the conception of relative software of modelling to training and teaching of the concepts of current and voltage requires appraisal of several disciplinary fields in order to provide to the learners a training adapted to their representations. Thus, this approach requires the researchers to have adequate knowledge or skills in data processing, didactics and science content. In this regard, several researches underline that the acquisition of basic concepts that span a field of a given knowledge, must take into account the student and the scientific representations. The present research appears in this perspective, and aims to present the interactive computer environments that take into account the students (secondary and college and scientific representations related to simple electric circuits. These computer environments will help the students to analyze the functions of the electric circuits adequately.

  10. Basic electronics

    CERN Document Server

    Holbrook, Harold D

    1971-01-01

    Basic Electronics is an elementary text designed for basic instruction in electricity and electronics. It gives emphasis on electronic emission and the vacuum tube and shows transistor circuits in parallel with electron tube circuits. This book also demonstrates how the transistor merely replaces the tube, with proper change of circuit constants as required. Many problems are presented at the end of each chapter. This book is comprised of 17 chapters and opens with an overview of electron theory, followed by a discussion on resistance, inductance, and capacitance, along with their effects on t

  11. Study on the Sensitivity of Landmine Electrical Fuse Circuit Under the Interference of Natural Electromagnetic Pulse

    Science.gov (United States)

    Qin, Dechun

    Landmine electrical fuse circuits on the battlefield will be interfered by natural electromagnetic pulse such as electrostatic discharge and lightning, which will undermine the circuit performance and trigger the early burst or mistaken burst of the landmines. In this paper, numerically simulation analysis is conducted on the electrostatic and lightning effects received by the landmine fuse circuit by means of building simulation model of the fuse circuit and analyzing the electric and magnetic field changes of the observation The mechanism of the influence of electrostatic discharge and lightning on the sensitivity of the fuse circuit is explored. The conclusion is that electrostatic effect cause the mistaken burst of the landmines by enabling the interference voltage to reach the components turn-on threshold and cause the circuit malfunction, and lighting effect by long period accumulation of energy.

  12. Analysis of a Piezo Electric Driver Circuit for Use in a Fabry-Perot Interferometer

    Directory of Open Access Journals (Sweden)

    Maithya J. Mutuku

    2013-09-01

    Full Text Available The design and fabrication of piezo electric driver circuit is presented and analysed. The output voltage which is a triangular wave voltage and frequency of the driver circuit were measured and set at 80 V peak to peak and an output frequency of 1 KHz. A photo detector circuit which receives the output beam from the confocal Fabry- perot interferometer (CFPI through the photodiode is as well presented

  13. Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market

    Science.gov (United States)

    Oleinikova, I.; Krishans, Z.; Mutule, A.

    2008-01-01

    The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.

  14. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.

    Directory of Open Access Journals (Sweden)

    Tiffany Kee

    2015-10-01

    Full Text Available Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs, provide feed-forward inhibition onto Kenyon cells (KCs to maintain their sparse firing--a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN, is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks.

  15. Students' Reasoning When Tackling Electric Field and Potential in Explanation of DC Resistive Circuits

    Science.gov (United States)

    Leniz, Ane; Zuza, Kristina; Guiasola, Jenaro

    2017-01-01

    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge…

  16. QUANTUM FLUCTUATIONS IN MESOSCOPIC RESISTANCE INDUCTANCE-CAPACITANCE ELECTRIC CIRCUITS AT FINITE TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    LIANG XIAN-TING; FAN HONG-YI

    2001-01-01

    By using the charge and current in a quantization resistance-inductance-capacitance (RLC) electric circuit, we construct a pair of canonical variables. Using this pair of variables and the thermal field dynamics, we obtain the fluctuations of charge and current in the RLC electric circuit at finite temperatures. It is shown that the fluctuations increase with increasing temperature and decrease with prolonging of time.

  17. THE RATE OF CURRENT CHANGE DURING A SHORT CIRCUIT IN THE POWER CIRCUITS OF THE ELECTRIC ROLLING STOCK WITH REGARD TO EDDY CURRENTS

    Directory of Open Access Journals (Sweden)

    L. V. Dubinets

    2010-04-01

    Full Text Available In the article the issue of influence of vortical currents on rate of change of short circuit current is considered, a mathematical model for the calculation of short circuit currents in the traction mode in the power circuits of DC electric rolling stock is presented, and the research results are given.

  18. Manipulating the quantum state of an electrical circuit.

    Science.gov (United States)

    Vion, D; Aassime, A; Cottet, A; Joyez, P; Pothier, H; Urbina, C; Esteve, D; Devoret, M H

    2002-05-03

    We have designed and operated a superconducting tunnel junction circuit that behaves as a two-level atom: the "quantronium." An arbitrary evolution of its quantum state can be programmed with a series of microwave pulses, and a projective measurement of the state can be performed by a pulsed readout subcircuit. The measured quality factor of quantum coherence Qphi approximately 25,000 is sufficiently high that a solid-state quantum processor based on this type of circuit can be envisioned.

  19. Fire protection electrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Min

    2000-03-15

    This book concentrates of electricity with current, voltage, power, ohms law, access of resistance, electrolytic analysis and battery, static on frictional electricity and electrostatic induction, coulomb's law, Gauss's law, condenser and capacity, magmatism on magnetic field and magnetic line of force, magnetic circuit, electromagnetic force, electromotive current, basic alternating current circuit, circuit network analysis, three-phase current, non-sinusoidal alternating current, transient phenomena, semiconductor, electric measurement on measurement over resistance, power, power rate and circuit tester, automatic control on introduction, term, classification, foundation of sequence control, logic circuit and basic logic circuit and electric equipment.

  20. Analysis of electrical circuits with variable load regime parameters projective geometry method

    CERN Document Server

    Penin, A

    2015-01-01

    This book introduces electric circuits with variable loads and voltage regulators. It allows to define invariant relationships for various parameters of regime and circuit sections and to prove the concepts characterizing these circuits. Generalized equivalent circuits are introduced. Projective geometry is used for the interpretation of changes of operating regime parameters. Expressions of normalized regime parameters and their changes are presented. Convenient formulas for the calculation of currents are given. Parallel voltage sources and the cascade connection of multi-port networks are d

  1. Enhanced interaction between a mechanical oscillator and two coupled resonant electrical circuits

    CERN Document Server

    Dmitriev, A V

    2014-01-01

    This paper reports result of calculation and experimental realization of an electromechanical system that consists of a high-Q mechanical oscillator parametrically coupled in the manner of a capacitive transducer with a RF circuit, which is in turn inductively coupled with another RF circuit. The system operates in the resolved sideband regime when the mechanical oscillator's frequency is larger than the electrical circuits' bandwidths. Using two coupled RF circuits allowed one to enhance the interaction between them and the mechanical oscillator which is one of flexural vibrational modes of a free-edge circular silicon wafer. Such a coupled electromechanical system can be used as a high-sensitive capacitive vibration sensor.

  2. Atmospheric Electric Field measurements at Eastern North Atlantic ARM Climate Research Facility: Global Electric Circuit Evolution

    Science.gov (United States)

    Lopes, Francisco; Silva, Hugo; Nitschke, Kim; Azevedo, Eduardo

    2016-04-01

    The Eastern North Atlantic (ENA) facility of the ARM programme (established an supported by the U.S. Department of Energy with the collaboration of the local government and University of the Azores), is located at Graciosa Island of the Azores Archipelago (39° N; 28° W). It constitutes a strategic observatory for Atmospheric Electricity since it is located in the Atlantic Ocean basin exposed to clean marine aerosol conditions which reduces the well known spectral signature of atmospheric pollution and enables the study of the so called Global Electrical Circuit (GEC). First evidences of the existence of a GEC affecting the Earth's Electric Environment has retrieved by the Carnegie cruise expedition, in what became known as the Carnegie Curve. Those measurements were made in the Ocean in several campaigns and the present studies aims at reconsidering measurements in similar conditions but in a long-term basis, at least 5 years. This will contribute to the understanding of the long-term evolution of the Ionospheric Potential (IP). In literature there is theoretical evidence that it is decreasing IP in strength, but that conjecture is still lacking valid experimental evidence. Moreover, to clearly identify the GEC signal two effects must be taken into account: the effect of surface radon gas variation, because the Azores Archipelago is a seismic active region the possible influence of Earthquakes cannot be discarded easily; the effect of short-term solar activity on the Atmospheric Electricity modulation, solar flares emitting solar particles (e.g., solar energetic protons) need to be considered in this study.

  3. Teaching electric circuits with multiple batteries: A qualitative approach

    Directory of Open Access Journals (Sweden)

    David P. Smith*

    2011-11-01

    Full Text Available We have investigated preservice science teachers’ qualitative understanding of circuits consisting of multiple batteries in single and multiple loops using a pretest and post-test method and classroom observations. We found that most students were unable to explain the effects of adding batteries in single and multiple loops, as they tended to use reasoning based on current and resistance where reasoning based on voltage is a necessity. We also found that problems such as thinking of the battery as a source of constant current resurfaced in this new context, and that answers given were inconsistent with current conservation. We describe the curriculum we developed that enables students to model circuits with multiple batteries qualitatively. Post-test results show that the majority of students were able to apply their newly developed model to make accurate predictions for complex circuits.

  4. The Use of Enhanced Guided Notes in an Electric Circuit Class: An Exploratory Study

    Science.gov (United States)

    Lawanto, O.

    2012-01-01

    This study was conducted to evaluate students' (n=70) learning performance after their participation in lectures using enhanced guided notes (EGN) in an electric circuits course for non-electrical engineering students. Unlike traditional guided notes, EGN include questions that prompt students to evaluate their metacognitive knowledge. The results…

  5. Early twentieth century response of the global atmospheric electric circuit to ENSO

    Science.gov (United States)

    Harrison, G.; Joshi, M.

    2012-04-01

    The global atmospheric electric circuit links charge separation in disturbed weather regions with current flow in the fair weather regions elsewhere. Variations in disturbed weather, such as the changes in lightning associated with Pacific ocean temperature anomalies, can be expected in turn to modify currents flowing in the global atmospheric electric circuit. Strengthening and weakening of the global circuit current has been observed* to follow El Niño and La Niña respectively, from northern hemisphere atmospheric electricity data obtained during the 1970s. Extending this relationship quantitatively into the first half of the twentieth century is pursued here, using surface data from multiple atmospheric electricity observatories including measurements from the southern hemisphere. The independent atmospheric electricity time series from the observatories show similar variations, which is a pre-requisite for inferring global circuit variations from surface measurement. Combining the measurements allows the global circuit sensitivity to ENSO sea surface temperature anomalies to be derived during the earlier part of the twentieth century. * R.G. Harrison, M. Joshi, K. Pascoe, Inferring convective responses to El Niño with atmospheric electricity measurements at Shetland Environ Res Lett 6 (2011) 044028 http://iopscience.iop.org/1748-9326/6/4/044028/

  6. Electrical principles 3 checkbook

    CERN Document Server

    Bird, J O

    2013-01-01

    Electrical Principles 3 Checkbook aims to introduce students to the basic electrical principles needed by technicians in electrical engineering, electronics, and telecommunications.The book first tackles circuit theorems, single-phase series A.C. circuits, and single-phase parallel A.C. circuits. Discussions focus on worked problems on parallel A.C. circuits, worked problems on series A.C. circuits, main points concerned with D.C. circuit analysis, worked problems on circuit theorems, and further problems on circuit theorems. The manuscript then examines three-phase systems and D.C. transients

  7. Teaching Electric Circuits with Multiple Batteries: A Qualitative Approach

    Science.gov (United States)

    Smith, David P.; van Kampen, Paul

    2011-01-01

    We have investigated preservice science teachers' qualitative understanding of circuits consisting of multiple batteries in single and multiple loops using a pretest and post-test method and classroom observations. We found that most students were unable to explain the effects of adding batteries in single and multiple loops, as they tended to use…

  8. Conceptual understanding of electrical circuits in secondary vocational engineering education: combining traditional instruction with inquiry learning in a virtual lab

    NARCIS (Netherlands)

    Kollöffel, B.; Jong, de T.

    2013-01-01

    Background: Traditionally, engineering curricula about electrical circuits use textbook instruction and hands-on lessons, which are effective approaches for teaching terms and definitions, the procedural use of formulas, and how to build circuits. Nonetheless, students often lack conceptual understa

  9. Design of pressure-driven microfluidic networks using electric circuit analogy.

    Science.gov (United States)

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  10. Electromagnetic noise in electric circuits: Ringing and resonance phenomena in the common mode

    Directory of Open Access Journals (Sweden)

    Shuji Kitora

    2014-11-01

    Full Text Available It is generally believed that electromagnetic noise originates from the coupling of electric signals in a circuit with electric signals in surrounding materials in the environment. However, the noise phenomenon had not been quantified until now. In order to study the phenomenon of noise, we considered a standard circuit (two transmission lines, to which an additional transmission line was introduced in order to explicitly take into account the effect of conductors in the environment. We performed calculations using a newly developed multiconductor transmission-line theory for the resulting three-line circuit in order to determine the magnitude of the coupling between the circuit and the conductors in the environment under various conditions. We observed ringing and resonance phenomena in the common mode, which influenced the performance of the normal mode as electromagnetic noise. Our findings were confirmed by recent experiments in which conductor lines were arranged in various ways using a printed circuit board (PCB. The ordinary usage of electricity in the standard electric circuit was found to be worst in exciting the common mode noise.

  11. [About optimized designs and circuits of autonomous electric stimulators for the gastrointestinal tract].

    Science.gov (United States)

    Glushchuk, S F

    2004-01-01

    Described in the paper are the key principles of designing of autonomous electrodes for the gastrointestinal tract (AE GT) as well as circuits of stimulating-pulse generators. A shape for the electric-stimulator frame, its geometric dimensions and choice of a material for electrodes are substantiated. The electric- and trauma-safety of AE GT is discussed. The main stimulating current parameters, as well as the flowchart and design of the electric stimulator are presented.

  12. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    Science.gov (United States)

    Yang, Joonhyuk; Kim, Jinwook; Kim, Wonjoon; Kim, Young Hwan

    2012-01-01

    We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  13. A Bistable Microelectronic Circuit for Sensing Extremely Low Electric Field

    Science.gov (United States)

    2010-01-01

    schematic of a single element is shown in Fig. 2. It consists of two differential pairs that employ negative- positive-negative NPN transistors with...been transformed into a current Isig that is then amplified by the NPN transistor . In fact, the circuit responds to very small on the order of pico...one of them being cross coupled, two positive channel metal oxide semiconduc- tor PMOS transistors , and a pair of resistors. In each dif- ferential

  14. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    Science.gov (United States)

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  15. Electrical and thermal analyses for the radio-frequency circuit of ITER NBI ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zamengo, A. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti, 4, 35127 Padova (Italy)], E-mail: andrea.zamengo@igi.cnr.it; Recchia, M. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti, 4, 35127 Padova (Italy); Department of Electrical Engineering, University of Padua, Via Gradenigo 6/A, 35131 Padova (Italy); Kraus, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany); Bigi, M. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti, 4, 35127 Padova (Italy); Martens, C. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany); Toigo, V. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti, 4, 35127 Padova (Italy)

    2009-06-15

    This paper covers specific electrical and thermal aspects of the radio-frequency (RF) circuit which supplies the ion source of the International Thermonuclear Experimental Reactor (ITER) Neutral Beam Injector (NBI). Firstly, a matching circuit for the RF Antennas is presented and a possible solution for the matching components discussed, in relation to the anticipated equivalent circuit parameters of the RF driven plasma. Secondly, the thermal behaviour of the RF transmission line is analyzed, utilising finite element tools, to evaluate the RF line overtemperature under the heaviest foreseen operating conditions.

  16. Development of 3-D Mechanical Models of Electric Circuits and Their Effect on Students' Understanding of Electric Potential Difference

    Science.gov (United States)

    Balta, Nuri

    2015-01-01

    Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…

  17. Restoring heart function and electrical integrity: closing the circuit

    Science.gov (United States)

    Monteiro, Luís Miguel; Vasques-Nóvoa, Francisco; Ferreira, Lino; Pinto-do-Ó, Perpétua; Nascimento, Diana Santos

    2017-04-01

    Cardiovascular diseases are the main cause of death in the world and are often associated with the occurrence of arrhythmias due to disruption of myocardial electrical integrity. Pathologies involving dysfunction of the specialized cardiac excitatory/conductive tissue are also common and constitute an added source of morbidity and mortality since current standard therapies withstand a great number of limitations. As electrical integrity is essential for a well-functioning heart, innovative strategies have been bioengineered to improve heart conduction and/or promote myocardial repair, based on: (1) gene and/or cell delivery; or (2) conductive biomaterials as tools for cardiac tissue engineering. Herein we aim to review the state-of-art in the area, while briefly describing the biological principles underlying the heart electrical/conduction system and how this system can be disrupted in heart disease. Suggestions regarding targets for future studies are also presented.

  18. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2010-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .

  19. Theoretical study of the circuit architecture of the basic CFOA and testing techniques

    Science.gov (United States)

    Tammam, A. A.; Hayatleh, K.; Barker, S.; Terzopoulos, N.

    2016-09-01

    This paper examines the closed-loop characteristics of the basic Current-Feedback Operational Amplifier (CFOA), and in particular, the dynamic response. Additionally, it also examines the design and advantages of the CFOA regarding its ability to provide a significantly constant closed-loop bandwidth for closed-loop voltage gain. Secondly, the almost limitless slew-rate provided by the class AB input stage that makes it superior to the voltage-mode operational amplifier (VOA) counterpart. Additionally, this paper also concerns the definitions and measurements of the terminal parameters of the CFOA, regarded as a 'black box'. It does not deal with the way that these parameters are related to the properties of the active passive and active components of a particular circuit configuration. Simulation is used in terminal parameter determination: this brings with it the facility of using test conditions that would not normally prevail in a laboratory test on silicon implementations of the CFOAs. Thus, we can apply 1mA and 1mV test signals from, respectively, infinite and zero source impedances that range in frequency from d.c to some tens of GHz. Also, we assume the existence of resistors with identical Ohmic value and very high value ideal capacitors. Where appropriate, practical test methods are referred to physical laboratory prototypes.

  20. Successfully Mapping the U-Tank to an Electric Circuit

    Science.gov (United States)

    Hong, Seok-In

    2010-01-01

    Water-flow analogies are helpful in understanding electricity. For example, in the Lodge model, the constant DC voltage source (a battery) is represented by a U-tank with two water columns of the same cross-sectional area connected by a horizontal duct in which a pump is installed. The pump maintains the difference of the levels of the two water…

  1. Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.

  2. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    Science.gov (United States)

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  3. Network model and short circuit program for the Kennedy Space Center electric power distribution system

    Science.gov (United States)

    1976-01-01

    Assumptions made and techniques used in modeling the power network to the 480 volt level are discussed. Basic computational techniques used in the short circuit program are described along with a flow diagram of the program and operational procedures. Procedures for incorporating network changes are included in this user's manual.

  4. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  5. Electromechanical power flowcharts in systems of electrical circuits

    CERN Document Server

    de la Cruz, Jose M Diaz

    2016-01-01

    We present an original undergraduate level compilation for the physics of electromechanical systems with special consideration of power flow. An approach based on energy considerations is presented that is specially suited to compute the mechanical and electrical actions of electromagnetic fields and to draw power flowcharts that clarify the path taken by energy in typical devices. The procedure guarantees energy conservation and provides a consistent way for auditing the power flow.

  6. Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind power generator

    Science.gov (United States)

    Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang

    2017-09-01

    A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

  7. The Basics of Electric Weapons and Pulsed-Power Technologies

    Science.gov (United States)

    2012-01-01

    shown in Figure 2. Electrical energy can be stored in many ways, such as a battery (actually a chemical storage ). A car battery has about a...becomes less attractive. Energy storage for electric weapons can also be done with chem- ical explosive energy , where an explosive force is converted...into electrical energy using techniques such as flux compression. Energy can be stored in the inertia of rotating machines and flywheels , but the

  8. Encountering the Expertise Reversal Effect with a Computer-Based Environment on Electrical Circuit Analysis

    Science.gov (United States)

    Reisslein, Jana; Atkinson, Robert K.; Seeling, Patrick; Reisslein, Martin

    2006-01-01

    This study examined the effectiveness of a computer-based environment employing three example-based instructional procedures (example-problem, problem-example, and fading) to teach series and parallel electrical circuit analysis to learners classified by two levels of prior knowledge (low and high). Although no differences between the…

  9. An Analysis of Science Textbooks for Grade 6: The Electric Circuit Lesson

    Science.gov (United States)

    Sothayapetch, Pavinee; Lavonen, Jari; Juuti, Kalle

    2013-01-01

    Textbooks are a major tool in the teaching and learning process. This paper presents the results of an analysis of the Finnish and Thai 6th grade science textbooks: electric circuit lesson. Textual and pictorial information from the textbooks were analyzed under four main categories: 1) introduction of the concepts, 2) type of knowledge, 3)…

  10. Brief communication: Earthquake–cloud coupling through the global atmospheric electric circuit

    Directory of Open Access Journals (Sweden)

    R. G. Harrison

    2013-12-01

    Full Text Available We illustrate how coupling could occur between surface air and clouds via the global electric circuit – through Atmospheric Lithosphere–Ionosphere Charge Exchange (ALICE processes – in an attempt to develop physical understanding of possible relationships between earthquakes and clouds.

  11. Development of a Three-Tier Test to Assess Misconceptions about Simple Electric Circuits

    Science.gov (United States)

    Pesman, Haki; Eryilmaz, Ali

    2010-01-01

    The authors aimed to propose a valid and reliable diagnostic instrument by developing a three-tier test on simple electric circuits. Based on findings from the interviews, open-ended questions, and the related literature, the test was developed and administered to 124 high school students. In addition to some qualitative techniques for…

  12. Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements

    Science.gov (United States)

    2015-10-01

    primary purposes: 1) SPI communication: 3 pins for serial clock (SLCK), master output to salve input ( MOSI ) (which we use to program each output DAC...emitting diode LF low-frequency MISO master input to slave output MOSI master output to salve input PCB printed circuit board q , Q electric

  13. Student Learning in an Electric Circuit Theory Course: Critical Aspects and Task Design

    Science.gov (United States)

    Carstensen, Anna-Karin; Bernhard, Jonte

    2009-01-01

    Understanding time-dependent responses, such as transients, is important in electric circuit theory and other branches of engineering. However, transient response is considered difficult to learn since familiarity with advanced mathematical tools such as Laplace transforms is required. Here, we analyse and describe a novel learning environment…

  14. Effect of Simple Electric Circuits Teaching on Conceptual Change in Grade 9 Physics Course

    Science.gov (United States)

    Küçüközer, Hüseyin; Kocakülah, Sabri

    2008-01-01

    The aim of this study was to examine the effect of teaching designed to consider grade 9 students' misconceptions about simple electric circuits on conceptual change. Students' misconceptions were determined by using a conceptual understanding test consisting of eight open-ended questions and semi-structured interview technique. Conceptual…

  15. Current as the Key Concept of Taiwanese Students' Understandings of Electric Circuits

    Science.gov (United States)

    Tsai, Chia-Hsing; Chen, Hsueh-Yu; Chou, Ching-Yang; Lain, Kuen-Der

    2007-01-01

    The purpose of this study was to report the results of a nationwide survey of Taiwanese high schools students' understandings about electric circuits. The study involved two stratified random samples consisting of 7,145 students in Grades 8 and 9, and 2,857 students in Grade 11, accounting for about 2.3% of the total enrolment in the corresponding…

  16. Step-Wise Evolution of Mental Models of Electric Circuits: A "Learning-Aloud" Case Study.

    Science.gov (United States)

    Clement, John J.; Steinberg, Melvin S.

    2002-01-01

    Describes an approach to teaching complex models in science that uses a model construction cycle of generation, evaluation, and modification. Reports on a case study of a student in a tutoring experiment in the study of electric circuits. Focuses on the role of analogies, discrepant events, and the student's moments of surprise as motivators of…

  17. Lessons Learned in the Use of WIRIS Quizzes to Upgrade Moodle to Solve Electrical Circuits

    Science.gov (United States)

    Bogarra Rodriguez, S.; Corbalan Fuertes, M.; Font Piera, A.; Plaza Garcia, I.; Solsona, F. J. A.

    2012-01-01

    WIRIS quizzes are an online mathematics tool for educational purposes that upgrade Moodle quizzes and allow the development of personalized quizzes using random data and conditional instructions. WIRIS quizzes can be used in any mathematics or science degree; their complex operators allow it to be used to solve electrical circuits. This tool…

  18. The Effect of Herrmann Whole Brain Teaching Method on Students' Understanding of Simple Electric Circuits

    Science.gov (United States)

    Bawaneh, Ali Khalid Ali; Nurulazam Md Zain, Ahmad; Salmiza, Saleh

    2011-01-01

    The purpose of this study was to investigate the effect of Herrmann Whole Brain Teaching Method over conventional teaching method on eight graders in their understanding of simple electric circuits in Jordan. Participants (N = 273 students; M = 139, F = 134) were randomly selected from Bani Kenanah region-North of Jordan and randomly assigned to…

  19. Identifying and Investigating Difficult Concepts in Engineering Mechanics and Electric Circuits. Research Brief

    Science.gov (United States)

    Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary

    2007-01-01

    This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…

  20. Laser cooling and optical detection of excitations in a LC electrical circuit

    DEFF Research Database (Denmark)

    Taylor, J. M.; Sørensen, Anders Søndberg; Marcus, Charles Masamed

    2011-01-01

    We explore a method for laser cooling and optical detection of excitations in a room temperature LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively...

  1. A Comparison of Experienced and Preservice Elementary School Teachers' Content Knowledge and Pedagogical Content Knowledge about Electric Circuits

    Science.gov (United States)

    Lin, Jing-Wen

    2017-01-01

    This study investigated the differences between Taiwanese experienced and preservice elementary school science teachers' content knowledge (CK) about electric circuits and their ability to predict students' preconceptions about electric circuits as an indicator of their pedagogical content knowledge (PCK). An innovative web-based recruitment and…

  2. A Comparison of Experienced and Preservice Elementary School Teachers' Content Knowledge and Pedagogical Content Knowledge about Electric Circuits

    Science.gov (United States)

    Lin, Jing-Wen

    2017-01-01

    This study investigated the differences between Taiwanese experienced and preservice elementary school science teachers' content knowledge (CK) about electric circuits and their ability to predict students' preconceptions about electric circuits as an indicator of their pedagogical content knowledge (PCK). An innovative web-based recruitment and…

  3. Single-photon heat conduction in electrical circuits

    CERN Document Server

    Jones, P J; Tan, K Y; Möttönen, M

    2011-01-01

    We study photonic heat conduction between two resistors coupled weakly to a single superconducting microwave cavity. At low enough temperature, the dominating part of the heat exchanged between the resistors is transmitted by single-photon excitations of the fundamental mode of the cavity. This manifestation of single-photon heat conduction should be experimentally observable with the current state of the art. Our scheme can possibly be utilized in remote interference-free temperature control of electric components and environment engineering for superconducting qubits coupled to cavities.

  4. An electrical model of VCSEL as optical transmitter for optical printed circuit board

    Science.gov (United States)

    Kim, Do-Kyoon; Yoon, Young-Seol; Choi, Jin-Ho; Kim, Kyung-Min; Choi, Young-Wan; Lee, Seok

    2005-03-01

    Optical interconnection is recent issue for high-speed data transmission. The limitation of high-speed electrical data transmission is caused by impedance mismatching, electric field coupling, microwave loss, and different length of the electrical signal lines. To overcome these limitations, the electrical signal in the current electrical system has to be changed by the optical signal. The most suitable optical source in the OPCB (Optical Printed Circuit Board) is VCSEL (Vertical Cavity Surface Emitting Lasers) that is low-priced and has the characteristic of vertical surface emitting. In this paper, we propose an electrical model of the VCSEL as E/O converting devices for the OPCB. The equivalent circuit of the VCSEL based on the rate equations includes carrier dynamics and material properties. The rate equation parameters are obtained by full analysis based on rate equation and experiment results. The electrical model of the VCSEL has the series resistance determined by I-V characteristic curve, and the parallel capacitance by the parasitic response of the VCSEL chip. The bandwidth of the optical interconnection is analyzed considering those parameters. We design and fabricate the optical transmitter for OPCB considering proposed electrical model of VCSEL.

  5. Uncertainties analysis made easy using basic electricity analogy

    CERN Document Server

    Cardoso, George C

    2016-01-01

    This paper proposes a battery-resistor circuit to aid introductory laboratory students visualize concepts of experimental measurement uncertainty, sums of uncertainties and uncertainty of the mean value. In the model presented the uncertainty or noise can be though of as noise in a loudspeaker, making the analogy simple to understand. The mathematics used is simple, requires no knowledge of statistics and provides correct expressions.

  6. Circuit models of the passive electrical properties of frog skeletal muscle fibers.

    Science.gov (United States)

    Valdiosera, R; Clausen, C; Eisenberg, R S

    1974-04-01

    The relation between the fine structure, electric field equations, and electric circuit models of skeletal muscle fibers is discussed. Experimental evidence illustrates the profound variation of potential with circumferential position, even at low frequencies (100 Hz). Since one-dimensional cable theory cannot account for such variation, three-dimensional cable theory must be used. Several circuit models of a sarcomere are presented and plots are made of the predicted phase angle between sinusoidal applied current and potential. The circuit models are described by equations involving normalized variables, since they affect the phase plot in a relatively simple way. A method is presented for estimating the values of the circuit elements and the standard deviation of the estimates. The reliability of the estimates is discussed. An objective measure of fit, Hamilton's R test, is used to test the significance of different fits to data. Finally, it is concluded that none of the proposed circuit models provides an adequate description of the observed variation of phase angle with circumferential location. It is not clear whether the source of disagreement is inadequate measurements or inadequate theory.

  7. Physical proof of the occurrence of the Braess Paradox in electrical circuits

    Science.gov (United States)

    Nagurney, Ladimer S.; Nagurney, Anna

    2016-07-01

    The Braess Paradox is the counterintuitive phenomenon that can occur in a user-optimized network system, such as a transportation network, where adding an additional link to the network increases the cost (travel time) for every user. In electrical circuits, electrons, analogous to drivers in a transportation network, traverse the network so that no electron can unilaterally change its cost (voltage drop) from an origin to a destination. In this paper, we show that the Braess Paradox can occur in electrical circuits consisting of diodes and resistors. We report measurements confirming the occurrence of the Braess Paradox in two different circuits, one with highly nonlinear link cost functions (I\\text-V characteristics). These measurements show that the voltage increases, rather than decreases, when a link is added to the circuit under constant demand (current). This discovery identifies novel circuits in which the voltage and current can be independently adjusted. It also yields insights into the Braess Paradox and transportation networks through a new computational mechanism.

