Sample records for basic biological processes

  1. Menstrual Cycle: Basic Biology



    The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations (Chapter X), X chromosome abnormalities (Chapter X), and galactose-1-phosphate uridyltransferase (GALT) point mutati...

  2. Menstrual Cycle: Basic Biology (United States)

    Hawkins, Shannon M.; Matzuk, Martin M.


    The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations (Chapter X), X chromosome abnormalities (Chapter X), and galactose-1-phosphate uridyltransferase (GALT) point mutations (galactosemia) also contribute to perturbations of the menstrual cycle. Although not perfect, mouse model have helped to identify and confirm additional components and pathways in menstrual cycle function and dysfunction in humans. PMID:18574203

  3. Basic Biology for Beginners. (United States)

    Gustafson, Pamela Anderson; Sorenson, Juanita S.

    This publication provides the elementary teacher with sequential and developmental objectives in the areas of plants, animals, ecology, and physiology. At least one motivating "hands-on" activity is included for each objective. Age level (5-8, 8-10, 10-12), process emphasized (classification, experimenting, etc.), and group size…

  4. Basic digital signal processing

    CERN Document Server

    Lockhart, Gordon B


    Basic Digital Signal Processing describes the principles of digital signal processing and experiments with BASIC programs involving the fast Fourier theorem (FFT). The book reviews the fundamentals of the BASIC program, continuous and discrete time signals including analog signals, Fourier analysis, discrete Fourier transform, signal energy, power. The text also explains digital signal processing involving digital filters, linear time-variant systems, discrete time unit impulse, discrete-time convolution, and the alternative structure for second order infinite impulse response (IIR) sections.

  5. Basic radiotherapy physics and biology

    CERN Document Server

    Chang, David S; Das, Indra J; Mendonca, Marc S; Dynlacht, Joseph R


    This book is a concise and well-illustrated review of the physics and biology of radiation therapy intended for radiation oncology residents, radiation therapists, dosimetrists, and physicists. It presents topics that are included on the Radiation Therapy Physics and Biology examinations and is designed with the intent of presenting information in an easily digestible format with maximum retention in mind. The inclusion of mnemonics, rules of thumb, and reader-friendly illustrations throughout the book help to make difficult concepts easier to grasp. Basic Radiotherapy Physics and Biology is a

  6. Understanding a Basic Biological Process: Expert and Novice Models of Meiosis. (United States)

    Kindfield, Ann C. H.

    The results of a study of the meiosis models utilized by individuals at varying levels of expertise while reasoning about the process of meiosis are presented. Based on these results, the issues of sources of misconceptions/difficulties and the construction of a sound understanding of meiosis are discussed. Five individuals from each of three…

  7. Basic statistics in cell biology. (United States)

    Vaux, David L


    The physicist Ernest Rutherford said, "If your experiment needs statistics, you ought to have done a better experiment." Although this aphorism remains true for much of today's research in cell biology, a basic understanding of statistics can be useful to cell biologists to help in monitoring the conduct of their experiments, in interpreting the results, in presenting them in publications, and when critically evaluating research by others. However, training in statistics is often focused on the sophisticated needs of clinical researchers, psychologists, and epidemiologists, whose conclusions depend wholly on statistics, rather than the practical needs of cell biologists, whose experiments often provide evidence that is not statistical in nature. This review describes some of the basic statistical principles that may be of use to experimental biologists, but it does not cover the sophisticated statistics needed for papers that contain evidence of no other kind.

  8. Basic Social Processes

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD


    Full Text Available The goal of grounded theory is to generate a theory that accounts for a pattern of behavior that is relevant and problematic for those involved. The goal is not voluminous description, nor clever verification. As with all grounded theory, the generation of a basic social process (BSP theory occurs around a core category. While a core category is always present in a grounded research study, a BSP may not be.BSPs are ideally suited to generation by grounded theory from qualitative research because qualitative research can pick up process through fieldwork that continues over a period of time. BSPs are a delight to discover and formulate since they give so much movement and scope to the analyst’s perception of the data. BSPs such as cultivating, defaulting, centering, highlighting or becoming, give the feeling of process, change and movement over time. They also have clear, amazing general implications; so much so, that it is hard to contain them within the confines of a single substantive study. The tendency is to refer to them as a formal theory without the necessary comparative development of formal theory. They are labeled by a “gerund”(“ing” which both stimulates their generation and the tendency to over-generalize them.

  9. Basic Learning Processes in Childhood. (United States)

    Reese, Hayne W.

    This book is an introduction to the psychological study of basic learning processes in children. Written for students who are not majors in psychology and who do not have much familiarity with the technical vocabulary of psychology, it has two themes: even the most basic kinds of learning are included by cognitive processes or mental activities;…

  10. Molecular neurodegeneration: basic biology and disease pathways. (United States)

    Vassar, Robert; Zheng, Hui


    The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, and Down syndrome. Recent developments have also facilitated initial efforts to translate preclinical discoveries toward novel therapeutic approaches and clinical trials in humans. These recent developments are reviewed in the current Review Series on "Molecular Neurodegeneration: Basic Biology and Disease Pathways" in a number of state-of-the-art manuscripts that cover themes presented at the Third International Conference on Molecular Neurodegeneration: "Basic biology and disease pathways" held in Cannes, France, September, 2013.

  11. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner


    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  12. Long-time preservation of biologic cells through cold application: basic processes, influence quantities, and process optimation; Langzeitkonservierung biologischer Zellen durch Kaelteanwendung: Grundlegende Vorgaenge, Einflussparameter und Verfahrensoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Heschel, I. [Helmholtz-Inst. fuer Biomedizinische Technik an der RWTH Aachen (Germany); Sputtek, A. [Helmholtz-Inst. fuer Biomedizinische Technik an der RWTH Aachen (Germany); Nunner, B. [Helmholtz-Inst. fuer Biomedizinische Technik an der RWTH Aachen (Germany); Rau, G. [Helmholtz-Inst. fuer Biomedizinische Technik an der RWTH Aachen (Germany)


    In diverse fields of human medicine there is a demand for cryopreserved biologic cells. Cooling cells down to temperatures in the range of -80 C to -196 C brings their entire metabolism to a virtual standstill, so that they can then be preserved for longer periods of time in the vital state. Development of successful cryopreservation methods presupposes an exact knowledge of the diverse mechanisms of cell impairment through freezing (e.g. osmotic stress, intracellular ice formation). In order to achieve sufficient cell survival rates at technically feasible cooling rates it is necessary to use cryoprotective additives (e.g. dimethyl sulphoxide, hydroxyethyl starch). Process optimation is indispensable and involves precise coordination of the influence parameters cell type and concentration; type and composition of the protective additive; and cooling and warming rate. (orig.) [Deutsch] In den verschiedensten Bereichen derr Humanmedizin besteht Bedarf fuer kryokonservierte biologische Zellen. Durch die Abkuehlung der Zellen auf Temperaturen im Bereich von -80 C bis -196 C kommen die Stoffwechselvorgaenge praktisch zum Stillstand, so dass die Zellen bei Erhalt ihrer Vitalitaet langzeitgelagert werden koennen. Zur Entwicklung erfolgreicher Kryokonservierungsverfahren ist die genaue Kenntnis der vielfaeltigen Zellschaedigungsmechanismen beim Einfrieren (z.B. osmotische Belastung, intrazellulaere Eisbildung) erforderlich. Erst durch den Zusatz von Kryoprotektiven (z.B. Dimethylsulfoxid, Hydroxyethylstaerke) gelingt die Kryokonservierung der Zellen in ausreichender Anzahl bei technisch realisierbaren Kuehlraten. Bei der Verfahrensoptimierung ist die genaue Abstimmung der Einflussparameter Zellart und -konzentration, Schutzadditivart und -zusammensetzung sowie Kuehl- und Erwaermungsrate zwingend erforderlich. (orig.)

  13. Long-time preservation of biologic cells through cold application: basic processes, influence quantities, and process optimation; Langzeitkonservierung biologischer Zellen durch Kaelteanwendung: Grundlegende Vorgaenge, Einflussparameter und Verfahrensoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Heschel, I. [Technische Hochschule Aachen (Germany). Helmholtz-Inst. fuer Biomedizinische Technik; Sputtek, A. [Technische Hochschule Aachen (Germany). Helmholtz-Inst. fuer Biomedizinische Technik; Nunner, B. [Technische Hochschule Aachen (Germany). Helmholtz-Inst. fuer Biomedizinische Technik; Rau, G. [Technische Hochschule Aachen (Germany). Helmholtz-Inst. fuer Biomedizinische Technik


    In diverse fields of human medicine there is a demand for cryopreserved biologic cells. Cooling cells down to temperatures in the range of -80 C and -196 C brings their entire metabolism to a virtual standstill, so that they can then be preserved for longer periods in the vital state. Development of successful cryopreservation methods presupposes an exact knowledge of the diverse mechanisms of cell impairment through freezing (e.g. osmotic stress, intracellular ice formation). In order to achieve sufficient cell survival rates at technically feasible cooling rates if is necessary to use cryoprotective additives (e.g. dimethyl sulphoxide, hydroxyethyl starch). Process optimation is indispensable and involves precise coordination of the influence parameters cell type and concentration; type and composition of the protective additive; and cooling and warming rate. (orig.) [Deutsch] In den verschiedensten Bereichen der Humanmedizin besteht Bedarf fuer kryokonservierte biologische Zellen. Durch die Abkuehlung der Zellen auf Temperaturen im Bereich von -80 C bis -196 C kommen die Stoffwechselvorgaenge praktisch zum Stillstand, so dass die Zellen bei Erhalt ihrer Vitalitaet langzeitgelagert werden koennen. Zur Entwicklung erfolgreicher Kryokonservierungsverfahren ist die genaue Kenntnis der vielfaeltigen Zellschaedigungsmechanismen beim Einfrieren (z.B. osmotische Belastung, intrazellulaere Eisbildung) erforderlich. Erst durch den Zusatz von Kryoprotektiven (z.B. Dimethylsulfoxid, Hydroxyethylstaerke) gelingt die Kryokonservierung der Zellen in ausreichender Anzahl bei technisch realisierbaren Kuehlraten. Bei der Verfahrensoptimierung ist die genaue Abstimmung der Einflussparameter Zellart und -konzentration, Schutzadditivart und -zusammensetzung sowie Kuehl- und Erwaermungsrate zwingend erforderlich. (orig.)

  14. Branching processes in biology

    CERN Document Server

    Kimmel, Marek


    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  15. Fungal genome sequencing: basic biology to biotechnology. (United States)

    Sharma, Krishna Kant


    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  16. Basic mathematics for the biological and social sciences

    CERN Document Server

    Marriott, F H C


    Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co

  17. Nutritional biology: a neglected basic discipline of nutritional science. (United States)

    Döring, Frank; Ströhle, Alexander


    On the basis of a scientific-philosophical analysis, this paper tries to show that the approaches in current nutritional science-including its subdisciplines which focus on molecular aspects-are predominantly application-oriented. This becomes particularly evident through a number of conceptual problems characterized by the triad of 'dearth of theoretical foundation,' 'particularist research questions,' and 'reductionist understanding of nutrition.' The thesis presented here is that an interpretive framework based on nutritional biology is able to shed constructive light on the fundamental problems of nutritional science. In this context, the establishment of 'nutritional biology' as a basic discipline in research and education would be a first step toward recognizing the phenomenon of 'nutrition' as an oecic process as a special case of an organism-environment interaction. Modern nutritional science should be substantively grounded on ecological-and therefore systems biology as well as organismic-principles. The aim of nutritional biology, then, should be to develop near-universal 'law statements' in nutritional science-a task which presents a major challenge for the current science system.

  18. A basic analysis toolkit for biological sequences

    Directory of Open Access Journals (Sweden)

    Siragusa Enrico


    Full Text Available Abstract This paper presents a software library, nicknamed BATS, for some basic sequence analysis tasks. Namely, local alignments, via approximate string matching, and global alignments, via longest common subsequence and alignments with affine and concave gap cost functions. Moreover, it also supports filtering operations to select strings from a set and establish their statistical significance, via z-score computation. None of the algorithms is new, but although they are generally regarded as fundamental for sequence analysis, they have not been implemented in a single and consistent software package, as we do here. Therefore, our main contribution is to fill this gap between algorithmic theory and practice by providing an extensible and easy to use software library that includes algorithms for the mentioned string matching and alignment problems. The library consists of C/C++ library functions as well as Perl library functions. It can be interfaced with Bioperl and can also be used as a stand-alone system with a GUI. The software is available at under the GNU GPL.

  19. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine. (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David


    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  20. Applications of Recombinant DNA Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part C: Protein Synthesis and Post-Translational Processing in Eukaryotic Cells

    Directory of Open Access Journals (Sweden)

    Gary E Wild


    Full Text Available The translation of mRNA constitutes the first step in the synthesis of a functional protein. The polypeptide chain is subsequently folded into the appropriate three-dimensional configuration and undergoes a variety of processing steps before being converted into its active form. These processing steps are intimately related to the cellular events that occur in the endoplasmic reticulum and Golgi compartments, and determine the sorting and transport of different proteins to their appropriate destinations within the cell. While the regulation of gene expression occurs primarily at the level of transcription, the expression of many genes can also be controlled at the level of translation. Most proteins can be regulated in response to extracellular signals. In addition, intracellular protein levels can be controlled by differential rates of protein degradation. Thus, the regulation of both the amounts and activities of intracellular proteins ultimately determines all aspects of cell behaviour.

  1. Basics of cutting and abrasive processes

    CERN Document Server

    Toenshoff, Hans Kurt


    Manufacturing is the basic industrial activity generating real value. Cutting and abrasive technologies are the backbone of precision production in machine, automotive and aircraft building as well as of production of consumer goods. We present the knowledge of modern manufacturing in these technologies on the basis of scientific research. The theory of cutting and abrasive processes and the knowledge about their application in industrial practice are a prerequisite for the studies of manufacturing science and an important part of the curriculum of the master study in German mechanical engineering. The basis of this book is our lecture “Basics of cutting and abrasive processes” (4 semester hours/3 credit hours) at the Leibniz University Hannover, which we offer to the diploma and master students specializing in manufacturing science.

  2. Thermodynamics of Biological Processes (United States)

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob


    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  3. Applied medical image processing a basic course

    CERN Document Server

    Birkfellner, Wolfgang


    A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.

  4. Grounding language processing on basic neurophysiological principles. (United States)

    Friederici, Angela D; Singer, Wolf


    In animal models the neural basis of cognitive and executive processes has been studied extensively at various hierarchical levels from microcircuits to distributed functional networks. This work already provides compelling evidence that diverse cognitive functions are based on similar basic neuronal mechanisms. More recent data suggest that even cognitive functions realized only in human brains rely on these canonical neuronal mechanisms. Here we argue that language, like other cognitive functions, depends on distributed computations in specialized cortical areas forming large-scale dynamic networks and examine to what extent empirical results support this view.

  5. [Basic biochemical processes in glaucoma progression]. (United States)

    von Thun und Hohenstein-Blaul, N; Kunst, S; Pfeiffer, N; Grus, F H


    The term glaucoma summarizes a group of eye diseases that are accompanied by impairments of the optic nerve and related visual field deficits. An early diagnosis of glaucoma is currently not possible due to a lack of diagnostic tests; therefore, in most cases the disease is diagnosed many years after onset, which prevents an early therapy. The known risk factors for the development and progression of glaucomatous optic neuropathy comprise elevated intraocular pressure and a broad range of pressure fluctuations as well as lipometabolic disorders, genetic factor and diabetes. The consequences include the induction of anti-inflammatory proteins, elevated levels of oxidative stress and the destruction of retinal ganglion cells. Changes in the autoantibody repertoire have also been observed in the course of the disease. Basic ophthalmological research therefore focuses on the investigation of basic biochemical processes in the course of the disease. A better understanding of physiological and biochemical events is sought in order to develop new and more sensitive diagnostic options and to allow more targeted therapeutic measures. The understanding of biochemical processes allows a better insight into glaucoma progression to be gained, which will lead to improvements in diagnosis and therapy.

  6. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. (United States)

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz


    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  7. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C


    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  8. Understanding the basic biology underlying the flavor world of children

    Directory of Open Access Journals (Sweden)

    Julie A. MENNELLA, Alison K. VENTURA


    Full Text Available Health organizations worldwide recommend that adults and children minimize intakes of excess energy and salty, sweet, and fatty foods (all of which are highly preferred tastes and eat diets richer in whole grains, low- and non- fat dairy products, legumes, fish, lean meat, fruits, and vegetables (many of which taste bitter. Despite such recommendations and the well-established benefits of these foods to human health, adults are not complying, nor are their children. A primary reason for this difficulty is the remarkably potent rewarding properties of the tastes and flavors of foods high in sweetness, saltiness, and fatness. While we cannot easily change children’s basic ingrained biology of liking sweets and avoiding bitterness, we can modulate their flavor preferences by providing early exposure, starting in utero, to a wide variety of flavors within healthy foods, such as fruits, vegetables, and whole grains. Because the flavors of foods mothers eat during pregnancy and lactation also flavor amniotic fluid and breast milk and become preferred by infants, pregnant and lactating women should widen their food choices to include as many flavorful and healthy foods as possible. These experiences, combined with repeated exposure to nutritious foods and flavor variety during the weaning period and beyond, should maximize the chances that children will select and enjoy a healthier diet [Current Zoology 56 (6: 834–841, 2010].

  9. Rotating Biological Contractors (RBC's). Instructor's Guide. Biological Treatment Process Control. (United States)

    Zickefoose, Charles S.

    This two-lesson unit on rotating biological contactors (RBC's) is designed to be used with students who have had some experience in wastewater treatment and a basic understanding of biological treatment. The first lesson provides information on the concepts and components of RBC treatment systems. The second lesson focuses on design operation and…

  10. Molecular Processes in Biological Thermosensation

    Directory of Open Access Journals (Sweden)

    I. Digel


    Full Text Available Since thermal gradients are almost everywhere, thermosensation could represent one of the oldest sensory transduction processes that evolved in organisms. There are many examples of temperature changes affecting the physiology of living cells. Almost all classes of biological macromolecules in a cell (nucleic acids, lipids, proteins can present a target of the temperature-related stimuli. This review discusses some features of different classes of temperature-sensing molecules as well as molecular and biological processes that involve thermosensation. Biochemical, structural, and thermodynamic approaches are applied in the paper to organize the existing knowledge on molecular mechanisms of thermosensation. Special attention is paid to the fact that thermosensitive function cannot be assigned to any particular functional group or spatial structure but is rather of universal nature. For instance, the complex of thermodynamic, structural, and functional features of hemoglobin family proteins suggests their possible accessory role as “molecular thermometers”.

  11. Apoptotic cell clearance: basic biology and therapeutic potential. (United States)

    Poon, Ivan K H; Lucas, Christopher D; Rossi, Adriano G; Ravichandran, Kodi S


    The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.


    Directory of Open Access Journals (Sweden)

    L.A. Azzalis


    Full Text Available Basic biological disciplines as biochemistry, genetic and molecular biology have grown faster than any of other sciences. Moreover, those disciplines contribute to the understanding and treatment of an elevated number of illnesses. On the other hand, teachers cannot assure the graduating students that each particular discipline  is essential.  Furthermore,  those disciplines are often studied separately without any interdisciplinary integration between them.  The new curriculum proposed at Anhembi Morumbi University  - a private institution placed at São Paulo city  - incorporates learning blocks that  have been designed to integrate basic biological disciplines and clinical contents from the beginning in order to provide the stimulation and motivation to guide the  student through his learning.  The educational trend has concentrated on the following steps: 1 Biochemistry, genetic, cellular and molecular biology teachers´ from that institution have elaborated a new discipline  that was named Biologic Process. The aim of this new discipline was integrate basic biological sciences in a single content;  2  Selecting problems that could be discussed in the light of biochemistry, genetic and molecular contents; e.g. sickle cell anemia; 3 Developing  an innovative instructional method that challenges students “learn to learn” different from problem-based learning , economically unavailable at any particular university,  and  4 Assessments that measure knowledge, skills, attitudes and beliefs.  We believe that the future pedagogical system in  private health university will be a combination of “classical”  presentation of contents combined with actively involved students in the educational process and instruction based on either hypothetical  or real clinical cases in order to create  the stimulus for  the student continues to  integrate basic and clinical investigation.

  13. Basic theorems for parallel processes in timed $ mu $ CRL

    NARCIS (Netherlands)

    Groote, J.F.; Wamel, J.J. van


    Timed $mucrl$ is a process algebra-based formalism for the specification and verification of parallel, communicating systems with explicit time cite{Gr97. In this paper various basic results are derived, such as theorems for {it basic forms/, the expansion of terms with operators for parallelism, el

  14. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control. (United States)

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  15. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S


    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  16. Polyhydroyalkanoates: from Basic Research and Molecular Biology to Application

    Directory of Open Access Journals (Sweden)

    Amro Abd alFattah Amara


    Full Text Available This review describes the Polyhydroxyalkanoate (PHA, an intracellular biodegradable microbial polymer. PHAs is formed from different types of three hydroxyalkanoic acids monomers, each unit forms an ester bond with the hydroxyl group of the other one and the hydroxyl substituted carbon has R configuration. The C-3 atom in β position is branched with at least one carbon atom in the form of methyl group (C1 to thirteen carbons in the form of tridecyl (C13. This alkyl side chain is not necessarily saturated. PHAs are biosynthesized through regulated pathways by specific enzymes. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reducing equivalents. PHAs are converted again to soluble components by PHAs depolymerases and the degraded materials enter various metabolic pathways. Until now, four classes of enzymes responsible for PHAs polymerization are known. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable and can be used in many applications. The most limiting factor in PHAs commercialization is their high cost compared to the petroleum plastics. This review highlights the new knowledge and that established by the pioneers in this field as well as the factors, which affect PHAs commercialization.

  17. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. (United States)

    Kuter, David J; Begley, C Glenn


    Thrombocytopenia is a common medical problem for which the main treatment is platelet transfusion. Given the increasing use of platelets and the declining donor population, identification of a safe and effective platelet growth factor could improve the management of thrombocytopenia. Thrombopoietin (TPO), the c-Mpl ligand, is the primary physiologic regulator of megakaryocyte and platelet development. Since the purification of TPO in 1994, 2 recombinant forms of the c-Mpl ligand--recombinant human thrombopoietin (rhTPO) and pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF)--have undergone extensive clinical investigation. Both have been shown to be potent stimulators of megakaryocyte growth and platelet production and are biologically active in reducing the thrombocytopenia of nonmyeloablative chemotherapy. However, neither TPO has demonstrated benefit in stem cell transplantation or leukemia chemotherapy. Other clinical studies have investigated the use of TPO in treating chronic nonchemotherapy-induced thrombocytopenia associated with myelodysplastic syndromes, idiopathic thrombocytopenic purpura, thrombocytopenia due to human immunodeficiency virus, and liver disease. Based solely on animal studies, TPO may be effective in reducing surgical thrombocytopenia and bleeding, ex vivo expansion of pluripotent stem cells, and as a radioprotectant. Ongoing and future studies will help define the clinical role of recombinant TPO and TPO mimetics in the treatment of chemotherapy- and nonchemotherapy-induced thrombocytopenia.

  18. Neural correlates of processing "self-conscious" vs. "basic" emotions. (United States)

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira


    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing.

  19. Teenagers Poor Readers: Evaluation of Basic Cognitive Process

    Directory of Open Access Journals (Sweden)

    Rosa del Carmen Flores Macías


    Full Text Available The present study aims to investigate the cognitive processes associated with reading difficulties of teenage poor readers. Several studies suggest that this population presents a poor comprehension, despite reading the words properly and have good phonological skills (which distinguishes them from a population with dyslexia. With a comparative cross-sectional design the Sicole-R multimedia battery, which assesses basic cognitive processes related to reading, was applied to participants. Results indicate that poor reader students exhibit a lower performance than normal readers in phonological awareness, orthographic processing and processing syntax, although only the latter comparison was statistically significant.

  20. Targeting cancer epigenetics: Linking basic biology to clinical medicine. (United States)

    Shinjo, Keiko; Kondo, Yutaka


    Recent studies provide compelling evidence that epigenetic dysregulation is involved in almost every step of tumor development and progression. Differences in tumor behavior, which ultimately reflects clinical outcome, can be explained by variations in gene expression patterns generated by epigenetic mechanisms, such as DNA methylation. Therefore, epigenetic abnormalities are considered potential biomarkers and therapeutic targets. DNA methylation is stable at certain specific loci in cancer cells and predominantly reflects the characteristic clinicopathological features. Thus, it is an ideal biomarker for cancer screening, classification and prognostic purposes. Epigenetic treatment for cancers is based on the pharmacologic targeting of various core transcriptional programs that sustains cancer cell identity. Therefore, targeting aberrant epigenetic modifiers may be effective for multiple processes compared with using a selective inhibitor of aberrant single signaling pathway. This review provides an overview of the epigenetic alterations in human cancers and discusses about novel therapeutic strategies targeting epigenetic alterations.

  1. Basic rules for rheologic forging process of semisolid alloy

    Institute of Scientific and Technical Information of China (English)

    Shuming Xing; Lizhong Zhang; Jianbo Tan; Chuanlin Zheng; Hanwu Liu; Peng Zhang; Yunhui Du


    Semisolid mold forging is a major type of semisolid processing, which is different from neither traditional mold forging nor traditional permanent casting. However, processing defects are often seen in work pieces because of lacking available rules for the process design and control. Some basic rules for the process design and control, simply named the shortest flowing length, pressure filling and the minimum uplifting mold pressure, are advanced in the paper based on amount of researches and experiments. The equations to determine the major process parameters are given out such as the filling pressure, forming pressure and locking mold pressure for the process design and control. The rules and equations are experimentally proved available and applicable by several actual work pieces produced by the semisolid forging process.

  2. Aging and the number sense: preserved basic non-symbolic numerical processing and enhanced basic symbolic processing

    Directory of Open Access Journals (Sweden)

    Jade Eloise eNorris


    Full Text Available Aging often leads to general cognitive decline in domains such as memory and attention. The effect of aging on numerical cognition, particularly on foundational numerical skills known as the Number Sense, is not well known. Early research focused on the effect of aging on arithmetic. Recent studies have begun to investigate the impact of healthy aging on basic numerical skills, but focused on non-symbolic quantity discrimination alone. Moreover, contradictory findings have emerged. The current study aimed to further investigate the impact of aging on basic non-symbolic and symbolic numerical skills. A group of 25 younger (18-25 and 25 older adults (60-77 participated in non-symbolic and symbolic numerical comparison tasks. Mathematical and spelling abilities were also measured. Results showed that aging had no effect on foundational non-symbolic numerical skills, as both groups performed similarly (RTs, accuracy and Weber fractions (w. All participants showed decreased non-symbolic acuity (accuracy and w in trials requiring inhibition. However, aging appears to be associated with a greater decline in discrimination speed in such trials. Furthermore, aging seems to have a positive impact on mathematical ability and basic symbolic numerical processing, as older participants attained significantly higher mathematical achievement scores, and performed significantly better on the symbolic comparison task than younger participants. The findings suggest that aging and its lifetime exposure to numbers may lead to better mathematical achievement and stronger basic symbolic numerical skills. Our results further support the observation that basic non-symbolic numerical skills are resilient to aging, but that aging may exacerbate poorer performance on trials requiring inhibitory processes. These findings lend further support to the notion that preserved basic numerical skills in aging may reflect the preservation of an innate, primitive and embedded Number

  3. The basics of IT audit purposes, processes, and practical information

    CERN Document Server

    Gantz, Stephen D


    The Basics of IT Audit: Purposes, Processes, and Practical Information provides you with a thorough, yet concise overview of IT auditing. Packed with specific examples, this book gives insight into the auditing process and explains regulations and standards such as the ISO-27000, series program, CoBIT, ITIL, Sarbanes-Oxley, and HIPPA. IT auditing occurs in some form in virtually every organization, private or public, large or small. The large number and wide variety of laws, regulations, policies, and industry standards that call for IT auditing make it hard for organizations to consistent

  4. Some Basic Principles of Fish processing in Nigeria

    Directory of Open Access Journals (Sweden)

    J.F.N. Abowei


    Full Text Available Some basic principles offish processing in Nigeria is reviewed to provide information for fish culturist to effectively manage the processing of their products. Processing of fish into forms for human consumption or suitable to be used as a supplement in animal food has been neglected in fish culture practices. This may be due to the high technology required in some of the processes and the fact that those involved in actual fish production are ignorant of the different processing methods. In other to prevent fish deterioration, every fish processor must strive to employ the best method possible in handing fish to maximize returns on processing investment. Fish canning, mince fish, fish silage, acid silage, fermented silage, composition of silage, nutritional value of fish silage, fish meal, raw materials for fish meal production, general processes in fish meal production: wet process, dry process, composition and quality, problems in fish processing, production of fish meal locally, local alternatives, comparison between fish silage and fish meal, product evaluation, quality control assessment methods, fish storage, fish anatomy and physiology, chemical composition of fish, fish spoilage types, fish off-flavor management and control, off-flavor mechanism, offflavor in live fish, other causes of off-flavor in fish, natural chemicals in fish, culture system and fish off-flavor control are reviewed to provide information for fish culturist to effectively manage the processing of their products.

  5. Basic disturbances of information processing in psychosis prediction

    Directory of Open Access Journals (Sweden)

    Mitja eBodatsch


    Full Text Available The basic symptoms (BS approach provides a valid instrument in predicting psychosis onset and represents moreover a significant heuristic framework for research. The term ‘basic symptoms’ denotes subtle changes of cognition and perception in the earliest and prodromal stages of psychosis development. BS are thought to correspond to disturbances of neural information processing. Following the heuristic implications of the BS approach, the present paper aims at exploring disturbances of information processing, revealed by fMRI and EEG as characteristics of the at-risk state of psychosis. Furthermore, since high-risk studies employing UHR criteria revealed non-conversion rates commonly exceeding 50%, thus warranting approaches that increase specificity, the potential contribution of neural information processing disturbances to psychosis prediction is reviewed. In summary, the at-risk state seems to be associated with information processing disturbances. Moreover, fMRI investigations suggested that disturbances of language processing domains might be a characteristic of the prodromal state. Neurophysiological studies revealed that disturbances of sensory processing may assist psychosis prediction in allowing for a quantification of risk in terms of magnitude and time. The latter finding represents a significant advancement since an estimation of the time to event has not yet been achieved by clinical approaches. Some evidence suggests a close relationship between self-experienced BS and neural information processing. With regard to future research, the relationship between neural information processing disturbances and different clinical risk concepts warrants further investigations. Thereby,a possible time sequence in the prodromal phase might be of particular interest.

  6. Basic disturbances of information processing in psychosis prediction. (United States)

    Bodatsch, Mitja; Klosterkötter, Joachim; Müller, Ralf; Ruhrmann, Stephan


    The basic symptoms (BS) approach provides a valid instrument in predicting psychosis onset and represents moreover a significant heuristic framework for research. The term "basic symptoms" denotes subtle changes of cognition and perception in the earliest and prodromal stages of psychosis development. BS are thought to correspond to disturbances of neural information processing. Following the heuristic implications of the BS approach, the present paper aims at exploring disturbances of information processing, revealed by functional magnetic resonance imaging (fMRI) and electro-encephalographic as characteristics of the at-risk state of psychosis. Furthermore, since high-risk studies employing ultra-high-risk criteria revealed non-conversion rates commonly exceeding 50%, thus warranting approaches that increase specificity, the potential contribution of neural information processing disturbances to psychosis prediction is reviewed. In summary, the at-risk state seems to be associated with information processing disturbances. Moreover, fMRI investigations suggested that disturbances of language processing domains might be a characteristic of the prodromal state. Neurophysiological studies revealed that disturbances of sensory processing may assist psychosis prediction in allowing for a quantification of risk in terms of magnitude and time. The latter finding represents a significant advancement since an estimation of the time to event has not yet been achieved by clinical approaches. Some evidence suggests a close relationship between self-experienced BS and neural information processing. With regard to future research, the relationship between neural information processing disturbances and different clinical risk concepts warrants further investigations. Thereby, a possible time sequence in the prodromal phase might be of particular interest.

  7. Mathematics for seismic data processing with basic microcomputer programs

    Energy Technology Data Exchange (ETDEWEB)

    Camina, A.R.; Janacek, G.J.


    The new, refined techniques for exploration of oil and gas and the growth of computer uses have led to a far wider application of mathematics, and the interpretation of seismic data in particular. The authors explain in detail the mathematical principles required for signal processing and clarify for the reader what are sometimes very complex concepts. The book starts at precalculus level and progresses through to advanced theories and principles. A collection of BASIC microcomputer programs is included to give the reader a practical feel for the mathematics and their applications to these techniques.

  8. Biochemistry on the game board: improvements in the teaching-learning process in basic education

    Directory of Open Access Journals (Sweden)

    F. A. Silva


    Full Text Available According to the Curriculum Guidelines of Biology of Basic Education "school should encourage the pedagogical practice based on different methodologies, valuing the teaching concepts, the learning (internalization and the evaluation that allow teachers and students being aware of the need for emancipatory transformation”.  The teaching of biochemistry and its contents in basic education are not discussed as a structuring content within the Biology subject, but are included in related content such as cellular biology. The objective of this study was to inventory the contents and methodologies related to biochemistry taught by teachers of basic education and produce teaching-learning materials as contribution to these contents from the inventory results. The methodology was developed from the analysis of the questionnaires applied to biology teachers from public schools of Guarapuava-Pr. The results showed that the teaching of biochemistry and biology discipline, although it comes from the same area, are designed as two unattached areas, meaning there is no perception by teachers in relation to the implicit conceptual intercept in teaching Biology and Biochemistry. To this end, the profile of the game Grow was adapted using themes related to Biochemistry. The game consists of 45 cards and a game board with a track. The player who gives more write answers to the questions reaches the end and wins the match. For game evaluation participants answered a questionnaire at the end of the activity. Most of the participants argued that the process has contributed to ensure the assimilation of the contents, since it is a leisure activity with effective participation of students. Thus, the obtained data confirmed the assumption of  Pedroso (2009, which states that the games allow a significant teacher-student interaction, disseminating scientific knowledge from the views and experiences of the student.

  9. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes. (United States)

    Hess, Christoph; Kemper, Claudia


    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.

  10. Comprehending process diagrams in biology education

    NARCIS (Netherlands)

    Kragten, M.


    Students in secondary Science education seem to have difficulties with comprehending diagrams. Process diagrams are an important type of representation in Biology for explaining processes like protein synthesis, compound cycles, etc. In this thesis, we aimed at getting deeper insight into students’

  11. A concise review of the basic biology and pharmacology of local analgesia. (United States)

    Subramaniam, S; Tennant, M


    Local analgesics are the most commonly used group drugs in dental practice. However, due to their frequent use and high margin of safety, often dental practitioners neglect to properly understand the biology and pharmacology of these drugs. This article reviews the basic concepts of pain, pain pathways, the mode of action of local analgesics and factors which affect their usage. Specific details and properties of some currently available solutions are also outlined. A greater understanding of the biology and pharmacology of local anaesthetics will ultimately lead to safer and more effective use in everyday clinical practice.

  12. Towards the understanding of network information processing in biology (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  13. Basic and applied problems in developmental biology and immunobiology of cestode infections: Hymenolepis, Taenia and Echinococcus. (United States)

    Ito, A


    Differentiation and development of parasites, including longevity in host animals, are thought to be governed by host-parasite interactions. In this review, several topics on the developmental biology of cestode infections are discussed from immunobiological perspective with a focus on Hymenolepis, Taenia and Echinococcus infections. The basic premise of this review is that 'differentiation and development of cestodes' are somehow affected by host immune responses with an evolutionary history.

  14. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor


    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina


    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD pol...

  15. Classification of biological and non-biological fluvial particles using image processing and artificial neural network (United States)

    Shrestha, Bim Prasad; Shrestha, Nabin Kumar; Poudel, Laxman


    Particles flowing along with water largely affect safe drinking water, irrigation, aquatic life preservation and hydropower generation. This research describes activities that lead to development of fluvial particle characterization that includes detection of biological and non-biological particles and shape characterization using Image Processing and Artificial Neural Network (ANN). Fluvial particles are characterized based on multi spectral images processing using ANN. Images of wavelength of 630nm and 670nm are taken as most distinctive characterizing properties of biological and non-biological particles found in Bagmati River of Nepal. The samples were collected at pre-monsoon, monsoon and post-monsoon seasons. Random samples were selected and multi spectral images are processed using MATLAB 6.5. Thirty matrices were built from each sample. The obtained data of 42 rows and 60columns were taken as input training with an output matrix of 42 rows and 2 columns. Neural Network of Perceptron model was created using a transfer function. The system was first validated and later on tested at 18 different strategic locations of Bagmati River of Kathmandu Valley, Nepal. This network classified biological and non biological particles. Development of new non-destructive technique to characterize biological and non-biological particles from fluvial sample in a real time has a significance breakthrough. This applied research method and outcome is an attractive model for real time monitoring of particles and has many applications that can throw a significant outlet to many researches and for effective utilization of water resources. It opened a new horizon of opportunities for basic and applied research at Kathmandu University in Nepal.

  16. Image processing and computing in structural biology

    NARCIS (Netherlands)

    Jiang, Linhua


    With the help of modern techniques of imaging processing and computing, image data obtained by electron cryo-microscopy of biomolecules can be reconstructed to three-dimensional biological models at sub-nanometer resolution. These models allow answering urgent problems in life science, for instance,

  17. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering. (United States)

    Knuuttila, Tarja; Loettgers, Andrea


    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired."

  18. Biological Sludge Stabilization; Fenton and Ozonation Processes

    Directory of Open Access Journals (Sweden)

    Miranzadeh M.B.1 PhD,


    Full Text Available Aims In biological wastewater treatment processes, a large amount of sludge is produced. Stabilization of sludge is essential before disposal because of the risks to human health and environment. Therefore, selecting an appropriate process for stabilization this sludge may efficiently decrease risks. The aim of this study was to examine the compound efficiency of the advanced Fenton and ozonation oxidation processes in stabilization of biological sludge. Instrument & Methods This experimental study was conducted on raw sludge taken from Kashan University of Medical Sciences’ Wastewater Treatment Plant in Iran during 2014. Fenton and ozonation oxidation processes were used for sludge stabilization. H2O2 and Fe2+ concentration, along with their mutual interaction, were measured using repeated measures model. Then the effects of pH and time reaction on reduction efficiency of volatile solids (VS were examined. Findings The maximum removal efficiencies in Fenton process at pH=3 and in ozonation process in pH=7 were obtained 85.1% and 92.9%, respectively. By increasing the reaction time from 30 to 90min, VS reduction efficiency in Fenton and ozonation processes increased and then reduced after 60min. The maximum reduction efficiencies of VS were obtained at 3000mg/l H2O2 concentration, So that the optimum ratio of Fe2+/H2O2 for sludge stabilization was 1000/3000mg/l with the efficiency of 91.5%. Conclusion Ozonation process efficiency in stabilizing biological wastewater sludge is higher than that of Fenton process.

  19. All basic condensed matter physics phenomena and notions mirror in biology – A hypothesis, two examples and a novel prediction

    Indian Academy of Sciences (India)

    G Baskaran


    A few billion years of evolutionary time and the complex process of ‘selection’ has given biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have been discovered by humans in the laboratory, that too only in extreme non-biological conditions such as low temperatures, high purity, high pressure etc., in the last centuries. Biology, at some level, is a complex and self-regulated condensed matter system compared to the ‘inanimate’ condensed matter systems such as liquid 4He, liquid water or a piece of graphite. In this article I propose a hypothesis that ‘all basic condensed matter physics phenomena and notions (already known and ones yet to be discovered) mirror in biology’. I explain this hypothesis by considering the idea of ‘Bose condensation’ or ‘momentum space order’ and discuss two known example of quantum magnetism encountered in biology. I also provide some new and rather speculative possibility, from light harvesting in biological photosynthesis, of mesoscopic exciton condensation related phenomena at room temperature.

  20. A Method for Decomposition of the Basic Reaction of Biological Macromolecules into Exponential Components (United States)

    Barabash, Yu. M.; Lyamets, A. K.