  8. Basic Studies on Chaotic Characteristics of Electric Power Market Price

    Science.gov (United States)

    Takeuchi, Yuya; Miyauchi, Hajime; Kita, Toshihiro

    Recently, deregulation and reform of electric power utilities have been progressing in many parts of the world. In Japan, partial deregulation has been started from generation sector since 1995 and partial deregulation of retail sector is executed through twice law revisions. Through the deregulation, because electric power is traded in the market and its price is always fluctuated, it is important for the electric power business to analyze and predict the price. Although the price data of the electric power market is time series data, it is not always proper to analyze by the linear model such as ARMA because the price sometimes changes suddenly. Therefore, in this paper, we apply the methods of chaotic time series analysis, one of non-linear analysis methods, and investigate the chaotic characteristics of the system price of JEPX.

  9. Creating a simple electric circuit with children between the ages of five and six

    Directory of Open Access Journals (Sweden)

    Vasiliki Kada

    2016-05-01

    Full Text Available This paper presents a study of how preschool-aged children go about creating and operating a simple electric circuit (wires, light bulb, and battery, and how they view the elements that comprise it, particularly how they view the role of the battery. The research involved 108 children aged between five and six, who were individually interviewed. The results of the study show that the children have already begun to form representations which link the battery, the light bulb and the wires to electrical functions, and that the majority of children are able, with or without help, to successfully create a simple electric circuit. Moreover, their involvement in the process of creating and operating such a circuit leads many children not only to a comprehensive viewing of the circuit, but also to the creation of a pre-energy thought-form in which the battery is acknowledged as the distribution source of an entity which is responsible for the luminescence of the light bulb.

  10. Background voltage distortion influence on power electric systems in the presence of the Steinmetz circuit

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Luis; Pedra, Joaquin [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain); Caro, Manuel [IDOM Ingenieria y Arquitectura, C. Barcas 2, 46002 Valencia (Spain)

    2009-01-15

    In traction systems, it is usual to connect reactances in delta configuration with single-phase loads to reduce voltage unbalances and avoid electric system operation problems. This set is known as Steinmetz circuit. Parallel and series resonances can occur due to the capacitive reactance of the Steinmetz circuit and affect power quality. In this paper, the series resonance ''observed'' from the supply system is numerically located. The study of this resonance is important to avoid problems due to background voltage distortion. Experimental measurements are also presented to validate the obtained numerical results. (author)

  11. Electrically Small Resonators for Planar Metamaterial, Microwave Circuit and Antenna Design: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Miguel Durán-Sindreu

    2012-04-01

    Full Text Available Planar metamaterials and many microwave circuits and antennas are designed by means of resonators with dimensions much smaller than the wavelength at their resonance frequency. There are many types of such electrically small resonators, and the main purpose of this paper is to compare them as building blocks for the implementation of microwave components. Aspects such as resonator size, bandwidth, their circuit models when they are coupled to transmission lines (as is usually required, as well as key applications, will be considered.

  12. Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections

    Science.gov (United States)

    Woodard, Stanley E. (Inventor)

    2014-01-01

    A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.

  13. Electrical machines with Matlab

    CERN Document Server

    Gonen, Turan

    2011-01-01

    Basic ConceptsDistribution SystemImpact of Dispersed Storage and GenerationBrief Overview of Basic Electrical MachinesReal and Reactive Powers in Single-Phase AC CircuitsThree-Phase CircuitsThree-Phase SystemsUnbalanced Three-Phase LoadsMeasurement of Average Power in Three-Phase CircuitsPower Factor CorrectionMagnetic CircuitsMagnetic Field of Current-Carrying ConductorsAmpère's Magnetic Circuital LawMagnetic CircuitsMagnetic Circuit with Air GapBrief Review of FerromagnetismMagnetic Core LossesHow to Determine Flux for a Given MMFPermanent MagnetsTransformersTransformer ConstructionBrief Rev

  14. Electrical engineering of engineers 1. Direct current engineering and electromagnetic field. A lecture and working book for the basic study. 9. rev. ed.; Elektrotechnik fuer Ingenieure 1. Gleichstromtechnik und Elektromagnetisches Feld. Ein Lehr- und Arbeitsbuch fuer das Grundstudium

    Energy Technology Data Exchange (ETDEWEB)

    Weissgerber, Wilfried

    2013-05-01

    The book under consideration covers the basics and calculation methods of the direct current technology as well as the electromagnetic field. The main topics are: fundamental concepts of physics, direct current technology, electric circuit, network calculation, energy and power, electromagnetic field, electric flow field, electrostatic and magnetic fields, induction, magnetic energy. The book is dedicated to the students of engineering and natural sciences, electrical engineering, technical informatics and physics at higher institutes of applied sciences, technical colleges, universities and universities of cooperative education.

  15. Silicon photonic integrated circuits with electrically programmable non-volatile memory functions.

    Science.gov (United States)

    Song, J-F; Lim, A E-J; Luo, X-S; Fang, Q; Li, C; Jia, L X; Tu, X-G; Huang, Y; Zhou, H-F; Liow, T-Y; Lo, G-Q

    2016-09-19

    Conventional silicon photonic integrated circuits do not normally possess memory functions, which require on-chip power in order to maintain circuit states in tuned or field-configured switching routes. In this context, we present an electrically programmable add/drop microring resonator with a wavelength shift of 426 pm between the ON/OFF states. Electrical pulses are used to control the choice of the state. Our experimental results show a wavelength shift of 2.8 pm/ms and a light intensity variation of ~0.12 dB/ms for a fixed wavelength in the OFF state. Theoretically, our device can accommodate up to 65 states of multi-level memory functions. Such memory functions can be integrated into wavelength division mutiplexing (WDM) filters and applied to optical routers and computing architectures fulfilling large data downloading demands.

  16. Thermal radiation effect on the extinction properties of electric arcs in HV circuit breakers

    Directory of Open Access Journals (Sweden)

    Ziani Abderrahmane

    2009-01-01

    Full Text Available During the formation of the electric arc at the opening of a high voltage circuit breaker, the generated plasma will be the seat of a very important thermal exchange. Models founded only on conduction and convection thermal transfers don't reproduce the whole thermal exchanges that are governing the extinction process. This paper is devoted to the development of a model of the electric arc extinction in a high voltage circuit breaker taking in account the thermal radiation of the plasma, in addition to the conduction and convection phenomena. The Stefan-Boltzman equation is coupled with the heat equation, and both equations are solved simultaneously in order to follow the evolution of the arc voltage and the conductance of the thermal plasma. The obtained results are found in good agreement with experimental recordings.

  17. Algebraic circuits

    CERN Document Server

    Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio

    2014-01-01

    This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.

  18. Simulation of Higher-Order Electrical Circuits with Stochastic Parameters via SDEs

    Directory of Open Access Journals (Sweden)

    BRANCIK, L.

    2013-02-01

    Full Text Available The paper deals with a technique for the simulation of higher-order electrical circuits with parameters varying randomly. The principle consists in the utilization of the theory of stochastic differential equations (SDE, namely the vector form of the ordinary SDEs. Random changes of both excitation voltage and some parameters of passive circuit elements are considered, and circuit responses are analyzed. The voltage and/or current responses are computed and represented in the form of the sample means accompanied by their confidence intervals to provide reliable estimates. The method is applied to analyze responses of the circuit models of optional orders, specially those consisting of a cascade connection of the RLGC networks. To develop the model equations the state-variable method is used, afterwards a corresponding vector SDE is formulated and a stochastic Euler numerical method applied. To verify the results the deterministic responses are also computed by the help of the PSpice simulator or the numerical inverse Laplace transforms (NILT procedure in MATLAB, while removing random terms from the circuit model.

  19. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  20. Electrical circuit analysis and technical english: articulation in a project-based learning environment

    OpenAIRE

    Oliveira, José Manuel; Branco, Denise; Oliveira, João Pedro Estima de

    2010-01-01

    This paper describes the integration of Electrical Circuit Analysis and Technical English in the same curricular module, in the context of a Project Based Learning (PBL) environment. The idea consists in taking advantage of the PBL setting to provide a context for the learning of the two different subjects in an articulated manner. The results of the evaluation of the first iteration of this experiment will also be discussed.

  1. Soft Anisotropic Conductors as Electric Vias for Ga-Based Liquid Metal Circuits.

    Science.gov (United States)

    Lu, Tong; Wissman, James; Ruthika; Majidi, Carmel

    2015-12-09

    We introduce a method for sealing liquid metal (LM) circuits with soft anisotropic conductors that prevent leaking, while simultaneously allowing for electrical contact with skin and surface mounted electronics. These films are composed of polydimethylsiloxane (PDMS) embedded with vertically aligned columns of ferromagnetic Ag-Ni microparticles. The microparticles are magnetically aligned and support electrical conductivity only through the thickness (z-axis) of the elastomer film. Measurements on 10-40% (by wt) composites show moderate volumetric resistivity (as low as ρ = 0.03 Ω/m) through the thickness and no conductivity between adjacent traces. Functionality is demonstrated with several illustrative applications related to tactile sensing and electronics hardware integration.

  2. Parameterization of electrical equivalent circuits for pem fuel cells; Parametrierung elektrischer Aequivalentschaltbilder von PEM Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Haubrock, J.

    2007-12-13

    Fuel cells are a very promising technology for energy conversion. For optimization purpose, useful simulation tools are needs. Simulation tools should simulate the static and dynamic electrical behaviour and the models should parameterized by measurment results which should be done easily. In this dissertation, a useful model for simulating a pem fuel cell is developed. the model should parametrizes by V-I curve measurment and by current step respond. The model based on electrical equivalent circuits and it is shown, that it is possible to simulate the dynamic behaviour of a pem fuel cell stack. The simulation results are compared by measurment results. (orig.)

  3. An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers

    Science.gov (United States)

    Courey, Karim J.

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. Also, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB). The rare polycrystalline structure seen in the FIB cross section was confirmed using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size to determine that the tin plating on the card guides had a bright finish.

  4. REACH Basics for Chinese Producers of Electric Household Appliances

    Institute of Scientific and Technical Information of China (English)

    Dr.Klaus W.Mehl

    2008-01-01

    The following article explains the EU chemical regulation "REACH', explicates the requirements that Chinese producers are facing, and shows how they can fulfill the requirements and secure their access to the EU market. The consequences of failing to fulfill REACH requirements are given in REACH Article 5: No data, no market: ... substances ... in articles ... shall not be ... placed on the market unless they have been registered In other words: Without registration of chemicals Chinese producers of electric household appliances may loose their EU market.

  5. Full wave analysis of non-radiative dielectric waveguide modulator for the determination of electrical equivalent circuit

    Indian Academy of Sciences (India)

    N P Pathak; A Basu; S K Koul

    2008-07-01

    This paper reports the determination of electrical equivalent circuit of ON/OFF modulator in non-radiative dielectric (NRD) guide configurations at Ka-band. Schottky barrier mixer diode is used to realize this modulator and its characteristics are determined experimentally using vector network analyzer. Full wave FEM simulator HFSS is used to determine an equivalent circuit for the mounted diode and modulator in ON and OFF states. This equivalent circuit is used to qualitatively explain the experimental characteristics of modulator.

  6. Basic Guidelines for Application of Performance Standards to Commissioning of DCS Digital Circuits

    Science.gov (United States)

    1992-06-01

    buffering, and and filter delay (for a voice circuit). Propagation delay is independent of data rate, while buffering delay is inversely proportional to...V6Z2J7 Canada Gustavo A. Cubas E. 1 Engineered Systems, Inc 2 Seccion De Transmission ATTN: Mr. David Gilfillan Direccion De Ingenieria Y Proyectos 14775

  7. The Effects on Students’ Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives Within a Physical Manipulatives-Oriented Curriculum

    NARCIS (Netherlands)

    Zacharia, Zacharias C.; de Jong, Anthonius J.M.

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre–post comparison study randomly assigned 194 undergraduates in an introductory physics

  8. The Effects on Students’ Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives Within a Physical Manipulatives-Oriented Curriculum

    NARCIS (Netherlands)

    Zacharia, Zacharias C.; Jong, de Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre–post comparison study randomly assigned 194 undergraduates in an introductory physics

  9. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, M. S.; Gusev, Yu. P., E-mail: GusevYP@mpei.ru; Monakov, Yu. V.; Cho, Gvan Chun [National Research University “Moscow Power Engineering Institute,” (Russian Federation)

    2016-01-15

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed.

  10. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  11. Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits.

    Science.gov (United States)

    Hwang, Ji-Young; Kim, Han-Sem; Kim, Jeong Hun; Shin, Ueon Sang; Lee, Sang-Hoon

    2015-07-21

    Carbon nanotubes (CNTs) have an important role in nanotechnology due to their unique properties, retaining the inherent material flexibility, superior strength, and electrical conductivity, unless the bottleneck of CNTs persists and the aggregated structure is overcome. Here, we report on the highly enhanced mechanical and electrical properties of the CNT-chitosan nanocomposites through homogeneous dispersion of CNTs into chitosan solution using a high-pressure homogenizer. The optimal condition is a 50% (w/w) chitosan-CNT film, providing about 7 nm thickness of homogeneous chitosan layer on CNTs, a good tensile strength of 51 MPa, high electrical conductivity under 16 Ω/sq, and a stable bending and folding performance. This CNT-chitosan nanocomposite with highly enhanced properties is an amenable material to fabricate structures of various shapes such as films, sensors, and circuits and also enables a simple and cost-effective approach to improve the performance of a device that presents the first flexible and soft electric circuits yet reported using only CNT-chitosan as the conductor.

  12. The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus.

    Science.gov (United States)

    Ito, Tetsufumi; Oliver, Douglas L

    2012-01-01

    The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB.

  13. Complicated Electric Circuit P-T Calculus Model Based on VHDL%基于VHDL的复杂电路的P-T算法模型

    Institute of Scientific and Technical Information of China (English)

    刘丹非; 李曼义; 郭金怀

    2003-01-01

    When we design electric circuit with the hardware describe language VHDL,if the control of the electriccircuit is more than to calculate,we can design electric circuit as a controller which is based on multiplexer and is di-vided into the space part and the time part. Electric circuit is synthesized and form CPLD or FPGA circuit by adjustingthe P- T arithmetic model. We explain this method by designing the controller of CPU as a example.

  14. Reconfigurable anisotropy and functional transformations with VO$_{2}$-based metamaterial electric circuits

    CERN Document Server

    Savo, Salvatore; Castaldi, Giuseppe; Moccia, Massimo; Galdi, Vincenzo; Ramanathan, Shriram; Sato, Yuki

    2014-01-01

    We demonstrate an innovative multifunctional artificial material that combines exotic metamaterial properties and the environmentally responsive nature of phase change media. The tunable metamaterial is designed with the aid of two interwoven coordinate-transformation equations and implemented with a network of thin film resistors and vanadium dioxide ($VO_{2}$). The strong temperature dependence of $VO_{2}$ electrical conductivity results in a relevant modification of the resistor network behavior, and we provide experimental evidence for a reconfigurable metamaterial electric circuit (MMEC) that not only mimics a continuous medium but is also capable of responding to thermal stimulation through dynamic variation of its spatial anisotropy. Upon external temperature change the overall effective functionality of the material switches between a "truncated-cloak" and "concentrator" for electric currents. Possible applications may include adaptive matching resistor networks, multifunctional electronic devices, an...

  15. Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2009-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.

  16. Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2009-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.

  17. Numerical Electric Field Analysis of Power Status Sensor Observing Power Distribution System Taking into Account Voltage Divider Measurement Circuit

    Science.gov (United States)

    Kubo, Takuro; Furukawa, Tatsuya; Itoh, Hideaki; Fukumoto, Hisao; Wakuya, Hiroshi; Ohchi, Masashi

    We have proposed and preproducted the voltage-current waveform sensor of resin molded type for measuring the power factor and harmonics in power distribution systems. We have executed numerical electromagnetic analyses using the finite element method to estimate the characteristics and behaviours of the sensor. Although the magnetic field analyses for the current sensor have involved the measurement circuit, the electric field analyses have not included the measurement circuit for measuring voltage waveforms of power lines. In this paper, we describe the electric field analyses with the measurement circuit and prove the insulating strength of the proposed sensor permissible to the use in 22kV power distribution systems.

  18. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  19. Integrated bistable generator for wideband energy harvesting with optimized synchronous electric charge extraction circuit

    Science.gov (United States)

    Liu, Weiqun; Badel, Adrien; Formosa, Fabien; Wu, Yipeng; Agbossou, Amen

    2013-12-01

    Bistable generators have been proposed as potential solutions to the challenge of variable vibration frequencies. In the authors' previous works, a specific BSM (Buckled-Spring-Mass) harvester architecture has been suggested. It presents some properties of interests: simplicity, compactness and wide bandwidth. Using a normalized model of the BSM generator for design and optimization at different scales, this paper presents a new integrated BSM bistable generator design with the OSECE (Optimized Synchronous Electric Charge Extraction) technique which is used for broadband energy harvesting. The experimental results obtained from an initial prototype device show that the BSM generator with the OSECE circuit exhibits better performance for low coupling cases or reverse sweep excitations. This is also confirmed by simulations for the proposed integrated generator. Good applications prospective is expected for the bistable generator with the nonlinear OSECE circuit.

  20. Study of switching electric circuits with DC hybrid breaker, one stage

    Science.gov (United States)

    Niculescu, T.; Marcu, M.; Popescu, F. G.

    2016-06-01

    The paper presents a method of extinguishing the electric arc that occurs between the contacts of direct current breakers. The method consists of using an LC type extinguishing group to be optimally sized. From this point of view is presented a theoretical approach to the phenomena that occurs immediately after disconnecting the load and the specific diagrams are drawn. Using these, the elements extinguishing group we can choose. At the second part of the paper there is presented an analyses of the circuit switching process by decomposing the process in particular time sequences. For every time interval there was conceived a numerical simulation model in MATLAB-SIMULINK medium which integrates the characteristic differential equation and plots the capacitor voltage variation diagram and the circuit dumping current diagram.

  1. Novel passive element circuits for microdosimetry of nanosecond pulsed electric fields.

    Science.gov (United States)

    Merla, C; Denzi, A; Paffi, A; Casciola, M; d'Inzeo, G; Apollonio, F; Liberti, M

    2012-08-01

    Microdosimetric models for biological cells have assumed increasing significance in the development of nanosecond pulsed electric field technology for medical applications. In this paper, novel passive element circuits, able to take into account the dielectric dispersion of the cell, are provided. The circuital analyses are performed on a set of input pulses classified in accordance with the current literature. Accurate data in terms of transmembrane potential are obtained in both time and frequency domains for different cell models. In addition, a sensitivity study of the transfer function for the cell geometrical and dielectric parameters has been carried out. This analysis offers a new, simple, and efficient tool to characterize the nsPEFs' action at the cellular level.

  2. Fully integrated quantum photonic circuit with an electrically driven light source

    Science.gov (United States)

    Khasminskaya, Svetlana; Pyatkov, Felix; Słowik, Karolina; Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim; Rath, Patrik; Vetter, Andreas; Hennrich, Frank; Kappes, Manfred M.; Gol'Tsman, G.; Korneev, A.; Rockstuhl, Carsten; Krupke, Ralph; Pernice, Wolfram H. P.

    2016-11-01

    Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.

  3. Factors influencing the renal arterial Doppler waveform: a simulation study using an electrical circuit model (secondary publication

    Directory of Open Access Journals (Sweden)

    Chang Kyu Sung

    2016-01-01

    Full Text Available Purpose: The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI by using an electrical circuit model to simulate renal blood flow. Methods: In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Results: Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. Conclusion: This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.

  4. Factors influencing the renal arterial Doppler waveform: a simulation study using an electrical circuit model (secondary publication)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Han, Bong Soo [Dept. of Radiological Science, College of Health Science, Yonsei University, Wonju (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology, Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.

  5. Short-term solar wind modulation of the global electric circuit

    Science.gov (United States)

    Engfer, Daniel William

    Five separate key day sets are used to determine correlations between two candidate solar wind mechanisms and changes in atmospheric parameters at Mauna Loa Observatory in Hawaii and Colaba Observatory in India. We evaluate responses of these parameters to external modulation of the global electric circuit by the solar wind using the superposed epoch method of analysis. The results are interpreted in terms of a simplified global electric circuit model with two parallel return paths, one at low to middle geomagnetic latitudes and the other at middle to high geomagnetic latitudes. We find responses similar to those expected from external modulation, but of marginal statistical significance. The Mauna Loa set contains current density, potential gradient and positive and negative conductivity data for the 1976-1984 period, while the Colaba set contains potential gradient data through the 1936-1966 period. A data reduction technique is devised to increase the signal to noise ratio of our results by removing noisy data and periodic variations from these ground-based data sets. Throughout this process diurnal and annual variations of these parameters at both sites are evaluated and compared with available observations by other researchers. Using two separate key day sets and data from the Dynamics Explorer 2 satellite for the August 1981 to February 1983 time period, we endeavor to determine correlations between changes in ionospheric horizontal potential gradients and solar wind related physical inputs using superposed epoch analysis. In this manner, responses to external inputs are revealed for potential gradients of various latitudinal extents 5md ranges of local time. The local time variation is evaluated and subtracted from all potential gradients to increase the signal to noise ratio of the results. We also consider the possible effects of solar wind-modulated ionospheric potential gradients on the global electric circuit.

  6. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres.

    Science.gov (United States)

    Park, Minwoo; Im, Jungkyun; Shin, Minkwan; Min, Yuho; Park, Jaeyoon; Cho, Heesook; Park, Soojin; Shim, Mun-Bo; Jeon, Sanghun; Chung, Dae-Young; Bae, Jihyun; Park, Jongjin; Jeong, Unyong; Kim, Kinam

    2012-12-01

    Conductive electrodes and electric circuits that can remain active and electrically stable under large mechanical deformations are highly desirable for applications such as flexible displays, field-effect transistors, energy-related devices, smart clothing and actuators. However, high conductivity and stretchability seem to be mutually exclusive parameters. The most promising solution to this problem has been to use one-dimensional nanostructures such as carbon nanotubes and metal nanowires coated on a stretchable fabric, metal stripes with a wavy geometry, composite elastomers embedding conductive fillers and interpenetrating networks of a liquid metal and rubber. At present, the conductivity values at large strains remain too low to satisfy requirements for practical applications. Moreover, the ability to make arbitrary patterns over large areas is also desirable. Here, we introduce a conductive composite mat of silver nanoparticles and rubber fibres that allows the formation of highly stretchable circuits through a fabrication process that is compatible with any substrate and scalable for large-area applications. A silver nanoparticle precursor is absorbed in electrospun poly (styrene-block-butadiene-block-styrene) (SBS) rubber fibres and then converted into silver nanoparticles directly in the fibre mat. Percolation of the silver nanoparticles inside the fibres leads to a high bulk conductivity, which is preserved at large deformations (σ ≈ 2,200 S cm(-1) at 100% strain for a 150-µm-thick mat). We design electric circuits directly on the electrospun fibre mat by nozzle printing, inkjet printing and spray printing of the precursor solution and fabricate a highly stretchable antenna, a strain sensor and a highly stretchable light-emitting diode as examples of applications.

  7. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres

    Science.gov (United States)

    Park, Minwoo; Im, Jungkyun; Shin, Minkwan; Min, Yuho; Park, Jaeyoon; Cho, Heesook; Park, Soojin; Shim, Mun-Bo; Jeon, Sanghun; Chung, Dae-Young; Bae, Jihyun; Park, Jongjin; Jeong, Unyong; Kim, Kinam

    2012-12-01

    Conductive electrodes and electric circuits that can remain active and electrically stable under large mechanical deformations are highly desirable for applications such as flexible displays, field-effect transistors, energy-related devices, smart clothing and actuators. However, high conductivity and stretchability seem to be mutually exclusive parameters. The most promising solution to this problem has been to use one-dimensional nanostructures such as carbon nanotubes and metal nanowires coated on a stretchable fabric, metal stripes with a wavy geometry, composite elastomers embedding conductive fillers and interpenetrating networks of a liquid metal and rubber. At present, the conductivity values at large strains remain too low to satisfy requirements for practical applications. Moreover, the ability to make arbitrary patterns over large areas is also desirable. Here, we introduce a conductive composite mat of silver nanoparticles and rubber fibres that allows the formation of highly stretchable circuits through a fabrication process that is compatible with any substrate and scalable for large-area applications. A silver nanoparticle precursor is absorbed in electrospun poly (styrene-block-butadiene-block-styrene) (SBS) rubber fibres and then converted into silver nanoparticles directly in the fibre mat. Percolation of the silver nanoparticles inside the fibres leads to a high bulk conductivity, which is preserved at large deformations (σ ~ 2,200 S cm-1 at 100% strain for a 150-µm-thick mat). We design electric circuits directly on the electrospun fibre mat by nozzle printing, inkjet printing and spray printing of the precursor solution and fabricate a highly stretchable antenna, a strain sensor and a highly stretchable light-emitting diode as examples of applications.

  8. Design of Strain-Compensated Epitaxial Layers Using an Electrical Circuit Model

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2017-08-01

    The design of heterostructures that exhibit desired strain characteristics is critical for the realization of semiconductor devices with improved performance and reliability. The control of strain and dislocation dynamics requires an understanding of the relaxation processes associated with mismatched epitaxy, and the starting point for this analysis is the equilibrium strain profile, because the difference between the actual strain and the equilibrium value determines the driving force for dislocation glide and relaxation. Previously, we developed an electrical circuit model approach for the equilibrium analysis of semiconductor heterostructures, in which an epitaxial layer may be represented by a stack of subcircuits, each of which involves an independent current source, a resistor, an independent voltage source, and an ideal diode. In this work, we have applied the electrical circuit model to study the strain compensation mechanism and show that, for a given compositionally uniform device layer with fixed mismatch and layer thickness, a buffer layer may be designed (in terms of thickness and mismatch) to tailor the strain in the device layer. A special case is that in which the device layer will exhibit zero residual strain in equilibrium (complete strain compensation). In addition, the application of the electrical circuit analogy enables the determination of exact expressions for the residual strain characteristics of both the buffer and device layers in the general case where the device layer may exhibit partial strain compensation. On the basis of this framework, it is possible to develop design equations for the tailoring of the strain in a device layer grown on a uniform composition buffer.

  9. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    Science.gov (United States)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  10. Chip- and board-level optical interconnections using rigid flexible optical electrical printed circuit boards.

    Science.gov (United States)

    Hwang, S H; Lee, W-J; Lim, J W; Jung, K Y; Cha, K S; Rho, B S

    2008-05-26

    A new optical interconnection scheme based on a rigid flexible optical electrical printed circuit board (RFOE-PCB) is suggested. The easily installed RFOE-PCB can be universally applied for both chip- and board-level optical interconnections. This letter describes the detailed fabrication process, optical properties, and heat-resisting property of the RFOE-PCB. The fabricated RFOE-PCB was also successfully demonstrated with a 2.5-Gb/s data transmission through a 45 degrees-ended optical waveguide embedded in the RFOE-PCB.

  11. 电路课程的历史、现状和前景%History, Status, and Prospects of the Electric Circuit Courses

    Institute of Scientific and Technical Information of China (English)

    龚绍文; 郑君里; 于歆杰

    2011-01-01

    电路课程是高等学校电工程和信息类专业,甚至其它专业的一门重要的专业基础课。该课程的历史悠久,许多内容已相当成熟。但由于电子技术和信息技术的飞速发展,本课程仍然需要更新与改革。关于“电路课程如何更新与改革”这一话题,全世界有关院校都在热烈讨论。本文试图从回顾电路理论的发展过程中,从我国电路课程的演变中,从国际上最新发展动向中及从我国和美国近期电路课程的比较中探寻电路课程改革的方向。%The electric circuit course is an important specialized basic course for electrical and information or even more disciplines. It has long history and most of its contents are mature. But with the rapid development of electronic and information technology, the course still needs updates and reformation. In this paper, the authors try to find the reformation direction for the course by reviewing the development procedure of the circuit theory, evolving of the electric circuit course in China, surveying the latest developments in the world, and comparing the electric circuit courses from China and USA.

  12. Basic Mechanisms of Radiation Effects on Electronic Materials, Devices, and Integrated Circuits

    Science.gov (United States)

    1982-08-01

    Code F31. K. Caudle US Army Test and Evaluation Cored ATTN: F31, J. Downs ATTN: DRSTE-ELATTN: DRSTE-FA Naval Weapons CtrATTN: Code 343, FKA6A2... Casey ATTN: D. Tasca Control Data Corp ATTN: D. Newberry, BRR 142 General Electric Co ATTN: T. Frey ATTN: G. Gati, MD-E184 University of Denver General

  13. Circuit analysis with Multisim

    CERN Document Server

    Baez-Lopez, David

    2011-01-01

    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  14. Note: Printed circuit board based electrically triggered compact rail gap switch.

    Science.gov (United States)

    Saxena, A K; Kaushik, T C; Goswami, M P; Gupta, Satish C

    2010-05-01

    An electrically triggered rail gap switch has been designed over a commercially available copper clad fiberglass sheet commonly used in making printed circuit boards for applications requiring compact design and direct integration to parallel plate transmission lines. Switch performance has been investigated in terms of its inductance, jitter, and gap closing time. With an electrode separation of 9.0 mm, it has been found to have an inductance of 6 nH, gap closing time of 5 ns, and jitter of about 4-10 ns measured at 95% of self-breakdown voltage. An application of this switch has been demonstrated as an electrically exploding foil accelerator developed over the same board and velocities up to 1.6 km/s have been achieved on Kapton flyers with diameter of 3.0 mm and thickness of 125 microm using a compact 1 microF capacitor bank.

  15. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  16. Ultra-Low-Voltage Self-Body Biasing Scheme and Its Application to Basic Arithmetic Circuits

    Directory of Open Access Journals (Sweden)

    Ramiro Taco

    2015-01-01

    Full Text Available The gate level body biasing (GLBB is assessed in the context of ultra-low-voltage logic designs. To this purpose, a GLBB mirror full adder is implemented by using a commercial 45 nm bulk CMOS triple-well technology and compared to equivalent conventional zero body-biased CMOS and dynamic threshold voltage MOSFET (DTMOS circuits under different running conditions. Postlayout simulations demonstrate that, at the parity of leakage power consumption, the GLBB technique exhibits a significant concurrent reduction of the energy per operation and the delay in comparison to the conventional CMOS and DTMOS approaches. The silicon area required by the GLBB full adder is halved with respect to the equivalent DTMOS implementation, but it is higher in comparison to conventional CMOS design. Performed analysis also proves that the GLBB solution exhibits a high level of robustness against temperature fluctuations and process variations.

  17. Students' reasoning when tackling electric field and potential in explanation of dc resistive circuits

    Science.gov (United States)

    Leniz, Ane; Zuza, Kristina; Guisasola, Jenaro

    2017-06-01

    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge is essential to help instructors design and implement new teaching approaches that encourage students to articulate the macroscopic and microscopic levels of description. A questionnaire with an emphasis on explanations was used to analyze students' reasoning. In this analysis of students' reasoning in the microscopic and macroscopic modeling processes in a dc circuit, we refer to epistemological studies of scientific explanations. We conclude that the student explanations fall into three main categories of reasoning. The vast majority of students employ an explanatory model based on simple or linear causality and on relational reasoning. Moreover, around a third of students use a relational reasoning that relates two magnitudes current and resistance or conductivity of the material, which is included in a macroscopic explanatory model based on Ohm's law and the conservation of the current. In addition, few students situate the explanations at the microscopic level (charges or electrons) with unidirectional cause-effect reasoning. This study looks at a number of aspects that have been little mentioned in previous research at the university level, about the reasoning types students use when establishing macro-micro relationships and some possible difficulties with complex reasoning.

  18. Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations

    Science.gov (United States)

    Seoane, F.; Macías, R.; Bragós, R.; Lindecrantz, K.

    2011-11-01

    In this work, the single Op-Amp with load-in-the-loop topology as a current source is revisited. This circuit topology was already used as a voltage-controlled current source (VCCS) in the 1960s but was left unused when the requirements for higher frequency arose among the applications of electrical bioimpedance (EBI). The aim of the authors is not only limited to show that with the currently available electronic devices it is perfectly viable to use this simple VCCS topology as a working current source for wideband spectroscopy applications of EBI, but also to identify the limitations and the role of each of the circuit components in the most important parameter of a current for wideband applications: the output impedance. The study includes the eventual presence of a stray capacitance and also an original enhancement, driving with current the VCCS. Based on the theoretical analysis and experimental measurements, an accurate model of the output impedance is provided, explaining the role of the main constitutive elements of the circuit in the source's output impedance. Using the topologies presented in this work and the proposed model, any electronic designer can easily implement a simple and efficient current source for wideband EBI spectroscopy applications, e.g. in this study, values above 150 kΩ at 1 MHz have been obtained, which to the knowledge of the authors are the largest values experimentally measured and reported for a current source in EBI at this frequency.

  19. A computational model for epidural electrical stimulation of spinal sensorimotor circuits.

    Science.gov (United States)

    Capogrosso, Marco; Wenger, Nikolaus; Raspopovic, Stanisa; Musienko, Pavel; Beauparlant, Janine; Bassi Luciani, Lorenzo; Courtine, Grégoire; Micera, Silvestro

    2013-12-04

    Epidural electrical stimulation (EES) of lumbosacral segments can restore a range of movements after spinal cord injury. However, the mechanisms and neural structures through which EES facilitates movement execution remain unclear. Here, we designed a computational model and performed in vivo experiments to investigate the type of fibers, neurons, and circuits recruited in response to EES. We first developed a realistic finite element computer model of rat lumbosacral segments to identify the currents generated by EES. To evaluate the impact of these currents on sensorimotor circuits, we coupled this model with an anatomically realistic axon-cable model of motoneurons, interneurons, and myelinated afferent fibers for antagonistic ankle muscles. Comparisons between computer simulations and experiments revealed the ability of the model to predict EES-evoked motor responses over multiple intensities and locations. Analysis of the recruited neural structures revealed the lack of direct influence of EES on motoneurons and interneurons. Simulations and pharmacological experiments demonstrated that EES engages spinal circuits trans-synaptically through the recruitment of myelinated afferent fibers. The model also predicted the capacity of spatially distinct EES to modulate side-specific limb movements and, to a lesser extent, extension versus flexion. These predictions were confirmed during standing and walking enabled by EES in spinal rats. These combined results provide a mechanistic framework for the design of spinal neuroprosthetic systems to improve standing and walking after neurological disorders.

  20. A pulse-compression-ring circuit for high-efficiency electric propulsion.

    Science.gov (United States)

    Owens, Thomas L

    2008-03-01

    A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.

  1. An improved electrical and thermal model of a microbolometer for electronic circuit simulation

    Science.gov (United States)

    Würfel, D.; Vogt, H.

    2012-09-01

    The need for uncooled infrared focal plane arrays (IRFPA) for imaging systems has increased since the beginning of the nineties. Examples for the application of IRFPAs are thermography, pedestrian detection for automotives, fire fighting, and infrared spectroscopy. It is very important to have a correct electro-optical model for the simulation of the microbolometer during the development of the readout integrated circuit (ROIC) used for IRFPAs. The microbolometer as the sensing element absorbs infrared radiation which leads to a change of its temperature due to a very good thermal insulation. In conjunction with a high temperature coefficient of resistance (TCR) of the sensing material (typical vanadium oxide or amorphous silicon) this temperature change results in a change of the electrical resistance. During readout, electrical power is dissipated in the microbolometer, which increases the temperature continuously. The standard model for the electro-optical simulation of a microbolometer includes the radiation emitted by an observed blackbody, radiation emitted by the substrate, radiation emitted by the microbolometer itself to the surrounding, a heat loss through the legs which connect the microbolometer electrically and mechanically to the substrate, and the electrical power dissipation during readout of the microbolometer (Wood, 1997). The improved model presented in this paper takes a closer look on additional radiation effects in a real IR camera system, for example the radiation emitted by the casing and the lens. The proposed model will consider that some parts of the radiation that is reflected from the casing and the substrate is also absorbed by the microbolometer. Finally, the proposed model will include that some fraction of the radiation is transmitted through the microbolometer at first and then absorbed after the reflection at the surface of the substrate. Compared to the standard model temperature and resistance of the microbolometer can be

  2. Frequency gradients of the basic electrical and mechanical rhythms along the rat intestine.

    Science.gov (United States)

    Stanciu, C

    1995-01-01

    The basic mechanical rhythm (BMR), initiated and maintained by the basic electrical rhythm (BER), ensures the muscular tonus of the intestine during the interdigestive phases. The frequency and amplitude gradient for the BER waves and, correlated with them, the frequency and size gradient of the BMR contraction force have an anatomic determination. The circular muscle layer is discontinuous, consisting of cylindrical segments separated by conjunctive tissue, segments whose size increases starting from the duodenum to the ileocecal valve. The electrical connection between the cylindrical segments formed by the circular muscles is provided by the layer of longitudinal muscle fibres. Each and every segment generates a general voltage which is higher than that of the preceeding segment, so that the slow BER wave becomes amplified along the intestine. In correlation with the electrical phenomena, the BMR contractile waves will become more ample in the terminal region of the intestine, facilitating the progress through peristalsis of the luminal content with greater viscosity.

  3. Three-dimensional Model Analysis of Electric Field Excited by Multi-circuit Intersecting Overhead Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    XIAO Dongping; LEI Hui; ZHANG Zhanlong; HE Wei

    2013-01-01

    This work is carried out to predict the special distribution of electric field induced by multi-circuit intersecting overhead high-voltage (HV) transmission lines (TLs) within a large range without any expensive and time-consuming computation.The two main parts of the presented methodology are 1) setting up a three-dimensional (3D) model to calculate the electric field based on combining catenary equations with charge simulation method and 2) calculating the hybrid electric field excited by multi-circuit intersecting TLs using coordinate transformation and superposition technique.Examples of different TLs configurations,including a 220 kV single-circuit horizontally configured TLs,a 500 kV single-circuit triangularly configured TLs and a combination of the 220 kV TLs and the 550 kV TLs,are illustrated to verify the validity of this methodology.A more complicatal configurations,including a 500 kV double-circuit TLs and two 220kV single-circuit horizontally configured TLs,are also calculated.Conclusions were drawn from the simulation:1) The presented 3D model outperforms 2D models in describing the electric field distribution generated by practical HV TLs with sag and span.2) Coordinate transformation and superposition technique considerably simplify the electric field computation for multi-circuit TLs configurations,which makes it possible to deal with complex engineering problems.3) The electric field in the area covered by multiple intersecting overhead TLs is distorted and the hybrid electric field strength in some partial region increases so sharply that it might exceed the admissible value.4) The configuration parameters of the TLs and the spatial configuration of multi-circuit TLs,for instance,the height of TLs,the length of span and the intersection angle of multiple circuits,influence the strength and the distribution of hybrid electric field.The influence regularities summarized in this paper can be referred by future TL designs to meet the electromagnetic

  4. The influence of circuit inductance on the energy characteristics of electric discharge and deformation of plates in water

    Science.gov (United States)

    Kosenkov, V. M.; Bychkov, V. M.

    2017-08-01

    We have experimentally studied the influence of discharge-circuit inductance on the efficiency of conversion of energy stored in a capacitor bank, evolved in the electric-discharge channel in water, and spent for the resulting plastic deformation of plates. It is established for the first time that a growth in inductance of the discharge circuit produces a positive effect on the deformation of plates by increasing the amount of energy spent in this process.

  5. Mechanisms of the global electric circuit and lightning variability on the ENSO time scale

    Science.gov (United States)

    Mareev, Evgeny; Volodin, Evgeny; Slyunyaev, Nikolay

    2017-04-01

    Many studies of lightning activity on the El Niño-Southern Oscillation (ENSO) time scale show increased activity over tropical land areas during the warm El Niño phase (e.g., Satori et al., 2009; Price, 2009). The mechanisms of this variability—particularly in terms of its role in the global electric circuit (GEC)—are still under debate (e.g., Williams and Mareev, 2014). In this study a general circulation model of the atmosphere and ocean INMCM4.0 (Institute of Numerical Mathematics Coupled Model) is used for modelling the GEC variability on the ENSO time scale. The ionospheric potential (IP) and the lightning flash rate are calculated to study regional peculiarities and possible mechanisms of lightning variation. The IP parameterisation is used (Mareev and Volodin, 2014) which takes into account quasi-stationary currents of electrified clouds (including thunderstorms) as principal contributors into the DC global circuit. The account of conductivity variation in the IP parameterisation is suggested based on the approach realised in (Slyunyaev et al., 2014). Comparison of simulation results with the observational data on lightning activity on the ENSO time scale is discussed. Numerical simulations suggest that the inter-annual IP variability is low and does not exceed 1% of the mean value, being tightly correlated with the mean sea surface temperature (SST) in the Pacific Ocean (180W-100W, 5S-5N—El Niño area). The IP maximum corresponds to the SST minimum. This result can be explained taking into account that during El Niño (positive temperature anomaly) precipitations in the equatorial part of the Pacific increase while in other tropic zones including the land areas they decrease. Comparison of simulation results with the observational data on lightning activity on the ENSO time scale is discussed. During the El Niño period in the model, the mean aerosol content in the atmosphere decrease, which is caused by the weakening of the winds over Sahara and

  6. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers-Part I

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Bayliss, Jon; Ludwig, Larry

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance, electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data, we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross sectioned and studied using a focused ion beam (FIB).

  7. Basic properties of electrical field coupling between neurons: an analytical approach.

    Science.gov (United States)

    Costalat, Robert; Chauvet, Gilbert

    2008-06-01

    The basic properties of the electrical field coupling between two parallel neurons, with linear electrical properties of the membranes, are investigated using a mathematical model-based on Laplace transform and matrix algebra, assuming that the system is unidimensional. This approach is extended to a ramified dendritic tree, and to a set of parallel neurons a subset of which is synaptically activated. We show that the electrical field effect is governed by certain geometrical and electrophysiological parameters, the most important being a coupling coefficient k, which depends on the extra- and intracellular resistivity, as well as the extracellular volume fraction. These results support the hypothesis that electrical field effects play an important role in the regions of the brain where neurons are densely packed, even in the absence of, or before, cell firing.

  8. Back to basics: Making predictions in the orbitofrontal-amygdala circuit.

    Science.gov (United States)

    Sharpe, Melissa J; Schoenbaum, Geoffrey

    2016-05-01

    Underlying many complex behaviors are simple learned associations that allow humans and animals to anticipate the consequences of their actions. The orbitofrontal cortex and basolateral amygdala are two regions which are crucial to this process. In this review, we go back to basics and discuss the literature implicating both these regions in simple paradigms requiring the development of associations between stimuli and the motivationally-significant outcomes they predict. Much of the functional research surrounding this ability has suggested that the orbitofrontal cortex and basolateral amygdala play very similar roles in making these predictions. However, electrophysiological data demonstrates critical differences in the way neurons in these regions respond to predictive cues, revealing a difference in their functional role. On the basis of these data and theories that have come before, we propose that the basolateral amygdala is integral to updating information about cue-outcome contingencies whereas the orbitofrontal cortex is critical to forming a wider network of past and present associations that are called upon by the basolateral amygdala to benefit future learning episodes. The tendency for orbitofrontal neurons to encode past and present contingencies in distinct neuronal populations may facilitate its role in the formation of complex, high-dimensional state-specific associations.

  9. Circuit modeling of the electrical impedance: part III. Disuse following bone fracture.

    Science.gov (United States)

    Shiffman, C A

    2013-05-01

    Multifrequency measurements of the electrical impedance of muscle have been extended to the study of disuse following bone fracture, and analyzed using the five-element circuit model used earlier in the study of the effects of disease. Eighteen subjects recovering from simple fractures on upper or lower limbs were examined (ten males, eight females, aged 18-66). Muscles on uninjured contralateral limbs were used as comparison standards, and results are presented in terms of the ratios p(injured)/p(uninjured), where p stands for the circuit parameter r1, r2, r3, 1/c1 or 1/c2. These are strikingly similar to the diseased-to-healthy ratios for patients with neuromuscular disease, reported in part I of this series. In particular, r1 is virtually unaffected and the ratios for r2, r3, 1/c1 and 1/c2 can be as large as in serious disease. Furthermore, the same pattern of relationships between the parameters is found, suggesting that there is a common underlying mechanism for the impedance changes. Atrophy and fibrosis are examined as candidates for that mechanism, but it is argued that their effects are too small to explain the observed changes. Fundamental considerations aside, the sensitivity, reproducibility and technical simplicity of the technique recommend its use for in-flight assessments of muscles during orbital or interplanetary missions.

  10. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    Science.gov (United States)

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-03-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  11. Investigating the role of model-based reasoning while troubleshooting an electric circuit

    CERN Document Server

    Dounas-Frazer, Dimitri R; Stetzer, MacKenzie R; Lewandowski, H J

    2016-01-01

    We explore the overlap of two nationally-recognized learning outcomes for physics lab courses, namely, the ability to model experimental systems and the ability to troubleshoot a malfunctioning apparatus. Modeling and troubleshooting are both nonlinear, recursive processes that involve using models to inform revisions to an apparatus. To probe the overlap of modeling and troubleshooting, we collected audiovisual data from think-aloud activities in which eight pairs of students from two institutions attempted to diagnose and repair a malfunctioning electrical circuit. We characterize the cognitive tasks and model-based reasoning that students employed during this activity. In doing so, we demonstrate that troubleshooting engages students in the core scientific practice of modeling.

  12. Comparison of Parametrization Techniques for an Electrical Circuit Model of Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Teodorescu, Remus

    2015-01-01

    Lithium-Sulfur (Li-S) batteries are an emerging energy storage technology, which draw interest due to its high theoretical specific capacity (approx. 1675 Ah/kg) and theoretical energy density of almost 2600 Wh/kg. In order to analyse their dynamic behaviour and to determine their suitability...... for various commercial applications, battery performance models are needed. The development of such models represents a challenging task especially for Li-S batteries because this technology during their operation undergo several different chemical reactions, known as polysulfide shuttle. This paper focuses...... on the comparison of different parametrization methods of electrical circuit models (ECMs) for Li-S batteries. These methods are used to parametrize an ECM based on laboratory measurements performed on a Li-S pouch cell. Simulation results of ECMs are presented and compared against measurement values...

  13. An improved switching control law for the optimized synchronous electric charge extraction circuit

    Science.gov (United States)

    Liu, Weiqun; Badel, Adrien; Formosa, Fabien; Liu, Congzhi; Hu, Guangdi

    2015-12-01

    Nonlinear switching interface circuits are considered as an efficient way to improve the performance of vibration energy harvesters. Among the various approaches, OSECE (Optimized Synchronous Electric Charge Extraction) exhibits satisfying properties: simple switching strategy, good performance in low coupling cases and low load dependency. However, the overdamping induced by the voltage inversion at maximal points leads to performance degeneration in high coupling cases. This paper presents an improved switching control law for the OSECE technique. The new OSECE_PT (OSECE with switching Phase Tuning) technique presented here is to let the switches act ahead or after the maximal point with a phase tuning. Theoretical analysis and numerical simulations show that the OSECE_PT technique can improve the power performance effectively and preserves desired load independence properties.

  14. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  15. New Breakdown Electric Field Calculation for SF6 High Voltage Circuit Breaker Applications

    Institute of Scientific and Technical Information of China (English)

    Ph.ROBIN-JOUAN; M.YOUSFI

    2007-01-01

    The critical electric fields of hot SF6 are calculated including both electron and ion kinetics in wide ranges of temperature and pressure,namely from 300 K up to 4000 K and 2 atmospheres up to 32 atmospheres respectively.Based on solving a multi-term electron Boltzmann equation the calculations use improved electron-gas collision cross sections for twelve SF6 dissociation products with a particular emphasis on the electron-vibrating molecule interactions.The ion kinetics is also considered and its role on the critical field becomes non negligible as the temperature is above 2000 K.These critical fields are then used in hydrodynamics simulations which correctly predict the circuit breaker behaviours observed in the case of breaking tests.

  16. Nonlinear Electrical Circuit Oscillator Control Based on Backstepping Method: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Mahsa Khoeiniha

    2012-01-01

    Full Text Available This paper investigated study of dynamics of nonlinear electrical circuit by means of modern nonlinear techniques and the control of a class of chaotic system by using backstepping method based on Lyapunov function. The behavior of such nonlinear system when they are under the influence of external sinusoidal disturbances with unknown amplitudes has been considered. The objective is to analyze the performance of this system at different amplitudes of disturbances. We illustrate the proposed approach for controlling duffing oscillator problem to stabilize this system at the equilibrium point. Also Genetic Algorithm method (GA for computing the parameters of controller has been used. GA can be successfully applied to achieve a better controller. Simulation results have shown the effectiveness of the proposed method.

  17. Investigating the role of model-based reasoning while troubleshooting an electric circuit

    Science.gov (United States)

    Dounas-Frazer, Dimitri R.; Van De Bogart, Kevin L.; Stetzer, MacKenzie R.; Lewandowski, H. J.

    2016-06-01

    We explore the overlap of two nationally recognized learning outcomes for physics lab courses, namely, the ability to model experimental systems and the ability to troubleshoot a malfunctioning apparatus. Modeling and troubleshooting are both nonlinear, recursive processes that involve using models to inform revisions to an apparatus. To probe the overlap of modeling and troubleshooting, we collected audiovisual data from think-aloud activities in which eight pairs of students from two institutions attempted to diagnose and repair a malfunctioning electrical circuit. We characterize the cognitive tasks and model-based reasoning that students employed during this activity. In doing so, we demonstrate that troubleshooting engages students in the core scientific practice of modeling.

  18. Memory Elements: A Paradigm Shift in Lagrangian Modeling of Electrical Circuits

    CERN Document Server

    Jeltsema, Dimitri

    2012-01-01

    Meminductors and memcapacitors do not allow a Lagrangian formulation in the classical sense since these elements are nonconservative in nature and the associated energies are not state functions. To circumvent this problem, a different configuration space is considered that, instead of the usual loop charges, consist of time-integrated loop charges. As a result, the corresponding Euler-Lagrange equations provide a set of integrated Kirchhoff voltage laws in terms of the element fluxes. Memristive losses can be included via a second scalar function that has the dimension of action. A dual variational principle follows by considering variations of the integrated node fluxes and yields a set of integrated Kirchhoff current laws in terms of the element charges. Although time-integrated charge is a somewhat unusual quantity in circuit theory, it may be considered as the electrical analogue of a mechanical quantity called absement. Based on this analogy, simple mechanical devices are presented that can serve as did...

  19. Double negative elastic metamaterial design through electrical-mechanical circuit analogies.

    Science.gov (United States)

    Pope, Simon A

    2013-07-01

    Previous studies into solid elastic metamaterials which have a simultaneously negative effective bulk modulus and density have proposed designs for materials with relatively narrow bandwidths, because of the reliance on resonators to provide the dispersive material properties. Some of the proposed novel applications for metamaterials, such as invisibility cloaks and sub-wavelength lenses, generally require materials with inherently larger bandwidths for practical exploitation. In this paper, a well-known electromagnetic metamaterial design is used together with the electrical-mechanical circuit analogies to propose a simultaneously double negative elastic metamaterial design which does not suffer from the narrow bandwidth constraints of previous designs. An interesting consequence of the proposed design is that it has an effective wavelength which asymptotically goes to infinity with frequency.

  20. Electrical circuit models for performance modeling of Lithium-Sulfur batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Ioan; Teodorescu, Remus

    2015-01-01

    Energy storage technologies such as Lithium-ion (Li-ion) batteries are widely used in the present effort to move towards more ecological solutions in sectors like transportation or renewable-energy integration. However, today's Li-ion batteries are reaching their limits and not all demands...... of the industry are met yet. Therefore, researchers focus on alternative battery chemistries as Lithium-Sulfur (Li-S), which have a huge potential due to their high theoretical specific capacity (approx. 1675 Ah/kg) and theoretical energy density of almost 2600 Wh/kg. To analyze the suitability of this new...... emerging technology for various applications, there is a need for Li-S battery performance model; however, developing such models represents a challenging task due to batteries' complex ongoing chemical reactions. Therefore, the literature review was performed to summarize electrical circuit models (ECMs...

  1. Developing an Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  2. General Relationship between Field Electrical Resistivity Value (ERV and Basic Geotechnical Properties (BGP

    Directory of Open Access Journals (Sweden)

    Mohd Hazreek Zainal Abidin

    2014-09-01

    Full Text Available Electrical resistivity technique is a popular alternative method used in geotechnical soil investigations. Most past applications have been particularly in the area of subsurface ground investigations such as to locate boulder, bedrock, water table, etc. Traditionally, this method was performed by a geophysicist expert for data acquisition, processing and interpretation. The final outcome from the electrical resistivity technique was an anomaly image which used to describe and conclude the particular soil condition measured. The anomalies highlighted uncertainties on the nature of soil that was often variable and depended on each particular site condition that gave a site dependent soil electrical resistivity value (ERV. Hence, this study demonstrates a relationship between ERV (ρ and some of the basic geotechnical properties (BGP such as soil moisture content (w, grain size of geomaterial (CS or FS, density (ρbulk and ρdry, porosity (η, void ratio (e and Atterberg limit (AL. Different soil samples were collected and tested under field and laboratory conditions to determine basic geotechnical properties immediately after the field electrical resistivity method was performed. It was found that the electrical resistivity value was different for number of soils tested and was relatively subjective to variations in the geotechnical properties. In other words, electrical resistivity value was greatly influenced by the geotechnical properties as the ERV was higher due to the lower moisture content, void ratio and porosity with a higher value of soil density and vice versa. The relationship of ERV and BGP can be described by ρ α 1/w, ρ α CS, ρ α 1/FS, ρ α ρbulk/dry and ρ α 1/AL. Hence, it was shown that behaviour of ERV was significantly influenced by the variation of basic soil properties and thus applicable to support and enhance the conventional stand alone anomaly outcome which is traditionally used for interpretation purposes.

  3. Using the Zero-Resistance Spark Circuit on the Wire Cut Electric Discharge Machine to Realize Energy Savings

    Directory of Open Access Journals (Sweden)

    Shao-Hsien Chen

    2014-08-01

    Full Text Available There is an increasing emphasis on the development green manufacturing technologies. To improve processing and energy efficiency of modern Wire Cut Electric Discharge Machines (WEDM, many studies have focused on the design of the device’s discharge circuit. Currently, most such circuits use a resistor to impose current-limitations. When current flows through this resistor, considerable electrical energy converted into heat. The generated heat increases the temperature in the discharge circuit, which negatively impacts processing and energy efficiency, even though the temperature rise could be controlled by arranging cooling devices around the discharge circuit. This study seeks to produce an improved discharge circuit for use in WEDMs. We use DC-DC and electronic voltage regulation technology to convert the energy originally dissipated in the resistor directly into the energy for use in machining. The Zero-Resistance Spark Circuit is the critical design to realize the energy saving effect. Experimental results indicate energy savings of 10 to 15%.

  4. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  5. Regulatory Analysis for the resolution of Generic Issue 142: Leakage through electrical isolators in instrumentation circuits

    Energy Technology Data Exchange (ETDEWEB)

    Rourk, C.J.

    1993-09-01

    Generic Issue (GI) 142 deals with staff concerns about the design of isolation devices used to ensure separation between Class 1E and non-Class 1E electrical control and instrumentation circuits. This issue was initiated in June 1987. Staff reviews of the implementation of the Safety Parameter Display System (SPDS) requirement indicated that some isolation devices used to provide an interface between the non-Class 1E SPDS and the Class 1E safety systems would allow signal leakage if electrically challenged. It was unknown if the amount of leakage posed a hazard to safe operation of the Class 1E system. A review of failure records does not reveal any incidents of system damage caused by isolation device challenge. Furthermore, a review of existing PRA data indicates that the safety significance of ID challenge is low, at the expected challenge event frequency. However, based upon the potential design variations in future control systems resulting from application of computer technology, additional design and qualification test requirements for future plants are recommended.

  6. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.

    Science.gov (United States)

    Cheng, Yin; Wang, Ranran; Sun, Jing; Gao, Lian

    2015-04-28

    Stretchable electronics, as a promising research frontier, has achieved progress in a variety of sophisticated applications. The realization of stretchable electronics frequently involves the demand for a stretchable conductor as an electrical circuit. However, it still remains a challenge to fabricate high-performance (working strain exceeding 200%) stretchable conductors. Here, we present for the first time a facile, cost-effective, and scalable method for manufacturing ultrastretchable composite fibers with a "twining spring" configuration: cotton fibers twining spirally around a polyurethane fiber. The composite fiber possesses a high conductivity up to 4018 S/cm, which remains as high as 688 S/cm at 500% tensile strain. In addition, the conductivity of the composite fiber (initial conductivity of 4018 S/cm) remains perfectly stable after 1000 bending events and levels off at 183 S/cm after 1000 cyclic stretching events of 200% strain. Stretchable LED arrays are integrated efficiently utilizing the composite fibers as a stretchable electric wiring system, demonstrating the potential applications in large-area stretchable electronics. The biocompatibility of the composite fiber is verified, opening up its prospects in the field of implantable devices. Our fabrication strategy is also versatile for the preparation of other specially functionalized composite fibers with superb stretchability.

  7. Do Computer Simulations Allow a Better Understanding of Basic Electrical Circuits than Real Lab Experiments?

    CERN Document Server

    Schmekel, Bjoern S

    2010-01-01

    Several Authors have demonstrated that substituting computer simulations for real experiments conducted in a lab may help to improve students' understanding of the material. In the present work we try to understand the reasons for this intriguing finding and investigate possible prerequisites necessary to achieve this outcome. The study was conducted in an introductory college-level physics class in Germany. All simulations were performed using PSPICE.

  8. Learning Electrical Circuits: The Effects of the 4C-ID Instructional Approach in the Acquisition and Transfer of Knowledge

    Science.gov (United States)

    Melo, Mário; Miranda, Guilhermina Lobato

    2015-01-01

    This study was designed to investigate the effects of two instructional approaches (4C-ID versus conventional) on learners' knowledge-acquisition and learning transfer of the electrical circuits content in Physics. Participants were 129 9th graders from a secondary school in Lisbon, M = 14.3 years, SD = 0.54. The participants were divided in two…

  9. To Compare the Effects of Computer Based Learning and the Laboratory Based Learning on Students' Achievement Regarding Electric Circuits

    Science.gov (United States)

    Bayrak, Bekir; Kanli, Uygar; Ingec, Sebnem Kandil

    2007-01-01

    In this study, the research problem was: "Is the computer based physics instruction as effective as laboratory intensive physics instruction with regards to academic success on electric circuits 9th grade students?" For this research of experimental quality the design of pre-test and post-test are applied with an experiment and a control…

  10. A Comparison of Students' Conceptual Understanding of Electric Circuits in Simulation Only and Simulation-Laboratory Contexts

    Science.gov (United States)

    Jaakkola, Tomi; Nurmi, Sami; Veermans, Koen

    2011-01-01

    The aim of this experimental study was to compare learning outcomes of students using a simulation alone (simulation environment) with outcomes of those using a simulation in parallel with real circuits (combination environment) in the domain of electricity, and to explore how learning outcomes in these environments are mediated by implicit (only…

  11. Comparing and Combining Real and Virtual Experimentation: An Effort to Enhance Students' Conceptual Understanding of Electric Circuits

    Science.gov (United States)

    Zacharia, Z. C.