    The structural and dynamical properties of biological macromolecules under non-equilibrium conditions determine the kinetics of their basic reaction to external stimuli. This kinetics is multiexponential in nature. This is due to the operation of various subsystems in the structure of macromolecules, as well as the effect of the basic reaction on the structure of macromolecules. The situation can be interpreted as a manifestation of the stationary states of macromolecules, which are represented by monoexponential components of the basic reaction (Monod-Wyman-Changeux model) Monod et al. (J Mol Cell Biol 12:88-118, 1965). The representation of multiexponential kinetics of the basic reaction in the form of a sum of exponential functions (A(t)={sum}_{i=1}^n{a}_i{e}^{-{k}_it}) is a multidimensional optimization problem. To solve this problem, a gradient method of optimization with software determination of the amount of exponents and reasonable calculation time is developed. This method is used to analyze the kinetics of photoinduced electron transport in the reaction centers (RC) of purple bacteria and the fluorescence induction in the granum thylakoid membranes which share a common function of converting light energy.

  1. Biochemistry on the game board: improvements in the teaching-learning process in basic education



    According to the Curriculum Guidelines of Biology of Basic Education "school should encourage the pedagogical practice based on different methodologies, valuing the teaching concepts, the learning (internalization) and the evaluation that allow teachers and students being aware of the need for emancipatory transformation”.  The teaching of biochemistry and its contents in basic education are not discussed as a structuring content within the Biology subject, but are included in related content...

  2. Stochastic Simulation of Process Calculi for Biology

    CERN Document Server

    Phillips, Andrew; Paulevé, Loïc; 10.4204/EPTCS.40.1


    Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instant...

  3. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart


    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  4. Diffusion processes and related topics in biology

    CERN Document Server

    Ricciardi, Luigi M


    These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol­ ogy and neurobiology literature. While the subject may be classical, the nov­ elty here lies in the approach and point of view, particularly in the applica­ tions such as the approach to the neuronal firing problem and its related dif­ fusion approximations. It is a ple...

  5. Modeling delayed processes in biological systems (United States)

    Feng, Jingchen; Sevier, Stuart A.; Huang, Bin; Jia, Dongya; Levine, Herbert


    Delayed processes are ubiquitous in biological systems and are often characterized by delay differential equations (DDEs) and their extension to include stochastic effects. DDEs do not explicitly incorporate intermediate states associated with a delayed process but instead use an estimated average delay time. In an effort to examine the validity of this approach, we study systems with significant delays by explicitly incorporating intermediate steps. We show that such explicit models often yield significantly different equilibrium distributions and transition times as compared to DDEs with deterministic delay values. Additionally, different explicit models with qualitatively different dynamics can give rise to the same DDEs revealing important ambiguities. We also show that DDE-based predictions of oscillatory behavior may fail for the corresponding explicit model.

  6. Image processing and recognition for biological images. (United States)

    Uchida, Seiichi


    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target.

  7. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips


    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  8. The Nephrologist's Tumor: Basic Biology and Management of Renal Cell Carcinoma. (United States)

    Hu, Susie L; Chang, Anthony; Perazella, Mark A; Okusa, Mark D; Jaimes, Edgar A; Weiss, Robert H


    Kidney cancer, or renal cell carcinoma (RCC), is a disease of increasing incidence that is commonly seen in the general practice of nephrology. However, RCC is under-recognized by the nephrology community, such that its presence in curricula and research by this group is lacking. In the most common form of RCC, clear cell renal cell carcinoma (ccRCC), inactivation of the von Hippel-Lindau tumor suppressor is nearly universal; thus, the biology of ccRCC is characterized by activation of hypoxia-relevant pathways that lead to the associated paraneoplastic syndromes. Therefore, RCC is labeled the internist's tumor. In light of this characterization and multiple other metabolic abnormalities recently associated with ccRCC, it can now be viewed as a metabolic disease. In this review, we discuss the basic biology, pathology, and approaches for treatment of RCC. It is important to distinguish between kidney confinement and distant spread of RCC, because this difference affects diagnostic and therapeutic approaches and patient survival, and it is important to recognize the key interplay between RCC, RCC therapy, and CKD. Better understanding of all aspects of this disease will lead to optimal patient care and more recognition of an increasingly prevalent nephrologic disease, which we now appropriately label the nephrologist's tumor.

  9. Motivation: the most basic process in TQM/CQI. (United States)

    Rice, W R


    Quality management professionals confront the challenge of motivating others to participate in the improvement of patient care. Producing this motivation frequently proves problematic. This article addresses the issue of motivation by presenting it as a process. Abraham Maslow's hierarchy of needs functions as the foundation of the process. A process model is used to demonstrate that satisfaction of the higher-level needs of esteem and self-actualization is required to produce true motivation. By understanding the process of motivation, we may become more effective in improving patient care.

  10. Optimization of a biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A.


    A biological sulfate reduction process is presented. It is intended to treat sulfate wastes by converting them to hydrogen sulfide which can be further oxidized to elemental sulfur. An optimization study of a completely-mixed reactor system was performed. Major operating parameters were determined at the bench-scale level. The study was conducted in batch-culture experiments, using a mixed Desulfovibrio culture from sewage. Kinetic values were extrapolated using the Michaelis-Menten model, which best fitted the experimental data. The iron loading and the sulfate loading significantly affected the growth and metabolism of sulfate reducing bacteria (SRB). A model to determine V/sub m/ from the iron and sulfate loading values was explored. The model is limited by sulfate loading greater than 4.3 g/l, where bacterial growth is inhibited. Iron loading is not anticipated to suppress the bacterial metabolism efficiency since it remained in the linear pattern even at inhibition levels. Studies of the metabolic behavior of SRB, using lactic acid as the carbon source, showed a requirement of 2.7 moles of lactate for each mole of sulfate. This technique and its application to the sulfur recovery process are discussed.

  11. Basic instinct undressed: early spatiotemporal processing for primary sexual characteristics. (United States)

    Legrand, Lore B; Del Zotto, Marzia; Tyrand, Rémi; Pegna, Alan J


    This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success.

  12. Process efficiency simulation for key process parameters in biological methanogenesis

    Directory of Open Access Journals (Sweden)

    Sébastien Bernacchi


    Full Text Available New generation biofuels are a suitable approach to produce energy carriers in an almost CO2 neutral way. A promising reaction is the conversion of CO2 and H2 to CH4. This contribution aims at elucidating a bioprocess comprised of a core reaction unit using microorganisms from the Archaea life domain, which metabolize CO2 and H2 to CH4, followed by a gas purification step. The process is simulated and analyzed thermodynamically using the Aspen Plus process simulation environment. The goal of the study was to quantify effects of process parameters on overall process efficiency using a kinetic model derived from previously published experimental results. The used empirical model links the production rate of CH4 and biomass to limiting reactant concentrations. In addition, Aspen Plus was used to improve bioprocess quantification. Impacts of pressure as well as dilution of reactant gas with up to 70% non-reactive gas on overall process efficiency was evaluated. Pressure in the reactor unit of 11 bar at 65℃ with a pressure of 21 bar for gas purification led to an overall process efficiency comprised between 66% and 70% for gaseous product and between 73% and 76% if heat of compression is considered a valuable product. The combination of 2 bar pressure in the reactor and 21 bar for purification was the most efficient combination of parameters. This result shows Aspen Plus potential for similar bioprocess development as it accounts for the energetic aspect of the entire process. In fact, the optimum for the overall process efficiency was found to differ from the optimum of the reaction unit. High efficiency of over 70% demonstrates that biological methanogenesis is a promising alternative for a chemical methanation reaction.

  13. Basic instinct undressed: early spatiotemporal processing for primary sexual characteristics.

    Directory of Open Access Journals (Sweden)

    Lore B Legrand

    Full Text Available This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations or were rendered non-conscious through backward masking (subliminal presentations. The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success.

  14. Reading biological processes from nucleotide sequences (United States)

    Murugan, Anand

    Cellular processes have traditionally been investigated by techniques of imaging and biochemical analysis of the molecules involved. The recent rapid progress in our ability to manipulate and read nucleic acid sequences gives us direct access to the genetic information that directs and constrains biological processes. While sequence data is being used widely to investigate genotype-phenotype relationships and population structure, here we use sequencing to understand biophysical mechanisms. We present work on two different systems. First, in chapter 2, we characterize the stochastic genetic editing mechanism that produces diverse T-cell receptors in the human immune system. We do this by inferring statistical distributions of the underlying biochemical events that generate T-cell receptor coding sequences from the statistics of the observed sequences. This inferred model quantitatively describes the potential repertoire of T-cell receptors that can be produced by an individual, providing insight into its potential diversity and the probability of generation of any specific T-cell receptor. Then in chapter 3, we present work on understanding the functioning of regulatory DNA sequences in both prokaryotes and eukaryotes. Here we use experiments that measure the transcriptional activity of large libraries of mutagenized promoters and enhancers and infer models of the sequence-function relationship from this data. For the bacterial promoter, we infer a physically motivated 'thermodynamic' model of the interaction of DNA-binding proteins and RNA polymerase determining the transcription rate of the downstream gene. For the eukaryotic enhancers, we infer heuristic models of the sequence-function relationship and use these models to find synthetic enhancer sequences that optimize inducibility of expression. Both projects demonstrate the utility of sequence information in conjunction with sophisticated statistical inference techniques for dissecting underlying biophysical

  15. Basics for sensorimotor information processing: some implications for learning. (United States)

    Vidal, Franck; Meckler, Cédric; Hasbroucq, Thierry


    In sensorimotor activities, learning requires efficient information processing, whether in car driving, sport activities or human-machine interactions. Several factors may affect the efficiency of such processing: they may be extrinsic (i.e., task-related) or intrinsic (i.e., subjects-related). The effects of these factors are intimately related to the structure of human information processing. In the present article we will focus on some of them, which are poorly taken into account, even when minimizing errors or their consequences is an essential issue at stake. Among the extrinsic factors, we will discuss, first, the effects of the quantity and quality of information, secondly, the effects of instruction and thirdly motor program learning. Among the intrinsic factors, we will discuss first the influence of prior information, secondly how individual strategies affect performance and, thirdly, we will stress the fact that although the human brain is not structured to function errorless (which is not new) humans are able to detect their errors very quickly and (in most of the cases), fast enough to correct them before they result in an overt failure. Extrinsic and intrinsic factors are important to take into account for learning because (1) they strongly affect performance, either in terms of speed or accuracy, which facilitates or impairs learning, (2) the effect of certain extrinsic factors may be strongly modified by learning and (3) certain intrinsic factors might be exploited for learning strategies.


    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  17. NK cell-based cancer immunotherapy: from basic biology to clinical application. (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi


    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  18. The Basic Biology of PP2A in Hematologic Cells and Malignancies. (United States)

    Haesen, Dorien; Sents, Ward; Lemaire, Katleen; Hoorne, Yana; Janssens, Veerle


    Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.

  19. Bio-electrospraying and cell electrospinning: progress and opportunities for basic biology and clinical sciences. (United States)

    Poncelet, Denis; de Vos, Paul; Suter, Nicolai; Jayasinghe, Suwan N


    Engineering of functional tissues is a fascinating and fertile arena of research and development. This flourishing enterprise weaves together many areas of research to tackle the most complex question faced to date, namely how to design and reconstruct a synthetic three-dimensional fully functional tissue on demand. At present our healthcare is under threat by several social and economical issues together with those of a more scientific and clinical nature. One such issue arises from our increasing life expectancy, resulting in an ageing society. This steeply growing ageing society requires functional organotypic tissues on demand for repair, replacement, and rejuvenation (R(3) ). Several approaches are pioneered and developed to assist conventional tissue/organ transplantation. In this Progress Report, "non-contact jet-based" approaches for engineering functional tissues are introduced and bio-electrosprays and cell electrospinning, i.e., biotechniques that have demonstrated as being benign for directly handling living cells and whole organisms, are highlighted. These biotechniques possess the ability to directly handle heterogeneous cell populations as suspensions with a biopolymer and/or other micro/nanomaterials for directly forming three-dimensional functional living reconstructs. These discoveries and developments have provided a promising biotechnology platform with far-reaching ramifications for a wide range of applications in basic biological laboratories to their utility in the clinic.

  20. Use of colloidal gold cytochemistry in the study of the basic cell biology of cancer. (United States)

    Willingham, M C


    We are currently investigating the morphologic aspects of two areas of the basic cell biology of cancer: tumor-specific surface antigens as targets for immunotoxins, and the phenomenon of multidrug resistance in chemotherapy of human tumors. Colloidal gold cytochemistry has provided a useful method for the electron-microscopic cytochemical detection of materials endocytosed by cells in culture. This technique has been used to study the internalization pathway of ligands bound to the surface of cancer cells, particularly antibodies for use as immunologic targeting reagents for the construction of immunotoxins. These colloidal gold conjugates with monoclonal antibodies have demonstrated the internalization of these immunologic reagents through coated pits and receptosomes, which is a necessary step in the delivery of immunotoxins into the cell where they can mediate their cell-killing functions. Morphologic methods have been employed for the screening and selection of monoclonal antibodies reactive with the surface of human ovarian cancer cells for use as immunotoxins and have demonstrated the in vivo activity of immunotoxins made with these antibodies and Pseudomonas exotoxin in a nude mouse model system. In other studies, we have employed such reagents for the immunocytochemical detection of the surface expression of P170, the cell-surface efflux pump protein responsible for the phenotype of multidrug resistance in tumor cells, and to investigate the distribution of this protein by using immunocytochemistry in normal human tissues. These results have suggested a role for P170 in normal cell membrane transport of metabolites in various organ systems.

  1. The gambler’s fallacy: A basic inhibitory process?

    Directory of Open Access Journals (Sweden)

    James eLyons


    Full Text Available Two studies were conducted to examine the relation between the gambler’s fallacy and attentional processes associated with inhibition of return (IOR. In Study 1, participants completed rapid aiming movements to equally probable targets presented to the left and right. They also completed a gambling protocol in which they bet on the illumination of either target. Consistent with the inhibition of return phenomenon, participants were slower to initate their movements on trial N + 1 when the target was the same as trial N. Participants with more pronounced IOR were more likely to switch betting behavior after a win than participants with a smaller index. This betting behavior was also related to a gambler’s fallacy index measured by a questionnaire. In Study 2, participants performed both the aiming task and the betting task with a partner. Each participant performed two trials before ceding to the partner. Thus we were able to examine IOR and betting behavior as a function of the participant’s own previous trial and their partner’s previous trial. The IOR effect was robust both within and between-participants. Participants were more likely to maintain their bet following an unsuccesful outcome regardless of whether it was their own outcome or their partner’s outcome. This type of betting behavior is consistent with the gambler’s fallacy. Individual IOR scores were a reliable predictor of betting behavior and the questionnaire was also succesful in predicting behavior. In addition, the within-person IOR indices covaried with the gambler’s fallacy index deprived from the questionnaire. In summary, there appears to be a relation between inhibition of return and the gambler’s fallacy. We suggest that early humans developed specialized attentional systems to deal with non-random environmental contingencies, and that the automatic processes associated with these systems are sometimes maladaptive in artifical environments in which the

  2. Process Analysis of Basic Allowance for Housing (BAH) Within the Military Personnel, Marine Corps (MPMC) Appropriation (United States)



  3. FMRI of ventral and dorsal processing streams in basic reading processes: insular sensitivity to phonology. (United States)

    Borowsky, Ron; Cummine, Jacqueline; Owen, William J; Friesen, Chris Kelland; Shih, Francis; Sarty, Gordon E


    Most current models of the neurophysiology of basic reading processes agree on a system involving two cortical streams: a ventral stream (occipital-temporal) used when accessing familiar words encoded in lexical memory, and a dorsal stream (occipital-parietal-frontal) used when phonetically decoding words (i.e., mapping sublexical spelling onto sounds). The models diverge, however, on the issue of whether the insular cortex is involved. The present fMRI study required participants to read aloud exception words (e.g., 'one', which must be read via lexical memory) and pseudohomophones (e.g., 'wun', which must be read via sublexical spelling to sound translation) to examine the processing streams as well as the insular cortex, and their relationship to lexical and sublexical reading processes. The present study supports the notion of independent ventral-lexical and dorsal-sublexical streams, and further suggests the insular cortex to be sensitive to phonological processing (particularly sublexical spelling-sound translation). These latter findings illuminate the nature of insular activity during reading, which must be explored further in future studies, and accounted for in models of the neurophysiology of reading.

  4. [The academician O. G. Gazenko contribution to development of the basic problems in space biology and medicine]. (United States)

    Grigor'ev, A I


    This December we will comme the 90th birthday of Oleg G. Gazenko, the founder of space biology and medicine, who belongs to the famous pleiad of scientists from the school of outstanding physiologist L. A. Orbeli. Talented experimenter and theorist, he was generally recognized for his investigations into the spaceflight impacts on living systems, development of the basics of medical care for crews in extended space missions, and implementation of biological experiments that served to furtherance of space and gravitation biology. The academic heritage of Oleg G. Gazenko has an imperishable significance for the progression of biomedical space researches.

  5. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2 (United States)

    Laughbaum, Edward D.


    Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…

  6. Capitalizing on Basic Brain Processes in Developmental Algebra--Part One (United States)

    Laughbaum, Edward D.


    Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…

  7. Basic emotion processing and the adolescent brain: Task demands, analytic approaches, and trajectories of changes

    Directory of Open Access Journals (Sweden)

    Larissa B. Del Piero


    Full Text Available Early neuroimaging studies suggested that adolescents show initial development in brain regions linked with emotional reactivity, but slower development in brain structures linked with emotion regulation. However, the increased sophistication of adolescent brain research has made this picture more complex. This review examines functional neuroimaging studies that test for differences in basic emotion processing (reactivity and regulation between adolescents and either children or adults. We delineated different emotional processing demands across the experimental paradigms in the reviewed studies to synthesize the diverse results. The methods for assessing change (i.e., analytical approach and cohort characteristics (e.g., age range were also explored as potential factors influencing study results. Few unifying dimensions were found to successfully distill the results of the reviewed studies. However, this review highlights the potential impact of subtle methodological and analytic differences between studies, need for standardized and theory-driven experimental paradigms, and necessity of analytic approaches that are can adequately test the trajectories of developmental change that have recently been proposed. Recommendations for future research highlight connectivity analyses and non-linear developmental trajectories, which appear to be promising approaches for measuring change across adolescence. Recommendations are made for evaluating gender and biological markers of development beyond chronological age.

  8. Exploiting graphics processing units for computational biology and bioinformatics. (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H


    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  9. Adsorption Dynamics of Calyx Aroma onto Basic Tea in Scenting Process of Calyx-scented Tea

    Institute of Scientific and Technical Information of China (English)

    Changhui CHEN


    [Objective] The paper was to study adsorption dynamics of calyx aroma onto basic tea in scenting process of calyx-scented tea, so as to increase aroma and quality of products. [Method] Adsorption experiment was carried out in a hermetic container, and the effect of calyx amount, contact time, moisture content of basic tea and temperature on the scenting process was studied. [Result] The optimal moisture and temperature for scenting process was 4% and 10 ℃, respectively. [Conclusion] The scenting process accorded pseudo-first-order kinetic model, and the adsorption dynamic data of total process could better fit pseudo-second-order kinetic model.

  10. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria. (United States)

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I


    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p molecular biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 2017.

  11. Symbiotic grasses: A review of basic biology of forage grass fungal endophytes (United States)

    The fungal endophytes associated with grasses are the fundamental reason for the basic successes of several pasture grasses, notable tall fescues, and perennial ryegrass. Tall fescue and perennial ryegrass fungal endophytes, Neotyphodium coenophialum and N. lolii, respectively, and their relatives ...

  12. Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease. (United States)

    Blander, J Magarian


    Every 4-5 days, intestinal epithelial cells (IEC) are terminated as they reach the end of their life. This process ensures that the epithelium is comprised of the fittest cells that maintain an impermeable barrier to luminal contents and the gut microbiota, as well as the most metabolically able cells that conduct functions in nutrient absorption, digestion, and secretion of antimicrobial peptides. IEC are terminated by apical extrusion-or shedding-from the intestinal epithelial monolayer into the gut lumen. Whether death by apoptosis signals extrusion or death follows expulsion by younger IEC has been a matter of debate. Seemingly a minor detail, IEC death before or after apical extrusion bears weight on the potential contribution of apoptotic IEC to intestinal homeostasis as a consequence of their recognition by intestinal lamina propria phagocytes. In inflammatory bowel disease (IBD), excessive death is observed in the ileal and colonic epithelium. The precise mode of IEC death in IBD is not defined. A highly inflammatory milieu within the intestinal lamina propria, rich in the proinflammatory cytokine, TNF-α, increases IEC shedding and compromises barrier integrity fueling more inflammation. A milestone in the treatment of IBD, anti-TNF-α therapy, may promote mucosal healing by reversing increased and inflammation-associated IEC death. Understanding the biology and consequences of cell death in the intestinal epithelium is critical to the design of new avenues for IBD therapy.

  13. Virtual Lab Demonstrations Improve Students’ Mastery of Basic Biology Laboratory Techniques

    Directory of Open Access Journals (Sweden)

    Grace A. Maldarelli


    Full Text Available Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes.


    EcoMat, Inc. of Hayward, California (EcoMat) has developed an ex situ anoxic biofilter biodenitrification (BDN) process. The process uses specific biocarriers and bacteria to treat nitrate-contaminated water and employs a patented reactor that retains biocarrier within the syste...

  15. Basic model study on efficiency evaluation in collaborative design work process

    Institute of Scientific and Technical Information of China (English)

    XIE Qiu; YANG Yu; LI Xiaoli; ZHAO Ningyu


    During the efficiency evaluation process of collaborative design work,because of the lack of efficiency evaluation models,a basic analytical model for collaborative design work efficiency evaluation is proposed in this paper.First,the characteristics of the networked collaborative design system work process were studied; then,in accordance with those characteristics,a basic analytical model is created.This model,which is built for centralized collaborative design work,includes an analytical frame,a process view model,a function view model and an information view model.Finally,the application process and steps of this basic analytical model are elaborated when used for efficiency evaluation through an experiment.

  16. Biological processes of the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.; Parulekar, A.H.

    Physical processes such as wind-driven coastal run-off during the monsoons and convective overturning of surface waters due to winter cooling bring in nutrients into the euphotic zone and enhance primary productivity of the northern Indian Ocean...

  17. Multiple biological functions of novel basic proteins isolated from duck egg white: duck basic protein small 1 (dBPS1) and 2 (dBPS2). (United States)

    Naknukool, Supaporn; Hayakawa, Shigeru; Ogawa, Masahiro


    Biological functions of duck basic protein small 1 (dBPS(1)) and 2 (dBPS(2)) were investigated by in vitro experiments. Results of agarose gel retardation assay indicated that dBPS(1) and dBPS(2) associate with RNA. Addition of NaCl or urea induced partial dissociation of dBPS(1)/dBPS(2)-RNA complex, implying that electrostatic interaction, hydrophobic interaction, and hydrogen bonds are involved in the association of dBPS(1)/dBPS(2) to RNA. dBPS(1) and dBPS(2) inhibited pancreatic lipase activity with the fifty percent inhibitory concentration (IC(50)) of 250 and 100 μg/mL, respectively. Peptic hydrolysates of dBPS(1) and those of dBPS(2) showed a potent angiotensin I-converting enzyme (ACE) inhibition with an IC(50) of 22.5 and 49.6 mg/L. The most potent ACE-inhibitory peptide was a nanopeptide (EKKGFCAGY) from dBPS(1) and an octapeptide (KYCPKVGY) from dBPS(2). These multiple biological functions of dBPS(1) and dBPS(2) may contribute to reducing the risk of lifestyle diseases.

  18. Recent Developments in Biological Hydrogen Production Processes

    Directory of Open Access Journals (Sweden)



    Full Text Available Biohydrogen production technology can utilize renewable energy sources like biomass for the generation of hydrogen, the cleanest form of energy for the use of mankind. However, major constraints to the commercialization of these processes include lower hydrogen yields and rates of hydrogen production. To overcome these bottlenecks intensive research work has already been carried out on the advancement of these processes such as the development of genetically modified microorganisms, the improvement of the bioreactor design, molecular engineering of the key enzyme hydrogenases, the development of two stage processes, etc. The present paper explores the recent advancements that have been made till date and also presents the state of the art in molecular strategies to improve the hydrogen production.

  19. Bridging the gap between basic and applied biology: towards preclinical translation

    Directory of Open Access Journals (Sweden)

    Ross L. Cagan


    To better translate basic research findings into the clinic, we are moving away from the traditional one-gene–one-phenotype model towards the discovery of complex mechanisms. In this Editorial, the new Editor-in-Chief and Senior Editors of Disease Models & Mechanisms (DMM discuss the role that the journal will play in this transition. DMM will continue to provide a platform for studies that bridge basic and applied science, and, by demanding the rigorous assessment of animal models of disease, will help drive the establishment of robust standards of preclinical testing for drug development.

  20. Hydrogen production by biological processes: a survey of literature

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debabrata [Indian Inst. of Technology, Dept. of Biotechnology, Kharagpur (India); Miami Univ., Clean Energy Research Inst., Coral Gables, FL (United States); Veziroglu, T. Nejat [Miami Univ., Clean Energy Research Inst., Coral Gables, FL (United States)


    Hydrogen is the fuel of the future mainly due to its high conversion efficiency, recyclability and nonpolluting nature. Biological hydrogen production processes are found to be more environment friendly and less energy intensive as compared to thermochemical and electrochemical processes. They are mostly controlled by either photosynthetic or fermentative organisms. Till today, more emphasis has been given on the former processes. Nitrogenase and hydrogenase play very important roles. Genetic manipulation of cyanobacteria (hydrogenase negative gene) improves the hydrogen generation. The paper presents a survey of biological hydrogen production processes. The micro-organism and biochemical pathways involved in hydrogen generation processes are presented in some detail. Several developmental works are discussed. Immobilised system is found suitable for the continuous hydrogen production. About 28% of energy can be recovered in the form of hydrogen using sucrose as substrate. Fermentative hydrogen production processes have some edge over the other biological processes. (Author)

  1. Application of 19F MRI for in vivo detection of biological processes


    Basse-Lüsebrink, Thomas Christian


    This thesis focuses on various aspects and techniques of 19F magnetic resonance (MR). The first chapters provide an overview of the basic physical properties, 19F MR and MR sequences related to this work. Chapter 5 focuses on the application of 19F MR to visualize biological processes in vivo using two different animal models. The dissimilar models underlined the wide applicability of 19F MR in preclinical research. A subsection of Chapter 6 shows the application of compressed sensing (CS) to...

  2. Advanced Functional Nanomaterials for Biological Processes (United States)


    phantom and in animal mode. The expected outcome—the assessment of a patient’s entire blood volume (in adults 5 L)—will provide a significant (100...formation. We hypothesized that such a study could result in a possible vaccine for osteoporosis . 0 0.5 1 1.5 2 2.5 3 3.5 4 Control SW 20 SW40 SWCPE...GCNFs) were produced by a single-step reduction process and used for the growth and differentiation of human adult stem cells. The nanomaterials were

  3. Nutrition and the Older Adult. Module A-9. Block A. Basic Knowledge of the Aging Process. (United States)

    Harvey, Dexter; Cap, Orest

    This instructional module on nutrition and the older adult is one in a block of 10 modules designed to provide the human services worker who works with older adults with basic information regarding the aging process. An introduction provides an overview of the module content. A listing of general objectives follows. Five sections present…

  4. Neural processing of basic tastes in healthy young and older adults - an fMRI study

    NARCIS (Netherlands)

    Hoogeveen, Heleen R.; Dalenberg, Jelle R.; Renken, Remco J.; ter Horst, Gert J.; Lorist, Monicque M.


    Ageing affects taste perception as shown in psychophysical studies, however, underlying structural and functional mechanisms of these changes are still largely unknown. To investigate the neurobiology of age-related differences associated with processing of basic tastes, we measured brain activation


    Directory of Open Access Journals (Sweden)

    Gushylyk B.


    Full Text Available Data about directions of synthesis and use of the phosphororganic compounds in technics, biology and medicine is presented in the paper. Antimicrobial activity of 51 phosphororganic salts and ilides containing urine and threechlor ethylenamide has been studied. Perspective of the development of effective antimicrobial substances has been determined

  6. Strong Bisimilarity and Regularity of Basic Parallel Processes is PSPACE-Hard

    DEFF Research Database (Denmark)

    Srba, Jirí


    We show that the problem of checking whether two processes definable in the syntax of Basic Parallel Processes (BPP) are strongly bisimilar is PSPACE-hard. We also demonstrate that there is a polynomial time reduction from the strong bisimilarity checking problem of regular BPP to the strong...... regularity (finiteness) checking of BPP. This implies that strong regularity of BPP is also PSPACE-hard....

  7. Scientific bases of biomass processing into basic component of aviation fuel (United States)

    Kachalov, V. V.; Lavrenov, V. A.; Lishchiner, I. I.; Malova, O. V.; Tarasov, A. L.; Zaichenko, V. M.


    A combination of feedstock pyrolysis and the cracking of the volatile pyrolysis products on the charcoal at 1000 °C allows to obtain a tarless synthesis gas which contains 90 vol% or more of carbon monoxide and hydrogen in approximately equal proportions. Basic component of aviation fuel was synthesized in a two-stage process from gas obtained by pyrolytic processing of biomass. Methanol and dimethyl ether can be efficiently produced in a two-layer loading of methanolic catalyst and γ-Al2O3. The total conversion of CO per pass was 38.2% using for the synthesis of oxygenates a synthesis gas with adverse ratio of H2/CO = 0.96. Conversion of CO to CH3OH was 15.3% and the conversion of CO to dimethyl ether was 20.9%. A high yield of basic component per oxygenates mass (44.6%) was obtained during conversion. The high selectivity of the synthesis process for liquid hydrocarbons was observed. An optimal recipe of aviation fuel B-92 based on a synthesized basic component was developed. The prototype of aviation fuel meets the requirements for B-92 when straight fractions of 50-100 °C (up to 35 wt%), isooctane (up to 10 wt%) and ethyl fluid (2.0 g/kg calculated as tetraethyl lead) is added to the basic component.

  8. Electron beam/biological processing of anaerobic and aerobic sludge (United States)

    Čuba, V.; Pospíšil, M.; Múčka, V.; Jeníček, P.; Dohányos, M.; Zábranská, J.


    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters.

  9. Basic Abnormalities in Visual Processing Affect Face Processing at an Early Age in Autism Spectrum Disorder

    NARCIS (Netherlands)

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal


    Background: A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD an

  10. Basics of particle therapy II biologic and dosimetric aspects of clinical hadron therapy. (United States)

    Rong, Yi; Welsh, James


    Besides photons and electrons, high-energy particles like protons, neutrons, ⁴He ions or heavier ions (C, Ne, etc) have been finding increasing applications in the treatment of radioresistant tumors and tumors located near critical structures. The main difference between photons and hadrons is their different biologic effect and depth-dose distribution. Generally speaking, protons are superior in dosimetric aspects whereas neutrons have advantages in biologic effectiveness because of the high linear energy transfer. In 1946 Robert Wilson first published the physical advantages in dose distribution of ion particles for cancer therapy. Since that time hadronic radiotherapy has been intensively studied in physics laboratories worldwide and clinical application have gradually come to fruition. Hadron therapy was made possible by the advances in accelerator technology, which increases the particles' energy high enough to place them at any depth within the patient's body. As a follow-up to the previous article Introduction to Hadrons, this review discusses certain biologic and dosimetric aspects of using protons, neutrons, and heavy charged particles for radiation therapy.

  11. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Amerine, D.B.


    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  12. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M


    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  13. The basic science of hair biology: what are the causal mechanisms for the disordered hair follicle? (United States)

    Breitkopf, Trisia; Leung, Gigi; Yu, Mei; Wang, Eddy; McElwee, Kevin J


    A hair disorder can be difficult to define, but patients are typically motivated to seek treatment when their hair growth patterns are significantly different from their cultural group or when growth patterns change significantly. The causes of hair disorders are many and varied, but fundamentally the disorder is a consequence of aberrant alterations of normal hair biology. The potential trigger factors for hair disorders can be attributed to inflammation, genetics, the environment, or hormones, of which the relative contributions vary for different diagnoses, between individuals, and over time. This article discusses the causal mechanisms for the disordered hair follicle.

  14. Site-selective protein-modification chemistry for basic biology and drug development (United States)

    Krall, Nikolaus; da Cruz, Filipa P.; Boutureira, Omar; Bernardes, Gonçalo J. L.


    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.

  15. Current and emerging basic science concepts in bone biology: implications in craniofacial surgery. (United States)

    Oppenheimer, Adam J; Mesa, John; Buchman, Steven R


    Ongoing research in bone biology has brought cutting-edge technologies into everyday use in craniofacial surgery. Nonetheless, when osseous defects of the craniomaxillofacial skeleton are encountered, autogenous bone grafting remains the criterion standard for reconstruction. Accordingly, the core principles of bone graft physiology continue to be of paramount importance. Bone grafts, however, are not a panacea; donor site morbidity and operative risk are among the limitations of autologous bone graft harvest. Bone graft survival is impaired when irradiation, contamination, and impaired vascularity are encountered. Although the dura can induce calvarial ossification in children younger than 2 years, the repair of critical-size defects in the pediatric population may be hindered by inadequate bone graft donor volume. The novel and emerging field of bone tissue engineering holds great promise as a limitless source of autogenous bone. Three core constituents of bone tissue engineering have been established: scaffolds, signals, and cells. Blood supply is the sine qua non of these components, which are used both individually and concertedly in regenerative craniofacial surgery. The discerning craniofacial surgeon must determine the proper use for these bone graft alternatives, while understanding their concomitant risks. This article presents a review of contemporary and emerging concepts in bone biology and their implications in craniofacial surgery. Current practices, areas of controversy, and near-term future applications are emphasized.

  16. Advances in isothermal amplification: novel strategies inspired by biological processes. (United States)

    Li, Jia; Macdonald, Joanne


    Nucleic acid amplification is an essential process in biological systems. The in vitro adoption of this process has resulted in powerful techniques that underpin modern molecular biology. The most common tool is polymerase chain reaction (PCR). However, the requirement for a thermal cycler has somewhat limited applications of this classic nucleic acid amplification technique. Isothermal amplification, on the other hand, obviates the use of a thermal cycler because reactions occur at a single temperature. Isothermal amplification methods are diverse, but all have been developed from an understanding of natural nucleic acid amplification processes. Here we review current isothermal amplification methods as classified by their enzymatic mechanisms. We compare their advantages, disadvantages, efficiencies, and applications. Finally, we mention some new developments associated with this technology, and consider future possibilities in molecular engineering and recombinant technologies that may develop from an appreciation of the molecular biology of natural systems.

  17. Boolean Models of Biological Processes Explain Cascade-Like Behavior. (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen


    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.

  18. Current status of kinematically complete studies of basic fragmentation processes in atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)], E-mail:; Moshammer, R.; Fischer, D.; Duerr, M.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik Saupfercheckweg 1, 69117 Heidelberg (Germany); Hasan, A. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Department of Physics, UAE University, P.O. Box 17551, Alain, Abu Dhabi (United Arab Emirates); Ciappina, M.F. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnizer Str. 38, 01187 Dresden (Germany); Kirchner, T. [Institut fuer Theoretische Physik, TU Clausthal, Leibnizstrasse 10, 38678 Clausthal-Zellerfeld (Germany)


    Recent developments on kinematically complete experiments on basic atomic fragmentation processes are reviewed. Comparisons between theoretical and experimental fully differential cross sections for single ionization of light atoms by charged particle impact are analyzed. Furthermore, a method developed very recently, four-particle Dalitz plots, is discussed in context of double ionization. The extraordinary power of these plots is their capability to provide a comprehensive picture of the momentum exchange between all four final-state particles in a single spectrum.



    Zabolotskiy V. I.; Sharafan M. V.; Chermit R. H.; Vasilieva V. I.


    The stability of strongly basic anion-exchange membranes MA-41-2P (JSC "Schekino-Nitrogen", Russia) and AMX (Tokuyama Soda, Japan) under intensive current regimes was investigated in the current study. The process of water molecules dissociation at current densities above the limiting one in 0.01 M sodium chloride solution was studied in detail. The length of the electroconvective instability at the membrane / solution interface at currents exceeding the limiting current was measured by laser...

  20. Discovering networks of perturbed biological processes in hepatocyte cultures.

    Directory of Open Access Journals (Sweden)

    Christopher D Lasher

    Full Text Available The liver plays a vital role in glucose homeostasis, the synthesis of bile acids and the detoxification of foreign substances. Liver culture systems are widely used to test adverse effects of drugs and environmental toxicants. The two most prevalent liver culture systems are hepatocyte monolayers (HMs and collagen sandwiches (CS. Despite their wide use, comprehensive transcriptional programs and interaction networks in these culture systems have not been systematically investigated. We integrated an existing temporal transcriptional dataset for HM and CS cultures of rat hepatocytes with a functional interaction network of rat genes. We aimed to exploit the functional interactions to identify statistically significant linkages between perturbed biological processes. To this end, we developed a novel approach to compute Contextual Biological Process Linkage Networks (CBPLNs. CBPLNs revealed numerous meaningful connections between different biological processes and gene sets, which we were successful in interpreting within the context of liver metabolism. Multiple phenomena captured by CBPLNs at the process level such as regulation, downstream effects, and feedback loops have well described counterparts at the gene and protein level. CBPLNs reveal high-level linkages between pathways and processes, making the identification of important biological trends more tractable than through interactions between individual genes and molecules alone. Our approach may provide a new route to explore, analyze, and understand cellular responses to internal and external cues within the context of the intricate networks of molecular interactions that control cellular behavior.

  1. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function

    Institute of Scientific and Technical Information of China (English)

    XIA Si-qing; YANG Dian-hai; XU Bin; ZHAO Jian-fu


    The pilot-scale experimental apparatus and the procedure of the chemical and biological flocculation process to verify the feasibility in treating Shanghai municipal sewage were introduced in this paper. In addition, the biological function of the process was discussed. The results of optimal running showed that in the reaction tank, the concentration of mixed liquor suspended solid(MLSS) was2 g/L, hydraulic retention time(HRT) was 35 min, dosage of liquid polyaluminium chloride(PAC) was 60 mg/L, and the concentration of polyacrylamide(PAM) was 0.5 mg/L. The effluent average concentrations of CODcr, TP, SS and BOD5 were 50 mg/L, 0.62 mg/L, 18mg/L, and 17 mg/L, respectively. These were better than the designed demand. In addition, the existence of biological degradation in this system was proven by several methods. The removal efficiencies of the chemical and biological flocculation process were 20% higher than that of the chemical flocculation process above at the same coagulant dosage. The treatment process under different situations was evaluated on a pilot-scale experiment, and the results provided magnificent parameters and optimal condition for future operation of the plant.

  2. Biologic

    CERN Document Server

    Kauffman, L H


    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  3. Cancer systems biology: signal processing for cancer research

    Institute of Scientific and Technical Information of China (English)

    Olli Yli-Harja; Antti Ylip(a)(a); Matti Nykter; Wei Zhang


    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  4. Cancer systems biology: signal processing for cancer research. (United States)

    Yli-Harja, Olli; Ylipää, Antti; Nykter, Matti; Zhang, Wei


    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  5. Integrating Biological Systems in the Process Dynamics and Control Curriculum (United States)

    Parker, Robert S.; Doyle, Francis J.; Henson, Michael A.


    The evolution of the chemical engineering discipline motivates a re-evaluation of the process dynamics and control curriculum. A key requirement of future courses will be the introduction of theoretical concepts and application examples relevant to emerging areas, notably complex biological systems. We outline the critical concepts required to…

  6. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan


    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  7. Biological Decolorization of C.I. Basic Green 4 Solution by Chlorella sp.:Effect of Operational Parameters

    Institute of Scientific and Technical Information of China (English)

    Khataee A. R.; Pourhassan M.; Ayazloo M.


    In recent years, the ability of microorganisms to decolorize textile wastewater has received great attention due to the environmental persistence and toxicity of these pollutants. In this paper biological decolorization of triphenylmethane dye, C.I. Basic Green 4 (BG 4), by Chlorella species was investigated. The effect of operational parameters (temperature, pH, initial dye concentration and algal concentration) on decolorization efficiency was examined. Results indicated that the desired initial pH was 9. The stability and efficiency of the algae in long-term repetitive operations were also examined. Michaelis-Menten kinetics was employed to describe the apparent correlation between the decolorization rate and dye concentration. The optimal kinetic parameters, Vmax (specific decolorization rate) and Km (maximum specific decolorization rate) were 4.6 mg dye g cell-1 h-1and 151.0 mg L-1, respectively. Fig 10, Tab 2, Ref24

  8. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina


    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  9. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay


    This paper describes the implementation of a simulation benchmark for studying the influence of control strategy implementations on combined nitrogen and phosphorus removal processes in a biological wastewater treatment plant. The presented simulation benchmark plant and its performance criteria...... are to a large extent based on the already existing nitrogen removal simulation benchmark. The paper illustrates and motivates the selection of the treatment plant lay-out, the selection of the biological process model, the development of realistic influent disturbance scenarios for dry, rain and storm weather...... conditions respectively, the definition of performance indexes that include the phosphorus removal processes, and the selection of a suitable operating point for the plant. Two control loops were implemented: one for dissolved oxygen control using the oxygen transfer coefficient K(L)a as manipulated variable...