    2007-01-01

    The purpose of this study was to investigate value of combining Real Experimentation (RE) with Virtual Experimentation (VE) with respect to changes in students' conceptual understanding of electric circuits. To achieve this, a pre-post comparison study design was used that involved 88 undergraduate students. The participants were randomly assigned…

  12. A Case Study Analysing the Process of Analogy-Based Learning in a Teaching Unit about Simple Electric Circuits

    Science.gov (United States)

    Paatz, Roland; Ryder, James; Schwedes, Hannelore; Scott, Philip

    2004-01-01

    The purpose of this case study is to analyse the learning processes of a 16-year-old student as she learns about simple electric circuits in response to an analogy-based teaching sequence. Analogical thinking processes are modelled by a sequence of four steps according to Gentner's structure mapping theory (activate base domain, postulate local…

  13. Conceptions of Pupils of the Primary on the Topic of an Electric Circuit in Three Countries (Canada, France and Morocco)

    Science.gov (United States)

    Métioui, Abdeljalil; MacWillie, Mireille Baulu; Trudel, Louis

    2016-01-01

    Qualitative research conducted with 237 pupils from Canada, France, and Morocco, between 10 and 12 years of age, on the setting and functioning of simple electric circuits, demonstrates that similar explanatory systems of the students. For this, we had given them a paper and pencil questionnaire of a sixty minutes duration. The first question was…

  14. Using a Conflict Map as an Instructional Tool To Change Student Conceptions in Simple Series Electric-Circuits.

    Science.gov (United States)

    Tsai, Chin-Chung

    2003-01-01

    Examines the effects of using a conflict map on 8th grade students' conceptual change and ideational networks about simple series electric circuits. Analyzes student interview data through a flow map method. Shows that the use of conflict maps could help students construct greater, richer, and more integrated ideational networks about electric…

  15. The Confidence-Accuracy Relationship in Diagnostic Assessment: The Case of the Potential Difference in Parallel Electric Circuits

    Science.gov (United States)

    Saglam, Murat

    2015-01-01

    This study explored the relationship between accuracy of and confidence in performance of 114 prospective primary school teachers in answering diagnostic questions on potential difference in parallel electric circuits. The participants were required to indicate their confidence in their answers for each question. Bias and calibration indices were…

  16. Self-Regulated Learning Strategies of Engineering College Students While Learning Electric Circuit Concepts with Enhanced Guided Notes

    Science.gov (United States)

    Lawanto, Oenardi; Santoso, Harry

    2013-01-01

    The current study evaluated engineering college students' self-regulated learning (SRL) strategies while learning electric circuit concepts using enhanced guided notes (EGN). Our goal was to describe how students exercise SRL strategies and how their grade performance changes after using EGN. Two research questions guided the study: (1) To what…

  17. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    Science.gov (United States)

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  18. Verification and Analysis of Implementing Virtual Electric Devices in Circuit Simulation of Pulsed DC Electrical Devices in the NI MULTISIM 10.1 Environment

    Directory of Open Access Journals (Sweden)

    V. A. Solov'ev

    2015-01-01

    Full Text Available The paper presents the analysis results of the implementation potential and evaluation of the virtual electric devices reliability when conducting circuit simulation of pulsed DC electrical devices in the NI Multisim 10.1environment. It analyses metrological properties of electric measuring devices and sensors of the NI Multisim 10.1environment. To calculate the reliable parameters of periodic non-sinusoidal electrical values based on their physical feasibility the mathematical expressions have been defined.To verify the virtual electric devices a circuit model of the power section of buck DC converter with enabled devices under consideration at its input and output is used as a consumer of pulse current of trapezoidal or triangular form. It is used as an example to show a technique to verify readings of virtual electric measuring devices in the NI Multisim 10.1environment.It is found that when simulating the pulsed DC electric devices to measure average and RMS voltage supply and current consumption values it is advisable to use the probe. Electric device power consumption read from the virtual power meter is equal to its average value, and its displayed power factor is inversely proportional to the input current form factor. To determine the RMS pulsed DC current by ammeter and multi-meter it is necessary to measure current by these devices in DC and AC modes, and then determine the RMS value of measurement results.Virtual electric devices verification has proved the possibility of their application to determine the energy performance of transistor converters for various purposes in the circuit simulation in the NI 10.1 Multisim environment, thus saving time of their designing.

  19. The characteristic electric impedance of the circuits and its influences in the transient currents; A impedancia caracteristica dos circuitos e sua influencia nas correntes transitorias

    Energy Technology Data Exchange (ETDEWEB)

    Kascher, Ronaldo [Tesla Projetos e Consultoria Ltda. (Brazil)

    1997-05-01

    Usually not considered in the calculation of the maximum bearable current or even in the voltage drop throughout the electric circuits, the characteristic electric impedance assumes considerable relevance, especially concerning long distance electric power transmission lines. When dimensioning the protection devices, the consideration of the characteristic electric impedance may drastically reduce the necessary investments. 20 figs., 2 tabs.

  20. Electric circuit model for MgO-doped ZrO2-TiO2 ceramic humidity sensor

    Science.gov (United States)

    Jain, M. K.; Bhatnagar, M. C.; Sharma, G. L.

    1998-12-01

    The MgO-doped ZrO2-TiO2 ceramic pellets were studied for its humidity-sensitive electrical conduction. An equivalent circuit model has been proposed to define the humidity-sensitive electrical properties. This model is in agreement with the experimental findings. The electrical conduction is largely controlled by the intergranular impedance except at very high humidities. The impedance of the pellets showed inductive behavior in high-humidity region. This behavior can be attributed to the spherical paths adopted by charge carrier because conduction is mainly through the spherical grain surface.

  1. Electric Current Solves Mazes

    Science.gov (United States)

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  2. A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Long

    2011-08-23

    In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised. Furthermore, a practical circuit-based model for Li-ion cells has been developed that is capable of modelling the cell voltage behaviour under various operating conditions. The Li-ion cell model can be implemented in simulation programs and be directly connected to a model of the rest of the electronic system in electric vehicles. Most existing battery models are impractical for electric vehicle system designers and require extensive background knowledge of electrochemistry to be implemented. Furthermore, many models do not take the effect of regenerative braking into account and are obtained from testing fully charged cells. However, in real-life applications electric vehicles are not always fully charged and utilise regenerative braking to save energy. To obtain a practical circuit model based on real operating conditions and to model the state of health of electric vehicle cells, numerous 18650 size LiFePO4 cells have been tested under possible operating conditions. Capacity fading was chosen as the state of health parameter, and the capacity fading of different cells was compared with the charge processed instead of cycles. Tests have shown that the capacity fading rate is dependent on temperature, charging C-rate, state of charge and depth of discharge. The obtained circuit model is capable of simulating the voltage behaviour under various temperatures and C-rates with a maximum error of 14mV. However, modelling the effect of different temperatures and C-rates increases the complexity of the model. The model is easily adjustable and the choice is given to the electric vehicle system designer to decide which operating conditions to take into account. By combining the test results for the capacity fading and the proposed circuit model, recommendations to optimise the battery lifetime are proposed.

  3. Displacement damage analysis and modified electrical equivalent circuit for electron and photon-irradiated silicon solar cells

    Science.gov (United States)

    Arjhangmehr, Afshin; Feghhi, Seyed Amir Hossein

    2014-10-01

    Solar modules and arrays are the conventional energy resources of space satellites. Outside the earth's atmosphere, solar panels experience abnormal radiation environments and because of incident particles, photovoltaic (PV) parameters degrade. This article tries to analyze the electrical performance of electron and photon-irradiated mono-crystalline silicon (mono-Si) solar cells. PV cells are irradiated by mono-energetic electrons and poly-energetic photons and immediately characterized after the irradiation. The mean degradation of the maximum power (Pmax) of silicon solar cells is presented and correlated using the displacement damage dose (Dd) methodology. This method simplifies evaluation of cell performance in space radiation environments and produces a single characteristic curve for Pmax degradation. Furthermore, complete analysis of the results revealed that the open-circuit voltage (Voc) and the filling factor of mono-Si cells did not significantly change during the irradiation and were independent of the radiation type and fluence. Moreover, a new technique is developed that adapts the irradiation-induced effects in a single-cell equivalent electrical circuit and adjusts its elements. The "modified circuit" is capable of modeling the "radiation damage" in the electrical behavior of mono-Si solar cells and simplifies the designing of the compensation circuits.

  4. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  5. Investigating the role of socially mediated metacognition during collaborative troubleshooting of electric circuits

    Directory of Open Access Journals (Sweden)

    Kevin L. Van De Bogart

    2017-09-01

    Full Text Available Developing students’ ability to troubleshoot is an important learning outcome for many undergraduate physics lab courses, especially electronics courses. In other work, metacognition has been identified as an important feature of troubleshooting. However, that work has focused primarily on individual students’ metacognitive processes or troubleshooting abilities. In contrast, electronics courses often require students to work in pairs, and hence students’ in-class experiences likely have significant social dimensions that are not well understood. In this work, we use an existing framework for socially mediated metacognition to analyze audiovisual data from think-aloud activities in which eight pairs of students from two institutions attempted to diagnose and repair a malfunctioning electric circuit. In doing so, we provide insight into some of the social metacognitive dynamics that arise during collaborative troubleshooting. We find that students engaged in socially mediated metacognition at multiple key transitions during the troubleshooting process. Reciprocated metacognitive dialogue arose when students were collectively strategizing about which measurements to perform, or reaching a shared understanding of the circuit’s behavior. Our research demonstrates the value of the framework of socially mediated metacognition in providing insight into the nature of collaborative student troubleshooting in the context of electronics. As such, this framework may be a useful resource for future efforts to examine and support the development of student troubleshooting skills in other upper-division laboratory courses.

  6. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    Science.gov (United States)

    Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.

  7. Incorporating single molecules into electrical circuits. The role of the chemical anchoring group.

    Science.gov (United States)

    Leary, Edmund; La Rosa, Andrea; González, M Teresa; Rubio-Bollinger, Gabino; Agraït, Nicolás; Martín, Nazario

    2015-02-21

    Constructing electronic circuits containing singly wired molecules is at the frontier of electrical device miniaturisation. When a molecule is wired between a pair of electrodes, the two points of contact are determined by the chemical anchoring groups, located at the ends of the molecule. At this point, when a bias is applied, electrons are channelled from a metallic environment through an extremely narrow constriction, essentially a single atom, into the molecule. The fact that this is such an abrupt change in the electron pathway makes the nature of the chemical anchoring groups critically important regarding the propagation of electrons from the electrode across the molecule. A delicate interplay of phenomena can occur when a molecule binds to the electrodes, which can produce profound differences in conductance properties depending on the anchoring group. This makes answering the question "what is the best anchoring group for single molecule studies" far from straight forward. In this review, we firstly take a look at techniques developed to 'wire-up' single molecules, as understanding their limitations is key when assessing a molecular wire's performance. We then analyse the various chemical anchoring groups, and discuss their merits and disadvantages. Finally we discuss some theoretical concepts of molecular junctions to understand how transport is affected by the nature of the chemical anchor group.

  8. Electrical installations technology

    CERN Document Server

    Whitfield, J F

    1968-01-01

    Electrical Installations Technology covers the syllabus of the City and Guilds of London Institute course No. 51, the "Electricians B Certificate”. This book is composed of 15 chapters that deal with basic electrical science and electrical installations. The introductory chapters discuss the fundamentals and basic electrical principles, including the concept of mechanics, heat, magnetic fields, electric currents, power, and energy. These chapters also explore the atomic theory of electric current and the electric circuit, conductors, and insulators. The subsequent chapter focuses on the chemis

  9. Correlation of basic oil quality indices and electrical properties of model vegetable oil systems.

    Science.gov (United States)

    Prevc, Tjaša; Cigić, Blaž; Vidrih, Rajko; Poklar Ulrih, Nataša; Šegatin, Nataša

    2013-11-27

    Model vegetable oil mixtures with significantly different basic oil quality indices (free fatty acid, iodine, and Totox values) were prepared by adding oleic acids, synthetic saturated triglycerides, or oxidized safflower oil ( Carthamus tinctorius ) to the oleic type of sunflower oil. Dielectric constants, dielectric loss factors, quality factors, and electrical conductivities of model lipids were determined at frequencies from 50 Hz to 2 MHz and at temperatures from 293.15 to 323.15 K. The dependence of these dielectric parameters on basic oil quality indices was investigated. Adding oleic acids to sunflower oil resulted in lower dielectric constants and conductivities and higher quality factors. Reduced iodine values resulted in increased dielectric constants and quality factors and decreased conductivities. Higher Totox values resulted in higher dielectric constants and conductivities at high frequencies and lower quality factors. Dielectric constants decreased linearly with temperature, whereas conductivities followed the Arrhenius law.

  10. Consistency and advantage of loop regularization method merging with Bjorken-Drell's analogy between Feynman diagrams and electrical circuits

    Science.gov (United States)

    Huang, Da; Wu, Yue-Liang

    2012-07-01

    The consistency of loop regularization (LORE) method is explored in multiloop calculations. A key concept of the LORE method is the introduction of irreducible loop integrals (ILIs) which are evaluated from the Feynman diagrams by adopting the Feynman parametrization and ultraviolet-divergence-preserving (UVDP) parametrization. It is then inevitable for the ILIs to encounter the divergences in the UVDP parameter space due to the generic overlapping divergences in the four-dimensional momentum space. By computing the so-called αβγ integrals arising from two-loop Feynman diagrams, we show how to deal with the divergences in the parameter space with the LORE method. By identifying the divergences in the UVDP parameter space to those in the subdiagrams, we arrive at the Bjorken-Drell analogy between Feynman diagrams and electrical circuits. The UVDP parameters are shown to correspond to the conductance or resistance in the electrical circuits, and the divergence in Feynman diagrams is ascribed to the infinite conductance or zero resistance. In particular, the sets of conditions required to eliminate the overlapping momentum integrals for obtaining the ILIs are found to be associated with the conservations of electric voltages, and the momentum conservations correspond to the conservations of electrical currents, which are known as the Kirchhoff laws in the electrical circuits analogy. As a practical application, we carry out a detailed calculation for one-loop and two-loop Feynman diagrams in the massive scalar ϕ 4 theory, which enables us to obtain the well-known logarithmic running of the coupling constant and the consistent power-law running of the scalar mass at two-loop level. Especially, we present an explicit demonstration on the general procedure of applying the LORE method to the multiloop calculations of Feynman diagrams when merging with the advantage of Bjorken-Drell's circuit analogy.

  11. The two independent equations of circuits in integral form of field theory: The fundamental law of circuits

    Institute of Scientific and Technical Information of China (English)

    CHEN Shennian

    2005-01-01

    Circuit theory is an extremely important basic theory in electrical and electronic sciences and technologies. Over more than a century, researchers have come to the conclusion that a fundamental law of circuits needs to satisfy the following three conditions: (1) Independency. It must be able to solve independently the basic problems of general solutions to the distribution of current and voltage in circuits. (2)Fundamentality. It cannot be derived from circuit theory and it must be the starting point for the establishment of circuit theory; it deduces the problem relevant to circuit theory by using purely logical inference, and establishes circuit theory into an independent deductive system. (3) Applicability. It must be widely applicable to all spheres of circuits,which includes sinusoidal steady-state linear and nonlinear networks, non-sinusoidal steady-state linear and nonlinear networks, transient-state processes, etc. From all networks to which the fundamental law of circuits applies, sinusoidal steady-state linear network is chosen as the most basic one to demonstrate that the two independent equations of circuits in integral form derived from Maxwell equations are able to meet these three conditions. Consequently, it is believed to be the fundamental law of circuits newly recognized today. This paper also makes the initiative to establish a circuit theory by which the basic rules of electromagnetic field govern the circuits, and the unity of electromagnetic fields and circuits is achieved.

  12. Brain Basics

    Medline Plus

    Full Text Available ... as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the brain ... specialized for the function of conducting messages. A neuron has three basic parts: Cell body which includes ...

  13. Alternating current multi-circuit electric machines a new approach to the steady-state parameter determination

    CERN Document Server

    Asanbayev, Valentin

    2015-01-01

    This book details an approach for realization of the field decomposition concept. The book presents the  methods as well as techniques and procedures for establishing electric machine circuit-loops and determining their parameters. The methods developed have been realized using the models of machines with laminated and solid rotor having classical structure. The use of such models are well recognized and simplifies practical implementation of the obtained results. This book also: ·         Includes methods for a construction of electric machine equivalent circuits that allows the replacement of the field models of the machine with simple circuit models ·         Demonstrates the practical implementation of the proposed techniques and procedures ·         Presents parameters of the circuit-loops in the form most convenient for practical implementation ·         Uses methods based on machine models widely used in practice

  14. Consistency and Advantage of Loop Regularization Method Merging with Bjorken-Drell's Analogy Between Feynman Diagrams and Electrical Circuits

    CERN Document Server

    Huang, Da

    2011-01-01

    The consistency of loop regularization (LORE) method is explored in multiloop calculations. A key concept of the LORE method is the introduction of irreducible loop integrals (ILIs) which are evaluated from the Feynman diagrams by adopting the Feynman parametrization and ultraviolet-divergence-preserving(UVDP) parametrization. It is then inevitable for the ILIs to encounter the divergences in the UVDP-parameter space due to the generic overlapping divergences in the 4-dimensional momentum space. By computing the so-called $\\alpha\\beta\\gamma$ integrals arising from two loop Feynman diagrams, we show how to deal with the divergences in the parameter space by applying for the LORE method. By identifying the divergences in the UVDP-parameter space to those in the subdiagrams of two loop diagrams, we arrive at the Bjorken-Drell's analogy between Feynman diagrams and electrical circuits, where the UVDP parameters are associated with the conductance or resistance in the electrical circuits. In particular, the sets o...

  15. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

    KAUST Repository

    Bera, Tushar Kanti

    2016-12-05

    Under an alternating electrical signal, biological tissues produce a complex electrical bioimpedance that is a function of tissue composition and applied signal frequencies. By studying the bioimpedance spectra of biological tissues over a wide range of frequencies, we can noninvasively probe the physiological properties of these tissues to detect possible pathological conditions. Electrical impedance spectroscopy (EIS) can provide the spectra that are needed to calculate impedance parameters within a wide range of frequencies. Before impedance parameters can be calculated and tissue information extracted, impedance spectra should be processed and analyzed by a dedicated software program. National Instruments (NI) Inc. offers LabVIEW, a fast, portable, robust, user-friendly platform for designing dataanalyzing software. We developed a LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) to analyze the electrical impedance spectra for tissue characterization in medical, biomedical and biological applications. Here, we test, calibrate and evaluate the performance of LEBISDI on the impedance data obtained from simulation studies as well as the practical EIS experimentations conducted on electronic circuit element combinations and the biological tissue samples. We analyze the Nyquist plots obtained from the EIS measurements and compare the equivalent circuit parameters calculated by LEBISDI with the corresponding original circuit parameters to assess the accuracy of the program developed. Calibration studies show that LEBISDI not only interpreted the simulated and circuitelement data accurately, but also successfully interpreted tissues impedance data and estimated the capacitive and resistive components produced by the compositions biological cells. Finally, LEBISDI efficiently calculated and analyzed variation in bioimpedance parameters of different tissue compositions, health and temperatures. LEBISDI can also be used for human tissue

  16. Analytical Solutions of the Electrical RLC Circuit via Liouville–Caputo Operators with Local and Non-Local Kernels

    Directory of Open Access Journals (Sweden)

    José Francisco Gómez-Aguilar

    2016-08-01

    Full Text Available In this work we obtain analytical solutions for the electrical RLC circuit model defined with Liouville–Caputo, Caputo–Fabrizio and the new fractional derivative based in the Mittag-Leffler function. Numerical simulations of alternative models are presented for evaluating the effectiveness of these representations. Different source terms are considered in the fractional differential equations. The classical behaviors are recovered when the fractional order α is equal to 1.

  17. A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit

    OpenAIRE

    Li, Minghua; Hikihara, Takashi

    2008-01-01

    The redox (Reduction-Oxidation) flow battery is one of the most promising rechargeable batteries due to its ability to average loads and output of power sources. The transient characteristics are well known as the remarkable feature of the battery. Then it can also compensate for a sudden voltage drop. The dynamics are governed by the chemical reactions, fluid flow, and electrical circuit of its structure. This causes the difficulty of the analysis at transient state. This paper discusses the...

  18. Ubiquity of chaotic magnetic-field lines generated by three-dimensionally crossed wires in modern electric circuits.

    Science.gov (United States)

    Hosoda, M; Miyaguchi, T; Imagawa, K; Nakamura, K

    2009-12-01

    We investigate simple three-dimensionally crossed wires carrying electric currents which generate chaotic magnetic-field lines (CMFLs). As such wire systems, cross-ring and perturbed parallel-ring wires are studied, since topologically equivalent configurations to these systems can often be found in contemporary electric and integrated circuits. For realistic fundamental wire configurations, the conditions for wire dimensions (size) and current values to generate CMFLs are numerically explored under the presence of the weak but inevitable geomagnetic field. As a result, it is concluded that CMFLs can exist everywhere; i.e., they are ubiquitous in the modern technological world.

  19. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse

    Science.gov (United States)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-09-01

    In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA® using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers.

  20. Effects of the Physical Laboratory versus the Virtual Laboratory in Teaching Simple Electric Circuits on Conceptual Achievement and Attitudes Towards the Subject

    Science.gov (United States)

    Tekbiyik, Ahmet; Ercan, Orhan

    2015-01-01

    Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…

  1. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    Science.gov (United States)

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg.

  2. Quantum Fluctuation in Thermal Vacuum State for Mesoscopic LC Electric Circuit

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; LIANG Xian-Ting

    2000-01-01

    We consider the quantization of LC (inductance-capacitance) circuit at a finite temperature T as any practical circuits always produce Joule heat except for superconductivity. It is shown that the quantum mechanical zeropoint fluctuations of both charge and current increase with upgoing T. Thermal field dynamics is used in ourdiscussion.

  3. Quantum Fluctuation in Mesoscopic Coupled LC Electric Circuits at FiniteTemperature

    Institute of Scientific and Technical Information of China (English)

    LIANG Xian-Ting; FAN Hong-Yi

    2001-01-01

    We consider the quantization of two coupled LC circuits with mutual inductance at a finite temperature T. It is shown that the quantum mechanical zero-point fluctuations of currents in the two circuits both increase with upgoing T. Thermal field dynamics and Weyl-Wigner theorern are used in our calculation of ensemble average of the observables.

  4. Basic electrotechnology

    CERN Document Server

    Ashen, R A

    2013-01-01

    BASIC Electrotechnology discusses the applications of Beginner's All-purpose Symbolic Instruction Code (BASIC) in engineering, particularly in solving electrotechnology-related problems. The book is comprised of six chapters that cover several topics relevant to BASIC and electrotechnology. Chapter 1 provides an introduction to BASIC, and Chapter 2 talks about the use of complex numbers in a.c. circuit analysis. Chapter 3 covers linear circuit analysis with d.c. and sinusoidal a.c. supplies. The book also discusses the elementary magnetic circuit theory. The theory and performance of two windi

  5. CIRCUIT-DESIGN SOLUTIONS AND INFORMATION SUPPORT OF CITY ELECTRIC NETWORKS IN THE CONDITIONS OF THE SMART GRID

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2017-01-01

    Full Text Available The structure, circuit-design solutions and information support of the city electric networks in the conditions of the SMART GRID have been analyzed. It is demonstrated that the new conditions of functioning of electric power engineering, increasing demands for its technological state and reliability in most countries determined the transition to a restructuring of electrical networks to be based on the SMART GRID (intelligent power networks innovative new structure. The definitions of the SMART GRID, its various attributes and characteristics in most developed countries including Belarus are presented. It is revealed that the existing and future circuit and constructive solutions that can automate the process of managing modes of urban electric networks under the SMART GRID conditions are manifold. At present, the most common in distribution networks are the sources of distributed generation (combustion turbines, wind turbines, photovoltaic installations, mini-hydro, etc.. The patterns and problems of information traceability of a traditional urban networks of the unified energy system of Belarus have been analyzed, and it is demonstrated that in the conditions of the SMART GRID most of the problems of the control mode that are characteristic for traditional distribution networks 6–10 kV and 0.38 kV, lose their relevance. Therefore, the present article presents and features the main directions of development of automatic control modes of the SMART GRID.

  6. Effects of Electric Contact Failure on Signal Transmission in the Lossy Circuits

    Institute of Scientific and Technical Information of China (English)

    CHEN Ya; SUN Bai-sheng

    2004-01-01

    Based on the former research results of the influence of contact failure in ideal and unmatched circuits, this paper further studies theoretically the effects of contact failure on the digital signal transmission in the lossy circuits, which may happen widely in practical applications. Experiences show that even in high-quality lines, losses deform the voltage and current wave shapes owing to their effects on the amplitude of the various waves making up the over-all line voltage and current. Although the derivations show that the effects of contact failure in the lossy circuits on the signal transmission are quite complicated. The probability of occurrence of error codes can be increased significantly.

  7. Improving the electromagnetic compatibility of track circuits with electric rolling stock of double power supply with induction traction motors and electrictraction network

    Directory of Open Access Journals (Sweden)

    N.G. Visin

    2012-04-01

    Full Text Available In this article the research results of many authors on the effect of current interference from the existing electric rolling stock with induction traction motors (ITM on the track circuits and the possibility of exceeding the train traffic safety standards are used. The new promising scheme of power circuit for electric locomotive of double power supply with an ITM applying the intermediary high-frequency transformer for reducing significantly the interference effects to SCB and communication devices is developed.

  8. Physically based analysis of electrical frequency response of passive microelectronic circuits by heterodyne lock-in thermal means

    Science.gov (United States)

    León, J.; Perpiñà, X.; Altet, J.; Vellvehi, M.; Jordà, X.

    2013-11-01

    This paper combines the heterodyne modulation technique with lock-in detection approaches to characterize the electrical behaviour of electronic systems in the frequency domain by thermal means. A thermal test chip (TTC), featuring a heating resistor and an embedded thermal sensor, is used as a test vehicle to assess this approach. The frequency response of the heating resistor has been first characterized by electrical measurements, yielding to a suitable TTC equivalent circuit which qualitatively explains its behaviour. Then, in order to infer this behaviour by thermal means, the heating resistor temperature has been heterodynally detected by on-chip local sensing (embedded thermal sensor) and off-chip spatially resolved (infrared lock-in thermography) techniques. The results of this paper show that from low-frequency temperature measurements it is possible to obtain the electrical frequency response of the TTC and to detect and locate capacitive coupling that disturbs the high-frequency operation of the device.

  9. Effects of a parallel resistor on electrical characteristics of a piezoelectric transformer in open-circuit transient state.

    Science.gov (United States)

    Chang, Kuo-Tsai

    2007-01-01

    This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.

  10. Catalytic nucleic acids (DNAzymes) as functional units for logic gates and computing circuits: from basic principles to practical applications.

    Science.gov (United States)

    Orbach, Ron; Willner, Bilha; Willner, Itamar

    2015-03-11

    This feature article addresses the implementation of catalytic nucleic acids as functional units for the construction of logic gates and computing circuits, and discusses the future applications of these systems. The assembly of computational modules composed of DNAzymes has led to the operation of a universal set of logic gates, to field programmable logic gates and computing circuits, to the development of multiplexers/demultiplexers, and to full-adder systems. Also, DNAzyme cascades operating as logic gates and computing circuits were demonstrated. DNAzyme logic systems find important practical applications. These include the use of DNAzyme-based systems for sensing and multiplexed analyses, for the development of controlled release and drug delivery systems, for regulating intracellular biosynthetic pathways, and for the programmed synthesis and operation of cascades.

  11. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    Science.gov (United States)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night

  12. IMPROVING THE RELIABILITY OF THE POWER CIRCUIT OF THE ELECTRIC TRAINS ЕР2Т AND ЕПЛ2Т

    Directory of Open Access Journals (Sweden)

    N. H. Visin

    2010-02-01

    Full Text Available The transitional processes in shunt circuit of traction engines, which armatures and excitation windings are connected in non-conducting direction as to the flowing power current, are considered in this paper. The changes in the control circuits of braking switch and in the shunt power circuit of traction engines with additional mounting a resistor of 0.5 Ohm are proposed. All this modernization will allow increasing greatly the operation reliability of power circuit of ЭР2Т and ЕПЛ2Т electric locomotives during their service life.

  13. Electronic meter with custom integrated circuit for electric energy measurement; Medidor eletronico de energia eletrica com circuito integrado dedicado

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Roberto Pereira

    1990-04-01

    The design and implementation of an electrical energy electronic meter for operation at low voltages, according to two steps of development carried out in Centro de Pesquisas de Energia Eletrica - CEPEL is described. In the first step, an electronic meter with discrete commercial components has been developed, in order to demonstrate to the Brazilian power suppliers the feasibility of such a device for electrical energy metering and charging. The second step was constituted by the design of an integrated circuit, aiming the reduction of the cost of the meter as well as the enhancement of its reliability. Several techniques of electrical energy measurement are presented. The meter with discrete components makes use of a time division multiplier (TDM), in order to determine the active power in the load. Voltage and current levels have been reduced through the use of voltage and current sensors compatible with the TDM's inputs. A V-F converter employing continuos integration, has been used for the determination of the energy consumed by the load through the integration of the TDM's output signal. Most of the discrete components of the meter have been replaced by the dedicated integrated circuit. The TDM has remained essentially the same, but the V-F converter has been changed into a dual-slope one, which is more adequate for implementation in a single chip. The tests performed with the prototypes of the meter including both the meter with discrete components and the meter with the custom-made integrated circuit have presented measurement errors of less the 0,2 %. The initial goal, according to Brazilian specifications of electromechanical meters and international specifications for electronic meters, was 1 %. (author)

  14. Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators.

    Science.gov (United States)

    Bonatto, Cristian; Gallas, Jason Alfredo Carlson

    2008-02-28

    We report high-resolution phase diagrams for several familiar dynamical systems described by sets of ordinary differential equations: semiconductor lasers; electric circuits; Lorenz-84 low-order atmospheric circulation model; and Rössler and chemical oscillators. All these systems contain chaotic phases with highly complicated and interesting accumulation boundaries, curves where networks of stable islands of regular oscillations with ever-increasing periodicities accumulate systematically. The experimental exploration of such codimension-two boundaries characterized by the presence of infinite accumulation of accumulations is feasible with existing technology for some of these systems.

  15. Testable Subsystems Generation for Fault Detection and Isolation Using a Structural Matching Rank Algorithm Testability of an Electrical Circuit

    Directory of Open Access Journals (Sweden)

    Benazzouz Djamel

    2013-05-01

    Full Text Available In this study, an advanced way of dealing with testable subsystems and residual generation for fault detection and isolation based on structural analysis is presented. The developed technique considers execution issues; therefore, it has a more realistic point of view compared to classical structural approaches available in the literature. First, theoretical aspects of structural analysis are considered and introduced. Then the way of incorporating them to test the structural proprieties is explained. Finally, we show how the proposed (upgraded matching rank algorithm can be used in order to choose the most suited matching that leads to computational sequences and detection tests. The method is demonstrated using an electrical circuit.

  16. Electricity. A Bilingual Text = Electricidad. Un Texto Bilingue.

    Science.gov (United States)

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    This booklet is a course of instruction in electricity in a two-column, English-Spanish format. Following an introduction to electricity and a lesson on safety, the booklet contains 21 units covering the following topics: ways to produce electricity; basic circuits; electrical measurements; electric generators; transformers, symbols and…

  17. Electricity. A Bilingual Text = Electricidad. Un Texto Bilingue.

    Science.gov (United States)

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    This booklet is a course of instruction in electricity in a two-column, English-Spanish format. Following an introduction to electricity and a lesson on safety, the booklet contains 21 units covering the following topics: ways to produce electricity; basic circuits; electrical measurements; electric generators; transformers, symbols and…

  18. Solenoid-Simulation Circuit

    Science.gov (United States)

    Simon, R. A.