  10. Assessment of biological Hydrogen production processes: A review (United States)

    Najafpour, G. D.; Shahavi, M. H.; Neshat, S. A.


    Energy crisis created a special attention on renewable energy sources. Among these sources; hydrogen through biological processes is well-known as the most suitable and renewable energy sources. In terms of process yield, hydrogen production from various sources was evaluated. A summary of microorganisms as potential hydrogen producers discussed along with advantages and disadvantages of several bioprocesses. The pathway of photo-synthetic and dark fermentative organisms was discussed. In fact, the active enzymes involved in performance of biological processes for hydrogen generation were identified and their special functionalities were discussed. The influential factors affecting on hydrogen production were known as enzymes assisting liberation specific enzymes such as nitrogenase, hydrogenase and uptake hydrogenase. These enzymes were quite effective in reduction of proton and form active molecular hydrogen. Several types of photosynthetic systems were evaluated with intension of maximum hydrogen productivities. In addition dark fermentative and light intensities on hydrogen productions were evaluated. The hydrogen productivities of efficient hydrogen producing strains were evaluated.

  11. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B


    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  12. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia


    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and


    Directory of Open Access Journals (Sweden)

    Zabolotskiy V. I.


    Full Text Available The stability of strongly basic anion-exchange membranes MA-41-2P (JSC "Schekino-Nitrogen", Russia and AMX (Tokuyama Soda, Japan under intensive current regimes was investigated in the current study. The process of water molecules dissociation at current densities above the limiting one in 0.01 M sodium chloride solution was studied in detail. The length of the electroconvective instability at the membrane / solution interface at currents exceeding the limiting current was measured by laser interferometry

  14. Biological Signal Processing with a Genetic Toggle Switch (United States)

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich


    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595

  15. MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD

    Directory of Open Access Journals (Sweden)

    Wang Frank


    Full Text Available Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD is a prevalent, complex disorder which is characterized by symptoms of inattention, hyperactivity, and impulsivity. Convergent evidence from neurobiological studies of ADHD identifies dysfunction in fronto-striatal-cerebellar circuitry as the source of behavioural deficits. Recent studies have shown that regions governing basic sensory processing, such as the somatosensory cortex, show abnormalities in those with ADHD suggesting that these processes may also be compromised. Methods We used event-related magnetoencephalography (MEG to examine patterns of cortical rhythms in the primary (SI and secondary (SII somatosensory cortices in response to median nerve stimulation, in 9 adults with ADHD and 10 healthy controls. Stimuli were brief (0.2 ms non-painful electrical pulses presented to the median nerve in two counterbalanced conditions: unpredictable and predictable stimulus presentation. We measured changes in strength, synchronicity, and frequency of cortical rhythms. Results Healthy comparison group showed strong event-related desynchrony and synchrony in SI and SII. By contrast, those with ADHD showed significantly weaker event-related desynchrony and event-related synchrony in the alpha (8–12 Hz and beta (15–30 Hz bands, respectively. This was most striking during random presentation of median nerve stimulation. Adults with ADHD showed significantly shorter duration of beta rebound in both SI and SII except for when the onset of the stimulus event could be predicted. In this case, the rhythmicity of SI (but not SII in the ADHD group did not differ from that of controls. Conclusion Our findings suggest that somatosensory processing is altered in individuals with ADHD. MEG constitutes a promising approach to profiling patterns of neural activity during the processing of sensory input (e.g., detection of a tactile stimulus, stimulus predictability and facilitating our

  16. 100 years after Smoluchowski: stochastic processes in cell biology (United States)

    Holcman, D.; Schuss, Z.


    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation.

  17. Speed of human biological form and motion processing.

    Directory of Open Access Journals (Sweden)

    George Buzzell

    Full Text Available Recent work suggests that biological motion processing can begin within ~110 ms of stimulus onset, as indexed by the P1 component of the event-related potential (ERP. Here, we investigated whether modulation of the P1 component reflects configural processing alone, rather than the processing of both configuration and motion cues. A three-stimulus oddball task was employed to evaluate bottom-up processing of biological motion. Intact point-light walkers (PLWs or scrambled PLWs served as distractor stimuli, whereas point-light displays of tool motion served as standard and target stimuli. In a second experiment, the same design was used, but the dynamic stimuli were replaced with static point-light displays. The first experiment revealed that dynamic PLWs elicited a larger P1 as compared to scrambled PLWs. A similar P1 increase was also observed for static PLWs in the second experiment, indicating that these stimuli were more salient than static, scrambled PLWs. These findings suggest that the visual system can rapidly extract global form information from static PLWs and that the observed P1 effect for dynamic PLWs is not dependent on the presence of motion cues. Finally, we found that the N1 component was sensitive to dynamic, but not static, PLWs, suggesting that this component reflects the processing of both form and motion information. The sensitivity of P1 to static PLWs has implications for dynamic form models of biological motion processing that posit temporal integration of configural cues present in individual frames of PLW animations.

  18. Influence of different natural physical fields on biological processes (United States)

    Mashinsky, A. L.


    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  19. Environment. Biological processing of wastes; Environnement. Traitement biologique des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, R. [Institut National des Sciences Appliquees, INSA, Lab. d' Analyse Environnementale des Procedes et des Systemes Industriels, 69 - Villeurbanne (France)


    The main principle of the biological processing is the utilization of microbial activities by a control stimulation in order to decrease the wastes harmful effects, or by an energetic valorization. This paper deals with the solid wastes or the sludges. After a short presentation of the concerned wastes, their metabolism and their consequences, the author details two treatments: the composting (aerobic) and the methanization (anaerobic). The last part is devoted to the alcoholic fermentation and the industrial wastes (non agricultural) processing. (A.L.B.)

  20. Synthetic membranes and membrane processes with counterparts in biological systems (United States)

    Matson, Stephen L.


    Conventional synthetic membranes, fashioned for the most part from rather unremarkable polymeric materials, are essentially passive structures that achieve various industrial and biomedical separations through simple and selective membrane permeation processes. Indeed, simplicity of membrane material, structure, and function has long been perceived as a virtue of membranes relative to other separation processes with which they compete. The passive membrane separation processes -- exemplified by micro- and ultrafiltration, dialysis, reverse osmosis, and gas permeation -- differ from one another primarily in terms of membrane morphology or structure (e.g., porous, gel-type, and nonporous) and the permeant transport mechanism and driving force (e.g., diffusion, convection, and 'solution/diffusion'). The passive membrane separation processes have in common the fact that interaction between permeant and membrane material is typically weak and physicochemical in nature; indeed, it is frequently an objective of membrane materials design to minimize interaction between permeant and membrane polymer, since such strategies can minimize membrane fouling. As a consequence, conventional membrane processes often provide only modest separation factors or permselectivities; that is, they are more useful in performing 'group separations' (i.e., the separation of different classes of material) than they are in fractionating species within a given class. It has long been recognized within the community of membrane technologists that biological membrane structures and their components are extraordinarily sophisticated and powerful as compared to their synthetic counterparts. Moreover, biomembranes and related biological systems have been 'designed' according to a very different paradigm -- one that frequently maximizes and capitalizes on extraordinarily strong and biochemically specific interactions between components of the membrane and species interacting with them. Thus, in recent

  1. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. (United States)

    Knyazev, Gennady G


    Functional significance of delta oscillations is not fully understood. One way to approach this question would be from an evolutionary perspective. Delta oscillations dominate the EEG of waking reptiles. In humans, they are prominent only in early developmental stages and during slow-wave sleep. Increase of delta power has been documented in a wide array of developmental disorders and pathological conditions. Considerable evidence on the association between delta waves and autonomic and metabolic processes hints that they may be involved in integration of cerebral activity with homeostatic processes. Much evidence suggests the involvement of delta oscillations in motivation. They increase during hunger, sexual arousal, and in substance users. They also increase during panic attacks and sustained pain. In cognitive domain, they are implicated in attention, salience detection, and subliminal perception. This evidence shows that delta oscillations are associated with evolutionary old basic processes, which in waking adults are overshadowed by more advanced processes associated with higher frequency oscillations. The former processes rise in activity, however, when the latter are dysfunctional.

  2. Basic auditory processing is related to familial risk, not to reading fluency: an ERP study. (United States)

    Hakvoort, Britt; van der Leij, Aryan; Maurits, Natasha; Maassen, Ben; van Zuijen, Titia L


    Less proficient basic auditory processing has been previously connected to dyslexia. However, it is unclear whether a low proficiency level is a correlate of having a familial risk for reading problems, or whether it causes dyslexia. In this study, children's processing of amplitude rise time (ART), intensity and frequency differences was measured with event-related potentials (ERPs). ERP components of interest are components reflective of auditory change detection; the mismatch negativity (MMN) and late discriminative negativity (LDN). All groups had an MMN to changes in ART and frequency, but not to intensity. Our results indicate that fluent readers at risk for dyslexia, poor readers at risk for dyslexia and fluent reading controls have an LDN to changes in ART and frequency, though the scalp activation of frequency processing was different for familial risk children. On intensity, only controls showed an LDN. Contrary to previous findings, our results suggest that neither ART nor frequency processing is related to reading fluency. Furthermore, our results imply that diminished sensitivity to changes in intensity and differential lateralization of frequency processing should be regarded as correlates of being at familial risk for dyslexia, that do not directly relate to reading fluency.

  3. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport. (United States)

    Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert


    This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing.

  4. The Use of Microwave Incineration to Process Biological Wastes (United States)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)


    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  5. The relationship between cognitive processing of affective verbal material and the basic personality structure

    Directory of Open Access Journals (Sweden)

    Orlić Ana


    Full Text Available The aim of this study was to investigate the relationship between cognitive processing of affective verbal material and the basic personality structure. For the purposes of research a new experiment was created, where affective priming was measured in a lexical decision task. The term affective priming stands for facilitation in recognition of the stimuli that comes after the presentation of stimuli of the same valence. In this experiment, two words were presented on a screen in front of the subject (stimuli-prime and stimuli-target. Those two words were of the same or different affective valence, and the subject's were instructed to respond whether the second word on the screen had a meaning or not. The basic personality structure was defined by the 'Big five' model and the Disintegration model and measured by NEO PI-R and Delta 10 questionnaires. The results of the affective priming experiment indicated a strong effect of positive facilitation and much weaker effect off negative facilitation. Two significant functions were extracted by quasicanonical correlation analysis. The first function showed correlation between the effect of positive facilitation and all of the subscales of Neuroticism, Extraversion and Conscientiousness (NEO PI-R, as well as all sub dimensions of Disintegration (DELTA 10. The second one indicated to a correlation between the negative facilitation effect and some subscales of Neuroticism, Extraversion and Agreeableness (NEO PI-R, as well as all subscales of Disintegration (DELTA 10.

  6. Analysis of biological processes and diseases using text mining approaches. (United States)

    Krallinger, Martin; Leitner, Florian; Valencia, Alfonso


    A number of biomedical text mining systems have been developed to extract biologically relevant information directly from the literature, complementing bioinformatics methods in the analysis of experimentally generated data. We provide a short overview of the general characteristics of natural language data, existing biomedical literature databases, and lexical resources relevant in the context of biomedical text mining. A selected number of practically useful systems are introduced together with the type of user queries supported and the results they generate. The extraction of biological relationships, such as protein-protein interactions as well as metabolic and signaling pathways using information extraction systems, will be discussed through example cases of cancer-relevant proteins. Basic strategies for detecting associations of genes to diseases together with literature mining of mutations, SNPs, and epigenetic information (methylation) are described. We provide an overview of disease-centric and gene-centric literature mining methods for linking genes to phenotypic and genotypic aspects. Moreover, we discuss recent efforts for finding biomarkers through text mining and for gene list analysis and prioritization. Some relevant issues for implementing a customized biomedical text mining system will be pointed out. To demonstrate the usefulness of literature mining for the molecular oncology domain, we implemented two cancer-related applications. The first tool consists of a literature mining system for retrieving human mutations together with supporting articles. Specific gene mutations are linked to a set of predefined cancer types. The second application consists of a text categorization system supporting breast cancer-specific literature search and document-based breast cancer gene ranking. Future trends in text mining emphasize the importance of community efforts such as the BioCreative challenge for the development and integration of multiple systems into

  7. Continuous downstream processing for high value biological products: A Review. (United States)

    Zydney, Andrew L


    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations.

  8. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter


    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  9. Process for the biological purification of waste water

    DEFF Research Database (Denmark)


    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  10. Experimental measurements and mathematical modeling of biological noise arising from transcriptional and translational regulation of basic synthetic gene circuits. (United States)

    Bandiera, Lucia; Pasini, Alice; Pasotti, Lorenzo; Zucca, Susanna; Mazzini, Giuliano; Magni, Paolo; Giordano, Emanuele; Furini, Simone


    The small number of molecules, unevenly distributed within an isogenic cell population, makes gene expression a noisy process, and strategies have evolved to deal with this variability in protein concentration and to limit its impact on cellular behaviors. As translational efficiency has a major impact on biological noise, a possible strategy to control noise is to regulate gene expression processes at the post-transcriptional level. In this study, fluctuations in the concentration of a green fluorescent protein were compared, at the single cell level, upon transformation of an isogenic bacterial cell population with synthetic gene circuits implementing either a transcriptional or a post-transcriptional control of gene expression. Experimental measurements showed that protein variability is lower under post-transcriptional control, when the same average protein concentrations are compared. This effect is well reproduced by stochastic simulations, supporting the hypothesis that noise reduction is due to the control mechanism acting on the efficiency of translation. Similar strategies are likely to play a role in noise reduction in natural systems and to be useful for controlling noise in synthetic biology applications.

  11. Process-based design of dynamical biological systems (United States)

    Tanevski, Jovan; Todorovski, Ljupčo; Džeroski, Sašo


    The computational design of dynamical systems is an important emerging task in synthetic biology. Given desired properties of the behaviour of a dynamical system, the task of design is to build an in-silico model of a system whose simulated be- haviour meets these properties. We introduce a new, process-based, design methodology for addressing this task. The new methodology combines a flexible process-based formalism for specifying the space of candidate designs with multi-objective optimization approaches for selecting the most appropriate among these candidates. We demonstrate that the methodology is general enough to both formulate and solve tasks of designing deterministic and stochastic systems, successfully reproducing plausible designs reported in previous studies and proposing new designs that meet the design criteria, but have not been previously considered.

  12. Adoption: biological and social processes linked to adaptation. (United States)

    Grotevant, Harold D; McDermott, Jennifer M


    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood.

  13. Using Fossil Shark Teeth to Illustrate Evolution and Introduce Basic Geologic Concepts in a High School Biology Classroom (United States)

    Agnew, J. G.; Nunn, J. A.


    Shell Foundation sponsors a program at Louisiana State University called Shell Undergraduate Recruitment and Geoscience Education (SURGE). The purpose of SURGE is to help local high school science teachers incorporate geology into their classrooms by providing resources and training. As part of this program, a workshop for high school biology teachers was held at Louisiana State University in Baton Rouge on June 3-5, 2007. We had the teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic earth science concepts such as geologic time, superposition, and faunal succession and provided the teachers with lesson plans and materials. As an example, one of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth make excellent evolutionary subjects because they have a good fossil record and show continuous transitions in morphology from the Eocene to Pliocene. Our activity follows the learning cycle model. We take advantage of the curiosity of sharks shared by most people, and allow students to explore the variations among different shark teeth and explain the causes of those variations. The objectives of this exercise are to have the students: 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships among fossil shark teeth; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. To do the activity, students are divided into groups of 2-3 and given a shuffled set of 72 shark tooth cards with different images of megatoothed shark teeth. They are instructed to group the shark tooth cards into separate species of sharks. After sorting the cards, students are asked to consider the evolutionary relationships among their species and arrange their species chronologically according to the species first

  14. Quantum Processes and Dynamic Networks in Physical and Biological Systems. (United States)

    Dudziak, Martin Joseph

    Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain

  15. Integration of basic biological sciences and clinical dentistry in the dental curriculum. A clinically orientated approach to teaching oral and dental anatomy. (United States)

    Gotjamanos, T


    Although dental curricula have undergone significant revision during the past three decades, the problem of linking basic science with clinical dentistry often remains an unmet challenge in dental education. This paper describes the content and method of presentation of a course in oral and dental anatomy which aims to integrate closely basic biological science and clinical dental practice. The course holds considerable promise for overcoming one of the major deficiencies of the horizontally structured curriculum by presenting basic science information and detailing its clinical relevance simultaneously. The academic background, clinical experience, and educational philosophy of the course co-ordinator and assisting teaching staff are undoubtedly important factors in determining the extent to which integration between basic and clinical science can be achieved.

  16. Microbiology and atmospheric processes: chemical interactions of Primary Biological Aerosols (United States)

    Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P. A.; Delort, A.-M.; Pöschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A. I.; Morris, C. E.


    This paper discusses the influence of bioaerosols on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that biological matter represents a significant fraction of air particulate matter and hence affects the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of primary biological particles in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.


    Directory of Open Access Journals (Sweden)

    Artur Mielcarek


    Full Text Available The aim of the study was to determine the degree of an organic substrate consumption in the denitrification process involving a biofilm in four-stages laboratory scale rotating biological contactor (RBC. The discs submergence was 40% of their diameter. Acetic acid, used as external carbon source, was fed to the fourth stage of RBC. Consumption of substrate was observed for 2 and 24 hours. For a shorter period there was the removal of 37.9 ± 1.8 mg N·m-2, while using 499,9 ± 33.2 mg O2·m-2 of organic compounds. The prolongation of the experiment duration guaranteed higher efficiency of denitrification. The ratio of organic substrate used to the amount of nitrogen removed was 13: 1 and 21: 1 for 2 and 24 hours respectively.

  18. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather


    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  19. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine


    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  20. Rett syndrome: basic features of visual processing-a pilot study of eye-tracking. (United States)

    Djukic, Aleksandra; Valicenti McDermott, Maria; Mavrommatis, Kathleen; Martins, Cristina L


    Consistently observed "strong eye gaze" has not been validated as a means of communication in girls with Rett syndrome, ubiquitously affected by apraxia, unable to reply either verbally or manually to questions during formal psychologic assessment. We examined nonverbal cognitive abilities and basic features of visual processing (visual discrimination attention/memory) by analyzing patterns of visual fixation in 44 girls with Rett syndrome, compared with typical control subjects. To determine features of visual fixation patterns, multiple pictures (with the location of the salient and presence/absence of novel stimuli as variables) were presented on the screen of a TS120 eye-tracker. Of the 44, 35 (80%) calibrated and exhibited meaningful patterns of visual fixation. They looked longer at salient stimuli (cartoon, 2.8 ± 2 seconds S.D., vs shape, 0.9 ± 1.2 seconds S.D.; P = 0.02), regardless of their position on the screen. They recognized novel stimuli, decreasing the fixation time on the central image when another image appeared on the periphery of the slide (2.7 ± 1 seconds S.D. vs 1.8 ± 1 seconds S.D., P = 0.002). Eye-tracking provides a feasible method for cognitive assessment and new insights into the "hidden" abilities of individuals with Rett syndrome.

  1. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses... (United States)


    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... Quantities § 780.815 Basic conditions of exemption; second part, processing of sugar beets,...

  2. [Biological Process Oriented Online Fourier Transform Infrared Spectrometer]. (United States)

    Xie, Fei; Wu, Qiong-shui; Zeng, Li-bo


    An online Fourier Transform Infrared Spectrometer and an ATR (Attenuated Total Reflection) probe, specifically at the application of real time measurement of the reaction substrate concentration in biological processes, were designed. (1) The spectrometer combined the theories of double cube-corner reflectors and flat mirror, which created a kind of high performance interferometer system. The light path folding way was utilized to makes the interferometer compact structure. Adopting double cube-corner reflectors, greatly reduces the influence of factors in the process of moving mirror movement such as rotation, tilt, etc. The parallelogram oscillation flexible support device was utilized to support the moving mirror moves. It cancelled the friction and vibration during mirror moving, and ensures the smooth operation. The ZnSe splitter significantly improved the hardware reliability in high moisture environment. The method of 60° entrance to light splitter improves the luminous flux. (2) An ATR in situ measuring probe with simple structure, large-flux, economical and practical character was designed in this article. The transmission of incident light and the light output utilized the infrared pipe with large diameter and innerplanted-high plating membrane, which conducted for the infrared transmission media of ATR probe. It greatly reduced the energy loss of infrared light after multiple reflection on the inner wall of the light pipe. Therefore, the ATR probe obtained high flux, improved the signal strength, which make the signal detected easily. Finally, the high sensitivity of MCT (Mercury Cadmium Telluride) detector was utilized to realize infrared interference signal collection, and improved the data quality of detection. The test results showed that the system yields the advantages of perfect moisture-proof performance, luminous flux, online measurement, etc. The designed online Fourier infrared spectrometer can real-time measured common reactant substrates

  3. Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology. (United States)

    Gutiérrez-Corona, J F; Romo-Rodríguez, P; Santos-Escobar, F; Espino-Saldaña, A E; Hernández-Escoto, H


    Chromium (Cr) is a highly toxic metal for microorganisms as well as plants and animal cells. Due to its widespread industrial use, Cr has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The study of the interactions between microorganisms and Cr has been helpful to unravel the mechanisms allowing organisms to survive in the presence of high concentrations of Cr(VI) and to detoxify and remove the oxyanion. Various mechanisms of interactions with Cr have been identified in diverse species of bacteria and fungi, including biosorption, bioaccumulation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution using bioreactors or by in situ treatments. In this review, the interactions of microorganisms with Cr are summarised, emphasising the importance of new research avenues using advanced methodologies, including proteomic, transcriptomic, and metabolomic analyses, as well as the use of techniques based on X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy.

  4. CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data (United States)

    Nelson, David R.


    A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair

  5. Improving the reviewing process in Ecology and Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Grossman, G. D.


    Full Text Available I discuss current issues in reviewing and editorial practices in ecology and evolutionary biology and suggest possible solutions for current problems. The reviewing crisis is unlikely to change unless steps are taken by journals to provide greater inclusiveness and incentives to reviewers. In addition, both journals and institutions should reduce their emphasis on publication numbers (least publishable units and impact factors and focus instead on article synthesis and quality which will require longer publications. Academic and research institutions should consider reviewing manuscripts and editorial positions an important part of a researcher’s professional activities and reward them accordingly. Rewarding reviewers either monetarily or via other incentives such as free journal subscriptions may encourage participation in the reviewing process for both profit and non–profit journals. Reviewer performance will likely be improved by measures that increase inclusiveness, such as sending reviews and decision letters to reviewers. Journals may be able to evaluate the efficacy of their reviewing process by comparing citations of rejected but subsequently published papers with those published within the journal at similar times. Finally, constructive reviews: 1 identify important shortcomings and suggest solutions when possible, 2 distinguish trivial from non–trivial problems, and 3 include editor’s evaluations of the reviews including identification of trivial versus substantive comments (i.e., those that must be addressed.

  6. The method validation step of biological dosimetry accreditation process

    Energy Technology Data Exchange (ETDEWEB)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph. [Institut de Radioprotection et de Surete Nucleaire, LDB, 92 - Fontenay aux Roses (France)


    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was

  7. Pyrroloquinoline-quinone and its versatile roles in biological processes

    Indian Academy of Sciences (India)

    H S Misra; Y S Rajpurohit; N P Khairnar


    Pyrroloquinoline-quinine (PQQ) was initially characterized as a redox cofactor for membrane-bound dehydrogenases in the bacterial system. Subsequently, PQQ was shown to be an antioxidant protecting the living cells from oxidative damage in vivo and the biomolecules from artificially produced reaction oxygen species in vitro. The presence of PQQ has been documented from different biological samples. It functions as a nutrient and vitamin for supporting the growth and protection of living cells under stress. Recently, the role of PQQ has also been shown as a bio-control agent for plant fungal pathogens, an inducer for proteins kinases involved in cellular differentiation of mammalian cells and as a redox sensor leading to development of biosensor. Recent reviews published on PQQ and enzymes requiring this cofactor have brought forth the case specific roles of PQQ. This review covers the comprehensive information on various aspects of PQQ known till date. These include the roles of PQQ in the regulation of cellular growth and differentiation in mammalian system, as a nutrient and vitamin in stress tolerance, in crop productivity through increasing the availability of insoluble phosphate and as a bio-control agent, and as a redox agent leading to the biosensor development. Most recent findings correlating the exceptionally high redox recycling ability of PQQ to its potential as anti-neurodegenerative, anticancer and pharmacological agents, and as a signalling molecule have been distinctly brought out. This review discusses different findings suggesting the versatility in PQQ functions and provides the most plausible intellectual basis to the ubiquitous roles of this compound in a large number of biological processes, as a nutrient and a perspective vitamin.

  8. The AAA+ proteins Pontin and Reptin enter adult age: From understanding their basic biology to the identification of selective inhibitors

    Directory of Open Access Journals (Sweden)

    Pedro M Matias


    Full Text Available Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.

  9. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors. (United States)

    Matias, Pedro M; Baek, Sung Hee; Bandeiras, Tiago M; Dutta, Anindya; Houry, Walid A; Llorca, Oscar; Rosenbaum, Jean


    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.

  10. Active microorganisms as drivers of dynamic processes in soil: integration of basic teaching into research (United States)

    Blagodatskaya, Evgenia; Kuzyakov, Yakov


    Traditionally lecture courses, seminars and even practical training are disconnected from real experimental studies and from ongoing research projects. As a result students passively participate in lectures and are helpless when they come to the laboratory to prepare their BSc or MSc theses. We introduce a training course, which is developed for Bachelor students to integrate the basic knowledge on soil microbiology and modern microbiological methods in ecological studies. The training course is focused on the importance of active microbial biomass as biogeochemical driver of soil processes. According to our concept soil functioning is closely related to and depends on the microbial activities, and only active microorganisms drive all processes. Despite this importance of active microorganisms, the most of methods are focused on the estimation of the total microbial biomass and fail to evaluate its activity. Our course demonstrates how the active physiological state of soil microorganisms can be related to the activity indicators such as respiration, molecular biomarkers and viable cell compartments (ATP, PLFA, RNA) determined in situ in soil. Each lecture begins with the set of provocative questions "What is wrong?" which help students to activate their knowledge from previous lectures. Information on on-going soil incubation experiments is integrated in the lectures as a special block. The students are required not only to learn the existing methods but to compare them and to evaluate critically the applicability of these methods to explain the results of on-going experiments. The seminars foreseen within training course are focused on critical discussions of the protocols and their adaptations to current experimental tasks. During practical part of training courses the students are associated in small research groups with a certain ecological tasks. Each group uses soil sub-samples from ongoing experiments and thus, the experimental data obtaining during the

  11. "Sickle Cell Anemia: Tracking down a Mutation": An Interactive Learning Laboratory That Communicates Basic Principles of Genetics and Cellular Biology (United States)

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J. Michael


    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients…

  12. A simple and rapid chromatographic method to determine unauthorized basic colorants (rhodamine B, auramine O, and pararosaniline) in processed foods. (United States)

    Tatebe, Chiye; Zhong, Xining; Ohtsuki, Takashi; Kubota, Hiroki; Sato, Kyoko; Akiyama, Hiroshi


    A simple and rapid high-performance liquid chromatography (HPLC) method to determine basic colorants such as pararosaniline (PA), auramine O (AO), and rhodamine B (RB) in various processed foods was developed. Linearity of the calibration curves ranged from 0.05 to 50 μg/mL for PA and 0.05-100 μg/mL for AO and RB. The detection and quantification limits (LOD and LOQ) of the basic colorants, which were evaluated as signal-to-noise ratios of 3 for LOD and 10 for LOQ, ranged from 0.0125 to 0.05 and 0.025 to 0.125 μg/g, respectively. The recoveries and relative standard deviations of three basic colorants in six processed foods, namely, chili sauce, curry paste, gochujang (hot pepper paste), tandoori chicken (roasted chicken prepared with yogurt and spices), powder soup, and shrimp powder ranged from 70.2% to 102.8% and 0.8% to 8.0%, respectively. The intraday precision of the recovery test ranged from 1.7% to 4.5%, whereas the interday precision ranged from 3.7% to 7.7%. The reported method has been successfully applied to basic colorant determination in various processed foods such as fat-based food matrices (curry paste and tandoori chicken), chili products (gochujang and chili sauce), and protein-based products (shrimp powder and powder soup). Thin layer chromatography and liquid chromatography/mass spectrometry methods for the determination of basic colorants in processed foods were also developed for rapid analysis and identification, respectively. These methods are very useful for monitoring unauthorized basic colorants in inspection centers or quarantine laboratories in many countries.

  13. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.


    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  14. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume


    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  15. A Trip Through the Virtual Ocean: Understanding Basic Oceanic Process Using Real Data and Collaborative Learning (United States)

    Hastings, D. W.


    How can we effectively teach undergraduates the fundamentals of physical, chemical and biological processes in the ocean? Understanding physical circulation and biogeochemical processes is essential, yet it can be difficult for an undergraduate to easily grasp important concepts such as using temperature and salinity as conservative tracers, nutrient distribution, ageing of water masses, and thermocline variability. Like many other topics, it is best learned not in a lecture setting, but working with real data: plotting values, making predictions, and making mistakes. Part I: Using temperature and salinity values from any location in the world ocean (World Ocean Atlas), combined with an excellent user interface (, students are asked to answer a series of specific questions related to ocean circulation. Using established temperature and salinity values to characterize different water masses, students are able to identify various water masses and gain insight to physical circulation processes. Questions related to ocean circulation include: How far south and at what depth does NADW extend into the S. Atlantic? Is deep water formed in the North Pacific? How and why does the depth of the thermocline vary with latitude in the Atlantic Ocean? How deep does the Mediterranean Water descend as it leaves the Straits of Gibraltar? How far into the Atlantic can you see the influence of the Amazon River? Is there any Antarctic Bottom Water in the North Pacific? Collaborating with another student typically leads to increased engagement. Especially in large lecture settings, where one teacher is not able to address student questions or concerns, working in pairs or in groups of three is best. Part II: Using the same web-based viewer and data set students are subsequently assigned one oceanic property (phosphate, nitrate, silicate, O2, or AOU) and asked to construct three different plots: 1) vertical depth profile at one location; 2) latitude vs. depth

  16. Processing of Basic Speech Acts Following Localized Brain Damage: A New Light on the Neuroanatomy of Language (United States)

    Soroker, N.; Kasher, A.; Giora, R.; Batori, G.; Corn, C.; Gil, M.; Zaidel, E.


    We examined the effect of localized brain lesions on processing of the basic speech acts (BSAs) of question, assertion, request, and command. Both left and right cerebral damage produced significant deficits relative to normal controls, and left brain damaged patients performed worse than patients with right-sided lesions. This finding argues…


    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  18. The basic professional knowledge of teachers and suborganizational transformation processes of external pressure?

    DEFF Research Database (Denmark)

    Lund, Jens Hansen


    Danish research (Hansen 2009; Lund 2012) have shown, that the basic professional knowledge of the profession of teachers (theoretical and philosophical pedagogy and didactics ) is under press, when different kinds of extern pressure (Scott 2008, Institutions and Organizations) are to be implemented...... professional knowledge seem to take over. Furthermore this seems to happen in a paradoxical way, because it happens against an explicit wish in the profession of teachers. Research question: Which practices on a sub organizational level in schools can secure and support that the basic professional knowledge...

  19. Ecosystem Modeling of Biological Processes to Global Budgets (United States)

    Christopher, Potter S.; Condon, Estelle (Technical Monitor)


    biosphere effects on atmospheric composition is the ecosystem level. These assumptions are the foundation for developing modern emission budgets for biogenic gases such as carbon dioxide, methane, carbon monoxide, isoprene, nitrous and nitric oxide, and ammonia. Such emission budgets commonly include information on seasonal flux patterns, typical diurnal profiles, and spatial resolution of at least one degree latitude/longitude for the globe. On the basis of these budgets, it is possible to compute 'base emission rates' for the major biogenic trace gases from both terrestrial and ocean sources, which may be useful benchmarks for defining the gas production rates of organisms, especially those from early Earth history, which are required to generate a detectable signal on a global atmosphere. This type of analysis is also the starting point for evaluation of the 'biological processes to global gas budget' extrapolation procedure described above for early Earth ecosystems.

  20. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 3 (United States)

    Laughbaum, Edward D.


    In Part Three, the author reviews the basic ideas presented in Parts One and Two while arguing why the traditional equation-solving developmental algebra curricula is not a good choice for implementing neural response strategies presented in the first two parts. He continues by showing that the developmental algebra student audience is simply…

  1. Documentation control process of Brazilian multipurpose reactor: conceptual design and basic design

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Prates, Jose Eduardo; Longo, Guilherme Carneiro; Salvetti, Tereza Cristina, E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    Established in the scope of Plan of Action of the Ministry of Science, Technology and Innovation (PACTI/MCTI) in 2007, the construction of the Brazilian Multipurpose Reactor (RMB) is on the way. This type of reactor has a broad spectrum of applications in the nuclear field and related technologies such as the radioisotopes used as supplies in the production of radiopharmaceuticals, with very much benefit to the Brazilian society being, therefore, the main goal of the Project. RMB Project consists of the following stages: site selection and site evaluation; design (conceptual design, basic design, detailed design and experimental design); construction (procurement, manufacturing; civil construction; electromechanical construction and assembling); commissioning; operation and decommissioning. Each stage requires adaptation of human resources for the stage schedule execution. The implementation of a project of this magnitude requires a complex project management, which covers not only technical, but also administrative areas. Licensing, financial resources, quality and document control systems, engineering are some of the areas involved in project success. The development of the conceptual and basic designs involved the participation of three main engineering companies. INTERTECHNE Consultores S.A. was in charge of conceptual and basic designs for conventional systems of buildings and infrastructure. INVAP S.E. was responsible for preparing the basic design of the reactor core and annexes. MRS Estudos Ambientais Ltda. has prepared documents for environmental licensing. This paper describes the procedures used during conceptual and basic design stages to control design documentation and flow of this documentation, involving the analysis and incorporation of comments from experts, control and storage of a volume of approximately 15,000 documents. (author)

  2. Photo-activated biological processes as quantum measurements

    CERN Document Server

    Imamoglu, Atac


    We outline a framework for describing photo-activated biological reactions as generalized quantum measurements of external fields, for which the biological system takes on the role of a quantum meter. By using general arguments regarding the Hamiltonian that describes the measurement interaction, we identify the cases where it is essential for a complex chemical or biological system to exhibit non-equilibrium quantum coherent dynamics in order to achieve the requisite functionality. We illustrate the analysis by considering measurement of the solar radiation field in photosynthesis and measurement of the earth's magnetic field in avian magnetoreception.

  3. Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices.

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    Full Text Available BACKGROUND: Modularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitate the assembly and characterization of biological components, real modularity is still a major research issue. The success of the bottom-up approach strictly depends on the clear definition of the limits in which biological functions can be predictable. RESULTS: The modularity of transcription-based biological components has been investigated in several conditions. First, the activity of a set of promoters was quantified in Escherichia coli via different measurement systems (i.e., different plasmids, reporter genes, ribosome binding sites relative to an in vivo reference promoter. Second, promoter activity variation was measured when two independent gene expression cassettes were assembled in the same system. Third, the interchangeability of input modules (a set of constitutive promoters and two regulated promoters connected to a fixed output device (a logic inverter expressing GFP was evaluated. The three input modules provide tunable transcriptional signals that drive the output device. If modularity persists, identical transcriptional signals trigger identical GFP outputs. To verify this, all the input devices were individually characterized and then the input-output characteristic of the logic inverter was derived in the different configurations. CONCLUSIONS: Promoters activities (referred to a standard promoter can vary when they are measured via different reporter devices (up to 22%, when they are used within a two-expression-cassette system (up to 35% and when they drive another device in a functionally interconnected circuit (up to 44%. This paper

  4. Production of hydrogen using an anaerobic biological process

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Robert; Pelter, Libbie S.; Patterson, John A.


    Various embodiments of the present invention pertain to methods for biological production of hydrogen. More specifically, embodiments of the present invention pertain to a modular energy system and related methods for producing hydrogen using organic waste as a feed stock.

  5. Carbonate Beaches: A Balance Between Biological and Physical Processes (United States)

    Nairn, R.; Risk, M.


    Carbonate beaches are a unique example of the interaction between biological processes, creating the sediments, and physical processes, moving and often removing the sediments. On the sediment supply side, carbonate sediments are born, not made. They exist in dynamic equilibrium between production and destruction. Following the creation of carbonate sediment in coral reef and lagoon environments, the sediments are moved shoreward to the beach, transport along the shore and sometimes, eventually lost offshore, often as the result of tropical storms. Comprehensive studies of the balance between the supply and loss of carbonate sediments and beach dynamics have been completed for the islands of Mauritius and Barbados. Field studies and remote sensing (Compact Airborne Spectrometry Imaging) have been applied to develop carbonate sediment production rates for a range of reef and lagoon conditions. Using GIS, these production rates have been integrated to determine sediment supply rates for different segments of the coastline. 1-D and 2-D models of waves, hydrodynamics, sediment transport and morphodynamics were set-up and tested against observed beach response to storm events or a sequence of storm events. These complex deterministic models are not suitable for application over periods of decades. However, it was possible to characterize storm events by the extent of sand loss, and relate this to key descriptive factors for groups of storm events, thereby encapsulating the erosion response. A long-term predictive tool for evaluating beach erosion and accretion response, over a period of several decades, was developed by combining the supply rates for carbonate sediment and the encapsulated representation of the loss rates through physical processes. The ability of this predictive tool was successfully tested against observed long term beach evolution along sections of the coast in Barbados and Mauritius using air photo analysis in GIS for shoreline change over periods

  6. Biological security problem of basic disease control laboratory%基层疾病控制实验室的生物安全问题

    Institute of Scientific and Technical Information of China (English)



    In this paper,the author explored the problem of biological security in the disease prevention and control system. Through the exposed problem in the basic center for disease control and prevention examination in recent years,we have investigation and analysis.Contrasting with the non-conformance term of general ‘general rules of biological safety’,the harm was elaborated and explained.Through the control of human induced biological safety incidents,strengthening management, perfecting biological safety management system,increasing the hardware input can effectively control the biological security risk.%本文主要探讨疾病预防控制系统在生物安全方面的问题。通过近年在基层疾控中心检查中暴露出的问题,进行调查分析,对照《生物安全通用规则》中不符合项所带来的危害进行阐述说明。通过控制人为因素引起的生物安全事件,加强管理,健全生物安全管理体系、加大硬件方面的投入可以有效控制生物安全的风险。

  7. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education (United States)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert


    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  8. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education (United States)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert


    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  9. Applications of Recombinant DNA Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part A: Eukaryotic Gene Structure and DNA Replication

    Directory of Open Access Journals (Sweden)

    Gary E Wild


    Full Text Available Progress in the basic sciences of cell and molecular biology has provided an exciting dimension that has translated into clinically relevant information in every medical subspecialty. Importantly, the application of recombinant DNA technology has played a major role in unravelling the intricacies related to the molecular pathophysiology of disease. This series of review articles constitutes a framework for the integration of the database of new information into the core knowledge base of concepts related to the pathogenesis of gastrointestinal disorders and liver disease. The goal of this series of three articles is to review the basic principles of eukaryotic gene expression. The first article examines the role of DNA in directing the flow of genetic information in eukaryotic cells.

  10. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process. (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian


    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW.

  11. A VISUAL BASIC program to pre-process MRI data for finite element modeling. (United States)

    Todd, B A; Wang, H


    Investigators use non-invasive imaging to collect geometric data for finite element models. A preprocessor is described to facilitate model generation of anatomical regions from serial Magnetic Resonance Imaging (MRI) data stored in a bitmap format. The MRI Data Transfer System is a stand-alone Windows-based program developed in VISUAL BASIC 3.0 which generates a NASTRAN input file. The program can be modified to generate input files for other solvers. The software will executive on any IBM-compatible computer which runs Windows Version 3.1 or higher. To demonstrate the software, model generation of a portion of a tibia is described.

  12. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  13. In-process optical measurement and data graphing of paper sheets using Sherlock32 and Visual Basic (United States)

    Meyer, Jon E.


    Quality control through real-time process improvement and on-line inspection has become a key element in establishing efficient production lines. Machine vision solutions to these quality control issues are becoming increasingly popular as machine vision systems become more cost effective. This paper discusses how a machine vision system is incorporated into a paper product production line to provide 100 percent inspection and real-time, process control feedback. Seven dimensional measurements are performed on an 8.5 by 11 inch, 3 ring binder divider sheet, to an accuracy within 0.002 inches. The vision system hardware engine is comprised of a standard, multimedia personal computer that is enhanced with two frame grabber boards and Sherlock software from Imaging Technology. Two progressive scan CCD cameras are used to provide high speed image acquisition and adequate image resolution. Using Microsoft Visual Basic, the operator is provided with a single, graphical user interface with real-time graphing of the measurement data. Visual Basic runs in the foreground, controlling the user interface, while Sherlock operates in the background, performing all the machine vision tasks. By viewing the real-time graphs generated in Visual Basic, the operator is able to make process improvements, in real time, at line sped sin excess of 200 sheets per minute.


    Directory of Open Access Journals (Sweden)

    S. I. Suskov


    Full Text Available The basic variants of cytokines reactions defining type of organ dysfunctions are revealed in the course of car- diopulmonary bypass and in the early postoperative period. Their character and expression, depends on gravity preoperative an immunodeficiency and initial degree of heart insufficiency. Diphasic dynamics of development of system inflammatory reaction is confirmed after cardiopulmonary bypass: increase of levels proinflammatory cytokines is in the first phase and anti-inflammatory cytokines with development immunodepression and cellular anergy in is the second phase. Also, key role IL-1Ra is revealed in restraint of hyperactivation of system inflam- matory reaction. Blood whey levels IL-6, IL-8, G-CSF, TNF-α and IL-1Ra should be defined to cardiopulmonary bypass, in 10–12 hours, 24 hours and 3 days after cardiopulmonary bypass and may be used as prognostic criteria of development of postoperative complications. 

  15. Realization basic directions of the Bologna process in preparation of teachers physical cultures in Polish Institutes of higher

    Directory of Open Access Journals (Sweden)

    Pasichnik V.R.


    Full Text Available Basic progress of higher school trends are presented in Poland. Directions of introduction of decisions of Bologna declaration and European educational standards are considered in preparation of teachers of physical culture. Information is resulted about the improvement of process of preparation of specialists of physical education and sport in the Warsaw academy of physical education. Growth of the state financing of research projects and introduction of the European educational projects is marked. It renders assistance to perfection of process of training of pedagogical personnels.

  16. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis (United States)

    Guzman, Karen; Bartlett, John


    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  17. Hybrid Adsorption-Membrane Biological Reactors for Improved Performance and Reliability of Perchlorate Removal Processes (United States)


    carbon supply for the autotrophic perchlorate reducing bacteria. The membrane used in the reactor is a hollow-fiber microfiltration membrane made from...1 HYBRID ADSORPTION- MEMBRANE BIOLOGICAL REACTORS FOR IMPROVED PERFORMANCE AND RELIABILITY OF PERCHLORATE REMOVAL PROCESSES L.C. Schideman...Center Champaign, IL 61826, USA ABSTRACT This study introduces the novel HAMBgR process (Hybrid Adsorption Membrane Biological Reactor) and


    Directory of Open Access Journals (Sweden)

    Markovic Sasa


    Full Text Available The population from which we extracted a sample of 76 subjects consisted of elementary school students in Kursumlija, all male, aged 12-13, who were divided into a sub-sample consisting of 38 young handball players who took part in the training sessions of a school of handball and another sub-sample consisting of 38 non-athletes, who only took part in their regular physical education classes. The aim of the research was to determine the transformation processes involving motor skills, which occur under the influence of basic preliminary training in young handball players. The subject matter of the study was to examine whether a statistically significant increase in the level of motor skills would occur under the influence of physical exercise as part of basic preliminary training in the final as compared to the initial state. Six motor tests which define the dimensions of explosive and repetitive strength were used. The results of the research indicate that significant transformational processes involving the motor skills of young handball players occurred in the final as compared to the initial measuring, under the influence of basic preliminary training.

  19. Basics of Polar-Format algorithm for processing Synthetic Aperture Radar images.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter


    The purpose of this report is to provide a background to Synthetic Aperture Radar (SAR) image formation using the Polar Format (PFA) processing algorithm. This is meant to be an aid to those tasked to implement real-time image formation using the Polar Format processing algorithm.

  20. Towards a New Approach of the Economic Intelligence Process: Basic Concepts, Analysis Methods and Informational Tools

    Directory of Open Access Journals (Sweden)

    Sorin Briciu


    Full Text Available One of the obvious trends in current business environment is the increased competition. In this context, organizations are becoming more and more aware of the importance of knowledge as a key factor in obtaining competitive advantage. A possible solution in knowledge management is Economic Intelligence (EI that involves the collection, evaluation, processing, analysis, and dissemination of economic data (about products, clients, competitors, etc. inside organizations. The availability of massive quantities of data correlated with advances in information and communication technology allowing for the filtering and processing of these data provide new tools for the production of economic intelligence.The research is focused on innovative aspects of economic intelligence process (models of analysis, activities, methods and informational tools and is providing practical guidelines for initiating this process. In this paper, we try: (a to contribute to a coherent view on economic intelligence process (approaches, stages, fields of application; b to describe the most important models of analysis related to this process; c to analyze the activities, methods and tools associated with each stage of an EI process.

  1. Biological Effects of bFGF on Murine Endometrium in the Process of Blastocyst Implantation

    Institute of Scientific and Technical Information of China (English)

    赤晶; 高英茂; 刘凯; 李少玲; 张保华; 邴鲁军


    Objective To study the biological effects of basic fibroblast growth factor (bFGF) in the process of embryo implantation in mouse Materials & Methods The transcription and translocation of bFGF and its receptor (Flg) in endometrium of 60 Kunming mice were detected with the methods of im munohistochemistry and hybridization in situ. Endometrial tissue was obtained on the day 4 from pregnancy mice. The cells were cultured and attached in 1 : 1 F12/DMEM (vol/vol) supplemented with 10% FBS for 24 h The medium supplemented with 1% FBS and bFGF (50 ng/mL), anti-bFGF antibody (250 ng/mL) or anti-Flg antibody (250 ng/mL) was added in different culture wells. At different culture stages, the biological effect of bFGF on cell survival and expression of LN, FN and c-myc was detected by using MTT analysis, immunohistochemistry and hybridization in situ.Results bFGF and Flg was located in luminal and glandual cells on day 4 and 5 of pregnancy. Embryonic implantation was accompanied by increased bFGF and its recep tor in decidual cell around implantation site, in which low level of bFGF and its recep tor was apparent on day 7 and 8 of pregnancy. In vitro, the OD value in culture wells containing bFGF was significantly higher than that in control group. Exogenous bFGF promoted the expression of LN, FN and c-myc.Conclusion Changes in the cell-specific distribution of bFGF and the effects of bFGF on cultured endometrial cells imply a multifunctional role of the growth factor in uterine cell proliferation, differentiation and embryonic implantation.

  2. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor


    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  3. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    Faris Azzouni


    Full Text Available Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family.

  4. Characteristics of Molecular-biological Systems and Process-network Synthesis

    CERN Document Server

    Papp, L; Friedler, F; Fan, L T


    Graph Theoretic Process Network Synthesis is described as an introduction to biological networks. Genetic, protein and metabolic systems are considered. The theoretical work of Kauffman is discussed and amplified by critical property excursions. The scaling apparent in biological systems is shown. Applications to evolution and reverse engineering are construed. The use of several programs, such as the Synprops, Design of molecules, Therm and Knapsack are suggested as instruments to study biological process network synthesis. The properties of robust self-assembly and Self-Organizing synthesis are important contributors to the discussion. The bar code of life and intelligent design is reviewed. The need for better data in biological systems is emphasized.

  5. Coupled model of physical and biological processes affecting maize pollination (United States)

    Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.


    Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.

  6. Basic research on separation control of long life nuclides in fuel reprocessing processes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki; Usami, Go [Tokyo Univ. (Japan). Faculty of Engineering; Maeda, Mitsuru; Fujine, Sachio; Uchiyama, Gunzo; Kihara, Takehiro; Asakura, Toshihide; Hotoku, Shinobu


    The behavior of technetium (Tc) in nuclear fuel reprocessing processes has become the subject to be elucidated in the transition to distribution process by coextraction and the catalytic action in distribution process. In order to forecast or control the behavior of Tc in reprocessing processes, it is necessary to understand that at which valence Tc exists stably in respective processes. Tc is stable at 7 valence in nitric acid solution expected in reprocessing. In this research, the reaction speed of the oxidation and reduction reactions of rhenium (Re) which simulates Tc was measured by laser Raman spectroscopy which can do high speed analysis of valence. The experimental method is explained. The Raman spectra of Re in the experimental system of this research were measured in perchloric acid solution and nitric acid solution, and compared with the values in literatures. As the result, the validity of this research was assured. It was confirmed that Re(7) was not reduced by sulfamic acid and ascorbic acid. Re(7) was reduced by thiocyanic acid once, but was oxidized again by the reaction of thiocyanic acid and nitric acid. (K.I.)

  7. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide. (United States)

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  8. Pretreatment of lignocellulose with biological acid recycling (the Biosulfurol process)

    NARCIS (Netherlands)

    Groenestijn, van J.; Hazewinkel, O.; Bakker, R.R.C.


    A biomass pretreatment process is being developed based on contacting lignocellulosic biomass with 70% sulfuric acid and subsequent hydrolysis by adding water. In this process, the hydrolysate can be fermented yielding ethanol, while the sulfuric acid is partly recovered by anion-selective membranes

  9. 3D finite elements method (FEM Analysis of basic process parameters in rotary piercing mill

    Directory of Open Access Journals (Sweden)

    Z. Pater


    Full Text Available In this paper 3D FEM analysis of process parameters and its infl uence in rotary piercing mill is presented. The FEM analyze of the rotary piercing process was made under the conditions of 3D state of strain with taking into consideration the thermal phenomena. The calculations were made with application of different rolls’ skew angles and different plug designs. In the result, progression of shapes, temperature and distributions of stress and strain were characterized. The numerical results of calculations were compared with results of stand test with use of 100Cr6 steel. The comparisons of numerical and experimental tests confirm good agreement between obtained results.

  10. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3. (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice


    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  11. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye


    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  12. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration. (United States)

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen


    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  13. Product, not process! Explaining a basic concept in agricultural biotechnologies and food safety. (United States)

    Tagliabue, Giovanni


    Most life scientists have relentlessly recommended any evaluative approach of agri-food products to be based on examination of the phenotype, i.e. the actual characteristics of the food, feed and fiber varieties: the effects of any new cultivar (or micro-organism, animal) on our health are not dependent on the process(es), the techniques used to obtain it.The so-called "genetically modified organisms" ("GMOs"), on the other hand, are commonly framed as a group with special properties - most frequently seen as dubious, or even harmful.Some social scientists still believe that considering the process is a correct background for science-based understanding and regulation. To show that such an approach is utterly wrong, and to invite scientists, teachers and science communicators to explain this mistake to students, policy-makers and the public at large, we imagined a dialogue between a social scientist, who has a positive opinion about a certain weight that a process-based orientation should have in the risk assessment, and a few experts who offer plenty of arguments against that view. The discussion focuses on new food safety.

  14. Mathematical Model of the Habituation Process as a Learning Basic Phenomena in PC-12 Cells. (United States)

    Valdivia, Adolfo Obaya

    Learning processes have been investigated for regularities of the changes in the strength of a reflex that result from manipulations of several parameters of a stimulus. Most of this work has been carried out in the tradition of associative theory. One consequence of this emphasis was that for a long time several phenomena that can be…

  15. Using Forensic Psychology to Teach Basic Psychological Processes: Eyewitness Memory and Lie Detection (United States)

    Costanzo, Mark A.


    Teachers can incorporate topics in forensic psychology into lower level courses to increase student interest and to show how psychological processes influence outcomes in high-stakes applied contexts. One such topic is eyewitness identification, which teachers can use to show how stress affects memory and how memories can become distorted during…

  16. Exploring Basic Components of the Process Model of Understanding Mathematics for Building a Two Axes Process Model


    Koyama, Masataka


    The purpose of this study is to make clear what kind of characteristics a model of understanding mathematics should have so as to be useful and effective in mathematics education. The models of understanding presented in preceding papers are classified into two large categories, i. e. "aspect model" and "process model". Focusing on the process of understanding mathematics, reflective thinking plays an important role to develop children's understanding, or to progress children's thinking from ...

  17. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics (United States)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.


    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  18. Sustainable Production Process of Biological Mineral Feed Additives

    Directory of Open Access Journals (Sweden)

    Agnieszka Zielinska


    Full Text Available Problem statement: This study discussed the problem of accumulation of Zn and Cu in the topsoil as a result of application of mineral feed additives that possess low bioavailability in animal diet. The review considered the production process of mineral feed additives in which a product supplies microelements in highly bioavailable form. Enrichment of natural biomass of edible microalgae with microelement metal ions, which supply microelements of feeding significance in livestock diet, is considered in term of sustainable production. Approach: Production of microalgae-derived products as mineral feed additives requires elaboration of the processes for cultivation of alga, enrichment process and afterwards recovery of the enriched biomass from the solution to obtain liquid free of cells that could be reused in the next process. In this study membrane bioreactor was considered as a method for separation, both in photobioreactor (growth of microorganism as well as in the enrichment process. Results: Effort involved in thermal and chemical separation techniques is higher than that in mechanical techniques. Membrane bioreactors which are usually applied to treat wastewater, both industrial and domestic. This study discussed method to separate a valuable biomass of enriched microalgae and reuse the solution with residual metal ions that can be used once again in the subsequent biosorption process. Conclusion/Recommendation: Taking into consideration care about the environment it is better to apply membrane modules in the production process in terms of sustainable production. The proposed solution assumed the application of membrane modules as a separation step after enrichment process and biomass recovery.

  19. Basic investigation into the production of oxygen in a solid electrolyte process (United States)

    Richter, R.


    Mission analyses indicated that by extracting oxygen from the Martian atmosphere, which consists primarily of carbon dioxide, the launch mass of a spacecraft can be reduced by such an amount that samples from the planet can be returned to earth. The solid electrolyte process for producing O2 from CO2 was investigated. A model of the thermodynamic and electrochemical processes in the electrolyte cell was postulated, thereby establishing the parameters influencing the effectiveness and efficiency of an in situ O2 production system. The major operating parameters were investigated over a wide range of temperature and pressure. Operating limits imposed by the solid electrolyte material, 8% yttria stabilized zirconia, were determined as a function of the operating temperature.

  20. Gasification Processes Old and New: A Basic Review of the Major Technologies

    Directory of Open Access Journals (Sweden)

    Ronald W. Breault


    Full Text Available This paper has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the paper is to describe the twelve major gasifiers being marketed today. Some of these are already fully developed while others are in various stages of development. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres.

  1. Using the Unified Modelling Language (UML) to guide the systemic description of biological processes and systems. (United States)

    Roux-Rouquié, Magali; Caritey, Nicolas; Gaubert, Laurent; Rosenthal-Sabroux, Camille


    One of the main issues in Systems Biology is to deal with semantic data integration. Previously, we examined the requirements for a reference conceptual model to guide semantic integration based on the systemic principles. In the present paper, we examine the usefulness of the Unified Modelling Language (UML) to describe and specify biological systems and processes. This makes unambiguous representations of biological systems, which would be suitable for translation into mathematical and computational formalisms, enabling analysis, simulation and prediction of these systems behaviours.

  2. Basic number processing in children with specific learning disorders: Comorbidity of reading and mathematics disorders. (United States)

    Moll, Kristina; Göbel, Silke M; Snowling, Margaret J


    As well as being the hallmark of mathematics disorders, deficits in number processing have also been reported for individuals with reading disorders. The aim of the present study was to investigate separately the components of numerical processing affected in reading and mathematical disorders within the framework of the Triple Code Model. Children with reading disorders (RD), mathematics disorders (MD), comorbid deficits (RD + MD), and typically developing children (TD) were tested on verbal, visual-verbal, and nonverbal number tasks. As expected, children with MD were impaired across a broad range of numerical tasks. In contrast, children with RD were impaired in (visual-)verbal number tasks but showed age-appropriate performance in nonverbal number skills, suggesting their impairments were domain specific and related to their reading difficulties. The comorbid group showed an additive profile of the impairments of the two single-deficit groups. Performance in speeded verbal number tasks was related to rapid automatized naming, a measure of visual-verbal access in the RD but not in the MD group. The results indicate that deficits in number skills are due to different underlying cognitive deficits in children with RD compared to children with MD: a phonological deficit in RD and a deficit in processing numerosities in MD.

  3. Biological Agent Sensing Integrated Circuit (BASIC): A New Complementary Metal-oxide-semiconductor (CMOS) Magnetic Biosensor System



    Fast and accurate diagnosis is always in demand by modern medical professionals and in the area of national defense. At present, limitations of testing speed, sample conditions, and levels of precision exist under current technologies, which are usually slow and involve testing the specimen under laboratory conditions. Typically, these methods also involve several biochemical processing steps and subsequent detection of low energy luminescence or electrical changes, all of which reduce the sp...

  4. Mistaking geography for biology: inferring processes from species distributions. (United States)

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I


    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity).

  5. Curricular contribution of the subject Health and Philosophy to the educational process of Basic General Doctors.

    Directory of Open Access Journals (Sweden)

    Blanca Rosa Garcés Garcés


    Full Text Available Background: The curriculum of Philosophy and Health discipline is an important tool in the formative process of General Comprehensive Doctors if the educative and instructive goals, as well as the content of each subject are linked to the educative work necessities and the future fields of Health Professionals. Objectives: To determine the curricular contribution of this discipline to the formative process of General Comprehensive Doctors regarding human values development, skills and preparation for their future working fields during courses 2000-2001, 2001-2002 and 2003-2004. Methods: An anonym survey was performed to students, in the conformation of the final report different methods were used: analysis, synthesis, historical-logical method. Results: Values such responsibility, discipline, justice, humanism, solidarity, honesty, anti-imperialism, equality and creativity were more popular among students and the least popular were simplicity and unconditional behavior. Conclusion: This experience allowed us to verify that this discipline has contributed to human values development of first year students and that they acknowledge their professor's work.

  6. Basical characteristics of fluid geologic process of interlayer oxidation zone sandstone-typeuranium deposit

    Institute of Scientific and Technical Information of China (English)

    WU; BoLin; LIU; ChiYang; WANG; JianQiang


    This paper reveals the physicochemical properties such as component, formulation, genesis, tem- perature, pH, Eh, salinity and pressure of all main alteration fluid of interlayer oxidation zone sand- stone-type uranium deposits after studying the geologic process and geochemistry of internal typical sandstone-type uranium deposits such as Shihongtan deposit in the Turpan-Hami basin, 512 deposit in the Yili basin, Dongsheng deposit in the Ordos basin. The composition of fluid can be divided into two parts based on the analysis of inclusion: one can be affirmed as atmospheric water with ordinary temperature epigenesist according to the character of hydrogen and oxygen isotope of inclusion, the other is natural gas containing gaseous hydrocarbon like CH4, and CO2 as well as a little H2S, CO, H2, N2 and so on, it always contains a small quantity of hydrocarbon liquid in petroliferous basins. The fluid property of oxidation alteration zone is always oxidation alkaline, and neutrality or weak acid-weak alkaline and reducibility during the metallizing process, but at secondary reduction or deoxidization zone it becomes strong reduction alkaline. Oxygenic groundwater in the fluid is the activate and mig- ratory medium of uranium element, but the gaseous hydrocarbon like CH4 as well as H2, H2S, CO from natural gas is the important sedimentary reducer of uranium mineral; the transformation of pH,Eh in fluid environment is the main reason for the formation of uranium metallization.

  7. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process. (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin


    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications.

  8. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)


    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  9. A Biologically-Inspired Neural Network Architecture for Image Processing (United States)


    findings, in accord with other research cited here, were obtained from cortical measurements or, 15 adult cats and 12 kittens , all anesthetized ( models on a Cray computer. Furthermore, care should be taken to avoid exceeding machine memory capacity when running intensive processes

  10. Anaerobic Digestion. Student Manual. Biological Treatment Process Control. (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  11. A straightforward graphical user interface for basic and advanced signal processing of thermographic infrared sequences (United States)

    Klein, Matthieu T.; Ibarra-Castanedo, Clemente; Maldague, Xavier P.; Bendada, Abdelhakim


    IR-View, is a free and open source Matlab software that was released in 1998 at the Computer Vision and Systems Laboratory (CVSL) at Université Laval, Canada, as an answer to many common and recurrent needs in Infrared thermography. IR-View has proven to be a useful tool at CVSL for the past 10 years. The software by itself and/or its concept and functions may be of interest for other laboratories and companies working in research in the IR NDT field. This article describes the functions and processing techniques integrated to IR-View, freely downloadable under the GNU license at Demonstration of IR-View functionalities will also be done during the DSS08 SPIE Defense and Security Symposium.

  12. Basic Evaluation of the Process of China's Industrial Modernization

    Institute of Scientific and Technical Information of China (English)

    JiaguiChen; QunhuiHuang


    As China will change from a large industrial power into a strong industrial power in the 21st century, the inevitable demand is for industrial modernization. This paper puts forward three criteria for judging the degree of realization of industrial modernization: industrial growth efficiency, industrial structure and industrial environment. Together with these, it constructs an indicator system and indices for evaluating the level of industrial modernization, and uses this indicator system to evaluate the level of China's industrial modernization at the tam of the century. The resulting comprehensive index of China's industrial modernization is 28. 72. This indicates that, through the rapid industrialization which has taken place over more than 20 years of reform and opening up, China has commenced its industrial modernization, which is now in the primary stage of development. The core of the strategy for further development should be to accelerate the process of industrial modernization.

  13. Determining biomass in biological processes. Methods for wastewater biological treatment; Determinacion de la biomasa en procesos biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isaac, L.; Lebrato, J. [Universidad Politecnica de Sevilla (Spain)


    Biomass concentration and activity are two important parameters for the successful design and control of biological processes in wastewater treatment. Widely used parameter for biomass characterization is dry weight concentration. This parameter is, however, not sufficient to describe biomass activity. Improved analytical methods are needed in order to understand the physiological behaviour of the biomass. In this work, conventional and advanced analytical methods for biomass determination in wastewater treatment are reviewed. (Author) 27 refs.

  14. Molecular imaging of apoptosis and necrosis - basic principles of cell biology and use in oncology; Molekulare Bildgebung von Apoptose und Nekrose - Zellbiologische Grundlagen und Einsatz in der Onkologie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, I.; Traeber, F.; Block, W.; Schild, H. [Univ. Bonn (Germany)


    Soon molecular imaging techniques will play a prominent role in basic scientific research and clinical approaches. In particular, important aspects of medicine such as apoptosis and gene- and stem-cell therapy will play a pivotal role in radiology too. This review presents the basic principles of apoptosis, recent results and future perspectives of apoptosis imaging. Apoptosis or programmed cell death is a precisely regulated, complex cascade of molecular events to eliminate individual cells. Disturbances may lead to diseases like malignancies and neurodegenerative diseases that are of clinical relevance. Several therapeutic strategies in oncology are based on apoptosis induction; conversely, resistance to therapy is indicative of decreased apoptosis induction. Whereas up to now the clinician had to depend exclusively on biopsy specimens to detect apoptosis, the feasibility of non-invasive imaging of this cell-biological phenomenon in vivo opens up new horizons in future. This review focuses on different modifications of this imaging technique, with and without the use of molecular probes (e.g. annexin V, synaptotagmin I), in vitro and in vivo using the various detector systems (like MRI, flow cytometry) currently available. Future perspectives are also addressed. (orig.)

  15. Acidic and basic properties of zeolite-containing cracking catalyst in the process of butene-1 isomerization (United States)

    Mursalova, L. A.; Guseinova, E. A.; Adzhamov, K. Yu.


    The process of butene-1 isomerization in the presence of two groups of samples of zeolite-containing catalyst (ZCC) that earlier participated in the traditional and oxidative catalytic cracking of vacuum gasoil is investigated. It is established that the nature of the reaction mixture and conditions of the cracking process are key factors in forming the acidic and basic properties of the catalyst. It is shown that the highest activity in the butene-1 isomerization into cis-/ trans-butene-2 is demonstrated by ZCC samples that participated in the oxidative catalytic cracking (oxycracking). It is suggested that the enhanced catalytic activity of this group of ZCC samples was related to the availability of acid-base centers in the form of radical-like oxygen along with protic- and aprotic-type acidic centers in the structure of the oxidative compaction products.

  16. [Ways of inserting physicians into the healthcare production process: case of study of basic healthcare units in Belo Horizonte, Brazil]. (United States)

    Gariglio, Maria Terezinha; Radicchi, Antônio Leite Alves


    The main purpose of this paper is to describe and analyze the ways of inserting physicians into the health production process. This subject is justified by a belief that that this way of working may be a problem but at the same time may well be the key to implementing healthcare models that are ethically and politically committed to the lives of public health system users. Initially, the problem is presented through the construction of an archetype physician and his historical and social and cultural conditioning factors, taking the work processes of physicians at Basic Healthcare Units in Belo Horizonte as an example that is built up through interviews and participative observations. Some possibilities for intervention are indicated through the introduction of new concepts and technologies that could transform the work of these practitioners in ways that would build up links with more responsibility for the care and lives of users of public healthcare services.

  17. The Renin-Angiotensin System Modulates Inflammatory Processes in Atherosclerosis: Evidence from Basic Research and Clinical Studies

    Directory of Open Access Journals (Sweden)

    Fabrizio Montecucco


    Full Text Available Recent evidence shows that the renin-angiotensin system is a crucial player in atherosclerotic processes. The regulation of arterial blood pressure was considered from its first description of the main mechanism involved. Vasoconstriction (mediated by angiotensin II and salt and water retention (mainly due to aldosterone were classically considered as pivotal proatherosclerotic activities. However, basic research and animal studies strongly support angiotensin II as a proinflammatory mediator, which directly induces atherosclerotic plaque development and heart remodeling. Furthermore, angiotensin II induces proatherosclerotic cytokine and chemokine secretion and increases endothelial dysfunction. Accordingly, the pharmacological inhibition of the renin-angiotensin system improves prognosis of patients with cardiovascular disease even in settings of normal baseline blood pressure. In the present review, we focused on angiotensin-convertingenzyme (ACE inhibitors, angiotensin II receptor blockers (ARBs, and renin inhibitors to update the direct activities of the renin-angiotensin system in inflammatory processes governing atherosclerosis.

  18. Basic rhythm of myoelectric activities of sphcter of Oddi and its biological significance%Oddi括约肌肌电活动的基本方式

    Institute of Scientific and Technical Information of China (English)

    李虎城; 董家鸿; 陈飞; 邹一平; 李为民


    Objective To observe the basic rhythm of myoelectrie activities of sphcter of Oddi (SO)and explore its biological significance.Methods Healthy adult rabbits(n=32)were randomized into 4 groups with 8 in each.The first group was for recording of myoelectric activities of SO after keeping fast for 18 hours.The second group was manipulated to observe the myoelectric activities of SO after food infusion through the stoma in stomach.The myoelectric activities of SO in the third group were monitored after the classical Nardi test was performed on these rabbits.The fourth group was used to observe the myoelectric activities of SO after the cholinergic receptors had been blocked.Using the double claw metal electrodes which were put into SO and duodenum through the plasma membrance,the myoelectric signal were recorded with RM6240 multi-channel physiologic recording and signal processing system and non-stop recording was conducted for 120-150 mins.Results 1)Spike Potentials of SO with the frequency was observed in rabbits that had been fasting.2)Myoelectronic activity of SO was observed in rabbits infused with 50 ml milk through stoma.3)After the administration of 1 mg morphine and 1 mg neostigmine i.v,the myoelectric activities of SO were noted as long-lasting persistent MASO.4)Administration of anisodamine 1 mg(i.v.)in the empty abdomen group dismissed SPSO and MASO.This state lasted for 120 min before SPSO gradually reconverted to the state of empty abdomen.Conclusion There are four patterns of myoelectric activities of SO,i.e,tensional waves under empty abdomen indicating a state in which the SO kept a basic tension level.Peristaltic waves under intake of food.Spastic waves under the stimulation of drugs and relaxant waves under the post-ganglionic block of cholinergic receptors were observed in the present study.Correspondingly,their mechanic locomotion is inferred as the basic tensional state to faciliate the deposition and condensation of bile,the peristalsis for the

  19. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)


    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  20. Sustainable Production Process of Biological Mineral Feed Additives


    Agnieszka Zielinska; Katarzyna Chojnacka; Marjana Simonic


    Problem statement: This study discussed the problem of accumulation of Zn and Cu in the topsoil as a result of application of mineral feed additives that possess low bioavailability in animal diet. The review considered the production process of mineral feed additives in which a product supplies microelements in highly bioavailable form. Enrichment of natural biomass of edible microalgae with microelement metal ions, which supply microelements of feeding significance in livestock diet, is con...

  1. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay


    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...

  2. An assessment of basic processes controlling mean surface salinity over the global ocean (United States)

    Ponte, R. M.; Vinogradova, N. T.


    A data-constrained ocean state estimate that permits closed property budget diagnostics is used to examine the balance between surface forcing (F¯), advective (A¯), and diffusive (D¯) fluxes in maintaining the large-scale time-mean surface salinity Ss¯. Time-mean budgets (1993-2010) are considered for the 10 m thick top layer. In general, D¯ tends to counteract F¯, but A¯ is important almost everywhere, and some regions show a main balance between A¯ and D¯ (Bay of Bengal, Arctic) or A¯ and F¯ (tropical Atlantic and Pacific). Advection tends to freshen the surface in the tropics and high latitudes, with opposite tendencies in midlatitudes. For various Ss¯ tropical extrema, A¯ adds to the F¯ tendencies in precipitation regions and opposes F¯ in evaporation regions. Long-term Ss¯¯ conditions thus reflect more than a simple diffusive adjustment to F¯, likely involving close interaction between wind- and buoyancy-driven circulation and mixing processes.

  3. 生物反硝化除磷技术研究进展%Advances in Research of Phosphorus Removal Technology for Biological Denitrification Processes

    Institute of Scientific and Technical Information of China (English)

    姜鸣; 张静慧; 宫飞蓬; 周军; 甘一萍; 李军


    综述了反硝化除磷技术的基本理论,各种反硝化除磷工艺的特点,反硝化除磷微生物学的研究情况以及对其机理与数学模型研究的发展.%The basic theories of biological denitrifying phosphorus removal, characteristic of various process, the research status of biological denitrifying phosphorus removal and so on were introduced.

  4. Consequences of Persistent Small-Scale Biological Structure on Upper Ocean Trophic Processes (United States)


    Consequences Of Persistent Small-Scale Biological Structure On Upper Ocean Trophic Processes Timothy J. Cowles College of Oceanic and Atmospheric... Sciences 104 Oceanography Admin Bldg Oregon State University Corvallis, OR 97331-5503 Office: (541) 737-3966 FAX: (541) 737-2064 email: cowles...interactions between small-scale biological and physical processes in the upper ocean. This project addresses that goal by examining the coherence in

  5. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B


    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  6. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data. (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila


    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  7. Using Data Exclusivity Grants to Incentivize Cumulative Innovation of Biologics' Manufacturing Processes. (United States)

    Levi, Eric Lawrence

    The pharmaceutical market is divided into two types of compounds: small-molecule chemical compounds and large-molecule biologics. Due to biologics’ molecular sizes and the current scientific state of biologics manufacturing, manufacturing facilities and processes require frequent reassessment to ensure production of safe, pure, and potent therapeutics. Manufacturers utilize patent and drug regulatory law to protect their investments and simultaneously signal where innovation and investment are lacking. The current four- and twelve-year regimented structures of the Biologics Price, Competition, and Innovation Act do not keep pace with scientific development; biologics manufacturing processes drift with time, and if a manufacturer can obtain a higher degree of process control, then it should not feel restricted to wait until their exclusivity period lapses. Currently, the FDA rarely grants market exclusivity privileges for manufacturing process improvements alone; hence, manufacturing processes--or at least large portions thereof--are typically withheld as trade secrets or strategically claimed within companion composition claims. As a result, significant opportunity exists in regulatory framework to incentivize the research and development of biologics manufacturing processes. By creating a one- to four-year data exclusivity extension opportunity, manufacturers will feel more comfortable reinvesting their returns on investment towards manufacturing efficiency, and manufacturers can capitalize on the complex-molecule nature of their biologic.

  8. Chemical industrial wastewater treated by combined biological and chemical oxidation process. (United States)

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang


    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year.

  9. tRNAs as regulators of biological processes

    Directory of Open Access Journals (Sweden)

    Medha eRaina


    Full Text Available Transfer RNAs (tRNA are best known for their role as adaptors during translation of the genetic code. Beyond their canonical role during protein biosynthesis, tRNAs also perform additional functions in both prokaryotes and eukaryotes for example in regulating gene expression. Aminoacylated tRNAs have also been implicated as substrates for non-ribosomal peptide bond formation, post-translational protein labeling, modification of phospholipids in the cell membrane and antibiotic biosyntheses. Most recently tRNA fragments, or tRFs, have also been recognized to play regulatory roles. Here we examine in more details some of the new functions emerging for tRNA in a variety of cellular processes outside of protein synthesis.

  10. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p vs. M = 7.330 +/- .330; z =-1.729, p = .084) and the traditional group may have scored higher on the pretest than the posttest (M = 8.333 +/- .333 vs M = 7.333 +/- .333; z = -1.650 , p = .099). Two themes emerged after the interviews and instructor reflections: 1) After instruction students had a more extensive understanding of classification in three areas: vocabulary terms, physical characteristics, and types of evidence used to classify. Both groups extended their understanding, but only POGIL students could explain how molecular evidence is used in classification. 2) The challenges preventing students from understanding classification were: familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This

  11. Life's origin: the cosmic, planetary and biological processes (United States)

    Scattergood, T.; Des Marais, D.; Jahnke, L.


    From elements formed in interstellar furnaces to humans peering back at the stars, the evolution of life has been a long, intricate and perhaps inevitable process. Life as we know it requires a planet orbiting a star at just the right distance so that water can exist in liquid form. It needs a rich supply of chemicals and energy sources. On Earth, the combination of chemistry and energy generated molecules that evolved ways of replicating themselves and of passing information from one generation to the next. Thus, the thread of life began. This chart traces the thread, maintained by DNA molecules for much of its history, as it weaves its way through the primitive oceans, gaining strength and diversity along the way. Organisms eventually moved onto the land, where advanced forms, including humans, ultimately arose. Finally, assisted by a technology of its own making, life has reached back out into space to understand its own origins, to expand into new realms, and to seek other living threads in the cosmos.

  12. Sequential biological process for molybdenum extraction from hydrodesulphurization spent catalyst. (United States)

    Vyas, Shruti; Ting, Yen-Peng


    Spent catalyst bioleaching with Acidithiobacillus ferrooxidans has been widely studied and low Mo leaching has often been reported. This work describes an enhanced extraction of Mo via a two stage sequential process for the bioleaching of hydrodesulphurization spent catalyst containing Molybdenum, Nickel and, Aluminium. In the first stage, two-step bioleaching was performed using Acidithiobacillus ferrooxidans, and achieved 89.4% Ni, 20.9% Mo and 12.7% Al extraction in 15 days. To increase Mo extraction, the bioleached catalyst was subjected to a second stage bioleaching using Escherichia coli, during which 99% of the remaining Mo was extracted in 25 days. This sequential bioleaching strategy selectively extracted Ni in the first stage and Mo in the second stage, and is a more environmentally friendly alternative to sequential chemical leaching with alkaline reagents for improved Mo extraction. Kinetic modelling to establish the rate determining step in both stages of bioleaching showed that in the first stage, Mo extraction was chemical reaction controlled whereas in the subsequent stage, product layer diffusion model provided the best fit.

  13. Solid separation and sbr biological process for pig slurry treatment; Depuracion de purines por separacion de solidos y tratamiento biologico en SBR

    Energy Technology Data Exchange (ETDEWEB)

    Lekuona, A.; Alberdi, M.; Lekue, I.; Lasuen, M.


    Egiluze treatment plant in Renteria (Gipuzkoa, spain), has treated around 45 m{sup 3}/day of pig slurry since 2006. During this two years, the plant has been running in order to get a suitable effluent, which fulfills the corresponding parameters to be discharged to municipal drain. The treatment process consists basically of a first solid separation and subsequent nitrification-de-nitrificacion biological process using a Sequencing Batch Reactor (SBR). The technical and economic results showed in this article, prove that the process used in Egiluze treatment plant is an effective solution which allows the treatment of pig slurry in an economical and automated way. (Author)

  14. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. (United States)

    Lebuhn, Michael; Weiß, Stefan; Munk, Bernhard; Guebitz, Georg M


    Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.

  15. An Investigation Of The Influence Of Leadership And Processes On Basic Performance Results Using A Decision Model Based On Efqm

    Directory of Open Access Journals (Sweden)

    Ahmet Talat İnan


    Full Text Available EFQM Excellence Model is a quality approach that companies benefit in achieving success. EFQM Excellence Model is an assessment tool helping to determine what is competence and missing aspects in achieving excellence.In this study, based on the EFQM Excellence Model, the influence of basic performance results caused by leadership and processes variables in this model of a firm engaged in maintenance and repair services due to a large-scale company. In this work, a survey was conducted that covering the company's employees and managers. The data obtained from this survey was utilized by using SPSS16.0 statistics software in respect of factor analysis, reliability analysis, correlation and regression analysis. The relation between variables was evaluated taking into account the resuşts of analysis.

  16. Particle size distribution and removal in the chemical-biological flocculation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; ZHAO Jian-fu; XIA Si-qing; LIU Chang-qing; KANG Xing-sheng


    The particle characterization from the influent and effluent of a chemical-biological flocculation (CBF) process was studied with a laser diffraction device. Water samples from a chemically enhanced primary treatment (CEPT) process and a primary sediment tank process were also analyzed for comparison. The results showed that CBF process was not only effective for both the big size particles and small size particles removal, but also the best particle removal process in the three processes. The results also indicated that CBF process was superior to CEPT process in the heavy metals removal. The high and non-selective removal for heavy metals might be closely related to its strong ability to eliminate small particles. Samples from different locations in CBF reactors showed that small particles were easier to aggregate into big ones and those disrupted flocs could properly flocculate again along CBF reactor because of the biological flocculation.

  17. Visual processing in reading disorders and attention-deficit/hyperactivity disorder and its contribution to basic reading ability. (United States)

    Kibby, Michelle Y; Dyer, Sarah M; Vadnais, Sarah A; Jagger, Audreyana C; Casher, Gabriel A; Stacy, Maria


    Whether visual processing deficits are common in reading disorders (RD), and related to reading ability in general, has been debated for decades. The type of visual processing affected also is debated, although visual discrimination and short-term memory (STM) may be more commonly related to reading ability. Reading disorders are frequently comorbid with ADHD, and children with ADHD often have subclinical reading problems. Hence, children with ADHD were used as a comparison group in this study. ADHD and RD may be dissociated in terms of visual processing. Whereas RD may be associated with deficits in visual discrimination and STM for order, ADHD is associated with deficits in visual-spatial processing. Thus, we hypothesized that children with RD would perform worse than controls and children with ADHD only on a measure of visual discrimination and a measure of visual STM that requires memory for order. We expected all groups would perform comparably on the measure of visual STM that does not require sequential processing. We found children with RD or ADHD were commensurate to controls on measures of visual discrimination and visual STM that do not require sequential processing. In contrast, both RD groups (RD, RD/ADHD) performed worse than controls on the measure of visual STM that requires memory for order, and children with comorbid RD/ADHD performed worse than those with ADHD. In addition, of the three visual measures, only sequential visual STM predicted reading ability. Hence, our findings suggest there is a deficit in visual sequential STM that is specific to RD and is related to basic reading ability. The source of this deficit is worthy of further research, but it may include both reduced memory for order and poorer verbal mediation.