    1986-01-01

    Electrical properties of solenoids imitated for tests of control circuits. Simulation circuit imitates voltage and current responses of two engine-controlling solenoids. Used in tests of programs of digital engine-control circuits, also provides electronic interface with circuits imitating electrical properties of pressure sensors and linear variable-differential transformers. Produces voltages, currents, delays, and discrete turnon and turnoff signals representing operation of solenoid in engine-control relay. Many such circuits used simulating overall engine circuitry.

  19. Study of the selective effect on cells induced by nanosecond pulsed electric field with the resistor-capacitor circuit model

    Institute of Scientific and Technical Information of China (English)

    Xu Fei; Xiao Dengming; Li Zhaozhi

    2009-01-01

    A resistor-capacitor (RC) circuit model is proposed to study the effect of nanosecond pulsed electric field on cells according to the structure and electrical parameters of cells. After a nanosecond step field has been applied, the variation of voltages across cytomembrane and mitochondria membrane both in normal and in malignant cells are studied with this model. The time for selectively targeting the mitochondria membrane and malignant cell can be evaluated much easily with curves that show the variation of voltage across each membrane with time. Ramp field is the typical field applied in electrobiology. The voltages across each membrane induced by ramp field are analyzed with this model. To selectively target the mitochondria membrane, proper range of ramp slope is needed. It is relatively difficult to decide the range of a slope to selectively affect the malignant cell. Under some conditions, such a range even does not exist.

  20. Three-dimensional modelling of electric-arc development in a low-voltage circuit-breaker

    Energy Technology Data Exchange (ETDEWEB)

    Piqueras, L.; Henry, D.; Jeandel, D.; Scott, J. [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS/Universite de Lyon, Ecole Centrale de Lyon/Universite Lyon 1/INSA de Lyon, ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex (France); Wild, J. [Schneider Electric, 37 quai Merlin, 38050 Grenoble Cedex 9 (France)

    2008-09-15

    This article describes direct numerical simulation of the first three milliseconds following ignition of the arc in a low-voltage circuit-breaker using a computational-fluid-dynamics code adapted for electric-arc modelling. The mobile electrode is allowed for by a moving mesh. The results describe the evolution of the arc with time in terms of its detailed electrical, thermal and fluid dynamic properties. They allow the identification of several phases during the overall arc development process studied here: arc initialisation in the widening electrode gap, arc-thermal expansion, displacement of the arc towards the tip of the mobile electrode, and the beginning of commutation to the fixed electrode. (author)

  1. The response of the earth's global electrical circuit to a solar proton event

    Science.gov (United States)

    Tzur, I.; Roble, R. G.; Reid, C. C.; Zhuang, H. C.

    An ion chemistry model of the atmosphere is used to calculate the background electric conductivity distribution and its variation during the August 1972 solar proton event and the accompanying Forbush decrease. Two-dimensional model calculations show that the solar protons significantly affect the high-latitude electrical structure of the middle atmosphere without much influence on the electrical structure of the troposphere. The maximum calculated change in the air-earth current, ground electric field, and ionospheric potential is about 10 percent which occurs during the maximum of the Forbush decrease in cosmic ray flux.

  2. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  3. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... Events About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  5. Anterior wrist and medial malleolus as the novel sites of tissue selection: a retrospective study on electric shock death through the hand-to-foot circuit pathway.

    Science.gov (United States)

    Xu, Guangtao; Su, Ruibing; Lv, Junyao; Hu, Bo; Gu, Huan; Li, Xianxian; Gu, Jiang; Yu, Xiaojun

    2017-01-06

    Our previous work demonstrated that characteristic changes could occur in the anterior wrist and medial malleolus in electric deaths through the hand-to-foot electric circuit pathway in an electric shock rat model. However, whether the same phenomenon occurs in humans is unknown. The aim of the present retrospective study was to ascertain whether the anterior wrist and medial malleolus could also be selected as the promising and significant sites in electric death through the hand-to-foot circuit pathway. Nineteen human cases from the autopsy and one clinical survivor who sustained a severe electric shock through the hand-to-foot circuit pathway were analyzed. Additional ten autopsy patients who died from traffic accidents and sudden cardiac attacks were used as the control group. Histopathological changes in the soft tissues of the anterior wrist and medial malleolus in all autopsy patients, as well as the electric current pathway of the survivor, were observed. The results showed that the nuclear polarizations in the anterior wrist and medial malleolus soft tissues of the electric death were extremely noticeable as compared with the controls. The most severe electrical injury in the survivor occurred in the anterior wrist. These findings suggest that the soft tissues of the anterior wrist and/or the medial malleolus as the narrowest parts of the limbs could be used as the complementary sites for tissue selection and considered as necessary locations for examinations to assess the electric death in medicolegal identification.

  6. Student use of model-based reasoning when troubleshooting an electric circuit

    Science.gov (United States)

    Dounas-Frazer, Dimitri

    2016-05-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  7. High-fidelity pulse density modulation in neuromorphic electric circuits utilizing natural heterogeneity

    Science.gov (United States)

    Utagawa, Akira; Asai, Tetsuya; Amemiya, Yoshihito

    Hospedales et al. have recently proposed a neural network model of the “vestibulo-ocular reflex” (VOR) in which a common input was given to multiple nonidentical spiking neurons that were exposed to uncorrelated temporal noise, and the output was represented by the sum of these neurons. Although the function of the VOR network is equivalent to pulse density modulation, the neurons' non-uniformity and temporal noises given to the neurons were shown to improve the output spike's fidelity to the analog input. In this paper, we propose a CMOS analog circuit for implementing the VOR network that exploits the non-uniformity of real MOS devices. Through extensive laboratory experiments using discrete MOS devices, we show that the output's fidelity to the input pulses is clearly improved by using multiple neuron circuits, in which the non-uniformity is naturally embedded into the devices.

  8. Charge Yield at Low Electric Fields: Considerations for Bipolar Integrated Circuits

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2013-01-01

    A significant reduction in total dose damage is observed when bipolar integrated circuits are irradiated at low temperature. This can be partially explained by the Onsager theory of recombination, which predicts a strong temperature dependence for charge yield under low-field conditions. Reduced damage occurs for biased as well as unbiased devices because the weak fringing field in thick bipolar oxides only affects charge yield near the Si/SiO2 interface, a relatively small fraction of the total oxide thickness. Lowering the temperature of bipolar ICs - either continuously, or for time periods when they are exposed to high radiation levels - provides an additional degree of freedom to improve total dose performance of bipolar circuits, particularly in space applications.

  9. Charge Yield at Low Electric Fields: Considerations for Bipolar Integrated Circuits

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2013-01-01

    A significant reduction in total dose damage is observed when bipolar integrated circuits are irradiated at low temperature. This can be partially explained by the Onsager theory of recombination, which predicts a strong temperature dependence for charge yield under low-field conditions. Reduced damage occurs for biased as well as unbiased devices because the weak fringing field in thick bipolar oxides only affects charge yield near the Si/SiO2 interface, a relatively small fraction of the total oxide thickness. Lowering the temperature of bipolar ICs - either continuously, or for time periods when they are exposed to high radiation levels - provides an additional degree of freedom to improve total dose performance of bipolar circuits, particularly in space applications.

  10. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.

    Science.gov (United States)

    Tasci, Tonguc O; Johnson, William P; Fernandez, Diego P; Manangon, Eliana; Gale, Bruce K

    2014-10-24

    Compared to other sub-techniques of field flow fractionation (FFF), cyclical electrical field flow fractionation (CyElFFF) is a relatively new method with many opportunities remaining for improvement. One of the most important limitations of this method is the separation of particles smaller than 100nm. For such small particles, the diffusion rate becomes very high, resulting in severe reductions in the CyElFFF separation efficiency. To address this limitation, we modified the electrical circuitry of the ElFFF system. In all earlier ElFFF reports, electrical power sources have been directly connected to the ElFFF channel electrodes, and no alteration has been made in the electrical circuitry of the system. In this work, by using discrete electrical components, such as resistors and diodes, we improved the effective electric field in the system to allow high resolution separations. By modifying the electrical circuitry of the ElFFF system, high resolution separations of 15 and 40nm gold nanoparticles were achieved. The effects of applying different frequencies, amplitudes and voltage shapes have been investigated and analyzed through experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. arXiv Application of the Waveform Relaxation Technique to the Co-Simulation of Power Converter Controller and Electrical Circuit Models

    CERN Document Server

    Maciejewski, Michał; Schöps, Sebastian; Auchmann, Bernhard; Bortot, Lorenzo; Prioli, Marco; Verweij, Arjan P.

    In this paper we present the co-simulation of a PID class power converter controller and an electrical circuit by means of the waveform relaxation technique. The simulation of the controller model is characterized by a fixed-time stepping scheme reflecting its digital implementation, whereas a circuit simulation usually employs an adaptive time stepping scheme in order to account for a wide range of time constants within the circuit model. In order to maintain the characteristic of both models as well as to facilitate model replacement, we treat them separately by means of input/output relations and propose an application of a waveform relaxation algorithm. Furthermore, the maximum and minimum number of iterations of the proposed algorithm are mathematically analyzed. The concept of controller/circuit coupling is illustrated by an example of the co-simulation of a PI power converter controller and a model of the main dipole circuit of the Large Hadron Collider.

  12. History of Physics as a Tool to Detect the Conceptual Difficulties Experienced by Students: The Case of Simple Electric Circuits in Primary Education

    Science.gov (United States)

    Leone, Matteo

    2014-04-01

    The present paper advocates the use of History of Science into the teaching of science in primary education through a case study in the field of electricity. In this study, which provides both historical and experimental evidence, a number of conceptual difficulties faced by early nineteenth century physicists are shown to be a useful tool to detect 5th grade pupils' conceptions about the simple electric circuits. This result was obtained through the administration of schematics showing circuital situation inspired to early 1800s experiments on the effects of electric current on water electrolysis and on the behaviour of magnetic compasses. It is also shown that the detecting of pupils' alternative ideas about electric current in a circuit is highly dependent on the survey methodology (open ended questions and drawings, multiple-choice item, connecting card work, and history of science tasks were considered in this study) and that the so-called "unipolar model" of electric circuit is more pervasive than previously acknowledged. Finally, a highly significant hybrid model of electric current is identified.

  13. ZER4型蓄电池电力工程车主电路分析%The Main Circuit Analysis of ZER4 Battery Electric Locomotives

    Institute of Scientific and Technical Information of China (English)

    卢玉丹; 丁伟民; 李琛玫

    2016-01-01

    This article mainly take ZER4 Battery Electric Locomotives for example detailed presents the following aspects: from structure of main circuit, technical parameters, principle of main circuit, power supply mode conversion and circuit protection.%主要以ZER4型蓄电池电力工程车为例,从主电路结构、主要技术参数、主电路原理、各供电模式转换分析及电路保护等进行详尽的阐述。

  14. 车载网络技术对汽车传统电路的影响%Influence of Vehicle Network Technology on Traditional Vehicle electric Circuit

    Institute of Scientific and Technical Information of China (English)

    宋捷

    2013-01-01

      文章论述了车载网络技术对汽车传统电路的影响。通过比较前照灯的传统电路与自适应前照明系统工作原理和布线方式等方面的不同,说明传统汽车电路已经远远不能满足智能汽车的需要。%The thesis discuss influence of vehicle network technology on traditional vehicle electric circuit. According to comparing with the headlamp traditional electric circuit and adaptive font-lighting system , we conclude that the tradi-tional automobile electric circuit data transmission has been far from satisfying the needs of the smart car.

  15. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  16. 直流与交流电气线路中铜导线短路痕迹的分析%Analysis on short circuit trace of copper wire in direct and alternating current electric circuits

    Institute of Scientific and Technical Information of China (English)

    王连铁; 高伟; 赵长征; 袁晓光

    2012-01-01

    直流电气线路及交流电气线路中铜导线发生短路故障时所形成的熔痕的组织特征不同,为区分二者之间的差别,利用模拟试验手段制备出金相样品,并采用宏观分析、金相分析等各种技术手段进行分析总结,归纳出二者发生短路故障时所形成的痕迹特征规律.模拟研究结果表明,直流线路一次短路熔痕的金相组织以细小的柱状晶为主,且孔洞较少;在交流线路中,一次短路故障形成的熔痕的金相组织胞状晶较多,且交、直流电气线路中铜导线发生短路故障时所形成的熔痕的组织特征明显不同,这些特征可用于实际鉴定工作中.%The microstructural characteristics of melted marks formed due to the short circuit fault of copper wire in direct current(DC) and alternating current(AC) electric circuits are different.In order to distinguish the difference between them,the metallographic samples were prepared through the simulation tests.In addition,such technical means as macro analysis and metallographic analysis were used to analyze and summarize the characteristics of the mark formed due to the short circuit fault in DC and AC electric circuits.The simulation results show that the microstructures of melted marks formed due to the primary short circuit fault in DC circuit are mainly composed of fine columnar crystals with fewer holes.However,the microstructures of melted marks formed due to the primary short circuit fault in AC circuit contain more cellular crystals.Furthermore,the microstructural characteristics of melted marks formed due to the short circuit faults of copper wire in DC and AC electric circuits are obviously different,and can provide the reference for the actual identification work.

  17. Discrimination of Basic Taste Solutions and Soft Drinks on Electrical and Optical Response Patterns of Artificial Lipid Membrane

    Science.gov (United States)

    Mukai, Keiichi; Misawa, Kenji; Arisawa, Junji

    In this paper, electrical and optical characteristics of artificial lipid membrane for basic taste solutions and tea drinks were examined. The possibility of taste sensing on the electrical and optical response patterns of a single membrane was also discussed. As a result, in case of sour and sweet solutions with different concentration, the patterns of taste response were similar in shape. In case of the tea drinks on some commercial goods, the different shapes among the sample solutions were obtained. Furthermore, the strength of sour taste was reflected in the electrical axis of response pattern and the strength of sweet taste was reflected in the optical axis of response pattern. Therefore, it was found that the possibility of taste sensing using electrical and optical response patterns was obtained from a single membrane.

  18. Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue

    Science.gov (United States)

    Hottowy, Paweł; Skoczeń, Andrzej; Gunning, Deborah E.; Kachiguine, Sergei; Mathieson, Keith; Sher, Alexander; Wiącek, Piotr; Litke, Alan M.; Dąbrowski, Władysław

    2012-01-01

    Objective Modern multielectrode array (MEA) systems can record the neuronal activity from thousands of electrodes, but their ability to provide spatio-temporal patterns of electrical stimulation is very limited. Furthermore, the stimulus-related artifacts significantly limit the ability to record the neuronal responses to the stimulation. To address these issues, we designed a multichannel integrated circuit for patterned MEA-based electrical stimulation and evaluated its performance in experiments with isolated mouse and rat retina. Approach The Stimchip includes 64 independent stimulation channels. Each channel comprises an internal digital-to-analog converter that can be configured as a current or voltage source. The shape of the stimulation waveform is defined independently for each channel by the real-time data stream. In addition, each channel is equipped with circuitry for reduction of the stimulus artifact. Main results Using a high-density MEA stimulation/recording system, we effectively stimulated individual retinal ganglion cells (RGCs) and recorded the neuronal responses with minimal distortion, even on the stimulating electrodes. We independently stimulated a population of RGCs in rat retina and, using a complex spatio-temporal pattern of electrical stimulation pulses, we replicated visually-evoked spiking activity of a subset of these cells with high fidelity. Significance Compared with current state-of-the-art MEA systems, the Stimchip is able to stimulate neuronal cells with much more complex sequences of electrical pulses and with significantly reduced artifacts. This opens up new possibilities for studies of neuronal responses to electrical stimulation, both in the context of neuroscience research and in the development of neuroprosthetic devices. PMID:23160018

  19. Stationary and nonstationary models of the global electric circuit: Well-posedness, analytical relations, and numerical implementation

    Science.gov (United States)

    Kalinin, A. V.; Slyunyaev, N. N.; Mareev, E. A.; Zhidkov, A. A.

    2014-05-01

    We analyze the formulation of the problem of global atmospheric electric circuit modeling. It was shown that under some relatively simple and widely used simplifying assumptions this problem can be reduced to finding the temporal and spatial dependencies of the electric potential on the specified generators, which are determined by the external electric current density. They correspond to thunderclouds in the real atmosphere. The ionospheric potential (the potential difference between the upper and lower atmospheric boundaries) is not specified explicitly but can be uniquely determined from the solution. The formulations of the stationary and nonstationary problems are given in terms of the potential and their well-posedness is discussed. We obtained a number of analytical relations under some restrictions on the distribution of conductivity. They include the formulas which explicitly express the ionospheric potential in terms of the problem parameters. The examples of numerical calculations using the software developed on the basis of general formulations of the stationary and nonstationary problems are demonstrated.

  20. Biological Agent Sensing Integrated Circuit (BASIC): A New Complementary Metal-oxide-semiconductor (CMOS) Magnetic Biosensor System

    OpenAIRE

    2014-01-01

    Fast and accurate diagnosis is always in demand by modern medical professionals and in the area of national defense. At present, limitations of testing speed, sample conditions, and levels of precision exist under current technologies, which are usually slow and involve testing the specimen under laboratory conditions. Typically, these methods also involve several biochemical processing steps and subsequent detection of low energy luminescence or electrical changes, all of which reduce the sp...

  1. Development of hydraulic power unit and accumulator charging circuit for electricity generation, storage and distribution

    Institute of Scientific and Technical Information of China (English)

    C.N.Okoye; JIANG Ji-hai; LIU Hai-chang

    2008-01-01

    It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other(P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the en-ergy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, I.e. 2nd-ordertransfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydrau-lic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.

  2. The Equivalent Electrokinetic Circuit Model of Ion Concentration Polarization Layer: Electrical Double Layer, Extended Space Charge and Electro-convection

    Science.gov (United States)

    Cho, Inhee; Huh, Keon; Kwak, Rhokyun; Lee, Hyomin; Kim, Sung Jae

    2016-11-01

    The first direct chronopotentiometric measurement was provided to distinguish the potential difference through the extended space charge (ESC) layer which is formed with the electrical double layer (EDL) near a perm-selective membrane. From this experimental result, the linear relationship was obtained between the resistance of ESC and the applied current density. Furthermore, we observed the step-wise distributions of relaxation time at the limiting current regime, confirming the existence of ESC capacitance other than EDL's. In addition, we proposed the equivalent electrokinetic circuit model inside ion concentration polarization (ICP) layer under rigorous consideration of EDL, ESC and electro-convection (EC). In order to elucidate the voltage configuration in chronopotentiometric measurement, the EC component was considered as the "dependent voltage source" which is serially connected to the ESC layer. This model successfully described the charging behavior of the ESC layer with or without EC, where both cases determined each relaxation time, respectively. Finally, we quantitatively verified their values utilizing the Poisson-Nernst-Planck equations. Therefore, this unified circuit model would provide a key insight of ICP system and potential energy-efficient applications.

  3. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack

    Science.gov (United States)

    Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn

    2017-03-01

    The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.

  4. Experimental measurements and mathematical modeling of biological noise arising from transcriptional and translational regulation of basic synthetic gene circuits.

    Science.gov (United States)

    Bandiera, Lucia; Pasini, Alice; Pasotti, Lorenzo; Zucca, Susanna; Mazzini, Giuliano; Magni, Paolo; Giordano, Emanuele; Furini, Simone

    2016-04-21

    The small number of molecules, unevenly distributed within an isogenic cell population, makes gene expression a noisy process, and strategies have evolved to deal with this variability in protein concentration and to limit its impact on cellular behaviors. As translational efficiency has a major impact on biological noise, a possible strategy to control noise is to regulate gene expression processes at the post-transcriptional level. In this study, fluctuations in the concentration of a green fluorescent protein were compared, at the single cell level, upon transformation of an isogenic bacterial cell population with synthetic gene circuits implementing either a transcriptional or a post-transcriptional control of gene expression. Experimental measurements showed that protein variability is lower under post-transcriptional control, when the same average protein concentrations are compared. This effect is well reproduced by stochastic simulations, supporting the hypothesis that noise reduction is due to the control mechanism acting on the efficiency of translation. Similar strategies are likely to play a role in noise reduction in natural systems and to be useful for controlling noise in synthetic biology applications.

  5. Creating a simple electric circuit with children between the ages of ...

    African Journals Online (AJOL)

    Βασιλικη

    Art. # 1233, 9 pages, doi: 10.15700/saje.v36n2a1233 ... In the context of science education and the various branches of psychology that have to do with learning ... While studying the question of how eight-year-old children tackle simple electrical phenomena, Shipstone ... children's predictions and explanations regarding.

  6. Resolving Vacuum Fluctuations in an Electrical Circuit by Measuring the Lamb Shift

    Science.gov (United States)

    Fragner, Andreas; Goppl, Martin; Blais, Alexandre; Wallraff, Andreas

    2009-03-01

    Quantum theory predicts that empty space is not truly empty. Even in the absence of any particles or radiation, in pure vacuum, virtual particles are constantly created and annihilated. In an electromagnetic field, the presence of virtual photons manifests itself as a small renormalization of the energy of a quantum system, known as the Lamb shift. We present an experimental observation of the Lamb shift in a solid-state system. The strong dispersive coupling of a superconducting electronic circuit acting as a quantum bit (qubit) to the vacuum field in a transmission-line resonator leads to measurable Lamb shifts of up to 1.4% of the qubit transition frequency. The qubit is also observed to couple more strongly to the vacuum field than to a single photon inside the cavity, an effect that is explained by taking into account the limited anharmonicity of the higher excited qubit states.

  7. Electric traction motion power and energy supply : basics and practical experience

    CERN Document Server

    Steimel, Andreas

    2011-01-01

    This book has evolved from the lecture series ""Elektrische Bahnen" (""Electric railways") which has been held at Ruhr-Universität Bochum since 1996. Its primary audience are students of electrical energy technologies, control engineering and mechanical engineering as well as young engineers of electrical engineering, especially in the fields of power electronics, in railway industry and in railway-operating companies. The book intends to convey mechanical fundamentals of electric railway propulsion, which includes rail-bound guidance, transmission of traction effort from wheel to rail under t

  8. Electrical measurements in the laboratory practice

    CERN Document Server

    Bartiromo, Rosario

    2016-01-01

    This book covers the basic theory of electrical circuits, describes analog and digital instrumentation, and applies modern methods to evaluate uncertainties in electrical measurements. It is comprehensive in scope and is designed specifically to meet the needs of students in physics and electrical engineering who are attending laboratory classes in electrical measurements. The topics addressed in individual chapters include the analysis of continuous current circuits; sources of measurement uncertainty and their combined effect; direct current measurements; analysis of alternating current circuits; special circuits including resonant circuits, frequency filters and impedance matching networks; alternating current measurements; analog and digital oscilloscopes; non-sinusoidal waveforms and circuit excitation by pulses; distributed parameter components and transmission lines. Each chapter is equipped with a number of problems. A special appendix describes a series of nine experiments, in each case providing a p...

  9. Modeling and Computer Simulation of the Pulsed Powering of Mechanical D.C. Circuit Breakers for the CERN/LHC Superconducting Magnet Energy Extraction System

    CERN Document Server

    Anushat, V; Erokhin, A; Kussul, A; Medvedko, A S

    2000-01-01

    This article presents the results of modeling and computer simulation of non-linear devices such as the Electromagnetic Driver of a D.C. Circuit Breaker. The mechanical and electromagnetic parts of the Driver are represented as equivalent electrical circuits and all basic processes of the Driver's magnetic circuit are calculated.

  10. Electric versus hydraulic hospital beds: differences in use during basic nursing tasks.

    Science.gov (United States)

    Capodaglio, Edda Maria

    2013-01-01

    Biomechanical, postural and ergonomic aspects during real patient-assisting tasks performed by nurses using an electric versus a hydraulic hospital bed were observed. While there were no differences in the flexed postures the nurses adopted, longer performance times were recorded when electric beds were used. Subjective effort, force exertion and lumbar shear forces exceeding safety limits proved electric beds were superior. Patients' dependency level seemed to influence the type of nurses' intervention (duration and force actions), irrespective of the bed used. The nurses greatly appreciated the electric bed. Its use seemed to reduce the level of effort perceived during care giving and the postural load during critical subtasks. Ergonomics and organizational problems related to adopting electric beds in hospital wards should be addressed further to make their use more efficient.

  11. Fabrication and electrical characterization of sub-micron diameter through-silicon via for heterogeneous three-dimensional integrated circuits

    Science.gov (United States)

    Abbaspour, R.; Brown, D. K.; Bakir, M. S.

    2017-02-01

    This paper presents the fabrication and electrical characterization of high aspect-ratio (AR) sub-micron diameter through silicon vias (TSVs) for densely interconnected three-dimensional (3D) stacked integrated circuits (ICs). The fabricated TSV technology features an AR of 16:1 with 680 nm diameter copper (Cu) core and 920 nm overall diameter. To address the challenges in scaling TSVs, scallop-free low roughness nano-Bosch silicon etching and direct Cu electroplating on a titanium-nitride (TiN) diffusion barrier layer have been developed as key enabling modules. The electrical resistance of the sub-micron TSVs is measured to be on average 1.2 Ω, and the Cu resistivity is extracted to be approximately 2.95 µΩ cm. Furthermore, the maximum achievable current-carrying capacity (CCC) of the scaled TSVs is characterized to be approximately 360 µA for the 680 nm Cu core.

  12. Do Skilled Elementary Teachers Hold Scientific Conceptions and Can They Accurately Predict the Type and Source of Students' Preconceptions of Electric Circuits?

    Science.gov (United States)

    Lin, Jing-Wen

    2016-01-01

    Holding scientific conceptions and having the ability to accurately predict students' preconceptions are a prerequisite for science teachers to design appropriate constructivist-oriented learning experiences. This study explored the types and sources of students' preconceptions of electric circuits. First, 438 grade 3 (9 years old) students were…

  13. MATHEMATICAL MODELING OF TRANSIENT EMERGENCY ELECTROMAGNETIC PROCESSES IN THE SYSTEM OF THE ELECTROMAGNETIC TRACTION DC. 2. SHORT CIRCUIT WITH ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    P. E. Mihalichenko

    2010-04-01

    Full Text Available The article deals with the description of mathematical model of the system of traction electric power supply with load in the short circuit condition as well as the calculation results of this emergency process. The transition values as well as the character of their change, which can be used for detection of emergency processes, have been determined.

  14. New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites

    DEFF Research Database (Denmark)

    Rycroft, Michael J.; Odzimek, Anna; Arnold, Neil F.

    2007-01-01

    Several processes acting below, in and above thunderstorms and in electrified shower clouds drive upward currents which close through the global atmospheric electric circuit, These are all simulated in a novel way using the software package PSpice. A moderate negative cloud-to-ground lightning di...

  15. Practical electrical engineering

    CERN Document Server

    N Makarov, Sergey; Bitar, Stephen J

    2016-01-01

    This textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical and computer engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as robotics, mechanical, biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors’ primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers. Provides a self-contained, fundamental textbook on electric circuits and basic electronic...

  16. An improved logarithmic amplifier circuit for PDS microdensitometers

    Science.gov (United States)

    Anderson, C. M.; Slovak, M. H.; Michalski, D. E.

    1984-01-01

    A high speed logarithmic amplifier circuit for the Perkin-Elmer PDS microdensitometer is discussed. The circuit is designed around an Analog Devices 757p log-amp module. The amplifier produces undistorted profiles of rapidly changing, dense ( 4) images over the available range of scanning speeds. The circuit board was designed to replace directly the manufacturer supplied unit; neither electrical nor mechanical modifications of the basic PDS are required. The performance of the circuit is illustrated through its effects on the overall modulation transfer function of the instrument and by scans of a well exposed stellar image. Circuit diagrams and parts lists a mechanism for obtaining either circuit board layout art work or finished circuit boards are presented.

  17. Calculation of cooling internal circuits loss of load curve in giant electric machines; Calculo da curva de perda de carga dos circuitos axiais internos de refrigeracao de maquinas eletricas gigantes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Hilton Penha [Parana Univ., Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Dept. de Engenharia do Produto; Passos, Alex Sandro Barbosa [Parana Univ., Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Dept. de Pesquisa e Desenvolvimento do Produto

    2001-07-01

    This article describes a method for calculation of the loss of load curve for the ventilation axial circuits. The method assumes the ventilation circuit representation in a way similar to the electrical circuits. The great difficulty of circuit solution resides in the non linearity of the loss of load resistances and the equations relating the pressures and flows. The method is based on the association of the resistance curves of loss of load in a such way that, when the resistance curve of the total circuit loss of load is obtained, the blower operation point can be easily obtained and, consequently, the individual flows for each section of the circuit.

  18. The Dynamical Topological Models of Lagrange’s and Hamiltonian Equations for Complex Nonlinear Electrical Circuit System%复杂非线性电路系统的动力学方程模型

    Institute of Scientific and Technical Information of China (English)

    欧松

    2012-01-01

    Lagrange和Hamilton运动方程是分析力学的基本原理之一和方法论.应用Lagrange和Hamilton原理建立复杂非线性电路保守动力学方程模型是一种形式化可行的方法.对非保守的动力学系统,定义描述电路系统的荷控支路和链控支路的微观结构概念,应用Hamilton结构的方法,可以得到与Lagrange结构等价的方程组;考虑大规模电路系统的复杂性,依据电路系统荷控支路和链控支路微观结构的概念,给出具有控制参量的Lagrange和Hamilton函数,以及具有相应关联矩阵和联接矩阵形式的Lagrange和Hamilton的动态方程;分析了保守和非保守复杂系统拓扑结构关系的描述和其动力学系统的建模,其建模过程具有规范性和方程具有对称性.虽然数学推导过程繁琐,但适合于计算机辅助形式化分析;基于Hamilton方法建立的电路模型为一阶微分动态方程组,特别适合进行理论分析和数值仿真计算.%The Lagrange's and Hamiltonian movement equation are one of the basic principles of analytical mechanics and methodology. The application of Lagrange's and Hamiltonian theory approach to modeling complex nonlinear conservation electrical circuits dynamics system is a practicable in formulation methodology. But for the non conservation electrical circuits dynamics system, a new micro structure conception of electric charge quantitative control branch and magnetic chain control branch in electrical circuit system has been put forward that have equality with the Lagrange's equations; Consideration of the topological complexity of large electrical circuit system, based on the micro structure conception of electric charge quantitative control branch and magnetic chain control branch in electrical circuit, and the Lagrange's and Hamiltonian function that have control parameters are given. ; as well as the Lagrange's and Hamiltonian equations that have incidence matrix and linked matrix; So the

  19. Electric field effect on the zigzag (6,0) single-wall BC2N nanotube for use in nano-electronic circuits.

    Science.gov (United States)

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Moghimi, Masoumeh; Hashemian, Saeede

    2013-01-01

    We have analyzed the effect of external electric field on the zigzag (6,0) single-wall BC2N nanotube using density functional theory calculations. Analysis of the structural parameters indicates that the nanotube is resistant against the external electric field strengths. Analysis of the electronic structure of the nanotube indicates that the applied parallel electric field strengths have a much stronger interaction with the nanotube with respect to the transverse electric field strengths and the nanotube is easier to modulate by the applied parallel electric field. Our results show that the properties of the nanotube can be controlled by the proper external electric field for use in nano-electronic circuits.

  20. Magnetic circuit of a contactless torque sensor for electric power steering

    Science.gov (United States)

    Fröhlich, Ekkehart; Jerems, Frank

    Modern passenger cars are increasingly equipped with electromechanical steering assist rather than hydraulic systems known for many decades. Major benefits are reduced fuel consumption (up to 0.2l/100 km) and increased functionality. As such a system reacts to the drivers input in terms of steering torque or steering effort, a sensor is required that accurately measures the steering torque. Valeo has adopted a magnetic technology and has improved the performance by adding specially designed flux concentration devices. The magnetic circuit consists of a multi-pole ring magnet and a pair of ring-shaped soft magnetic parts rotating together with the steering shaft and an additional pair of soft magnetic flux concentration devices which are fixed stationary inside the housing. The steering torque causes a relative twist between magnet and the soft magnetic rings, therefore implementing a proportional magnetisation of the latter. A U-shape was chosen for the flux concentration devices in order to compensate mechanical tolerances of the system. The main focus of this paper will be on the tolerance behaviour of the sensor system and the impact of the flux concentration devices. Because of the nonlinear nature of the magnetisation curve of the NiFe alloy used extensive 3D FEM simulation was necessary. Simulation enables us to have a look inside the soft magnetic material and predict the spatial magnetisation distribution with the benefit of avoiding saturation. The result is an optimised sensor, which meets both the harsh environmental conditions inside the motor compartment as well as the cost pressure in the automotive business.

  1. A Fan-tastic Alternative to Bulbs: Learning Circuits with Fans

    Science.gov (United States)

    Ekey, Robert; Edwards, Andrea; McCullough, Roy; Reitz, William; Mitchell, Brandon

    2017-01-01

    The incandescent bulb has been a useful tool for teaching basic electrical circuits, as brightness is related to the current or power flowing through a bulb. This has led to the development of qualitative pedagogical treatments for examining resistive combinations in simple circuits using bulbs and batteries, which were first introduced by James…

  2. Managing electrical safety

    CERN Document Server

    Wiggins, James H, Jr

    2001-01-01

    Managing Electrical Safety provides an overview of electric basics, hazards, and established standards that enables you to understand the hazards you are likely to encounter in your workplace. Focusing on typical industrial environments-which utilize voltages much higher than household or office circuits-the author identifies the eight key components of an electrical safety program and examines each using a model safety management process. You'll learn how to identify electrical hazards, how to prescribe necessary electrical Personal Protective Equipment, how to ensure that equipment is de-ene

  3. Pragmatic electrical engineering fundamentals

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Fundamentals introduces the fundamentals of the energy-delivery part of electrical systems. It begins with a study of basic electrical circuits and then focuses on electrical power. Three-phase power systems, transformers, induction motors, and magnetics are the major topics.All of the material in the text is illustrated with completely-worked examples to guide the student to a better understanding of the topics. This short lecture book will be of use at any level of engineering, not just electrical. Its goal is to provide the practicing engineer with a practi

  4. Description of Self-efficacy and Initial Cognitive Abilities on the Students’ Physics Learning of the Direct Current Electrical Circuits

    Science.gov (United States)

    Zaenudin; Maknun, J.; Muslim

    2017-03-01

    This study aims to determine description of self -efficacy and initial cognitive abilities on the students of MAN 1 Bandung (senior high school) in learning physics on the subject of electrical circuits Direct Current (DC) before they get academy ask assigned in the classroom. From the results of this research can be used as a reference to provide appropriate measures for the advancement of student learning. The theory used in this research is the theory of Bandura. The design in this study using case study and data collection is done by tests and questionnaires, sampling techniques used by random sampling, the study was conducted on 10th grade students of MAN 1 Bandung by the amount of students 35 participants. The results of data analysis showed that the percentage of students who have moderate self-efficacy amounted to 67.05 %, and cognitive ability 50 %, this shows that the process of learning that takes place in school before that junior high school is not much scientific implement processes that provide students the opportunity to discover new things, then learning approaches of right is Problem Based Learning (PBL).

  5. Learning Electrical Circuits: The Effects of the 4C-ID Instructional Approach in the Acquisition and Transfer of Knowledge

    Directory of Open Access Journals (Sweden)

    Mario Melo

    2015-07-01

    Full Text Available This study was designed to investigate the effects of two instructional approaches (4C-ID versus conventional on learners’ knowledge-acquisition and learning transfer of the electrical circuits content in Physics. Participants were 129 9th graders from a secondary school in Lisbon, M = 14.3 years, SD = 0.54. The participants were divided in two groups: an experimental group constituted three intact classes (n = 78; and a control group constituted two intact classes (n = 51. The experimental group was taught using a digital learning environment designed with the 4C-ID model principles while the control group learned the same contents through a conventional method. We assessed the students’ performance (knowledge-acquisition and transfer, the perceived cognitive load, and the instructional efficiency. Results indicated that the experimental group performed significantly better than the control group on a knowledge-acquisition test and in a learning transfer test. They also perceived a less cognitive load in the transfer test and the learning environment developed with the 4C-ID model proved to be more instructional efficient than the conventional method.

  6. An Examination of AC/HVDC Power Circuits for Interconnecting Bulk Wind Generation with the Electric Grid

    Directory of Open Access Journals (Sweden)

    Daniel Ludois

    2010-06-01

    Full Text Available The application of high voltage dc (HVDC transmission for integrating large scale and/or off-shore wind generation systems with the electric grid is attractive in comparison to extra high voltage (EHV ac transmission due to a variety of reasons. While the technology of classical current sourced converters (CSC using thyristors is well established for realization of large HVDC systems, the technology of voltage sourced converters (VSC is emerging to be an alternative approach, particularly suitable for multi-terminal interconnections. More recently, a more modular scheme that may be termed ‘bridge of bridge’ converters (BoBC has been introduced to realize HVDC systems. While all these three approaches are functionally capable of realizing HVDC systems, the converter power circuit design trade-offs between these alternatives are not readily apparent. This paper presents an examination of these topologies from the point of view of power semiconductor requirements, reactive component requirements, operating losses, fault tolerance, multi-terminal operation, modularity, complexity, etc. Detailed analytical models will be used along with a benchmark application to develop a comparative evaluation of the alternatives that maybe used by wind energy/bulk transmission developers for performing engineering trade-off studies.

  7. An examination of AC/HVDC power circuits for interconnecting bulk wind generation with the electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Ludois, D.; Venkataramanan, G. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison 1415 Engineering Dr. Madison WI 53706 (United States)

    2010-06-15

    The application of high voltage DC (HVDC) transmission for integrating large scale and/or off-shore wind generation systems with the electric grid is attractive in comparison to extra high voltage (EHV) AC transmission due to a variety of reasons. While the technology of classical current sourced converters (CSC) using thyristors is well established for realization of large HVDC systems, the technology of voltage sourced converters (VSC) is emerging to be an alternative approach, particularly suitable for multi-terminal interconnections. More recently, a more modular scheme that may be termed 'bridge of bridge' converters (BoBC) has been introduced to realize HVDC systems. While all these three approaches are functionally capable of realizing HVDC systems, the converter power circuit design trade-offs between these alternatives are not readily apparent. This paper presents an examination of these topologies from the point of view of power semiconductor requirements, reactive component requirements, operating losses, fault tolerance, multi-terminal operation, modularity, complexity, etc. Detailed analytical models will be used along with a benchmark application to develop a comparative evaluation of the alternatives that may be used by wind energy/bulk transmission developers for performing engineering trade-off studies. (author)

  8. Ultra-sensitive electrical immunoassay biosensors using nanotextured zinc oxide thin films on printed circuit board platforms.

    Science.gov (United States)

    Jacobs, Michael; Muthukumar, Sriram; Panneer Selvam, Anjan; Engel Craven, Jon; Prasad, Shalini

    2014-05-15

    This study demonstrates the development of nanotextured zinc oxide (ZnO) thin films sputter deposited on printed circuit boards (PCB) to enhance the capability in detecting low concentrations of the protein troponin-T. The presence of this particular biomarker in the bloodstream is a direct indicator of current and/or future risk of various forms of cardiovascular diseases. Electrical transduction through impedance spectroscopy was used to detect troponin-T functionalized immunoassays on nanotextured ZnO surfaces. Calibration of the immunoassay was performed by measuring the impedance changes resulting from the binding of increasing concentrations of troponin-T to the immobilized antibodies on the ZnO surface in (i) phosphate buffered saline (PBS) and (ii) human serum. The limit of detection achieved using this platform was 10 fg/mL and 100 fg/mL in PBS and human serum, respectively. Enhanced detection of troponin-T was found to correlate to the oxygen vacancies in the ZnO thin film. PCB was chosen as the substrate for ease of integration with microelectronic device manufacturing. © 2013 Elsevier B.V. All rights reserved.

  9. A 3-D RBF-FD elliptic solver for irregular boundaries: modeling the atmospheric global electric circuit with topography

    Directory of Open Access Journals (Sweden)

    V. Bayona

    2015-04-01

    Full Text Available A numerical model based on Radial Basis Function-generated Finite Differences (RBF-FD is developed for simulating the Global Electric Circuit (GEC within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic PDE in a spherically-shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1 the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space, and related to this (2 the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e. the conductivity profile, the right hand side forcing term of the PDE (i.e. distribution of current sources or the geometry of the lower boundary.

  10. Consistency and advantage of loop regularization method merging with Bjorken-Drell's analogy between Feynman diagrams and electrical circuits

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Da; Wu, Yue-Liang [Chinese Academy of Science, State Key Laboratory of Theoretical Physics (SKLTP), Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China)

    2012-07-15

    The consistency of loop regularization (LORE) method is explored in multiloop calculations. A key concept of the LORE method is the introduction of irreducible loop integrals (ILIs) which are evaluated from the Feynman diagrams by adopting the Feynman parametrization and ultraviolet-divergence-preserving (UVDP) parametrization. It is then inevitable for the ILIs to encounter the divergences in the UVDP parameter space due to the generic overlapping divergences in the four-dimensional momentum space. By computing the so-called {alpha}{beta}{gamma} integrals arising from two-loop Feynman diagrams, we show how to deal with the divergences in the parameter space with the LORE method. By identifying the divergences in the UVDP parameter space to those in the subdiagrams, we arrive at the Bjorken-Drell analogy between Feynman diagrams and electrical circuits. The UVDP parameters are shown to correspond to the conductance or resistance in the electrical circuits, and the divergence in Feynman diagrams is ascribed to the infinite conductance or zero resistance. In particular, the sets of conditions required to eliminate the overlapping momentum integrals for obtaining the ILIs are found to be associated with the conservations of electric voltages, and the momentum conservations correspond to the conservations of electrical currents, which are known as the Kirchhoff laws in the electrical circuits analogy. As a practical application, we carry out a detailed calculation for one-loop and two-loop Feynman diagrams in the massive scalar {phi}{sup 4} theory, which enables us to obtain the well-known logarithmic running of the coupling constant and the consistent power-law running of the scalar mass at two-loop level. Especially, we present an explicit demonstration on the general procedure of applying the LORE method to the multiloop calculations of Feynman diagrams when merging with the advantage of Bjorken-Drell's circuit analogy. (orig.)

  11. Basic Principles of Industrial Electric Power Network Computer Aided Design and Engineering

    OpenAIRE

    M. Fursanov; I. Dul

    2012-01-01

    A conceptual model for a computer aided design and engineering system has been developed in the paper. The paper presents basic automation process principles including a graphical representation   network and calculation results, convenient user interface, automatic mode calculation, selection of transformer rated power and cross-section area of wires. The developed algorithm and program make it possible to save time and improve quality of project implementation.

  12. Basic Principles of Industrial Electric Power Network Computer Aided Design and Engineering

    Directory of Open Access Journals (Sweden)

    M. Fursanov

    2012-01-01

    Full Text Available A conceptual model for a computer aided design and engineering system has been developed in the paper. The paper presents basic automation process principles including a graphical representation   network and calculation results, convenient user interface, automatic mode calculation, selection of transformer rated power and cross-section area of wires. The developed algorithm and program make it possible to save time and improve quality of project implementation.

  13. Circuit Modeling of a MEMS Varactor Including Dielectric Charging Dynamics

    Science.gov (United States)

    Giounanlis, P.; Andrade-Miceli, D.; Gorreta, S.; Pons-Nin, J.; Dominguez-Pumar, M.; Blokhina, E.

    2016-10-01

    Electrical models for MEMS varactors including the effect of dielectric charging dynamics are not available in commercial circuit simulators. In this paper a circuit model using lumped ideal elements available in the Cadence libraries and a basic Verilog-A model, has been implemented. The model has been used to simulate the dielectric charging in function of time and its effects over the MEMS capacitance value.

  14. Meaningful learning of concepts of electric circuits making use of a virtual teaching environment by students of Young and Adult Education

    Directory of Open Access Journals (Sweden)

    Eliéverson Guerchi Gonzales

    2014-08-01

    Full Text Available This paper presents the design, implementation and evaluation of a teaching sequence that worked the fundamental concepts of electricity, as the intensity of the electric current, the electrical resistance and the combination of resistors in the Youth and Adult Education. The instructional material used as support of the teaching sequence was a Virtual Teaching Environment (VTE. The Virtual Teaching Environment includes issues related to simple electric circuits and its development is based on the principles of progressive differentiation and integrative reconciliation as proposed by the Meaningful Verbal Learning Theory by David Ausubel. Another milestone of this work is the Conceptual Change Model by Posner and colleagues. In order to evaluate the impact of the proposed teaching sequence on the students’ learning of the subject we made use of qualitative and quantitative analysis. For this goal, two classrooms in the second phase of Education of Young and Adult level were divided into control and experimental groups. The experimental group had access to the content through the VTE, while the control group accessed the content in the format of the traditional classroom. Data were collected in three moments: semi-structured clinical interview, test dissertation with real images of the components of simple electrical circuits and test dissertation with symbols usually used in physics to represent the electrical circuit components. All tests were applied before and after instruction. These tests were designed to search for evidence to the promotion of meaningful learning and conceptual change in students’ beliefs. The results, both quantitative and qualitative, indicate a significant difference in the post-tests of the experimental group as compared to the post-tests of the control group which points out to the positive effect of the proposed teaching sequence in to develop meaningful learning by the experimental group.

  15. 1D Modeling of a Bifacial Silicon Solar Cell under Frequency Modulation Monochromatic Illumination: Determination of the Equivalent Electrical Circuit Related to the Surface Recombination Velocity

    Directory of Open Access Journals (Sweden)

    H. Ly Diallo

    2012-06-01

    Full Text Available We present in this study the determination of the equivalent electrical circuits associated to the recombination velocities for a bifacial silicon solar cell under frequency modulation and monochromatic illumination. This determination is based on Bode and Nyquist diagrams that is the variations of the phase and the module of the back surface and intrinsic junction recombination velocities. Their dependence on illumination wavelength is also shown.

  16. Brain Basics

    Medline Plus

    Full Text Available ... such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit ... final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons make connections with each other ...

  17. Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion

    Directory of Open Access Journals (Sweden)

    Alexandros Nikolian

    2016-05-01

    Full Text Available In this paper, advanced equivalent circuit models (ECMs were developed to model large format and high energy nickel manganese cobalt (NMC lithium-ion 20 Ah battery cells. Different temperatures conditions, cell characterization test (Normal and Advanced Tests, ECM topologies (1st and 2nd Order Thévenin model, state of charge (SoC estimation techniques (Coulomb counting and extended Kalman filtering and validation profiles (dynamic discharge pulse test (DDPT and world harmonized light vehicle profiles have been incorporated in the analysis. A concise state-of-the-art of different lithium-ion battery models existing in the academia and industry is presented providing information about model classification and information about electrical models. Moreover, an overview of the different steps and information needed to be able to create an ECM model is provided. A comparison between begin of life (BoL and aged (95%, 90% state of health ECM parameters (internal resistance (Ro, polarization resistance (Rp, activation resistance (Rp2 and time constants (τ is presented. By comparing the BoL to the aged parameters an overview of the behavior of the parameters is introduced and provides the appropriate platform for future research in electrical modeling of battery cells covering the ageing aspect. Based on the BoL parameters 1st and 2nd order models were developed for a range of temperatures (15 °C, 25 °C, 35 °C, 45 °C. The highest impact to the accuracy of the model (validation results is the temperature condition that the model was developed. The 1st and 2nd order Thévenin models and the change from normal to advanced characterization datasets, while they affect the accuracy of the model they mostly help in dealing with high and low SoC linearity problems. The 2nd order Thévenin model with advanced characterization parameters and extended Kalman filtering SoC estimation technique is the most efficient and dynamically correct ECM model developed.

  18. Circuit Connectors

    Science.gov (United States)

    1979-01-01

    The U-shaped wire devices in the upper photo are Digi-Klipsm; aids to compact packaging of electrical and electronic devices. They serve as connectors linking the circuitry of one circuit board with another in multi-board systems. Digi-Klips were originally developed for Goddard Space Flight Center to meet a need for lightweight, reliable connectors to replace hand-wired connections formerly used in spacecraft. They are made of beryllium copper wire, noted for its excellent conductivity and its spring-like properties, which assure solid electrical contact over a long period of time.

  19. Nonzero Temperature Squeezing of the Time-Dependent Harmonic Oscillator and the Applications to the Capacitive Coupled Electric Circuit

    Institute of Scientific and Technical Information of China (English)

    LIANG Mai-Lin; YUAN Bing

    2002-01-01

    A new way to calculate the nonzero temperature quantum fluctuations of the time-dependent harmonicoscillator is proposed and the properties of squeezing are exactly given. The method is applied to the capacitive coupledelectric circuit. It is explicitly shown that squeezing can appear and the squeezing parameters are related to the physicalquantities of the coupled circuit.

  20. Energy analysis of the basic materials utilized in electric power transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-30

    The energy content per mile of installed underground and overhead power transmission systems has been calculated for the following types of systems: self-contained oil-filled cables; HPOF pipe-type cables; extruded dielectric cables; compressed-gas-insulated systems; overhead lines (ac and dc) and two proposed superconducting systems (ac and dc). The system operating voltages analyzed included 138, 230, 345, 500, 765 and 1,200 kV for ac systems, but all systems were not analyzed at the higher voltages. The dc overhead lines operated at +-200, +-400, +-600 and +-800 kV. Total installed energy content for these systems ranged from 4 x 10/sup 9/ to 1.2 x 10/sup 11/ Btu per mile. Installation energy requirements were generally 10% or less of the inherent system energy content based on the materials used in each system. Most of the energy content in each system can be attributed to the metallic components; plastic and insulating oil also contribute significantly. The energy content of 36 materials and basic products, in terms of Btu per ton, was calculated as part of this study. Substitution of conductor materials (e.g., aluminum for copper) in cable systems resulted in changes in the total system energy content on the order of 15%.

  1. Construction and Analysis of Electronic circuits

    Science.gov (United States)

    Thomas, Ashley N.

    2004-01-01

    The Aviation Environmental Technical Branch produces many various types of aeronautical research that benefits the NASA mission for space exploration and in turn, produces new technology for our nation. One of the present goals of the Aviation Environmental Technical Branch is to create better engines for airplanes by testing supersonic jet propulsion and safe fuel combustion. During the summer of 2004, I was hired by Vincent Sattenvhite Chief executive of the Aviation Environmental Technical Branch to Assist Yves Lamothe with a fuel igniter circuit. Yves Lamothe is an electrical engineer who is currently working on safe fuel combustion testing. This testing is planned to determine the minimum ignition energy for fuel and air vapors of current and alternative fuels under simulated flight conditions. An air temperature bath will provide simulated flight profile temperatures and the heat fluxes to the test chamber. I was assigned with Yves to help complete the igniter circuit which consists of a 36k voltage supply an oscilloscope, and a high voltage transistor switch. During my tenure in the L.E.C.I.R.P. program I studied the basics of electricity and circuitry along with two other projects that I completed. In the beginning of my internship, I devote all of my time to research the aspects of circuitry so that I would be prepared for the projects that I was assigned to do. I read about lessons on; the basic physical concepts of electronics, Electrical units, Basic dc circuits, direct current circuit analysis, resistance and cell batteries, various types of magnetism , Alternating current basics, inductance, and power supplies. I received work sheets and math equations from my Mentor so that I could be able to apply these concepts into my work. After I complete my studies, I went on to construct a LED chaser circuit which displays a series of light patterns using a 555 timer. I incorporated a switch and motion detector into the circuit to create basic alarm system

  2. Timergenerator circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  3. Basic concepts, status, opportunities, and challenges of electrical machines utilizing high-temperature superconducting (HTS) windings

    Energy Technology Data Exchange (ETDEWEB)

    Frauenhofer, J [Siemens AG, Automation and Drives, Large Drives (Germany); Grundmann, J; Klaus, G; Nick, W [Siemens AG, Corporate Technology, PO Box 3220, 91050 Erlangen (Germany)], E-mail: wolfgang.nick@siemens.com

    2008-02-15

    An overview of the different approaches towards achieving a marketable application of a superconducting electrical machine, either as synchronous motor or generator, will be given. This field ranges from relatively small industrial drives to utility generators with large power ratings, from the low speed and high torque of wind power generators and ship propulsion motors, to high speed generators attached to turbines. Essentially HTS machine technology offers several advantages such as compactness (weight and volume reduction), increased efficiency, and other operational benefits. The machine features have to be optimized with regard to the specific application, and different concepts were developed by internationally competing teams, with Siemens being one of them. The achieved status in these fields will be summarized, pointing to the specific technical challenges to overcome. For this purpose we have not only to consider the technology of manufacturing the HTS rotor winding itself, but also to check requirements and availability of supporting technologies. This ranges from new challenges posed to the non-superconducting ('conventional') components of such innovative HTS machines, manufacturing superconducting material in the coming transition from 1st to 2nd generation HTS tape, cryogenic technology including material behavior, to new and challenging tasks in simulating and predicting the performance of such machines by computational tools. The question of market opportunities for this technology obviously is a function of all these aspects; however, a strong tendency for the near future is seen in the area of high-torque ship propulsion.

  4. Basic concepts, status, opportunities, and challenges of electrical machines utilizing high-temperature superconducting (HTS) windings

    Science.gov (United States)

    Frauenhofer, J.; Grundmann, J.; Klaus, G.; Nick, W.

    2008-02-01

    An overview of the different approaches towards achieving a marketable application of a superconducting electrical machine, either as synchronous motor or generator, will be given. This field ranges from relatively small industrial drives to utility generators with large power ratings, from the low speed and high torque of wind power generators and ship propulsion motors, to high speed generators attached to turbines. Essentially HTS machine technology offers several advantages such as compactness (weight and volume reduction), increased efficiency, and other operational benefits. The machine features have to be optimized with regard to the specific application, and different concepts were developed by internationally competing teams, with Siemens being one of them. The achieved status in these fields will be summarized, pointing to the specific technical challenges to overcome. For this purpose we have not only to consider the technology of manufacturing the HTS rotor winding itself, but also to check requirements and availability of supporting technologies. This ranges from new challenges posed to the non-superconducting ("conventional") components of such innovative HTS machines, manufacturing superconducting material in the coming transition from 1st to 2nd generation HTS tape, cryogenic technology including material behavior, to new and challenging tasks in simulating and predicting the performance of such machines by computational tools. The question of market opportunities for this technology obviously is a function of all these aspects; however, a strong tendency for the near future is seen in the area of high-torque ship propulsion.

  5. Automatic System for the D.C. High Voltage Qualification of the Superconducting Electrical Circuits of the LHC Machine

    CERN Document Server

    Bozzini, D; Russenschuck, Stephan; Bednarek, M; Jurkiewicz, P; Kotarba, A; Ludwin, J; Olek, S

    2008-01-01

    A d.c. high voltage test system has been developed to verify automatically the insulation resistance of the powering circuits of the LHC. In the most complex case, up to 72 circuits share the same volume inside cryogenic lines. Each circuit can have an insulation fault versus any other circuit or versus ground. The system is able to connect up to 80 circuits and apply a voltage up to 2 kV D.C. The leakage current flowing through each circuit is measured within a range of 1 nA to 1.6 mA. The matrix of measurements allows characterizing the paths taken by the currents and locating weak points of the insulation between circuits. The system is composed of a D.C. voltage source and a data acquisition card. The card is able to measure with precision currents and voltages and to drive up to 5 high voltage switching modules offering 16 channels each. A LabVIEW application controls the system for an automatic and safe operation. This paper describes the hardware and software design, the testing methodology and the res...

  6. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 21: Basic Transistor Theory; Module 21T: Multi-Element Vacuum Tubes. Study Booklet.

    Science.gov (United States)

    Chief of Naval Education and Training Support, Pensacola, FL.

    This set of individualized learning modules on transistor theory is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two modules are included in…

  7. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  8. Application of Fast Vacuum Circuit Breaker in Electric System%快速真空断路器在电力系统中的应用

    Institute of Scientific and Technical Information of China (English)

    艾绍贵; 马奎; 吴旭涛; 孙丽琼

    2016-01-01

    介绍了涡流驱动型快速真空断路器的原理,分析了目前配网消弧消谐、故障选线及触电防护、电网短路电流限制、串联补偿及变压器直流偏磁抑制等技术的现状和存在的问题。根据快速真空断路器特点,提出了解决相关技术问题的方法,阐述了相关装置的结构、试验及应用情况,并对快速真空断路器在电力系统中的应用进行了展望。%Introduction was made to the principle of eddy current forced fast vacuum circuit breaker. Analysis was made to the technolo-gies used and problems existing including arc and resonance elimination, fault line selection and electric shock protection, grid short-circuit current limitation, series compensation and transformer direct current magnetic bias suppression etc technologies in distribution network at present. According to the characteristic of fast vacuum circuit breaker, the solution method of those problems was proposed. This paper ex-pounded the structure, experiment and application of the relevant device. The further application of the circuit breaker is prospected.

  9. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2015-09-01

    Full Text Available Models are crucial in the engineering design process because they can be used for both the optimization of design parameters and the prediction of performance. Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs. The proposed model was built from the mechanical description given by the Paraschivoiu double-multiple streamtube model and is based on the analogy between mechanical and electrical circuits. This work addresses the physical concepts and theoretical formulations underpinning the development of the model. After highlighting the working principle of the DTVAWT, the step-by-step development of the model is presented. For assessment purposes, simulations of aerodynamic characteristics and those of corresponding electrical components are performed and compared.

  10. The Changing Global Atmospheric Electric Circuit as a Way of Causing Space Weather Effects on Middle Atmosphere Electrodynamic and Thermodynamic Parameters

    Science.gov (United States)

    Makarova, L.; Shirochkov, A.

    So far the solar wind energy contribution to energetic balance of the middle atmosphere was ignored in any climatic research. However the solar wind is a permanent source of electromagnetic energy constantly supplied to the near-Earth space and its role is evaluated properly in magnetospheric and ionospheric (to lesser extent) studies. We made extensive studies of the direct solar wind influence on the thermodynamic features of the middle atmosphere by analyzing data of the rocket and balloon sounding. Data of many stations covering latitudinal belt 80o N-55o N and 90o S-65o S- were used. It was found that the stratospheric temperature closely correlated with the solar wind energy expressed as the subsolar distance between the Earth and magnetopause. The best coupling between these two parameters (r>0,8) was obtained for altitudes 22-26 km with decreasing (but meaningful) coupling up and dawn from these heights. Similar dependence between this space parameter and ozone density in its stratospheric maximum was obtained also. As a very important factor a strong (r=0,78) coupling between magnetopause position and magnitude of atmospheric electric field measured by high-altitude balloons above South P leo Station must be mentioned. All these findings allowed us to propose concept of the global electric circuit as a physical mechanism for explanation of a direct coupling between the solar wind and the middle atmosphere. We suggest a new, modified version of the circuit where an external Electro-motive Force generator driven by the solar wind energy is located at dayside magnetopause. The passive elements of this circuit are the ionospheric Elayer (external element of previous version of the- circuit), stratospheric conducting layer of heavy ions (h=20-25 km) and conducting layer of the Earth surface. In this configuration a previous scheme of the global electric circuit is a part of the proposed version of it. The changes of stratospheric temperature could be explained

  11. Design of protection circuit for lithium battery used in electric bicycle%电动自行车锂电池组保护电路设计

    Institute of Scientific and Technical Information of China (English)

    许英杰; 孙郅佶; 李帆; 范贤光

    2012-01-01

    The lithium battery with superior performance is the development trend of the electric bicycle power, but needs a dedicated protection circuit to work with so as to ensure the safety and long-period operation. In this paper, a protection circuit board including S-8209A was designed for the lithium battery set with 4-parallel and 10-serial connection mode. It achieved the functions of overcharge protection, overdischarge protection, overcharge-overdischarge balance and overcurrent protection. The circuit has been already applied to the electric bikes with the lithium batteries.%为保证电动自行车锂电池组安全、长寿命的运行,需为其配备专用管理保护电路.为此,针对一款4并10串规格的锂电池组设计了一套保护电路板,采用S-8209A保护芯片,实现了过充电保护、过放电保护、电池充放电平衡、过电流保护、正常带载等功能,已被可靠应用于某款电动自行车的锂电池组中.

  12. Basic electronics

    CERN Document Server

    Tayal, DC

    2010-01-01

    The second edition of this book incorporates the comments and suggestions of my friends and students who have critically studied the first edition. In this edition the changes and additions have been made and subject matter has been rearranged at some places. The purpose of this text is to provide a comprehensive and up-to-date study of the principles of operation of solid state devices, their basic circuits and application of these circuits to various electronic systems, so that it can serve as a standard text not only for universities and colleges but also for technical institutes. This book

  13. Resistor Combinations for Parallel Circuits.

    Science.gov (United States)

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  14. A novel approach for electrical circuit modeling of Li-ion battery for predicting the steady-state and dynamic I–V characteristics

    Indian Academy of Sciences (India)

    SAURABH SAXENA; S RAGHU RAMAN; B SARITHA; VINOD JOHN

    2016-05-01

    A novel approach for electrical circuit modeling of Li-ion battery is proposed in this paper. The model proposed in this paper is simple, fast, not memory intensive and does not involve any look-up table. The model mimics the steady-state and dynamic behavior of battery. Internal charge distribution of the battery is modeled using two RC circuits. Self-discharge characteristic of the battery is modeled using a leakage resistance. Experimental procedure to determine the internal resistance, leakage resistance and the value of RC elements is explained in detail. The variation of parameters with state of charge (SOC) and magnitude of current is presented. The internal voltage source of the battery model varies dynamically with SOC to replicate the experimental terminal voltage characteristics of battery. The accuracy of model is validated with experimental results.

  15. Processamento de placas de circuito impresso de equipamentos eletroeletrônicos de pequeno porte Processing of printed circuit boards of small electrical and electronic devices

    Directory of Open Access Journals (Sweden)

    Sérgio de Souza Henrique Júnior

    2013-01-01

    Full Text Available A hydrometallurgical process applicable to printed circuit boards of small electrical and electronic devices was developed. This involved three leaching steps (60 ºC, 2 h: 6 mol L-1 NaOH, 6 mol L-1 HCl and aqua regia. NaOH removed the resin and flame retardant that covered the circuit boards. HCl dissolved the most electropositive metals and a small amount of copper (~0.3 wt%. Aqua regia dissolved the noble metals. Silver precipitated as AgCl. Gold and platinum were quantitatively extracted with pure methyl-isobutylketone and Alamine 336 (10 % vol. in kerosene, respectively. Slow evaporation of the raffinate crystallized CuCl2.4H2O (89% yield.

  16. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Electrical Engineering Curriculum at the Technical University of Denmark - Options in Microelectronics

    DEFF Research Database (Denmark)

    Bruun, Erik; Nielsen, Lars Drud

    1997-01-01

    This paper describes the modular structure of the engineering curriculum at the Technical University of Denmark. The basic requirements for an electrical engineering curriculum are presented and different possibilities for specialization in microelectronics and integrated circuit design are outli......This paper describes the modular structure of the engineering curriculum at the Technical University of Denmark. The basic requirements for an electrical engineering curriculum are presented and different possibilities for specialization in microelectronics and integrated circuit design...

  18. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  19. Fundamental study on stabilizing control method for electric power system using distributed circuit model; Bunpu teisu kairo moderu ni yoru denryoku keito doyo mogi to anteika seigyo ni kansuru kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.; Kawasaki, K. [Shikoku Electric Power Co., Inc., Kagawa (Japan); Takigawa, K. [Shikoku Reserch Institute Inc., Kagawa (Japan); Ariyoshi, H. [Ehime University, Ehime (Japan)

    1997-06-20

    To grasp the electric power system disturbance, the detailed simulation model of the electric power system is applied, however, it is not so easy to grasp the disturbance characteristics of a large scale electric power system in the broader aspects. On the other hand, from a shut down test of generator and electric load in the electric power system, it is well known that the power disturbance is transmitted from the test point to the other points with constant delay time. The phenomena shows that the electric power system has a similar dynamic characteristic to the distributed constant circuit. In this paper, the electric power system is expressed with the distributed constant circuit so that the main disturbance characteristics are obtained without difficulty. Moreover, the possibility of suppressing the disturbance is discussed by employing active sink method, and distributed constant circuit model and lumped constant circuit model are compared with the viewpoint of eigenvalue and its propriety is showed. Further, as an example, active sink method, the effectiveness of distributed constant model in the suppressing control of electric power system disturbance, is showed. 7 refs., 12 figs., 1 tab.

  20. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  1. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  2. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  3. Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2016-10-01

    Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.

  4. A Study of University Students' Understanding of Simple Electric Circuits. Part 2: Batteries, Ohm's Law, Power Dissipated, Resistors in Parallel.

    Science.gov (United States)

    Picciarelli, V.; And Others

    1991-01-01

    Results of a systematic investigation into university students' (n=236) misunderstandings of d.c. simple circuit operations are reported. These results provide evidence of various misconceptions present before and after teaching the following topics: a battery as a source of constant current; the functional relation expressed by Ohm's law; power…

  5. Flip-flop logic circuit based on fully solution-processed organic thin film transistor devices with reduced variations in electrical performance

    Science.gov (United States)

    Takeda, Yasunori; Yoshimura, Yudai; Adib, Faiz Adi Ezarudin Bin; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2015-04-01

    Organic reset-set (RS) flip-flop logic circuits based on pseudo-CMOS inverters have been fabricated using full solution processing at a relatively low process temperatures of 150 °C or less. The work function for printed silver electrodes was increased from 4.7 to 5.4 eV through surface modification with a self-assembled monolayer (SAM) material. A bottom-gate, bottom-contact organic thin-film transistor (OTFT) device using a solution-processable small-molecular semiconductor material exhibited field-effect mobility of 0.40 cm2 V-1 s-1 in the saturation region and a threshold voltage (VTH) of -2.4 V in ambient air operation conditions. In order to reduce the variations in mobility and VTH, we designed a circuit with six transistors arranged in parallel, in order to average out their electrical characteristics. As a result, we have succeeded in reducing these variations without changing the absolute values of the mobility and VTH. The fabricated RS flip-flop circuits were functioned well and exhibited short delay times of 3.5 ms at a supply voltage of 20 V.

  6. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Eight: Induction. Study Booklet.

    Science.gov (United States)

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on induction is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the module: (1)…

  7. Bridge Wire Electric Ignition Drive Circuits Design%桥丝电点火器的驱动电路设计∗

    Institute of Scientific and Technical Information of China (English)

    张宪国; 曹红松; 赵捍东; 白松

    2015-01-01

    Pulse jet engines are often ignited by gunpowder wrapped bridge wire electric igniter and widely used in aircraft attitude control. The electric igniter needs short-pulse current driving for rapid initiation. In this paper,opto-isolated constant current source and capacitor discharge mode driving circuits are designed for the demand of micro-bridge wire electric igniter. Two kinds of detonating circuit designs implemente the ignition driving of brige wire e-lectric igniter wtih resistance fluctuations. The constant current source mode is capable of long storage life,compact spatial structure and high safety, and the reservoir capacitor mode demonstrates high energy efficiency and fast-acting for quick initiation. Two methods provide reference designs for the pulse jet engines of different engineering requirements.%用于飞行器姿态控制的脉喷发动机常采用火药包裹的桥丝电点火器进行点火,电点火器需要短时脉冲电流驱动。本文针对微小型桥丝电点火器驱动需求,设计了光耦隔离恒流源方式及电容储能脉冲放电驱动电路,均实现了对阻值波动桥丝电点火器的点火驱动。试验证明,光耦隔离恒流源方式可靠性高,安全稳定,电容储能放电方式效率高、作用迅速。该两种设计方法可为脉喷发动机的工程实践提供参考。

  8. DOE Fundamentals Handbook: Electrical Science, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  9. DOE Fundamentals Handbook: Electrical Science, Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive transformers; and electrical test components; batteries; AC and DC voltage regulators; instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  10. DOE Fundamentals Handbook: Electrical Science, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  11. Modern TTL circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com

  12. Linking neuroscientific research on decision making to the educational context of novice students assigned to a multiple-choice scientific task involving common misconceptions about electrical circuits

    Directory of Open Access Journals (Sweden)

    Patrice ePotvin

    2014-01-01

    Full Text Available Functional magnetic resonance imaging was used to identify the brain-based mechanisms of uncertainty and certainty associated with answers to multiple-choice questions involving common misconceptions about electric circuits. Twenty-two (22 scientifically novice participants (humanities and arts college students were asked, in an fMRI study, whether or not they thought the light bulbs in images presenting electric circuits were lighted up correctly, and if they were certain or uncertain of their answers. When participants reported that they were unsure of their responses, analyses revealed significant activations in brain areas typically involved in uncertainty (anterior cingulate cortex, anterior insula cortex, and superior/dorsomedial frontal cortex and in the left middle/superior temporal lobe. Certainty was associated with large bilateral activations in the occipital and parietal regions usually involved in visuospatial processing. Correct-and-certain answers were associated with activations that suggest a stronger mobilization of visual attention resources when compared to incorrect-and-certain answers. These findings provide insights into brain-based mechanisms of uncertainty that are activated when common misconceptions, identified as such by science education research literature, interfere in decision making in a school-like task. We also discuss the implications of these results from an educational perspective.

  13. Linking neuroscientific research on decision making to the educational context of novice students assigned to a multiple-choice scientific task involving common misconceptions about electrical circuits.

    Science.gov (United States)

    Potvin, Patrice; Turmel, Elaine; Masson, Steve

    2014-01-01

    Functional magnetic resonance imaging was used to identify the brain-based mechanisms of uncertainty and certainty associated with answers to multiple-choice questions involving common misconceptions about electric circuits. Twenty-two scientifically novice participants (humanities and arts college students) were asked, in an fMRI study, whether or not they thought the light bulbs in images presenting electric circuits were lighted up correctly, and if they were certain or uncertain of their answers. When participants reported that they were unsure of their responses, analyses revealed significant activations in brain areas typically involved in uncertainty (anterior cingulate cortex, anterior insula cortex, and superior/dorsomedial frontal cortex) and in the left middle/superior temporal lobe. Certainty was associated with large bilateral activations in the occipital and parietal regions usually involved in visuospatial processing. Correct-and-certain answers were associated with activations that suggest a stronger mobilization of visual attention resources when compared to incorrect-and-certain answers. These findings provide insights into brain-based mechanisms of uncertainty that are activated when common misconceptions, identified as such by science education research literature, interfere in decision making in a school-like task. We also discuss the implications of these results from an educational perspective.

  14. Analysis of MIS equivalent electrical circuit of Au/Pd/Ti-SiO2-GaAs structure based on DLTS measurements

    Science.gov (United States)

    Kochowski, S.; Drewniak, Ł.; Nitsch, K.; Paszkiewicz, R.; Paszkiewicz, B.

    2013-08-01

    In this paper MIS equivalent electrical circuit of Au/Pd/Ti-SiO2-GaAs has been analyzed by a comparison of the results obtained from admittance and DLTS spectroscopy. Two groups of peaks with different magnitude and different gate voltage dependence have been observed in DLTS and admittance spectra. Based on the analysis of the peaks behavior, it has been concluded that they are associated with the response of bulk traps and interface states, respectively. In order to characterize bulk traps and interface states responsible for the occurrence of two groups of peaks in normalized conductance spectra we have used the equivalent circuit with two CPE-R branches. The time constant values estimated for both peaks from admittance analysis have been compared with the time constant determined from DLTS analysis. Some discrepancies have been noted between the time constants obtained for interface states whereas the time constants for bulk traps were compatible. It has been also demonstrated that when conductance peaks overlap, the admittance experimental data can be fitted by the equivalent electrical model with only one CPE-R branch. However, in this case incomplete information about the analyzed process has been obtained despite the fact that all model validity criteria can be fulfilled and the model seems to be correct.

  15. BASIC PRINCIPLES OF ORGANIZING OF REPAIR OF A NEW GENERATION OF ELECTRIC POWER LINES 220 kV AND ABOVE

    Directory of Open Access Journals (Sweden)

    Postolaty V.M.

    2011-08-01

    Full Text Available The article describes the requirements for repair work on single circuit and double circuit overhead transmission lines of compact (VL and controlled self-compensating high voltage transmission power lines (CSHVL.These include overhead power lines to a new generation. They differ from traditional overhead using compact designs of supports, the convergence phase of the spans, circuits and substations connections to ways of regulation. With this new generation have the overhead compared to conventional overhead increased bandwidth and improved technical and economic indicators. The design and features of the new circuit overhead lines require a series of new campaigns for the organization of repairs, which are discussed in this article.

  16. All about Electricity. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    How different would life be without electricity? Creating and harnessing electricity has become one of the most important factors in the everyday lives of people. Children learn the basics of electrical current--how it flows and how it can make a circuit--and take a look at some of the ways it is created. Students will see fun, clear…

  17. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  18. Engineering embedded systems physics, programs, circuits

    CERN Document Server

    Hintenaus, Peter

    2015-01-01

    This is a textbook for graduate and final-year-undergraduate computer-science and electrical-engineering students interested in the hardware and software aspects of embedded and cyberphysical systems design. It is comprehensive and self-contained, covering everything from the basics to case-study implementation. Emphasis is placed on the physical nature of the problem domain and of the devices used. The reader is assumed to be familiar on a theoretical level with mathematical tools like ordinary differential equation and Fourier transforms. In this book these tools will be put to practical use. Engineering Embedded Systems begins by addressing basic material on signals and systems, before introducing to electronics. Treatment of digital electronics accentuating synchronous circuits and including high-speed effects proceeds to micro-controllers, digital signal processors and programmable logic. Peripheral units and decentralized networks are given due weight. The properties of analog circuits and devices like ...

  19. Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion

    OpenAIRE

    2016-01-01

    In this paper, advanced equivalent circuit models (ECMs) were developed to model large format and high energy nickel manganese cobalt (NMC) lithium-ion 20 Ah battery cells. Different temperatures conditions, cell characterization test (Normal and Advanced Tests), ECM topologies (1st and 2nd Order Thévenin model), state of charge (SoC) estimation techniques (Coulomb counting and extended Kalman filtering) and validation profiles (dynamic discharge pulse test (DDPT) and world harmonized light v...

  20. Printed Circuit Board Surface Finish and Effects of Chloride Contamination, Electric Field, and Humidity on Corrosion Reliability

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable...... probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions...

  1. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  2. 依据标准探讨机床电气回路保护技术及其运用%Protection Technology of Machine Electrical Circuit and Its Practical Applications Based on the Relevant In-dustry Standards

    Institute of Scientific and Technical Information of China (English)

    孙伟; 马永青

    2015-01-01

    Machine tools' electrical design , installation and usage are related to the electrical circuit choosing , the specifications specify-ing of cables and circuit breaker and the technical conditions of electri-cal components etc . When the machine appears electrically abnormal or operating failure , the main work is speculating the failure through ana-lyzing the protection technology of electrical circuit . This paper is to explore the protection technology of machine tools' electrical circuit and its practical applications based on the relevant national and corporate industry standards .%机床的电气设计、安装与使用一定会涉及到电气回路的选择、电缆及断路器的规格指定、电气元器件的技术条件等等.而当机床出现电气装置异常或运转失效时,也会以分析电气回路的保护技术为主来推测故障.本文依据相关的国家及企业行业标准来探讨机床电气回路的保护技术和应用.

  3. Studies in geophysics: The Earth's electrical environment

    Science.gov (United States)

    1986-01-01

    The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.

  4. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2016-05-01

    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  5. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy.

    Science.gov (United States)

    Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko

    2016-02-01

    High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.

  6. Evolution of short circuit levels in the National Electric System, years 2007 to 2011; Evolucion de los niveles de cortocircuito del Sistema Electrico Nacional, anos 2007 al 2011

    Energy Technology Data Exchange (ETDEWEB)

    Quintana Castaneda, J; Reyes Escobedo, G [Instituto de Investigaciones Electricas (Mexico)]. E-mails: jqc@iie.org.mx; gustavo.reyes@iie.org.mx; Ibarra Romo, F.G. [Comision Federal de Electricidad (Mexico)]. E-mail: federico.ibarra@cfe.gob.mx

    2013-03-15

    The present document shows an analysis of 2011 short-circuit levels on the different nodes (substations) that integrate the National Electric System. This analysis presents the figures of short-circuit levels on past years, stating on 2007, with the purpose of detecting the variation on each one of these nodes and identify the cases that because it's high levels are considered as critical nodes of the transmission system. At the end of the analysis some recommendations to minimize the potential risks are given on those substations classified as critical nodes. [Spanish] En este documento se expone un analisis de los niveles de cortocircuito que se presentaron en el 2011 en los distintos nodos (subestaciones) que conforman la red del Sistema Electrico Nacional (SEN). Este analisis muestra las cifras de los niveles de cortocircuito que se han presentado desde el ano 2007, a fin de estudiar el comportamiento y evolucion que han tenido los nodos de la red electrica, identificando aquellos puntos que por sus altos niveles de cortocircuito se consideran como nodos criticos. En la parte final del analisis se dan algunas recomendaciones para disminuir los riesgos que se pudieran presentar en aquellas subestaciones clasificadas como nodos criticos.

  7. Electrical Characterization of Metal-Insulator-Metal Capacitors with Atomic-Layer-Deposited HfO2 Dielectrics for Radio Frequency Integrated Circuit Application

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu-Jian; HUANG Yue; DING Shi-Jin; ZHANG Wei; LIU Ran

    2007-01-01

    Metal-insulator-metal (MIM) capacitors with atomic-layer-deposited HfO2 dielectric and TaN electrodes are investigated for rf integrated circuit applications. For 12nm HfO2, the fabricated capacitor exhibits a high capacitance density of 15.5fF/μm2 at 100kHz, a small leakage current density of 6.4 × 10-9 A/cm2 at 1.8 V and 125℃, a breakdown electric field of 2.6 MV/cm as well as voltage coefficients of capacitance (VCCs) of 2110ppm/V2 and -824 ppm/V at 100kHz. Further, it is deduced that the conduction mechanism in the high field range is dominated by the Poole-Frenkel emission, and the conduction mechanism in the low field range is possibly related to trap-assisted tunnelling. Finally, comparison of various HfO2 MIM capacitors is present,suggesting that the present MIM capacitor is a promising candidate for future rf integrated circuit application.

  8. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized circuits near detonators. 56.6402... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not...

  9. Reflection on solutions in the form of refutation texts versus problem solving: the case of 8th graders studying simple electric circuits

    Science.gov (United States)

    Safadi, Rafi'; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students’ learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students to individually diagnose these solutions; that is, to identify the erroneous and correct parts of the solutions and explain in what sense they differed, and later share their work in whole class discussions. The problem solving activities required the students to individually solve these same problems, and later share their work in whole class discussions. We compared the impact of the individual work stage in the troubleshooting and problem solving activities on promoting argumentation in the subsequent class discussions, and the effects of these activities on students’ engagement in self-repair processes; namely, in learning processes that allowed the students to self-repair their misconceptions, and by extension on advancing their conceptual knowledge. Two 8th grade classes studying simple electric circuits with the same teacher took part. One class (28 students) carried out four troubleshooting activities and the other (31 students) four problem solving activities. These activities were interwoven into a twelve lesson unit on simple electric circuits that was spread over a period of 2 months. The impact of the troubleshooting activities on students’ conceptual knowledge was significantly higher than that of the problem solving activities. This result is consistent with the finding that the troubleshooting activities engaged students in self-repair processes whereas the problem solving activities did not. The results also indicated that diagnosing solutions to conceptual problems in the form of refutation texts, as opposed to solving these same problems, apparently triggered argumentation in subsequent class

  10. 乒乓球捡球机电气控制线路设计%Design of Electrical Control Circuit of Table Tennis Picking Machine

    Institute of Scientific and Technical Information of China (English)

    夏春风; 朱文伟; 高卫群; 马燕平; 王治国

    2016-01-01

    为解决乒乓球训练场所乒乓球的捡拾问题,设计了一种基于PLC和触摸屏的电气控制线路。该电气控制线路应用于乒乓球捡球机,利用PLC和触摸屏程序控制捡球机中的离心风机,离心风机产生的吸力吸取散落于地的乒乓球而实现自动捡球。捡球机实物模型性能测试表明,该捡球机捡球效果良好,平均每分钟捡球可达86个,此为更多捡球机的开发提供了借鉴和参考。%In order to solve the problem of table tennis picking in the table tennis court, an electrical control circuit based on PLC and touch screen was designed. The electrical control circuit was used for the table tennis picking machines. The table tennis balls scattered on the ground could be automatically picked up by a centrifugal fan in the table tennis picking machines. The centrifugal fan was controlled by PLC and touch screen program.The performance testing on the practical model of picking machine shows that the table tennis picking machines works well and average picks up table tennis up to 86 per minute,which provide reference for development of other moretypes of ball picking robots.

  11. Circuital characteristics and radiation properties of an UWB electric-magnetic planar antenna for Ku-band applications

    NARCIS (Netherlands)

    Haider, S.N.; Caratelli, D.; Yarovoy, A.G.

    2013-01-01

    A planar, directive antenna with large fractional bandwidth is introduced in this paper. A detailed discussion on the proposed antenna topology and its architecture is reported. The proposed element is a combination of a patch and a loop radiator. A proper combination of the electric field radiator

  12. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Science.gov (United States)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  13. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Energy Technology Data Exchange (ETDEWEB)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  14. 14 CFR 23.1357 - Circuit protective devices.

    Science.gov (United States)

    2010-01-01

    ... circuit breakers, must be installed in all electrical circuits other than— (1) Main circuits of starter... circuit breaker or replace a fuse is essential to safety in flight, that circuit breaker or fuse must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Circuit protective devices. 23.1357...

  15. DOE Fundamentals Handbook: Electrical Science, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  16. Benchmarks of a III-V TFET technology platform against the 10-nm CMOS FinFET technology node considering basic arithmetic circuits

    Science.gov (United States)

    Strangio, S.; Palestri, P.; Lanuzza, M.; Esseni, D.; Crupi, F.; Selmi, L.

    2017-02-01

    In this work, a benchmark for low-power digital applications of a III-V TFET technology platform against a conventional CMOS FinFET technology node is proposed. The analysis focuses on full-adder circuits, which are commonly identified as representative of the digital logic environment. 28T and 24T topologies, implemented in complementary-logic and transmission-gate logic, respectively, are investigated. Transient simulations are performed with a purpose-built test-bench on each single-bit full adder solution. The extracted delays and energy characteristics are post-processed and translated into figures-of-merit for multi-bit ripple-carry-adders. Trends related to the different full-adder implementations (for the same device technology platform) and to the different technology platforms (for the same full-adder topology) are presented and discussed.

  17. Printed circuit board industry.

    Science.gov (United States)

    LaDou, Joseph

    2006-05-01

    The printed circuit board is the platform upon which microelectronic components such as semiconductor chips and capacitors are mounted. It provides the electrical interconnections between components and is found in virtually all electronics products. Once considered low technology, the printed circuit board is evolving into a high-technology product. Printed circuit board manufacturing is highly complicated, requiring large equipment investments and over 50 process steps. Many of the high-speed, miniaturized printed circuit boards are now manufactured in cleanrooms with the same health and safety problems posed by other microelectronics manufacturing. Asia produces three-fourths of the world's printed circuit boards. In Asian countries, glycol ethers are the major solvents used in the printed circuit board industry. Large quantities of hazardous chemicals such as formaldehyde, dimethylformamide, and lead are used by the printed circuit board industry. For decades, chemically intensive and often sloppy manufacturing processes exposed tens of thousands of workers to a large number of chemicals that are now known to be reproductive toxicants and carcinogens. The printed circuit board industry has exposed workers to high doses of toxic metals, solvents, acids, and photolithographic chemicals. Only recently has there been any serious effort to diminish the quantity of lead distributed worldwide by the printed circuit board industry. Billions of electronics products have been discarded in every region of the world. This paper summarizes recent regulatory and enforcement efforts.

  18. 30 CFR 56.6403 - Branch circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used....

  19. 49 CFR 236.721 - Circuit, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  20. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  1. Statistical circuit design for yield improvement in CMOS circuits

    Science.gov (United States)

    Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.

    1990-01-01

    This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.

  2. Overriding Faulty Circuit Breakers

    Science.gov (United States)

    Robbins, Richard L.; Pierson, Thomas E.

    1987-01-01

    Retainer keeps power on in emergency. Simple mechanical device attaches to failed aircraft-type push/pull circuit breaker to restore electrical power temporarily until breaker replaced. Device holds push/pull button in closed position; unnecessary for crewmember to hold button in position by continual finger pressure. Sleeve and plug hold button in, overriding mechanical failure in circuit breaker. Windows in sleeve show button position.

  3. Printed Circuit Board Surface Finish and Effects of Chloride Contamination, Electric Field, and Humidity on Corrosion Reliability

    Science.gov (United States)

    Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan

    2017-02-01

    Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.

  4. Printed Circuit Board Surface Finish and Effects of Chloride Contamination, Electric Field, and Humidity on Corrosion Reliability

    Science.gov (United States)

    Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan

    2016-10-01

    Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.

  5. Harvesting vibrational energy with liquid-bridged electrodes: thermodynamics in mechanically and electrically driven RC-circuits

    CERN Document Server

    Janssen, Mathijs; van Roij, René

    2016-01-01

    We theoretically study a vibrating pair of parallel electrodes bridged by a (deformed) liquid droplet, which is a recently developed microfluidic device to harvest vibrational energy. The device can operate with various liquids, including liquid metals, electrolytes, as well as ionic liquids. We numerically solve the Young-Laplace equation for all droplet shapes during a vibration period, from which the time-dependent capacitance follows that serves as input for an equivalent circuit model. We first investigate two existing energy harvesters (with a constant and a vanishing bias potential), for which we explain an open issue related to their optimal electrode separations, which is as small as possible or as large as possible in the two cases, respectively. Then we propose a new engine with a time-dependent bias voltage, with which the harvested work and the power can be increased by orders of magnitude at low vibration frequencies and by factors 2-5 at high frequencies, where frequencies are to be compared to...

  6. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    Science.gov (United States)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  7. Nonlinear optimization in electrical engineering with applications in Matlab

    CERN Document Server

    Bakr, Mohamed

    2013-01-01

    Nonlinear Optimization in Electrical Engineering with Applications in MATLAB® provides an introductory course on nonlinear optimization in electrical engineering, with a focus on applications such as the design of electric, microwave, and photonic circuits, wireless communications, and digital filter design. Basic concepts are introduced using a step-by-step approach and illustrated with MATLAB® codes that the reader can use and adapt. Topics covered include: classical optimization methods; one dimensional optimization; unconstrained and constrained optimization; global optimization; space map

  8. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Isakson, K.; Vessell, A.L.

    1994-07-01

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ``best alternatives``: Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases.

  9. Summary of Intrinsic Safety Electric Circuit Technology%本质安全电路技术综述

    Institute of Scientific and Technical Information of China (English)

    于月森; 谢冬莹; 李世光; 伍小杰

    2011-01-01

    简要回顾本安理论及相关标准的发展历史;介绍从不同角度提出的非爆炸性本安判定理论;探讨本安电源实现保护电路和提高功率的方法;在阐明电流变化率对本安性能产生的影响后,提出与此相适应的新评价方法和新火花试验装置需要进一步研究;给出不同类型的本安现场总线结构,总结现有本安现场总线系统冗余电源的结构;最后,展望本安理论与技术相关的研究热点和研究方向.%The paper had a brief review on the development history of the intrinsic safe theory and the related standards and introduced the assessment theory of the non explosion intrinsic safe from the different aspects. The paper discussed the intrinsic safe power applied to protect the circuit and to improve the power. After the statement on the current variation rate affected to the intrinsic performances, the paper provided the related new assessment method and the new spark test device needed to be further studied. The different type intrinsic safe site bus structure was provided. The paper summarized the redundant power structure of the available intrinsic safe site bus system. In the final, the paper had an outlook on the related study focuses and the study orientation of the intrinsic safe theory and technology.

  10. Layout of Controller Switch Circuit of Power Driver of Electric Motor Car%电动车电机控制器功率驱动开关电路设计方案

    Institute of Scientific and Technical Information of China (English)

    李中望

    2013-01-01

    The performance of electric motor car depends on the design of electric motor controller. The switch circuit of power driver is the important module of the entire controller. Its design will directly determine the running state of electric motor car.%电动车性能的优劣取决于电机控制器的整体设计方案,而功率驱动开关电路则是整个控制器的重要组成模块,它的设计将直接决定车辆的运行状态。

  11. 人-车闭环中电动助力转向系统的基本特性分析%Basic characteristic analysis electric power steering system in the driver-vehicle closed-loop system

    Institute of Scientific and Technical Information of China (English)

    张军辉; 邓兆祥; 任夏楠; 左虎彪; 鹿鹏程

    2012-01-01

    建立详细的四自由度电动助力转向(EPS)系统机械电气模型,考虑Fiala轮胎模型和二自由度整车模型,引入以转向盘输入角为反馈信号的驾驶员模型,构建装备EPS系统的人-车非线性闭环系统模型.采用模糊控制器确定目标电流并通过PID控制和脉冲宽度调制(PWM)实现其跟踪控制,构建电流闭环控制,并采用基于非线性控制设计(NCD)的单纯形自寻优法对参数进行优化.通过仿真计算,以转向盘输入转矩以及整车的横摆角速度、侧向加速度为指标,研究分析了EPS系统在人-车非线性闭环系统中的基本特性.%A detailed 4 DOFs dynamic-electric model of Electric Power Steering (EPS) system is built,and the driver model based on the steering angle feedback is inducted. Combined with the vehicle model contained the tire model, the driver-vehicle closed-loop system with EPS is built. The objective current is determined by the fuzzy controller and realized by PID controller and PWM technology and so the current closed-circuit controller is built. The simplex search for the object function based on the Matlab' s nonlinear optimization control toolbox is adopted to optimize the parameters controller. In the simulation,driver' s input torque,the lateral acceleration and the yaw velocity of the vehicle are adopted to analyse the basic characteristic of EPS in the closed-circuit.

  12. A better method to define electrical chargeability from laboratory measurements of spectral impedance using a parallel Cole-Cole equivalent circuit

    Science.gov (United States)

    Enkin, R. J.

    2014-12-01

    Induced polarization (IP) is a successful electric method to identify drill targets for mineral exploration at the property scale. The Paleomagnetism and Petrophysics Laboratory at the Geological Survey of Canada makes petrophysical measurements on cylindrical rock samples, 2.5 cm diameter and 2.2 cm long. This small size has advantages, including allowing measurement of magnetic remanence with standard paleomagnetism equipment, but it is too small to allow a 4-contact electrical impedance measurement. The samples are impregnated with distilled water under vacuum and allowed 24 hours for solutes to dissolve off pore walls, in order to approximate original groundwater ionic conductivity. We use graphite electrodes on the flat surfaces and measure the complex impedance at 5 frequencies per decade from 1 MHz down to 25 mHz. Typical responses on a Cole-Cole plot (i.e., real vs. imaginary components displayed parametrically as a function of frequency) look like a two overlapping circular arcs followed by a constant-phase diffusive response at lowest frequencies. The impedance frequency response is fit with a circuit in which the rock is modelled as a set of parallel resistor and constant-phase-element pathways, connected in series through a modified constant-phase-element representing the low frequency sample-holder response. The program "ZarcFit", written in LabView, allows the operator to tune parameters of an equivalent but far more intuitive series circuit with a set of 13 sliders, and then perform a least-squares optimization. Time domain chargeability is defined by removing the effect of the sample holder, taking the Fourier transform to convert the frequency response to its time-domain equivalent and then integrating under the resulting voltage-decay curve. Time domain measurements using two-electrode sample holders are necessarily contaminated by the low-frequency response of ionic diffusion at the electrodes. Results are compiled in the Canadian Rock Physical

  13. Instrumentation and test gear circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  14. A study of the contribution of thunderstorms to the Global Electric Circuit using a time dependent numerical model and a fractal model

    Science.gov (United States)

    Mallios, Sotirios A.

    The Global Electric Circuit (GEC) is a circuit that is formed between the Earth's surface, which is a good conductor of electricity, and the ionosphere, a weakly-ionized plasma at ˜80 km altitude. Thunderstorms are believed to be the major charging sources of this circuit. In this dissertation, we present our studies on the contribution of thunderstorms to the Global electric Circuit. We examine the current that is driven to the ionosphere and to the ground before, during and after single negative cloud-to-ground (CG) and intra-cloud (IC) lightning discharges. A numerical model has been developed, that calculates the quasi-electrostatic field before the lightning, due to the slow accumulation of the charge in the thunder-cloud, and after the lightning by taking into account the Maxwellian relaxation of the charges in the conducting atmosphere and accounting for the dissipation stage of the thunderstorm development. From these results, the charges that are transferred to the ionosphere and to the ground are calculated. We demonstrate the significance of considering the pre-lightning and the dissipation stages and accounting for realistic distribution of the conductivity inside of the thundercloud for the accurate calculation of the charge flow to the ionosphere and to the ground. We show that the charge transfer to the ionosphere depends mainly on the altitudes of the charges inside the thundercloud and their spatial separation. The amount of charge that is transferred to the ground, due to currents flowing in the vicinity of the thundercloud during a transient time period following a lightning discharge, is significantly affected by the conductivity distribution in the thundercloud and can be several times smaller than the amount of charge that is transferred to the ionosphere during the same time period. Moreover, we show that the duration of each of the thunderstorm life cycle stages affects the results. Furthermore, we show the influence of the corona currents

  15. Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience.

    Science.gov (United States)

    Soekadar, Surjo R; Herring, Jim Don; McGonigle, David

    2016-10-15

    Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain.

  16. Push-pull type of high-frequency inverter with voltage controllability by using short-circuit mode and its application to high-frequency lighting circuit of electric-discharge lamp. Tanraku modo wo mochiita kaseigyo push pull koshuha inverter to hoden ranpu koshuha tento kairo eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Funabiki, S.; Komatsubara, H. (Okayama Univ., Okayama (Japan)); Kanbara, T.; Tanigawa, K. (Matsushita Electric Works Ltd., Osaka (Japan))

    1994-04-20

    In recent years, in order to compact the inverter and to make high-function of the inverter used in electric-discharge lamp, the electronic-inverter with high-frequency is improved. There are some problems in the high-frequency inverter that surge and noise occur when switch loss increases and voltage is intermitted abruptly that is caused by the over-voltage at the time of turn-on and turn-off. In this paper, as for voltage resonant type of push-pull high-frequency inverter circuit, a control method using a short-circuit mode actively that turns 2 switches on at the same time in power output control is proposed and the theoretical analysis and practical experiments are carried out. Then, the application of the control method to electric-discharge lamp is studied. As for the comparison of the steady-state characteristics of theoretical analysis with the experiment data, the result shows the both agrees well with each other even though there are some errors caused by the parasitic capacity of the MOSFET being a switch of the circuit. And, a stable output control in a wide range is achieved based on the experiments of the lighting circuit of the electric-discharge lamp. 7 refs., 7 figs., 3 tabs.

  17. Electrical and electronic principles

    CERN Document Server

    Knight, SA

    1988-01-01

    Electrical and Electronic Principles, 3 focuses on the principles involved in electrical and electronic circuits, including impedance, inductance, capacitance, and resistance.The book first deals with circuit elements and theorems, D.C. transients, and the series circuits of alternating current. Discussions focus on inductance and resistance in series, resistance and capacitance in series, power factor, impedance, circuit magnification, equation of charge, discharge of a capacitor, transfer of power, and decibels and attenuation. The manuscript then examines the parallel circuits of alternatin

  18. Application of Bird Repellent Device in Electrical Circuit Design%驱鸟器在电力线路设计中的应用

    Institute of Scientific and Technical Information of China (English)

    李慧明; 闫石

    2016-01-01

    In recent years, as the ceaseless improvement of ecological environment, high voltage transmission line tripping caused by birds often happens.Prevent birds violation,en-suring normal operation of transmission lines is an important content should be included in the power line design work. In the practical power circuit design should be based on the geo-graphical environment of the line, the distribution of birds and project investment budget, reasonably choose bird repellent device type and installation section, but no matter choose what bird repellent equipment must meet the electrical equipment shell and the minimum safety distance of the wire, and shall comply with the relevant standards and norms release by the national electric power industry.%近几年来随着生态环境的不断改善,因鸟类导致高压输电线路跳闸的情况时有发生。防止鸟类侵害、保障输电线路正常运行是电力线路设计的一项重要内容。在实际电力线路设计中,应根据线路所处地理环境、鸟群分布情况及项目投资预算合理地选择驱鸟器的类型及安装区段,但无论选择何种驱鸟设备都必须满足电气设备外壳与导线的最小安全距离的要求,并应符合国家电力行业发布的相关标准和规范。

  19. An improved logarithmic amplifier circuit for PDS microdensitometers. [Photometric Data Systems for astronomical observation

    Science.gov (United States)

    Anderson, C. M.; Slovak, M. H.; Michalski, D. E.

    1983-01-01

    A high-speed logarithmic-amplifier circuit for a PDS microdensitometer is discussed. The circuit is designed around a 757P log-amp module which replaces the FMI 531 'Negative Log/Anti-log' device of the original. The new amplifier is capable of producing undistorted profiles of rapidly changing, dense images over the available range of scanning speeds. The circuit board has been designed to directly replace the manufacturer supplied unit; neither electrical nor mechanical modifications of the basic PDS are required. The performance of the circuit is illustrated through its effects on the overall Modulation Transfer Function of the instrument and by scans of a well-exposed stellar image. Circuit diagrams and parts lists are presented.

  20. Differences between left and right ventricular anatomy determine the types of reentrant circuits induced by an external electric shock. A rabbit heart simulation study.

    Science.gov (United States)

    Rodríguez, Blanca; Eason, James C; Trayanova, Natalia

    2006-01-01

    Despite the fact that elucidating the mechanisms of cardiac vulnerability to electric shocks is crucial to understanding why defibrillation shocks fail, important aspects of cardiac vulnerability remain unknown. This research utilizes a novel anatomically based bidomain finite-element model of the rabbit ventricles to investigate the effect of shock polarity reversal on the reentrant activity induced by an external defibrillation-strength shock in the paced ventricles. The specific goal of the study is to examine how differences between left and right ventricular chamber anatomy result in differences in the types of reentrant circuits established by the shock. Truncated exponential monophasic shocks of duration 8 ms were delivered via two external electrodes at various timings. Vulnerability grids were constructed for shocks of reversed polarity (referred to as RV- or LV- when either the RV or the LV electrode is a cathode). Our results demonstrate that reversing electrode polarity from RV- to LV- changes the dominant type of post-shock reentry: it is figure-of-eight for RV- and quatrefoil for LV- shocks. Differences in secondary types of post-shock arrhythmia also occur following shock polarity reversal. These effects of polarity reversal are primarily due to the fact that the LV wall is thicker than the RV, resulting in a post-shock excitable gap that is predominantly within the LV wall for RV- shocks and in the septum for LV- shocks.

  1. A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays.

    Science.gov (United States)

    O'Grady, G; Paskaranandavadivel, N; Angeli, T R; Du, P; Windsor, J A; Cheng, L K; Pullan, A J

    2011-03-01

    Stomach contractions are initiated and coordinated by electrical events termed slow waves, and slow wave abnormalities contribute to gastric motility disorders. Recently, flexible printed circuit board (PCB) multi-electrode arrays were introduced, facilitating high-resolution mapping of slow wave activity in humans. However PCBs with gold contacts have shown a moderately inferior signal quality to previous custom-built silver-wire platforms, potentially limiting analyses. This study determined if using silver instead of gold contacts improved flexible PCB performance. In a salt-bath test, modestly higher stimulus amplitudes were recorded from silver PCBs (mean 312, s.d. 89 µV) than those from gold (mean 281, s.d. 85 µV) (p < 0.001); however, the signal-to-noise ratio (SNR) was similar (p = 0.26). In eight in vivo experimental studies, involving gastric serosal recordings from five pigs, no silver versus gold differences were found in terms of slow wave amplitudes (mean 677 versus 682 µV; p = 0.91), SNR (mean 8.8 versus 8.8 dB; p = 0.94) or baseline drift (NRMS; mean 12.0 versus 12.1; p = 0.97). Under the prescribed conditions, flexible PCBs with silver or gold contacts provide comparable results in vivo, and contact material difference does not explain the performance difference between current-generation slow wave mapping platforms. Alternative explanations for this difference and the implications for electrode design are discussed.

  2. A comparison of gold vs silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays

    Science.gov (United States)

    O’Grady, G; Paskaranandavadivel, N; Angeli, T R; Du, P; Windsor, J A; Cheng, L K; Pullan, A J

    2014-01-01

    Stomach contractions are initiated and coordinated by electrical events termed slow waves, and slow wave abnormalities contribute to gastric motility disorders. Recently, flexible printed circuit board (PCB) multi-electrode arrays were introduced, facilitating high-resolution mapping of slow wave activity in humans. However PCBs with gold-contacts have shown a moderately inferior signal quality to previous custom-built silver-wire platforms, potentially limiting analyses. This study determined if using silver instead of gold contacts improved flexible PCB performance. In a salt-bath test, modestly higher stimulus amplitudes were recorded from silver PCBs (mean 312 s.d. 89 μV) than gold (mean 281 s.d. 85 μV) (p<0.001); however the signal to noise ratio (SNR) was similar (p=0.26). In eight in-vivo experimental studies, involving gastric serosal recordings from five pigs, no silver vs gold differences were found in terms of slow wave amplitudes (mean 677 vs 682 μV; p=0.91), SNR (mean 8.8 vs 8.8 dB; p=0.94) or baseline drift (NMRS; mean 12.0 vs 12.1; p=0.97). Under the prescribed conditions, flexible PCBs with silver or gold contacts provide comparable results in-vivo, and contact material difference does not explain the performance difference between current-generation slow wave mapping platforms. Alternative explanations for this difference and the implications for electrode design are discussed. PMID:21252419

  3. Sequential Polarity-Reversing Circuit

    Science.gov (United States)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  4. Memristor: A New Concept in Synchronization of Coupled Neuromorphic Circuits

    Directory of Open Access Journals (Sweden)

    Ch. K. Volos

    2014-10-01

    Full Text Available The existence of the memristor, as a fourth fundamental circuit element, by researchers at Hewlett Packard (HP labs in 2008, has attracted much interest since then. This occurs because the memristor opens up new functionalities in electronics and it has led to the interpretation of phenomena not only in electronic devices but also in biological systems. Furthermore, many research teams work on projects, which use memristors in neuromorphic devices to simulate learning, adaptive and spontaneous behavior while other teams on systems, which attempt to simulate the behavior of biological synapses. In this paper, the latest achievements and applications of this newly development circuit element are presented. Also, the basic features of neuromorphic circuits, in which the memristor can be used as an electrical synapse, are studied. In this direction, a flux-controlled memristor model is adopted for using as a coupling element between coupled electronic circuits, which simulate the behavior of neuron-cells. For this reason, the circuits which are chosen realize the systems of differential equations that simulate the well-known Hindmarsh-Rose and FitzHugh-Nagumo neuron models. Finally, the simulation results of the use of a memristor as an electric synapse present the effectiveness of the proposed method and many interesting dynamic phenomena concerning the behavior of coupled neuron-cells.

  5. Fast and Accurate Icepak-PSpice Co-Simulation of IGBTs under Short-Circuit with an Advanced PSpice Model

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    A basic problem in the IGBT short-circuit failure mechanism study is to obtain realistic temperature distribution inside the chip, which demands accurate electrical simulation to obtain power loss distribution as well as detailed IGBT geometry and material information. This paper describes an unp...

  6. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized circuits near detonators. 57.6402... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized....

  7. Electric machines steady state, transients, and design with Matlab

    CERN Document Server

    Boldea, Ion

    2009-01-01

    Part I: Steady StateIntroductionElectric Energy and Electric MachinesBasic Types of Transformers and Electric MachinesLosses and EfficiencyPhysical Limitations and RatingsNameplate RatingsMethods of AnalysisState of the Art and Perspective Electric TransformersAC Coil with Magnetic Core and Transformer Principles Magnetic Materials in EMs and Their LossesElectric Conductors and Their Skin EffectsComponents of Single- and 3-Phase TransformersFlux Linkages and Inductances of Single-Phase TransformersCircuit Equations of Single-Phase Transformers With Core LossesSteady State and Equivalent Circui

  8. Circuit Design on Three-phase Current Unbalance of Electric Vehicle Motor Controller%电动汽车用电机控制器三相电流不平衡检测电路设计

    Institute of Scientific and Technical Information of China (English)

    赵圣宝; 吴成加

    2015-01-01

    In order to improve the reliability and stability of the electric vehicle motor controller, the authors design a type of three-phase current unbalance circuit, including the selection of the current sensor, the circuit of three-phase filter, the inverting summing circuit of three-phase current, the comparator circuit of upper and lower limits and the light-emitting diode warning. Through simulation experiments, the results verify the detection circuit is correct and feasible.%为提高电动汽车电机控制器的可靠性和稳定性,设计一种三相电流不平衡检测电路,包括电流传感器选型及电路、三相滤波电路、三相电流反相求和电路,上/下限比较电路及发光二极管报警电路。通过仿真试验,验证该检测电路是正确和可行的。

  9. Transistor switching and sequential circuits

    CERN Document Server

    Sparkes, John J

    1969-01-01

    Transistor Switching and Sequential Circuits presents the basic ideas involved in the construction of computers, instrumentation, pulse communication systems, and automation. This book discusses the design procedure for sequential circuits. Organized into two parts encompassing eight chapters, this book begins with an overview of the ways on how to generate the types of waveforms needed in digital circuits, principally ramps, square waves, and delays. This text then considers the behavior of some simple circuits, including the inverter, the emitter follower, and the long-tailed pair. Other cha

  10. Experiencias en el uso de las TIC en la enseñanza de los circuitos eléctricos; Experiences in the use of ICT in the Electric Circuits teaching

    Directory of Open Access Journals (Sweden)

    Ileana Moreno Camdesuñer

    2011-02-01

    Full Text Available En este trabajo se presentan las experiencias del colectivo en la enseñanza de los circuitos eléctricosutilizando las TIC, dentro de la estrategia general de enseñanza-aprendizaje que se desarrolla en lascarreras que se cursan en la facultad de Ingeniería Eléctrica de la Universidad Central Marta Abreu. In this work the experiences of the professors in the electric circuits teaching using ICT, as part of thegeneral strategy of teaching-learning that is developed in the careers studied at the faculty of ElectricalEngineering in the Marta Abreu University.

  11. Circuit modeling and performance analysis of photoconductive antenna

    Science.gov (United States)

    Prajapati, Jitendra; Bharadwaj, Mrinmoy; Chatterjee, Amitabh; Bhattacharjee, Ratnajit

    2017-07-01

    In recent years, several experimental and simulation studies have been reported on the terahertz (THz) generation using a photoconductive antenna (PCA). The major problem with PCA is its low overall efficiency, which depends on several parameters related to a semiconductor material, an antenna geometry, and characteristics of the laser beam. To analyze the effect of different parameters on PCA efficiency, accurate circuit modeling, using physics undergoing in the device, is necessary. Although a few equivalent circuit models have been proposed in the literature, these models do not adequately capture the semiconductor physics in PCA. This paper presents an equivalent electrical circuit model of PCA incorporating basic semiconductor device physics. The proposed equivalent circuit model is validated using Sentaurus TCAD device level modeling tool as well as with the experimental results available in the literature. The results obtained from the proposed circuit model are in close agreement with the TCAD results as well as available experimental results. The proposed circuit model is expected to contribute towards future research efforts aimed at optimization of the performance of the PCA system.

  12. Electrical Impedance Spectroscopy for Quality Assessment of Meat and Fish: A Review on Basic Principles, Measurement Methods, and Recent Advances

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2017-01-01

    Full Text Available Electrical impedance spectroscopy (EIS, as an effective analytical technique for electrochemical system, has shown a wide application for food quality and safety assessment recently. Individual differences of livestock cause high variation in quality of raw meat and fish and their commercialized products. Therefore, in order to obtain the definite quality information and ensure the quality of each product, a fast and on-line detection technology is demanded to be developed to monitor product processing. EIS has advantages of being fast, nondestructive, inexpensive, and easily implemented and shows potential to develop on-line detecting instrument to replace traditional methods to realize time, cost, skilled persons saving and further quality grading. This review outlines the fundamental theories and two common measurement methods of EIS applied to biological tissue, summarizes its application specifically for quality assessment of meat and fish, and discusses challenges and future trends of EIS technology applied for meat and fish quality assessment.

  13. Refrigeration Controls: Electrical & Mechanical; Appliance Repair 3: 9027.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This booklet outlines a course designed to equip major appliance service students with the fundamental knowledge and understanding of procedures, basic electrical circuitry, and nomenclatures of components necessary in successfully tracing a circuit and repairing or replacing a malfunctioning component. Course content includes goals, specific…

  14. Circuito eléctrico equivalente de una vesícula sináptica Electric Circuit Equivalent to a Synaptic Vesicle

    Directory of Open Access Journals (Sweden)

    Cortés Xaira

    2003-06-01

    Full Text Available En el presente trabajo se desarrolla un modelo eléctrico de uno de los elementosprimordiales en la sinapsis nerviosa: la vesícula sináptica. Dicha vesícula se consideracomo un organelo esferoidal, despojada de neurotransmisores y se asume, además, quesu lumen, su membrana y el citoplasma neuronal se comportan como medios lineales,homogéneos e isotrópicos caracterizados por conductividades y permitividades especí-ficas. El método utilizado será la aplicación teórica de un campo eléctrico (que varía enel tiempo a bajas frecuencias sobre esta vesícula, lo que induce a través de su membra-na una diferencia de potencial cuya caracterización se obtiene a partir de las ecuacionesde Maxwell sometidas a condiciones de contorno adecuadas, en la denominada aproxi-mación cuasi-estacionaria. A su vez, mediante aplicación de la Transformada de Laplacea las expresiones resultantes se obtiene la FUNCIÓN DE TRANSFERENCIA, que condu-ce a sintetizar un circuito RLC equivalente de la vesícula en estudio. El modelo predicevalores de capacitancia para vesículas esféricas individuales que, al ser contrastados conlos que presenta la literatura existente derivada de procesos experimentales previos,alienta la perseverancia en este enfoque teórico germinal.In the present work an electrical model of the synaptic vesicle is developed. The vesicleis considered as a spheroidal organelle without neurotransmitters in its inner space. Inaddition, its lumen, its membrane and the neuronal cytoplasm behave like linear,homogenous and isotropic media characterized by specific conductivities and permi-tivities. The theoretical approach considers the application of an electric field (varying intime at low frequencies on this vesicle. A transmembrane potential difference is inducedand its characterization is obtained from Maxwell's equations subject to appropriateboundary conditions, in the so-called quasi-stationary approach. By applying theLaplace Transform to

  15. Hardness and electrical conductivity of alloy wire for track circuit%轨道电路合金导线的硬度及导电性能

    Institute of Scientific and Technical Information of China (English)

    贺帅超; 谭丽

    2016-01-01

    By taking the alloy wire for track circuit with a single addition of Ce , Y and composite addition of Ce +Y as research objects respectively , the influence of alloying elements and heat treatment processes on hardness and electrical conductivity of the Cu -Cr-Zr alloy wire were investigated , and the high temperature softening resistance of the alloy wire was also analyzed .The results show that adding rare earth elements Ce or Y, the hardness of the alloy wire increases by 14-20 HV0.1 after aging, while the electrical conductivity reduces by 2%-4%IACS.The hardness order of the alloy wire aged for the same time from high to low is Cu-Cr-Zr-Ce>Cu-Cr-Zr-Y>Cu-Cr-Zr, while the conductivity order of it from high to low is Cu-Cr-Zr >Cu-Cr-Zr-Ce >Cu-Cr-Zr-Y.The softening temperature of the alloy wire with composite addition of Ce and Y increases by 30 ℃.The precipitation strengthening phase in Cu-Cr-Zr-Ce-Y alloy is mainly CrCu2 ( Zr, Mg) phase.%以单一添加稀土元素Ce、Y和复合添加Ce+Y的Cu-Cr-Zr合金轨道电路导线为研究对象,研究了合金化元素和热处理工艺对Cu-Cr-Zr合金导线的硬度和电导率的影响,并分析了合金导线的抗高温软化性能。结果表明,添加稀土元素Ce、Y的合金导线时效后的硬度提高了14~20 HV0.1,而电导率降低了2~4%IACS;相同时效时间下合金导线硬度从高至低的顺序为Cu-Cr-Zr-Ce>Cu-Cr-Zr-Y>Cu-Cr-Zr,电导率从高至低的顺序为Cu-Cr-Zr>Cu-Cr-Zr-Ce>Cu-Cr-Zr-Y;复合添加Ce+Y合金导线的软化温度提高了约30℃,Cu-Cr-Zr-Ce-Y合金中的时效析出相主要是CrCu2( Zr, Mg)相。

  16. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available BACKGROUND: Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs. METHODS: Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. RESULTS: With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs were lit and emitted colorful lights. CONCLUSIONS: The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and

  17. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting circuits. 75.1323 Section 75.1323... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made...

  18. 30 CFR 57.6403 - Branch circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403... Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate...

  19. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  20. An interval-possibilistic basic-flexible programming method for air quality management of municipal energy system through introducing electric vehicles.

    Science.gov (United States)

    Yu, L; Li, Y P; Huang, G H; Shan, B G

    2017-09-01

    Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Printed circuit board designer's reference basics

    CERN Document Server

    Robertson, Chris

    2003-01-01

    PCB design instruction and reference manual, all in one book, with in- depth explanation of the processes and tools used in modern PCB design Standards, formulas, definitions, and procedures, plus software to tie it all together.

  2. Signals and Circuits in the Purkinje Neuron

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2011-09-01

    Full Text Available Purkinje neurons in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from Electrical Engineering, particularly signal processing and digital/analog circuits. By viewing the Purkinje neuron as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the Purkinje neuron and define 3 unique frequency ranges associated with the cells’ output. Comparing the Purkinje neuron to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the Purkinje neuron can act as a multivibrator circuit.

  3. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  4. Brain Basics

    Medline Plus

    Full Text Available ... of the cell from its surrounding environment and controls what enters and leaves the cell, and responds ... via axons) to form brain circuits. These circuits control specific body functions such as sleep and speech. ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... of the cell from its surrounding environment and controls what enters and leaves the cell, and responds ... via axons) to form brain circuits. These circuits control specific body functions such as sleep and speech. ...

  6. GATING CIRCUITS

    Science.gov (United States)

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  7. Electrical Power Converter

    NARCIS (Netherlands)

    Ferreira, J.A.

    2014-01-01

    Electrical power converter for converting electrical power of a power source connected or connectable at an input to electrical DC-power at an output, wherein between the input and the output a first circuit of submodules is provided, wherein said first circuit of submodules and the power source for

  8. LC-Circuit Calorimetry

    CERN Document Server

    Bossen, Olaf

    2011-01-01

    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical error that decreases as ~t^{-3/2} with measuring time t, as opposed to a corresponding error ~t^{-1/2} in the conventional alternating current (a.c.) method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  9. New energy management circuit applied in electric self-power supply over high voltage side%新型高压侧自供电电源设计与研究

    Institute of Scientific and Technical Information of China (English)

    李衍川; 江和

    2014-01-01

    分析了高压电场能量收集的原理,建立静电场耦合分布电容模型,并通过实验证明了模型的参考价值。随后,分析使用整流桥电路进行能量管理时的最佳功率点,并从增大超级电容充电电流的角度,设计了一种新型的管理电路,即同步电荷提取电路,以获得最佳的能量存储能力。结果证明存在一个最佳占空比使得收集的能量最大化,从而缩短无线节点在线监测工作周期。%The theory of energy harvested from the high voltage is analyzed, and then the corresponding model of coupling capacitance derived from static electric field is built, and several experiments are conducted to study whether the model is valuable. Then, according to what the result reveals, the optimal power point is found out when energy is managed by rectifier circuit. The value of charged current to super capacitor is used as the judge-ment whether the circuit system has the best storage performance. In that respect, management circuit is improved as a technology called Synchronous Electric Charge Extract, because the rectifier circuit can’ t perform as good as it is under ultrahigh voltage. It turns out that there is an optimal duty to maximize the energy harvested, so that the energy harvester can scavenge much more energy to cancellout the power loss. As a result, online monitoring period could be shortened greatly.

  10. Electrical and electronic principles

    CERN Document Server

    Knight, S A

    1991-01-01

    Electrical and Electronic Principles, 2, Second Edition covers the syllabus requirements of BTEC Unit U86/329, including the principles of control systems and elements of data transmission. The book first tackles series and parallel circuits, electrical networks, and capacitors and capacitance. Discussions focus on flux density, electric force, permittivity, Kirchhoff's laws, superposition theorem, arrangement of resistors, internal resistance, and powers in a circuit. The text then takes a look at capacitors in circuit, magnetism and magnetization, electromagnetic induction, and alternating v

  11. Circuit Diagram Illustration of Wiring Harness Electrical Junction Box in Front Cabin on HAIMA FSTAR%福仕达前舱线束电气盒电路图解

    Institute of Scientific and Technical Information of China (English)

    张震华; 李鹤丽; 牛鹏浩

    2011-01-01

    介绍海马福仕达豪华型微型客车的线束部件配置明细,并根据全车线束产品图纸,对前舱线束中电气盒的连接电路作出图解。当车载某电气设备不能正常工作时,本文可以作为参照,便于对连接电器设备的线束电路进行查找及故障的排除。%The author introduces the components listing of wiring harness on HAIMA FSTAR minibus(DELUXE);according to the wire harnesses drawing of entire vehicle,illustrates the junction circuit of wiring harness electrical junction box in front cabin.When an electrical equipment can not work normally,this article can be used as a reference in searching and clearing faults for harness circuit connecting electrical equipments.

  12. 14 CFR 27.1357 - Circuit protective devices.

    Science.gov (United States)

    2010-01-01

    ... electrical circuit other than— (1) The main circuits of starter motors; and (2) Circuits in which no hazard... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Circuit protective devices. 27.1357 Section 27.1357 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  13. 30 CFR 57.12001 - Circuit overload protection.

    Science.gov (United States)

    2010-07-01

    ... Electricity Surface and Underground § 57.12001 Circuit overload protection. Circuits shall be protected against excessive overloads by fuses or circuit breakers of the correct type and capacity. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit overload protection. 57.12001...

  14. 30 CFR 57.12053 - Circuits powered from trolley wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuits powered from trolley wires. 57.12053... Electricity Surface and Underground § 57.12053 Circuits powered from trolley wires. Ground wires for lighting circuits powered from trolley wires shall be connected securely to the ground return circuit. Surface Only...

  15. 46 CFR 111.30-17 - Protection of instrument circuits.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Protection of instrument circuits. 111.30-17 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-17 Protection of instrument circuits. (a) Each circuit that supplies a device on a switchboard, except a circuit under paragraph (b) of this...

  16. Differential transimpedance amplifier circuit for correlated differential amplification

    Science.gov (United States)

    Gresham, Christopher A.; Denton, M. Bonner; Sperline, Roger P.

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  17. 30 CFR 56.6605 - Isolation of blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Isolation of blasting circuits. 56.6605 Section... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact...

  18. A Singularity in the Kirchhoff's Circuit Equations

    CERN Document Server

    Harsha, N R Sree

    2016-01-01

    Students often have difficulty in understanding qualitatively the behaviour of simple electric circuits. In particular, as different studies have shown, they find multiple batteries connected in multiple loops difficult to analyse. In a recent paper [Phys. Educ. 50 568 (2015)], we showed such an electric circuit, which consists of ideal batteries connected in parallel, that couldn't be solved by the existing circuit analysis methods. In this paper, we shall introduce a new mathematical method of solving simple electric circuits from the solutions of more general circuits and show that the currents, in this particular circuit, take the indeterminate 0/0 form. We shall also present some of the implications of teaching the method. We believe that the description presented in this paper should help the instructors in teaching the behaviour of multiple batteries connected in parallel.

  19. Selection of Numerical Criterion Value for Determination of Short Circuit Type in Adaptive Micro-Processing Current Protection of Electric Power Lines

    Directory of Open Access Journals (Sweden)

    A. V. Kovalevsky

    2007-01-01

    Full Text Available The paper considers a principle for determination of a short circuit type which is used in the mathematical model of adaptive micro-processing protection with the purpose to improve sensitivity. As a result of a calculative experiment dependences ΔI(t for various short circuit types (three- and two-phase short circuits have been obtained at a number of points of the investigated power network. These dependences make it possible to determine a numerical value of ΔI coefficient. A comparative analysis has been made to study an operation of adaptive and non-adaptive microprocessing protections in the case of asymmetric damages of the investigated power network just in the same points.

  20. TIME DOMAIN REFLECTOMETRY FOR THE LOCALIZATION OF ELECTRICAL FAULTS IN THE INSTRUMENTATION OF THE LHC STRING MAGNETS A Study Case of Voltage Tap, Temperature, and Pressure Transducer Circuits

    CERN Document Server

    Komorowski, P

    1999-01-01

    Time Domain Reflectometry (TDR) is one of the most powerful methods used to analyze the integrity of the signal propagating in a transmission line. The method is based on the principle that the wave propagating in the line is reflected at the locations where the impedance of the line changes. The fault points, joints, branches, junctions, abrupt cross-section changes, etc., cause such reflections. The reflectometry technique involves the excitation of the circuit under test with either a fast edge step function or a well-defined impulse confined in time and frequency domains, and thereafter detection of the amplitude and time of the reflections. Both variants of the method were successfully applied to localize open circuit faults in the voltage tap connections, pressure transducers, and temperature sensing carbon gages circuits of the LHC String Dipole Magnet MB2 and Short Straight Section Quadrupole.