  18. Health professionals in the process of vaccination against hepatitis B in two basic units of Belo Horizonte: a qualitative evaluation. (United States)

    Lages, Annelisa Santos; França, Elisabeth Barboza; Freitas, Maria Imaculada de Fátima


    According to the Vaccine Coverage Survey, performed in 2007, the immunization coverage against hepatitis B in Belo Horizonte, for infants under one year old, was below the level proposed by the Brazilian National Program of Immunization. This vaccine was used as basis for evaluating the involvement of health professionals in the process of vaccination in two Basic Health Units (UBS, acronym in Portuguese) in the city. This study is qualitative and uses the notions of Social Representations Theory and the method of Structural Analysis of Narrative to carry out the interviews and data analysis. The results show flaws related to controlling and use of the mirror card and the parent orientation, and also the monitoring of vaccination coverage (VC) and use of VC data as input for planning health actions. It was observed that the working process in the UBS is focused on routine tasks, with low creativity of the professionals, which includes representations that maintain strong tendency to value activities focused on the health of individuals to the detriment of public health actions. In conclusion, the vaccination process fault can be overcome with a greater appreciation of everyday actions and with a much better use of local information about vaccination, and some necessary adjustments within the UBS to improve public health actions.

  19. Work Process Oriented Learning via Mobile Devices – Theoretical Basics and Examples for a (New Didactical Approach

    Directory of Open Access Journals (Sweden)

    Georg Spöttl


    Full Text Available Two problems can be identified which counteract the need for further training: On the one hand the clientele of skilled workers is not necessarily keen on further training. On the other hand the time and cost pressure within the sector does not offer any room for time-consuming further training measures far away from the workplace. This is why the project “Virtual Learning on the building site – (Vila-b” was realized in cooperation with the project partners of the University of Bremen (Working group »Digital Media« of the Centre for Information Technology as well as from the economy (Arbeitskreis ökologischer Holzbau e. V. and Claus Holm, pm|c. The project team has tested a concept which facilitated learning adapted to the occupational reality and supported by the advantages of digital media. The central didactical elements for the development of this further training course are the contextual and methodological orientation to real work processes as well as the use of digital mobile media which facilitate learning directly at the workplace. The present article starts with a description of the theoretical basics for learning within the work process and discusses the didactical elements which are necessary for work process oriented learning with digital and mobile media.

  20. Downregulation of the microtubule associated protein tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes. (United States)

    Seiberlich, Veronika; Bauer, Nina G; Schwarz, Lisa; Ffrench-Constant, Charles; Goldbaum, Olaf; Richter-Landsberg, Christiane


    Oligodendrocytes, the myelin forming cells of the CNS, are characterized by their numerous membranous extensions, which enwrap neuronal axons and form myelin sheaths. During differentiation oligodendrocytes pass different morphological stages, downregulate the expression of the proteoglycan NG2, and acquire major myelin specific proteins, such as myelin basic proteins (MBP) and proteolipid protein. MBP mRNA is transported in RNA granules along the microtubules (MTs) to the periphery and translated locally. MTs participate in the elaboration and stabilization of the myelin forming extensions and are essential for cellular sorting processes. Their dynamic properties are regulated by microtubule associated proteins (MAPs). The MAP tau is present in oligodendrocytes and involved in the regulation and stabilization of the MT network. To further elucidate the functional significance of tau in oligodendrocytes, we have downregulated tau by siRNA technology and studied the effects on cell differentiation and neuron-glia contact formation. The data show that tau knockdown impairs process outgrowth and leads to a decrease in MBP expression. Furthermore, MBP mRNA transport to distant cellular extensions is impaired and cells remain in the NG2 stage. In myelinating cocultures with dorsal root ganglion neurons, oligodendrocyte precursor cells after tau miR RNA lentiviral knockdown develop into NG2 positive cells with very long and thin processes, contacting axons loosely, but fail to form internodes. This demonstrates that tau is important for MBP mRNA transport and involved in process formation. The disturbance of the balance of tau leads to abnormalities in oligodendrocyte differentiation, neuron-glia contact formation and the early myelination process.

  1. Process for the continuous biological production of lipids, hydrocarbons or mixtures thereof

    NARCIS (Netherlands)

    Van der Wielen, L.A.M.; Heijnen, J.J.


    The present invention is directed to a process for the continuous biological production of lipids, hydrocarbons, hydrocarbon like material or mixtures thereof by conversion of a suitable substrate using micro-organisms, in which process the said substrate is continuously, anaerobically fermented to

  2. Proceedings Fourth Workshop on Membrane Computing and Biologically Inspired Process Calculi 2010

    CERN Document Server

    Ciobanu, Gabriel; 10.4204/EPTCS.40


    The 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010) is organized in Jena as a satellite event of the Eleventh International Conference on Membrane Computing (CMC11). Biological membranes play a fundamental role in the complex reactions which take place in cells of living organisms. The importance of this role has been considered in two different types of formalisms introduced recently. Membrane systems were introduced as a class of distributed parallel computing devices inspired by the observation that any biological system is a complex hierarchical structure, with a flow of biochemical substances and information that underlies their functioning. The modeling and analysis of biological systems has also attracted considerable interest of the process algebra research community. Thus the notions of membranes and compartments have been explicitly represented in a family of calculi, such as ambients and brane calculi. A cross fertilization of these two research areas has ...

  3. Basic Principle of Molecular Dynamics and Application in The Filed of Biologic Molecules Simulation%分子动力学模拟及在生物大分子模拟领域的应用

    Institute of Scientific and Technical Information of China (English)



    简要介绍了分子动力学的发展历史、基本理论、基本步骤以及其作为基本研究手段来进行生物大分子模拟领域的应用。%This article briefly describes the molecular dynamics of development history,basic theory,basic steps and basic research as a means to carry out simulation in the field of application of biological macromolecules.

  4. Numerical investigation of the dynamics of nanoparticle systems in biological processes of plant nutrition (United States)

    Vakhrouchev, Alexandre V.; Golubchikov, Valery B.


    A complex mathematical model of processes of plant nutrition from a special regulated gas medium containing nanoparticles of basic macro- and microelements is formulated. The variation of the number of nanoparticles and the variation of the total nanoparticle volume with time, which form during the cooling process of the initial gas mixture, were investigated. The calculations of the structures, compositions and shapes of nanoparticles and the movement of nanoparticles were carried out.

  5. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances. (United States)

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab


    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually.

  6. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes. (United States)

    Arellano-González, Miguel Ángel; González, Ignacio; Texier, Anne-Claire


    In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of -0.40V vs Ag/AgCl(s)/KCl(sat), achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO2 and N2 as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  7. ``What if we were in a test tube?'' Students' gendered meaning making during a biology lesson about the basic facts of the human genitals (United States)

    Orlander, Auli Arvola


    This paper explores what happens in the encounters between presentations of "basic facts" about the human genitals and 15-year-old students during a biology lesson in a Swedish secondary school. In this paper, meaning making was approached as relational, context-dependent and continually transacted. For this reason the analysis was conducted through a series of close readings of situations where students interacted with each other and the teacher in opening up gaps about alternative ways of discussing gender. Drawing on Foucault's theories about the inclusion and exclusion of knowledge and the subsequent work of Butler and other feminist researchers, the paper illuminates what gendered relations remain tacit in the conversation. It then illustrates possible ways in which these tacit gendered meanings could be made overt and discussed with the students when making meaning about the human genitals. The paper also shows how the ways in which human genitals are transacted in the science classroom have importance for what kind of learning is made available to the students.

  8. A semester-long project for teaching basic techniques in molecular biology such as restriction fragment length polymorphism analysis to undergraduate and graduate students. (United States)

    DiBartolomeis, Susan M


    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky(73). Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers.

  9. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar


    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  10. An overview of biological processes and their potential for CO2 capture. (United States)

    Goli, Amin; Shamiri, Ahmad; Talaiekhozani, Amirreza; Eshtiaghi, Nicky; Aghamohammadi, Nasrin; Aroua, Mohamed Kheireddine


    The extensive amount of available information on global warming suggests that this issue has become prevalent worldwide. Majority of countries have issued laws and policies in response to this concern by requiring their industrial sectors to reduce greenhouse gas emissions, such as CO2. Thus, introducing new and more effective treatment methods, such as biological techniques, is crucial to control the emission of greenhouse gases. Many studies have demonstrated CO2 fixation using photo-bioreactors and raceway ponds, but a comprehensive review is yet to be published on biological CO2 fixation. A comprehensive review of CO2 fixation through biological process is presented in this paper as biological processes are ideal to control both organic and inorganic pollutants. This process can also cover the classification of methods, functional mechanisms, designs, and their operational parameters, which are crucial for efficient CO2 fixation. This review also suggests the bio-trickling filter process as an appropriate approach in CO2 fixation to assist in creating a pollution-free environment. Finally, this paper introduces optimum designs, growth rate models, and CO2 fixation of microalgae, functions, and operations in biological CO2 fixation.

  11. Body Basics Library (United States)

    ... of Healthy Breakfasts Shyness About the Body Basics Library KidsHealth > For Teens > About the Body Basics Library A A A Did you ever wonder what ... system, part, and process works. Use this medical library to find out about basic human anatomy, how ...

  12. Body Basics Library (United States)

    ... of Healthy Breakfasts Shyness About the Body Basics Library KidsHealth > For Teens > About the Body Basics Library Print A A A Did you ever wonder ... system, part, and process works. Use this medical library to find out about basic human anatomy, how ...

  13. In Vivo Bioluminescent Imaging (BLI: Noninvasive Visualization and Interrogation of Biological Processes in Living Animals

    Directory of Open Access Journals (Sweden)

    Steven Ripp


    Full Text Available In vivo bioluminescent imaging (BLI is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism.

  14. In Vivo Bioluminescent Imaging (BLI): Noninvasive Visualization and Interrogation of Biological Processes in Living Animals (United States)

    Close, Dan M.; Xu, Tingting; Sayler, Gary S.; Ripp, Steven


    In vivo bioluminescent imaging (BLI) is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism. PMID:22346573

  15. Brushing Your Spacecrafts Teeth: A Review of Biological Reduction Processes for Planetary Protection Missions (United States)

    Pugel, D.E. (Betsy); Rummel, J. D.; Conley, C. A.


    Much like keeping your teeth clean, where you brush away biofilms that your dentist calls plaque, there are various methods to clean spaceflight hardware of biological contamination, known as biological reduction processes. Different approaches clean your hardwares teeth in different ways and with different levels of effectiveness. We know that brushing at home with a simple toothbrush is convenient and has a different level of impact vs. getting your teeth cleaned at the dentist. In the same way, there are some approaches to biological reduction that may require simple tools or more complex implementation approaches (think about sonicating or just soaking your dentures, vs. brushing them). There are also some that are more effective for different degrees of cleanliness and still some that have materials compatibility concerns. In this article, we review known and NASA-certified approaches for biological reduction, pointing out materials compatibility concerns and areas where additional research is needed.


    Institute of Scientific and Technical Information of China (English)

    SongYinjie; ZhangHui; 等


    A moving boundary model under considering the volume change of spherical resin beads during ion exchange processes was employed to recognize the mechanisms of reecovering uranium from carbonate solutions using strongly basic anion exchanger.Two important factors,swelling and ion exchange,which directly affect the violume of ion exchangers were taken into account.An ion exchange mechanism has been found for the forward reaction PCl/[UO2(CO3)3]4-,and is partical diffusion governing at high concentration of the complex anion.The mechanism of RCl/U(VI) at pH 5.5-7.5 is a chemical reaction taking place at the moving boundary of the unreacted nucleus.For the reverse reaction RnU/NaCl,the uranyl tricarbonate complex anion in the resin phase is replaced by Cl- ions with an ion exchange mechanism alway determined by particle diffusion.The other forms of uranium in the solid phase loaded on the resin at pH5.5-7.5 should belong to non-exchangeable uranium.The mechanism of the reverse reaction RnU/HCl is always chemical reaction which is not restricted to the moving boundary of the unreacted core.

  17. Whole process reclamation and utilization of wastes produced in the biological fermentation industry

    Institute of Scientific and Technical Information of China (English)

    YAN Ling-jun; LI Da-peng; MA Fang; Chein-chi Chang; XU Shan-wen; QIU Shan


    Wastes yielded in the vintage process and the biological fermentation of itaconic acid and sodium gluconate of a winery in Shandong,such as grain stillage,melon lees,cornstarch protein residues,itaconic acid mother liquid,itaconic acid mycelium and sodium gluconate mycelium,were studied.Hish-activity biological protein feed,foliar fertilizer and irrigation fertilizer were generated from these wastes by applying biological/microbial technologies.Meanwhile,a whole set of technological pathways Was put forward.As a result,the optimal economical and social benefits can be obtained with low natural resource consumption and environmental costs by converting wastes into useful matters.In conclusion,through the utilization of limited resources in the whole process of reclamation and utilization of wastes,the harmony promotion Can be achieved between the economic system and the natural ecosystem.

  18. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal


    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  19. Asthma Basics (United States)

    ... Old Feeding Your 1- to 2-Year-Old Asthma Basics KidsHealth > For Parents > Asthma Basics A A ... Asthma Categories en español Asma: aspectos fundamentales About Asthma Asthma is a common lung condition in kids ...

  20. Treatment of linear alkylbenzene sulfonate (LAS) wastewater by internal electrolysis--biological contact oxidation process. (United States)

    Cao, X Z; Li, Y M


    Surfactant wastewater is usually difficult to treat due to its toxicity and poor biodegradability. A separate physico-chemical or biochemical treatment method achieves a satisfactory effect with difficulty. In this study, treatment of the wastewater collected from a daily chemical plant by the combination processes of Fe/C internal electrolysis and biological contact oxidation was investigated. For the internal electrolysis process, the optimal conditions were: pH = 4-5, Fe/C = (10-15):1, air-water ratio = (10-20):1 and hydraulic retention time (HRT)= 2 h. For the biological contact oxidation process, the optimal conditions were: HRT = 12 h, DO = 4.0-5.0 mg/L. Treated by the above combined processes, the effluent could meet the I-grade criteria specified in Integrated Wastewater Discharge Standard of China (GB 8978-1996). The results provide valuable information for full-scale linear alkylbenzene sulfonate wastewater treatment.

  1. Agent-oriented modeling of the dynamics of complex biological processes I: single agent models

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.


    In the pair of papers of which this is Part I, the agent-oriented modeling perspective to cope with biological complexity is discussed. Three levels of dynamics are distinguished and related to each other: dynamics of externally observable agent behavior, dynamics of internal agent processes, and dy

  2. The image simulation arithmetic of the degradating process of porous biologic ceramic in life-form

    Institute of Scientific and Technical Information of China (English)

    CHEN Zuo-bing; HUANG Jian-zhong; YAN Yu-hua; LI Shi-pu


    @@ It is a complex and difficult task to simulate the degradating process of porous biologic ceramic in life-form by computer. Because the evolvement of crystal' s structure deals with not only the mechanism of many factors, such as crystallography tropism, the reciprocity of wafer, interfacial movement, but also topology geometry mechanism of dimensional padding.

  3. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors. (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko


    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  4. Modelling biological processes in WWTP; Modelado de procesos biologicos en las EDAR

    Energy Technology Data Exchange (ETDEWEB)

    Carpes, G.


    Biological technologies by active sludges are the most used in wastewater treatments. Multiple variants are affected in the characterization of this process, like wastewater treatment plant (WWTP) design, features and concentration of sludge, dissolved oxygen concentration and characteristics of the wastewater, including temperature and nutrients. Mathematical formula applied to WWTP modelling are presented to design its operation and to test the most important parameters, too. It is necessary to optimize the process in WWTP. (Author) 19 refs.

  5. Deep silicon etch for biology MEMS fabrication: review of process parameters influence versus chip design (United States)

    Magis, T.; Ballerand, S.; Bellemin Comte, A.; Pollet, Olivier


    Micro-system for biology is a growing market, especially for micro-fluidic applications (environment and health). Key part for the manufacturing of biology MEMS is the deep silicon etching by plasma to create microstructures. Usual etching process as an alternation of etching and passivation steps is a well-known method for MEMS fabrication, nowadays used in high volume production for devices like sensors and actuators. MEMS for biology applications are very different in design compared to more common micro-systems like accelerometers for instance. Indeed, their design includes on the same chip structures of very diverse size like narrow pillars, large trenches and wide cavities. This makes biology MEMS fabrication very challenging for DRIE, since each type of feature considered individually would require a specific etch process. Furthermore process parameters suited to match specifications on small size features (vertical profile, low sidewall roughness) induce issues and defects on bigger structures (undercut, micro-masking) and vice versa. Thus the process window is constrained leading to trade-offs in process development. In this paper process parameters such as source and platen powers, pressure, etching and passivation gas flows and steps duration were investigated to achieve all requirements. As well interactions between those different factors were characterized at different levels, from individual critical feature up to chip scale and to wafer scale. We will show the plasma process development and tuning to reach all these specifications. We also compared different chambers configurations of our ICP tool (source wafer distance, plasma diffusion) in order to obtain a good combination of hardware and process. With optimized etching we successfully fabricate micro-fluidic devices like micro-pumps.

  6. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.


    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  7. The development of a content-influenced process skills instrument for general biology (United States)

    White, Grady M.

    Since the mid 1960's, a major goal in biology instruction has been the teaching of process skills. Many process skills studies have been done and several process skills tests exist, but these studies and tests all target students in grades 7 through 12. The purpose of this study was to develop a biological process skills test for use in college level freshman biology classes. The study was conducted in two phases. Phase I was the development of the process skills test. Phase II of the study was to administer the test and determine student acquisition of process skills, and to determine whether any relationship existed between acquisition of process skills, student attitudes toward science, and student learning styles. Testing was implemented with a sample of 135 students enrolled in general biology in one southeastern university. The process skills test and the attitudes toward science test were administered as pretests; and posttests. The learning styles test was administered as a pretest. Data analysis included t-tests for dependent samples, multiple regression analyses, and an item analysis of the process skills test that concentrated on item difficulty, discriminating power, and distractor spread. Item analysis of the process skills test revealed some questions that were too difficult, and some questions that had problems with distractors. The majority of the test questions were found to be acceptable. The t-tests for dependent samples pies showed a significant increase in process skills mean test scores from pretest to posttest, and a significant improvement in student attitudes toward science mean test scores from pretest to posttest. The multiple regression analyses revealed no significant relationship between process skills, and student attitudes toward science, and student learning style. Recommendations include a review of the process skills test and revision of those items that are in question. The study should be continued with a larger sample size and

  8. Biological removal of methanol from process condensate for the purpose of reclamation

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-ming; YANG Min; ZHANG Yu; GAO Meng-chun; ZHANG Jing


    The biological removal of methanol from condensate of ammonia manufacturing processes for the purpose of reclamation using contact type reactor was studied. Methanol of 60 mg/L was removed completely under an HRT of 1.12 h. Optimal inorganic nutrient dose was determined on evaluating methanol removal performance and dehydrogenase activities (DHA) under different nutrition doses. The optimal inorganic nutrient dose only gave an increase of conductivity of ca. 10 μs/cm2 in the effluent on treating synthetic condensate containing methanol of 30 mg/L. The results demonstrated that biological removal of methanol was effective for the purpose of recovering the methanol-bearing condensate.

  9. Improving AOC degradation rate by intensified biological process in advanced water treatment

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; SONG Jia-xiu; CUI Fu-yi


    The object of is to evaluate assimilable organic carbon(AOC) degradation rate by intensified biological technique in advanced water treatment. By artificially acclimating and cultivating strains attached onto carbon surface, the selected strains can be intensified for their degradation to organic matters. The research indicates that ozonation process increases AOC concentration considerably, however, it is beneficial to microdegradation. Temperature and empty bed contact time ( TEBC ) are two important factors affecting microbiology. From 14 to 27 ℃, intensified biological carbon can remove AOC better compared with granular activated carbon (GAC). Under identical TEBC, intensified technique increases more than 10% AOC reduction.

  10. New insight into the biological treatment by activated sludge: the role of adsorption process. (United States)

    Zhang, Xiaochun; Li, Xinrun; Zhang, Qingrui; Peng, Qiuming; Zhang, Wen; Gao, Faming


    The objective of this study was to evaluate the effect of adsorption on the biological treatment process of wastewater. In the absence of substrate in the water, activated sludge developed well in the first hour, indicating that the growth of microorganism was not directly related to substrate concentration and the dissolved organic matter in the water assays were performed, no organic matter was detected out, revealing that there was no desorption in the activated sludge adsorption process. Activated sludge batch growth experiments in the presence of different adsorption capacities indicated that specific growth rate increased as specific adsorption capacity increased. The experiment on the relationship of adsorption capacity and substrate concentration or sludge concentration was also carried out. Specific adsorption capacity increased as sludge load increased, presenting linear correlation. The experiment results showed that adsorption should be taken into account in the study of the biological treatment process of wastewater.

  11. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review. (United States)

    Karle, Marc; Vashist, Sandeep Kumar; Zengerle, Roland; von Stetten, Felix


    The last decade has witnessed tremendous advances in employing microfluidic solutions enabling Continuous Processing and Monitoring of Biological Samples (CPMBS), which is an essential requirement for the control of bio-processes. The microfluidic systems are superior to the traditional inline sensors due to their ability to implement complex analytical procedures, such as multi-step sample preparation, and enabling the online measurement of parameters. This manuscript provides a backgound review of microfluidic approaches employing laminar flow, hydrodynamic separation, acoustophoresis, electrophoresis, dielectrophoresis, magnetophoresis and segmented flow for the continuous processing and monitoring of biological samples. The principles, advantages and limitations of each microfluidic approach are described along with its potential applications. The challenges in the field and the future directions are also provided.

  12. A comparison of form processing involved in the perception of biological and nonbiological movements (United States)

    Thurman, Steven M.; Lu, Hongjing


    Although there is evidence for specialization in the human brain for processing biological motion per se, few studies have directly examined the specialization of form processing in biological motion perception. The current study was designed to systematically compare form processing in perception of biological (human walkers) to nonbiological (rotating squares) stimuli. Dynamic form-based stimuli were constructed with conflicting form cues (position and orientation), such that the objects were perceived to be moving ambiguously in two directions at once. In Experiment 1, we used the classification image technique to examine how local form cues are integrated across space and time in a bottom-up manner. By comparing with a Bayesian observer model that embodies generic principles of form analysis (e.g., template matching) and integrates form information according to cue reliability, we found that human observers employ domain-general processes to recognize both human actions and nonbiological object movements. Experiments 2 and 3 found differential top-down effects of spatial context on perception of biological and nonbiological forms. When a background does not involve social information, observers are biased to perceive foreground object movements in the direction opposite to surrounding motion. However, when a background involves social cues, such as a crowd of similar objects, perception is biased toward the same direction as the crowd for biological walking stimuli, but not for rotating nonbiological stimuli. The model provided an accurate account of top-down modulations by adjusting the prior probabilities associated with the internal templates, demonstrating the power and flexibility of the Bayesian approach for visual form perception. PMID:26746875

  13. [Biocenotic dynamics of liquid sewage in the process of its biological purification at aeration stations]. (United States)

    Kalina, G P; Vinogradova, L A; Gipp, E K


    A study was made of biological purification of sewage at the aeration stations on the quantitative composition of the main indicator microbes--of bacteria of the coliform group and of the fecal coliform bacilli, enterococci, Proteus, and also pathogenic enterobacteria. There was found a difference in the behaviour of different species of Proteus, i.e. reduction in the process of purification in the numbers of Pr. mirabilis, and a sharp elevation of Pr. morganii content. There was noted an insignificant amount of Pr. vulgaris both before and after the biological purification. It was found that dynamics of biocenosis was influenced by air temperature at the time of collection of the samples. A possibility of reproduction of coliform bacilli serving as one of the factors of autopurification of sewage during the biological purification was confirmed.

  14. Optimal Size for Maximal Energy Efficiency in Information Processing of Biological Systems Due to Bistability

    CERN Document Server

    Zhang, Chi; Wang, Long-Fei; Yue, Yuan; Yu, Lian-Chun


    Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this paper, we calculated the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculated the mutual information, energy cost, and energy efficiency of an array of these bistable units. We found that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.

  15. The Influence of Nanoadditives on the Biological Properties and Chemical Composition of Process Fluids

    Directory of Open Access Journals (Sweden)

    Borůvková K.


    Full Text Available In this study process fluids were tested after the addition of nanoparticles. Cooling and lubricating process fluids are used in machining to reduce wear on tools, to increase machine performance and to improve product quality. The use of process fluids leads to their pollution and contamination. Nanoparticles were added to the process fluids in order to increase their antibacterial activity. The selected nanoparticles were nanoparticles of metallic silver. The process fluids were modified by the addition of silver nitrate and ascorbic acid. Reduction of silver nanoparticles in the volume of the fluid was achieved using UV. The modified fluids were tested for their cytotoxicity and changes in chemical composition. The cytotoxicity of process fluids was tested for the purpose of verifying whether the process fluids, which are in direct contact with the skin of the operator, affect the health of the operator. The cytotoxicity of the process fluids was tested on human fibroblast cells. Fibroblasts are the basic cells of fibrous tissue. The cytotoxicity was tested by measuring the cell viability and using XTT. Analysis of chemical composition was performed for the purpose of determining the individual substances in the process fluids and their chemical stability. Qualitative analysis of the process fluids was performed using gas chromatography mass spectrometry (GC - MS.

  16. Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transection. (United States)

    Li, Shiying; Liu, Qianqian; Wang, Yongjun; Gu, Yun; Liu, Dong; Wang, Chunming; Ding, Guohui; Chen, Jianping; Liu, Jie; Gu, Xiaosong


    After traumatic injury, peripheral nerves can spontaneously regenerate through highly sophisticated and dynamic processes that are regulated by multiple cellular elements and molecular factors. Despite evidence of morphological changes and of expression changes of a few regulatory genes, global knowledge of gene expression changes and related biological processes during peripheral nerve injury and regeneration is still lacking. Here we aimed to profile global mRNA expression changes in proximal nerve segments of adult rats after sciatic nerve transection. According to DNA microarray analysis, the huge number of genes was differentially expressed at different time points (0.5 h-14 d) post nerve transection, exhibiting multiple distinct temporal expression patterns. The expression changes of several genes were further validated by quantitative real-time RT-PCR analysis. The gene ontology enrichment analysis was performed to decipher the biological processes involving the differentially expressed genes. Collectively, our results highlighted the dynamic change of the important biological processes and the time-dependent expression of key regulatory genes after peripheral nerve injury. Interestingly, we, for the first time, reported the presence of olfactory receptors in sciatic nerves. Hopefully, this study may provide a useful platform for deeply studying peripheral nerve injury and regeneration from a molecular-level perspective.

  17. Biologically inspired large scale chemical sensor arrays and embedded data processing (United States)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.


    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  18. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang


    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  19. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students (United States)

    Subali, Bambang; Paidi; Mariyam, Siti


    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  20. Basic electrotechnology

    CERN Document Server

    Ashen, R A


    BASIC Electrotechnology discusses the applications of Beginner's All-purpose Symbolic Instruction Code (BASIC) in engineering, particularly in solving electrotechnology-related problems. The book is comprised of six chapters that cover several topics relevant to BASIC and electrotechnology. Chapter 1 provides an introduction to BASIC, and Chapter 2 talks about the use of complex numbers in a.c. circuit analysis. Chapter 3 covers linear circuit analysis with d.c. and sinusoidal a.c. supplies. The book also discusses the elementary magnetic circuit theory. The theory and performance of two windi

  1. Sensory processing sensitivity: a review in the light of the evolution of biological responsivity. (United States)

    Aron, Elaine N; Aron, Arthur; Jagiellowicz, Jadzia


    This article reviews the literature on sensory processing sensitivity (SPS) in light of growing evidence from evolutionary biology that many personality differences in nonhuman species involve being more or less responsive, reactive, flexible, or sensitive to the environment. After briefly defining SPS, it first discusses how biologists studying animal personality have conceptualized this general environmental sensitivity. Second, it reviews relevant previous human personality/temperament work, focusing on crossover interactions (where a trait generates positive or negative outcomes depending on the environment), and traits relevant to specific hypothesized aspects of SPS: inhibition of behavior, sensitivity to stimuli, depth of processing, and emotional/physiological reactivity. Third, it reviews support for the overall SPS model, focusing on development of the Highly Sensitive Person (HSP) Scale as a measure of SPS then on neuroimaging and genetic studies using the scale, all of which bears on the extent to which SPS in humans corresponds to biological responsivity.

  2. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.


    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  3. Marketing the use of the space environment for the processing of biological and pharmaceutical materials (United States)


    The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.

  4. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia). (United States)

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami


    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR.

  5. The B- to Z-DNA equilibrium in vivo is perturbed by biological processes.


    Zacharias, W; Jaworski, A; Larson, J E; Wells, R D


    Right-handed B and left-handed Z conformations coexist in equilibrium in portions of plasmids in Escherichia coli. The equilibria are influenced by the length of the sequences that undergo the structural transitions and are perturbed by biological processes. The composite results of three types of determinations indicate a supercoil density of -0.025 in vivo. The coexistence of alternative DNA conformations in living cells implies the potential of these structures or their transitions for imp...

  6. [Biological Role of Oligomerny Matriksny of Protein of the Cartilage in Exchange Processes Connecting Tissue]. (United States)

    Belova, Yu S


    In the review the literary data on studying of biological role of a oligomerny matriksny of protein of the cartilage in exchange processes connecting tissue at people and animals are provided, and also results of own researches on definition of a oligomerny matriksny of protein of the cartilage as a modern marker of a metabolism of an articulate cartilage at children from undifferentiated displaziy conjunctive tissue are briefly described.

  7. Degradation of aqueous methyl tert-butyl ether by photochemical, biological, and their combined processes

    Directory of Open Access Journals (Sweden)

    Azadeh Asadi


    Full Text Available The degradation of aqueous methyl tert-butyl ether (MTBE at relatively high concentrations was investigated by various photo-induced oxidation processes such as UV/H2O2 and UV/TiO2 as well as biological processes and their combination. It was shown that the degradation of MTBE by UV/H2O2 and TiO2 photocatalytic followed a first-order model with apparent rate constant of 1.31×10−1 and 1.21×10−2 min-1, respectively. It was observed that UV/H2O2/TiO2 process did not have any advantages over each of the other processes alone. The biodegradation of methyl tert-butyl ether (MTBE was evaluated using aerobic mixed culture with three different approaches, including ultimate biological oxygen demand (BODU assessment, nonacclimated, and acclimated mixed cultures. The apparent rate constant for the biodegradation of MTBE by nonacclimated mixed culture was 4.36×10−2 day-1. It was shown that the acclimatization of the mixed cultures enhanced the rate of biodegradation of MTBE to 3.24×10−1mg L-1h-1. Finally, the effects of the photocatalytic pretreatment of aqueous MTBE on its subsequent biological treatment were studied. It was observed that the rate of bioreaction was not enhanced and the photocatalytic pretreatment had adverse effects on its biological treatment so that the apparent rate constant decreased to 2.83×10−1 mg L-1h-1.

  8. In Vivo Bioluminescent Imaging (BLI): Noninvasive Visualization and Interrogation of Biological Processes in Living Animals


    Steven Ripp; Sayler, Gary S.; Tingting Xu; Close, Dan M.


    In vivo bioluminescent imaging (BLI) is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progressio...

  9. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line. (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo


    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated.

  10. Basic Numerical Skills in Children with Mathematics Learning Disabilities: A Comparison of Symbolic vs Non-Symbolic Number Magnitude Processing (United States)

    Rousselle, Laurence; Noel, Marie-Pascale


    Forty-five children with mathematics learning disabilities, with and without comorbid reading disabilities, were compared to 45 normally achieving peers in tasks assessing basic numerical skills. Children with mathematics disabilities were only impaired when comparing Arabic digits (i.e., symbolic number magnitude) but not when comparing…

  11. Determination of Biological Treatability Processes of Textile Wastewater and Implementation of a Fuzzy Logic Model

    Directory of Open Access Journals (Sweden)

    Harun Akif Kabuk


    Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.

  12. Biological processes in the water column of the South Atlantic Bight: Phytoplankton response. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    Verity, P.G.; Yoder, J.A.


    This study addressed shelf-wide processes and nearshore (coastal boundary zone) processes occurring in the southeastern. Coastal boundary zone (CBZ) US continental shelf dynamics involve studies of circulation and of biological and chemical transformations. Continental shelf processes affect the removal of material from the coastal boundary zone into areas where the material no longer interacts with or influences concentrations in the CBZ. The two arbitrarily separate components are, in fact, unified. The CBZ typically extends about 300 km along-shore and about 20 km offshore from its center off Savannah, Georgia, where most runoff occurs. The rates of biological and chemical transformations are controlled by proximity to the bottom and the amounts of fine suspended organic matter originating from rivers and salt marshes. Once material is removed from this zone, either by a long-shelf or cross-shelf advection to regions where the materials are no longer in contact with the bottom, the suite of factors governing the rates of chemical and biological transformations changes. The determination of contrasting rates in these two environments was one of the central focuses of the South Atlantic Bight program.

  13. Comparative Study on Interaction of Form and Motion Processing Streams by Applying Two Different Classifiers in Mechanism for Recognition of Biological Movement

    Directory of Open Access Journals (Sweden)

    Bardia Yousefi


    Full Text Available Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility.

  14. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  15. Reclaimation of petroleum-based wastewater by noval ozone immobilized biological activated carbon process

    Institute of Scientific and Technical Information of China (English)


    Wastewater reclamation in the petroleum industries in Northern China is important because of the shortage of water resource. Conventional treatment technology used in treating petroleum-based wastewater,namely the 3-phase biological process, typically removes COD, BOD, grease, volatile hydrobenzenes, cyanides, sulfides and suspended solids. However, the process is often ineffective in ammonia-nitrogen removal,and thus the treated effluent quantity can't meet the required standards for reuse. This paper investigated a novel ozone immobilized biological activated carbon (O3-IBAC) process for ammonia nitrogen removal from petroleum-based wastewater. Operated at a HRT (Hydraulic Retention Time) of 15 minutes in IBAC1 and 27 minutes in IBAC2, the O3-IBAC process achieved ammonia nitrogen removal efficiency of 91%. In addition, the removal efficiencies of COD, volatile hydrobenzenes, suspended solids, turbidity and petroleum-based micropollutants were all above 90%. Competition between the autotrophs and heterotrophs was observed, which was indicated by an increase of ammonia nitrogen removal with a decrease of COD removal, and vise versa. Nitrite accumulation in IBAC1 followed by erobic shortcut denitrification in IBAC2 led to 28% of the Total Nitrogen removal efficiency. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption and biodegradation on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time.

  16. [Analysis of novel style biological fluidized bed A/O combined process in dyeing wastewater treatment]. (United States)

    Wei, Chao-Hai; Huang, Hui-Jing; Ren, Yuan; Wu, Chao-Fei; Wu, Hai-Zhen; Lu, Bin


    A novel biological fluidized bed was designed and developed to deal with high-concentration refractory organic industrial wastewater. From 12 successful projects, three cases of dyeing wastewater treatment projects with the scale of 1200, 2000 and 13000 m3/d respectively were selected to analyze the principle of treating refractory organic wastewater with fluidized bed technology and discuss the superiority of self-developed biological fluidized bed from the aspects of technical and economic feasibility. In the three cases, when the hydraulic retention time (HRT) of biological system were 23, 34 and 21. 8 h, and the volume loading of influents (COD) were 1.75, 4.75 and 2.97 kg/(m3 x d), the corresponding COD removal were 97.3%, 98.1% and 95.8%. Furthermore the operating costs of projects were 0.91, 1.17 and 0.88 yuan per ton of water respectively. The index of effluent all met the 1st grade of Guangdong Province wastewater discharge standard. Results showed that the biological fluidized bed had characteristics of shorter retention time, greater oxygen utilization rate, faster conversion rate of organic pollutants and less sludge production, which made it overcome the shortcomings of traditional methods in printing and dyeing wastewater treatment. Considering the development of technology and the combination of ecological security and recycling resources, a low-carbon wastewater treatment process was proposed.

  17. Mind the gap: non-biological processes contributing to soil CO2 efflux. (United States)

    Rey, Ana


    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  18. Prospects for energy recovery during hydrothermal and biological processing of waste biomass. (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L


    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability.

  19. Open Markov processes: A compositional perspective on non-equilibrium steady states in biology

    CERN Document Server

    Pollard, Blake S


    In recent work, Baez, Fong and the author introduced a framework for describing Markov processes equipped with a detailed balanced equilibrium as open systems of a certain type. These `open Markov processes' serve as the building blocks for more complicated processes. In this paper, we describe the potential application of this framework in the modeling of biological systems as open systems maintained away from equilibrium. We show that non-equilibrium steady states emerge in open systems of this type, even when the rates of the underlying process are such that a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium steady states minimize a quadratic form which we call `dissipation.' In some circumstances, the dissipation is approximately equal to the rate of change of relative entropy plus a correction term. On the other hand, Prigogine's principle of minimum entropy production generally fails for non-equilibrium steady states. We use a simple model of membrane transport to illus...

  20. Survey of biological processes for odor reduction; Kartlaeggning och studie av biologiska processer foer luktreduktion

    Energy Technology Data Exchange (ETDEWEB)

    Arrhenius, Karine; Rosell, Lars [SP Technical Research Inst. of Sweden, Boraas (Sweden); Hall, Gunnar [SIK Swedish Inst. for Food and Biotechnology, Gothenburg (Sweden)


    This project aims to characterize chemical and subsequently odor emissions from a digester plant located closed to Boraas in Sweden (Boraas Energi och Miljoe AB). The digestion produces mainly 2 by-products, biogas and high quality organic biofertilizer. Biogas is a renewable source of electrical and heat energy and subsequently digester have a promising future. Unfortunately, release of unpleasant odours is one of the problems that may limit development of the technique as odours strongly influence the level of acceptance of the neighbours. The number of complaints due to odours depends mostly, upon the degree of odour release, the weather condition and plant environment (which influence the risks for spreading out), and the tolerance of the neighbours. These parameters are strongly variable. Many processes inside the plant distributed on a large surface may contribute to odour release. Chemical emissions were studied, in this project, by extensive sampling inside the plant. Results were then evaluated regarding risk for odour releases. The goal was to suggest controls and routines to limit releases. The conditions leading to the higher risks for odour emissions were studied by performing sampling at different periods of the year and subsequently different weather conditions. At first, places for measurement were chosen together with personal of the plant. Three zones are considered to mainly contribute to the odour emissions: the landfill region, the cisterns region and the leaching lake region. Totally 13 places were studied with regard to odour and chemical emissions under 2008-2009 at different weather conditions. Some results from a previous project (2007) are also presented here. Results show that the spreading out of can be maintained to an acceptable level as long as the plant is functioning without disturbances. The early stages of the treatment of waste should be confined in locals with closed doors to avoid spreading out of odours. Through controlled

  1. Basic hydraulics

    CERN Document Server

    Smith, P D


    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  2. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song


    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  3. State of the art of biological processes for coal gasification wastewater treatment. (United States)

    Zhao, Qian; Liu, Yu


    The treatment of coal gasification wastewater (CGW) poses a serious challenge on the sustainable development of the global coal industry. The CGW contains a broad spectrum of high-strength recalcitrant substances, including phenolic, monocyclic and polycyclic aromatic hydrocarbons, heterocyclic nitrogenous compounds and long chain aliphatic hydrocarbon. So far, biological treatment of CGW has been considered as an environment-friendly and cost-effective method compared to physiochemical approaches. Thus, this reviews aims to provide a comprehensive picture of state of the art of biological processes for treating CGW wastewater, while the possible biodegradation mechanisms of toxic and refractory organic substances were also elaborated together with microbial community involved. Discussion was further extended to advanced bioprocesses to tackle high-concentration ammonia and possible options towards in-plant zero liquid discharge.

  4. dNSP: a biologically inspired dynamic Neural network approach to Signal Processing. (United States)

    Cano-Izquierdo, José Manuel; Ibarrola, Julio; Pinzolas, Miguel; Almonacid, Miguel


    The arriving order of data is one of the intrinsic properties of a signal. Therefore, techniques dealing with this temporal relation are required for identification and signal processing tasks. To perform a classification of the signal according with its temporal characteristics, it would be useful to find a feature vector in which the temporal attributes were embedded. The correlation and power density spectrum functions are suitable tools to manage this issue. These functions are usually defined with statistical formulation. On the other hand, in biology there can be found numerous processes in which signals are processed to give a feature vector; for example, the processing of sound by the auditory system. In this work, the dNSP (dynamic Neural Signal Processing) architecture is proposed. This architecture allows representing a time-varying signal by a spatial (thus statical) vector. Inspired by the aforementioned biological processes, the dNSP performs frequency decomposition using an analogical parallel algorithm carried out by simple processing units. The architecture has been developed under the paradigm of a multilayer neural network, where the different layers are composed by units whose activation functions have been extracted from the theory of Neural Dynamic [Grossberg, S. (1988). Nonlinear neural networks principles, mechanisms and architectures. Neural Networks, 1, 17-61]. A theoretical study of the behavior of the dynamic equations of the units and their relationship with some statistical functions allows establishing a parallelism between the unit activations and correlation and power density spectrum functions. To test the capabilities of the proposed approach, several testbeds have been employed, i.e. the frequencial study of mathematical functions. As a possible application of the architecture, a highly interesting problem in the field of automatic control is addressed: the recognition of a controlled DC motor operating state.

  5. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  7. Schizophrenia Basics (United States)

    ... I know with schizophrenia? For More Information Share Schizophrenia Basics Download PDF Download ePub Order a free hardcopy What is schizophrenia? Schizophrenia is a serious mental disorder that affects ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  9. Brain Basics (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  10. Fluoridation Basics (United States)

    ... Page Basic Information About Fluoride Benefits: Strong Teeth History of Fluoride in Water Cost: Saves Money, Saves Teeth Fluoride in the Water Today The mineral fluoride occurs naturally on earth and is released from rocks into the soil, ...

  11. Basic Finance (United States)

    Vittek, J. F.


    A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.

  12. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  14. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann


    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  15. The effect of electrostatic microencapsulation process on biological properties of tumour cells. (United States)

    Li, Nan; Xu, Xiao-Xi; Sun, Guang-Wei; Guo, Xin; Liu, Yang; Wang, Shu-Jun; Zhang, Ying; Yu, Wei-Ting; Wang, Wei; Ma, Xiao-Jun


    Microencapsulation is one of the promising strategies to develop a three-dimensional in vivo tumour-mimic model in cancer research. Although previous studies have shown that tumour cells grow well during the microencapsulated culture, it is still not clear whether the electrostatic encapsulation process has an important effect on cellular characteristics. In this study, we investigated cellular response against non-physiological stress factors existing in the electrostatic microencapsulation process, such as the high-voltage electrostatic field, suspension and nutrition-free status. Our results showed that these non-physiological stress factors did not significantly induce cellular apoptosis, and did not affect cellular adhesion and viability. Furthermore, no change was found about invasion and drug resistance of the tumour cells. The normal endoplasmic reticulum function might play a role in maintaining biological properties during the electrostatic microencapsulation process.

  16. Treatment of Slightly Polluted Wastewater in an Oil Refinery Using a Biological Aerated Filter Process

    Institute of Scientific and Technical Information of China (English)

    XIE Wenyu; ZHONG Li; CHEN Jianjun


    The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5the BAF process is a suitable and highly efficient method to treat the wastewater.

  17. Demonstrating Compliance with Stringent Nitrogen Limits Using a Biological Nutrient Removal Process in California's Central Valley. (United States)

    Merlo, Rion; Witzgall, Bob; Yu, William; Ohlinger, Kurt; Ramberg, Steve; De Las Casas, Carla; Henneman, Seppi; Parker, Denny


    The Sacramento Regional County Sanitation District (District) must be compliant with stringent nitrogen limits by 2021 that the existing treatment facilities cannot meet. An 11-month pilot study was conducted to confirm that these limits could be met with an air activated sludge biological nutrient removal (BNR) process. The pilot BNR treated an average flow of 946 m(3)/d and demonstrated that it could reliably meet the ammonia limit, but that external carbon addition may be necessary to satisfy the nitrate limit. The BNR process performed well throughout the 11 months of operation with good settleability, minimal nocardioform content, and high quality secondary effluent. The BNR process was operated at a minimum pH of 6.4 with no noticeable impact to nitrification rates. Increased secondary sludge production was observed during rainfall events and is attributed to a change in wastewater influent characteristics.

  18. Studies of Basic Electronic Properties of CdTe-Based Solar Cells and Their Evolution During Processing and Stress: Final Technical Report, 16 October 2001 - 31 August 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kaydanov, V. I.; Ohno, T. R.


    This report describes basic issues behind CdTe/CdS cell performance and stability, such as the nature and electronic properties of impurities and defects that control the majority carrier concentration, mechanisms of dopant compensation, recombination processes, their nature and properties, migration and transformation of defects under various processing, stress, and operating conditions. We believe that a better basic understanding of the specific influence of grain boundaries, especially for fine-grain materials such as those making up CdTe-based cells, is now one of the most important issues we must address. We need to clarify the role of grain boundaries in forming the film electronic properties, as well as those of the p-n junction.

  19. Removal of hydrogen sulfide from gas streams using biological processes : a review

    Energy Technology Data Exchange (ETDEWEB)

    Syed, M.; Soreanu, G.; Falletta, P.; Beland, M. [Environment Canada, Burlington, ON (Canada). Wastewater Technology Centre


    Hydrogen sulfide (H{sub 2}S) is produced by the anaerobic digestion of biosolids and other organic materials, and can be corrosive to internal combustion engines. This study investigated biological H{sub 2}S removal processes with the aim of overcoming the chemical and disposal costs associated with existing chemically-based removal processes. Current biological H{sub 2}S removal processes were reviewed, and research needs for potential process improvements were identified. Processes included photoautotrophs; chemotrophs; bioreactors for H{sub 2}S removal involving phototrophic bacteria; continuous-flow reactors; phototube reactors; gas-fed batch reactors; bioscrubbers; biofilters; and biotrickling filters. Results of the review suggested that the preferred treatment method for H{sub 2}S gas containing streams depended on the source of the gas. In the case of H{sub 2}S in biogas, anaerobic methods involving phototrophic bacteria provided the inherent advantage of maintaining the anaerobic nature of the gas. Cholorobium limicola was recommended as a desirable bacterium due to its growth using inorganic substrates, its efficiency at converting sulfide to elemental sulfur, and its extracellular production of elemental sulfur. Fixed-film reactors had the greatest potential for cost-effective sulfide conversion. It was noted that light supply is one of the key cost components in the process and poses a major constraint. It was concluded that future research should focus on the development and use of energy efficient LEDs and the proper use of sunlight and reflectors to minimize the electrical energy use. 73 refs., 5 tabs., 5 figs.

  20. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    Energy Technology Data Exchange (ETDEWEB)

    Oller, I., E-mail: [Plataforma Solar de Almeria (CIEMAT), Carretera Senes, Km 4. 04200 Tabernas (Almeria) (Spain); Malato, S. [Plataforma Solar de Almeria (CIEMAT), Carretera Senes, Km 4. 04200 Tabernas (Almeria) (Spain); Sanchez-Perez, J.A. [Department of Chemical Engineering, University of Almeria, Crta de Sacramento s/n, 04120 Almeria (Spain)


    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  1. A coupled advanced oxidation-biological process for recycling industrial wastewater containing persistent organic contaminants (CADOX)

    Energy Technology Data Exchange (ETDEWEB)

    Malato, S.; Blanco, J.; Maldonado, M.I.; Alarcon, D.C.; Fernandez, P.; Oller, I.; Gernjak, W. [Platforma Solar de Almeria, CIEMAT (Spain)


    This article concentrates on coupled processes to treat seven highly water-soluble pesticides and three non-biodegradable chlorinated solvents. These are considered priority substances by the European Union and are thus the focus of some attention. The coupled processes include three oxidation processes: photocatalysis by titanium dioxide, photo-Fenton, and ozone; as well as biological degradation. The article reports on work in progress. The full project will include building two small prototypes embodying these technologies, the construction of a demonstration treatment plant based on the results obtained from the prototypes, conceptual design of a full size plant. New solar collectors were built to facilitate the photocatalysis and photo-Fenton. To date it has been determined that the photo-catalysis and photo-Fenton are suitable if the concentrations of the above contaminants is high enough. Ozone can enhance the treatment in the case of the pesticides, but not in the case of the non-biodegradable chlorinated solvents. Biotreatment is also not suitable for the solvents. The best biological system has been determined and the optimal recovery of catalyst has also been found. 5 refs., 2 tabs., 4 figs.

  2. Current good manufacturing practice in plant automation of biological production processes. (United States)

    Dorresteijn, R C; Wieten, G; van Santen, P T; Philippi, M C; de Gooijer, C D; Tramper, J; Beuvery, E C


    The production of biologicals is subject to strict governmental regulations. These are drawn up in current good manufacturing practices (cGMP), a.o. by the U.S. Food and Drug Administration. To implement cGMP in a production facility, plant automation becomes an essential tool. For this purpose Manufacturing Execution Systems (MES) have been developed that control all operations inside a production facility. The introduction of these recipe-driven control systems that follow ISA S88 standards for batch processes has made it possible to implement cGMP regulations in the control strategy of biological production processes. Next to this, an MES offers additional features such as stock management, planning and routing tools, process-dependent control, implementation of software sensors and predictive models, application of historical data and on-line statistical techniques for trend analysis and detection of instrumentation failures. This paper focuses on the development of new production strategies in which cGMP guidelines are an essential part.

  3. Potential biological hazard of importance for HACCP plans in fresh fish processing

    Directory of Open Access Journals (Sweden)

    Baltić Milan Ž.


    Full Text Available The Hazard Analysis and Critical Control Point (HACCP system is scientifically based and focused on problem prevention in order to assure the produced food products are safe to consume. Prerequisite programs such as GMP (Good Manufacturing Practices, GHP (Good Hygienic Practices are an essential foundation for the development and implementation of successful HACCP plans. One of the preliminary tasks in the development of HACCP plan is to conduct a hazard analysis. The process of conducting a hazard analysis involves two stages. The first is hazard identification and the second stage is the HACCP team decision which potential hazards must be addressed in the HACCP plan. By definition, the HACCP concept covers all types of potential food safety hazards: biological, chemical and physical, whether they are naturally occurring in the food, contributed by the environment or generated by a mistake in the manufacturing process. In raw fish processing, potential significant biological hazards which are reasonably likely to cause illness of humans are parasites (Trematodae, Nematodae, Cestodae, bacteria (Salmonella, E. coli, Vibrio parahemolyticus, Vibrio vulnificus, Listeria monocytogenes, Clostridium botulinum, Staphyloccocus aureus, viruses (Norwalk virus, Entero virusesi, Hepatitis A, Rotovirus and bio-toxins. Upon completion of hazard analysis, any measure(s that are used to control the hazard(s should be described.

  4. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process. (United States)

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng


    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μmbiological waste (spent AC) from BAC process.

  5. Coal cinder filtration as pretreatment with biological processes to treat pharmaceutical wastewater. (United States)

    Zheng, Wei; Li, Xiao-ming; Hao, Zhi-ming; Wang, Dong-bo; Yang, Qi; Zeng, Guang-ming


    This study aims at coupling coal cinder filter with biological process to improve pharmaceutical wastewater quality and reduce the disposal cost. In the coal cinder filter, the removal efficiencies of COD, BOD(5), SS and color were 90+/-2%, 72+/-2%, 95+/-2% and 80+/-2%, respectively. The results attribute to the big specific surface area and strong adsorption ability. Coal cinder filter removes a large portion of the pollutants in the influent wastewater, which would strongly stable the effluent waste water quality, and reduce the load of follow-up biological treatment process. The average removal efficiencies for COD, BOD(5), SS and color of the combined process were about 99.7+/-3%, 98.2+/-4%, 98.5+/-3% and 96.3+/-2%, respectively, with the average effluent quality of COD 16+/-1 mg/L, BOD(5) 11+/-1 mg/L, SS 10+/-0.6 mg/L and color 22+/-1 (multiple), which are consistent with the national requirements of the waste pollutants for pharmaceutical industry of chinese traditional medicine discharge standard (GB 21906-2008). The results indicated that the combined procedure could offer an attractive solution for pharmaceutical wastewater treatment with considerable low cost.

  6. Health Literacy Basics (United States)

    ... have the capacity to obtain, process, and understand basic health information and services needed to make appropriate health decisions. 1 Health literacy is dependent on individual and systemic factors: Communication skills of lay persons and professionals Lay and professional ...

  7. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Esplugas, M.; Gonzalez, O.; Benito, J.; Sans, C.


    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  8. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape (United States)

    Marani, M.; D'Alpaos, A.; Da Lio, C.


    The equilibrium states and transient dynamics of tidal landforms are the result of many concurring physical and biological forcings, such as tidal range, wind climate, sediment supply, vegetation and microphytobenthos development, and rates of relative sea level rise (RSLR). A 0D model of the coupled elevation-vegetation dynamics is used to explore the relative role of the physical and biological factors shaping these systems. We find that salt marshes exposed to large tidal ranges are more stable, and therefore more resilient to increasing rates of RSLR, than marshes subjected to low tidal ranges and that subtidal platforms in macrotidal systems are less exposed to wind-induced erosion processes than their counterparts in systems with smaller tidal fluctuations. Notably, we find that vegetation crucially affects both the equilibrium marsh elevation, through dissipation of wind waves and organic accumulation, and marsh resilience to accelerations in RSLR rates, important differences being associated with different vegetation types. Furthermore, our results show that the existence and stability of equilibrium states fundamentally depend on the local wind and tidal regime, even within the same tidal system. Finally, we propose a modelling framework to study how biological evolution lead to the emergence of tidal landforms as we know them.

  9. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology. (United States)

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G


    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question.

  10. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles (United States)

    Georgakopoulos, D. G.; Després, V.; Fröhlich-Nowoisky, J.; Psenner, R.; Ariya, P. A.; Pósfai, M.; Ahern, H. E.; Moffett, B. F.; Hill, T. C. J.


    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  11. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos


    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  12. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos


    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  13. Basic Concurrency Theory

    DEFF Research Database (Denmark)

    Løvengreen, Hans Henrik


    In this set of notes, we present some of the basic theory underlying the discipline of programming with concurrent processes/threads. The notes are intended to supplement a standard textbook on concurrent programming.......In this set of notes, we present some of the basic theory underlying the discipline of programming with concurrent processes/threads. The notes are intended to supplement a standard textbook on concurrent programming....

  14. Object-based attentional modulation of biological motion processing: spatiotemporal dynamics using functional magnetic resonance imaging and electroencephalography. (United States)

    Safford, Ashley S; Hussey, Elizabeth A; Parasuraman, Raja; Thompson, James C


    Although it is well documented that the ability to perceive biological motion is mediated by the lateral temporal cortex, whether and when neural activity in this brain region is modulated by attention is unknown. In particular, it is unclear whether the processing of biological motion requires attention or whether such stimuli are processed preattentively. Here, we used functional magnetic resonance imaging, high-density electroencephalography, and cortically constrained source estimation methods to investigate the spatiotemporal effects of attention on the processing of biological motion. Directing attention to tool motion in overlapping movies of biological motion and tool motion suppressed the blood oxygenation level-dependent (BOLD) response of the right superior temporal sulcus (STS)/middle temporal gyrus (MTG), while directing attention to biological motion suppressed the BOLD response of the left inferior temporal sulcus (ITS)/MTG. Similarly, category-based modulation of the cortical current source density estimates from the right STS/MTG and left ITS was observed beginning at approximately 450 ms following stimulus onset. Our results indicate that the cortical processing of biological motion is strongly modulated by attention. These findings argue against preattentive processing of biological motion in the presence of stimuli that compete for attention. Our findings also suggest that the attention-based segregation of motion category-specific responses only emerges relatively late (several hundred milliseconds) in processing.

  15. Research on rural sewage treatment using biological-ecological coupling process

    Directory of Open Access Journals (Sweden)

    Chang SHI


    Full Text Available Developing low-investment, low-energy consumption and low-maintenance sewage treatment process is important for sewage treatment in rural areas. An upflow anaerobic filter (UAF without energy consumption and a subsurface flow wetland (SFW are utilized as a biological-ecological coupling process to treat rural domestic sewage. The effect of the coupling process on treatment performance of domestic sewage under different hydraulic retention time (HRT is investigated. The removal of nitrogen and phosphorus in the SFW is improved by increasing plant density. The results show that the coupling process of UAF and SFW has no power consumption and is maintenance-free, suitable for rural sewage treatment; the removal of nitrogen and phosphorus mainly happens in the SFW phase; increasing the density of reed plants in the SFW can obviously enhance the capacity to remove nitrogen and phosphorus, and ensure that the efficient performance of the coupling process of UAF and SFW is stabilized in a high level. When the HRTs of UAF and SFW are 18 h and 3 d, respectively, the concentrations of COD, ammonia nitrogen, total nitrogen and total phosphorus in the final effluent treated by UAF and SFW process are 44.07, 4.25, 13.36 and 0.44 mg/L, respectively, meeting the requirement of first grade class A in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002.

  16. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio


    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  17. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    Energy Technology Data Exchange (ETDEWEB)

    Tambone, Fulvia, E-mail:; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio


    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  18. Signal and Image Processing of Optical Coherence Tomography at 1310 nm Wavelength for Non Biological Samples

    Directory of Open Access Journals (Sweden)

    Yogesh Rao


    Full Text Available OCT is a recently developed optical interferometric technique for non-invasive diagnostic medical imaging in vivo; the most sensitive optical imaging modality.OCT finds its application in ophthalmology, blood flow estimation and cancer diagnosis along with many non biomedical applications. The main advantage of OCT is its high resolution which is in µm range and depth of penetration in mm range. Unlike other techniques like X rays and CT scan, OCT does not comprise any x ray source and therefore no radiations are involved. This research work discusses the basics of spectral domain OCT (SD-OCT, experimental setup, data acquisition and signal processing involved in OCT systems. Simulation of OCT involving modelling and signal processing, carried out on Lab VIEW platform has been discussed. Using the experimental setup, some of the non biomedical samples have been scanned. The signal processing and image processing of the scanned data was carried out in MATLAB and Lab VIEW, some of the results thus obtained have been discussed in the end.

  19. Robust analysis of the hydrophobic basic analytes loratadine and desloratadine in pharmaceutical preparations and biological fluids by sweeping-cyclodextrin-modified micellar electrokinetic chromatography. (United States)

    El-Awady, Mohamed; Belal, Fathalla; Pyell, Ute


    The analysis of hydrophobic basic analytes by micellar electrokinetic chromatography (MEKC) is usually challenging because of the tendency of these analytes to be adsorbed onto the inner capillary wall in addition to the difficulty to separate these compounds as they exhibit extremely high retention factors. A robust and reliable method for the simultaneous determination of loratadine (LOR) and its major metabolite desloratadine (DSL) is developed based on cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) with acidic sample matrix and basic background electrolyte (BGE). The influence of the sample matrix on the reachable focusing efficiency is studied. It is shown that the application of a low pH sample solution mitigates problems associated with the low solubility of the hydrophobic basic analytes in aqueous solution while having advantages with regard to on-line focusing. Moreover, the use of a basic BGE reduces the adsorption of these analytes in the separation compartment. The separation of the studied analytes is achieved in less than 7min using a BGE consisting of 10mmolL(-1) disodium tetraborate buffer, pH 9.30 containing 40mmolL(-1) SDS and 20mmolL(-1) hydroxypropyl-β-CD while the sample solution is composed of 10mmolL(-1) phosphoric acid, pH 2.15. A full validation study of the developed method based on the pharmacopeial guidelines is performed. The method is successfully applied to the analysis of the studied drugs in tablets without interference of tablet additives as well as the analysis of spiked human urine without any sample pretreatment. Furthermore, DSL can be detected as an impurity in LOR bulk powder at the stated pharmacopeial limit (0.1%, w/w). The selectivity of the developed method allows the analysis of LOR and DSL in combination with the co-formulated drug pseudoephedrine. It is shown that in CD-MEKC with basic BGE, solute-wall interactions are effectively suppressed allowing the development of efficient and precise

  20. Streams of events and performance of queuing systems: The basic anatomy of arrival/departure processes, when the focus is set on autocorrelation

    DEFF Research Database (Denmark)

    Nielsen, Erland Hejn


    some arrival processes for some simulation study a thorough preliminary analysis has to be undertaken in order to uncover the basic time series nature of the interacting processes. Flexible methods for generating streams of autocorrelated variates of any desired distributional type, such as the ARTA...... method or some autocorrelation extended descriptive sampling method, can then easily be applied. The results from the Livny, Melamed and Tsiolis (1993) study as well as the results from this work both indicates that system performance measures as for instance average waiting time or average time...

  1. Basic electronics

    CERN Document Server

    Holbrook, Harold D


    Basic Electronics is an elementary text designed for basic instruction in electricity and electronics. It gives emphasis on electronic emission and the vacuum tube and shows transistor circuits in parallel with electron tube circuits. This book also demonstrates how the transistor merely replaces the tube, with proper change of circuit constants as required. Many problems are presented at the end of each chapter. This book is comprised of 17 chapters and opens with an overview of electron theory, followed by a discussion on resistance, inductance, and capacitance, along with their effects on t

  2. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process. (United States)

    Zhuang, Haifeng; Han, Hongjun; Ma, Wencheng; Hou, Baolin; Jia, Shengyong; Zhao, Qian


    Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.

  3. Employment of the covariance matrix in parameter estimation for stochastic processes in cell biology (United States)

    Preuss, R.; Dieterich, P.


    The dynamics of movements of biological cells can be described with models from correlated stochastic processes. In order to overcome problems from correlated and insufficient data in the determination of the model parameters of such processes we employ the covariance matrix of the data. Since the covariance suffers itself from statistical uncertainty it is corrected by a renormalization treatment [1]. For the example of normal and fractional Brownian motion, which allows both to access all quantities on full theoretical grounds and to generate data similar to experiment, we discuss our results and those of previous works by Gregory [2] and Sivia [3]. The presented approach has the potential to estimate the aging correlation function of observed cell paths and can be applied to more complicated models.

  4. Signal processing for molecular and cellular biological physics: an emerging field (United States)

    Little, Max A.; Jones, Nick S.


    Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  5. Biological processes in the water column of the South Atlantic Bight: Zooplankton responses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhofer, G.A.


    This study sought to determine and understand the major processes governing the abundance, distribution, composition and eventual fate of zooplankton on the southeastern shelf of the US in relation to water circulation. Over much of the shelf circulation is dominated by the Gulf Stream and/or atmospheric forcing. Most of our studies concentrated on processes on the middle and outer shelf. On the latter, pronounced biological production occurs year-round at frequent intervals and is due to Gulf Stream eddies which move by at an average frequency of one every week. These eddies are rich in nutrients which, when upwelled into the euphoric zone, lead to pronounced primary production which then triggers zooplankton production.

  6. Biological processes in the water column of the South Atlantic Bight: Zooplankton responses

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhofer, G.A.


    This study sought to determine and understand the major processes governing the abundance, distribution, composition and eventual fate of zooplankton on the southeastern shelf of the US in relation to water circulation. Over much of the shelf circulation is dominated by the Gulf Stream and/or atmospheric forcing. Most of our studies concentrated on processes on the middle and outer shelf. On the latter, pronounced biological production occurs year-round at frequent intervals and is due to Gulf Stream eddies which move by at an average frequency of one every week. These eddies are rich in nutrients which, when upwelled into the euphoric zone, lead to pronounced primary production which then triggers zooplankton production.

  7. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco? (United States)

    O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto


    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.

  8. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. (United States)

    Li, Xiaobo; Zhang, Ru; Patena, Weronika; Gang, Spencer S; Blum, Sean R; Ivanova, Nina; Yue, Rebecca; Robertson, Jacob M; Lefebvre, Paul A; Fitz-Gibbon, Sorel T; Grossman, Arthur R; Jonikas, Martin C


    The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.


    Directory of Open Access Journals (Sweden)

    Aleksandra Jolanta Bawiec


    Full Text Available Municipal wastewater is characterized by diverse microbial content, largely dependent on their sources as well as many other factors like condition and health of their producer, but also environmental factors. The number and share of individual bacterial population in wastewater is changing during the process of their treatment in wastewater treatment plants. The microbial content of treated wastewater is significantly affected by the type of technology used for wastewater treatment. The paper presents the results of the species composition of bacteria present in the wastewater at various stages of treatment for the two different technologies. Samples of wastewater from hydroponic wastewater treatment plant and from the plant which technology is based on biofilters were analysed. A key mechanism for wastewater treatment in both cases is biological treatment, using microbial activity that decomposes pollutants in the wastewater, which significantly contributes to changes in the species composition of bacteria comparing to microbiological composition of sewage flowing into the treatment plant. Analyses of microbial composition showed that in the objects consisting of preliminary tank and biofilter, composition of bacteria species is changing, but many species isolated from raw sewage is also found in treated wastewater. In the plant with hydroponic lagoon after wastewater treatment throughout the process system, bacteria present in raw sewage or in wastewater after biological treatment were not identified in the outlet.

  10. A single-stage biological process for municipal sewage treatment in tourist areas. (United States)

    Di Iaconi, C; De Sanctis, M; Lopez, A


    This pilot scale study aims to test the effectiveness of an innovative compact biological system (SBBGR - Sequencing Batch Biofilter Granular Reactor) for treating municipal wastewater in tourist areas characterised by intense seasonal water demand and wastewater discharge. The results obtained after a long term operation of 463 days have shown that the proposed system is able to assure average removal efficiencies higher than 90% for COD (chemical oxygen demand), total suspended solids and TKN (total Kjeldahl nitrogen) independently of the influent concentration values and organic loading, which ranged from 0.2 to 5.1 kgCOD/m(3)biofilter.d Furthermore, the plant showed a high degree of operation flexibility and stability in response to the organic load variations occurring in tourist areas. In fact, no significant deterioration in the plant's effluent quality was observed even during a sudden several-fold increase in organic loading. High nitrogen removal efficiencies (80%, on average) were also achieved thanks to the establishment of simultaneous nitrification-denitrification process favoured by the plant's high biomass concentration and operating conditions. Finally, the system was characterized by an excess sludge production much lower (60-80% lower) than that of conventional biological systems operating without a primary clarifier. An acceptable level of stabilization of excess sludge was also obtained so that a further stabilization process was no longer required.

  11. Network-based analysis of affected biological processes in type 2 diabetes models.

    Directory of Open Access Journals (Sweden)

    Manway Liu


    Full Text Available Type 2 diabetes mellitus is a complex disorder associated with multiple genetic, epigenetic, developmental, and environmental factors. Animal models of type 2 diabetes differ based on diet, drug treatment, and gene knockouts, and yet all display the clinical hallmarks of hyperglycemia and insulin resistance in peripheral tissue. The recent advances in gene-expression microarray technologies present an unprecedented opportunity to study type 2 diabetes mellitus at a genome-wide scale and across different models. To date, a key challenge has been to identify the biological processes or signaling pathways that play significant roles in the disorder. Here, using a network-based analysis methodology, we identified two sets of genes, associated with insulin signaling and a network of nuclear receptors, which are recurrent in a statistically significant number of diabetes and insulin resistance models and transcriptionally altered across diverse tissue types. We additionally identified a network of protein-protein interactions between members from the two gene sets that may facilitate signaling between them. Taken together, the results illustrate the benefits of integrating high-throughput microarray studies, together with protein-protein interaction networks, in elucidating the underlying biological processes associated with a complex disorder.

  12. Basics of Bayesian Learning - Basically Bayes

    DEFF Research Database (Denmark)

    Larsen, Jan

    Tutorial presented at the IEEE Machine Learning for Signal Processing Workshop 2006, Maynooth, Ireland, September 8, 2006. The tutorial focuses on the basic elements of Bayesian learning and its relation to classical learning paradigms. This includes a critical discussion of the pros and cons...

  13. A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language. (United States)

    Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J


    Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function.

  14. Introducing Basic Molecular Biology to Turkish Rural and Urban Primary School Children via Hands-on PCR and Gel Electrophoresis Activities (United States)

    Selli, Cigdem; Yildirim, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner


    This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation,…

  15. Broadening Horizons and Teaching Basic Biology through Cell-Free Synthesis of Green Fluorescent Protein in a High School Laboratory Course (United States)

    Albayrak, Cem; Jones, K. C.; Swartz, James R.


    Cell-free protein synthesis (CFPS) has emerged as a practical method for producing a broad variety of proteins. In addition, the direct accessibility to the reaction environment makes CFPS particularly suitable as a learning vehicle for fundamental biological concepts. Here, we describe its implementation as a teaching tool for a high school…

  16. The importance of basic factors in innovation processes and their effects on innovation capability of Malaysian-owned manufacturing companies (United States)

    Suradi, Nur Riza Mohd; Omar, Aminuddin; Shahabuddin, Faridatulazna Ahmad


    Innovation is the core ingredient in the competitiveness of today's businesses. Any company that cannot innovate will be losing its competitiveness. While the study on innovation at conceptual level is widely available, there is still lack of deep understanding of how innovation factors impact each stage of the processes of innovation that happen in Malaysian companies. This process-factor approach and understanding may help the government focuses its assistance on relevant factors at relevant process according to the size of the company. This study examines how companies are affected by fundamental factors needed in innovation. Based on results of MYTIC Study 2012 on the level of Technological Innovation Capability (TIC) of Malaysian companies using the RDCB framework, the significance of each innovation factor in each innovation process is determined. This study shows that human resource factor gives more impact than other factors in most processes. Also, financial and human resource factors are likely dictated by the size of the company.

  17. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)



    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  18. Body Basics (United States)

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System Heart and Circulatory System Immune ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit ... final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons make connections with each other ...

  20. Insulin Basics (United States)

    ... Honor Become a Member En Español Type 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are You At Risk? Diabetes Basics Living with Diabetes Food & Fitness In My ... Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy ...

  1. The decade 1989-1998 in Spanish psychology: an analysis of research in basic psychological processes, history of psychology, and other related topics. (United States)

    Igoa, J M


    This article presents a review of research published by Spanish Faculty from the area of basic psychology in the decade 1989-1998. It provides information about research on basic psychological processes commonly studied under the labels of experimental and cognitive psychology, plus a number of topics from other research areas, including some applied psychology issues. The review analyzes the work of 241 faculty members from 27 different Spanish universities, as reflected in 1,882 published papers, book chapters, and books. The analyses carried out in this report include a description of the main research trends found in each area, with some representative references of the published materials, and statistics showing the distribution of this research work in various relevant publications (both Spanish and foreign), with figures that reveal the impact of this work both at a national and international scale.

  2. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes. (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P


    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total dissolved polyphenols content of 0

  3. Open water processes of the San Francisco Estuary: From physical forcing to biological responses

    Directory of Open Access Journals (Sweden)

    Wim Kimmerer


    Full Text Available This paper reviews the current state of knowledge of the open waters of the San Francisco Estuary. This estuary is well known for the extent to which it has been altered through loss of wetlands, changes in hydrography, and the introduction of chemical and biological contaminants. It is also one of the most studied estuaries in the world, with much of the recent research effort aimed at supporting restoration efforts. In this review I emphasize the conceptual foundations for our current understanding of estuarine dynamics, particularly those aspects relevant to restoration. Several themes run throughout this paper. First is the critical role physical dynamics play in setting the stage for chemical and biological responses. Physical forcing by the tides and by variation in freshwater input combine to control the movement of the salinity field, and to establish stratification, mixing, and dilution patterns throughout the estuary. Many aspects of estuarine dynamics respond to interannual variation in freshwater flow; in particular, abundance of several estuarine-dependent species of fish and shrimp varies positively with flow, although the mechanisms behind these relationships are largely unknown. The second theme is the importance of time scales in determining the degree of interaction between dynamic processes. Physical effects tend to dominate when they operate at shorter time scales than biological processes; when the two time scales are similar, important interactions can arise between physical and biological variability. These interactions can be seen, for example, in the response of phytoplankton blooms, with characteristic time scales of days, to stratification events occurring during neap tides. The third theme is the key role of introduced species in all estuarine habitats; particularly noteworthy are introduced waterweeds and fishes in the tidal freshwater reaches of the estuary, and introduced clams there and in brackish water. The

  4. Clarification of basic factorization identity is for the almost semi-continuous latticed Poisson processes on the Markov chain

    Directory of Open Access Journals (Sweden)

    Gerich M. S.


    Full Text Available Let ${xi(t, x(t}$ be a homogeneous semi-continuous lattice Poisson process on the Markov chain.The jumps of one sign are geometrically distributed, and jumps of the opposite sign are arbitrary latticed distribution. For a suchprocesses the relations for the components of two-sided matrix factorization are established.This relations define the moment genereting functions for extremumf of the process and their complements.

  5. Clarification of basic factorization identity is for the almost semi-continuous latticed Poisson processes on the Markov chain



    Let ${xi(t), x(t)}$ be a homogeneous semi-continuous lattice Poisson process on the Markov chain.The jumps of one sign are geometrically distributed, and jumps of the opposite sign are arbitrary latticed distribution. For a suchprocesses the relations for the components of two-sided matrix factorization are established.This relations define the moment genereting functions for extremumf of the process and their complements.

  6. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations. (United States)

    López-Abelairas, María; Lu-Chau, Thelmo Alejandro; Lema, Juan Manuel


    The pretreatment of lignocellulosic biomass with white-rot fungi to produce bioethanol is an environmentally friendly alternative to the commonly used physico-chemical processes. After biological pretreatment, a solid substrate composed of cellulose, hemicellulose and lignin, the two latter with a composition lower than that of the initial substrate, is obtained. In this study, six microorganisms and four process configurations were utilised to ferment a hydrolysate obtained from wheat straw pretreated with the white-rot fungus Irpex lacteus. To enhance total sugars utilisation, five of these microorganisms are able to metabolise, in addition to glucose, most of the pentoses obtained after the hydrolysis of wheat straw by the application of a mixture of hemicellulolytic and cellulolytic enzymes. The highest overall ethanol yield was obtained with the yeast Pachysolen tannophilus. Its application in combination with the best process configuration yielded 163 mg ethanol per gram of raw wheat straw, which was between 23 and 35 % greater than the yields typically obtained with a conventional bioethanol process, in which wheat straw is pretreated using steam explosion and fermented with the yeast Saccharomyces cerevisiae.

  7. Experimental Fluidic Investigation of Degradation of Pico-liter Oil Droplets by Physical and Biological Processes (United States)

    Jalali, Maryam; Sheng, Jian


    This study used laboratory experiments to assess degradation of crude oil by physical and biological processes including dissolution and consumption. To perform this study, we have developed a bioassay that consists of a flow chamber with a bottom glass substrate printed with an array of pico-liter oil droplets using micro-Transfer Printing. The technique allows the printing of highly homogeneous pico-liter droplet array with different dimensions and shapes that can be maintained for weeks. Since the droplets are pinned and stationary on the bottom substrate, the key processes can be evaluated by measuring the change of shape and volume using Atomic Force Microscopy. Parallel microfluidic bioassays are established at the beginning, exposed to abiotic/biotic solutions, and scarified for characterization at given time intervals for each experiment. Two processes, dissolution and consumption, are investigated. In addition, the effects of dispersant on these processes are also studied. The results show that the amount of oil degraded by bacteria accounts for almost 50% of the total volume in comparison to 25% via dissolution. Although dispersant has a subtle effect on dissolution, the effect on rates of consumption and its asymptotic behavior are substantial. Experiments involving different bacterial strains, dispersant concentration, and flow shear rate are on-going.

  8. A cell-free expression and purification process for rapid production of protein biologics. (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John


    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value.

  9. A Biophysicochemical Model for NO Removal by the Chemical Absorption-Biological Reduction Integrated Process. (United States)

    Zhao, Jingkai; Xia, Yinfeng; Li, Meifang; Li, Sujing; Li, Wei; Zhang, Shihan


    The chemical absorption-biological reduction (CABR) integrated process is regarded as a promising technology for NOx removal from flue gas. To advance the scale-up of the CABR process, a mathematic model based on mass transfer with reaction in the gas, liquid, and biofilm was developed to simulate and predict the NOx removal by the CABR system in a biotrickling filter. The developed model was validated by the experimental results and subsequently was used to predict the system performance under different operating conditions, such as NO and O2 concentration and gas and liquid flow rate. NO distribution in the gas phase along the biotrickling filter was also modeled and predicted. On the basis of the modeling results, the liquid flow rate and total iron concentration were optimized to achieve >90% NO removal efficiency. Furthermore, sensitivity analysis of the model revealed that the performance of the CABR process was controlled by the bioreduction activity of Fe(III)EDTA. This work will provide the guideline for the design and operation of the CABR process in the industrial application.

  10. Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process. (United States)

    Amor, Carlos; Lucas, Marco S; García, Juan; Dominguez, Joaquín R; De Heredia, J Beltrán; Peres, José A


    This work presents the application of Fenton's reagent process combined with anaerobic digestion to treat an olive mill wastewater (OMW). Firstly, OMW was pre-treated by chemical oxidation in a batch reactor with Fenton's reagent, using a fixed H2O2/COD ratio of 0.20, pH = 3.5 and a H2O2/Fe(2+) molar ratio of 15:1. This advanced oxidation treatment allowed reaching reductions of 17.6 and 82.5% of chemical oxygen demand (COD) and total polyphenols (TP), respectively. Secondly, OMW treatment by anaerobic digestion was performed using previously adapted microorganisms immobilized in Sepiolite. These biological tests were carried out varying the substrate concentration supplied to the reactor and COD conversions from 52 to 74% were obtained. Afterwards, Fenton's reagent followed by anaerobic digestion was applied to OMW treatment. This combined process presented a significant improvement on organic load removal, reaching COD degradations from 64 to 88%. Beyond the pollutant load removal, it was also monitored the yield of methane generated throughout anaerobic experiments. The methane produced ranged from 281 cm(3) to 322 cm(3) of CH4/g COD removed. Additionally, a methane generation kinetic study was performed using the Monod Model. The application of this model allowed observing a kinetic constant increase of the combined process (kFN = 0.036 h(-1)) when compared to the single anaerobic process (kF = 0.017 h(-1)).

  11. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment

    Institute of Scientific and Technical Information of China (English)


    A study on advanced drinking water treatment was conducted in a pilot scale plant taking water from conventional treatment process. Ozonation-biological activated carbon process (O3-BAC) and granular activated carbon process (GAC) were evaluated based on the following parameters: CODMn, UV254, total organic carbon (TOC), assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). In this test, the average removal rates of CODMn , UV254 and TOC in O3-BAC were18.2%, 9.0% and 10.2% higher on (AOC) than in GAC, respectively. Ozonation increased 19.3-57.6 μg Acetate-C/L in AOC-P17,45.6-130.6 μg Acetate-C/L in AOC-NOX and 0.1-0.5 mg/L in BDOC with ozone doses of 2-8 mg/L. The optimum ozone dose for maximum AOC formation was 3 mgO3/L. BAC filtration was effective process to improve biostability.

  12. Wavelet basics

    CERN Document Server

    Chan, Y T


    Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...

  13. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak


    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  14. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM). (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao


    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs.


    Directory of Open Access Journals (Sweden)

    Joanna Smyk


    Full Text Available The aim of the research was to determine the COD fraction thereof in sewage and their changes in the effluent after further treatment processes. The study was conducted in a sewage treatment plant in Bialystok (RLM> 100000. In sewage the highest concentrations occurred in the suspension of the organic fractions slowly biodegradable XS (303.7 mg O2/l and dissolved organic compounds readily biodegradable SS (263 mg O2/l. The lower amounts were irreducible fractions dissolved in sewage and suspended SI (56 mg O2/l and XI (101.2 mg O2/l. Almost 80% of the total COD fractions were biodegradable (SS + XS. In the treated wastewater soluble fraction SI-biodegradable (56 mg O2/l occurred in the highest concentration. The flow of wastewater by components of sewage treatment plant resulted the complete removal of biologically degradable fraction of dissolved SS. More than 94.5% of the total COD in waste water purified fractions were biologically decomposable (SI + XI. Moreover, based on the analysis of studies the following soil removal was found: BOD5 – 99.4%, COD – 92.9%, total nitrogen – 93.4%, total phosphorus – 92%. After waste water treatment, ammonia nitrogen was completely removed while the nitrate concentration increased to 4.6 mg N/dm3.

  16. Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. (United States)

    Bose, Susmita; Dasgupta, Sudip; Tarafder, Solaiman; Bandyopadhyay, Amit


    Despite the excellent bioactivity of hydroxyapatite (HA) ceramics, poor mechanical strength has limited the applications of these materials primarily to coatings and other non-load-bearing areas as bone grafts. Using synthesized HA nanopowder, dense compacts with grain sizes in the nanometer to micrometer range were processed via microwave sintering between 1000 and 1150 degrees C for 20 min. Here we demonstrate that the mechanical properties, such as compressive strength, hardness and indentation fracture toughness, of HA compacts increased with a decrease in grain size. HA with 168 +/- 86 nm grain size showed the highest compressive strength of 395 +/- 42 MPa, hardness of 8.4+/-0.4 GPa and indentation fracture toughness of 1.9 +/- 0.2 MPa m(1/2). To study the in vitro biological properties, HA compacts with grain size between 168 nm and 1.16 microm were assessed for in vitro bone cell-material interactions with human osteoblast cell line. Vinculin protein expression for cell attachment and bone cell proliferation using MTT assay showed that surfaces with finer grains provided better bone cell-material interactions than coarse-grained samples. Our results indicate simultaneous improvements in mechanical and biological properties in microwave sintered HA compacts with nanoscale grain size.

  17. Application of combined physicochemical and biological processes for enhanced treatment of avermectin fermentation wastewater. (United States)

    Yu, Anfeng; Huang, Pengyu; Gui, Dawei; Wang, Haisheng; Feng, Quan; Chu, Libing; Xing, Xin-Hui


    This paper aimed at developing the enhanced biological treatment processes for treating avermectin fermentation wastewater (AFW). After UASB treatment and chemical coagulation, the pretreated AFW was subsequently flowed into a rCAA reactor (reactor with repeated coupling of aerobes and anaerobes using macroporous carriers) system for further pollutant degradation and excess sludge reduction. By the treatment with chemical coagulation, COD, total nitrogen and total phosphorus concentration of treated AFW were eliminated to 550-700 mg/L, 130-160 mg/L and 1 mg/L, respectively, and the dark color of the wastewater was greatly bleached. After this decolorized wastewater was treated by the following rCAA bioreactor, the COD could be reduced to around 200-300 mg/L, while the further decrease of COD less than 200 mg/L was difficult. The Biolog analysis and OUR test for the water treated by rCAA bioreactor demonstrated that the effluent from chemical coagulation contained some unknown compounds with low biodegradability and would simplify the microbial community in the subsequent rCAA reactor.

  18. Safety assessment and biological effects of a new cold processed SilEmulsion for dermatological purpose. (United States)

    Raposo, Sara; Salgado, Ana; Gonçalves, Lídia; Pinto, Pedro C; Urbano, Manuela; Ribeiro, Helena M


    It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion). The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53). EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids.

  19. Safety Assessment and Biological Effects of a New Cold Processed SilEmulsion for Dermatological Purpose

    Directory of Open Access Journals (Sweden)

    Sara Raposo


    Full Text Available It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion. The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53. EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids.

  20. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor. (United States)

    Yan, Gang; Xu, Xia; Yao, Lirong; Lu, Liqiao; Zhao, Tingting; Zhang, Wenyi


    As one of the plug-flow reactors, biological aerated filter (BAF) reactor was divided into four sampling sectors to understand the characteristics of elemental nitrogen transformation during the reaction process, and then the different characteristics of elemental nitrogen transformation caused by different NH(3)-N loadings, biological quantities and activities in each section were obtained. The results showed that the total transformation ratio in the nitrifying reactor was more than 90% in the absence of any organic carbon resource, at the same time, more than 65% NH(3)-N in the influent were nitrified at the filter height of 70 cm below under the conditions of the influent runoff 9-19 L/h, the gas-water ratio 4-5:1, the dissolved oxygen 3.0-5.8 mg/L and the NH(3)-N load 0.28-0.48 kg NH(3)-N/m(3) d. On the base of the Eckenfelder mode, the kinetics equation of the NH(3)-N transformation along the reactor was S(e)=S(0) exp(-0.0134D/L(1.2612)).

  1. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail:; Parker, W.J., E-mail:


    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  2. Quantum electronics basic theory

    CERN Document Server

    Fain, V M; Sanders, J H


    Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai

  3. Basic Auditory Processing Deficits in Dyslexia: Systematic Review of the Behavioral and Event-Related Potential/Field Evidence (United States)

    Hämäläinen, Jarmo A.; Salminen, Hanne K.; Leppänen, Paavo H. T.


    A review of research that uses behavioral, electroencephalographic, and/or magnetoencephalographic methods to investigate auditory processing deficits in individuals with dyslexia is presented. Findings show that measures of frequency, rise time, and duration discrimination as well as amplitude modulation and frequency modulation detection were…

  4. Composting of biological waste. Processes and utilisation. Summary report; Bioabfallkompostierung. Verfahren und Verwertung. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.


    The project investigated environmentally compatible concepts for processing and utilisation of biological waste by means of composting and spreading on agriculataural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die Zusammenfassung der genannten drei Teilberichte. (orig./SR)

  5. Biological impact of preschool music classes on processing speech in noise. (United States)

    Strait, Dana L; Parbery-Clark, Alexandra; O'Connell, Samantha; Kraus, Nina


    Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood.

  6. Combined photochemical and biological processes for the treatment of linear alkylbenzene sulfonate in water. (United States)

    Mehrvar, Mehrab; Tabrizi, Gelareh Bankian


    In this study, the effects of photochemical pre-treatment (pilot-plant UV/H2O2 process) of linear alkylbenzene sulfonate (LAS) on its subsequent biological treatment were examined. It was observed that the photochemical pre-treatment of the LAS solution did not increase its biodegradability. Moreover, the effects of acclimated microorganisms on the biodegradability of the LAS solution were also studied. It was observed that the acclimated activated sludge increased the biodegradation of the LAS solution. However, due to the presence of some intermediates in the effluent of the photoreactor, the biodegradability of this effluent was less than the biodegradability of the untreated LAS solution with the same concentration of the LAS in the effluent of the photoreactor.

  7. 分子生物学图像分析系统软件设计%The Software Design for the Molecular Biological Image Processing System

    Institute of Scientific and Technical Information of China (English)

    徐秀林; 朱乃硕; 果忠祥


    With the use of Visual Basic 6.0 language and molecularbiological technology, we have developed a new molecular biological information processing system to detect the characteristic parameter of molecular biological electrophoresis image. The software can determine the molecular weight of the restriction endonuclease hydrolytic DNA fragment and protein or other macromolecules. The application indicates that the system with its accuracy reliability high officiency and a large capacity of data to be stored,It is very useful to gene diagnosis and molecular biological researches.%利用VisualBasic6.0(简称VB6)编程技术和分子生物学实验技术,研制开发一套用于测定DNA基因扩增片段或限制性内切酶水解后形成的不同大小片段的特征参数的分子生物学图像分析软件,该软件能对不同DNA分子、蛋白质分子和其它生物大分子的电泳图像进行定量分析。应用表明,该软件系统准确可靠,速度快,能储存大量信息,便于检索和信息处理,对分子生物学及基因工程基础研究和临床基因诊断都具有重要的应用价值。

  8. Blood Basics (United States)

    ... of ASH ASH Meeting on Hematologic Malignancies Consultative Hematology Course ASH Meeting on Lymphoma Biology ASH Workshop on Genome Editing Publications Blood The Hematologist ASH Clinical News ASH Self-Assessment Program Hematology , ASH Education Program About Awards Membership ASH Foundation ...


    Directory of Open Access Journals (Sweden)

    S. I. Lazarev


    Full Text Available Retained on a membrane solute in reverse osmosis separation of biological fluids at the surface of the membrane gradually accumulates and forms a boundary layer, where its concentration is higher than in the bulk. Increased concentration of solute in the solution at the membrane surface causes a diffusive flow of solids from the membrane surface into the bulk solution. After some time in the system t is a stationary state. A convective flow of solute to the membrane surface will be balanced by the sum of the fluxes of solute through the membrane and from the membrane surface into the bulk solution, i.e. in the case of concentration polarization is formed an edge of the diffusion layer. It is established that the concentration-polarization in reverse osmosis separation of the aqueous biological fluids biochemical production is influenced by the flow rate of solvent and the mass transfer coefficient. Experimental study allowed to characterize that by using the process of reverse osmosis can effectively divided, clear, and contaravati industrial solutions biochemical industries. Data at a rate of detention allow to evaluate the influence of concentration polarization on the efficiency of the reverse osmosis separation of industrial solutions. As a result of systematization and evaluation of experimental data and dependencies at a rate of detention found that with increasing the concentration, the rate of detention of solutes decreases. Based on the analysis and modification of the proposed equation for theoretical calculation of detention. Theoretical description of the coefficient detention accurately adequately calculated the modified equation N. V. Churaev, B. V. Deryaguin and V. M. Starov. The numerical values of the empirical coefficients, to calculate and predict the odds of arrest for a similar membrane separation processes industrial solutions. Values obtained correlation coefficients. The correlation coefficients specify that the rate of

  10. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. (United States)

    Wang, Dong-Bo; Li, Xiao-Ming; Yang, Qi; Zeng, Guang-Ming; Liao, De-Xiang; Zhang, Jie


    The performance of biological phosphorus removal (BPR) in a sequencing batch reactor (SBR) with single-stage oxic process was investigated using simulated municipal wastewater. The experimental results showed that BPR could be achieved in a SBR without anaerobic phase, which was conventionally considered as a key phase for BPR. Phosphorus (P) concentration 0.22-1.79 mg L(-1) in effluent can be obtained after 4h aeration when P concentration in influent was about 15-20 mg L(-1), the dissolved oxygen (DO) was controlled at 3+/-0.2 mg L(-1) during aerobic phase and pH was maintained 7+/-0.1, which indicated the efficiencies of P removal were achieved 90% above. Experimental results also showed that P was mainly stored in the form of intracellular storage of polyphosphate (poly-P), and about 207.235 mg phosphates have been removed by the discharge of rich-phosphorus sludge for each SBR cycle. However, the energy storage poly-beta-hydroxyalkanoates (PHA) was almost kept constant at a low level (5-6 mg L(-1)) during the process. Those results showed that phosphate could be transformed to poly-P with single-stage oxic process without PHA accumulation, and BPR could be realized in net phosphate removal.

  11. Video-rate processing in tomographic phase microscopy of biological cells using CUDA. (United States)

    Dardikman, Gili; Habaza, Mor; Waller, Laura; Shaked, Natan T


    We suggest a new implementation for rapid reconstruction of three-dimensional (3-D) refractive index (RI) maps of biological cells acquired by tomographic phase microscopy (TPM). The TPM computational reconstruction process is extremely time consuming, making the analysis of large data sets unreasonably slow and the real-time 3-D visualization of the results impossible. Our implementation uses new phase extraction, phase unwrapping and Fourier slice algorithms, suitable for efficient CPU or GPU implementations. The experimental setup includes an external off-axis interferometric module connected to an inverted microscope illuminated coherently. We used single cell rotation by micro-manipulation to obtain interferometric projections from 73 viewing angles over a 180° angular range. Our parallel algorithms were implemented using Nvidia's CUDA C platform, running on Nvidia's Tesla K20c GPU. This implementation yields, for the first time to our knowledge, a 3-D reconstruction rate higher than video rate of 25 frames per second for 256 × 256-pixel interferograms with 73 different projection angles (64 × 64 × 64 output). This allows us to calculate additional cellular parameters, while still processing faster than video rate. This technique is expected to find uses for real-time 3-D cell visualization and processing, while yielding fast feedback for medical diagnosis and cell sorting.

  12. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery. (United States)

    Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Hu, Jiang Yong; Tao, Guihe; Kekre, Kiran; Viswanath, Balakrishnan; Lay, Winson; Seah, Harry


    Ozonation was used in this study to improve biodegradability of RO brine from water reclamation facilities. An ozone dosage ranging from 3 to 10 mg O(3)/L and contact times of 10 and 20 min in batch studies were found to increase the biodegradability (BOD(5)/TOC ratio) of the RO brine by 1.8-3.5 times. At the same time, total organic carbon (TOC) removal was in the range of 5.3-24.5%. The lab-scale ozone-biological activated carbon (BAC) at an ozone dosage of 6.0mg O(3)/L with 20-min contact time was able to achieve 3 times higher TOC removal compared to using BAC alone. Further processing with Capacitive Deionization (CDI) process was able to generate a product water with better water quality than the RO feed water, i.e., with more than 80% ions removal and a lower TOC concentration. The ozone-BAC pretreatment has the potential of reducing fouling in the CDI process.

  13. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)


    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  14. The consequence of biologic graft processing on blood interface biocompatibility and mechanics. (United States)

    Van de Walle, Aurore B; Uzarski, Joseph S; McFetridge, Peter S


    Processing ex vivo derived tissues to reduce immunogenicity is an effective approach to create biologically complex materials for vascular reconstruction. Due to the sensitivity of small diameter vascular grafts to occlusive events, the effect of graft processing on critical parameters for graft patency, such as peripheral cell adhesion and wall mechanics, requires detailed analysis. Isolated human umbilical vein sections were used as model allogenic vascular scaffolds that were processed with either: 1. sodium dodecyl sulfate (SDS), 2. ethanol/acetone (EtAc), or 3. glutaraldehyde (Glu). Changes in material mechanics were assessed via uniaxial tensile testing. Peripheral cell adhesion to the opaque grafting material was evaluated using an innovative flow chamber that allows direct observation of the blood-graft interface under physiological shear conditions. All treatments modified the grafts tensile strain and stiffness properties, with physiological modulus values decreasing from Glu 240±12 kPa to SDS 210±6 kPa and EtAc 140±3 kPa, Papplied to the umbilical vein scaffold were shown to modify structural mechanics and cell adhesion properties, with the EtAc treatment reducing thrombotic events relative to SDS treated samples. This approach allows time and cost effective prescreening of clinically relevant grafting materials to assess initial cell reactivity.

  15. Altered processing of rewarding and aversive basic taste stimuli in symptomatic women with anorexia nervosa and bulimia nervosa: An fMRI study. (United States)

    Monteleone, Alessio Maria; Monteleone, Palmiero; Esposito, Fabrizio; Prinster, Anna; Volpe, Umberto; Cantone, Elena; Pellegrino, Francesca; Canna, Antonietta; Milano, Walter; Aiello, Marco; Di Salle, Francesco; Maj, Mario


    Functional magnetic resonance imaging (fMRI) studies have displayed a dysregulation in the way in which the brain processes pleasant taste stimuli in patients with anorexia nervosa (AN) and bulimia nervosa (BN). However, exactly how the brain processes disgusting basic taste stimuli has never been investigated, even though disgust plays a role in food intake modulation and AN and BN patients exhibit high disgust sensitivity. Therefore, we investigated the activation of brain areas following the administration of pleasant and aversive basic taste stimuli in symptomatic AN and BN patients compared to healthy subjects. Twenty underweight AN women, 20 symptomatic BN women and 20 healthy women underwent fMRI while tasting 0.292 M sucrose solution (sweet taste), 0.5 mM quinine hydrochloride solution (bitter taste) and water as a reference taste. In symptomatic AN and BN patients the pleasant sweet stimulus induced a higher activation in several brain areas than that induced by the aversive bitter taste. The opposite occurred in healthy controls. Moreover, compared to healthy controls, AN patients showed a decreased response to the bitter stimulus in the right amygdala and left anterior cingulate cortex, while BN patients showed a decreased response to the bitter stimulus in the right amygdala and left insula. These results show an altered processing of rewarding and aversive taste stimuli in ED patients, which may be relevant for understanding the pathophysiology of AN and BN.

  16. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  17. A Practical Approach to Quantitative Processing and Analysis of Small Biological Structures by Fluorescent Imaging (United States)

    Noller, Crystal M.; Boulina, Maria; McNamara, George; Szeto, Angela; McCabe, Philip M.


    Standards in quantitative fluorescent imaging are vaguely recognized and receive insufficient discussion. A common best practice is to acquire images at Nyquist rate, where highest signal frequency is assumed to be the highest obtainable resolution of the imaging system. However, this particular standard is set to insure that all obtainable information is being collected. The objective of the current study was to demonstrate that for quantification purposes, these correctly set acquisition rates can be redundant; instead, linear size of the objects of interest can be used to calculate sufficient information density in the image. We describe optimized image acquisition parameters and unbiased methods for processing and quantification of medium-size cellular structures. Sections of rabbit aortas were immunohistochemically stained to identify and quantify sympathetic varicosities, >2 μm in diameter. Images were processed to reduce background noise and segment objects using free, open-access software. Calculations of the optimal sampling rate for the experiment were based on the size of the objects of interest. The effect of differing sampling rates and processing techniques on object quantification was demonstrated. Oversampling led to a substantial increase in file size, whereas undersampling hindered reliable quantification. Quantification of raw and incorrectly processed images generated false structures, misrepresenting the underlying data. The current study emphasizes the importance of defining image-acquisition parameters based on the structure(s) of interest. The proposed postacquisition processing steps effectively removed background and noise, allowed for reliable quantification, and eliminated user bias. This customizable, reliable method for background subtraction and structure quantification provides a reproducible tool for researchers across biologic disciplines. PMID:27182204

  18. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes (United States)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)


    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the

  19. The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture. (United States)

    Kagawa, Hirohiko; Tanaka, Hideki; Ohta, Hiromi; Unuma, Tatsuya; Nomura, Kazuharu


    The eel has long been esteemed as an important food fish in the world, especially in Japan, and has been used as an experimental fish for many fields of fish physiology. However, the decreases in eel resources have been a serious concern in recent years. The catches of glass eels as seedlings for aquaculture have shown a long-term decrease in both Europe and East Asia. To increase eel resources, the development of techniques for artificial induction of maturation and spawning and rearing their larvae have been eagerly desired. Recent progress of reproductive physiology of fish, especially mechanisms of oocyte maturation and ovulation in female and of spermatozoa maturation in male, facilitate to establish techniques for hormonal induction of maturation and spawning in sexually immature eels. With persistent effort to development of rearing techniques of larvae, we have first succeeded to produce glass eel. These applied techniques are may contribute to understand the basic reproductive physiology of the eel.

  20. Fine-tuning the basic forces of nature through the triple-alpha process in red giant stars

    CERN Document Server

    Csoto, A; Schlattl, H; Csoto, Attila; Oberhummer, Heinz; Schlattl, Helmut


    We show that the synthesis of carbon and oxygen through the triple-alpha process in red giant stars is extremely sensitive to the fine details of the nucleon-nucleon (N-N) interaction. A +/-0.5% change in the strength of the N-N force would reduce either the carbon or oxygen abundance by as much as a factor of 30-1000. This result may be used to constrain some fundamental parameters of the Standard Model.

  1. Scientific Opinion on the safety assessment of the process SOREPET GR based on EREMA Basic technology used to recycle post-consumer PET into food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF


    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the recycling process SOREPET GR (EU register No RECYC073 which is based on the EREMA Basic technology. The input to the process is hot caustic washed and dried poly(ethylene terephthalate (PET flakes originating from collected post-consumer PET containers, mainly bottles and containing no more than 5 % PET from non-food consumer applications. In this process, washed and dried PET flakes are heated in a continuous reactor under vacuum before being extruded. Having examined the results of the challenge test provided, the Panel concluded that the continuous reactor is the critical step that determines the decontamination efficiency of the process. The operating parameters to control its performance are well defined and are temperature, pressure and residence time. Under these conditions, it was demonstrated that the recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the modelled migration of 0.1 μg/kg food derived from the exposure scenario for infants and 0.15 μg/kg food derived from the exposure scenario for toddlers. The Panel concluded that recycled PET obtained from the process is not of safety concern when used to manufacture articles intended for food contact materials applications in compliance with the conditions as specified in the conclusion of the opinion.

  2. Basic electronics

    CERN Document Server

    Tayal, DC


    The second edition of this book incorporates the comments and suggestions of my friends and students who have critically studied the first edition. In this edition the changes and additions have been made and subject matter has been rearranged at some places. The purpose of this text is to provide a comprehensive and up-to-date study of the principles of operation of solid state devices, their basic circuits and application of these circuits to various electronic systems, so that it can serve as a standard text not only for universities and colleges but also for technical institutes. This book

  3. Regression Basics

    CERN Document Server

    Kahane, Leo H


    Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition Offers greater coverage of simple panel-data estimation:

  4. The basics of the relationship of physical and aesthetic education in the process of development of personality.

    Directory of Open Access Journals (Sweden)

    Yermolayeva T.N.


    Full Text Available A variety of publications has been analyzed and theoretically grounded the relationship of aesthetic and physical education as an integral part of the harmonious development of personality. The initial position of interaction of physical and aesthetic education, their combination and intercomplementarity has been generalized. The influence of these processes at each other, mutual dependency and begetting of one object by the other in the spiritual and physical spheres of human being. Common goals, objectives and means of aesthetic and physical education in the development of personality are defined.

  5. Expanding biological data standards development processes for US IOOS: visual line transect observing community for mammal, bird, and turtle data (United States)

    Fornwall, M.; Gisiner, R.; Simmons, S. E.; Moustahfid, Hassan; Canonico, G.; Halpin, P.; Goldstein, P.; Fitch, R.; Weise, M.; Cyr, N.; Palka, D.; Price, J.; Collins, D.


    The US Integrated Ocean Observing System (IOOS) has recently adopted standards for biological core variables in collaboration with the US Geological Survey/Ocean Biogeographic Information System (USGS/OBIS-USA) and other federal and non-federal partners. In this Community White Paper (CWP) we provide a process to bring into IOOS a rich new source of biological observing data, visual line transect surveys, and to establish quality data standards for visual line transect observations, an important source of at-sea bird, turtle and marine mammal observation data. The processes developed through this exercise will be useful for other similar biogeographic observing efforts, such as passive acoustic point and line transect observations, tagged animal data, and mark-recapture (photo-identification) methods. Furthermore, we suggest that the processes developed through this exercise will serve as a catalyst for broadening involvement by the larger marine biological data community within the goals and processes of IOOS.

  6. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F


    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  7. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    Energy Technology Data Exchange (ETDEWEB)



    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  8. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. (United States)

    De Storme, Nico; Geelen, Danny


    In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.

  9. Development of Biological Coal Gasification (MicGAS Process). Topical report, July 1991--February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, K.C.


    Laboratory and bench scale reactor research carried out during the report period confirms the feasibility of biomethanation of Texas lignite (TxL) and some other low-rank coals to methane by specifically developed unique anaerobic microbial consortia. The data obtained demonstrates specificity of a particular microbial consortium to a given lignite. Development of a suitable microbial consortium is the key to the success of the process. The Mic-1 consortium was developed to tolerate higher coal loadings of 1 and 5% TxL in comparison to initial loadings of 0.01% and 0.1% TxL. Moreover, the reaction period was reduced from 60 days to 14 to 21 days. The cost of the culture medium for bioconversion was reduced by studying the effect of different growth factors on the biomethanation capability of Mic-1 consortium. Four different bench scale bioreactor configurations, namely Rotating Biological Contactor (RBC), Upflow Fluidized Bed Reactor (UFBR), Trickle Bed Reactor (TBR), and Continuously Stirred Tank Reactor (CSTR) were evaluated for scale up studies. Preliminary results indicated highest biomethanation of TxL by the Mic-1 consortium in the CSTR, and lowest in the trickle bed reactor. However, highest methane production and process efficiency were obtained in the RBC.

  10. Cruciform structures are a common DNA feature important for regulating biological processes

    Directory of Open Access Journals (Sweden)

    Arrowsmith Cheryl


    Full Text Available Abstract DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a the junction-resolving enzymes, (b DNA repair proteins and transcription factors, (c proteins involved in replication and (d chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.

  11. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate. (United States)

    Wang, Xiao-Jun; Song, Yang; Mai, Jun-Sheng


    The present study is to investigate the treatment of a surfactant wastewater containing abundant sulfate by Fenton oxidation and aerobic biological processes. The operating conditions have been optimized. Working at an initial pH value of 8, a Fe2+ dosage of 600mgL(-1) and a H2O2 dosage of 120mgL(-1), the chemical oxidation demand (COD) and linear alkylbenzene sulfonate (LAS) were decreased from 1500 and 490mgL(-1) to 230 and 23mgL(-1) after 40min of Fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton reagent was very effective at enhancing the biodegradability of this kind of wastewater. The wastewater was further treated by a bio-chemical treatment process based on an immobilized biomass reactor with a hydraulic detention time (HRT) of 20h after Fenton oxidation pretreatment under the optimal operating conditions. It was found that the COD and LAS of the final effluent were less than 100 and 5mgL(-1), corresponding to a removal efficiencies of over 94% and 99%, respectively.

  12. Processing, basic characterization and standard dielectric measurements on PLZT x/65/35 (4 ≤ x ≤ 11) ceramics (United States)

    Pytel, Krzysztof; Suchanicz, Jan; Livinsh, Maris; Sternberg, Andris


    The influence of external stress (0-800 bar) on the dielectric properties of lead lanthanum zirconium titanate (PLZT) x/65/35 (4 ≤ x ≤ 11) ceramics was investigated. Applying uniaxial pressure leads to a change in the peak intensity of the electric permittivity (ɛ), in its frequency dispersion as well as in the dielectric hysteresis. The peak intensity of ɛ becomes broader and shifts to lower temperatures for PLZT x/65/35 with x = 4, 7, 9.75 and 11, with increasing pressure, on heating. It was concluded that applying uniaxial pressure induces an increase of Tm, and thus has a similar effect as the increase of the Ti ion concentration in the lead zirconium titanate (PZT) system. Results based on nanoregion switching processes under combined electromechanical loading were interpreted. Studies clearly showed that applied stress has a significant influence on the dielectric properties of PLZT ceramics.

  13. The Basic Process of 3D Modeling%浅析maya软件建模的基本流程

    Institute of Scientific and Technical Information of China (English)

    徐国艳; 苏家有


    学习三维建模的人必须在掌握三维建模的流程(创建模型、UV拆分、贴图绘制、灯光设置、渲染设置)基础上,学习和掌握其相关的建模技巧和造型能力,了解模型的精度级别以及制作规范,才能做出精美的模型。%Study of 3D modeling of people you must master a 3D modeling process(the model is created,UV arran gement,texturing,lighting,rendering settings)basis,learning and mastering the related modeling techniques and modeling skills,understand the model accuracy level and production norms,can make beautiful model.

  14. REE incorporation and behaviour in aquatic turtles as a consequence of environmental exposure and biological processes (United States)

    Censi, P.; Randazzo, L. A.; D'Angelo, S.; Cuttitta, A.; Saiano, F.


    features in whole blood samples suggest that behaviour of these elements can be influenced by vital effects, probably related to the phosphate deposition during formation of turtle skeleton. In order to corroborate this suggestion a portion of esoskeleton sample coming from an Emys trinacris individual was analysed and REE concentrations normalised to the environmental water. Observed features of REE pattern from this material strongly agree with above the mentioned hypothesis being MREE enriched, from Nd to Ho, with respect to LREE and HREE. Therefore collected data indicate that REE contents in blood of Emys trinacris is influenced by exposure to environmental conditions but elemental behaviour in whole blood is driven by biological processes, probably associated to formation of esoskeleton that can be subjected to the incorporation of radionuclides.

  15. Kinetic analysis of anaerobic phosphorus release during biological phosphorus removal process

    Institute of Scientific and Technical Information of China (English)

    DOU Junfeng; LUO Guyuan; LIU Xiang


    Enhanced biological phosphorus removal(EBPR)is a commonly used and sustainable method for phosphorus removal from wastewater.Poly-β-hydroxybutyrate(PHB),polyphosphate,and glycogen are three kinds of intracellular storage polymers in phosphorus accumulation organisms.The variation of these polymers under different conditions has an apparent influence on anaerobic phosphorus release,which is very important for controlling the performance of EBPR.To obtain the mechanism and kinetic character of anaerobic phosphorus release,a series of batch experiments were performed using the excessively aerated sludge from the aerobic unit of the biological phosphorus removal system in this study.The results showed that the volatile suspended solid(vss)had an increasing trend,while the mixed liquid suspended sludge(MLSS)and ashes were reduced during the anaerobic phosphorus release process.The interruption of anaerobic HAc-uptake and phosphorus-release occurs when the glycogen in the phosphorus-accumulating-organisms is exhausted.Under the condition of lower initial HAc-COD,HAc became the limiting factor after some time for anaerobic HAc uptake.Under the condition of higher initial HAc-COD,HAc uptake was stopped because of the depletion of glycogen in the microorganisms.The mean ratio of △ρP/△ρPHB,△ρGLY/△ρPHB,△ρP/△COD,and △ρPHB/△COD was 0.48,0.50,0.44.and 0.92.respectively,which was nearly the same as the theoretical value.The calibrated kinetic parameters of the HAc-uptake and phosphorus-release model were evaluated as Kgly was 0.005,and KCOD was 3 mg/L.An apparently linear correlation was observed between the ratio of △ρP/△COD and pH of the solution,and the equation between them was obtained in this study.

  16. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images

    Directory of Open Access Journals (Sweden)

    Kimori Yoshitaka


    Full Text Available Abstract Background A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. Results A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Conclusions Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  17. The impact of sea water flushing on biological nitrification-denitrification activated sludge sewage treatment process. (United States)

    Yu, S M; Leung, W Y; Ho, K M; Greenfield, P F; Eckenfelder, W W


    The process performance of the two largest activated sludge processes in Hong Kong, the Sha Tin and the Tai Po Sewage Treatment Works (STW), deteriorated in the initial period after the introduction of seawater flushing in 1995 and 1996, respectively. High effluent ammonia nitrogen (NH4-N) and total suspended solids (TSS) in excess of the discharge standards resulted from incomplete nitrification and changes in floc characteristics. A desktop study on the inhibitory effects of salinity, particularly on nitrification, was subsequently conducted using the Tai Po STW operating data. To assist the upgrade of the Sha Tin STW a five-month extensive bench-scale investigation on a simple but flexible modified Ludzack-Ettinger configuration with bio-selector was conducted to quantify the inhibitory effects due to the saline concentration. The Sha Tin STW upgrade consists of restoration of its original design capacity (conventional process) of 205,000 m3/day from its currently much reduced capacity as a Bardenpho process. Only the volume of the existing biological process and clarifier is to be utilized. The saline concentration ranges from 3,500 up to 6,500 mg Cl-/L, both daily and seasonally. High and greatly fluctuating saline concentrations have been known to inhibit nitrification. Design consideration should also be given to the peak daily and seasonal TKN loading of up to three times the average. Although the nitrifiers maximum specific growth rate was significantly reduced to a low 0.25 day(-1), the inhibition was considered to be tolerable with effluent NH4-N and NO3-N consistently at < 1 and < 6 mg/L. The bio-selector was demonstrated to be efficient in control of sludge foaming and bulking with SVI consistently < or = 125 mL/g. Results from the IAWO Model No. 1 and the hydraulic model of the secondary clarifiers allowed overall process capacity maximization. With an anoxic mass fraction of 25-30%, operating sludge age of 9-14 days and SVI < or = 125 mL/g, both the

  18. Raman scattering in GaN, AlN and AlGaN. Basic material properties, processing and devices

    CERN Document Server

    Hayes, J M


    dependence of the phonon frequencies and lifetimes was measured from 10 K to 1275 K. Empirical fitting and theoretical modelling of the temperature dependence was performed. The results have application for the monitoring of temperature in (Ga/AI)N. The E sub 2 (high) phonon frequency of GaN measured by micro-Raman spectroscopy was used to monitor local temperatures in active AIGaN/GaN hetero-structure field effect transistor devices (HFETs). The temperature rise in the active area of devices on sapphire substrates was significantly higher than for devices on 4H-SiC substrates. Temperatures were monitored to the point of device failure to gain insight into degradation mechanisms. GaN, AIN and AIGaN are very promising materials for high-power, high-temperature and high-frequency electronic device applications but many of their material properties and the effects of processing steps for device fabrication have not yet been fully investigated. AIGaN/GaN films were annealed at temperatures of 800 to 1300 deg C in...

  19. Coking wastewater treatment for industrial reuse purpose: Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis

    Institute of Scientific and Technical Information of China (English)

    Xuewen Jin; Enchao Li; Shuguang Lu; Zhaofu Qiu; Qian Sui


    A full-scale plant using anaerobic,anoxic and oxic processes (A1/A2/O),along with a pilot-scale membrane bioreactor (MBR),nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai Baosteel Chemical Co.Ltd.,was investigated to treat coking wastewater for industrial reuse over a period of one year.The removals reached 82.5% (COD),89.6% (BOD),99.8% (ammonium nitrogen),99.9% (phenol),44.6% (total cyanide (T-CN)),99.7% (thiocyanide (SCN-)) and 8.9% (fluoride),during the A1/A2/O biological treatment stage,and all parameters were further reduced by over 96.0%,except for fluoride (86.4%),in the final discharge effluent from the currently operating plant.The pilot-scale MBR process reduced the turbidity to less than 0.65 NTU,and most of the toxic organic compounds were degraded or intercepted by the A1/A2/O followed MBR processes.In addition,parameters including COD,T-CN,total nitrogen,fluoride,chloride ion,hardness and conductivity were significantly reduced by the NF-RO system to a level suitable for industrial reuse,with a total water production ratio of 70.7%.However,the concentrates from the NF and RO units were highly polluted and should be disposed of properly or further treated before being discharged.

  20. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants (United States)

    Boonsirichai, K.; Guan, C.; Chen, R.; Masson, P. H.


    The ability of plant organs to use gravity as a guide for growth, named gravitropism, has been recognized for over two centuries. This growth response to the environment contributes significantly to the upward growth of shoots and the downward growth of roots commonly observed throughout the plant kingdom. Root gravitropism has received a great deal of attention because there is a physical separation between the primary site for gravity sensing, located in the root cap, and the site of differential growth response, located in the elongation zones (EZs). Hence, this system allows identification and characterization of different phases of gravitropism, including gravity perception, signal transduction, signal transmission, and curvature response. Recent studies support some aspects of an old model for gravity sensing, which postulates that root-cap columellar amyloplasts constitute the susceptors for gravity perception. Such studies have also allowed the identification of several molecules that appear to function as second messengers in gravity signal transduction and of potential signal transducers. Auxin has been implicated as a probable component of the signal that carries the gravitropic information between the gravity-sensing cap and the gravity-responding EZs. This has allowed the identification and characterization of important molecular processes underlying auxin transport and response in plants. New molecular models can be elaborated to explain how the gravity signal transduction pathway might regulate the polarity of auxin transport in roots. Further studies are required to test these models, as well as to study the molecular mechanisms underlying a poorly characterized phase of gravitropism that is independent of an auxin gradient.

  1. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process. (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Xing, Wei


    Nitrogen pollution in ground and surface water significantly affects the environment and its organisms, thereby leading to an increasingly serious environmental problem. Such pollution is difficult to degrade because of the lack of carbon sources. Therefore, an electrochemical and biological coupling process (EBCP) was developed with a composite catalytic biological carrier (CCBC) and applied in a pilot-scale cylindrical reactor to treat wastewater with a carbon-to-nitrogen (C/N) ratio of 2. The startup process, coupling principle, and dynamic feature of the EBCP were examined along with the effects of hydraulic retention time (HRT), dissolved oxygen (DO), and initial pH on nitrogen removal. A stable coupling system was obtained after 51 days when plenty of biofilms were cultivated on the CCBC without inoculation sludge. Autotrophic denitrification, with [Fe(2+)] and [H] produced by iron-carbon galvanic cells in CCBC as electron donors, was confirmed by equity calculation of CODCr and nitrogen removal. Nitrogen removal efficiency was significantly influenced by HRT, DO, and initial pH with optimal values of 3.5 h, 3.5 ± 0.1 mg L(-1), and 7.5 ± 0.1, respectively. The ammonia, nitrate, and total nitrogen (TN) removal efficiencies of 90.1 to 95.3 %, 90.5 to 99.0 %, and 90.3 to 96.5 % were maintained with corresponding initial concentrations of 40 ± 2 mg L(-1) (NH3-N load of 0.27 ± 0.01 kg NH3-N m(-3) d(-1)), 20 ± 1 mg L(-1), and 60 ± 2 mg L(-1) (TN load of 0.41 ± 0.02 kg TN m(-3) d(-1)). Based on the Eckenfelder model, the kinetics equation of the nitrogen transformation along the reactor was N e  = N 0 exp (-0.04368 h/L(1.8438)). Hence, EBCP is a viable method for advanced low C/N ratio wastewater treatment.

  2. Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence (United States)

    Pohorille, Andrew


    above background was evolved in vitro. This enzyme does not look like any contemporary protein. It is very flexible and its structure is kept together just by a single salt bridge between a charged residue and a coordinating zinc. A similar picture emerges from studies of simple transmembrane channels that mimic those in ancestral cells. Again, they are extremely flexible and do not form a conventional pore. Yet, they efficiently mediate ion transport. Studies on simple proteins that are on-going in several laboratories hold promise of revealing crucial links between chemical and biological catalysis and other ubiquitous cell functions. Interaction between composition, growth and division of protobiologically relevant vesicles and metabolic reactions that they encapsulate is an example of coupling between simple functions that promotes reproduction and evolution. Recent studies have demonstrated possible mechanisms by which vesicles might have evolved their composition from fatty acids to phospholipids, thus facilitating a number of new cellular functions. Conversely, it has been also demonstrated that an encapsulated metabolism might drive vesicle division. These are, again, examples of processes that might have driven the transition from chemistry to biology.

  3. Reproductive Behavior and Basic Biology of the Oriental Bamboo-Inhabiting Anoplomus rufipes and a Comparison with Frugivorous Dacinae Fruit Flies (United States)

    Kovac, Damir


    The reproductive behaviors and mating systems of the fruit-infesting species of the Dacinae tribes Ceratitidini and Dacini are increasingly well understood, while in the non-frugivorous tribe Gastrozonini, data are lacking. In the present study, the reproductive behavior of Anoplomus rufipes from North Thailand was studied in the field, other behaviors also in the laboratory. A. rufipes mated on young bamboo plants growing in areas destroyed by fire. Exudates of extrafloral nectaries produced by the young bamboo plants provided food for the females. Factors affecting the choice of the mating site were favorable microclimatic conditions and food. Courtship behavior was performed on the upper sides of bamboo leaves and included pheromone calling (abdominal elevation, anal pouch eversion, abdominal pleural distention), anal dabbing, looping flights and a specific lofting/body swaying behavior. The males searched individually for females or formed leks containing up to four males. The reproductive behaviors and lek formation of A. rufipes are compared to other Dacinae (Ceratitis, Bactrocera), and their functions are discussed. Hitherto unknown data on the general biology of A. rufipes are also included. A. rufipes larvae infested living bamboo shoots of Cephalostachyum pergracile, and the observed behaviors of the adults included locomotion, grooming, feeding, oral droplet deposition, bubbling and agonistic behavior. PMID:26512699

  4. A DO- and pH-Based Early Warning System of Nitrification Inhibition for Biological Nitrogen Removal Processes

    Directory of Open Access Journals (Sweden)

    Hyunook Kim


    Full Text Available In Korea, more than 80% of municipal wastewater treatment plants (WWTPs with capacities of 500 m3·d−1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L−1 Hg2+, 0.5 mg·L−1 allythiourea, or 0.25 mg·L−1 chloroform could be successfully detected.

  5. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li


    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  6. Social inclusion enhances biological motion processing: a functional near-infrared spectroscopy study. (United States)

    Bolling, Danielle Z; Pelphrey, Kevin A; Kaiser, Martha D


    Humans are especially tuned to the movements of other people. Neural correlates of this social attunement have been proposed to lie in and around the right posterior superior temporal sulcus (STS) region, which robustly responds to biological motion in contrast to a variety of non-biological motions. This response persists even when no form information is provided, as in point-light displays (PLDs). The aim of the current study was to assess the ability of functional near-infrared spectroscopy (fNIRS) to reliably measure brain responses to PLDs of biological motion, and determine the sensitivity of these responses to interpersonal contextual factors. To establish reliability, we measured brain activation to biological motion with fNIRS and functional magnetic resonance imaging (fMRI) during two separate sessions in an identical group of 12 participants. To establish sensitivity, brain responses to biological motion measured with fNIRS were subjected to an additional social manipulation where participants were either socially included or excluded before viewing PLDs of biological motion. Results revealed comparable brain responses to biological motion using fMRI and fNIRS in the right supramarginal gyrus. Further, social inclusion increased brain responses to biological motion in right supramarginal gyrus and posterior STS. Thus, fNIRS can reliably measure brain responses to biological motion and can detect social experience-dependent modulations of these brain responses.

  7. Fröhlich Condensate: Emergence of Synergetic Dissipative Structures in Information Processing Biological and Condensed Matter Systems

    Directory of Open Access Journals (Sweden)

    Roberto Luzzi


    Full Text Available We consider the case of a peculiar complex behavior in open boson systems sufficiently away from equilibrium, having relevance in the functioning of information-processing biological and condensed matter systems. This is the so-called Fröhlich–Bose–Einstein condensation, a self-organizing-synergetic dissipative structure, a phenomenon apparently working in biological processes and present in several cases of systems of boson-like quasi-particles in condensed inorganic matter. Emphasis is centered on the quantum-mechanical-statistical irreversible thermodynamics of these open systems, and the informational characteristics of the phenomena.

  8. Vibrations, Quanta and Biology

    CERN Document Server

    Huelga, S F


    Quantum biology is an emerging field of research that concerns itself with the experimental and theoretical exploration of non-trivial quantum phenomena in biological systems. In this tutorial overview we aim to bring out fundamental assumptions and questions in the field, identify basic design principles and develop a key underlying theme -- the dynamics of quantum dynamical networks in the presence of an environment and the fruitful interplay that the two may enter. At the hand of three biological phenomena whose understanding is held to require quantum mechanical processes, namely excitation and charge transfer in photosynthetic complexes, magneto-reception in birds and the olfactory sense, we demonstrate that this underlying theme encompasses them all, thus suggesting its wider relevance as an archetypical framework for quantum biology.

  9. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund


    or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment......The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  10. Field enhancements of packed-bed performance for low-concentration acidic and basic-waste gases from semiconductor manufacturing process. (United States)

    Chein, Hung Min; Aggarwal, Shankar Gopala; Wu, Hsin Hsien; Chen, Tzu Ming; Huang, Chun-Chao


    Low-concentration acidic and basic-waste gas pollutants contribute significantly in the total emission of a facility. Previous results show that the control of high volumetric flow rate (approximately 500 m3/min), low-concentration acidic (< 1 ppm by vol) and basic (< 3 ppm by vol) gases from semiconductor process vent, by conventional wet scrubbing technique is a challenging task. This work was targeted to enhance the performance of packed beds for high-volumetric flow rate, low-concentration acidic (HF, HCl), and basic (NH3)-waste gases from the semiconductor manufacturing process. The methodology used to meet the goal was the application of fine-water mist over the inlet stream before entering to the packed bed and use of the surfactant with mist/packed-bed liquid in low concentration. An experimental study was carried out in two acid-packed beds to optimize the operating conditions, such as pH of the liquid, circulating liquid flow rate, blow-down cycle, and so forth. The relationship among liquid pH, liquid ionic concentration, and the removal efficiency of the packed bed for the pollutants has been discussed considering chemical equilibrium, two-film theory, and Henry's law. For the potential utilization of scrubbing water, the dependency of the efficiency on blow-down cycle was studied, and a mechanism is suggested. The proposed water-mist surfactant system was installed in two acid-packed beds, and performance of the packed beds was compared. The background efficiencies of the acid-packed beds for HF, HCl, and NH3 were found max to be (n = 11) 53, 40, and 27%, whereas after installation of the system, they increased significantly and became 76 +/- 13% (n = 10), 76 +/- 8% (n = 7), and 78 +/- 7% (n = 7), respectively, for inlet concentrations of HF and HCl < 1 ppm and NH3 < 14 ppm. The mechanism by which the surfactants operate to enhance the removal in scrubbing process is suggested considering the hydrodynamic effect and the interfacial effect with the

  11. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. (United States)

    Lucock, M


    This paper reviews the chemistry, metabolism, and molecular biology of folic acid, with a particular emphasis on how it is, or may be, involved in many disease processes. Folic acid prevents neural tube defects like spina bifida, while its ability to lower homocysteine suggests it might have a positive influence on cardiovascular disease. A role for this B vitamin in maintaining good health may, in fact, extend beyond these clinical conditions to encompass other birth defects, several types of cancer, dementia, affective disorders, Down's syndrome, and serious conditions affecting pregnancy outcome. The effect of folate in these conditions can be explained largely within the context of folate-dependent pathways leading to methionine and nucleotide biosynthesis, and genetic variability resulting from a number of common polymorphisms of folate-dependent enzymes involved in the homocysteine remethylation cycle. Allelic variants of folate genes that have a high frequency in the population, and that may play a role in disease formation include 677C --> T-MTHFR, 1298A --> C-MTHFR, 2756A --> G-MetSyn, and 66A --> G-MSR. Future work will probably uncover further polymorphisms of folate metabolism, and lead to a wider understanding of the interaction between this essential nutrient and the many genes which underpin its enzymatic utilization in a plethora of critical biosynthetic reactions, and which, under adverse nutritional conditions, may promote disease.

  12. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant. (United States)

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Lukasz


    Wastewater samples originating from an explosives production plant (3,000 mg N l(-1) nitrate, 4.8 mg l(-1) nitroglycerin, 1.9 mg l(-1) nitroglycol and 1,200 mg l(-1) chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic conditions was used. Complete removal of nitrates with simultaneous elimination of nitroglycerin and ethylene glycol dinitrate (nitroglycol) was achieved as a result of the conducted research. Specific nitrate reduction rate was estimated at 12.3 mg N g(-1) VSS h(-1). Toxicity of wastewater samples during the denitrification process was studied by measuring the activity of dehydrogenases in the activated sludge. Mutagenicity was determined by employing the Ames test. The maximum mutagenic activity did not exceed 0.5. The obtained results suggest that the studied wastewater samples did not exhibit mutagenic properties.

  13. Extraction of flavonoids from Tagetes patula: process optimization and screening for biological activity

    Directory of Open Access Journals (Sweden)

    Vanessa M. Munhoz


    Full Text Available The flowers of Tagetes patula L., Asteraceae, commonly known as French marigold, are used in folk medicine as an antiseptic, diuretic, blood purifier and insect repellent. This study was conducted to optimize the extraction process through the biomonitoring of flavonoids, using a statistical mixture simplex-centroid design, to evaluate the effect of the solvents water, ethanol and acetone, as well as mixtures of these solvents, assessed by the total flavonoid content. The extracts were tested for dry residue, radical scavenging activity, chromatographic profile, and larvicidal activity. The acetone extract had the highest total flavonoid content, 25.13 ± 1.02% (4.07%; and the best radical scavenging activity, with IC50 of 15.74 μg/ml ± 1.09 (6.92%, but with lower dry residue, 6.62 ± 1.33% (20.10%. The water extracts showed higher levels of dry residue, but lower total flavonoid content and radical scavenging activity than the acetone extract. The positive correlation between the total flavonoid content and radical scavenging activity of the extracts showed that flavonoids contribute significantly to the antioxidant capacity. The statistical mixture design allowed us to optimize the extraction of flavonoids from flowers of T. patula, with acetone as the best extraction solvent. Preliminary studies on the biological activity of the optimized extracts demonstrated a larvicidal effect of the acetone extract on Aedes aegypti mosquitoes.

  14. [Intensity of apoptotic processes, aconitate hydratase activity and citrate level in patients with type 2 diabetes mellitus complicated steatohepatitis under application of epifamin at basic therapy]. (United States)

    Popov, S S; Pashkov, A N; Agarkov, A A; Shulgin, K K


    DNA fragmentation, caspase-1 and caspase-3, aconitate hydratase (AH) activities, and citrate content have been investigated in the blood of patients with type 2 diabetes mellitus complicated by steatohepatitis. These indicators of apoptotic processes intensity and oxidative stress development were estimated after basic treatment and a combined therapy including epifamin. Before treatment DNA fragmentation blood leukocytes, decrease of AH activity and increase of caspases activities in the serum of patients were detected. Treatment with epifamin provided more pronounced changes in the investigated parameters towards control values as compared to basis therapy. Epifamin caused a positive effect on the citrate content in the serum of patients. Epifamin inclusion to the basic therapy was accompanied by a more pronounced changes towards the normal values of such biochemical parameters as ALT, AST, b-lipoproteins, cholesterol, fasting glucose and postprandial glucose levels. All these changes may be obviously attributed to epifamin-induced correction of the melatonin level and manifestation of adaptogenic properties and antioxidant effects of the hormone.

  15. Inflation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    inflation since metrical fluctuations, both scalar and tensor, are also produced in inflationary models. Thus, the time appears to be appropriate for a very basic and simple exposition of the inflationary model written from a particle physics perspective. Only the simplest scalar model will be explored because it is easy to understand and contains all the basic elements of the inflationary model.

  16. Inflation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    inflation since metrical fluctuations, both scalar and tensor, are also produced in inflationary models. Thus, the time appears to be appropriate for a very basic and simple exposition of the inflationary model written from a particle physics perspective. Only the simplest scalar model will be explored because it is easy to understand and contains all the basic elements of the inflationary model.

  17. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

    Directory of Open Access Journals (Sweden)

    Sette Alessandro


    Full Text Available Abstract Background Many processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM. This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP and proteasomal cleavage of protein sequences. Results Herein we report the implementation of the SMM algorithm as a publicly available software package. Specific features determining the type of problems the method is most appropriate for are discussed. Advantageous features of the package are: (1 the output generated is easy to interpret, (2 input and output are both quantitative, (3 specific computational strategies to handle experimental noise are built in, (4 the algorithm is designed to effectively handle bounded experimental data, (5 experimental data from randomized peptide libraries and conventional peptides can easily be combined, and (6 it is possible to incorporate pair interactions between positions of a sequence. Conclusion Making the SMM method publicly available enables bioinformaticians and experimental biologists to easily access it, to compare its performance to other prediction methods, and to extend it to other applications.

  18. Basic Number Processing Deficits in ADHD: A Broad Examination of Elementary and Complex Number Processing Skills in 9- to 12-Year-Old Children with ADHD-C (United States)

    Kaufmann, Liane; Nuerk, Hans-Christoph


    ADHD (attention-deficit hyperactivity disorder) and academic difficulties are frequently associated, but to date this link is poorly understood. In order to explore which components of number processing and calculation skills may be disturbed in children with ADHD we presented a series of respective tasks to 9- to 12-year-old children with…

  19. Performance of biological phosphorus removal and characteristics of microbial community in the oxic-settling-anaerobic process by FISH analysis

    Institute of Scientific and Technical Information of China (English)

    Jian-fang WANG; Qing-liang ZHAO; Wen-biao JIN; Shi-jie YOU; Jin-na ZHANG


    Performance of biological phosphorus removal in the oxic-settling-anaerobic (OSA) process was investigated. Cell staining and fluorescent in situ hybridization (FISH) were used to analyze characteristics and microbial community of sludge.Experimental results showed that phosphorus removal efficiency was near 60% and the amount of biological phosphorus accumulation in aerobic sludge of the OSA system was up to 26.9 mg/g. Biological phosphorus removal efficiency was partially inhibited by carbon sources in the continuous OSA system. Contrasted to the OSA system, biological phosphorus removal efficiency was enhanced by 14% and the average total phosphorus (TP) contents of aerobic sludge were increased by 0.36 mg/g when sufficient carbon sources were supplied in batch experiments. Staining methods indicated that about 35% of microorganisms had typical characteristics of phosphorus accumulating organisms (PAOs). FISH analysis demonstrated that PAOMIX-binding bacteria were predominant microbial communities in the OSA system, which accounted for around 28% of total bacteria.

  20. ERT basics

    Energy Technology Data Exchange (ETDEWEB)

    Butters, M. [MBC Energy and Environment, Ottawa, ON (Canada)]|[National Round Table on the Environment and the Economy, Ottawa, ON (Canada)


    ERT is an economic instrument which helps power companies achieve emission reduction compliance cost-effectively. This paper presents the basics of ERT with reference to trading concepts, types of systems and types of emissions. The paper also describes the state of the Canadian energy market regarding greenhouse gases (GHG), nitrogen oxides, sulphur dioxide and volatile organic compounds. The association between ERT and district energy is also explained. By 2010, the global market for GHG trading is expected to be worth $10 billion to $3 trillion U.S. Canada has committed to reducing its GHG to 6 per cent below 1990 levels by 2012, but currently emits 705 Mt per year. This is expected to increase to 770 Mt by 2010. Therefore, in order to meet its commitment, GHGs will have to be reduced 200 Mt per year. Canada is currently considering ratifying the Kyoto agreement and a trading system is being developed. There are several abatement technologies currently under consideration for district energy systems, including adding scrubbers, improving efficiency, and fuel switching. The marginal cost of abatement was also discussed. tabs., figs.

  1. Poisson distribution and process as a well-fitting pattern for counting variables in biologic models

    Directory of Open Access Journals (Sweden)

    Lucietta Betti


    Full Text Available One of the major criticisms directed to basic research on high dilution effects is the lack of a steady statistical approach; therefore, it seems crucial to fix some milestones in statistical analysis of this kind of experimentation. Since plant research in homeopathy has been recently developed and one of the mostly used models is based on in vitro seed germination, here we propose a statistical approach focused on the Poisson distribution, that satisfactorily fits the number of non-germinated seeds. Poisson distribution is a discrete-valued model often used in statistics when representing the number X of specific events (telephone calls, industrial machine failures, genetic mutations etc. that occur in a fixed period of time, supposing that instant probability of occurrence of such events is constant. If we denote with λ the average number of events that occur within the fixed period, the probability of observing exactly k events is: P(k = e-λ λk /k! , k = 0, 1,2,… This distribution is commonly used when dealing with rare effects, in the sense that it has to be almost impossible to have two events at the same time. Poisson distribution is the basic model of the socalled Poisson process, which is a counting process N(t, where t is a time parameter, having these properties: -The process starts with zero: N(0 = 0; -The increments are independent; -The number of events that occur in a period of time d(t follows a Poisson distribution with parameter proportional to d(t; -The waiting time, i.e. the time between an event and another one, follows and exponential distribution. In a series of experiments performed by our research group ([1], [2]., [3], [4] we tried to apply this distribution to the number X of non-germinated seeds out of a fixed number N* of seeds in a Petri dish (usually N* = 33 or N* = 36. The goodness-of-fit was checked by different tests (Kolmogorov distance and chi-squared, as well as

  2. Brain Basics

    Medline Plus

    Full Text Available ... occur when this process does not work correctly. Communication between neurons can also be electrical, such as ... the body's response to stress. impulse —An electrical communication signal sent between neurons by which neurons communicate ...

  3. Discussion on the Biological Degradation of Acid/Basic Dyes%酸性/碱性染料的生物降解分析

    Institute of Scientific and Technical Information of China (English)

    仲玲玲; 孙东豪; 苏小军; 杜晟威; 梁羽


    染料在纺织领域使用较为广泛,对环境的污染也最为严重,因此纺织品污水处理方法研究是绿色工业生产中的一个重要课题。使用价格低廉、易于培养的活性污泥细菌对染料进行生物降解,并通过细胞毒性试验、小鼠全身毒性试验、化学需氧量(COD)测试、分光光度法测试和红外分析法测试来表征染料降解的程度。结果表明:活性污泥对5种染料(4种酸性染料和1种碱性染料)的降解效果明显,降解后COD值明显下降,染料的去除率为71.4%~76.1%;分光光度法测试的染料平均降解效率为90.6%。%Dyes are widely used in textile field,resulting in the serious environmental pollution.Therefore,to investigate the textile wastewater treatment method is the need of green industrial production.We report the use of activated sludge bacteria,which is cheap and easy to be cultured,for biological degradation of dyes.The degree of dye degradation is characterized by cell toxicity,mouse systemic toxicity test,chemical oxygen demand,spectrophotometry and infrared analysis.The results show that the degradation of activated sludge on five kinds of dyes is effective,that is,after degradation,COD values from treated solutions decrease obviously,dye removal rate is 71.4%~76.1% and dye degradation average efficiency is 90.6%.

  4. Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater. (United States)

    Espejo, Azahara; Aguinaco, Almudena; García-Araya, J F; Beltrán, Fernando J


    Sequential treatments consisting in a chemical process followed by a conventional biological treatment, have been applied to remove mixtures of nine contaminants of pharmaceutical type spiked in a primary sedimentation effluent of a municipal wastewater. Combinations of ozone, UVA black light (BL) and Fe(III) or Fe₃O₄ catalysts constituted the chemical systems. Regardless of the Advanced Oxidation Process (AOP), the removal of pharmaceutical compounds was achieved in 1 h of reaction, while total organic carbon (TOC) only diminished between 3.4 and 6%. Among selected ozonation systems to be implemented before the biological treatment, the application of ozone alone in the pre-treatment stage is recommended due to the increase of the biodegradability observed. The application of ozone followed by the conventional biological treatment leads high TOC and COD removal rates, 60 and 61%, respectively, and allows the subsequent biological treatment works with shorter hydraulic residence time (HRT). Moreover, the influence of the application of AOPs before and after a conventional biological process was compared, concluding that the decision to take depends on the characterization of the initial wastewater with pharmaceutical compounds.

  5. Engaging Biology Undergraduates in the Scientific Process through Writing a Theoretical Research Proposal (United States)

    Stanford, Jennifer S.; Duwel, Laura E.


    It has been suggested that research experiences are an important element that should be included in all undergraduate Biology curricula. This is a difficult suggestion to accommodate due to issues with cost, space and time. We addressed this challenge through development of a capstone project in which Biology majors work in groups to develop novel…

  6. Application of "Visual Basic. NET" course based on work process in practical teaching%基于工作过程的《Visual Basic.NET》课程在实习教学中的应用

    Institute of Scientific and Technical Information of China (English)



    《Visual Basic.NET》是计算机专业核心课程,在充分调研IT行业市场行情基础上,结合渤海船院具体情况,探索基于工作过程的 《Visual Basic.NET》课程在实习教学环节中的应用,并从四个方面提出实习教学中的教学策略.

  7. Basic bioreactor design.

    NARCIS (Netherlands)

    Riet, van 't K.; Tramper, J.


    Based on a graduate course in biochemical engineering, provides the basic knowledge needed for the efficient design of bioreactors and the relevant principles and data for practical process engineering, with an emphasis on enzyme reactors and aerated reactors for microorganisms. Includes exercises.

  8. Basic Processes of Plasma Propulsion (United States)


    MARKINGS 2& SECURITY CLASSIFICATION AUTHORITY I DI ease.1O~ 2b DECLASSIFICATION I DOWNGRADING SCHEDULE ears onSO th1~e r ~ r 4PERFORMING ORGANIZATION ...REPORT NUMBER(S) S. MOO .IORING ORGANIZATION REPORT NUMBER(S) 6NAME OF PERFORMING ORGANIZATION 6b OFFIE SYMBOL 7a. NAME OF MONITORING ORGANIZATION ...Here, another explanation will be presented which also leads to exellent agreement with the experimentally found onset and which may have some merits

  9. Modeling latency code processing in the electric sense: from the biological template to its VLSI implementation. (United States)

    Engelmann, Jacob; Walther, Tim; Grant, Kirsty; Chicca, Elisabetta; Gómez-Sena, Leonel


    Understanding the coding of sensory information under the temporal constraints of natural behavior is not yet well resolved. There is a growing consensus that spike timing or latency coding can maximally exploit the timing of neural events to make fast computing elements and that such mechanisms are essential to information processing functions in the brain. The electric sense of mormyrid fish provides a convenient biological model where this coding scheme can be studied. The sensory input is a physically ordered spatial pattern of current densities, which is coded in the precise timing of primary afferent spikes. The neural circuits of the processing pathway are well known and the system exhibits the best known illustration of corollary discharge, which provides the reference to decoding the sensory afferent latency pattern. A theoretical model has been constructed from available electrophysiological and neuroanatomical data to integrate the principal traits of the neural processing structure and to study sensory interaction with motor-command-driven corollary discharge signals. This has been used to explore neural coding strategies at successive stages in the network and to examine the simulated network capacity to reproduce output neuron responses. The model shows that the network has the ability to resolve primary afferent spike timing differences in the sub-millisecond range, and that this depends on the coincidence of sensory and corollary discharge-driven gating signals. In the integrative and output stages of the network, corollary discharge sets up a proactive background filter, providing temporally structured excitation and inhibition within the network whose balance is then modulated locally by sensory input. This complements the initial gating mechanism and contributes to amplification of the input pattern of latencies, conferring network hyperacuity. These mechanisms give the system a robust capacity to extract behaviorally meaningful features of the

  10. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L


    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  11. Microscope basics. (United States)

    Sluder, Greenfield; Nordberg, Joshua J


    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter.

  12. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process

    DEFF Research Database (Denmark)

    Liu, W.-T.; Nielsen, Alex Toftgaard; Wu, JH


    Polyphosphate- and polyhydroxyalkanoate (PHA)- accumulating traits of predominant microorganisms in an efficient enhanced biological phosphorus removal (EBPR) process were investigated systematically using a suite of non-culture-dependent methods. Results of 16S rDNA clone library and fluorescence...

  13. Basic Financial Accounting

    DEFF Research Database (Denmark)

    Wiborg, Karsten

    This textbook on Basic Financial Accounting is targeted students in the economics studies at universities and business colleges having an introductory subject in the external dimension of the company's economic reporting, including bookkeeping, etc. The book includes the following subjects: busin......: business entities, the transformation process, types of businesses, stakeholders, legislation, the annual report, the VAT system, double-entry bookkeeping, inventories, and year-end cast flow analysis.......This textbook on Basic Financial Accounting is targeted students in the economics studies at universities and business colleges having an introductory subject in the external dimension of the company's economic reporting, including bookkeeping, etc. The book includes the following subjects...

  14. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus) (United States)

    Bowen, Lizabeth; Miles, A. Keith; Stott, Jeffrey L.; Waters, Shannon C.; Atwood, Todd C.


    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans.

  15. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology. (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao


    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  16. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus). (United States)

    Bowen, Lizabeth; Miles, A Keith; Stott, Jeffrey; Waters, Shannon; Atwood, Todd


    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans.

  17. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.


    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  18. Membrane-proximal TRAIL species are incapable of inducing short circuit apoptosis signaling: Implications for drug development and basic cytokine biology. (United States)

    Tatzel, Katharina; Kuroki, Lindsay; Dmitriev, Igor; Kashentseva, Elena; Curiel, David T; Goedegebuure, S Peter; Powell, Matthew A; Mutch, David G; Hawkins, William G; Spitzer, Dirk


    TRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3. However, cell death proceeded exclusively via a bystander mechanism and protected the mesothelin-positive targets from apoptosis rather than leading to their elimination. Incorporation of a spacer-into the mesothelin surface antigen or the cancer drug itself-converted SS-TR3 into a cis-acting phenotype. Further experiments with membrane-anchored TR3 variants and the native cytokine confirmed our hypothesis that membrane-proximal TRAIL species lack the capacity to physically engage their cognate receptors coexpressed on the same cell membrane. Our findings not only provide an explanation for the "peaceful" coexistence of ligand and receptor of a representative member of the TNF superfamily but give us vital clues for the design of activity-enhanced TR3-based cancer therapeutics.

  19. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment. (United States)

    Guieysse, Benoit; Norvill, Zane N


    When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment.

  20. Biological processes in the water column of the South Atlantic bight

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhoefer, G.A.; Yoder, J.A.


    Progress is reported on research conducted during 1979 on the biological oceanography of the South Atlantic Bight. The presentation consists of a number of published articles and abstracts of oral presentations. (ACR)

  1. Modeling the Drug Discovery Process: The Isolation and Biological Testing of Eugenol from Clove Oil (United States)

    Miles, William H.; Smiley, Patricia M.


    This experiment describes the isolation and biological testing of eugenol and neutral compounds from commercially available clove oil. By coupling the chemical separation of the components of clove oil (an experiment described in many introductory organic laboratory textbooks) with a simple antibiotic test, the students "discover" the biologically active compound in clove oil. This experiment models one of the primary methods used in the discovery of new pharmaceutical agents.

  2. LEGO 机器人魔方还原基本方法与过程%The Basic Method and Process of Lego Robot Working Rubik’ s Cube Work

    Institute of Scientific and Technical Information of China (English)

    李国军; 钟志强; 张毅宁


    LEGO机器人魔方还原问题是一个持续受关注的问题,但其工作基本原理和解决方法仍不能被广泛理解。本文以层先法为例说明了魔方还原基本方法,结合leJOS编程软件解析了LEGO机器人还原魔方中的扫描魔方、识别色彩,魔方求解运算、机械实施还原的主要过程。%Rubik’ s Cube solution for LEGO robot is receiving constant concern , but The basic method and process of Lego robot working is perplex for LEGO fans .This paper illustrates Rubik ’ s Cube Layer-First Solu-tion Method,and analyses scanning color ,pattern recognition,Cube solution and mechanize recovering process .

  3. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian


    Discharge of nitrogenous components to water bodies can cause eutrophication, deterioration of water quality, toxicity to aquatic life, and pose a potential hazard to human and animal health. Biological nitrogen removal can remove nitrogenous components via conversion to harmless nitrogen gas...... with high efficiency and relative low costs. However, the removal of nitrogen from domestic wastewater with a low carbon/nitrogen (C/N) ratio can often be limited in municipal wastewater plants (WWTPs) because organic carbon is a limiting factor for denitrification. The present work reviews innovative...... treatment processes including the modified anaerobic/anoxic/oxic (A(2)/O) process, the step-feed multistage anaerobic/ oxic (A/O) process, and new reactors like the membrane bioreactors (MBRs) and the membrane-aerated biofilm reactors (MABRs) can support the innovative biological nitrogen removal pathways...

  4. Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater. (United States)

    Espejo, Azahara; Aguinaco, Almudena; Amat, Ana M; Beltrán, Fernando J


    Removal of nine pharmaceutical compounds--acetaminophen (AAF), antipyrine (ANT), caffeine (CAF), carbamazepine (CRB), diclofenac (DCF), hydrochlorothiazide (HCT), ketorolac (KET), metoprolol (MET) and sulfamethoxazole (SMX)-spiked in a primary sedimentation effluent of a municipal wastewater has been studied with sequential aerobic biological and ozone advanced oxidation systems. Combinations of ozone, UVA black light and Fe(III) or Fe3O4 constituted the chemical systems. During the biological treatment (hydraulic residence time, HRT = 24 h), only AAF and CAF were completely eliminated, MET, SMX and HCT reached partial removal rates and the rest of compounds were completely refractory. With any ozone advanced oxidation process applied, the remaining pharmaceuticals disappear in less than 10 min. Fe3O4 or Fe(III) photocatalytic ozonation leads to 35% mineralization compared to 13% reached during ozonation alone after about 30-min reaction. Also, biodegradability of the treated wastewater increased 50% in the biological process plus another 150% after the ozonation processes. Both untreated and treated wastewater was non-toxic for Daphnia magna (D. magna) except when Fe(III) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Kinetic information on ozone processes reveals that pharmaceuticals at concentrations they have in urban wastewater are mainly removed through free radical oxidation.

  5. Basic research projects

    Energy Technology Data Exchange (ETDEWEB)


    The research programs under the cognizance of the Office of Energy Research (OER) are directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical and biological sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall DOE effort and the fundamental principles of natural phenomena so that these phenomena may be understood, and new principles, formulated. The DOE-OER outlay activities include three major programs: High Energy Physics, Nuclear Physics, and Basic Energy Sciences. Taken together, these programs represent some 30 percent of the Nation's Federal support of basic research in the energy sciences. The research activities of OER involve more than 6,000 scientists and engineers working in some 17 major Federal Research Centers and at more than 135 different universities and industrial firms throughout the United States. Contract holders in the areas of high-energy physics, nuclear physics, materials sciences, nuclear science, chemical sciences, engineering, mathematics geosciences, advanced energy projects, and biological energy research are listed. Funding trends for recent years are outlined. (RWR)

  6. Internal water ocean on Titan: Place for prebiological and biological processes (United States)

    Simakov, Michael B.

    Titan's rocks. Even a very gentle extraction of a sample of the meteorite (4 days at 20 C) yields a large essential inorganic components, such as PO4 3- , SO4 2- , Cl- , Ca2+ , Mg2+ , Na+ , K+ as well as organic matter. So, an aqueous weathering would release nutrients to fluid where they would be available to microorganisms. The temperatures of Titan's ocean could have been relatively warm and all conditions inside liquid body seem compatible with the emergence and sustaining of life. Recent attempts to establish a lower limit for the time required for emergence of life suggest that 10-100 million years was enough in case of Earth. The existence time of the Titan's juvenile ocean was enough for arising of the first protoliving objects. All requirements needed for exobiology — liquid water which exists within long geological period, complex organic and inorganic chemistry and energy sources for support of biological processes are on Saturnian moon. The putative internal water ocean along with complex atmospheric photochemistry provide some exobiological niches on this body: (1) an upper layer of the internal water ocean; (2) pores, veins, channels and pockets filled with brines inside of the lowest part of the icy layer; (3) the places of cryogenic volcanism; (4) set of caves in icy layer connecting with cryovolcanic processes; (5) the brine-filled cracks in icy crust caused by tidal forces; (6) liquid water pools on the surface originated from meteoritic strikes; (7) the sites of hydrothermal activity on the bottom of the ocean. Possible metabolic processes, such as nitrate/nitrite reduction, sulfate reduction and methanogenesis could be suggested for Titan's biochemistry.

  7. ADAPT: building conceptual models of the physical and biological processes across permafrost landscapes (United States)

    Allard, M.; Vincent, W. F.; Lemay, M.


    Fundamental and applied permafrost research is called upon in Canada in support of environmental protection, economic development and for contributing to the international efforts in understanding climatic and ecological feedbacks of permafrost thawing under a warming climate. The five year "Arctic Development and Adaptation to Permafrost in Transition" program (ADAPT) funded by NSERC brings together 14 scientists from 10 Canadian universities and involves numerous collaborators from academia, territorial and provincial governments, Inuit communities and industry. The geographical coverage of the program encompasses all of the permafrost regions of Canada. Field research at a series of sites across the country is being coordinated. A common protocol for measuring ground thermal and moisture regime, characterizing terrain conditions (vegetation, topography, surface water regime and soil organic matter contents) is being applied in order to provide inputs for designing a general model to provide an understanding of transfers of energy and matter in permafrost terrain, and the implications for biological and human systems. The ADAPT mission is to produce an 'Integrated Permafrost Systems Science' framework that will be used to help generate sustainable development and adaptation strategies for the North in the context of rapid socio-economic and climate change. ADAPT has three major objectives: to examine how changing precipitation and warming temperatures affect permafrost geosystems and ecosystems, specifically by testing hypotheses concerning the influence of the snowpack, the effects of water as a conveyor of heat, sediments, and carbon in warming permafrost terrain and the processes of permafrost decay; to interact directly with Inuit communities, the public sector and the private sector for development and adaptation to changes in permafrost environments; and to train the new generation of experts and scientists in this critical domain of research in Canada

  8. Basic and Applied Research on Environmental Decisions (United States)

    Krantz, D. H.


    Societal use of well-understood physical or biological science generally involves social processes, including dissemination of the knowledge across society and modification of public policy and of group and individual behavior. The social processes are often poorly understood, from the standpoint of social science; thus, questions in applied natural science often give rise to fundamental questions within social science. For example, problems concerning communication of uncertain scientific information give rise to basic research about how conceptual frameworks (of both the recipients and the providers of such information) change, over the course of repeated attempts at communication. Our Center has been exposed to such communication problems, in several field projects, and this exposure has suggested fruitful new directions for our laboratory research on decision making. For example, we noted (as others have) that communication is often more effective when presented to a group of peers gathered in a familiar setting than to individuals. Among other observations, Orlove and his collaborators noted that Ugandan villagers gather in groups to hear radio broadcasts of climate forecasts together. What behavioral processes lead to more effective communication to groups? Does the social setting enhance individual learning? Does the group frame decision problems differently from the average individual member? Are individual goals modified by the group setting? All three of these processes may be important; we have results concerning each from our current laboratory experiments. I argue that these ideas also require major modification of current theories of decision making, and so are particularly fruitful for basic research in the Decision Sciences. Our experience has led us to emphasize the very close relation between basic and applied social research. We also believe that social-science students need much stronger education in natural sciences and/or engineering, in order

  9. Comparative Study of the Effects of Long and Short Term Biological Processes on the Cycling of Colloidal Trace Metals (United States)

    Pinedo, P.; Sanudo-Wilhelmy, S. A.; West, A.


    Nanoparticle (or colloids), with sizes operationally defined as ranging from 1nm to 1000nm diameter, are thought to play an important role in metal cycling in the ocean due to their high surface area to volume ratio and abundance in marine systems. In coastal waters, the bulk of marine nanoparticles are organic, so short and long term biological processes are expected to influence the dynamics of these types of particles in marine environments. This is, in turn, expected to influence metal concentrations. Here we selected two different environments to study the influence of long-term biological events (phytoplankton blooms) and short-term biological events (diel cycles of photosynthesis and respiration) on the cycling of colloidal trace metals. We focus on Cu and Fe, both biogeochemically important metals but with differing colloidal behavior. Long term processes (West Neck Bay): A bay (West Neck Bay, Long Island) with predictable natural phytoplankton blooms, but with limited inputs of freshwater, nutrients and metals, was selected to study the partitioning of Cu and Fe between colloidal and soluble pools over the course of a bloom. During the bloom, there was a significant build-up of Cu associated with DOM accumulation and a removal of Fe via particle stripping. Fraction-specific metal concentrations, and metal accumulation and removal rates, were found to be significantly correlated with chlorophyll-a concentration and with dissolved organic matter (DOM). Short term processes (Catalina Island): To identify the cyclical variation in metal speciation during diel (24-hour) cycles of photosynthesis and respiration, we conducted a study off Catalina Island, a pristine environment where trace metal cycling is solely controlled by biological processes and changes in the phytoplankton community are well characterized. The speciation of Fe between soluble and colloidal pools showed that Fe has a high affinity for colloidal material and that the distribution between

  10. Biological methylation of inorganic mercury by Saccharomyces cerevisiae - a possible environmental process

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, K.; Stoeppler, M.; Nuernberg, H.W.


    The biological methylation of inorganic mercury by S-adenosylmethione (SAM) was investigated by incubation experiments with Saccharomyces cerevisae (''bakers' yeast''). The methyl donor (methionine) and the acceptor (Hg/sup 2 +/ as HgCl/sub 2/) were also applied in their labelled form (double labelling). Methylmercury as a result of a possibly biological methyl group transfer could not be detected. As reaction product only small amounts (0.01per mille yield) of elemental mercury (Hg/sup 0/) were found, while the overwhelming amount of HgCl/sub 2/ had not reacted.

  11. Artemia (Crustacea, Anostraca in Chile: a review of basic and applied biology Artemia Crustacea, Anostraca en Chile: revisión de la biología básica y aplicada

    Directory of Open Access Journals (Sweden)

    Patricio De los Rios-Escalante


    Full Text Available The brine shrimp Artemia in Chile has been studied since the 1980s, initially on populations inhabiting shallow coastal and inland mountain ponds, and saltworks in northern and central Chile. Based on morphometric and molecular evidence, these populations were identified as A. franciscana. In the 1990s, A. persimilis was recorded from southern Patagonia, a species previously considered endemic to Argentina. Recently, two new populations of A.franciscana have been recorded, from one saline coastal pond in northern Chile and from a saltwork in central Chile. The scope for further research to increase both understanding of the strain characterization and basic population ecology descriptions of the Chilean brine shrimps and improve their conservation status is discussed. It is suggested that future studies should investigate first the management of local brine shrimp population for local aquaculture or conservation resources, other direction would be the effects of ultraviolet radiation (UVR exposition that is notoriously high in brine shrimp habitats. This last factor is very important because the UVR is an important mutagen on the genetic structure of the populations. In this scenario, it is suggest a carefully management for introduced brine shrimp populations for local aquaculture for avoid alterations in native populations that due their genetic isolation would need conservation procedures for avoid local extinctions.El camarón de salmuera o Artemia ha sido estudiado en Chile desde la década de 1980, las primeras descripciones de poblaciones fueron para lagunas someras en zonas costeras y de montana, y en salinas artificiales en la zona central y norte de Chile. Sobre la base de evidencias morfométricas y moleculares estas poblaciones fueron descritas como A. franciscana. En la década de 1990, se describió la presencia de A. persimilis en la zona sur de la Patagonia, lo cual fue una ampliación del rango de distribución significativa

  12. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno


    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  13. Molecular neurodegeneration: basic biology and disease pathways



    The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington’s disease, and Down syndrome. Recent developments have also facilitated initial efforts to...

  14. Process Simulation of Complex Biological Pathways in Physical Reactive Space and Reformulated for Massively Parallel Computing Platforms. (United States)

    Ganesan, Narayan; Li, Jie; Sharma, Vishakha; Jiang, Hanyu; Compagnoni, Adriana


    Biological systems encompass complexity that far surpasses many artificial systems. Modeling and simulation of large and complex biochemical pathways is a computationally intensive challenge. Traditional tools, such as ordinary differential equations, partial differential equations, stochastic master equations, and Gillespie type methods, are all limited either by their modeling fidelity or computational efficiency or both. In this work, we present a scalable computational framework based on modeling biochemical reactions in explicit 3D space, that is suitable for studying the behavior of large and complex biological pathways. The framework is designed to exploit parallelism and scalability offered by commodity massively parallel processors such as the graphics processing units (GPUs) and other parallel computing platforms. The reaction modeling in 3D space is aimed at enhancing the realism of the model compared to traditional modeling tools and framework. We introduce the Parallel Select algorithm that is key to breaking the sequential bottleneck limiting the performance of most other tools designed to study biochemical interactions. The algorithm is designed to be computationally tractable, handle hundreds of interacting chemical species and millions of independent agents by considering all-particle interactions within the system. We also present an implementation of the framework on the popular graphics processing units and apply it to the simulation study of JAK-STAT Signal Transduction Pathway. The computational framework will offer a deeper insight into various biological processes within the cell and help us observe key events as they unfold in space and time. This will advance the current state-of-the-art in simulation study of large scale biological systems and also enable the realistic simulation study of macro-biological cultures, where inter-cellular interactions are prevalent.

  15. Proposal to optimize ecotoxicological evaluation of wastewater treated by conventional biological and ozonation processes. (United States)

    Wigh, Adriana; Devaux, Alain; Brosselin, Vanessa; Gonzalez-Ospina, Adriana; Domenjoud, Bruno; Aït-Aïssa, Selim; Creusot, Nicolas; Gosset, Antoine; Bazin, Christine; Bony, Sylvie


    A mixture of urban and hospital effluents (50% v/v) was evaluated for ecotoxicity with an advanced bioassay battery. Mixed effluents were tested before any treatment, after biological treatment alone, and after biological treatment followed by a tertiary ozonation (15 mg O3/L). Laying a high value on the continuance of organisms' fitness, essential to preserve a healthy receiving ecosystem, the main objective of this study was to combine normalized bioassays with newly developed in vivo and in vitro tests in order to assess alteration of embryo development, growth and reproduction, as well as genotoxic effects in aquatic organisms exposed to complex wastewater effluents. Comparison of the bioassays sensitivity was considered. Contrary to the lack of toxicity observed with normalized ecotoxicity tests, endpoints measured on zebrafish embryos such as developmental abnormalities and genotoxicity demonstrated a residual toxicity in wastewater both after a biological treatment followed or not by a tertiary O3 treatment. However, the ozonation step allowed to alleviate the residual endocrine disrupting potential measure in the biologically treated effluent. This study shows that normalized bioassays are not sensitive enough for the ecotoxicological evaluation of wastewaters and that there is a great need for the development of suitable sensitive bioassays in order to characterize properly the possible residual toxicity of treated effluents.

  16. StochPy: A Comprehensive, User-Friendly Tool for Simulating Stochastic Biological Processes

    NARCIS (Netherlands)

    Maarleveld, T.R.; Olivier, B.G.; Bruggeman, F.J.


    Single-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models are indispe

  17. Biologically variable respiration as a stochastic process in ventilation - a stochastic model study. (United States)

    Min, Kyongyob; Hosoi, Keita; Degami, Masayuki; Kinoshita, Yoshinori


    Based on the fractal bronchial tree, we introduced a function of "asynchronous phasic contractions of lobular bronchiole", which would generate fluctuations in tidal volumes. Stochastic control theory was able to describe a genesis of biological variability in spontaneous respirations using a Schroedinger wave function.

  18. Biological Soft Robotics. (United States)

    Feinberg, Adam W


    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  19. On the language specificity of basic number processing: transcoding in a language with inversion and its relation to working memory capacity. (United States)

    Zuber, Julia; Pixner, Silvia; Moeller, Korbinian; Nuerk, Hans-Christoph


    Transcoding Arabic numbers from and into verbal number words is one of the most basic number processing tasks commonly used to index the verbal representation of numbers. The inversion property, which is an important feature of some number word systems (e.g., German einundzwanzig [one and twenty]), might represent a major difficulty in transcoding and a challenge to current transcoding models. The mastery of inversion, and of transcoding in general, might be related to nonnumerical factors such as working memory resources given that different elements and their sequence need to be memorized and manipulated. In this study, transcoding skills and different working memory components in Austrian (German-speaking) 7-year-olds were assessed. We observed that inversion poses a major problem in transcoding for German-speaking children. In addition, different components of working memory skills were differentially correlated with particular transcoding error types. We discuss how current transcoding models could account for these results and how they might need to be adapted to accommodate inversion properties and their relation to different working memory components.

  20. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail:; Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail:; Djafarzadeh, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail:


    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m{sup -2} enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm{sup -1} and 50 mg l{sup -1}, respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions.