WorldWideScience

Sample records for basement membrane material

  1. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  2. The major basement membrane components localize to the chondrocyte pericellular matrix--a cartilage basement membrane equivalent?

    DEFF Research Database (Denmark)

    Kvist, Alexander J.; Nyström, Alexander; Hultenby, Kjell

    2007-01-01

    In this study, we demonstrate that articular cartilage chondrocytes are surrounded by the defining basement membrane proteins laminin, collagen type IV, nidogen and perlecan, and suggest that these form the functional equivalent of a basement membrane. We found by real-time PCR that mouse...... chondrocytes express these four cardinal components of basement membranes and demonstrated by immunohistochemistry that the proteins are present in bovine and mouse cartilage tissues and are deposited in a thin pericellular structure. Immunoelectron microscopy confirmed high laminin concentration...... becomes less distinct, especially in areas of obvious mechanical attrition. Interestingly, individual laminin subunits were located in different zones of the cartilage, with laminin alpha1 showing preferential localization around a select population of superficial layer chondrocytes. We propose...

  3. The vascular basement membrane in the healthy and pathological brain.

    Science.gov (United States)

    Thomsen, Maj S; Routhe, Lisa J; Moos, Torben

    2017-10-01

    The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.

  4. Perlecan and basement membrane-chondroitin sulfate proteoglycan (bamacan) are two basement membrane chondroitin/dermatan sulfate proteoglycans in the Engelbreth-Holm-Swarm tumor matrix

    DEFF Research Database (Denmark)

    Couchman, J R; Kapoor, R; Sthanam, M

    1996-01-01

    heparan sulfate proteoglycan, widespread in many basement membranes and connective tissues. We now identify two distinct proteoglycan species from this tumor source, which are substituted with galactosaminoglycans and which show basement membrane localization by immunohistochemistry. One species......The presence of proteoglycans bearing galactosaminoglycan chains has been reported, but none has been identified previously in the matrix of the Engelbreth-Holm-Swarm tumor, which is a source of several basement membrane components. This tumor matrix contains perlecan, a large, low buoyant density......-CSPG are distinct in core protein structure. Both are, however, basement membrane components, although there are tissue-specific differences in their distribution....

  5. Collective cell behavior on basement membranes floating in space

    Science.gov (United States)

    Ellison, Sarah; Bhattacharjee, Tapomoy; Morley, Cameron; Sawyer, W.; Angelini, Thomas

    The basement membrane is an essential part of the polarity of endothelial and epithelial tissues. In tissue culture and organ-on-chip devices, monolayer polarity can be established by coating flat surfaces with extracellular matrix proteins and tuning the trans-substrate permeability. In epithelial 3D culture, spheroids spontaneously establish inside-out polarity, morphing into hollow shell-like structures called acini, generating their own basement membrane on the inner radius of the shell. However, 3D culture approaches generally lack the high degree of control provided by the 2D culture plate or organ-on-chip devices, making it difficult to create more faithful in vitro tissue models with complex surface curvature and morphology. Here we present a method for 3D printing complex basement membranes covered in cells. We 3D print collagen-I and Matrigel into a 3D growth medium made from jammed microgels. This soft, yielding material allows extracellular matrix to be formed as complex surfaces and shapes, floating in space. We then distribute MCF10A epithelial cells across the polymerized surface. We envision employing this strategy to study 3D collective cell behavior in numerous model tissue layers, beyond this simple epithelial model.

  6. Intercellular deposits of basement membrane material in active human pituitary adenomas detected by immunostaining for laminin and electron microscopy

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1986-01-01

    and one patient with Cushing's syndrome). Concurrently, at the ultrastructural level, bunches of basement membrane-like material intermingled between the adenoma cells were demonstrated in seven of these ten active adenomas. Furthermore, secretory granules were entrapped occasionally in this intercellular...

  7. Coarctation induces alterations in basement membranes in the cardiovascular system

    DEFF Research Database (Denmark)

    Lipke, D W; McCarthy, K J; Elton, T S

    1993-01-01

    ventricular hypertrophy was maximal within 5 days. In immunohistochemical studies, fibronectin and laminin were increased and the basement membrane chondroitin sulfate proteoglycan decreased in both the subendothelial space and smooth muscle cell basement membranes of the aorta above the clip compared...... membrane components in the heart and vasculature peaked before maximal cardiac hypertrophy (5 days). These studies indicate that alterations in basement membrane component deposition in the hypertrophied vasculature occur at both transcriptional and translational levels and suggest that the cell attachment...

  8. Anti-glomerular basement membrane disease superimposed on membranous nephropathy: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Nivera Noel

    2010-08-01

    Full Text Available Abstract Introduction Anti-glomerular basement membrane disease is a rare autoimmune disorder characterized by pulmonary hemorrhage, crescentic glomerulonephritis and the presence of circulating anti-glomerular basement membrane antibodies. The simultaneous occurrence of both anti-glomerular basement membrane disease and membranous nephropathy is rare. Case presentation A 59-year-old Hispanic man presented with acute onset of nausea and vomiting and was found to have renal insufficiency. Work-up included a kidney biopsy, which revealed anti-glomerular basement membrane disease with underlying membranous nephropathy. He was treated with emergent hemodialysis, intravenous corticosteroids, plasmapheresis, and cyclophosphamide without improvement in his renal function. Conclusion Simultaneous anti-glomerular basement membrane disease and membranous nephropathy is very rare. There have been 16 previous case reports in the English language literature that have been associated with a high mortality and morbidity, and a very high rate of renal failure resulting in hemodialysis. Co-existence of membranous nephropathy and anti-glomerular basement membrane disease may be immune-mediated, although the exact mechanism is not clear.

  9. Force-dependent breaching of the basement membrane.

    Science.gov (United States)

    Chang, Tammy T; Thakar, Dhruv; Weaver, Valerie M

    2017-01-01

    Clinically, non-invasive carcinomas are confined to the epithelial side of the basement membrane and are classified as benign, whereas invasive cancers invade through the basement membrane and thereby acquire the potential to metastasize. Recent findings suggest that, in addition to protease-mediated degradation and chemotaxis-stimulated migration, basement membrane invasion by malignant cells is significantly influenced by the stiffness of the associated interstitial extracellular matrix and the contractility of the tumor cells that is dictated in part by their oncogenic genotype. In this review, we highlight recent findings that illustrate unifying molecular mechanisms whereby these physical cues contribute to tissue fibrosis and malignancy in three epithelial organs: breast, pancreas, and liver. We also discuss the clinical implications of these findings and the biological properties and clinical challenges linked to the unique biology of each of these organs. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  10. Basement membrane proteoglycans and development

    DEFF Research Database (Denmark)

    Couchman, J R; Abrahamson, D R; McCarthy, K J

    1993-01-01

    -CSPG was only strongly expressed in the vasculature invading late comma stage glomeruli, and later in presumptive and mature Bowman's capsule. Over the first six to eight weeks, the capillary basement membranes contained BM-CSPG, but in gradually decreasing amounts until it became completely undetectable...

  11. Regeneration of the epidermis and basement membrane of the planarian Dugesia japonica after total-body x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hori, I.

    1979-03-01

    Fresh-water planarians were studied to examine effects of x rays on regeneration of the epidermis and basement membrane. During early stages of regeneration, free rhabdite-forming cells were associated with the wound epidermis and recruited it. In later stages, however, a gradual degeneration occurred in the epidermis and cells undergoing epithelization decreased in number. Eventually epidermal cells on the wound surface appeared necrotic as evidenced by pyknotic nuclei and vacuolized dense cytoplasm. The entire basement membrane could not be reconstituted in any stage after wounding though its precursor-like material was secreted in the interspace between epidermis and parenchyma. Morphological changes in extracellular products and in the cells surrounding the products suggest that epidermal cells which have covered the wound surface synthesize precursors of the basement membrane. Possible factors of a characteristic perturbation in epithelization and basement membrane formation after total-body irradiation are discussed.

  12. Regeneration of the epidermis and basement membrane of the planarian Dugesia japonica after total-body x irradiation

    International Nuclear Information System (INIS)

    Hori, I.

    1979-01-01

    Fresh-water planarians were studied to examine effects of x rays on regeneration of the epidermis and basement membrane. During early stages of regeneration, free rhabdite-forming cells were associated with the wound epidermis and recruited it. In later stages, however, a gradual degeneration occurred in the epidermis and cells undergoing epithelization decreased in number. Eventually epidermal cells on the wound surface appeared necrotic as evidenced by pyknotic nuclei and vacuolized dense cytoplasm. The entire basement membrane could not be reconstituted in any stage after wounding though its precursor-like material was secreted in the interspace between epidermis and parenchyma. Morphological changes in extracellular products and in the cells surrounding the products suggest that epidermal cells which have covered the wound surface synthesize precursors of the basement membrane. Possible factors of a characteristic perturbation in epithelization and basement membrane formation after total-body irradiation are discussed

  13. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec......During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations....... Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...... to undergo pseudodecidualization. We thus showed that stromal cells from pregnant and nonpregnant mouse uteri synthesize significant amounts of basement-membrane components in vitro, and hence could serve as a good model for the study of normal basement-membrane components....

  14. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea

    Science.gov (United States)

    Lee, Koon-Ja; Lee, Ji-Young; Lee, Sung Ho; Choi, Tae Hoon

    2013-01-01

    To understand the corneal regeneration induced by bevacizumab, we investigated the structure changes of stroma and basement membrane regeneration. A Stick soaked in 0.5 N NaOH onto the mouse cornea and 2.5 mg/ml of bevacizumab was delivered into an alkali-burned cornea (2 μl) by subconjunctival injections at 1 hour and 4 days after injury. At 7 days after injury, basement membrane regeneration was observed by transmission electron microscope. Uneven and thin epithelial basement membrane, light density of hemidesmosomes, and edematous collagen fibril bundles are shown in the alkali-burned cornea. Injured epithelial basement membrane and hemidesmosomes and edematous collagen fibril bundles resulting from alkali-burned mouse cornea was repaired by bevacizumab treatment. This study demonstrates that bevacizumab can play an important role in wound healing in the cornea by accelerating the reestablishment of basement membrane integrity that leads to barriers for scar formation. [BMB Reports 2013; 46(4): 195-200] PMID:23615260

  15. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  16. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane.

    Science.gov (United States)

    Ferrell, Nicholas; Cameron, Kathleen O; Groszek, Joseph J; Hofmann, Christina L; Li, Lingyan; Smith, Ross A; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L; Fissell, William H

    2013-04-02

    Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  18. De novo deposition of laminin-positive basement membrane in vitro by normal hepatocytes and during hepatocarcinogenesis

    DEFF Research Database (Denmark)

    Albrechtsen, R; Wewer, U M; Thorgeirsson, S S

    1988-01-01

    De novo formation of laminin-positive basement membranes was found to be a distinct morphologic feature of diethylnitrosamine/phenobarbital-induced hepatocellular carcinomas of the rat. The first appearance of extracellularly located laminin occurred in the preneoplastic liver lesions...... (corresponding to neoplastic nodules), and this feature became successively more prominent during the course of hepatocellular carcinoma development. Most groups of tumor cells were surrounded by laminin-positive basement membrane material. The laminin-positive material was also deposited along the sinusoids......, a location where no laminin was seen in normal rat liver. The amount of extractable laminin from hepatocellular carcinomas was significantly higher (approximately 100 ng per mg tissue) than that of normal liver tissue (less than 20 ng per mg). In vitro experiments demonstrated that normal and preneoplastic...

  19. ULTRASTRUCTURAL-CHANGES OF THE BASEMENT-MEMBRANE ZONE IN BENIGN LESIONS OF THE VOCAL FOLDS

    NARCIS (Netherlands)

    DIKKERS, FG; HULSTAERT, CE; OOSTERBAAN, JA; CERVERAPAZ, FJ

    The basement membrane zone (BMZ) of the epithelium of the vocal folds was investigated electron microscopically in 10 patients suffering from various benign lesions and in 3 controls. Various defects were observed: a thickening by deposition of electron dense material, a loss of normal architecture,

  20. Immunochemical and ultrastructural assessment of the nature of the pericellular basement membrane of human decidual cells

    DEFF Research Database (Denmark)

    Wewer, U M; Faber, M; Liotta, L A

    1985-01-01

    Human decidual cells of early and late pregnancy were studied immunochemically and ultrastructurally with respect to the presence and nature of pericellular basement membrane material. The most prominent cell type in decidual tissue of both early and late pregnancy were large, mature epithelioid......-linked immunosorbent assay. Biosynthesis of laminin was shown by [35S]methionine labeling of short term organ cultures of decidual tissue followed by immunoprecipation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fluorography. The laminin chains migrated with the apparent molecular weights of 300...... and 200 kilodaltons under reducing conditions. Two other separate populations of cells were apparent in the decidual tissue of early pregnancy. A smaller group of rounded intermediate sized (15 to 25 micron) decidual cells had focal deposits basement membrane immunoreactive material scattered at the cell...

  1. Co-deposition of basement membrane components during the induction of murine splenic AA amyloid

    DEFF Research Database (Denmark)

    Lyon, A W; Narindrasorasak, S; Young, I D

    1991-01-01

    Past studies have demonstrated that during murine AA amyloid induction there is co-deposition of the AA amyloid peptide and the basement membrane form of heparan sulfate proteoglycan. The synthesis and accumulation of heparan sulfate proteoglycan does not usually occur in the absence of other...... basement membrane components, such as type IV collagen, laminin, and fibronectin. Using immunohistochemical techniques, the present experiments have demonstrated that in addition to the heparan sulfate proteoglycan, there are other basement membrane components present in splenic AA amyloid deposits...... and these are present as soon as AA amyloid deposits are detectable. The results indicate that within the time constraints imposed by the experiments, the basement membrane components, fibronectin, laminin, type IV collagen, and heparan sulfate proteoglycan are co-deposited 36 to 48 hours after the AgNO3 and amyloid...

  2. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J

    1994-01-01

    of distal tubules and collecting ducts was observed by 4 days with phenol II treatment, but the morphology returned to normal after 7 days of subsequent normal diet. Staining of tissue sections with two mouse monoclonal antibodies to a recently described basement membrane chondroitin sulfate proteoglycan...... to chondroitin sulfate chains confirmed these changes in cystic tubule basement membranes. During the recovery stage, interstitial chondroitin sulfate (representing a CSPG other than BM-CSPG) was greatly increased around these tubules, along with the glycoprotein fibronectin. Staining with antibody to a basement...... membrane heparan sulfate proteoglycan core protein related to perlecan did not diminish but rather stained affected tubules intensely, whereas laminin, on the other hand, was apparently diminished in the basement membranes of the cystic tubules. Type IV collagen staining did not change through disease...

  3. Expression of basement membrane components through morphological changes in the hair growth cycle

    DEFF Research Database (Denmark)

    Couchman, J R; Gibson, W T

    1985-01-01

    The amount and distribution of fibronectin associated with hair follicles was found to vary during the hair growth cycle in the rat. Immunocytochemical staining of follicles in mid-late anagen (the growth stage) revealed the presence of fibronectin in the dermal papilla matrix, in the basement...... membrane separating this from the epithelial cells of the hair bulb, and in the basement membrane and connective tissue sheath which underly the cells of the outer root sheath. Early in catagen, the transitional stage, staining of the dermal papilla matrix disappeared. Fibronectin persisted in the basement...

  4. Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design.

    Science.gov (United States)

    Brody, Sarah; Anilkumar, Thapasimuthu; Liliensiek, Sara; Last, Julie A; Murphy, Christopher J; Pandit, Abhay

    2006-02-01

    A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.

  5. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.

    Science.gov (United States)

    Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O

    2016-05-01

    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.

  6. A Case of Alport Syndrome with Posttransplant Antiglomerular Basement Membrane Disease despite Negative Antiglomerular Basement Membrane Antibodies by EIA Treated with Plasmapheresis and Intravenous Immunoglobulin

    Directory of Open Access Journals (Sweden)

    Sumiko I. Armstead

    2013-01-01

    Full Text Available Posttransplant antiglomerular basement membrane (anti-GBM disease occurs in approximately 5% of Alport patients and usually ends in irreversible graft failure. Recent research has focused on characterizing the structure of the anti-GBM alloepitope. Here we present a case of a 22-year-old male with end-stage renal disease secondary to Alport syndrome, with a previously failed renal allograft, who received a second deceased-donor kidney transplant. Six days after transplantation, he developed acute kidney injury. The serum anti-GBM IgG was negative by enzyme immunoassay (EIA. On biopsy, he had crescentic glomerulonephritis with linear GBM fixation of IgG. With further analysis by western blotting, we were able to detect antibodies to an unidentified protein from the basement membrane. This patient was treated with plasmapheresis twice per week and monthly intravenous immunoglobulin (IVIG for a total of five months. At the end of treatment, these unknown antibodies were no longer detected. His renal function improved, and he has not required dialysis. We conclude that anti-GBM disease in patients with Alport Syndrome may be caused by circulating antibodies to other components of the basement membrane that are undetectable by routine anti-GBM EIA and may respond to treatment with plasmapheresis and IVIG.

  7. A Case of Alport Syndrome with Posttransplant Antiglomerular Basement Membrane Disease despite Negative Antiglomerular Basement Membrane Antibodies by EIA Treated with Plasmapheresis and Intravenous Immunoglobulin.

    Science.gov (United States)

    Armstead, Sumiko I; Hellmark, Thomas; Wieslander, Jorgen; Zhou, Xin J; Saxena, Ramesh; Rajora, Nilum

    2013-01-01

    Posttransplant antiglomerular basement membrane (anti-GBM) disease occurs in approximately 5% of Alport patients and usually ends in irreversible graft failure. Recent research has focused on characterizing the structure of the anti-GBM alloepitope. Here we present a case of a 22-year-old male with end-stage renal disease secondary to Alport syndrome, with a previously failed renal allograft, who received a second deceased-donor kidney transplant. Six days after transplantation, he developed acute kidney injury. The serum anti-GBM IgG was negative by enzyme immunoassay (EIA). On biopsy, he had crescentic glomerulonephritis with linear GBM fixation of IgG. With further analysis by western blotting, we were able to detect antibodies to an unidentified protein from the basement membrane. This patient was treated with plasmapheresis twice per week and monthly intravenous immunoglobulin (IVIG) for a total of five months. At the end of treatment, these unknown antibodies were no longer detected. His renal function improved, and he has not required dialysis. We conclude that anti-GBM disease in patients with Alport Syndrome may be caused by circulating antibodies to other components of the basement membrane that are undetectable by routine anti-GBM EIA and may respond to treatment with plasmapheresis and IVIG.

  8. Rat hair follicle dermal papillae have an extracellular matrix containing basement membrane components

    DEFF Research Database (Denmark)

    Couchman, J R

    1986-01-01

    , to be replaced by synthesis of other components including type I and III collagens. It seems likely therefore that the dermal papilla cells in vivo synthesize a basement membrane type of extracellular matrix, although a contribution from epithelial, and in some cases capillary endothelial, cells cannot be ruled......Dermal papillae are small mesenchymally derived zones at the bases of hair follicles which have an important role in hair morphogenesis in the embryo and control of the hair growth cycle in postnatal mammals. The cells of the papilla are enmeshed in a dense extracellular matrix which undergoes...... extensive changes in concert with the hair cycle. Here it is shown that this matrix in anagen pelage follicles of postnatal rats contains an abundance of basement membrane components rather than dermal components such as interstitial collagens. In particular, type IV collagen, laminin, and basement membrane...

  9. Cdc42 expression in keratinocytes is required for the maintenance of the basement membrane in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Brakebusch, Cord

    2006-01-01

    , structure and number of hemidesomosomes were not significantly changed in the Cdc42 mutant skin compared with the control mice and no blister formation was observed in mutant skin. These data indicate that Cdc42 in keratinocytes is important for maintenance of the basement membrane of skin....... process, which requires directed secretion, deposition and organization of basement membrane components at the basal side of epithelial cells. In the current study, we analyzed the maintenance of skin basement membrane in mice with a keratinocyte-restricted deletion of the Cdc42 gene. In the absence...

  10. Basement membrane proteoglycans in glomerular morphogenesis: chondroitin sulfate proteoglycan is temporally and spatially restricted during development

    DEFF Research Database (Denmark)

    McCarthy, K J; Bynum, K; St John, P L

    1993-01-01

    We previously reported the presence of a basement membrane-specific chondroitin sulfate proteoglycan (BM-CSPG) in basement membranes of almost all adult tissues. However, an exception to this ubiquitous distribution was found in the kidney, where BM-CSPG was absent from the glomerular capillary......, the present study used light and electron microscopic immunohistochemistry to examine the distribution of BM-CSPG and basement membrane heparan sulfate proteoglycan (BM-HSPG) during prenatal and postnatal renal development in the rat. Our results show that the temporal and spatial pattern of expression of BM...

  11. Basement Membrane Type IV Collagen and Laminin: An Overview of Their Biology and Value as Fibrosis Biomarkers of Liver Disease.

    Science.gov (United States)

    Mak, Ki M; Mei, Rena

    2017-08-01

    Basement membranes provide structural support to epithelium, endothelium, muscles, fat cells, Schwann cells, and axons. Basement membranes are multifunctional: they modulate cellular behavior, regulate organogenesis, promote tissue repair, form a barrier to filtration and tumor metastasis, bind growth factors, and mediate angiogenesis. All basement membranes contain type IV collagen (Col IV), laminin, nidogen, and perlecan. Col IV and laminin self-assemble into two independent supramolecular networks that are linked to nidogen and perlecan to form a morphological discernable basement membrane/basal lamina. The triple helical region, 7S domain and NCI domain of Col IV, laminin and laminin fragment P1 have been evaluated as noninvasive fibrosis biomarkers of alcoholic liver disease, viral hepatitis, and nonalcoholic fatty liver disease. Elevated serum Col IV and laminin are related to degrees of fibrosis and severity of hepatitis, and may reflect hepatic basement membrane metabolism. But the serum assays have not been linked to disclosing the anatomical sites and lobular distribution of perisinusoidal basement membrane formation in the liver. Hepatic sinusoids normally lack a basement membrane, although Col IV is a normal matrix component of the space of Disse. In liver disease, laminin deposits in the space of Disse and codistributes with Col IV, forming a perisinusoidal basement membrane. Concomitantly, the sinusoidal endothelium loses its fenestrae and is transformed into vascular type endothelium. These changes lead to capillarization of hepatic sinusoids, a significant pathology that impairs hepatic function. Accordingly, codistribution of Col IV and laminin serves as histochemical marker of perisinusoidal basement membrane formation in liver disease. Anat Rec, 300:1371-1390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Regulation of the basement membrane by epithelia generated forces

    Science.gov (United States)

    Tanner, Kandice

    2012-12-01

    Tumor metastasis involves a progressive loss of tissue architecture and dissolution of structural boundaries between the epithelium and connective tissue. The basement membrane (BM), a specialized network of extracellular matrix proteins forms a barrier that physically restricts pre-invasive lesions such that they remain as local insults. The BM is not a static structure, but one that is constantly regenerated and remodeled in the adult organism. Matrix organization also regulates cell function. Thus alterations in the balance of synthesis, remodeling and proteolytic degradation of the extracellular matrix proteins may contribute to a loss of structural integrity. However, the de novo assembly and maintenance of the complex structural properties of in vivo basement membranes remain elusive. Here, this paper highlights the current understanding on the structural properties and the establishment of the BM, and discusses the potential role of self-generated forces in adult tissue remodeling and the maintenance of the BM as a malignancy suppressor.

  13. Regulation of the basement membrane by epithelia generated forces

    International Nuclear Information System (INIS)

    Tanner, Kandice

    2012-01-01

    Tumor metastasis involves a progressive loss of tissue architecture and dissolution of structural boundaries between the epithelium and connective tissue. The basement membrane (BM), a specialized network of extracellular matrix proteins forms a barrier that physically restricts pre-invasive lesions such that they remain as local insults. The BM is not a static structure, but one that is constantly regenerated and remodeled in the adult organism. Matrix organization also regulates cell function. Thus alterations in the balance of synthesis, remodeling and proteolytic degradation of the extracellular matrix proteins may contribute to a loss of structural integrity. However, the de novo assembly and maintenance of the complex structural properties of in vivo basement membranes remain elusive. Here, this paper highlights the current understanding on the structural properties and the establishment of the BM, and discusses the potential role of self-generated forces in adult tissue remodeling and the maintenance of the BM as a malignancy suppressor. (paper)

  14. Human skin basement membrane-associated heparan sulphate proteoglycan: distinctive differences in ultrastructural localization as a function of developmental age

    DEFF Research Database (Denmark)

    Horiguchi, Y; Fine, J D; Couchman, J R

    1991-01-01

    was identical to that observed in neonatal and adult human skin. These findings demonstrate that active remodelling of the dermo-epidermal junction occurs during at least the first two trimesters, and affects not only basement membrane-associated structures but also specific antigens.......Recent studies have demonstrated that skin basement membrane components are expressed within the dermo-epidermal junction in an orderly sequence during human foetal development. We have investigated the ultrastructural localization of basement membrane-related antigens in human foetal skin...... at different developmental ages using two monoclonal antibodies to a well-characterized basement membrane-associated heparan sulphate proteoglycan. A series of foetal skin specimens (range, 54-142 gestational days) were examined using an immunoperoxidase immunoelectron microscopic technique. In specimens...

  15. VEGF-A/Notch-Induced Podosomes Proteolyse Basement Membrane Collagen-IV during Retinal Sprouting Angiogenesis

    Directory of Open Access Journals (Sweden)

    Pirjo Spuul

    2016-10-01

    Full Text Available During angiogenic sprouting, endothelial tip cells emerge from existing vessels in a process that requires vascular basement membrane degradation. Here, we show that F-actin/cortactin/P-Src-based matrix-degrading microdomains called podosomes contribute to this step. In vitro, VEGF-A/Notch signaling regulates the formation of functional podosomes in endothelial cells. Using a retinal neovascularization model, we demonstrate that tip cells assemble podosomes during physiological angiogenesis in vivo. In the retina, podosomes are also part of an interconnected network that surrounds large microvessels and impinges on the underlying basement membrane. Consistently, collagen-IV is scarce in podosome areas. Moreover, Notch inhibition exacerbates podosome formation and collagen-IV loss. We propose that the localized proteolytic action of podosomes on basement membrane collagen-IV facilitates endothelial cell sprouting and anastomosis within the developing vasculature. The identification of podosomes as key components of the sprouting machinery provides another opportunity to target angiogenesis therapeutically.

  16. Basement membrane proteoglycans are of epithelial origin in rodent skin

    DEFF Research Database (Denmark)

    Yamane, Y; Yaoita, H; Couchman, J R

    1996-01-01

    . For in vivo experiments, pieces of newborn rat epidermis obtained by dispase treatment were grafted onto athymic nude mice. Three and six weeks after grafting, immunofluorescence analysis of the grafted skin was carried out, using monoclonal antibodies specific for rat basement membrane chondroitin sulfate...

  17. [Relationship between the changes in ischemia/reperfusion cerebro-microvessel basement membrane injury and gelatinase system in senile rat].

    Science.gov (United States)

    Li, Jian-sheng; Liu, Ke; Liu, Jing-xia; Wang, Ming-hang; Zhao, Yue-wu; Liu, Zheng-guo

    2008-11-01

    To study the relationship of cerebro-microvessel basement membrane injury and gelatinase system after cerebral ischemia/reperfusion (I/R) in aged rats. Cerebral I/R injury model was reproduced by intraluminal silk ligature thrombosis of the middle cerebral artery occlusion (MCAO). Rats were divided randomly into sham control and I/R groups in young rats [ischemia 3 hours (I 3 h) and reperfusion 6 hours (I/R 6 h), 12 hours (I/R 12 h), 24 hours (I/R 24 h), 3 days (I/R 3 d), 6 days (I/R 6 d)], and sham control group and I/R group in aged rats (I 3 h and I/R 6 h, I/R 12 h, I/R 24 h , I/R 3 d, I/R 6 d). The change in cerebro-cortex microvessel basement membrane structure, basement membrane type IV collagen (Col IV) and laminin (LN) contents, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression in every group were determined with immunohistochemical method and zymogram analysis. With the increase in age, Col IV and LN contents of the microvessel basement membrane were increased, and MMP-2 and MMP-9 expressions were stronger. With prolongation of I/R, the degradation of microvessel basement membrane components (Col IV and LN) was positively correlated with the duration of cerebral I/R. MMP-2 expression was increased gradually, and MMP-9 and TIMP-1 expression increased at the beginning and decreased subsequently. Col IV(I 3 h, I/R 6 h , I/R 12 h), LN (I 3 h, I/R 6-24 h), MMP-2 (I 3 h, I/R 6 h-6 d) and MMP-9 (I 3 h, I/R 6-24 h) expression level in aged rats with I/R injury were higher, and TIMP-1 (I/R 24 h) expression was lower than those in young rats (Pcerebro-microvessel basement membrane in rats is related with MMPs and TIMP. Cerebro-microvessel basement membrane injury is more serious in aged rats than that of young rats. Changes in cerebro-microvessel basement membrane injury in aged rats is related with gelatinase system change.

  18. Evidence for the existence of multiple heparan sulfate proteoglycans in the human glomerular basement membrane and mesangial matrix

    NARCIS (Netherlands)

    Groffen, Alexander J A; Hop, Frank W H; Tryggvason, Karl; Dijkman, Henri; Assmann, Karel J M; Veerkamp, Jacques H.; Monnens, Leo A H; Van Den Heuvel, Lambert P W J

    1997-01-01

    Heparan sulfate proteoglycans (HSPGs) are essential components of the glomerular basement membrane (GBM) carrying a strong anionic charge. A well- characterized extracellular HSPG is perlecan, ubiquitously expressed in basement membranes. A cDNA construct encoding domains I and II of human perlecan

  19. Rac1 is essential for basement membrane-dependent epiblast survival

    DEFF Research Database (Denmark)

    He, Xiaowen; Liu, Jie; Qi, Yanmei

    2010-01-01

    During murine peri-implantation development, the egg cylinder forms from a solid cell mass by the apoptotic removal of inner cells that do not contact the basement membrane (BM) and the selective survival of the epiblast epithelium, which does. The signaling pathways that mediate this fundamental...

  20. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea

    Directory of Open Access Journals (Sweden)

    Koon-Ja Lee

    2013-04-01

    Full Text Available To understand the corneal regeneration induced by bevacizumab,we investigated the structure changes of stroma andbasement membrane regeneration. A Stick soaked in 0.5 NNaOH onto the mouse cornea and 2.5 mg/ml of bevacizumabwas delivered into an alkali-burned cornea (2 μl by subconjunctivalinjections at 1 hour and 4 days after injury. At 7 daysafter injury, basement membrane regeneration was observedby transmission electron microscope. Uneven and thin epithelialbasement membrane, light density of hemidesmosomes,and edematous collagen fibril bundles are shown in thealkali-burned cornea. Injured epithelial basement membraneand hemidesmosomes and edematous collagen fibril bundlesresulting from alkali-burned mouse cornea was repaired bybevacizumab treatment. This study demonstrates that bevacizumabcan play an important role in wound healing in thecornea by accelerating the reestablishment of basementmembrane integrity that leads to barriers for scar formation.[BMB Reports 2013; 46(4: 195-200

  1. Nephritogenic antigen determinants in epidermal and renal basement membranes of kindreds with Alport-type familial nephritis.

    Science.gov (United States)

    Kashtan, C; Fish, A J; Kleppel, M; Yoshioka, K; Michael, A F

    1986-10-01

    We probed epidermal basement membranes (EBM) of acid-urea denatured skin from members of kindreds with Alport-type familial nephritis (FN) for the presence of antigens reactive with Goodpasture sera (GPS) and serum (FNS) from an Alport patient who developed anti-glomerular basement membrane (GBM) nephritis in a renal allograft. By immunoblotting, GPS reacted primarily with the 28,000 molecular weight (mol wt) monomer but also the 24,000 mol wt and 26,000 mol wt monomers of the noncollagenous globular domain (NC1) of type IV collagen from normal human GBM, while FNS identified only the 26,000-mol wt monomer. FNS reacted with EBM of 12 controls and nine unaffected male kindred members but not EBM of eight affected males. Five affected females exhibited interrupted reactivity of FNS with EBM. GPS showed variable reactivity with EBM and was not discriminating with respect to Alport-type FN. FNS did not stain renal basement members of five affected males. However, the EBM, tubular basement membrane, and Bowman's capsules of affected males contained antigens reactive with GPS. These immunochemical studies suggest that the FNS antigen is distinct from Goodpasture antigen(s). The expression of FNS antigen located on the NC1 domain of type IV collagen is altered in basement membranes of patients with Alport-type FN, and the distribution of this antigenic anomaly within kindreds suggests X-linked dominant transmission of a defective gene.

  2. Basement Membrane Defects in Genetic Kidney Diseases

    Directory of Open Access Journals (Sweden)

    Christine Chew

    2018-01-01

    Full Text Available The glomerular basement membrane (GBM is a specialized structure with a significant role in maintaining the glomerular filtration barrier. This GBM is formed from the fusion of two basement membranes during development and its function in the filtration barrier is achieved by key extracellular matrix components including type IV collagen, laminins, nidogens, and heparan sulfate proteoglycans. The characteristics of specific matrix isoforms such as laminin-521 (α5β2γ1 and the α3α4α5 chain of type IV collagen are essential for the formation of a mature GBM and the restricted tissue distribution of these isoforms makes the GBM a unique structure. Detailed investigation of the GBM has been driven by the identification of inherited abnormalities in matrix proteins and the need to understand pathogenic mechanisms causing severe glomerular disease. A well-described hereditary GBM disease is Alport syndrome, associated with a progressive glomerular disease, hearing loss, and lens defects due to mutations in the genes COL4A3, COL4A4, or COL4A5. Other proteins associated with inherited diseases of the GBM include laminin β2 in Pierson syndrome and LMX1B in nail patella syndrome. The knowledge of these genetic mutations associated with GBM defects has enhanced our understanding of cell–matrix signaling pathways affected in glomerular disease. This review will address current knowledge of GBM-associated abnormalities and related signaling pathways, as well as discussing the advances toward disease-targeted therapies for patients with glomerular disease.

  3. Immunohistochemical localization of basement membrane components during hair follicle morphogenesis

    DEFF Research Database (Denmark)

    Westgate, G E; Shaw, D A; Harrap, G J

    1984-01-01

    Specific antisera were used to investigate the distributions of several basement membrane zone (BMZ) components, namely, bullous pemphigoid antigen (BPA), heparan sulfate proteoglycan (HSPG), laminin, and type IV collagen, during the development of hair follicles in late embryo rats. BPA was not ......Specific antisera were used to investigate the distributions of several basement membrane zone (BMZ) components, namely, bullous pemphigoid antigen (BPA), heparan sulfate proteoglycan (HSPG), laminin, and type IV collagen, during the development of hair follicles in late embryo rats. BPA...... of the elongating follicle. HSPG was associated with the basal cell layer prior to the appearance of hair follicle primordia and became BMZ-associated before birth but after follicle buds were first observed. HSPG was also found to be associated with the basal cell surfaces in the epidermis, but not in the hair...... follicle. Laminin and type IV collagen were continually present in epidermal and follicular BMZ both before and during development of hair follicles and were later present in the dermal papilla matrix. From these observations we conclude that (1) laminin and type IV collagen are functionally important...

  4. Rituximab for the treatment of refractory simultaneous anti-glomerular basement membrane (anti-GBM) and membranous nephropathy.

    Science.gov (United States)

    Bandak, Ghassan; Jones, Bruce A; Li, Jian; Yee, Jerry; Umanath, Kausik

    2014-02-01

    Antibody-mediated anti-glomerular basement membrane (anti-GBM) disease occurs rarely in the presence of another B-cell disorder, membranous nephropathy. The coexistence of these two autoimmune disorders would be anticipated to require differing, specific therapies targeted to each disease process. We describe a case of concomitant membranous nephropathy and anti-GBM disease in which conventional therapy, including steroids, plasmapheresis and cyclophosphamide, failed to attenuate the anti-GBM disease, yet responded to an alternative treatment of rituximab. This B-cell directed, monoclonal, chimeric antibody treatment substantially reduced anti-GBM antibody titers and led to discontinuation of plasmapheresis, while maintaining the remission of membranous nephropathy and anti-GBM disease.

  5. Nephritogenic antigen determinants in epidermal and renal basement membranes of kindreds with Alport-type familial nephritis.

    OpenAIRE

    Kashtan, C; Fish, A J; Kleppel, M; Yoshioka, K; Michael, A F

    1986-01-01

    We probed epidermal basement membranes (EBM) of acid-urea denatured skin from members of kindreds with Alport-type familial nephritis (FN) for the presence of antigens reactive with Goodpasture sera (GPS) and serum (FNS) from an Alport patient who developed anti-glomerular basement membrane (GBM) nephritis in a renal allograft. By immunoblotting, GPS reacted primarily with the 28,000 molecular weight (mol wt) monomer but also the 24,000 mol wt and 26,000 mol wt monomers of the noncollagenous ...

  6. Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin

    DEFF Research Database (Denmark)

    Albrechtsen, R; Nielsen, M; Wewer, U

    1981-01-01

    The distribution of the basement membrane glycoprotein laminin was studied by the immunoperoxidase technique in benign and malignant human breast tissue and in axillary lymph nodes from patients with breast cancer. An antiserum prepared against rat laminin was used. The specificity...

  7. The basement membrane constituents in the mouse embryo's tooth. An autoradiographic study

    International Nuclear Information System (INIS)

    Osman, M.

    1987-01-01

    Enamel organs isolated from the lower first teeth of 18-days old white mouse embryo by trypsin treatment were used in this study. The organs were cultured during periods of increasing time on a semi-solid medium containing cock serum. In another chase experiments, the organs were cultured on a liquid medium containing proline- 3 H, leucine- 3 H, and glucosamine- 3 H, were studied by autoradiography using both light and electron microscopes. It has been shown that the nature of the culture medium does not apparently interfere with the ability of the enamel to reconstitute the basement membrane. On the other hand, it have been found obvious differences concerning the kinetic of the used isotopes. The results indicate that the turn-over of the basement membrane constituents represents a continuous and homogenous process which continues to take place during, before and after reconstitution. 42 refs. (author)

  8. Immunochemical and autoantigenic properties of the globular domain of basement membrane collagen (type IV).

    Science.gov (United States)

    von der Mark, H; Oberbäumer, I; Timpl, R; Kemler, R; Wick, G

    1985-02-01

    Polyclonal rabbit antibodies raised against the globular domain NC1 of collagen IV from human placenta and a mouse tumor react with conformational antigenic determinants present on the NC1 hexamers and also with the three major subunits obtained after dissociation. The antibodies recognized unique structures within basement membranes and showed a broad tissue reactivity but only limited species cross-reactivity. Using these antibodies, it was possible to detect small amounts of collagen IV antigens from cell cultures and in serum. Monoclonal rat antibodies against mouse NC1 revealed a similar reaction potential. Autoantibodies could be produced in mice against mouse NC1 which react with kidney and lung basement membranes in a pathological manner, mimicking Goodpasture syndrome.

  9. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors.

    Science.gov (United States)

    Benedicto, Ignacio; Lehmann, Guillermo L; Ginsberg, Michael; Nolan, Daniel J; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M; Prusky, Glen T; Llanos, Pierre; Rabbany, Sina Y; Maminishkis, Arvydas; Miller, Sheldon S; Rafii, Shahin; Rodriguez-Boulan, Enrique

    2017-05-19

    The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.

  10. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    Directory of Open Access Journals (Sweden)

    Frances E. Jones

    2016-02-01

    Full Text Available Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.

  11. Removal of the basement membrane enhances corneal wound healing.

    Science.gov (United States)

    Pal-Ghosh, Sonali; Pajoohesh-Ganji, Ahdeah; Tadvalkar, Gauri; Stepp, Mary Ann

    2011-12-01

    Recurrent corneal erosions are painful and put patients' vision at risk. Treatment typically begins with debridement of the area around the erosion site followed by more aggressive treatments. An in vivo mouse model has been developed that reproducibly induces recurrent epithelial erosions in wild-type mice spontaneously within two weeks after a single 1.5 mm corneal debridement wound created using a dulled-blade. This study was conducted to determine whether 1) inhibiting MMP9 function during healing after dulled-blade wounding impacts erosion development and 2) wounds made with a rotating-burr heal without erosions. Oral or topical inhibition of MMPs after dulled-blade wounding does not improve healing. Wounds made by rotating-burr heal with significantly fewer erosions than dulled-blade wounds. The localization of MMP9, β4 integrin and basement membrane proteins (LN332 and type VII collagen), immune cell influx, and reinnervation of the corneal nerves were compared after both wound types. Rotating-burr wounds remove the anterior basement membrane centrally but not at the periphery near the wound margin, induce more apoptosis of corneal stromal cells, and damage more stromal nerve fibers. Despite the fact that rotating-burr wounds do more damage to the cornea, fewer immune cells are recruited and significantly more wounds resolve completely. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Coexistence of anti-glomerular basement membrane antibodies and myeloperoxidase-ANCAs in crescentic glomerulonephritis

    NARCIS (Netherlands)

    Rutgers, Abraham; Slot, Marjan; van Paassen, Pieter; van Breda Vriesman, Peter; Heeringa, Peter; Tervaert, Jan Willem Cohen

    BACKGROUND: In a substantial proportion of patients with crescentic glomerulonephritis (CGN), both anti-glomerular basement membrane (GBM) antibodies and antineutrophil cytoplasmic antibodies (ANCAs) with specificity for myeloperoxidase (MPO-ANCA) are detected. In the present study, we questioned

  13. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    Science.gov (United States)

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... membranes in rat tissues in a manner indistinguishable from antilaminin. The presence of laminin in rat yolk sac cells, the presumed origin of our yolk sac tumor, was studied in some detail. Laminin was found to be present in normal cells of the visceral as well as the parietal yolk sac layer...

  15. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane

    NARCIS (Netherlands)

    Groffen, Alexander J.; Ruegg, Markus A.; Dijkman, Henri; Van De Velden, Thea J.; Buskens, Carin A.; Van Den Born, Jacob; Assmann, Karel J.; Monnens, Leo A.; Veerkamp, Jacques H.; Van Den Heuvel, Lambert P.

    Agrin is a heparan sulfate proteoglycan (HSPG) that is highly concentrated in the synaptic basal lamina at the neuromuscular junction (NMJ). Agrin-like immunoreactivity is also detected outside the NMJ. Here we show that agrin is a major HSPG component of the human glomerular basement membrane

  16. Basement membrane abnormalities in human eyes with diabetic retinopathy

    DEFF Research Database (Denmark)

    Ljubimov, A V; Burgeson, R E; Butkowski, R J

    1996-01-01

    Vascular and parenchymal basement membranes (BMs) are thickened in diabetes, but alterations in individual BM components in diabetic eyes, especially in diabetic retinopathy (DR), are obscure. To identify abnormalities in the distribution of specific constituents, we analyzed cryostat sections...... of human eyes obtained at autopsy (seven normal, five diabetic without DR, and 13 diabetic with DR) by immunofluorescence with antibodies to 30 BM and extracellular matrix components. In non-DR eyes, no qualitative changes of ocular BM components were seen. In some DR corneas, epithelial BM was stained...... discontinuously for laminin-1, entactin/nidogen, and alpha3-alpha4 Type IV collagen, in contrast to non-DR corneas. Major BM alterations were found in DR retinas compared to normals and non-DR diabetics. The inner limiting membrane (retinal BM) of DR eyes had accumulations of fibronectin (including cellular...

  17. Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats

    DEFF Research Database (Denmark)

    McCarthy, K J; Abrahamson, D R; Bynum, K R

    1994-01-01

    exception being the normal glomerular capillary basement membrane (GBM), where it is absent. In the present study of mature kidneys we examined the distribution of BM-CSPG in streptozocin-induced diabetes mellitus in rats. We found BM-CSPG atypically associated with the GBM of diabetic animals as early as 1...... month after induction of diabetes mellitus. Immunoelectron microscopy (IEM) of affected capillary loops showed BM-CSPG present in the subendothelial matrix in areas of GBM thickening and absent in areas where the GBM appears to be of normal thickness. Moreover, the association of BM-CSPG with regions...... of the pericapillary GBM affects the morphology of the capillary endothelial cells within these areas, directly displacing the cell body from the GBM proper and causing loss of fenestrae. These new data on BM-CSPG distribution reflect abnormal glomerular extracellular matrix protein biosynthesis/turnover in diabetes...

  18. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  19. Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy.

    NARCIS (Netherlands)

    Joosten, S.A.; Sijpkens, Y.W.; Ham, V. van; Trouw, L.A.; Vlag, J. van der; Heuvel, L.P.W.J. van den; Kooten, C. van; Paul, L.C.

    2005-01-01

    Chronic allograft nephropathy (CAN) of renal allografts is still the most important cause of graft loss. A subset of these patients have transplant glomerulopathy (TGP), characterized by glomerular basement membrane (GBM) duplications, but of unknown etiology. Recently, a role for the immune system

  20. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  1. Electron microscopic study of the myelinated nerve fibres and the perineurial cell basement membrane in the diabetic human peripheral nerves

    International Nuclear Information System (INIS)

    ElBarrany, Wagih G.; Hamdy, Raid M.; AlHayani, Abdulmonem A.; Jalalah, Sawsan M.

    2009-01-01

    To study the quantitative and ultrastructural changes in myelinated nerve fibers and the basement membranes of the perineurial cells in diabetic nerves. The study was performed at the Department of Anatomy, Faculty of Medicine, King Abdul-Aziz University, Jeddah, Saudi Arabia from 2003 to 2005. Human sural nerves were obtained from 15 lower limbs and 5 diabetic nerve biopsies. The total mean and density of myelinated nerve fibers per fascicle were calculated, with density of microtubules and mitochondria in the axoplasm. The number of the perineurial cell basement membrane layers was counted, and thickness of the basement membrane was measured. Among the 15 diabetic and 5 normal human sural nerves, the average diameters, number and surface area of myelinated nerve fibers and axonal microtubules density were found to be less in diabetic nerves. Mitochondrial density was higher in diabetic axons. Thickness of the perineurial cell basement membrane had a greater mean, but the number of perineurial cell layers was less than that of the diabetic group. The inner cellular layer of the perineurium of the diabetic nerves contained large vacuoles containing electron-dense degenerated myelin. A few specimens showed degenerated myelinated nerve fibers, while others showed recovering ones. Retracted axoplasms were encountered with albumin extravasation. Diabetes caused an increase in perineurial permeability. The diabetic sural nerve showed marked decrease in the myelinated nerve fibres, increase degenerated mitochondria, and decreased microtubules. (author)

  2. Effect of diabetes on in vivo metabolism of [35S]-labeled glomerular basement membrane

    International Nuclear Information System (INIS)

    Cohen, M.P.; Surma, M.L.

    1984-01-01

    Glomerular basement membrane (GBM) was labeled in vivo by the injection of tracer amounts of [ 35 S]-sulfate into normal and streptozotocin-diabetic rats. The biosynthesis and turnover of sulfated glycosaminoglycans in the GBM was determined from the specific activity of [ 35 S] after pronase digestion of basement membranes purified from glomeruli isolated 1-7 days after injection. Peak radiolabeling of both normal and diabetic GBM occurred 24 h after injection and, when corrected for differences in serum sulfate specific activities, was less in diabetic than in normal samples. The specific activity of GBM sulfate, expressed as cpm/microgram uronic acid, progressively diminished over the ensuing period of study in both normal and diabetic samples. The rate of decrease in specific activity of [ 35 S]-labeled GBM was not significantly different in diabetic preparations compared with that in normal controls. The findings are compatible with diminished sulfation and/or production but normal turnover of glycosaminoglycans in the renal GBM in experimental diabetes

  3. Experimental autoimmune glomerulonephritis induced by anti-glomerular basement membrane antibody. II. Effects of injecting heterologous, homologous, or autologous glomerular basement membranes and complete Freund's adjuvant into sheep.

    OpenAIRE

    Steblay, R. W.; Rudofsky, U. H.

    1983-01-01

    The effects of injecting human, rabbit, rat, or single-kidney homologous glomerular basement membrane (GBM) or autologous GBM, each in complete Freund's adjuvant (CFA), into 15- to 18-month-old sheep are compared. All sheep receiving heterologous GBM and 3 of 6 sheep receiving homologous GBM had anti-GBM nephritis, but such sheep did not bind autoantibodies or have Goodpasturelike lesions in their lungs. Sheep given injections of human GBM had autoantibodies to antigenic determinants shared b...

  4. Aluminum-containing dense deposits of the glomerular basement membrane: identification by energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Smith, D.M. Jr.; Pitcock, J.A.; Murphy, W.M.

    1982-01-01

    Heavy metals, including gold, mercury, lead, bismuth, and cadmium, have the potential to cause renal disease. With the development of X-ray microanalysis, these heavy metals can now be identified in tissue deposits. This report describes a case of renal failure, probably related to dysproteinemia, in which granular, electron-opaque dense deposits were present in the glomerular basement membranes. Energy dispersive X-ray analysis demonstrated that these dense deposits contained aluminum. An analysis of this patient's history in relation to the current knowledge of aluminum metabolism suggests that the aluminum deposition occurred secondary to previous glomerular injury. This case emphasizes the need to utilize heavy metal identification technology whenever granular, electron-opaque dense deposits are identified and represents, to our knowledge, the first study to document aluminum deposits within the glomerular basement membrane of humans

  5. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways.

    Science.gov (United States)

    Albargothy, Nazira J; Johnston, David A; MacGregor-Sharp, Matthew; Weller, Roy O; Verma, Ajay; Hawkes, Cheryl A; Carare, Roxana O

    2018-05-12

    Tracers injected into CSF pass into the brain alongside arteries and out again. This has been recently termed the "glymphatic system" that proposes tracers enter the brain along periarterial "spaces" and leave the brain along the walls of veins. The object of the present study is to test the hypothesis that: (1) tracers from the CSF enter the cerebral cortex along pial-glial basement membranes as there are no perivascular "spaces" around cortical arteries, (2) tracers leave the brain along smooth muscle cell basement membranes that form the Intramural Peri-Arterial Drainage (IPAD) pathways for the elimination of interstitial fluid and solutes from the brain. 2 μL of 100 μM soluble, fluorescent fixable amyloid β (Aβ) were injected into the CSF of the cisterna magna of 6-10 and 24-30 month-old male mice and their brains were examined 5 and 30 min later. At 5 min, immunocytochemistry and confocal microscopy revealed Aβ on the outer aspects of cortical arteries colocalized with α-2 laminin in the pial-glial basement membranes. At 30 min, Aβ was colocalised with collagen IV in smooth muscle cell basement membranes in the walls of cortical arteries corresponding to the IPAD pathways. No evidence for drainage along the walls of veins was found. Measurements of the depth of penetration of tracer were taken from 11 regions of the brain. Maximum depths of penetration of tracer into the brain were achieved in the pons and caudoputamen. Conclusions drawn from the present study are that tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. The exit route is along IPAD pathways in which Aβ accumulates in cerebral amyloid angiopathy (CAA) in Alzheimer's disease. Results from this study suggest that CSF may be a suitable route for delivery of therapies for neurological diseases, including CAA.

  6. Perlecan (basement membrane heparan sulfate proteoglycan and its role in oral malignancies: An overview

    Directory of Open Access Journals (Sweden)

    Mithilesh Mishra

    2011-01-01

    Full Text Available Perlecan means pearl-like structures. Perlecan is a large proteoglycan (400-500 kDa present in virtually all vascularized tissues with a distribution that is primarily confined to basement membranes including those of oral mucosa. It is a basement membrane-type heparan sulfate proteoglycan. Perlecan is synthesized by basal cells and fibroblasts adjacent to the basal lamina . Perlecan is also synthesized by vascular endothelial and smooth muscle cells present in the extracellular matrix. It has been demonstrated in recent years that perlecan is distributed in the stromal space of various pathophysiological conditions. The complex pleiotropy of perlecan suggests that this gene product is involved in several developmental processes, at both early and late stages of embryogenesis, as well as in cancer and diabetes. In the oral cavity, perlecan expression is reported to basal cells in normal mucosa and its expression increases in precancer and cancerous conditions. It is also expressed in various odontogenic tumors such as ameloblastoma, keratocyst odontogenic tumor, and also salivary gland tumors such as adenoid cystic carcinoma, mucoepidermoid carcinoma, etc.

  7. cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: a five domain structure including coiled-coil motifs

    DEFF Research Database (Denmark)

    Wu, R R; Couchman, J R

    1997-01-01

    Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now....... The protein sequence has low overall homology, apart from very small NH2- and COOH-terminal motifs. At the junctions between the distal globular domains and the coiled-coil regions lie glycosylation sites, with up to three N-linked oligosaccharides and probably three chondroitin chains. Three other Ser...

  8. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier.

    Science.gov (United States)

    Thomsen, Maj Schneider; Birkelund, Svend; Burkhart, Annette; Stensballe, Allan; Moos, Torben

    2017-03-01

    The brain vascular basement membrane is important for both blood-brain barrier (BBB) development, stability, and barrier integrity and the contribution hereto from brain capillary endothelial cells (BCECs), pericytes, and astrocytes of the BBB is probably significant. The aim of this study was to analyse four different in vitro models of the murine BBB for expression and possible secretion of major basement membrane proteins from murine BCECs (mBCECs). mBCECs, pericytes and glial cells (mainly astrocytes and microglia) were prepared from brains of C57BL/6 mice. The mBCECs were grown as monoculture, in co-culture with pericytes or mixed glial cells, or as a triple-culture with both pericytes and mixed glial cells. The integrity of the BBB models was validated by measures of transendothelial electrical resistance (TEER) and passive permeability to mannitol. The expression of basement membrane proteins was analysed using RT-qPCR, mass spectrometry and immunocytochemistry. Co-culturing mBCECs with pericytes, mixed glial cells, or both significantly increased the TEER compared to the monoculture, and a low passive permeability was correlated with high TEER. The mBCECs expressed all major basement membrane proteins such as laminin-411, laminin-511, collagen [α1(IV)] 2 α2(IV), agrin, perlecan, and nidogen 1 and 2 in vitro. Increased expression of the laminin α5 subunit correlated with the addition of BBB-inducing factors (hydrocortisone, Ro 20-1724, and pCPT-cAMP), whereas increased expression of collagen IV α1 primarily correlated with increased levels of cAMP. In conclusion, BCECs cultured in vitro coherently form a BBB and express basement membrane proteins as a feature of maturation. Cover Image for this issue: doi: 10.1111/jnc.13789. © 2016 International Society for Neurochemistry.

  9. Deposition of nucleosomal antigens (histones and DNA) in the epidermal basement membrane in human lupus nephritis.

    NARCIS (Netherlands)

    Grootscholten, C.; Bruggen, M.C.J. van; Pijl, J.W. van der; Jong, E.M.G.J. de; Ligtenberg, G.; Derksen, R.H.W.M.; Berden, J.H.M.

    2003-01-01

    OBJECTIVE: Antinuclear autoantibodies complexed to nucleosomes can bind to heparan sulfate (HS) in the glomerular basement membrane. This binding is due to the binding of the positively charged histones to the strongly anionic HS. Nucleosomes and histones have been identified in glomerular deposits

  10. Study of the relationship between mononuclear inflammatory infiltrate and Ki-67 and basement membrane and extracellular matrix protein expression in radicular cysts.

    Science.gov (United States)

    Mourão, R V C; Júnior, E C Pinheiro; Barros Silva, P G; Turatti, E; Mota, M R L; Alves, A P N N

    2016-05-01

    To evaluate the relationship between mononuclear inflammatory infiltrate and the expression of a proliferative immunomarker (Ki-67) as well as to evaluate basement membrane and extracellular matrix proteins (laminin and collagen type IV) in radicular cysts and dentigerous cysts (DC). Immunohistochemical analyses were performed in heavily inflamed radicular cysts (HIRC), slightly inflamed radicular cysts (SIRC) and DC (n = 20) using Ki-67 (Dako(®) , 1 : 50), anticollagen type IV (DBS(®) , 1 : 40) and antilaminin (DBS(®) , 1 : 20). The data were analysed using anova/Tukey's test (Ki-67) and Kruskal-Wallis/Dunn's test (collagen type IV and laminin) (P collagen type IV in the basement membrane of the SIRC group was significantly more continuous (P = 0.0475) than in the HIRC group. DC had significantly less collagen type IV in extracellular matrix immunoexpression than HIRC and SIRC (P = 0.0246). Laminin was absent in the basement membrane in the SIRC and DC groups, and the extracellular matrix of the HIRC was weak and punctate. The presence of inflammatory factors in the radicular cyst wall modified the expression of proliferation factors in the epithelial lining and the expression of collagen type IV and laminin in the basement membrane, but did not modify extracellular matrix behaviour in radicular cysts. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. The chest X-ray in antiglomerular basement membrane antibody disease (Goodpasture's syndrome)

    International Nuclear Information System (INIS)

    Bowley, N.B.; Steiner, R.E.; Chin, W.S.

    1979-01-01

    The chest radiographs of 25 patients with proven antiglomerular basement membrane antibody disease (Goodpasture's syndrome) were analysed. All except two of the patients had pulmonary haemorrhage at some stage of their disease. Altogether there were 39 episodes of pulmonary haemorrhage, 25 being relapses. During seven episodes the chest radiograph was normal. Relapses of pulmonary haemorrhage never occurred in isolation but were usually associated with infection (not necessarily a chest infection) or occasionally fluid overload. Conversely fluid overload or infection were always associated with pulmonary haemorrhage provided there were high or rising titres of circulating antibodies at the time. Therefore in a patient with antiglomerular basement membrane antibody disease, the presence of shadowing in the lung fields on the chest radiograph almost invariably means the patient has pulmonary haemorrhage whether or not pulmonary oedema or a chest infection are present. Limitation of shadowing by a fissure, loss of major portions of the diaphragmatic or cardiac silhouette, involvement of the lung apex or costophrenic angles suggest an underlying chest infection. Septal lines suggest fluid overload. Pleural effusions are seen with chest infections and fluid overload. The carbon monoxide uptake (KCO) was invariably high in the presence of pulmonary haemorrhage even if the chest radiograph was normal. A combined use of KCO and chest radiographs is the best method of monitoring lung disease in these patients. (author)

  12. Anti-glomerular basement membrane: A rare cause of renal failure in children

    Directory of Open Access Journals (Sweden)

    Indira Agarwal

    2017-01-01

    Full Text Available Anti-glomerular basement membrane (GBM disease is a rare cause of acute renal failure and known to have bad prognosis regarding renal functions recovery and patient survival specially when diagnosed late and presents with severe renal failure that requires dialysis. We report a case of 11-year-old child with acute renal failure secondary to anti-GBM disease and associated with antineutrophil cytoplasmic antibody-positive vasculitis. He was treated with plasmapheresis, steroids, and cyclophosphamide with recovery of his kidney functions.

  13. Basement membrane and interstitial proteoglycans produced by MDCK cells correspond to those expressed in the kidney cortex

    DEFF Research Database (Denmark)

    Erickson, A C; Couchman, J R

    2001-01-01

    Multiple proteoglycans (PGs) are present in all basement membranes (BM) and may contribute to their structure and function, but their effects on cell behavior are not well understood. Their postulated functions include: a structural role in maintaining tissue histoarchitecture, or aid in selective...... filtration processes; sequestration of growth factors; and regulation of cellular differentiation. Furthermore, expression PGs has been found to vary in several disease states. In order to elucidate the role of PGs in the BM, a well-characterized model of polarized epithelium, Madin-Darby canine kidney (MDCK...... core proteins or CS stubs generated by cABC treatment, revealed that both basement membrane and interstitial PGs are secreted by MDCK cells. HSPGs expressed by MDCK cells are perlecan, agrin, and collagen XVIII. Various CSPG core proteins are made by MDCK cells and have been identified as biglycan...

  14. Ultrastructural study of electron dense deposits in renal tubular basement membrane: prevalence and relationship to epithelial atrophy.

    Science.gov (United States)

    Yong, Jim L C; Killingsworth, Murray C

    2014-08-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition.

  15. Distribution of two basement membrane proteoglycans through hair follicle development and the hair growth cycle in the rat

    DEFF Research Database (Denmark)

    Couchman, J R; King, J L; McCarthy, K J

    1990-01-01

    The distribution of two distinct populations of basement membrane proteoglycans has been monitored through hair growth development in the rat embryo and subsequent hair growth cycle. An antiserum against a small heparan sulfate proteoglycan uniformly stained the dermal-epidermal junction...... of embryonic rats throughout the period of hair follicle formation. On the other hand, monoclonal antibodies recognizing a basement membrane-specific chondroitin sulfate proteoglycan only weakly stained 16-d embryo dermal-epidermal junction, but strong staining was associated with hair follicle buds...... as they developed. Through the hair growth cycle, it was found that the heparan sulfate proteoglycan persisted around the follicles, while the chondroitin sulfate proteoglycan decreased in amount through catagen until it was undetectable at the base and dermal papilla of the telogen follicle. As anagen commenced...

  16. MT1-MMP-mediated basement membrane remodeling modulates renal development

    International Nuclear Information System (INIS)

    Riggins, Karen S.; Mernaugh, Glenda; Su, Yan; Quaranta, Vito; Koshikawa, Naohiko; Seiki, Motoharu; Pozzi, Ambra; Zent, Roy

    2010-01-01

    Extracellular matrix (ECM) remodeling regulates multiple cellular functions required for normal development and tissue repair. Matrix metalloproteinases (MMPs) are key mediators of this process and membrane targeted MMPs (MT-MMPs) in particular have been shown to be important in normal development of specific organs. In this study we investigated the role of MT1-MMP in kidney development. We demonstrate that loss of MT1-MMP leads to a renal phenotype characterized by a moderate decrease in ureteric bud branching morphogenesis and a severe proliferation defect. The kidneys of MT1-MMP-null mice have increased deposition of collagen IV, laminins, perlecan, and nidogen and the phenotype is independent of the MT-1MMP target, MMP-2. Utilizing in vitro systems we demonstrated that MTI-MMP proteolytic activity is required for renal tubule cells to proliferate in three dimensional matrices and to migrate on collagen IV and laminins. Together these data suggest an important role for MT1-MMP in kidney development, which is mediated by its ability to regulate cell proliferation and migration by proteolytically cleaving kidney basement membrane components.

  17. Pentoxifylline Ameliorates Glomerular Basement Membrane Ultrastructural Changes Caused by Gentamicin Administration in Rats

    Directory of Open Access Journals (Sweden)

    Nenad Stojiljković

    2009-08-01

    Full Text Available Gentamicin is commonly used for the treatment of severe gram negative bacterial infections but inevi-tably cause renal failure during prolonged use. The aim of our study was to emphasize protective effects of pentoxifylline on glomerular basement membrane (GBM alterations induced by gentamicin in rats. Experiments were done on 40 male Wistar rats divided in three experimental groups. GM-group was treated daily with gentamicin in dose of 100 mg/kg during 8 days. PTX-group was treated daily with pentoxifylline in dose of 45 mg/kg and the same dose of gentamicin as in GM-group during 8 days. The control group received 1 ml/day saline intraperitoneally. Morphometric parameter measured during the analysis was glomerular basement membrane thickness. In GM-group of animals glomeruli were en-larged and GMB was diffusely and unequally thickened with neutrophil cells infiltration. In proximal tu-bules epithelial cells, vacuolization of cytoplasm with coagulation-type necrosis were observed. In PTX-group of animals glomeruli were somewhat enlarged and GBM was thickened only in some segments. Coagulation-type necrosis was not found. Blood urea and serum creatinine concentration in GM-group were significantly elevated in comparison with PTX-group while potassium level was decreased. Our results suggest that PTX has protective effects on GBM and proximal tubules in GM-treated rats.

  18. Comparing the efficacy of hematoxylin and eosin, periodic acid schiff and fluorescent periodic acid schiff-acriflavine techniques for demonstration of basement membrane in oral lichen planus: A histochemical study

    Directory of Open Access Journals (Sweden)

    Ashwini Pujar

    2015-01-01

    Full Text Available Background: Basement membrane (BM is a thick sheet of extracellular matrix molecules, upon which epithelial cells attach. Various immunohistochemical studies in the past have been carried out but these advanced staining techniques are expensive and not feasible in routine laboratories. Although hematoxylin and eosin (H-E is very popular among pathologists for looking at biopsies, the method has some limitations. This is where special stains come handy. Aims and Objectives: The aim of the present study was to demonstrate and compare the efficacy of H-E, periodic acid Schiff (PAS and fluorescent periodic acid-acriflavine staining techniques for the basement membrane and to establish a histochemical stain which could be cost effective, less time consuming, and unambiguous for observation of the basement membrane zone. Materials and Methods: A total number of 40 paraffin-embedded tissue sections of known basement membrane containing tissues including 10 - Normal oral mucosa (NOM and 30 - oral lichen planus (OLP were considered in the study. Four-micron-thick sections of each block were cut and stained with H-E stain, PAS and fluorescent periodic acid-acriflavine stain. Sections were evaluated by three oral pathologists independently for continuity, contrast and pattern. Results: Though all the three stains showed favorable features at different levels, acriflavine stain was better than the other stains in demonstrating BM continuity, contrast and also the pattern followed by PAS stain. Acriflavine stain was the better in demonstrating a fibrillar pattern of a BM. Acriflavine stains a BM distinctly and is less time consuming and easy to carry out using readily available dyes as compared to other stains. Conclusion: The continuity and contrast along with the homogenous pattern and the afibrillar pattern of the BM was better demonstrated by acriflavine followed by the PAS stain.

  19. Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan

    DEFF Research Database (Denmark)

    McCarthy, K J; Accavitti, M A; Couchman, J R

    1989-01-01

    with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were...... (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core...... sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component....

  20. Ultrastructural localization of the core protein of a basement membrane-specific chondroitin sulfate proteoglycan in adult rat skin

    DEFF Research Database (Denmark)

    McCarthy, K J; Horiguchi, Y; Couchman, J R

    1990-01-01

    Basement membranes are complex extracellular matrices present at epithelial/mesenchymal interfaces of tissues. The dermal-epidermal junction has been shown to contain numerous components, some of the most well known being laminin, types IV and VII collagens, heparan sulfate proteoglycan, fibronec...

  1. Expression of periglandular tenascin-C and basement membrane laminin in normal prostate, benign prostatic hyperplasia and prostate carcinoma

    NARCIS (Netherlands)

    Xue, Y.; Li, J.; Latijnhouwers, M. A.; Smedts, F.; Umbas, R.; Aalders, T. W.; Debruyne, F. M.; de la Rosette, J. J.; Schalken, J. A.

    1998-01-01

    To evaluate the structural relationship of the distribution between tenascin (tenascin-C, an extra-cellular matrix glycoprotein involved in stromal-epithelial interactions in both normal and pathological conditions) and laminin, an important component of the basement membrane, in normal and

  2. Fluorescent and radiolabelling of pepsin-digested human glomerular basement membrane with a newly developed hydroxy-coumarin derivative (CASE)

    International Nuclear Information System (INIS)

    Rand-Weaver, M.; Abuknesha, R.A.; Price, R.G.

    1985-01-01

    The labelling of pepsin-digested human glomerular basement membrane (pHGBM) with a newly developed fluorescent iodine acceptor 7-hydroxy-coumarin-3-acetic acid N-hydroxysucciniimydyl ester (CASE) is described. The binding of a monoclonal antibody to pHGBM was assessed by radiobinding assays, and when directly iodinated pHGBM was used there was no apparent binding. When CASE was conjugated to pHGBM prior to iodination 11% binding was achieved. CASE acting as an iodine acceptor may be useful for proteins containing few or inaccessible tyrosine residues or which are destroyed by introduction of 125 I. Since CASE is fluorescent, small amounts of material can be detected during isolation prior to iodination. (orig.)

  3. The anterior lens capsule used as support material in RPE cell-transplantation

    DEFF Research Database (Denmark)

    Nicolini, J; Kiilgaard, Jens Folke; Wiencke, A K

    2000-01-01

    To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells.......To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells....

  4. Spumiform basement membrane aberrations in the microvasculature of the midbrain periaqueductal gray region in hamster : Rostro-caudal pathogenesis?

    NARCIS (Netherlands)

    Gerrits, P.O.; Kortekaas, R.; de Weerd, Heleen; Luiten, P.G.M.; van der Want, J.J.L.; Veening, Jan

    2013-01-01

    Spumiform basement membrane degeneration (sbmd) is a specific kind of aberration present in the capillaries of the midbrain periaqueductal gray (PAG) region of the senescent hamster. These capillaries, separated by the ependymal cell layer, are bordering the Sylvian cerebral aqueduct. The aqueduct,

  5. Spumiform basement membrane aberrations in the microvasculature of the midbrain periaqueductal gray region in hamster: rostro-caudal pathogenesis?

    NARCIS (Netherlands)

    Gerrits, P.O.; Kortekaas, R.; Weerd, H. de; Luiten, P.G.M.; Want, J.J. van der; Veening, J.G.

    2013-01-01

    Spumiform basement membrane degeneration (sbmd) is a specific kind of aberration present in the capillaries of the midbrain periaqueductal gray (PAG) region of the senescent hamster. These capillaries, separated by the ependymal cell layer, are bordering the Sylvian cerebral aqueduct. The aqueduct,

  6. Expression and deposition of basement membrane proteins by brain capillary endothelial cells in a primary murine model of the blood-brain barrier

    DEFF Research Database (Denmark)

    Thomsen, Maj Schneider; Birkelund, Svend; Larsen, Annette Burkhart

    2016-01-01

    The blood-brain barrier (BBB) represents the interface between the blood and the brain parenchyma and consists of endothelial cells which are tightly sealed together by tight junction proteins. The endothelial cells are in addition supported by pericytes, which are embedded in the vascular basement...... of the present study was to create four different in vitro constructs of the murine BBB to characterise if the expression and secretion of basement membrane proteins by the murine brain capillary endothelial cells (mBCECs) was affected by co-culturing with pericytes, mixed glial cells, or both. Primary m......BCECs and pericytes were isolated from brains of adult mice. Mixed glial cells were prepared from cerebral cortices of newborn mice. The mBCECs were grown as mono-culture, or co-cultured with pericytes, mixed glial cells, or both. To study the expression of basement membrane proteins RT-qPCR, mass spectrometry...

  7. Basement membrane heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma

    DEFF Research Database (Denmark)

    Fenger, M; Wewer, U; Albrechtsen, R

    1984-01-01

    Heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma has been purified and partially characterized. The proteoglycan has an apparent Mr of 750 000, 35% of which represents the core protein. The core protein seems to be homogeneous, whereas the heparan sulfate chains are heterogeneous...... with an Mr of about 50 000-70 000, with 30% of the glucosamine being N-sulfated. Antibodies raised against the core protein of the heparan sulfate proteoglycan reacted with basement membranes of various rat and human tissue....

  8. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane.

    Science.gov (United States)

    Groffen, A J; Ruegg, M A; Dijkman, H; van de Velden, T J; Buskens, C A; van den Born, J; Assmann, K J; Monnens, L A; Veerkamp, J H; van den Heuvel, L P

    1998-01-01

    Agrin is a heparan sulfate proteoglycan (HSPG) that is highly concentrated in the synaptic basal lamina at the neuromuscular junction (NMJ). Agrin-like immunoreactivity is also detected outside the NMJ. Here we show that agrin is a major HSPG component of the human glomerular basement membrane (GBM). This is in addition to perlecan, a previously characterized HSPG of basement membranes. Antibodies against agrin and against an unidentified GBM HSPG produced a strong staining of the GBM and the NMJ, different from that observed with anti-perlecan antibodies. In addition, anti-agrin antisera recognized purified GBM HSPG and competed with an anti-GBM HSPG monoclonal antibody in ELISA. Furthermore, both antibodies recognized a molecule that migrated in SDS-PAGE as a smear and had a molecular mass of approximately 200-210 kD after deglycosylation. In immunoelectron microscopy, agrin showed a linear distribution along the GBM and was present throughout the width of the GBM. This was again different from perlecan, which was exclusively present on the endothelial side of the GBM and was distributed in a nonlinear manner. Quantitative ELISA showed that, compared with perlecan, the agrin-like GBM HSPG showed a sixfold higher molarity in crude glomerular extract. These results show that agrin is a major component of the GBM, indicating that it may play a role in renal ultrafiltration and cell matrix interaction. (J Histochem Cytochem 46:19-27, 1998)

  9. Nanoscale protein architecture of the kidney glomerular basement membrane

    Science.gov (United States)

    Suleiman, Hani; Zhang, Lei; Roth, Robyn; Heuser, John E; Miner, Jeffrey H; Shaw, Andrey S; Dani, Adish

    2013-01-01

    In multicellular organisms, proteins of the extracellular matrix (ECM) play structural and functional roles in essentially all organs, so understanding ECM protein organization in health and disease remains an important goal. Here, we used sub-diffraction resolution stochastic optical reconstruction microscopy (STORM) to resolve the in situ molecular organization of proteins within the kidney glomerular basement membrane (GBM), an essential mediator of glomerular ultrafiltration. Using multichannel STORM and STORM-electron microscopy correlation, we constructed a molecular reference frame that revealed a laminar organization of ECM proteins within the GBM. Separate analyses of domains near the N- and C-termini of agrin, laminin, and collagen IV in mouse and human GBM revealed a highly oriented macromolecular organization. Our analysis also revealed disruptions in this GBM architecture in a mouse model of Alport syndrome. These results provide the first nanoscopic glimpse into the organization of a complex ECM. DOI: http://dx.doi.org/10.7554/eLife.01149.001 PMID:24137544

  10. Overexpression of β1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases

    Science.gov (United States)

    Fujita, Manabu; Khazenzon, Natalya M; Bose, Shikha; Sekiguchi, Kiyotoshi; Sasaki, Takako; Carter, William G; Ljubimov, Alexander V; Black, Keith L; Ljubimova, Julia Y

    2005-01-01

    Introduction Laminins are the major components of vascular and parenchymal basement membranes. We previously documented a switch in the expression of vascular laminins containing the α4 chain from predominantly laminin-9 (α4β2γ1) to predominantly laminin-8 (α4β1γ1) during progression of human brain gliomas to high-grade glioblastoma multiforme. Here, differential expression of laminins was studied in blood vessels and ductal epithelium of the breast. Method In the present study the expressions of laminin isoforms α1–α5, β1–β3, γ1, and γ2 were examined during progression of breast cancer. Forty-five clinical samples of breast tissues including normal breast, ductal carcinomas in situ, invasive ductal carcinomas, and their metastases to the brain were compared using Western blot analysis and immunohistochemistry for various chains of laminin, in particular laminin-8 and laminin-9. Results Laminin α4 chain was observed in vascular basement membranes of most studied tissues, with the highest expression in metastases. At the same time, the expression of laminin β2 chain (a constituent of laminin-9) was mostly seen in normal breast and carcinomas in situ but not in invasive carcinomas or metastases. In contrast, laminin β1 chain (a constituent of laminin-8) was typically found in vessel walls of carcinomas and their metastases but not in those of normal breast. The expression of laminin-8 increased in a progression-dependent manner. A similar change was observed from laminin-11 (α5β2γ1) to laminin-10 (α5β1γ1) during breast tumor progression. Additionally, laminin-2 (α2β1γ1) appeared in vascular basement membranes of invasive carcinomas and metastases. Chains of laminin-5 (α3β3γ2) were expressed in the ductal epithelium basement membranes of the breast and diminished with tumor progression. Conclusion These results suggest that laminin-2, laminin-8, and laminin-10 are important components of tumor microvessels and may associate with breast

  11. Overexpression of β1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases

    International Nuclear Information System (INIS)

    Fujita, Manabu; Khazenzon, Natalya M; Bose, Shikha; Sekiguchi, Kiyotoshi; Sasaki, Takako; Carter, William G; Ljubimov, Alexander V; Black, Keith L; Ljubimova, Julia Y

    2005-01-01

    Laminins are the major components of vascular and parenchymal basement membranes. We previously documented a switch in the expression of vascular laminins containing the α4 chain from predominantly laminin-9 (α4β2γ1) to predominantly laminin-8 (α4β1γ1) during progression of human brain gliomas to high-grade glioblastoma multiforme. Here, differential expression of laminins was studied in blood vessels and ductal epithelium of the breast. In the present study the expressions of laminin isoforms α1–α5, β1–β3, γ1, and γ2 were examined during progression of breast cancer. Forty-five clinical samples of breast tissues including normal breast, ductal carcinomas in situ, invasive ductal carcinomas, and their metastases to the brain were compared using Western blot analysis and immunohistochemistry for various chains of laminin, in particular laminin-8 and laminin-9. Laminin α4 chain was observed in vascular basement membranes of most studied tissues, with the highest expression in metastases. At the same time, the expression of laminin β2 chain (a constituent of laminin-9) was mostly seen in normal breast and carcinomas in situ but not in invasive carcinomas or metastases. In contrast, laminin β1 chain (a constituent of laminin-8) was typically found in vessel walls of carcinomas and their metastases but not in those of normal breast. The expression of laminin-8 increased in a progression-dependent manner. A similar change was observed from laminin-11 (α5β2γ1) to laminin-10 (α5β1γ1) during breast tumor progression. Additionally, laminin-2 (α2β1γ1) appeared in vascular basement membranes of invasive carcinomas and metastases. Chains of laminin-5 (α3β3γ2) were expressed in the ductal epithelium basement membranes of the breast and diminished with tumor progression. These results suggest that laminin-2, laminin-8, and laminin-10 are important components of tumor microvessels and may associate with breast tumor progression. Angiogenic switch

  12. Rat mesangial cells in vitro synthesize a spectrum of proteoglycan species including those of the basement membrane and interstitium

    DEFF Research Database (Denmark)

    Thomas, G J; Shewring, L; McCarthy, K J

    1995-01-01

    is localized in the mesangium but is not found in the pericapillary glomerular basement membrane (GBM). Further characterization of the proteoglycans synthesized by RMC in vitro revealed: (i) a second large CSPG, identified as versican; (ii) two small dermatan sulphate proteoglycans identified as biglycan...

  13. The Peri-islet Basement Membrane, a Barrier to Infiltrating Leukocytes in Type 1 Diabetes in Mouse and Human

    DEFF Research Database (Denmark)

    Korpos, Eva; Kadri, Nadir; Kappelhoff, Reinhild

    2013-01-01

    We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data demonstr...... IM are reconstituted once inflammation subsides, indicating that the peri-islet BM-producing cells are not lost due to the inflammation, which has important ramifications to islet transplantation studies.......We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data...... demonstrate global loss of peri-islet BM and IM components only at sites of leukocyte infiltration into the islet. Stereological analyses reveal a correlation between incidence of insulitis and the number of islets showing loss of peri-islet BM versus islets with intact BMs, suggesting that leukocyte...

  14. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis

    DEFF Research Database (Denmark)

    Veidal, Sanne S.; Karsdal, Morten A.; Nawrocki, Arkadiusz

    2011-01-01

    Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens...

  15. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    Science.gov (United States)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  16. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    DEFF Research Database (Denmark)

    Beavan, L A; Davies, M; Couchman, J R

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently......-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane...

  17. Heparan sulfate proteoglycans made by different basement-membrane-producing tumors have immunological and structural similarities

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R; Hassell, J R

    1985-01-01

    in the native basement membrane of surrounding normal murine tissues. Blocking and ELISA assays demonstrated that the antibodies recognized both antigens. Using techniques involving the chemical and enzymatic degradation of 35S-sulfate-labeled glycosaminoglycans, the mouse EHS tumor cells were found to produce...... proteoglycans obtained from these two sources immunoprecipitated the same precursor protein with a molecular mass of 400,000 daltons from 35S-methionine pulse-labeled cells of both tumors. Immunohistochemistry showed the heparan sulfate proteoglycan to be distributed in the extracellular matrix and also...

  18. Deletion of the basement membrane heparan sulfate proteoglycan type XVIII collagen causes hypertriglyceridemia in mice and humans.

    Directory of Open Access Journals (Sweden)

    Joseph R Bishop

    2010-11-01

    Full Text Available Lipoprotein lipase (Lpl acts on triglyceride-rich lipoproteins in the peripheral circulation, liberating free fatty acids for energy metabolism or storage. This essential enzyme is synthesized in parenchymal cells of adipose tissue, heart, and skeletal muscle and migrates to the luminal side of the vascular endothelium where it acts upon circulating lipoproteins. Prior studies suggested that Lpl is immobilized by way of heparan sulfate proteoglycans on the endothelium, but genetically altering endothelial cell heparan sulfate had no effect on Lpl localization or lipolysis. The objective of this study was to determine if extracellular matrix proteoglycans affect Lpl distribution and triglyceride metabolism.We examined mutant mice defective in collagen XVIII (Col18, a heparan sulfate proteoglycan present in vascular basement membranes. Loss of Col18 reduces plasma levels of Lpl enzyme and activity, which results in mild fasting hypertriglyceridemia and diet-induced hyperchylomicronemia. Humans with Knobloch Syndrome caused by a null mutation in the vascular form of Col18 also present lower than normal plasma Lpl mass and activity and exhibit fasting hypertriglyceridemia.This is the first report demonstrating that Lpl presentation on the lumenal side of the endothelium depends on a basement membrane proteoglycan and demonstrates a previously unrecognized phenotype in patients lacking Col18.

  19. Frequently relapsing anti-glomerular basement membrane antibody disease with changing clinical phenotype and antibody characteristics over time

    OpenAIRE

    Gu, Bobby; Magil, Alex B.; Barbour, Sean J.

    2016-01-01

    Anti-glomerular basement membrane (GBM) antibody disease is a typically monophasic autoimmune disease with severe pulmonary and renal involvement. We report an atypical case of frequently relapsing anti-GBM antibody disease with both anti-GBM antibody?positive flares with pulmonary and renal involvement, and anti-GBM antibody?negative flares that were pulmonary limited with no histologic renal disease. This is the first report of alternating disease phenotype and anti-GBM antibody status over...

  20. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    International Nuclear Information System (INIS)

    Beavan, L.A.; Davies, M.; Couchman, J.R.; Williams, M.A.; Mason, R.M.

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane

  1. Multiple recurrences of anti-glomerular basement membrane disease with variable antibody detection: can the laboratory be trusted?

    OpenAIRE

    Liu, Patricia; Waheed, Sana; Boujelbane, Lamya; Maursetter, Laura J.

    2016-01-01

    Anti-glomerular basement membrane (GBM) disease is commonly a monophasic illness. We present the case of multiple recurrences of anti-GBM disease with varying serum anti-GBM antibody findings. A 33-year-old female tobacco user presenting with hematuria was diagnosed with anti-GBM disease by renal biopsy. Five years later, she presented with alveolar hemorrhage and positive anti-GBM antibody. She presented a third time with alveolar hemorrhage but undetectable anti-GBM antibody. With each occu...

  2. A large-sized bubbling appearance of the glomerular basement membrane in a patient with pulmonary limited AL amyloidosis and a past history of lupus nephritis.

    Science.gov (United States)

    Suga, Norihiro; Miura, Naoto; Uemura, Yuko; Nakamura, Toshinobu; Morita, Hiroyuki; Banno, Shogo; Imai, Hirokazu

    2011-12-01

    We report an unusual pathological finding, a large-sized bubbling appearance of the glomerular basement membrane (GBM), in a patient with pulmonary limited AL amyloidosis and a past history of lupus nephritis. The first renal biopsy specimen from 10 years ago, when systemic lupus erythematosus was diagnosed, demonstrated mild mesangial proliferation and subepithelial deposits (WHO classification: III + V). Light microscopy of the current biopsy using periodic acid methenamine silver (PAMS) stain demonstrated a large-sized bubbling appearance of the GBM; however, very weak immunoglobulin and complement deposition was observed in immunofluorescence studies. Routine electron microscopy demonstrated partial subendothelial expansion with electron-lucent materials, but no electron-dense deposits or amyloid fibrils. Electron microscopy with PAMS stain revealed electron-lucent endothelial scalloping, including some cellular components and microspheres in the GBM; however, it is not clear if these materials are derived from endothelial cells. One possibility is that these unique findings represent a recovery phase of lupus membranous nephritis; another is that these findings correspond to a new disease entity.

  3. The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: the matrix preloaded

    Directory of Open Access Journals (Sweden)

    Tyagi Suresh C

    2005-06-01

    Full Text Available Abstract The vascular endothelial basement membrane and extra cellular matrix is a compilation of different macromolecules organized by physical entanglements, opposing ionic charges, chemical covalent bonding, and cross-linking into a biomechanically active polymer. These matrices provide a gel-like form and scaffolding structure with regional tensile strength provided by collagens, elasticity by elastins, adhesiveness by structural glycoproteins, compressibility by proteoglycans – hyaluronans, and communicability by a family of integrins, which exchanges information between cells and between cells and the extracellular matrix of vascular tissues. Each component of the extracellular matrix and specifically the capillary basement membrane possesses unique structural properties and interactions with one another, which determine the separate and combined roles in the multiple diabetic complications or diabetic opathies. Metabolic syndrome, prediabetes, type 2 diabetes mellitus, and their parallel companion (atheroscleropathy are associated with multiple metabolic toxicities and chronic injurious stimuli. The adaptable quality of a matrix or form genetically preloaded with the necessary information to communicate and respond to an ever-changing environment, which supports the interstitium, capillary and arterial vessel wall is individually examined.

  4. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  5. Proteolytic processing of lysyl oxidase-like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV.

    Science.gov (United States)

    López-Jiménez, Alberto J; Basak, Trayambak; Vanacore, Roberto M

    2017-10-13

    Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases.

    Science.gov (United States)

    Müller-Deile, Janina; Dannenberg, Jan; Schroder, Patricia; Lin, Meei-Hua; Miner, Jeffrey H; Chen, Rongjun; Bräsen, Jan-Hinrich; Thum, Thomas; Nyström, Jenny; Staggs, Lynne Beverly; Haller, Hermann; Fiedler, Jan; Lorenzen, Johan M; Schiffer, Mario

    2017-10-01

    The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Villadsen, Rene; Rank, Fritz; Bissell, Mina J.; Petersen, Ole William

    2001-10-04

    The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and {beta}4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal. Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce {alpha}-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumorassociated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be

  8. Comparing The Efficacy of Hematoxylin and Eosin, Periodic Acid Schiff and Fluorescent Periodic Acid Schiff-Acriflavine Techniques for Demonstration of Basement Membrane in Oral Lichen Planus: A Histochemical Study.

    Science.gov (United States)

    Pujar, Ashwini; Pereira, Treville; Tamgadge, Avinash; Bhalerao, Sudhir; Tamgadge, Sandhya

    2015-01-01

    Basement membrane (BM) is a thick sheet of extracellular matrix molecules, upon which epithelial cells attach. Various immunohistochemical studies in the past have been carried out but these advanced staining techniques are expensive and not feasible in routine laboratories. Although hematoxylin and eosin (H-E) is very popular among pathologists for looking at biopsies, the method has some limitations. This is where special stains come handy. The aim of the present study was to demonstrate and compare the efficacy of H-E, periodic acid Schiff (PAS) and fluorescent periodic acid-acriflavine staining techniques for the basement membrane and to establish a histochemical stain which could be cost effective, less time consuming, and unambiguous for observation of the basement membrane zone. A total number of 40 paraffin-embedded tissue sections of known basement membrane containing tissues including 10 - Normal oral mucosa (NOM) and 30 - oral lichen planus (OLP) were considered in the study. Four-micron-thick sections of each block were cut and stained with H-E stain, PAS and fluorescent periodic acid-acriflavine stain. Sections were evaluated by three oral pathologists independently for continuity, contrast and pattern. Though all the three stains showed favorable features at different levels, acriflavine stain was better than the other stains in demonstrating BM continuity, contrast and also the pattern followed by PAS stain. Acriflavine stain was the better in demonstrating a fibrillar pattern of a BM. Acriflavine stains a BM distinctly and is less time consuming and easy to carry out using readily available dyes as compared to other stains. The continuity and contrast along with the homogenous pattern and the afibrillar pattern of the BM was better demonstrated by acriflavine followed by the PAS stain.

  9. Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease

    Directory of Open Access Journals (Sweden)

    Cristen Chafin

    2010-10-01

    Full Text Available Cristen Chafin2, Sarah Muse2, Raquel Hontecillas5, Josep Bassaganya-Riera5, David L Caudell2, Samuel K Shimp III4, M Nichole Rylander4, John Zhang6, Liwu Li3, Christopher M Reilly1,21Virginia College of Osteopathic Medicine, 2Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 3Department of Biological Sciences, 4Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 5Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 6Medical University of SC, Charleston, SC, USAAbstract: Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR-γ has been shown to be immunoregulatory in autoimmune diseases by inhibiting production of a number of inflammatory mediators. We investigated whether PPAR-γ gene deletion in hematopoietic cells would alter disease pathogenesis in the antiglomerular basement membrane (anti-GBM mouse model. PPAR-γ+/+ and PPAR-γ-/- mice were immunized with rabbit antimouse GBM antibodies and lipopolysaccharide and evaluated for two weeks. Although both the PPAR-γ+/+ and PPAR-γ-/- mice had IgG deposition in the glomerulus and showed proteinuria two weeks after injection, glomerular and tubulointerstitial disease in PPAR-γ-/- mice were significantly more severe compared with the PPAR-γ+/+ animals. We observed that the PPAR-γ-/- mice had decreased CD4+CD25+ regulatory T cells and an increased CD8+:CD4+ ratio as compared with the PPAR-γ+/+ mice, suggesting that PPAR-γ has a role in the regulation of T cells. Furthermore, plasma interleukin-6 levels were significantly increased in the PPAR-γ-/- mice at two weeks as compared with the PPAR-γ+/+ animals. Taken together, these studies show that

  10. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane

    Energy Technology Data Exchange (ETDEWEB)

    BARCELLOS-HOFF, M. H; AGGELER, J.; RAM, T. G; BISSELL, M. J

    1989-02-01

    An essential feature of mammary gland differentiation during pregnancy is the formation of alveoli composed of polarized epithelial cells, which, under the influence of lactogenic hormones, secrete vectorially and sequester milk proteins. Previous culture studies have described either organization of cells polarized towards lumina containing little or no demonstrable tissue-specific protein, or establishment of functional secretory cells exhibiting little or no glandular architecture. In this paper, we report that tissue-specific vectorial secretion coincides with the formation of functional alveoli-like structures by primary mammary epithelial cells cultured on a reconstituted basement membrane matrix (derived from Engelbreth-Holm-Swarm murine tumour). Morphogenesis of these unique three-dimensional structures was initiated by cell-directed remodelling of the exogenous matrix leading to reorganization of cells into matrixensheathed aggregates by 24 h after plating. The aggregates subsequently cavitated, so that by day 6 the cells were organized into hollow spheres in which apical cell surfaces faced lumina sealed by tight junctions and basal surfaces were surrounded by a distinct basal lamina. The profiles of proteins secreted into the apical (luminal) and basal (medium) compartments indicated that these alveoli-like structures were capable of an appreciable amount of vectorial secretion. Immunoprecipitation with a broad spectrum milk antiserum showed that more than 80% of caseins were secreted into the lumina, whereas iron-binding proteins (both lactoferrin and transferrin) were present in comparable amounts in each compartment. Thus, these mammary cells established protein targeting pathways directing milk-specific proteins to the luminal compartment. A time course monitoring secretory activity demonstrated that establishment of tissue-specific vectorial secretion and increased total and milk protein secretion coincided with functional alveolar

  11. The vascular basement membrane as "soil" in brain metastasis.

    Directory of Open Access Journals (Sweden)

    W Shawn Carbonell

    2009-06-01

    Full Text Available Brain-specific homing and direct interactions with the neural substance are prominent hypotheses for brain metastasis formation and a modern manifestation of Paget's "seed and soil" concept. However, there is little direct evidence for this "neurotropic" growth in vivo. In contrast, many experimental studies have anecdotally noted the propensity of metastatic cells to grow along the exterior of pre-existing vessels of the CNS, a process termed vascular cooption. These observations suggest the "soil" for malignant cells in the CNS may well be vascular, rather than neuronal. We used in vivo experimental models of brain metastasis and analysis of human clinical specimens to test this hypothesis. Indeed, over 95% of early micrometastases examined demonstrated vascular cooption with little evidence for isolated neurotropic growth. This vessel interaction was adhesive in nature implicating the vascular basement membrane (VBM as the active substrate for tumor cell growth in the brain. Accordingly, VBM promoted adhesion and invasion of malignant cells and was sufficient for tumor growth prior to any evidence of angiogenesis. Blockade or loss of the beta1 integrin subunit in tumor cells prevented adhesion to VBM and attenuated metastasis establishment and growth in vivo. Our data establishes a new understanding of CNS metastasis formation and identifies the neurovasculature as the critical partner for such growth. Further, we have elucidated the mechanism of vascular cooption for the first time. These findings may help inform the design of effective molecular therapies for patients with fatal CNS malignancies.

  12. Immunohistochemical expression of basement membrane proteins of verrucous carcinoma of the oral mucosa.

    Science.gov (United States)

    Arduino, Paolo G; Carrozzo, Marco; Pagano, Marco; Broccoletti, Roberto; Scully, Crispian; Gandolfo, Sergio

    2010-06-01

    Squamous cell carcinoma (SCC) of the oral cavity is an extremely invasive tumour of stratified squamous epithelium that spreads throughout degradation of the basement membrane (BM) and extra-cellular matrix. Oral verrucous carcinoma (VC) is a rare low-grade variant of oral SCC that penetrates into the subepithelial connective tissue. It also has a different clinical behaviour from classical oral SCC. We investigated the immunohistochemical expression of laminin, laminin-5, collagen IV and fibronectin in VC, severe epithelial dysplasia (SED) and SCC in order to analyse if the pattern of these molecules expression contributes to the differences in the biological behaviour of these diseases. The staining pattern of laminin was less intensive in SCC compared with SED and VC, and collagen IV expression was increased in VC compared with SED. Discontinuities of laminin, collagen IV and fibronectin were more evident in SED than in VC. This study indicates that VC has a biological behaviour different from SED or SCC, observable by immunohistochemistry in the BM zone.

  13. 19-DEJ-1, a hemidesmosome-anchoring filament complex-associated monoclonal antibody. Definition of a new skin basement membrane antigenic defect in junctional and dystrophic epidermolysis bullosa

    DEFF Research Database (Denmark)

    Fine, J D; Horiguchi, Y; Couchman, J R

    1989-01-01

    A murine monoclonal antibody (19-DEJ-1) was recently produced that recognizes a unique antigenic epitope of human skin basement membrane localized to the midlamina lucida exclusively in those areas bordered by overlying hemidesmosomes. To determine whether the antigen defined by 19-DEJ-1 is norma...

  14. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles.

    Science.gov (United States)

    Itoh, Kazuyoshi; Akimoto, Yoshihiro; Kondo, Shu; Ichimiya, Tomomi; Aoki, Kazuhiro; Tiemeyer, Michael; Nishihara, Shoko

    2018-04-15

    T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization

  15. Degradation of endothelial basement membrane by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Yee, C.; Shiu, R.P.

    1986-01-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of [35S]methionine-labeled and [3H]proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer

  16. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  17. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse

    DEFF Research Database (Denmark)

    Xu, H; Christmas, P; Wu, X R

    1994-01-01

    -linked Duchenne and Becker muscular dystrophies. We have examined M-laminin expression in mice with autosomal recessive muscular dystrophy caused by the mutation dy. The heavy chain of M-laminin was undetectable in skeletal muscle, heart muscle, and peripheral nerve by immunofluorescence and immunoblotting......M-laminin is a major member of the laminin family of basement membrane proteins. It is prominently expressed in striated muscle and peripheral nerve. M-laminin is deficient in patients with the autosomal recessive Fukuyama congenital muscular dystrophy but is normal in patients with the sex...... tissue from dy/dy mice, suggesting that M-laminin heavy-chain mRNA may be produced at very low levels or is unstable. Information about the chromosomal localization of the M heavy-chain in human and mouse suggests that a mutation in the M-chain gene causes the muscular dystrophy in dy/dy mice. The dy...

  18. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  19. Anti-glomerular basement membrane autoantibodies in the Brown Norway rat: detection by a solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Bowman, C.; Peters, D.K.; Lockwood, C.M.

    1983-01-01

    A solid-phase radioimmunoassay (RIA) is described for the detection of IgG autoantibodies to glomerular basement membrane (GBM) induced in the Brown Norway rat by mercuric chloride. The assay involves the adsorption of a collagenase digest of GBM to plastic microtitre plates and detection of bound antibody with affinity purified radiolabelled rabbit anti-rat IgG. Comparison with existing immunofluorescence methods for detection of anti-GBM antibody showed that the solid-phase RIA is highly sensitive, allowing detection of antibody in solutions with as low as 0.5 ng protein/ml. The assay is suitable for detection of anti-GBM antibody both in serum and in eluates from nephritic kidneys. The assay proved to be specific in competitive studies of inhibition brought about by GBM, keyhole limpet antigen and ovalbumin. This solid-phase RIA is reproducible, robust and easy to perform. (Auth.)

  20. Quantitative Proteome Analysis Reveals Increased Content of Basement Membrane Proteins in Arteries from Patients with Type 2 Diabetes and Lower Levels among Metformin Users

    DEFF Research Database (Denmark)

    Rørdam Preil, Simone; Kristensen, Lars P; Beck, Hans C

    2015-01-01

    hypothesized that metformin intake influences the protein composition. METHODS AND RESULTS: -We analyzed non-atherosclerotic repair arteries gathered at coronary by-pass operations from 30 patients with type 2 diabetes, as well as from 30 age- and gender-matched non-diabetic individuals. Quantitative proteome......BACKGROUND: -The increased risk of cardiovascular diseases (CVD) in type 2 diabetes has been extensively documented, but the origins of the association remain largely unknown. We sought to determine changes in protein expressions in arterial tissue from patients with type 2 diabetes and moreover...... analysis was done by iTRAQ-labelling and LC-MS/MS analysis on individual arterial samples. The amounts of the basement membrane (BM) components, alpha-1- and alpha-2- type IV collagen, gamma-1- and beta-2-laminin were significantly increased in patients with diabetes. Moreover, the expressions of basement...

  1. A direct contact between astrocyte and vitreous body is possible in the rabbit eye due to discontinuities in the basement membrane of the retinal inner limiting membrane

    Directory of Open Access Journals (Sweden)

    A. Haddad

    2003-02-01

    Full Text Available Different from most mammalian species, the optic nerve of the rabbit eye is initially formed inside the retina where myelination of the axons of the ganglion cells starts and vascularization occurs. Astrocytes are confined to these regions. The aforementioned nerve fibers known as medullated nerve fibers form two bundles that may be identified with the naked eye. The blood vessels run on the inner surface of these nerve fiber bundles (epivascularization and, accordingly, the accompanying astrocytes lie mostly facing the vitreous body from which they are separated only by the inner limiting membrane of the retina. The arrangement of the astrocytes around blood vessels leads to the formation of structures known as glial tufts. Fragments (N = 3 or whole pieces (N = 3 of the medullated nerve fiber region of three-month-old male rabbits (Orictolagus cuniculus were fixed in glutaraldehyde followed by osmium tetroxide, and their thin sections were examined with a transmission electron microscope. Randomly located discontinuities (up to a few micrometers long of the basement membrane of the inner limiting membrane of the retina were observed in the glial tufts. As a consequence, a direct contact between the astrocyte plasma membrane and vitreous elements was demonstrated, making possible functional interactions such as macromolecular exchanges between this glial cell type and the components of the vitreous body.

  2. Targeted Expression of Stromelysin-1 in Mammary Gland Provides Evidence for a Role of Proteinases in Branching Morphogenesis and the Requirement for an Intact Basement Membrane for Tissue-specific Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Talhouk, Rabih S; Alexander, Caroline M; Chin, Jennie R; Cliff, Shirley M; Bissell, Mina J; Werb, Zena

    1994-05-01

    The extracellular matrix (ECM) is an important regulator of the differentiated phenotype of mammary epithelial cells in culture. Despite the fact that ECM-degrading enzymes have been implicated in morphogenesis and tissue remodeling, there is little evidence for a direct role for such regulation in vivo. We generated transgenic mice that express autoactivated isoforms of the matrix metalloproteinase stromelysin-1, under the control of the whey acidic protein gene promoter, to examine the effect of inappropriate expression of this enzyme. Stromelysin-1 is implicated as the primary player in the loss of basement membrane and loss of function in the mammary gland during involution. The transgene was expressed at low levels in mammary glands of virgin female mice, leading to an unexpected phenotype: The primary ducts had supernumerary branches and showed precocious development of alveoli that expressed beta-casein at levels similar to that of an early- to mid-pregnant gland. Lactating glands showed high levels of transgene expression, with accumulation at the basement membrane, and a decrease in laminin and collagen IV, resulting in a loss of basement membrane integrity; this was accompanied by a dramatic alteration of alveolar morphology, with decreased size and shrunken lumina containing little beta-casein. During pregnancy, expression of endogenous whey acidic protein and beta-casein was reduced in transgenic glands, confirming the observed dependence of milk protein transcription of ECM in mammary epithelial cells in culture. These data provide direct evidence that stromelysin-1 activity can be morphogenic for mammary epithelial cells, inducing hyperproliferation and differentiation in virgin animals, and that its lytic activity can, indeed, disrupt membrane integrity and reduce mammary-specific function. We conclude that the balance of ECM-degrading enzymes with their inhibitors, and the associated regulation of ECM structure, is crucial for tissue-specific gene

  3. Frictional Behavior of Altered Basement Approaching the Nankai Trough

    Science.gov (United States)

    Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.

    2017-12-01

    The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in

  4. Anti-glomerular basement membrane glomerulonephritis in an HIV positive patient: case report

    Directory of Open Access Journals (Sweden)

    Eduardo José Bellotto Monteiro

    Full Text Available We report on a case of a patient with HIV infection, diagnosed 18 months prior to the development of an anti-glomerular basement membrane (anti-GBM rapidly progressive glomerulonephritis; this is probably the first report of such an association. A 30-year-old white man presented with elevation of serum creatinine (1.3 - 13.5 mg/dL within one month. At admission, the urinalysis showed proteinuria of 7.2 g/L and 8,000,000 erythrocytes/mL. Renal biopsy corresponded to a crescentic diffuse proliferative glomerulonephritis mediated by anti-GBM, and serum testing for anti-GBM antibodies was positive; antinuclear antibodies (ANA and anti-neutrophilic cytoplasmic antibodies (ANCA were also positive. The patient underwent hemodyalisis and was treated with plasmapheresis, cyclophosphamide and prednisone. The association described here is not casual, as crescentic glomerulonephritis is not common in HIV-positive patients, anti-GBM glomerulonephritis is rare and anti-GBM antibodies are frequently observed in HIV-positive subjects when compared to the overall population. Based on the current case and on the elevated frequency of the positivity for such antibodies in this group of patients, it is advisable to be aware of the eventual association between these two conditions and to promote an active search for anti-GBM antibodies and early diagnosis of eventual urinary abnormalities in HIV-positive subjects, considering the severity of anti-GBM glomerulonephritis.

  5. An in vitro model of the glomerular capillary wall using electrospun collagen nanofibres in a bioartificial composite basement membrane.

    Directory of Open Access Journals (Sweden)

    Sadie C Slater

    Full Text Available The filtering unit of the kidney, the glomerulus, contains capillaries whose walls function as a biological sieve, the glomerular filtration barrier. This comprises layers of two specialised cells, glomerular endothelial cells (GEnC and podocytes, separated by a basement membrane. Glomerular filtration barrier function, and dysfunction in disease, remains incompletely understood, partly due to difficulties in studying the relevant cell types in vitro. We have addressed this by generation of unique conditionally immortalised human GEnC and podocytes. However, because the glomerular filtration barrier functions as a whole, it is necessary to develop three dimensional co-culture models to maximise the benefit of the availability of these cells. Here we have developed the first two tri-layer models of the glomerular capillary wall. The first is based on tissue culture inserts and provides evidence of cell-cell interaction via soluble mediators. In the second model the synthetic support of the tissue culture insert is replaced with a novel composite bioartificial membrane. This consists of a nanofibre membrane containing collagen I, electrospun directly onto a micro-photoelectroformed fine nickel supporting mesh. GEnC and podocytes grew in monolayers on either side of the insert support or the novel membrane to form a tri-layer model recapitulating the human glomerular capillary in vitro. These models will advance the study of both the physiology of normal glomerular filtration and of its disruption in glomerular disease.

  6. Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development

    Directory of Open Access Journals (Sweden)

    Taylor Jennifer M

    2009-10-01

    Full Text Available Abstract Background Smad4 mutant embryos arrest shortly after implantation and display a characteristic shortened proximodistal axis, a significantly reduced epiblast, as well as a thickened visceral endoderm layer. Conditional rescue experiments demonstrate that bypassing the primary requirement for Smad4 in the extra-embryonic endoderm allows the epiblast to gastrulate. Smad4-independent TGF-β signals are thus sufficient to promote mesoderm formation and patterning. To further analyse essential Smad4 activities contributed by the extra-embryonic tissues, and characterise Smad4 dependent pathways in the early embryo, here we performed transcriptional profiling of Smad4 null embryonic stem (ES cells and day 4 embryoid bodies (EBs. Results Transcripts from wild-type versus Smad4 null ES cells and day 4 EBs were analysed using Illumina arrays. In addition to several known TGF-β/BMP target genes, we identified numerous Smad4-dependent transcripts that are mis-expressed in the mutants. As expected, mesodermal cell markers were dramatically down-regulated. We also observed an increase in non-canonical potency markers (Pramel7, Tbx3, Zscan4, germ cell markers (Aire, Tuba3a, Dnmt3l as well as early endoderm markers (Dpp4, H19, Dcn. Additionally, expression of the extracellular matrix (ECM remodelling enzymes Mmp14 and Mmp9 was decreased in Smad4 mutant ES and EB populations. These changes, in combination with increased levels of laminin alpha1, cause excessive basement membrane deposition. Similarly, in the context of the Smad4 null E6.5 embryos we observed an expanded basement membrane (BM associated with the thickened endoderm layer. Conclusion Smad4 functional loss results in a dramatic shift in gene expression patterns and in the endodermal cell lineage causes an excess deposition of, or an inability to breakdown and remodel, the underlying BM layer. These structural abnormalities probably disrupt reciprocal signalling between the epiblast and

  7. Recent advances in membrane materials: introductory remarks

    International Nuclear Information System (INIS)

    Ayral, A.

    2007-01-01

    A lot of separation operations are currently performed using membranes both for production processes and for environmental applications. The main part of the used membranes are organic membranes but for specific conditions of utilization inorganic or organic-inorganic membranes have been also developed. Among the applications for gas separation, some examples are the removal of hydrogen from ammonia synthesis gas, the removal of carbon dioxide from natural gas and air separation. Environmental considerations like massive scale air and water pollution and also the gradual rarefaction of fossil energy resources gave rise to the concept of sustainable growth and to related strategies like process intensification, the reuse of water and solvents at their point of use, hydrogen as energy vector (requiring H 2 production...)..Membranes will have a key part to play in the new technologies associated with these strategies. Intensive efforts of research and development are now engaged everywhere in the world to develop high performance membranes for those emerging applications. Membrane science is a multidisciplinary scientific and technological domain covering mainly materials science, physical chemistry, chemical engineering, modeling. This issue (Annales de chimie - Science des materiaux, 2007 Vol.32 N.2) provides a wide review of recent advances in membrane materials. It is based on the contributions of experts in different fields of membrane materials (organic, organic-inorganic hybrid, composite, carbon, metallic, ceramic; dense, porous, surface modified materials). (O.M.)

  8. Airway basement membrane perimeter in human airways is not a constant; potential implications for airway remodeling in asthma.

    Science.gov (United States)

    McParland, Brent E; Paré, Peter D; Johnson, Peter R A; Armour, Carol L; Black, Judith L

    2004-08-01

    Many studies that demonstrate an increase in airway smooth muscle in asthmatic patients rely on the assumption that bronchial internal perimeter (P(i)) or basement membrane perimeter (P(bm)) is a constant, i.e., not affected by fixation pressure or the degree of smooth muscle shortening. Because it is the basement membrane that has been purported to be the indistensible structure, this study examines the assumption that P(bm) is not affected by fixation pressure. P(bm) was determined for the same human airway segment (n = 12) fixed at distending pressures of 0 cmH(2)O and 21 cmH(2)O in the absence of smooth muscle tone. P(bm) for the segment fixed at 0 cmH(2)O was determined morphometrically, and the P(bm) for the same segment, had the segment been fixed at 21 cmH(2)O, was predicted from knowing the luminal volume and length of the airway when distended to 21 cmH(2)O (organ bath-derived P(i)). To ensure an accurate transformation of the organ bath-derived P(i) value to a morphometry-derived P(bm) value, had the segment been fixed at 21 cmH(2)O, the relationship between organ bath-derived P(i) and morphometry-derived P(bm) was determined for five different bronchial segments distended to 21 cmH(2)O and fixed at 21 cmH(2)O (r(2) = 0.99, P < 0.0001). Mean P(bm) for bronchial segments fixed at 0 cmH(2)O was 9.4 +/- 0.4 mm, whereas mean predicted P(bm), had the segments been fixed at 21 cmH(2)O, was 14.1 +/- 0.5 mm (P < 0.0001). This indicates that P(bm) is not a constant when isolated airway segments without smooth muscle tone are fixed distended to 21 cmH(2)O. The implication of these results is that the increase in smooth muscle mass in asthma may have been overestimated in some previous studies. Therefore, further studies are required to examine the potential artifact using whole lungs with and without abolition of airway smooth muscle tone and/or inflation.

  9. Expression and organization of basement membranes and focal adhesion proteins in pregnant myometrium is regulated by uterine stretch.

    Science.gov (United States)

    Shynlova, Oksana; Chow, Michelle; Lye, Stephen J

    2009-10-01

    The mechanisms underlying the preparation of the uterus for labor are not fully understood. We have previously found a significant increase in the expression of messenger RNA (mRNAs) encoding extracellular basement membrane (BM) proteins of the smooth muscle cells (SMCs) in late pregnant rat myometrium. At term, the myometrium is stretched by growing fetuses and these mechanical signals are transmitted from extracellular matrix into SMCs through focal adhesions (FA). The aim of this study was to investigate the effect of gravidity on the expression and spatiotemporal distribution of major BM proteins, laminin-gamma2 and collagen IV, as well as typical FA constituents, vinculin and paxillin, in the myometrium during gestation and parturition, using a unilaterally pregnant rat model. We found that the expression of laminin-gamma2 and collagen IV proteins increased significantly with gestational age (P proteins were not affected. Near term, BM proteins from gravid horn myometrium demonstrated increased extracellular immunostaining and major rearrangement from sporadic protein distribution to organized, continuous, and regular structures surrounding the plasma membrane of each myocyte. Examination of FA proteins revealed that paxillin was translocated from the cytoplasm to the cell periphery, while vinculin was sequestered specifically to FAs. At labor, BM and FA proteins, organized in similar bead-like structures, were localized on opposing sides of SMC plasma membrane into 2 different compartments. We suggest that these stretch-induced changes facilitate formation of stable cell-matrix adhesions and provide the molecular basis for optimal force transduction during labor contractions.

  10. Microporous Organic Materials for Membrane-Based Gas Separation.

    Science.gov (United States)

    Zou, Xiaoqin; Zhu, Guangshan

    2018-01-01

    Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H 2 , CO 2 , O 2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Regeneration of defective epithelial basement membrane and restoration of corneal transparency

    Science.gov (United States)

    Marino, Gustavo K.; Santhiago, Marcony R.; Santhanam, Abirami; Torricelli, Andre A. M.; Wilson, Steven E.

    2018-01-01

    PURPOSE To study regeneration of the normal ultrastructure of the epithelial basement membrane (EBM) in rabbit corneas that had -9D photorefractive keratectomy (PRK) and developed late haze (fibrosis) with restoration of transparency over one to four months after surgery and in corneas that had incisional wounds. METHODS Twenty-four rabbits had one of their eyes included into one of the two procedure groups (-9D PRK or nearly full-thickness incisional wounds), while the opposite eye serving as unwounded controls. All corneas were evaluated with slit lamp photos, transmission electron microscopy and immunohistochemistry for the myofibroblast marker alpha-smooth muscle actin and collagen type III. RESULTS In the ‘-9D PRK group’, corneas at one month after surgery had dense corneal haze and no evidence of regenerated EBM ultrastructure. By two months after surgery, however, small areas of stromal clearing began to appear within the confluent opacity (lacunae), and these corresponded to small islands of normally-regenerated EBM detected within larger area of the excimer laser-ablated zone with no evidence of normal EBM. By four months after surgery, the EBM was fully-regenerated and the corneal transparency was completely restored to the ablated zone. In the ‘Incisional wound group’, the two dense, linear corneal opacities were observed at one month after surgery and progressively faded by two and three months after surgery. The EBM ultrastructure was fully regenerated at the site of the incisions, including around epithelial plugs that extended into the stroma, by one month after surgery in all eyes. CONCLUSIONS In the rabbit model, spontaneous resolution of corneal fibrosis (haze) after high correction PRK is triggered by regeneration of EBM with normal ultrastructure in the excimer laser- ablated zone. Conversely, incisional wounds heal in rabbit corneas without the development of myofibroblasts because the EBM regenerates normally by one month after surgery

  12. Age-related collagen turnover of the interstitial matrix and basement membrane: Implications of age- and sex-dependent remodeling of the extracellular matrix.

    Science.gov (United States)

    Kehlet, Stephanie N; Willumsen, Nicholas; Armbrecht, Gabriele; Dietzel, Roswitha; Brix, Susanne; Henriksen, Kim; Karsdal, Morten A

    2018-01-01

    The extracellular matrix (ECM) plays a vital role in maintaining normal tissue function. Collagens are major components of the ECM and there is a tight equilibrium between degradation and formation of these proteins ensuring tissue health and homeostasis. As a consequence of tissue turnover, small collagen fragments are released into the circulation, which act as important biomarkers in the study of certain tissue-related remodeling factors in health and disease. The aim of this study was to establish an age-related collagen turnover profile of the main collagens of the interstitial matrix (type I and III collagen) and basement membrane (type IV collagen) in healthy men and women. By using well-characterized competitive ELISA-assays, we assessed specific fragments of degraded (C1M, C3M, C4M) and formed (PINP, Pro-C3, P4NP7S) type I, III and IV collagen in serum from 617 healthy men and women ranging in ages from 22 to 86. Subjects were divided into 5-year age groups according to their sex and age. Groups were compared using Kruskal-Wallis adjusted for Dunn's multiple comparisons test and Mann-Whitney t-test. Age-specific changes in collagen turnover was most profound for type I collagen. PINP levels decreased in men with advancing age, whereas in women, the level decreased in early adulthood followed by an increase around the age of menopause (age 40-60). Sex-specific changes in type I, III and IV collagen turnover was present at the age around menopause (age 40-60) with women having an increased turnover. In summary, collagen turnover is affected by age and sex with the interstitial matrix and the basement membrane being differently regulated. The observed changes needs to be accounted for when measuring ECM related biomarkers in clinical studies.

  13. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system.

    Science.gov (United States)

    Mollet, Björne B; Bogaerts, Iven L J; van Almen, Geert C; Dankers, Patricia Y W

    2017-06-01

    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Two-dimensional materials for novel liquid separation membranes

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  15. Two-dimensional materials for novel liquid separation membranes.

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-19

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  16. A role for PDGF-C/PDGFRα signaling in the formation of the meningeal basement membranes surrounding the cerebral cortex

    Science.gov (United States)

    Andrae, Johanna; Gouveia, Leonor; Gallini, Radiosa; He, Liqun; Fredriksson, Linda; Nilsson, Ingrid; Johansson, Bengt R.; Eriksson, Ulf; Betsholtz, Christer

    2016-01-01

    ABSTRACT Platelet-derived growth factor-C (PDGF-C) is one of three known ligands for the tyrosine kinase receptor PDGFRα. Analysis of Pdgfc null mice has demonstrated roles for PDGF-C in palate closure and the formation of cerebral ventricles, but redundancy with other PDGFRα ligands might obscure additional functions. In search of further developmental roles for PDGF-C, we generated mice that were double mutants for Pdgfc−/− and PdgfraGFP/+. These mice display a range of severe phenotypes including spina bifida, lung emphysema, abnormal meninges and neuronal over-migration in the cerebral cortex. We focused our analysis on the central nervous system (CNS), where PDGF-C was identified as a critical factor for the formation of meninges and assembly of the glia limitans basement membrane. We also present expression data on Pdgfa, Pdgfc and Pdgfra in the cerebral cortex and microarray data on cerebral meninges. PMID:26988758

  17. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    International Nuclear Information System (INIS)

    Fazely, F.

    1988-01-01

    The effects measured were the inhibition of tumor cell migration through the basement membrane (BM) and tumor cell degradative enzyme activity on 3 H-proline labeled collagenous and non collagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.09 μg/ml, and TC-106 cells at 0.08 μg/ml. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels almost 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more than retinol palmitate. Furthermore, A549 cells treated with retinol acetate, under conditions whereby an anti-invasive state was induced,showed an increase in the number of cellular retinoic acid binding proteins (CRABP), a decrease in the activity of type IV collagenase and ectosialyltransferase, and no change in the activity of transglutaminase

  18. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    International Nuclear Information System (INIS)

    Fazely, F.; Ledinko, N.; Smith, D.J.

    1986-01-01

    The biological activity of retinoids was assayed in an in vitro quantitative assay of human tumor cell invasion using human amnion basement membrane (BM). The effects measured were the inhibition of tumor cell migration through the BM and tumor cell degradative enzyme activity on 14 C-proline labeled collagenous and noncollagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested, the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.009 μg/mL, and of TC-106 cells at 0.07 μg/mL. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels over 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more potent than retinol palmitate. The model system will be useful for investigating antiinvasive activity of other retinoids as well as other compounds

  19. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  20. Membrane materials based on polyheteroarylenes and their application for pervaporation

    International Nuclear Information System (INIS)

    Pulyalina, A Yu; Polotskaya, G A; Toikka, A M

    2016-01-01

    Studies on the transport properties of membrane materials are topical in connection with the need to solve the fundamental problems and to analyze the applied aspects of the theory of membrane separation processes including, in particular, the development of the energy- and resource-saving, environmentally safe technologies. The aim of the review is to generalize the experimental data on the separation of practically valuable mixtures using membranes based on polyheteroarylenes (thermally stable and mechanically strong polymers). First of all, our analysis covers publications that give a detailed description of the physicochemical properties of the membranes and an interpretation of the specific features of mass transfer during pervaporation of liquid mixtures using membrane materials based on polyheteroarylenes. The dependences of the transport parameters of pervaporation on the process conditions and on the methods for production of membrane materials are discussed. The data presented may be useful for the development of the theory of membrane processes taking into account the chemical nature and physicochemical features of polymeric membrane materials. The bibliography includes 151 references

  1. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.

  2. Age-related collagen turnover of the interstitial matrix and basement membrane: Implications of age- and sex-dependent remodeling of the extracellular matrix

    DEFF Research Database (Denmark)

    Kehlet, Stephanie N.; Willumsen, Nicholas; Armbrecht, Gabriele

    2018-01-01

    The extracellular matrix (ECM) plays a vital role in maintaining normal tissue function. Collagens are major components of the ECM and there is a tight equilibrium between degradation and formation of these proteins ensuring tissue health and homeostasis. As a consequence of tissue turnover, small...... collagen fragments are released into the circulation, which act as important biomarkers in the study of certain tissue-related remodeling factors in health and disease. The aim of this study was to establish an age-related collagen turnover profile of the main collagens of the interstitial matrix (type I...... an increased turnover. In summary, collagen turnover is affected by age and sex with the interstitial matrix and the basement membrane being differently regulated. The observed changes needs to be accounted for when measuring ECM related biomarkers in clinical studies....

  3. Long-term outcome of anti-glomerular basement membrane antibody disease treated with immunoadsorption.

    Science.gov (United States)

    Biesenbach, Peter; Kain, Renate; Derfler, Kurt; Perkmann, Thomas; Soleiman, Afschin; Benharkou, Alexandra; Druml, Wilfred; Rees, Andrew; Säemann, Marcus D

    2014-01-01

    Anti-glomerular basement membrane (GBM) antibody disease may lead to acute crescentic glomerulonephritis with poor renal prognosis. Current therapy favours plasma exchange (PE) for removal of pathogenic antibodies. Immunoadsorption (IAS) is superior to PE regarding efficiency of antibody-removal and safety. Apart from anecdotal data, there is no systemic analysis of the long-term effects of IAS on anti-GBM-disease and antibody kinetics. To examine the long-term effect of high-frequency IAS combined with standard immunosuppression on patient and renal survival in patients with anti-GBM-disease and to quantify antibody removal and kinetics through IAS. Retrospective review of patients treated with IAS for anti-GBM-antibody disease confirmed by biopsy and/or anti-GBM-antibodies. University Hospital of Vienna, Austria. 10 patients with anti-GBM-disease treated with IAS. Patient and renal survival, renal histology, anti-GBM-antibodies. Anti-GBM-antibodies were reduced by the first 9 IAS treatments (mean number of 23) to negative levels in all patients. Renal survival was 40% at diagnosis, 70% after the end of IAS, 63% after one year and 50% at the end of observation (mean 84 months, range 9 to 186). Dialysis dependency was successfully reversed in three of six patients. Patient survival was 90% at the end of observation. IAS efficiently eliminates anti-GBM-antibodies suggesting non-inferiority to PE with regard to renal and patient survival. Hence IAS should be considered as a valuable treatment option for anti-GBM-disease, especially in patients presenting with a high percentage of crescents and dialysis dependency due to an unusual high proportion of responders.

  4. Long-term outcome of anti-glomerular basement membrane antibody disease treated with immunoadsorption.

    Directory of Open Access Journals (Sweden)

    Peter Biesenbach

    Full Text Available Anti-glomerular basement membrane (GBM antibody disease may lead to acute crescentic glomerulonephritis with poor renal prognosis. Current therapy favours plasma exchange (PE for removal of pathogenic antibodies. Immunoadsorption (IAS is superior to PE regarding efficiency of antibody-removal and safety. Apart from anecdotal data, there is no systemic analysis of the long-term effects of IAS on anti-GBM-disease and antibody kinetics.To examine the long-term effect of high-frequency IAS combined with standard immunosuppression on patient and renal survival in patients with anti-GBM-disease and to quantify antibody removal and kinetics through IAS.Retrospective review of patients treated with IAS for anti-GBM-antibody disease confirmed by biopsy and/or anti-GBM-antibodies.University Hospital of Vienna, Austria.10 patients with anti-GBM-disease treated with IAS.Patient and renal survival, renal histology, anti-GBM-antibodies.Anti-GBM-antibodies were reduced by the first 9 IAS treatments (mean number of 23 to negative levels in all patients. Renal survival was 40% at diagnosis, 70% after the end of IAS, 63% after one year and 50% at the end of observation (mean 84 months, range 9 to 186. Dialysis dependency was successfully reversed in three of six patients. Patient survival was 90% at the end of observation.IAS efficiently eliminates anti-GBM-antibodies suggesting non-inferiority to PE with regard to renal and patient survival. Hence IAS should be considered as a valuable treatment option for anti-GBM-disease, especially in patients presenting with a high percentage of crescents and dialysis dependency due to an unusual high proportion of responders.

  5. Examination of the Basement of Historic Buildings in Investment Activity

    Directory of Open Access Journals (Sweden)

    Ulybin Aleksey

    2016-01-01

    Full Text Available The process and methodology of the survey of basements rarely mentioned in the various construction rules and regulations. Basically describes the procedure of conducting a detailed survey of some of the individual elements. These surveys are fundamental in nature, include a large number of estimates and require significant financial and time costs. Usually the purpose of these surveys is to check the state of the building as a whole, it’s safe operation or before starting of reconstruction. In the process of selecting areas of investment activity such large-scale survey is not possible. Needed a quick and inexpensive method intended for decision about investment in a particular object. At the same time, the survey should cover all the elements of the basement significantly affect the cost of reconstruction of the basement associated with his penetration. The article presents the general conception of conducting a rapid survey. The described methods and technologies applicable to the examination for the purpose of making decisions about investments in reconstruction of a basement level rooms. The composition of the works and their sequence. A comparison of the advantages and disadvantages of different methods. The practical examples. Scheme of conducting a rapid survey of the basement. The article analyzes the materials used in the construction of historic buildings in St. Petersburg.

  6. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo.

    Science.gov (United States)

    Kramers, C; Hylkema, M N; van Bruggen, M C; van de Lagemaat, R; Dijkman, H B; Assmann, K J; Smeenk, R J; Berden, J H

    1994-01-01

    Histones can mediate the binding of DNA and anti-DNA to the glomerular basement membrane (GBM). In ELISA histone/DNA/anti-DNA complexes are able to bind to heparan sulfate (HS), an intrinsic constituent of the GBM. We questioned whether histone containing immune complexes are able to bind to the GBM, and if so, whether the ligand in the GBM is HS. Monoclonal antibodies (mAbs) complexed to nucleosomal antigens and noncomplexed mAbs were isolated from culture supernatants of four IgG anti-nuclear mAbs. All noncomplexed mAbs showed strong anti-nucleosome reactivity in ELISA. One of them showed in addition anti-DNA reactivity in noncomplexed form. The other three mAbs only showed anti-DNA reactivity when they were complexed to nucleosomal antigens. After renal perfusion a fine granular binding of complexed mAbs to the glomerular capillary wall and activation of complement was observed in immunofluorescence, whereas noncomplexed mAbs did not bind. Immuno-electron microscopy showed binding of complexes to the whole width of the GBM. When HS in the GBM was removed by renal heparinase perfusion the binding of complexed mAb decreased, but did not disappear completely. We conclude that anti-nucleosome mAbs, which do not bind DNA, become DNA reactive once complexed to nucleosomal antigens. These complexed mAbs can bind to the GBM. The binding ligand in the GBM is partly, but not solely, HS. Binding to the GBM of immune complexes containing nucleosomal material might be an important event in the pathogenesis of lupus nephritis. Images PMID:8040312

  7. Viruses in the Oceanic Basement.

    Science.gov (United States)

    Nigro, Olivia D; Jungbluth, Sean P; Lin, Huei-Ting; Hsieh, Chih-Chiang; Miranda, Jaclyn A; Schvarcz, Christopher R; Rappé, Michael S; Steward, Grieg F

    2017-03-07

    Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 10 5 to 2 × 10 5  ml -1 ( n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome. IMPORTANCE The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not

  8. Magnetotelluric inversion for depth-to-basement estimation

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2015-01-01

    The magnetotelluric (MT) method can be effectively applied for depth-to-basement estimation, because there exists a strong contrast in resistivity between a conductive sedimentary basin and a resistive crystalline basement. Conventional inversions of MT data are usually aimed at determining...... the volumetric distribution of the conductivity within the inversion domain. By the nature of the MT method, the recovered distribution of the subsurface conductivity is typically diffusive, which makes it difficult to select the sediment-basement interface. This paper develops a novel approach to 3D MT...... inversion for the depth-to-basement estimate. The key to this approach is selection of the model parameterization with the depth to basement being the major unknown parameter. In order to estimate the depth to the basement, the inversion algorithm recovers both the thickness and the conductivities...

  9. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  10. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules

    Science.gov (United States)

    Lawrence, Marlon G.; Altenburg, Michael K.; Sanford, Ryan; Willett, Julian D.; Bleasdale, Benjamin; Ballou, Byron; Wilder, Jennifer; Li, Feng; Miner, Jeffrey H.; Berg, Ulla B.; Smithies, Oliver

    2017-01-01

    How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson’s or Alport’s proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm. PMID:28246329

  11. WY14,643, a PPARα ligand, attenuates expression of anti-glomerular basement membrane disease

    Science.gov (United States)

    Archer, D C; Frkanec, J T; Cromwell, J; Clopton, P; Cunard, R

    2007-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARα ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0·05% WY14,643 or control food and immunized with the non-collagenous domain of the α3 chain of Type IV collagen [α3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARα ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80+ macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARα ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-γ mRNA expression in the WY14,643-fed mice, suggesting that the PPARα ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARα ligands may be a novel treatment for inflammatory renal disease. PMID:17888025

  12. WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease.

    Science.gov (United States)

    Archer, D C; Frkanec, J T; Cromwell, J; Clopton, P; Cunard, R

    2007-11-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0.05% WY14,643 or control food and immunized with the non-collagenous domain of the alpha3 chain of Type IV collagen [alpha3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARalpha ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80(+) macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARalpha ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-gamma mRNA expression in the WY14,643-fed mice, suggesting that the PPARalpha ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARalpha ligands may be a novel treatment for inflammatory renal disease.

  13. Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods

    Directory of Open Access Journals (Sweden)

    May-Britt Hägg

    2013-03-01

    Full Text Available In the past four decades, membrane development has occurred based on the demand in pressure driven processes. However, in the last decade, the interest in osmotically driven processes, such as forward osmosis (FO and pressure retarded osmosis (PRO, has increased. The preparation of customized membranes is essential for the development of these technologies. Recently, several very promising membrane preparation methods for FO/PRO applications have emerged. Preparation of thin film composite (TFC membranes with a customized polysulfone (PSf support, electorspun support, TFC membranes on hydrophilic support and hollow fiber membranes have been reported for FO/PRO applications. These novel methods allow the use of other materials than the traditional asymmetric cellulose acetate (CA membranes and TFC polyamide/polysulfone membranes. This review provides an outline of the membrane requirements for FO/PRO and the new methods and materials in membrane preparation.

  14. Crosslinked basement membrane-based coatings enhance glucose sensor function and continuous glucose monitoring in vivo.

    Science.gov (United States)

    Klueh, Ulrike; Ludzinska, Izabela; Czajkowski, Caroline; Qiao, Yi; Kreutzer, Donald L

    2018-01-01

    Overcoming sensor-induced tissue reactions is an essential element of achieving successful continuous glucose monitoring (CGM) in the management of diabetes, particularly when used in closed loop technology. Recently, we demonstrated that basement membrane (BM)-based glucose sensor coatings significantly reduced tissue reactions at sites of device implantation. However, the biocompatible BM-based biohydrogel sensor coating rapidly degraded over a less than a 3-week period, which effectively eliminated the protective sensor coating. In an effort to increase the stability and effectiveness of the BM coating, we evaluated the impact of crosslinking BM utilizing glutaraldehyde as a crosslinking agent, designated as X-Cultrex. Sensor performance (nonrecalibrated) was evaluated for the impact of these X-Cultrex coatings in vitro and in vivo. Sensor performance was assessed over a 28-day time period in a murine CGM model and expressed as mean absolute relative difference (MARD) values. Tissue reactivity of Cultrex-coated, X-Cultrex-coated, and uncoated glucose sensors was evaluated over a 28-day time period in vivo using standard histological techniques. These studies demonstrated that X-Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo, glucose sensor performance was significantly enhanced following X-Cultrex coating throughout the 28-day study. Histological evaluations of X-Cultrex-treated sensors demonstrated significantly less tissue reactivity when compared to uncoated sensors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 7-16, 2018. © 2017 Wiley Periodicals, Inc.

  15. Modulation of interferon-induced genes by lipoxin analogue in anti-glomerular basement membrane nephritis.

    Science.gov (United States)

    Ohse, Takamoto; Ota, Tatsuru; Kieran, Niamh; Godson, Catherine; Yamada, Koei; Tanaka, Tetsuhiro; Fujita, Toshiro; Nangaku, Masaomi

    2004-04-01

    Immune complex deposition is associated with the accumulation of neutrophils, which play an important role in the various immune-mediated diseases. A novel anti-inflammatory agent, the lipoxin A (LXA) analogue (15-epi-16-(FPhO)-LXA-Me)), a stable synthetic analogue of aspirin-triggered 15-epi-lipoxin A4 (ATLa), was used in experimental anti-glomerular basement membrane (GBM) antibody nephritis in mice. ATLa was administered before the induction of the disease, and 2 h later, the animals were killed. ATLa reduced the infiltrating neutrophils and nitrotyrosine staining in glomeruli. Subsequent changes of gene expression in the early phase were evaluated, and 5674 genes were present under the basal conditions in kidneys from normal mice; 54 upregulated genes and 25 downregulated genes were detected in anti-GBM nephritis. Eighteen of these upregulated genes were those induced by IFN-gamma. Real-time quantitative PCR analysis confirmed the results of the microarrays. To investigate a role of IFN-gamma in neutrophil infiltration, anti-GBM nephritis was induced in IFN-gamma knockout mice. The number of infiltrating neutrophils in these mice did not differ from those in wild-type mice. Also examined were CD11b expression on neutrophils from mice treated with ATLa by flow cytometry, but suppression of this adhesion molecule was not observed. Neutrophil infiltration was successfully inhibited by ATLa in the early phase of murine anti-GBM nephritis. Microarray analysis detected the change of mRNA expression in anti-GBM nephritis and demonstrated amelioration of various genes by ATLa, which may provide a clue to the development of novel therapeutic approaches in immune renal injury.

  16. Viruses in the Oceanic Basement

    Directory of Open Access Journals (Sweden)

    Olivia D. Nigro

    2017-03-01

    Full Text Available Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement, but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 105 to 2 × 105 ml−1 (n = 8, higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27. Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%. Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737, 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome.

  17. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen

    International Nuclear Information System (INIS)

    Collier, I.E.; Wilhelm, S.M.; Eisen, A.Z.

    1988-01-01

    H-ras transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on this ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors. Type IV collagenase consists of three domains. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin

  18. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2013-01-01

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane

  19. New membrane materials for potassium-selective ion-sensitive field-effect transistors

    NARCIS (Netherlands)

    van der Wal, P.D.; van der Wal, Peter D.; Skowronska-Ptasinska, Maria; van den Berg, Albert; Bergveld, Piet; Sudholter, Ernst; Sudholter, Ernst J.R.; Reinhoudt, David

    1990-01-01

    Several polymeric materials were studied as membrane materials for potassium-selective ion-sensitive field-effect transistors (ISFETs) to overcome the problems related with the use of conventional plasticized poly(vinyl chloride) membranes casted on ISFET gate surfaces. Several acrylate materials,

  20. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslavtsev, Andrei B [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-11-30

    Information on composite materials with ionic conductivity including inorganic composites and hybrid polymeric ion exchange membranes containing inorganic or polymeric nanoparticles is generalized. The nature of the effect of increase in the ionic conductivity in this type of materials and the key approaches used for theoretical estimation of the conductivity are considered. Data on the ionic conductivity and some other important properties of composites and membrane materials are presented. Prospects for utilization of composite materials and hybrid membranes in hydrogen power engineering are briefly outlined.

  1. A Case of Fibrillary Glomerulonephritis Associated with Thrombotic Microangiopathy and Anti-Glomerular Basement Membrane Antibody

    Directory of Open Access Journals (Sweden)

    Akishi Momose

    2015-02-01

    Full Text Available We present the first report of a case of fibrillary glomerulonephritis (FGN associated with thrombotic microangiopathy (TMA and anti-glomerular basement membrane antibody (anti-GBM antibody. A 54-year-old man was admitted to our hospital for high fever and anuria. On the first hospital day, we initiated hemodialysis for renal dysfunction. Laboratory data revealed normocytic-normochromic anemia with schistocytes in the peripheral smear, thrombocytopenia, increased serum lactate dehydrogenase, decreased serum haptoglobin, and negative results for both direct and indirect Coombs tests. Based on these results, we diagnosed TMA. Assays conducted several days later indicated a disintegrin-like and metalloprotease with a thrombospondin motif 13 (ADAMTS13 activity of 31.6%, and ADAMTS13 inhibitors were negative. We started plasma exchange using fresh frozen plasma and steroid pulse therapy. Anti-GBM antibody was found to be positive. Renal biopsy showed FGN. Blood pressure rose on the 46th hospital day, and mild convulsions developed. Based on magnetic resonance imaging of the head, the patient was diagnosed with reversible posterior leukoencephalopathy syndrome. Hypertension persisted despite administration of multiple antihypertensive agents, and the patient experienced a sudden generalized seizure. Computed tomography of the head showed multiple cerebral hemorrhages. However, his blood pressure subsequently decreased and the platelet count increased. TMA remitted following 36 plasma exchange sessions, but renal function was not restored, and maintenance hemodialysis was continued. The patient was discharged on the 119th day of hospitalization. In conclusion, it was shown that TMA, FGN and anti-GBM antibody were closely related.

  2. Expression of matrix metalloproteinase genes during basement membrane degradation in the metamorphosis of Bombyx mori.

    Science.gov (United States)

    Kawasaki, Hideki; Manickam, Asaithambi; Shahin, Rima; Ote, Manabu; Iwanaga, Masashi

    2018-01-05

    The present study was conducted to clarify the involvement of the basement membrane (BM) in insect metamorphosis through analysis of the expression profile of two types of metalloproteinase (MMP and ADAMTS) genes in several organs, their ecdysone involvement, and the histological change of BM. BM was observed around wing sac and in the wing cavity and around fat bodies at the W0 stage but disappeared after the W3 stage, and wing discs evaginated and fat body cells scattered after the W3 stage. The disappearance of the BM of midgut and silk glands was not observed after the W3 stage, but degenerated epithelium cells in the midgut and shrunken cells in the silk gland were observed after the W3 stage. BmMMP1 showed a peak at P0 in the wing discs, fat bodies, midgut, and silk gland. BmMMP2 showed a broad peak around pupation in the wing discs, fat bodies, midgut, and silk gland. BmADAMTS-1 showed enhanced expression at W2 in the wing discs, fat bodies, midgut, and hemocyte, while BmADAMTS-L showed enhanced expression at W3 in the fat bodies, midgut, silk gland, and hemocyte. After pupation, they showed a different expression in different organs. All of four genes were induced by 20-hydroxyecdysone in wing discs in vitro. The present results suggested the involvement of MMPs and ADAMTS in the BM digestion and the morphogenesis of organs during Bombyx metamorphosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    Science.gov (United States)

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  4. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  5. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    International Nuclear Information System (INIS)

    Metelkin, A; Kuznetsov, D; Kolesnikov, E; Chuprunov, K; Kondakov, S; Osipov, A; Samsonova, J

    2015-01-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems. (paper)

  6. Membrane-based biomolecular smart materials

    International Nuclear Information System (INIS)

    Sarles, Stephen A; Leo, Donald J

    2011-01-01

    Membrane-based biomolecular materials are a new class of smart material that feature networks of artificial lipid bilayers contained within durable synthetic substrates. Bilayers contained within this modular material platform provide an environment that can be tailored to host an enormous diversity of functional biomolecules, where the functionality of the global material system depends on the type(s) and organization(s) of the biomolecules that are chosen. In this paper, we review a series of biomolecular material platforms developed recently within the Leo Group at Virginia Tech and we discuss several novel coupling mechanisms provided by these hybrid material systems. The platforms developed demonstrate that the functions of biomolecules and the properties of synthetic materials can be combined to operate in concert, and the examples provided demonstrate how the formation and properties of a lipid bilayer can respond to a variety of stimuli including mechanical forces and electric fields

  7. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies.

    Science.gov (United States)

    Li, Changyi; Meckler, Stephen M; Smith, Zachary P; Bachman, Jonathan E; Maserati, Lorenzo; Long, Jeffrey R; Helms, Brett A

    2018-02-01

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided. The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Opportunities and outstanding challenges in the field are also discussed, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A “Mini-Epidemic” of anti-glomerular basement membrane disease: Clinical and epidemiological study

    Directory of Open Access Journals (Sweden)

    Umesh Lingaraj

    2017-01-01

    Full Text Available Acute glomerulonephritis due to anti-glomerular basement membrane (anti-GBM antibody disease is rare, estimated to occur in fewer than one case per million population and accounts for less than 20% of rapidly progressive glomerulonephritis. The prevalence among patients evaluated for potential glomerular disease is lower. It accounts for fewer than 3% of all kidney biopsies done with crescentic glomerulonephritis. Cases of anti-GBM disease occurring in a cluster have rarely been reported. All biopsy proven anti-GBM disease cases were collected from January 2015 to March 2015 at our Institute. All cases were analyzed for demographic and clinical profile, pathological findings, treatment received and for any common environmental antigenic source. A total of 11 new biopsy proven anti-GBM cases were seen within a span of three months. Age group varied from 17–80 years. Seven were males and four were females. All were dialysis dependent at presentation. Seven had active cellular crescents, and four had fibrocellular. Only one patient was a smoker and none had a history of exposure to any forms of hydrocarbons. The peak seen from January 2015 to March 2015 does not correlate with any of seasonal occurrence of infections in southern India. Although there was clustering of cases to southern territories of Karnataka state, no common etiological agents could be identified. No patient had any previous urological surgeries. All patients received methylprednisolone with plasmapheresis 5–7 sessions and cyclophosphamide. All 11 patients were dialysis dependent at the end of three months. We conclude anti-GBM disease cannot be regarded as a rare cause of renal failure and lung hemorrhage. The occurrence of such epidemic within a short period suggests a possible unidentified environmental factor like infection or occupational agents as inciting agents. Identification of such inciting agents could help us in instituting appropriate preventing measures.

  9. Potential Development of Hydrocarbon in Basement Reservoirs In Indonesia

    Directory of Open Access Journals (Sweden)

    D. Sunarjanto

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.165Basement rocks, in particular igneous and metamorphic rocks are known to have porosity and permeability which should not be ignored. Primary porosity of basement rocks occurs as the result of rock formation. The porosity increases by the presence of cracks occurring as the result of tectonic processes (secondary porosity. Various efforts have been carried out to explore hydrocarbon in basement rocks. Some oil and gas fields proved that the basement rocks are as reservoirs which so far have provided oil and gas in significant amount. A review using previous research data, new data, and observation of igneous rocks in some fields has been done to see the development of exploration and basement reservoirs in Indonesia. A review on terminology of basement rock up till the identification of oil and gas exploration in basement rocks need to be based on the latest technology. An environmental approach is suggested to be applied as an alternative in analyzing the policy on oil and gas exploration development, especially in basement reservoirs.

  10. Ultrastructural immunocytochemical localization of chondroitin sulfate proteoglycan in Bruch's membrane of the rat

    DEFF Research Database (Denmark)

    Lin, W L; Essner, E; McCarthy, K J

    1992-01-01

    Two monoclonal antibodies (Mab 4D5 and 2D6) raised against the core protein of a basement membrane chondroitin sulfate proteoglycan from Reichert's membrane of the rat, were used for ultrastructural immunoperoxidase localization of this protein in Bruch's membrane of the rat. Immunoreactivity...

  11. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  12. Influence of the dialyzer membrane material on sodium transport in hemodialysis.

    Science.gov (United States)

    Lopot, F; Kotyk, P; Bláha, J; Válek, A

    1995-11-01

    Traditionally Gibbs-Donnan coefficients based on the mean charge of plasma proteins are used as the only correction factor in equations describing sodium transport across the dialyzer membrane. This ignores the possible impact of the membrane material. Correction coefficients (CC) of the whole dialyzer were measured during in vivo dialysis as a quotient of dialysate to plasma sodium in an equilibrated state for different membrane materials used in commercially available dialyzers. Their mean value and correlation with total plasma protein content (TPP) were evaluated. CC for the six materials evaluated differed both in the intercept and slope of the regression line CC versus TPP: Cuprophan 1: CC = 1.0253 - 0.00017 x TPP; Hemophan 1: CC = 1.119 - 0.00175 x TPP; Hemophan 2: CC = 1.095 - 0.00111 x TPP; PMMA: CC = 1.0353 - 0.00044 x TPP; SCE:CC = 1.114 - 0.00145 x TPP; and Cuprophan 1:CC = 1.0562 - 0.00065 x TPP. The observed differences are attributed to the different charge densities of the membrane materials and suggest that for a precise description of sodium transport, the role of the membrane material needs to be considered.

  13. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  14. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, Wei

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane

  15. Durability of Selected Membrane Materials when Exposed to Chlorine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Marianne Soerflaten

    2001-03-01

    This thesis is focusing on the durability of selected membrane materials when exposed to chlorine gas in the temperature range 30-100{sup o}C. Studies of the changes of membrane separation properties and the mechanisms promoting these changes have been studied. The selected membrane materials were poly(dimethylsioxane) (PDMS), Fluorel, fluorosilicone, and blends of PDMS and Fluorel. The thesis is organised in seven chapters. The first chapter gives an introduction to the background of the work. The second chapter presents the theory for gas separation using dense rubbery membranes. The properties of the selected membrane materials are presented in chapter three. The fourth chapter describes degradation mechanisms for polymeric materials in general and for the selected membrane materials in particular. Presentation of the experimental work is given in chapter five, while the results with discussions are presented in chapter six. The conclusions and recommendations for further studies are given in chapter seven. Five appendixes are attached: Appendix A describes the calculations of permeability and solubility coefficients and the accuracy of the experimental measurements. Appendix B summarises the measured values in tables and Appendix C describes the analytical methods. Appendix D gives the properties of the gases used in the experiments. Appendix E is the article ''Durability of Poly(dimethylsiloxane) when Exposed to Chlorine Gas'', submitted to the Journal of Applied Polymer Science. Highly crosslinked PDMS was found to have an initial high permeability for chlorine gas and a high Cl{sub 2}/O{sub 2} selectivity. However when exposed to chlorine gas the permeability decreased significantly. Crosslinking of the PDMS polymer chain and chlorination of the polymer gave a denser polymer structure and thus lower permeability. Fluorel showed very low permeabilities and selectivities for the gases in question and was thus not interesting for this

  16. Effects of ionizing radiation on glycerolated amniotic membranes as a substract for cultured human epithelium

    International Nuclear Information System (INIS)

    Paggiaro, Andre Oliveira

    2011-01-01

    The amniotic membrane (AM) is a biomaterial with biological properties that are beneficial to tissue repair. It has been used as a temporary coverage to threat burns and chronic wounds. Recently, it has been served as a substrate for keratinocytes culture to construct a living skin equivalent. However, MA is a biological material, and its transplantation could cause infectious disease for receptors. So, it must be preserved and sterilized before clinical use. The aim of this study was to evaluate the radiation effects on glycerol-preserved MA, considering its compatibility to support human keratinocytes culture. Four MA were stored in high concentrations of glycerol (> 85%) and half of them were radio sterilized with a dose of 25 kGy. Then, we established two groups: nonirradiated MA (MA-ni) and irradiated MA (MA-i). Both groups was deepithelialized by a standardized protocol and was investigated morphologically, immunohistochemical and ultrastructural. Subsequently human keratinocytes were cultivated immersed and in air-liquid interface on denuded surface of MA-i and MA-ni. The results were compared at 14 and 21 days of culture by light and electron microscopy. After epithelial denudation, analyses demonstrated the continuity of the basement membrane in MA-ni group, whereas in the irradiated group, there was no indication of the basement membrane’s presence on the surface of MA. The cell cultures showed that in the non-irradiated group, there was growth of a multi-layered and differentiated epithelium, with a stratum corneum’s formation in air-liquid interface. In the irradiated group, the epithelium had only two or three layer, little cell differentiation, with the same results immersed or air-liquid interface system. Glycerol-preserved MA was biocompatible with the growth of a cultivated epithelium, showing its potential as a skin substitute. Irradiation at 25 kGy cause structural damage to the tissue, making changes in basement membrane, that facilitates

  17. Evaluation of Human Amniotic Membrane as a Wound Dressing for Split-Thickness Skin-Graft Donor Sites

    Directory of Open Access Journals (Sweden)

    Denys J. Loeffelbein

    2014-01-01

    Full Text Available Human amniotic membrane (HAM has been used as a biomaterial in various surgical procedures and exceeds some qualities of common materials. We evaluated HAM as wound dressing for split-thickness skin-graft (STSG donor sites in a swine model (Part A and a clinical trial (Part B. Part A: STSG donor sites in 4 piglets were treated with HAM or a clinically used conventional polyurethane (PU foil (n=8 each. Biopsies were taken on days 5, 7, 10, 20, 40, and 60 and investigated immunohistochemically for alpha-smooth muscle actin (αSMA: wound contraction marker, von Willebrand factor (vWF: angiogenesis, Ki-67 (cell proliferation, and laminin (basement membrane integrity. Part B: STSG donor sites in 45 adult patients (16 female/29 male were treated with HAM covered by PU foam, solely by PU foam, or PU foil/paraffin gauze (n=15 each. Part A revealed no difference in the rate of wound closure between groups. HAM showed improved esthetic results and inhibitory effects on cicatrization. Angioneogenesis was reduced, and basement membrane formation was accelerated in HAM group. Part B: no difference in re-epithelialization/infection rate was found. HAM caused less ichor exudation and less pruritus. HAM has no relevant advantage over conventional dressings but might be a cost-effective alternative.

  18. Skin Basement Membrane: The Foundation of Epidermal Integrity—BM Functions and Diverse Roles of Bridging Molecules Nidogen and Perlecan

    Directory of Open Access Journals (Sweden)

    Dirk Breitkreutz

    2013-01-01

    Full Text Available The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellular matrix (ECM of the dermis underneath. Both compartments are connected by the basement membrane (BM, composed of a set of distinct glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding not only (i the dermoepidermal interface but also (ii the resident microvasculature, primarily focusing on the per se nonscaffold forming components perlecan and nidogen-1 and nidogen-2. Depletion or functional deficiencies of any BM component are lethal at some stage of development or around birth, though BM defects vary between organs and tissues. Lethality problems were overcome by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D cocultures of normal or defective cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further “minor” local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively, orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-specific, or functional context.

  19. Ten cases of severe oral lichen planus showing granular C3 deposition in oral mucosal basement membrane zone.

    Science.gov (United States)

    Hashimoto, Takashi; Fukuda, Aoi; Himejima, Akio; Morita, Shosuke; Tsuruta, Daisuke; Koga, Hiroshi; Krol, Rafal P; Ishii, Norito

    2015-01-01

    Oral lichen planus (OLP) may show depositions of immunoglobulins and complement components in oral mucosal basement membrane zone (BMZ) in direct immunofluorescence, although these finding are not frequently seen. We collected and examined ten cases of severe OLP showing granular C3 deposition in BMZ. In addition to clinical, histopathological and direct immunofluorescence assessments, we performed various immune-serological tests, including indirect immunofluorescence of normal human skin and 1M NaCl-split skin, immunoblotting of normal human epidermal and dermal extracts, recombinant proteins of BP180 NC16a and C-terminal domains, concentrated culture supernatant of HaCaT cells and purified human laminin-332, and enzyme-linked immunosorbent assays for BP230 and BP180. Direct immunofluorescence showed C3 deposition in BMZ exclusively of granular pattern in 7 cases and of both granular and linear patterns in 3 cases. The 10 cases showed no positive reactivity for either IgG or IgA antibodies in any immuno-serological tests. Detailed analyses of clinical, histopathological and immunological findings revealed striking female prevalence, although other parameters were in general characteristic of OLP. Granular C3 deposition in oral BMZ may be one of the characteristic features of severe OLP, although mechanisms for C3 deposition and its pathogenic role in OLP are currently unknown.

  20. Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures

    Science.gov (United States)

    Hinson, W. F.; Goslee, J. W.

    1980-01-01

    Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.

  1. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo

    2013-08-19

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane and the condensation plate in an air gap membrane distillation (AGMD) module enhanced the water vapor flux significantly. An increase in the water vapor flux of about 200-800% was observed by filling the gap with sand and DI water at various feed water temperatures. However, insulating materials such as polypropylene and polyurethane have no effect on the water vapor flux. The influence of material thickness and characteristics has also been investigated in this study. An increase in the water gap width from 9. mm to 13. mm increases the water vapor flux. An investigation on an AGMD and MGMD performance comparison, carried out using two different commercial membranes provided by different manufacturers, is also reported in this paper. © 2013 Elsevier B.V.

  2. Membranous nephropathy (bubbling appearance and spike formation) without immunoglobulin deposition in a patient with systemic lupus erythematosus.

    Science.gov (United States)

    Miura, Naoto; Mori, Yuki; Yoshino, Masabumi; Suga, Norihiro; Kitagawa, Wataru; Yamada, Harutaka; Nishikawa, Kazuhiro; Imai, Hirokazu

    2008-12-01

    A 53-year-old Japanese man with systemic lupus erythematosus developed proteinuria and hematuria after a urinary stone episode. A light microscopic study of a kidney biopsy specimen demonstrated a bubbling appearance and spike formation of the basement membrane. Immunofluorescent studies revealed that there were no significant depositions of immunoglobulins, such as IgG (-), IgA (-), IgM (+/-), kappa light chain (+/-), lambda light chain (+/-), or C3 (-) in the glomerular capillary wall, though C1q was present as one-plus positive staining in mesangial areas. Electron microscopic studies showed that the thickness of the basement membrane varied from thin to thick without electron dense deposits, and that the cellular components of the podocyte were irregularly present in the basement membrane. Urinary protein decreased after the usage of prednisolone and mizoribine; however, proteinuria aggravated after an episode of urinary stone during the same treatment.

  3. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  4. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P; T. Adams

    2008-09-12

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using gaseous hydrogen permeation testing techniques.

  5. Air exchange rates and migration of VOCs in basements and residences.

    Science.gov (United States)

    Du, L; Batterman, S; Godwin, C; Rowe, Z; Chin, J-Y

    2015-12-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs, and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multitracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walk-through survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52/h, respectively, and had strong and opposite seasonal trends, for example, AERs were highest in residences during the summer, and highest in basements during the winter. Airflows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, for example, 90th percentile benzene, toluene, naphthalene, and limonene concentrations were 4.0, 19.1, 20.3, and 51.0 μg/m(3), respectively; maximum concentrations were 54, 888, 1117, and 134 μg/m(3). Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. Few IAQ studies have examined basements. A sizable volume of air can flow between the basement and living area, and AERs in these two zones can differ considerably. In many residences, the basement contains significant emission sources and contributes a large fraction of VOC concentrations found in the living area. Exposures can be lowered by removing VOC sources from the basement; other exposure management options, such as local ventilation or isolation, are unlikely to be practical. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. New materials for polymer electrolyte membrane fuel cell current collectors

    Science.gov (United States)

    Hentall, Philip L.; Lakeman, J. Barry; Mepsted, Gary O.; Adcock, Paul L.; Moore, Jon M.

    Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry.

  7. A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.

  8. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2016-01-01

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  9. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  10. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material.

    Science.gov (United States)

    Colangelo, F; Cioffi, R; Montagnaro, F; Santoro, L

    2012-06-01

    Fly ash from municipal solid waste incinerators (MSWI) is classified as hazardous in the European Waste Catalogue. Proper stabilization processes should be required before any management option is put into practice. Due to the inorganic nature of MSWI fly ash, cementitious stabilization processes are worthy of consideration. However, the effectiveness of such processes can be severely compromised by the high content of soluble chlorides and sulphates. In this paper, a preliminary washing treatment has been optimized to remove as much as possible soluble salts by employing as little as possible water. Two different operating conditions (single-step and two-step) have been developed to this scope. Furthermore, it has been demonstrated that stabilized systems containing 20% of binder are suitable for safer disposal as well as for material recovery in the field of road basement (cement bound granular material layer). Three commercially available cements (pozzolanic, limestone and slag) have been employed as binders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Mautner, H.G.; Coronado, R.; Jumblatt, J.E.

    1986-01-01

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  12. Faults in Paleozoic basement and their participation in Alpine deformation of Greater Caucasus – evidences from materials of restored (balanced) sections in folded sedimentary cover

    Science.gov (United States)

    Yakovlev, Fedor

    2015-04-01

    Method. As each fold has information about strain, numerous folds (0.1-1 km width) inside of hinterland (stripe about 1000 x 50 km) of Greater Caucasus (GC) allow to restore structure for whole sedimentary cover. Material of 24 detailed sections of 510 km total actual length in three regions was used for restoration of structure. These sections were split on 505 domains as associations of 2-5 folds. Three parameters of morphology were measured in these domains: dip of axial plain, dip of envelope plain, value of shortening as interlimb angle [1, 2, 3]. Because these parameters correlate with ellipsoid (ellipse) of strain for domain, sequence of three kinematic operations allow to restore actual state of domain to pre-folded state (from ellipse to circle): rotation to horizontal position of envelope plain, horizontal simple shear to vertical axial plain and vertical flattening (pure shear). Aggregation of chain of pre-folded domains is forming a pre-folded state of whole section, and it allows to calculate of shortening value. For correct detailing of strain study, 78 "structural cells" were formed by aggregation of 5-10 domains in each cell. Some additional observations and calculations allow to find initial and post-folded thickness of sedimentary cover, depth of cover bottom, virtual position of cover top (amplitude of erosion) for all tectonic cells. The received result for 78 cells allowed to understand the main features of GC structure, to see a distribution of basement top depth, to give behavior pattern of the basement and to find a role of faults in shortening of the basement and of sedimentary cover. Results. Three regions of GC were studied: North-Western Caucasus (NWC) [1], Chiaur tectonic zone in South Ossetia (ChZ) and two zones in South-Eastern Caucasus - Tfan Zone (TZ) and Shakhdag zone (ShZ) [3]. The shortening values for structural cells were found as 49% in average for ShZ (with deviations 37÷62%), 55% for TZ (36÷67%), 57% for ChZ (46÷67%) and

  13. Magnetic Basement Depth Inversion in the Space Domain

    Science.gov (United States)

    Nunes, Tiago Mane; Barbosa, Valéria Cristina F.; Silva, João Batista C.

    2008-10-01

    We present a total-field anomaly inversion method to determine both the basement relief and the magnetization direction (inclination and declination) of a 2D sedimentary basin presuming negligible sediment magnetization. Our method assumes that the magnetic intensity contrast is constant and known. We use a nonspectral approach based on approximating the vertical cross section of the sedimentary basin by a polygon, whose uppermost vertices are forced to coincide with the basin outcrop, which are presumably known. For fixed values of the x coordinates our method estimates the z coordinates of the unknown polygon vertices. To obtain the magnetization direction we assume that besides the total-field anomaly, information about the basement’s outcrops at the basin borders and the basement depths at a few points is available. To obtain stable depth-to-basement estimates we impose overall smoothness and positivity constraints on the parameter estimates. Tests on synthetic data showed that the simultaneous estimation of the irregular basement relief and the magnetization direction yields good estimates for the relief despite the mild instability in the magnetization direction. The inversion of aeromagnetic data from the onshore Almada Basin, Brazil, revealed a shallow, eastward-dipping basement basin.

  14. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  15. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  16. Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria

    Science.gov (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2018-03-01

    Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.

  17. Geochemical variability of the Yucatan basement: Constraints from crystalline clasts in Chicxulub impactites

    Science.gov (United States)

    Kettrup, B.; Deutsch, A.

    2003-07-01

    The 65 Ma old Chicxulub impact structure with a diameter of about 180 km is again in the focus of the geosciences because of the recently commenced drilling of the scientific well Yaxcopoil- 1. Chicxulub is buried beneath thick post-impact sediments, yet samples of basement lithologies in the drill cores provide a unique insight into age and composition of the crust beneath Yucatan. This study presents major element, Sr, and Nd isotope data for Chicxulub impact melt lithologies and clasts of basement lithologies in impact breccias from the PEMEX drill cores C-1 and Y-6, as well as data for ejecta material from the K/T boundaries at La Lajilla, Mexico, and Furlo, Italy. The impact melt lithologies have an andesitic composition with significantly varying contents of Al, Ca, and alkali elements. Their present day 87Sr/86Sr ratios cluster at about 0.7085, and 143Nd/144Nd ratios range from 0.5123 to 0.5125. Compared to the melt lithologies that stayed inside the crater, data for ejecta material show larger variations. The 87Sr/86Sr ratios range from 0.7081 for chloritized spherules from La Lajilla to 0.7151 for sanidine spherules from Furlo. The 143Nd/144Nd ratio is 0.5126 for La Lajilla and 0.5120 for the Furlo spherules. In an tCHUR(Nd)-tUR(Sr) diagram, the melt lithologies plot in a field delimited by Cretaceous platform sediments, various felsic lithic clasts and a newly found mafic fragment from a suevite. Granite, gneiss, and amphibolite have been identified among the fragments from crystalline basement gneiss. Their 87Sr/86Sr ratios range from 0.7084 to 0.7141, and their 143Nd/144Nd ratios range from 0.5121 to 0.5126. The TNdDM model ages vary from 0.7 to 1.4 Ga, pointing to different source terranes for these rocks. This leads us to believe that the geological evolution and the lithological composition of the Yucatàn basement is probably more complex than generally assumed, and Gondwanan as well as Laurentian crust may be present in the Yucatàn basement.

  18. Geochemistry of the Puna Austral and Cordillera Oriental basement

    International Nuclear Information System (INIS)

    Becchio, Raul; Lucassen, Friedrich; Franz, Gerhard; Kasemann, Simone

    1998-01-01

    Major and trace elements, rare earths, and 143 Nd/ 147 Nd and, 147 Sm/ 144 Nd isotope ratios have been determined in the Puna Austral and Cordillera Oriental basement. The basement is formed by high temperature amphibolite facies rocks ranulites (750-550 degrees C) and green schists. They are represented by schists, paragneiss, orthogneiss, migmatites, few metabasites, marbles and chalcosilicatic banks. Hypotheses on the formation and evolution of the basement are presented

  19. Survey of technological trends in functional membrane materials; Kinosei makuzai ni kansuru gijutsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Materials for membranes with novel functions are surveyed. The survey is focused on 10 subjects, which are high-performance RO (reverse osmosis)/UF (ultrafiltration) membranes; development of an energy-efficient secondary treatment system for urban wastewater using pollution-free membranes; high-performance ion exchange membranes; artificial lung membranes; hydrogen separation membranes (hydrogen as energy); development of an energy-efficient combustion system using gas separation membranes (oxygen-enriched membranes); organic matter separation membranes; enzyme-aided chemical reaction membranes and their application; development of a distilling ship; and functional membranes making use of photosynthesis. Discussed in this connection are the outlines of the technologies, the need of their development, methods and contents of the development efforts, and the effects and impacts of their development. The survey further concerns the particulars of the trends in novel technologies about functional membrane materials development, covering gas separation and liquid separation technologies; chemical reaction membranes; and enzyme-aided chemical reaction membranes and their application systems. As for their application, the survey covers the field of application of desalinated or ultrapure water; field of application of food fermentation technologies; industrial wastewater, valuable materials recovery, and urban wastewater treatment; and application to medical systems. (NEDO)

  20. NATURAL BASEMENT VENTILATION AS A RADON MITIGATION TECHNIQUE

    Science.gov (United States)

    The report documents a study of natural basement ventilation in two research houses during both the summer cooling season and the winter heating season. NOTE: Natural basement ventilation has always been recommended as a way to reduce radon levels in houses. However, its efficacy...

  1. Basement domain map of the conterminous United States and Alaska

    Science.gov (United States)

    Lund, Karen; Box, Stephen E.; Holm-Denoma, Christopher S.; San Juan, Carma A.; Blakely, Richard J.; Saltus, Richard W.; Anderson, Eric D.; DeWitt, Ed

    2015-01-01

    The basement-domain map is a compilation of basement domains in the conterminous United States and Alaska designed to be used at 1:5,000,000-scale, particularly as a base layer for national-scale mineral resource assessments. Seventy-seven basement domains are represented as eighty-three polygons on the map. The domains are based on interpretations of basement composition, origin, and architecture and developed from a variety of sources. Analysis of previously published basement, lithotectonic, and terrane maps as well as models of planetary development were used to formulate the concept of basement and the methodology of defining domains that spanned the ages of Archean to present but formed through different processes. The preliminary compilations for the study areas utilized these maps, national-scale gravity and aeromagnetic data, published and limited new age and isotopic data, limited new field investigations, and conventional geologic maps. Citation of the relevant source data for compilations and the source and types of original interpretation, as derived from different types of data, are provided in supporting descriptive text and tables.

  2. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis.

    Science.gov (United States)

    Zheng, Wei; Warner, Roscoe; Ruggeri, Roger; Su, Chunyan; Cortes, Christian; Skoura, Athanasia; Ward, Jessica; Ahn, Kay; Kalgutkar, Amit; Sun, Dexue; Maurer, Tristan S; Bonin, Paul D; Okerberg, Carlin; Bobrowski, Walter; Kawabe, Thomas; Zhang, Yanwei; Coskran, Timothy; Bell, Sammy; Kapoor, Bhupesh; Johnson, Kent; Buckbinder, Leonard

    2015-05-01

    Small vessel vasculitis is a life-threatening condition and patients typically present with renal and pulmonary injury. Disease pathogenesis is associated with neutrophil accumulation, activation, and oxidative damage, the latter being driven in large part by myeloperoxidase (MPO), which generates hypochlorous acid among other oxidants. MPO has been associated with vasculitis, disseminated vascular inflammation typically involving pulmonary and renal microvasculature and often resulting in critical consequences. MPO contributes to vascular injury by 1) catabolizing nitric oxide, impairing vasomotor function; 2) causing oxidative damage to lipoproteins and endothelial cells, leading to atherosclerosis; and 3) stimulating formation of neutrophil extracellular traps, resulting in vessel occlusion and thrombosis. Here we report a selective 2-thiouracil mechanism-based MPO inhibitor (PF-1355 [2-(6-(2,5-dimethoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide) and demonstrate that MPO is a critical mediator of vasculitis in mouse disease models. A pharmacokinetic/pharmacodynamic response model of PF-1355 exposure in relation with MPO activity was derived from mouse peritonitis. The contribution of MPO activity to vasculitis was then examined in an immune complex model of pulmonary disease. Oral administration of PF-1355 reduced plasma MPO activity, vascular edema, neutrophil recruitment, and elevated circulating cytokines. In a model of anti-glomerular basement membrane disease, formerly known as Goodpasture disease, albuminuria and chronic renal dysfunction were completely suppressed by PF-1355 treatment. This study shows that MPO activity is critical in driving immune complex vasculitis and provides confidence in testing the hypothesis that MPO inhibition will provide benefit in treating human vasculitic diseases. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    Science.gov (United States)

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  4. Radon mitigation experience in houses with basements and adjoining crawl spaces

    International Nuclear Information System (INIS)

    Messing, M.; Henschel, D.B.

    1990-01-01

    Active soil depressurization systems were installed in four basement houses with adjoining crawl spaces in Maryland. In addition, existing soil depressurization systems were modified in two additional basement-plus-crawl-space houses. These six houses were selected to include both good and poor communication beneath the basement slab, and different degrees of importance of the crawl space as a source of the indoor radon. The radon reduction effectiveness was compared for: depressurization only under the basement slab; depressurization only under a polyethylene liner over the unpaved crawl-space floor; and simultaneous depressurization under both the basement slab and the crawl-space liner. The objective of this paper is to identify under what conditions treatment of the basement alone might provide sufficient radon reductions in houses of this substructure, and what incremental benefits might be achieved by also treating the crawl space

  5. Crucial Role of Mesangial Cell-derived Connective Tissue Growth Factor in a Mouse Model of Anti-Glomerular Basement Membrane Glomerulonephritis.

    Science.gov (United States)

    Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki

    2017-02-13

    Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis.

  6. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype.

    Science.gov (United States)

    Yang, Shaowei; Sun, Yexiao; Geng, Zhijun; Ma, Kui; Sun, Xiaoyan; Fu, Xiaobing

    2016-05-01

    The majority of studies on scar formation have mainly focused on the dermis and little is known of the involvement of the epidermis. Previous research has demonstrated that the scar tissue-derived keratinocytes are different from normal cells at both the genetic and cell biological levels; however, the mechanisms responsible for the fundamental abnormalities in keratinocytes during scar development remain elusive. For this purpose, in this study, we used normal, wound edge and hypertrophic scar tissue to examine the morphological changes which occur during epidermal regeneration as part of the wound healing process and found that the histological structure of hypertrophic scar tissues differed from that of normal skin, with a significant increase in epidermal thickness. Notably, staining of the basement membrane (BM) appeared to be absent in the scar tissues. Moreover, immunofluorescence staining for cytokeratin (CK)10, CK14, CK5, CK19 and integrin-β1 indicated the differential expression of cell markers in the epidermal keratinocytes among the normal, wound edge and hypertrophic scar tissues, which corresponded with the altered BM structures. By using a panel of proteins associated with BM components, we validated our hypothesis that the BM plays a significant role in regulating the cell fate decision of epidermal keratinocytes during skin wound healing. Alterations in the structure of the BM promote basal keratinocytes to adopt a proliferative phenotype both in vivo and in vitro.

  7. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Li, M.L.; Aggeler, J.; Farson, D.A.; Hatier, C.; Hassell, J.; Bissell, M.J.

    1987-01-01

    When primary mouse mammary epithelial cells are cultured on plastic, they rapidly lose their ability to synthesize and secrete most milk proteins even in the presence of lactogenic hormones, whereas cells cultured on release type I collagen gels show greatly enhanced mRNA levels and secretion rates of β-casein and of some other milk proteins. The authors show here that culture on a reconstituted basement membrane from Engelbreth-Holm-Swarm tumor (EHS) allows > 90% of cells to produce high levels of β-casein. By comparison, 30-40% of cells on released type 1 gels and only 2-10% of cells on plastic express β-casein after 6 days in culture. Because only 40% of cells from late pregnant gland produced β-casein before culture, the EHS matrix can both induce and maintain an increased level of casein gene expression. Individual basal lamina components were also evaluated. Type IV collagen and fibronectin had little effect on morphology and β-casein mRNA levels. In contrast, both laminin and heparan sulfate proteoglycan increased β-casein mRNA levels. Profound morphological differences were evident between cells cultured on plastic and on EHS matrix, the latter cells forming ducts, ductules, and lumina and resembling secretory alveoli. These results emphasize the vital role of the extracellular matrix in receiving and integrating structural and functional signals that can direct specific gene expression in differentiated tissues

  8. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges

    KAUST Repository

    Kim, Wun-gwi

    2013-12-01

    Membranes utilizing nanoporous one-dimensional (1D) and two-dimensional (2D) materials are emerging as attractive candidates for applications in molecular separations and related areas. Such nanotubular and nanolayered materials include carbon nanotubes, metal oxide nanotubes, layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. By virtue of their unique shape, size, and structure, they possess transport properties that are advantageous for membrane and thin film applications. These materials also have very different chemistry from more conventional porous 3D materials, due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D and 2D materials. Thereafter, we elucidate different approaches for fabrication of membranes and thin films from these materials, either as multiphase (composite/hybrid) or single-phase membranes. The influence of surface chemistry and processing techniques on the membrane morphology is highlighted. We then discuss the applications of such membranes in areas relating to molecular transport and separation, e.g. gas and liquid-phase separations, water purification, and ion-conducting membranes. The review concludes with a discussion of the present outlook and some of the key scientific challenges to be addressed on the path to industrially applicable membranes containing nanoporous 1D and 2D materials. © 2013 Elsevier Ltd.

  9. Basement depressurization using dwelling mechanical exhaust ventilation system

    International Nuclear Information System (INIS)

    Collignan, B.; O'Kelly, P.; Pilch, E.

    2004-01-01

    The mechanical ventilation exhaust system is commonly used in France to generate air renewal into building and especially into dwelling. It consists of a permanent mechanical air extraction from technical rooms (kitchen, bathrooms and toilets) using a unique fan connected to exhaust ducts. Natural air inlets in living room and bed rooms ensure an air flow from living spaces towards technical rooms. To fight against radon into building, the most recognised efficient technique is the Soil Depressurization System (S.D.S.) consisting in depressurizing the house basement. The aim of this study is to test the ability of the dwelling mechanical ventilation system to depressurize the basement in conjunction with air renewal of a house. For that purpose, a S.D.S. has been installed in an experimental house at CSTB during its construction. At first, tests undertaken with a variable velocity fan connected to the S.D.S. have characterised the permeability of the basement. It is shown that basement can be depressurized adequately with a relatively low air flow rate. At a second stage, S.D.S. has been connected to the exhaust ventilation fan used for the mechanical ventilation of the house. Results obtained show the ability of such ventilation system to generate sufficient depressurization in the basement and to ensure simultaneously adequate air change rate in the dwelling. (author)

  10. A Comparison of Water Diffusion in Polymer Based Fuel Cell and Reverse Osmosis Membrane Materials

    Science.gov (United States)

    Soles, Christopher; Frieberg, Bradley; Tarver, Jacob; Tyagi, Madhusudan; Jeong, Cheol; Chan, Edwin; Stafford, Christopher

    Hydrated polymer membranes are critical in both fuel cells and water filtration and desalination. In both of these applications the membrane function (selectively transporting or separating ions) is coupled with the transport of water through the membrane. There is a significant need to understand the nature by which the water and ions distribute and move through these membranes. This presentation compares the transport mechanisms in in an ion containing block copolymer alkaline fuel cell membrane with that of a polyamide membrane that is used as the active layer in a reverse osmosis water desalination membrane. Small angle neutron scattering measurements are used to locally probe how water swells the different materials and quantitatively describe the distribution of water within the membrane microstructures. Quasielastic neutron scattering measurements are then used to separate the polymer dynamics of the host membranes from the dynamics of the water inside the membranes. This reveals that water moves at least an order of magnitude slower through the ion containing fuel cell membrane materials, consistent with a solution-diffusion model, while the water in the polyamide membranes moves faster, consistent with a pore-flow diffusion mechanism. These insights will be discussed in terms of a coupling of the water and polymer dynamics and design cues for high performance membrane materials.

  11. Grenville age of basement rocks in Cape May NJ well: New evidence for Laurentian crust in U.S. Atlantic Coastal Plain basement Chesapeake terrane

    Science.gov (United States)

    Sheridan, R.E.; Maguire, T.J.; Feigenson, M.D.; Patino, L.C.; Volkert, R.A.

    1999-01-01

    The Chesapeake terrane of the U.S. mid-Atlantic Coastal Plain basement is bounded on the northwest by the Salisbury positive gravity and magnetic anomaly and extends to the southeast as far as the Atlantic coast. It underlies the Coastal Plain of Virginia, Maryland, Delaware and southern New Jersey. Rubidium/Strontium dating of the Chesapeake terrane basement yields an age of 1.025 ?? 0.036 Ga. This age is typical of Grenville province rocks of the Middle to Late Proterozoic Laurentian continent. The basement lithologies are similar to some exposed Grenville-age rocks of the Appalachians. The TiO2 and Zr/P2O5 composition of the metagabbro from the Chesapeake terrane basement is overlapped by those of the Proterozoic mafic dikes in the New Jersey Highlands. These new findings support the interpretation that Laurentian basement extends southeast as far as the continental shelf in the U.S. mid-Atlantic region. The subcrop of Laurentian crust under the mid-Atlantic Coastal Plain implies unroofing by erosion of the younger Carolina (Avalon) supracrustal terrane. Dextral-transpression fault duplexes may have caused excessive uplift in the Salisbury Embayment area during the Alleghanian orogeny. This extra uplift in the Salisbury area may have caused the subsequent greater subsidence of the Coastal Plain basement in the embayment.

  12. Radionuclide distribution in TMI-2 reactor building basement liquids and solids

    International Nuclear Information System (INIS)

    Horan, J.T.; McIsaac, C.V.; Keefer, D.G.

    1984-01-01

    As a result of the TMI-2 accident, approximately 2.46 x 10 6 L of contaminated water were released to the Reactor Building basement. The principal fission product release pathway from the damaged core was through the reactor coolant system (RCS) to the pressurizer, through the pressure-operated relief valve (PORV) on the pressurizer to the Reactor Coolant Drain Tank (RCDT), and then through the RCDT rupture disk to the Reactor Building basement. Since August 1979, a number of efforts have been made to determine the location, quantity, and composition of fission products released to the Reactor Building basement. These efforts have included sampling of the basement water and solids, the basement sump pump recirculation line, the RCDT, and visual surveys using a closed circuit television (CCTV) system. The analysis of basement samples has provided data on the physical and radioisotopic characteristics of the liquids and solids. This paper describes the sample collection techniques and discusses radiochemical analyses results

  13. Depth-To-Basement Mapping Using Fractal Technique: Application ...

    African Journals Online (AJOL)

    ... and can thus be obtained at source level. Application to aeromagnetic data from the Chad basin north eastern Nigeria produced a basement relief which range from depths of 2.47 km to 5.40 km with an average of 3.92 +- 0.66 km. Keywords: Fractal, depth, basement, spectra, aeromagnetic. Nigerian Journal of Physics Vol ...

  14. Measure Guideline: Basement Insulation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  15. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...

  16. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  17. Femtosecond Laser Processing of Membranes for Sensor Devices on different Bulk Materials

    Directory of Open Access Journals (Sweden)

    Johann Zehetner

    2017-01-01

    Full Text Available We demonstrate that diaphragms for sensor applications can be fabricated by laser ablation in a~variety of substrates such as ceramics, glass, sapphire or SiC. However, ablation can cause pinholes in membranes made of SiC, Si and metals. Our experiments indicate that pinhole defects in the ablated membranes are affected by ripple structures related to the polarization of the laser. From our simulation results on light propagation in Laser-Induced Periodic Surface Structures (LIPSS we find out that they are acting as a slot waveguide in SiC material. The results further show that field intensity is enhanced inside LIPSS and spreads out at surface distortions promoting the formation of pinholes. The membrane corner area is most vulnerable for pinhole formation. Pinholes funnel laser radiation into the bulk material causing structural damage and stress in the membrane. We show that a~polarization flipping technique inhibits the formation of pin holes caused by LIPSS.

  18. Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, S.N.; Carson, R.; Muirhead, C.; Li, H.; Castillo, I.; Boniface, H.; Suppiah, S. [Canadian Nuclear Laboratories, Chalk River, ON (Canada); Ratnayake, A.; Robinson, J. [Tyne Engineering Inc., Burlington, ON (Canada)

    2015-03-15

    Proton Exchange Membrane (PEM) type electrolysis cells have a potential use for tritium removal and heavy water upgrading. AECL is currently exposing various commercial PEM materials to both gamma (Cobalt-60 source) and beta (tritiated water) radiation to study the effects of radiation on these materials. This paper summarizes the testing methods and results that have been collected to date. The PEM materials that are or have been exposed to radiation are: Nafion 112, 212, 117 and 1110. Membrane characterization pre- and post- exposure consists of non-destructive inspection (FTIR, SEM/XPS), mechanical (tensile strength, percentage elongation, and modulus), electrical (resistance), or chemical (ion-exchange capacity - IEC). It has appeared that the best characterization techniques to compare exposed versus unexposed membranes were IEC, ultimate tensile strength and percent elongation. These testing techniques are easy and cheap to perform. The non-destructive tests, such as SEM and FTIR did not provide particularly useful information on radiation-induced degradation. Where changes in material properties were measured after radiation exposure, they would be expected to result in poorer cell performance. However, for modest γ-radiation exposure, all membranes showed a slight decrease in cell voltage (better performance). In contrast, the one β-radiation exposed membrane did show the expected increase in cell voltage. The counterintuitive trend for γ-radiation exposed membranes is not yet understood. Based on these preliminary results, it appears that γ- and β-radiation exposures have different effects.

  19. Geochemical interpretation of the Precambrian basement and overlying Cambrian sandstone on Bornholm, Denmark: Implications for the weathering history

    Science.gov (United States)

    Zhou, Lingli; Friis, Henrik; Yang, Tian; Nielsen, Arne Thorshøj

    2017-08-01

    A geochemical study of the Precambrian basement granites from the Borggård borehole on Bornholm, Denmark, suggests that the granites were moderately weathered (Chemical Index of Alteration-CIA = 66-71) during subaerial exposure in a humid climate. The microcline is well preserved, whereas plagioclase was thoroughly altered to clay minerals (Plagioclase Index of Alteration-PIA = 93-99) which is likely due to its original Ca-rich composition. The primary Fe-Ti accessory minerals were oxidized to hematite and anatase. Evidence from REE distribution patterns and immobile element ratios, e.g. Zr/Hf and Nb/Ta, between the weathered basement granite from the Borggård borehole and regional granitoids on Bornholm, constrains the Svaneke Granite as the original basement lithology. A tau (τ) mass transport model (assuming immobile Ti) was applied to quantify the mass transfer during weathering of the basement granite. The results show a depletion of major elements in the following order: Na > Ca > Mg > Si; Al and Ti are immobile and stay constant; K shows sample dependent enrichment or depletion; Fe is slightly enriched. The Cambrian sandstone overlying the basement in the Borggård borehole, assigned to the Gadeby Member of the Nexø Formation, is feldspathic litharenite-litharenite in composition. Provenance indicators including (Gd/Yb)N, Zr/Hf and Nb/Ta ratios and petrological features indicate that source material was derived from both weathered and fresh basement granite of intermediate composition. The Gadeby Member equivalents in Germany, the basal lower Cambrian Adlergrund Konglomerat Member (AKM) in the offshore G-14 well north of Rügen, and the approximately coeval Lubmin Sandstein Formation (LSF) from the Loissin-1 borehole, mainland Germany, must have been sourced from a basement with compositions comparable to the intermediate group of the regional granitoids on Bornholm. The source materials for the AKM (CIA = 71-72, PIA = 94-96), the Gadeby Member in the

  20. A review of reverse osmosis membrane materials for desalination-Development to date and future potential

    OpenAIRE

    Lee, Kali Peng; Arnot, Tom C.; Mattia, Davide

    2011-01-01

    Reverse osmosis (RO) is currently the most important desalination technology and it is experiencing significant growth. The objective of this paper is to review the historical and current development of RO membrane materials which are the key determinants of separation performance and water productivity, and hence to define performance targets for those who are developing new RO membrane materials. The chemistry, synthesis mechanism(s) and desalination performance of various RO membranes are ...

  1. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    International Nuclear Information System (INIS)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang; Yang, Xiaoping

    2016-01-01

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  2. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang, E-mail: suigang@mail.buct.edu.cn; Yang, Xiaoping

    2016-12-15

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  3. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  4. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus.

    Science.gov (United States)

    Carlson Scholz, Jodi A; Garg, Rohit; Compton, Susan R; Allore, Heather G; Zeiss, Caroline J; Uchio, Edward M

    2011-10-01

    The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology.

  5. Porous Materials to Support Bilayer Lipid Membranes for Ion Channel Biosensors

    Directory of Open Access Journals (Sweden)

    Thai Phung

    2011-01-01

    Full Text Available To identify materials suitable as membrane supports for ion channel biosensors, six filter materials of varying hydrophobicity, tortuosity, and thickness were examined for their ability to support bilayer lipid membranes as determined by electrical impedance spectroscopy. Bilayers supported by hydrophobic materials (PTFE, polycarbonate, nylon, and silanised silver had optimal resistance (14–19 GΩ and capacitance (0.8–1.6 μF values whereas those with low hydrophobicity did not form BLMs (PVDF or were short-lived (unsilanised silver. The ability of ion channels to function in BLMs was assessed using a method recently reported to improve the efficiency of proteoliposome incorporation into PTFE-supported bilayers. Voltage-gated sodium channel activation by veratridine and inhibition by saxitoxin showed activity for PTFE, nylon, and silanised silver, but not polycarbonate. Bilayers on thicker, more tortuous, and hydrophobic materials produced higher current levels. Bilayers that self-assembled on PTFE filters were the longest lived and produced the most channel activity using this method.

  6. Experiments on pollutant transport from soil into residential basements by pressure-driven airflow

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Lewis, S.R.; Doyle, S.M.; Moed, B.A.; Nero, A.V.

    1987-01-01

    At two residences in Portland, OR, they have investigated (1) the coupling between residential basements and the air in nearby soil and (2) the influence of basement depressurization on the migration of air in soil. With the basements depressurized 25-50 Pa relative to outdoor air, underpressures as great as 20-40% of those in the basement were observed at sampling points in the soil. Sulfur hexafluoride was injected into the soil near the houses and its concentration monitored in soil air and in the house over time, both with and without basement depressurization. Depressurization was seen to have a substantial effect on the migration of the tracer within the soil. For basement depressurizations of 25-50 Pa, effective transport velocities through the soil and into the houses were observed to exceed 1 m h -1 . Airborne 222 Rn concentration was monitored in the basement of one house during the 6-day investigation and was seen to increase substantially on each of the seven occasions that the house was depressurized. The techniques employed are applicable to the study of problems of excessive radon entry into buildings and the migration of toxic vapors from waste dumps and landfills

  7. Performance Evaluation of Waterproofing Membrane Systems Subject to the Concrete Joint Load Behavior of Below-Grade Concrete Structures

    Directory of Open Access Journals (Sweden)

    Jaeyoung Song

    2017-11-01

    Full Text Available Below-grade structures such as parking lots, underground subway tunnels, and basements are growing in scale and reaching deeper below-ground levels. In this type of environment, they become subject to higher water pressure. The concrete material of the structures is exposed to wet conditions for longer periods of time, which makes the proper adhesion of waterproofing membranes difficult. Joint movements from increased structural settlement, thermal expansion/shrinkage, and physical loads from external sources (e.g., vehicles make securing durable waterproofing challenging. While ASTM Guides, Korean Codes, and BS Practice Codes on below-grade waterproofing stress the importance of manufacturer specification for quality control, ensuring high quality waterproofing for the ever-changing scale of construction remains a challenge. This study proposes a new evaluation method and criteria which allow for the selection of waterproofing membranes based on specific performance attributes and workmanship. It subjects six different waterproofing membrane systems (installed on dry and wet surface conditioned mortar slab specimens with an artificial joint to different cyclic movement widths to 300 cycles in water to demonstrate that inadequate material properties and workmanship are key causes for leakages.

  8. Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly(vinyl alcohol) membranes

    KAUST Repository

    Bui, T. D.

    2017-01-16

    In this study, two hygroscopic materials, inorganic lithium chloride (LiCl) and organic triethylene glycol (TEG) were separately added to poly(vinyl alcohol) (PVA) to form blend membranes for air dehumidification. Water vapor permeation, dehumidification performance and long-term durability of the membranes were studied systematically. Membrane hydrophilicity and water vapor sorbability increased significantly with higher the hygroscopic material contents. Water vapor permeance of the membranes increased with both added hygroscopic material and absorbed water. Water permeation energy varied from positive to negative with higher hygroscopic content. This observation is attributed to a lower diffusion energy and a relatively constant sorption energy when hygroscopic content increases. Comparatively, PVA/TEG has less corrosive problems and is more environmentally friendly than PVA/LiCl. A membrane with PVA/TEG is observed to be highly durable and is suitable for dehumidification applications.

  9. Discussion on the basement topography and its relation with the uranium mineralization in Xiangshan basin

    International Nuclear Information System (INIS)

    Long Qihua; Liu Qingcheng

    2002-01-01

    The depth of the basement and the relation between the basement relief shape and uranium mineralization are discussed by forward and inverse computation for large-scale gravity data in Xiangshan basin. The difference of basement topography result in the inhomogeneous distribution of uranium mineralization. The margin of the basement upheaval section and the variation place of basement topography are the favorable place for uranium mineralization. It's helpful to prospect deep and blind uranium deposit in Xiangshan basin

  10. Investigation of the subsurface features of the basement complex of ...

    African Journals Online (AJOL)

    3D seismic reflection survey was recently carried out within the Zaria area of the basement complex of northern Nigeria, in order to investigate the complexity of the subsurface features within the basement. The geology of the survey area was characterized by gneisses and low grade meta-sedimentary rocks that form the ...

  11. Application of positron annihilation technique to reverse osmosis membrane materials

    International Nuclear Information System (INIS)

    Shimazu, A.; Ikeda, K.; Miyazaki, T.; Ito, Y.

    2000-01-01

    Positron annihilation lifetime spectroscopy has been adopted as a new approach for studying vacancies of reverse osmosis membrane materials composed of cellulose acetate films and aromatic polyamide resins. The intensity of the ortho-positronium (o-Ps) lifetime increased with the amount of vacancies determined using N 2 isotherm at -195 deg. C. Changes of vacancy profiles induced by heat treatment in the cellulose acetate films were detected using o-Ps. It was found that the positron annihilation technique is applicable to the study of vacancy profiles associated with salt selectivity in typical reverse osmosis membranes.

  12. Characterization of hydrotalcite materials for CO2 selective membranes

    Energy Technology Data Exchange (ETDEWEB)

    Feuillade, V.C.; Haije, W.G. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2006-07-15

    The present concern about climate change has urged researchers and engineers all over the world to go and look for ways of reducing greenhouse gas emissions. Largescale CO2 emissions occur at power plants burning fossil fuels or e.g. the production of hydrogen from carbonaceous feed. In these cases pre- or post-combustion CO2 capture techniques followed by CO2 storage seems a promising route for reducing emissions. Prerequisite in these processes is the effective separation of CO2 from mixed gaseous process streams. The purpose of this work is to develop CO2 membranes to allow for the combination of natural gas reforming with separation of H2 and CO2 in separation enhanced reactors, i.e. membrane reactors, for carbon-free hydrogen production or electricity generation. This paper describes the materials' properties of hydrotalcites, a promising class of compounds for CO2 membranes. They have already proven their applicability as CO2 sorbent in sorption enhanced reaction processes. It is of fundamental importance to know the structural stability of this compound in the operational window of a chosen membrane reactor prior to any membrane fabrication. To this end, in-situ XRPD and DRIFTS as well as TGA-MS and SEM-EDX measurements have been performed on commercial (Pural) and hydrothermally synthesized homemade samples.

  13. Basement Surface Faulting and Topography for Savannah River Site and Vicinity

    International Nuclear Information System (INIS)

    Cumbest, R.J.

    1998-01-01

    This report integrates the data from more than 60 basement borings and over 100 miles of seismic reflection profiling acquired on the Savannah River Site to map the topography of the basement (unweathered rock) surface and faulting recorded on this surface

  14. Substituted polynorbornenes as promising materials for gas separation membranes

    International Nuclear Information System (INIS)

    Finkelshtein, Evgenii Sh; Bermeshev, Maksim V; Gringolts, Mariya L; Starannikova, L E; Yampolskii, Yu P

    2011-01-01

    Published results concerning the synthesis and study of the transport characteristics of polynorbornenes are considered and analyzed. Conclusions are drawn regarding the effect of the backbone rigidity and the nature of side groups on the gas permeability level. The prospects of using addition organosilicon polynorbornenes as gas separating membrane materials are discussed.

  15. Membranous glomerulonephritis in a child asymptomatic for hepatitis B virus. Concomitant seropositivity for HBsAG and anti-HBs.

    Science.gov (United States)

    Hirsch, H Z; Ainsworth, S K; DeBeukelaer, M; Brissie, R M; Hennigar, G R

    1981-04-01

    The presence of hepatitis B surface antigen (HBsAg) in association with immunoglobulins and complement components within the glomerular basement membranes of adults having chronic active hepatitis has been well documented. In addition, investigators in Poland have demonstrated HBsAg immune complexes in glomeruli of children who did not have clinical evidence of hepatitis. More recently, a single case of childhood membranous glomerulonephritis in an asymptomatic carrier of hepatitis B virus was cited by observers in Canada. Reported here is the deposition of HBsAg immune complexes in the glomerular basement membranes of a 13-year-old black boy who had membranous glomerulopathy but not clinical evidence of hepatitis. This may be the first reported case in the United States of HbsAg-associated membranous glomerulonephritis in a child asymptomatic for hepatitis B virus, and only the second such case in North America. However, unlike previous studies of childhood glomerulopathy in association with hepatitis B virus, this patient is seropositive for both HBsAg and anti-HBs (antibody for hepatitis B surface antigen). Similar "rare" serologic findings were found for the patient's eldest male sib.

  16. Geology of the Pan-African basement Complex in Ube-Wulko area ...

    African Journals Online (AJOL)

    The Ube-Wulko area of southeast Akwanga falls within the Pan-African remobilized Basement Complex of northcentral Nigeria. It consists of intensely multi-deformed high grade polymetamorphic basement rocks, predominantly composed of migmatitic gneisses and schists and subordinate quartzites, marbles, and ...

  17. development in a basement terrain

    African Journals Online (AJOL)

    2004-05-17

    May 17, 2004 ... especially as a reconnaissance tool (de Jong et al., 1981; de. Rooy et al., 1986; ... ful naval radio transmitters in the very low frequency range. (15-25kHz). ... involved partial curve matching and computer iteration tech- niques. .... result predicted depth to fresh basement bedrock to be 46m whilst drilling ...

  18. Effects of ionizing radiation on glycerolated amniotic membranes as a substract for cultured human epithelium; Efeitos da radiacao ionizante em membranas amnioticas gliceroladas empregadas como substrato ao cultivo de epitelio humano

    Energy Technology Data Exchange (ETDEWEB)

    Paggiaro, Andre Oliveira

    2011-07-01

    The amniotic membrane (AM) is a biomaterial with biological properties that are beneficial to tissue repair. It has been used as a temporary coverage to threat burns and chronic wounds. Recently, it has been served as a substrate for keratinocytes culture to construct a living skin equivalent. However, MA is a biological material, and its transplantation could cause infectious disease for receptors. So, it must be preserved and sterilized before clinical use. The aim of this study was to evaluate the radiation effects on glycerol-preserved MA, considering its compatibility to support human keratinocytes culture. Four MA were stored in high concentrations of glycerol (> 85%) and half of them were radio sterilized with a dose of 25 kGy. Then, we established two groups: nonirradiated MA (MA-ni) and irradiated MA (MA-i). Both groups was deepithelialized by a standardized protocol and was investigated morphologically, immunohistochemical and ultrastructural. Subsequently human keratinocytes were cultivated immersed and in air-liquid interface on denuded surface of MA-i and MA-ni. The results were compared at 14 and 21 days of culture by light and electron microscopy. After epithelial denudation, analyses demonstrated the continuity of the basement membrane in MA-ni group, whereas in the irradiated group, there was no indication of the basement membrane’s presence on the surface of MA. The cell cultures showed that in the non-irradiated group, there was growth of a multi-layered and differentiated epithelium, with a stratum corneum’s formation in air-liquid interface. In the irradiated group, the epithelium had only two or three layer, little cell differentiation, with the same results immersed or air-liquid interface system. Glycerol-preserved MA was biocompatible with the growth of a cultivated epithelium, showing its potential as a skin substitute. Irradiation at 25 kGy cause structural damage to the tissue, making changes in basement membrane, that facilitates

  19. Analyte-triggered luminescence of Eu{sup 3+} ions encapsulated in Nafion membranes -preparation of hybrid materials from in membrane chemical reactions-

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Sánchez, Rocío, E-mail: raguilar@ifuap.buap.mx [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Zelocualtecatl-Montiel, Iván [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Gálvez-Vázquez, María de Jesús [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico); Silva-González, Rutilo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico)

    2017-04-15

    The possibility to perform chemical reactions inside polymer materials opens a unique opportunity to control and prepare materials for diverse solid-state applications. Based on the affinity of Eu{sup 3+} ions for oxygen functionalities, in this work we report the luminescence enhancement of Eu{sup 3+} ions inserted in Nafion membranes (Naf/Eu{sup 3+}) by in-situ complexing to oxalate. The formation of a europium-oxalate type complex enhances Eu{sup 3+} luminescence emission, which could be exploited for the construction of devices for oxalate sensing and the fabrication of highly luminescent materials. Possible analytical applications of Naf/Eu{sup 3+} membranes were evaluated by fluorescence spectroscopy through the linear response with concentration. The complex formation was followed by infrared spectroscopy and SEM-EDS analysis. - Highlights: • Luminescence enhancement by complexation of Eu{sup 3+} ions to oxalate inside Nafion. • Performance of chemical reactions inside Nafion/polymer membranes. • An easy and novel method to prepare luminescent solid devices. • Possibility to develop luminescent sensors by analyte-triggered optical response.

  20. Depth of magnetic basement in Iran based on fractal spectral analysis of aeromagnetic data

    Science.gov (United States)

    Teknik, Vahid; Ghods, Abdolreza

    2017-06-01

    To estimate the shape of sedimentary basins, a critical parameter in hydrocarbon exploration, we calculated the depth of magnetic basement by applying a fractal spectral method to the aeromagnetic map of Iran. The depth of magnetic basement is a close proxy for the shape of sedimentary basins provided that igneous basement is strongly magnetized relative to the overlying sediments and there is no interbedding magnetic layer in the sediments. The shape of the power spectrum of magnetic anomalies is sensitive to the depth of magnetic basement, the thickness of the magnetic layer, the fractal parameter of magnetization and the size of the window used for the calculation of the power spectrum. Using a suite of synthetic tests, we have shown that the estimation of the depth of magnetic basement of up to 20 km is not very sensitive to the often unknown fractal parameter and thus the spectral method is a reliable tool to calculate the depth of magnetic basement. The depth of magnetic basement is in the range of 7-16 km in the Zagros, east Alborz, Tabas, Jazmurian and Makran regions, showing a close correlation with depths estimated from the maximum thickness of stratigraphic columns. We have also found new sedimentary basins in Bostan Abad, Bijar and south of Orumiyeh Lake. The significant depth of the magnetic basement in the Makran, Jazmurain depression, southeast Caspian Sea, Tabas, Great Kavir, south of Orumiyeh Lake, Bostan Abad and Bijar sedimentary basins makes them future prospects for hydrocarbon explorations. The depth of magnetic basement is strongly reduced over the Neyriz and Kermanshah Ophiolites, but it does not show any meaningful correlation with other outcrops of ophiolitic rocks in Iran.

  1. Development of new membrane materials for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, M.H.

    2009-01-01

    Development of new membrane materials for direct methanol fuel cells Direct methanol fuel cells (DMFCs) can convert the chemical energy of a fuel directly into electrical energy with high efficiency and low emission of pollutants. DMFCs can be used as the power sources to portable electronic devices

  2. Contribution To The Geology Of Basement Rocks In The South Western Desert Of Egypt

    International Nuclear Information System (INIS)

    Sadek, M.F.; Khyamy, A.A.

    2003-01-01

    Three major Precambrian basement inliers are exposed in the South Western Desert of Egypt between Long. 29 degree E and the River Nile within the Uweinat-Bir Safsaf-Aswan E-W uplift system. These are Bir Safsaf, Gabal EI-Asr and Gabal Umm Shaghir areas. Smaller outcrops include Gabal EI-Gara El-Hamra and Gabal El-Gara EI-Soda, Gabal Siri, GabaI EI-Fantas and Aswan-Kalabsha area as well as the scattered outcrops around Darb El-Arbain road. Band ratios 5/7, 5/1, 4 of Landsat TM images were applied to delineate the borders, the lithologic units and structural features of low relief basement outcrops within the surrounding flat lying sedimentary rocks and sand plains. These basement rocks comprise ortho gneisses (assumed by many authors as related to old continent pre Pan-African rocks), G 1 tonalite-granodiorite, and G2 monzogranite-alkali feldspar granite intruded by variable dykes. The boundaries between the basement exposures and the sedimentary rocks are marked by nonconformity surfaces or sets of faults. Both basement and sedimentary rocks are intruded by Mesozoic syenite-G3 granites, rhyolite, trachytic plugs and Upper Cretaceous to Tertiary basalts. The basement exposures are structurally controlled by major E- W fault systems. Their vertical uplifting is overprinted by folding the overlying sedimentary rocks. This study revealed that, the different basement exposures in the SE of the Western Desert of Egypt are similar in appearance and field relations to the Pan-African basement rocks extending towards the east of the River Nile and exposed everywhere in the Eastern Desert of Egypt

  3. Possible options for reducing occupational dose from the TMI-2 basement

    International Nuclear Information System (INIS)

    Munson, L.F.; Harty, R.

    1985-11-01

    The major sources of exposure in the basement include the enclosed stairwell/elevator shaft structure, water and sludge in the elevator shaft, cast concrete walls, concrete floor slab, water and sludge on the floor, and activity in the paint and loose surface contamination. The sources were identified using data obtained by the utility from water processing, water and solid samples, remote video inspections and radiation monitoring with a robot, and strings of thermoluminescent dosimeters lowered from upper elevations. The area dose rates in the basement range from approximately 4 R/hr (in the NE quadrant) to over 1100 R/hr (near the enclosed stairwell/elevator shaft structure). It is estimated that the basement contains between 11,000 and 21,000 curies of 137 Cs. Specific decontamination and cleanup techniques are discussed. These techniques include flushing with water, high-pressure water blasting, leaching, scabbling and chemical cleaning. The applicability of these techniques to the major sources of radiation are discussed, and possible approaches and work sequences for basement cleanup are given

  4. Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions

    Energy Technology Data Exchange (ETDEWEB)

    York, A.R. II [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.

    1997-07-01

    The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.

  5. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  6. Polymetamorphic evolution of the granulite-facies Paleoproterozoic basement of the Kabul Block, Afghanistan

    Science.gov (United States)

    Collett, Stephen; Faryad, Shah Wali; Mosazai, Amir Mohammad

    2015-08-01

    The Kabul Block is an elongate crustal fragment which cuts across the Afghan Central Blocks, adjoining the Indian and Eurasian continents. Bounded by major strike slip faults and ophiolitic material thrust onto either side, the block contains a strongly metamorphosed basement consisting of some of the only quantifiably Proterozoic rocks south of the Herat-Panjshir Suture Zone. The basement rocks crop-out extensively in the vicinity of Kabul City and consist predominantly of migmatites, gneisses, schists and small amounts of higher-grade granulite-facies rocks. Granulite-facies assemblages were identified in felsic and mafic siliceous rocks as well as impure carbonates. Granulite-facies conditions are recorded by the presence of orthopyroxene overgrowing biotite in felsic rocks; by orthopyroxene overgrowing amphibole in mafic rocks and by the presence of olivine and clinohumite in the marbles. The granulite-facies assemblages are overprinted by a younger amphibolite-facies event that is characterized by the growth of garnet at the expense of the granulite-facies phases. Pressure-temperature (P-T) conditions for the granulite-facies event of around 850 °C and up to 7 kbar were calculated through conventional thermobarometry and phase equilibria modeling. The younger, amphibolite-facies event shows moderately higher pressures of up to 8.5 kbar at around 600 °C. This metamorphism likely corresponds to the dominant metamorphic event within the basement of the Kabul Block. The results of this work are combined with the litho-stratigraphic relations and recent geochronological dating to analyze envisaged Paleoproterozoic and Neoproterozoic metamorphic events in the Kabul Block.

  7. Detection of gelatinolytic activity in developing basement membranes of the mouse embryo head by combining sensitive in situ zymography with immunolabeling.

    Science.gov (United States)

    Gkantidis, Nikolaos; Katsaros, Christos; Chiquet, Matthias

    2012-10-01

    Genetic evidence indicates that the major gelatinases MMP-2 and MMP-9 are involved in mammalian craniofacial development. Since these matrix metalloproteinases are secreted as proenzymes that require activation, their tissue distribution does not necessarily reflect the sites of enzymatic activity. Information regarding the spatial and temporal expression of gelatinolytic activity in the head of the mammalian embryo is sparse. Sensitive in situ zymography with dye-quenched gelatin (DQ-gelatin) has been introduced recently; gelatinolytic activity results in a local increase in fluorescence. Using frontal sections of wild-type mouse embryo heads from embryonic day 14.5-15.5, we optimized and validated a simple double-labeling in situ technique for combining DQ-gelatin zymography with immunofluorescence staining. MMP inhibitors were tested to confirm the specificity of the reaction in situ, and results were compared to standard SDS-gel zymography of tissue extracts. Double-labeling was used to show the spatial relationship in situ between gelatinolytic activity and immunostaining for gelatinases MMP-2 and MMP-9, collagenase 3 (MMP-13) and MT1-MMP (MMP-14), a major activator of pro-gelatinases. Strong gelatinolytic activity, which partially overlapped with MMP proteins, was confirmed for Meckel's cartilage and developing mandibular bone. In addition, we combined in situ zymography with immunostaining for extracellular matrix proteins that are potential gelatinase substrates. Interestingly, gelatinolytic activity colocalized precisely with laminin-positive basement membranes at specific sites around growing epithelia in the developing mouse head, such as the ducts of salivary glands or the epithelial fold between tongue and lower jaw region. Thus, this sensitive method allows to associate, with high spatial resolution, gelatinolytic activity with epithelial morphogenesis in the embryo.

  8. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    International Nuclear Information System (INIS)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris; Shimoni, Eyal; Kaplan-Ashiri, Ifat; Werle, Kai; Wohlleben, Wendel

    2017-01-01

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Flexible anodized aluminum oxide membranes with customizable back contact materials.

    Science.gov (United States)

    Nadimpally, B; Jarro, C A; Mangu, R; Rajaputra, S; Singh, V P

    2016-12-16

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe 2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  10. Flexible anodized aluminum oxide membranes with customizable back contact materials

    Science.gov (United States)

    Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.

    2016-12-01

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  11. The effect of dispersed materials on baro-membrane treatment of uranium-containing waters

    International Nuclear Information System (INIS)

    Kryvoruchko, Antonina P.; Atamanenkoa, Irina D.

    2007-01-01

    The paper investigated a treatment process of uranium-containing waters in a membrane reactor while using natural mineral kizelgur and synthetic sorbent SKN-1K with subsequent ultra- and nano-filtration separation of the mixture. The retention coefficient of U(VI) by membrane UPM-20 under conditions of quasi-stationary equilibrium reached the levels of 0.87-0.89 and 0.89-0.91, respectively, while using natural mineral kizelgur and synthetic sorbent SKN-1K. In the case of membrane OPMN-P and natural mineral kizelgur the retention coefficient of U(VI) was 0.990-0.991 and 0.993-0.996, respectively, while using natural mineral kizelgur and synthetic sorbent SKN-1K. Data regarding the state of water in membranes formed from natural mineral or synthetic sorbent on the surface of substrate membranes UPM-20 and OPMN-P made it possible to conclude that dispersed materials of different chemical nature affect the process of baro-membrane treatment of uranium-containing waters. (authors)

  12. 3D depth-to-basement and density contrast estimates using gravity and borehole data

    Science.gov (United States)

    Barbosa, V. C.; Martins, C. M.; Silva, J. B.

    2009-05-01

    We present a gravity inversion method for simultaneously estimating the 3D basement relief of a sedimentary basin and the parameters defining the parabolic decay of the density contrast with depth in a sedimentary pack assuming the prior knowledge about the basement depth at a few points. The sedimentary pack is approximated by a grid of 3D vertical prisms juxtaposed in both horizontal directions, x and y, of a right-handed coordinate system. The prisms' thicknesses represent the depths to the basement and are the parameters to be estimated from the gravity data. To produce stable depth-to-basement estimates we impose smoothness on the basement depths through minimization of the spatial derivatives of the parameters in the x and y directions. To estimate the parameters defining the parabolic decay of the density contrast with depth we mapped a functional containing prior information about the basement depths at a few points. We apply our method to synthetic data from a simulated complex 3D basement relief with two sedimentary sections having distinct parabolic laws describing the density contrast variation with depth. Our method retrieves the true parameters of the parabolic law of density contrast decay with depth and produces good estimates of the basement relief if the number and the distribution of boreholes are sufficient. We also applied our method to real gravity data from the onshore and part of the shallow offshore Almada Basin, on Brazil's northeastern coast. The estimated 3D Almada's basement shows geologic structures that cannot be easily inferred just from the inspection of the gravity anomaly. The estimated Almada relief presents steep borders evidencing the presence of gravity faults. Also, we note the existence of three terraces separating two local subbasins. These geologic features are consistent with Almada's geodynamic origin (the Mesozoic breakup of Gondwana and the opening of the South Atlantic Ocean) and they are important in understanding

  13. Mapping magnetic lineaments and subsurface basement beneath ...

    Indian Academy of Sciences (India)

    65

    studied the basement structures beneath parts of the Lower Benue Trough (LBT). Anudu et .... order vertical derivatives can be calculated respectively using the relations below: 145. ( ) ... minerals as in the case of the FVD-RTP-TMI (Figure 6).

  14. Reactor-building-basement radionuclide and source distribution studies. Volume 3

    International Nuclear Information System (INIS)

    Cox, T.E.; Horan, J.T.; Worku, G.

    1983-06-01

    The Three Mile Island Unit 2 (TMI-2) Reactor Building basement has been sampled several times since August 1979. This report compiles the analytical results and sample history for the liquid and solid samples obtained to date. In addition, basement radiation levels were also obtained using thermoluminescent dosimeters (TLDs). The data obtained will provide information to support ongoing mass balance and source term studies and will aid in characterizing the 282-ft elevation for decontamination planning and dose reduction

  15. Raetrad model extensions for radon entry into multi-level buildings with basements or crawl spaces.

    Science.gov (United States)

    Nielson, K K; Rogers, V C; Rogers, V; Holt, R B

    1997-10-01

    The RAETRAD model was generalized to characterize radon generation and movement from soils and building materials into multi-level buildings with basements or crawl spaces. With the generalization, the model retains its original simplicity and ease of use. The model calculates radon entry rates that are consistent with measurements published for basement test structures at Colorado State University, confirming approximately equal contributions from diffusion and pressure-driven air flow at indoor-outdoor air pressure differences of deltaP(i-o) = -3.5 Pa. About one-fourth of the diffusive radon entry comes from concrete slabs and three-fourths comes from the surrounding soils. Calculated radon entry rates with and without a barrier over floor-wall shrinkage cracks generally agree with Colorado State University measurements when a sustained pressure of deltaP(i-o) = -2 Pa is used to represent calm wind (<1 m s(-1)) conditions. Calculated radon distributions in a 2-level house also are consistent with published measurements and equations.

  16. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  17. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  18. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    Science.gov (United States)

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  19. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Relationship of Basal laminar deposit and membranous debris to the clinical presentation of early age-related macular degeneration.

    Science.gov (United States)

    Sarks, Shirley; Cherepanoff, Svetlana; Killingsworth, Murray; Sarks, John

    2007-03-01

    To correlate basal laminar deposit (BLamD) and membranous debris, including basal linear deposit (BLinD), with the evolution of early age-related macular degeneration (AMD). A clinicopathologic collection of 132 eyes with a continuous layer of BLamD was reviewed. The thickness and type of BLamD and the sites of membranous debris deposition were correlated with the clinical progression of the disease. Two types of BLamD, termed early and late, were identified based on light microscopic appearance by using the picro-Mallory stain. The progressive accumulation of late type BLamD correlated well with increasing BLamD thickness, advancing RPE degeneration, poorer vision, increasing age, and clinically evident pigment changes. Membranous debris initially accumulated diffusely as BLinD, most eyes with BLinD and early BLamD remaining funduscopically normal. However, membranous debris also formed focal collections as basal mounds internal to the RPE basement membrane and as soft drusen external to the basement membrane. Eyes in which membranous debris remained confined to basal mounds belonged to older patients with poorer vision, whereas patients with soft drusen were younger and had better vision. The presence of BLinD and early BLamD define threshold AMD, which manifests clinically as a normal fundus. Although late BLamD correlates most closely with clinical pigment abnormalities, it is the quantity and sites of membranous debris accumulation that appear to determine whether the disease develops pigment changes only or follows the alternative pathway of soft drusen formation with its attendant greater risk of choroidal neovascularization (CNV).

  1. Modeling radon entry into houses with basements: Model description and verification

    International Nuclear Information System (INIS)

    Revzan, K.L.; Fisk, W.J.; Gadgil, A.J.

    1991-01-01

    We model radon entry into basements using a previously developed three-dimensional steady-state finite difference model that has been modified in the following ways: first, cylindrical coordinates are used to take advantage of the symmetry of the problem in the horizontal plant; second, the configuration of the basement has been made more realistic by incorporating the concrete footer; third, a quadratic relationship between the pressure and flow in the L-shaped gap between slab, footer, and wall has been employed; fourth, the natural convection of the soil gas which follows from the heating of the basement in winter has been taken into account. The temperature field in the soil is determined from the equation of energy conservation, using the basement, surface, and deep-soil temperatures as boundary conditions. The pressure field is determined from Darcy's law and the equation of mass conservation (continuity), assuming that there is no flow across any boundary except the soil surface (atmospheric pressure) and the opening in the basement shell (fixed pressure). After the pressure and temperatures field have been obtained the velocity field is found from Darcy's law. Finally, the radon concentration field is found from the equation of mass-transport. The convective radon entry rate through the opening or openings is then calculated. In this paper we describe the modified model, compare the predicted radon entry rates with and without the consideration of thermal convection, and compare the predicted rates with determined from data from 7 houses in the Spokane River valley of Washington and Idaho. Although the predicted rate is much lower than the mean of the rates determined from measurements, errors in the measurement of soil permeability and variations in the permeability of the area immediately under the basement slab, which has a significant influence on the pressure field, can account for the range of entry rates inferred from the data. 25 refs., 8 figs

  2. [Morphology of basement membrane and associated matrix proteins in normal and pathological tissues].

    Science.gov (United States)

    Nerlich, A

    1995-01-01

    Basement membranes (BM) are specialized structures of the extracellular matrix. Their composition is of particular importance for the maintenance of normal morphological and functional properties of a multitude of organs and tissue systems and it is thus required for regular homeostasis of body function. Generally, they possess three main functions, i.e. participation in the maintenance of tissue structure, control of fluid and substrate exchange, and regulation of cell growth and differentiation. BMs are made up by various components which are in part specifically localized within the BM zone, or which represent ubiquitous matrix constituents with specific quantitative and/or qualitative differences in their localization. On the basis of a thorough immunohistochemical analysis of normal and diseased tissues, we provide here a concept of "functional morphology/pathomorphology" of the different BM components analyzed: 1.) The ubiquitous BM-constituent collagen IV primarily stabilizes the BM-zone and thus represents the "backbone" of the BM providing mechanical strength. Its loss leads to cystic tissue transformation as it is evidenced from the analysis of polycystic nephropathies. Thus, in other cystic tissue transformations a similar formal pathogenesis may be present. 2.) The specific localization of collagen VII as the main structural component of anchoring fibrils underlines the mechanical anchoring function of this collagenous protein. Defects in this protein lead to hereditary epidermolysis. The rapid re-occurrence of epidermal collagen VII during normal human wound healing indicates a quick reconstitution of the mechanical tensile strength of healing wounds. 3.) The BM-specific heparan sulfate proteoglycan (HSPG, Perlecan) with its highly negative anionic charge can be assumed to exert filter control. This assumption is corroborated by the localizatory findings of a preferential deposition of HSPG in endothelial and particularly in glomerular BM. Similarly

  3. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  4. Characteristics of the crystalline basement beneath the Ordos Basin: Constraint from aeromagnetic data

    Directory of Open Access Journals (Sweden)

    Zhentao Wang

    2015-05-01

    Full Text Available Aeromagnetic anomaly zonation of the Ordos Basin and adjacent areas was obtained by processing high-precision and large-scale aeromagnetic anomalies with an approach of reduction to the pole upward continuation. Comparative study on aeromagnetic and seismic tomography suggests that aeromagnetic anomalies in this area are influenced by both the magnetic property of the rock and the burial depth of the Precambrian crystalline basement. Basement depth might be the fundamental control factor for aeromagnetic anomalies because the positive and negative anomalies on the reduction to the pole-upward-continuation anomaly maps roughly coincide with the uplifts and depressions of the crystalline basement in the basin. The results, together with the latest understanding of basement faults, SHRIMP U-Pb zircon dating of metamorphic rock and granite, drilling data, detrital zircon ages, and gravity data interpretation, suggest that the Ordos block is not an entirety of Archean.

  5. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide

    Czech Academy of Sciences Publication Activity Database

    Conway, R. E.; Rojas, C.; Alt, J.; Nováková, Zora; Richardson, S. M.; Rodrick, T. C.; Fuentes, J. L.; Richardson, N. H.; Attalla, J.; Stewart, S.; Fahmy, B.; Bařinka, Cyril; Ghosh, M.; Shapiro, L. H.; Slusher, B. S.

    2016-01-01

    Roč. 19, č. 4 (2016), s. 487-500 ISSN 0969-6970 R&D Projects: GA ČR GAP301/12/1513; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : TUMOR-ASSOCIATED NEOVASCULATURE * BASEMENT-MEMBRANE * DISTINCT ANTITUMOR PROPERTIES Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.253, year: 2016

  6. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A

    2017-05-24

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.

  7. Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling

    Science.gov (United States)

    Zhang, Yang; Wan, Ying; Pan, Guoyuan; Yan, Hao; Yao, Xuerong; Shi, Hongwei; Tang, Yujing; Wei, Xiangrong; Liu, Yiqun

    2018-03-01

    A series of thin-film composite reverse osmosis membranes based on polyamide have been modified by coating the polyvinyl alcohol and 3-mercaptopropyltriethoxysilane aqueous solution prepared by a sol-gel process on the membrane surface, followed by thermal crosslinking treatment. In order to improve the hydrophilicity of the modified TFC membranes, the membranes were then immersed into H2O2 aqueous solution to convert -SH into -SO3H. The resulting TFC membranes were characterized by SEM, AFM, ATR-FTIR, streaming potential, XPS as well as static contact angle. After surface modification with the organic-inorganic hybrid material, the TFC membranes show increased NaCl rejection and decreased water flux with increasing 3-mercaptopropyltrimethoxysilane content in coating solution. The optimal modification membrane (PA-SMPTES-0.8) exhibits a NaCl rejection of 99.29%, higher than that (97.20%) of the virgin PA membrane, and a comparable water flux to virgin PA membrane (41.7 L/m2 h vs 47.9 L/m2 h). More importantly, PA-SMPTES-0.8 membrane shows much more improved fouling resistance to BSA than virgin PA and PVA modified PA (PA-PVA-1.0) membranes. PA-SMPTES-0.8 membrane loses about 13% of the initial flux after BSA fouling for 12 h, which is lower than that of virgin PA and PA-PVA-1.0 membranes (42% and 18%). Furthermore, the flux recovery of PA-SMPTES-0.8 membrane reaches 94% after cleaning. Thus the TFC membranes modified by this organic-inorganic hybrid technology show potential applications as antifouling RO membrane for desalination and purification.

  8. The metamorphic basement of the Cordillera Frontal of Mendoza: New geochronologic and isotopic data

    International Nuclear Information System (INIS)

    Basei, Miguel; Ramos, Victor A.; Vujovich, Graciela I.; Poma, Stella

    1998-01-01

    The metamorphic rocks of the Cordillera Frontal exposed in the Cordon del Portillo, Mendoza were examined by Rb/Sr geochronology and Nd/Sm isotopic analysis. The Rb/Sr data defined a Devonian age for the last metamorphic episode, similar to the previous K/Ar and Ar/Ar ages obtained in this region and western Precordillera. The isotopic analysis identified three sets of model ages: 1.- The oldest corresponds to a set of meta sedimentary rocks with a model age of 1,400 to 1,700 Ma; 2.- A monzogranodiorite with a model age of 1,000 Ma; and 3.- Metabasites with model ages between 577 and 330 Ma. These rocks are interpreted as 1.- A typical Grenvillian derived basement; 2.- Late Paleozoic granitoids derived from a different Proterozoic basement; and 3.- Some Eopaleozoic metabasites tectonically inter fingered with the Grenvillian basement. These new data are coherent with the existence of a Laurentia derived terrane, Chilenia, that was separated by oceanic rocks from the basement of Pre cordillera during Eopaleozoic times. This last basement known as the Cuyania terrane, was also derived from Laurentia. (author)

  9. Synthesis and localization of two sulphated glycoproteins associated with basement membranes and the extracellular matrix

    DEFF Research Database (Denmark)

    Hogan, B L; Taylor, A; Kurkinen, M

    1982-01-01

    's membrane by mouse embryo parietal endoderm cells (Hogan, B. L.M., A. Taylor, and A.R. Cooper, 1982, Dev. Biol., 90:210-214). Both the Mr 180,000 and 150,000 sgps are deposited in the detergent-insoluble matrix of cultured cells, but they do not apparently undergo any disulphide-dependent intermolecular...... interactions and are not precursors or products of each other. They contain asparagine-linked oligosaccharides, but these are not the exclusive sites of sulphate labeling. Antiserum raised against the Mr 150,000 sgp C of Reichert's membranes has been used in an immunohistochemical analysis of rat skin...

  10. Structural and Geophysical Characterization of Oklahoma Basement

    Science.gov (United States)

    Morgan, C.; Johnston, C. S.; Carpenter, B. M.; Reches, Z.

    2017-12-01

    Oklahoma has experienced a large increase in seismicity since 2009 that has been attributed to wastewater injection. Most earthquakes, including four M5+ earthquakes, nucleated at depths > 4 km, well within the pre-Cambrian crystalline basement, even though wastewater injection occurred almost exclusively in the sedimentary sequence above. To better understand the structural characteristics of the rhyolite and granite that makeup the midcontinent basement, we analyzed a 150 m long core recovered from a basement borehole (Shads 4) in Rogers County, NE Oklahoma. The analysis of the fracture network in the rhyolite core included measurements of fracture inclination, aperture, and density, the examination fracture surface features and fill minerology, as well as x-ray diffraction analysis of secondary mineralization. We also analyzed the highly fractured and faulted segments of the core with a portable gamma-ray detector, magnetometer, and rebound hammer. The preliminary analysis of the fractures within the rhyolite core showed: (1) Fracture density increasing with depth by a factor of 10, from 4 fractures/10m in the upper core segment to 40 fracture/10m at 150 m deeper. (2) The fractures are primarily sub-vertical, inclined 10-20° from the axis of the vertical core. (3) The secondary mineralization is dominated by calcite and epidote. (4) Fracture aperture ranges from 0.35 to 2.35mm based on the thickness of secondary filling. (5) About 8% of the examined fractures display slickenside striations. (6) Increases of elasticity (by rebound hammer) and gamma-ray emissions are systematically correlated with a decrease in magnetic susceptibility in core segments of high fracture density and/or faulting; this observation suggests diagenetic fracture re-mineralization.

  11. Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications

    Science.gov (United States)

    Hu, Meishao; Ni, Jiangpeng; Zhang, Boping; Neelakandan, Sivasubramaniyan; Wang, Lei

    2018-06-01

    Crosslinking is an effective method to improve the properties of high temperature proton exchange membranes based on polybenzimidazole. However, the compact structure of crosslinked polybenzimidazole hinders the phosphoric acid absorption of the membranes, resulting in a relatively poor fuel cell performance. Recently, we find that branched polymers can absorb more phosphoric acid with a larger free volume, but suffer from deteriorated mechanical strength. In this work, a new method is proposed to obtain excellent over-all properties of high temperature proton exchange membranes. A series of crosslinked polybenzimidazoles containing branching structure as membrane materials are successfully prepared for the first time. Compared with conventional crosslinked membranes, these crosslinked polybenzimidazole membranes containing branching structure exhibit a higher phosphoric acid doping level and proton conductivity, improved durability, lower swelling rate and comparable mechanical strength. In particular, the fuel cell base on the crosslinked and branched membrane with a 10% ratio of crosslinker in non-humidified hydrogen/air at 160 °C achieves a power density of 404 mW cm-2. The results indicate that the combination of crosslinking and branching is an effective approach to improve the properties of polybenzimidazole membrane materials.

  12. Primary cellular meningeal defects cause neocortical dysplasia and dyslamination

    Science.gov (United States)

    Hecht, Jonathan H.; Siegenthaler, Julie A.; Patterson, Katelin P.; Pleasure, Samuel J.

    2010-01-01

    Objective Cortical malformations are important causes of neurological morbidity, but in many cases their etiology is poorly understood. Mice with Foxc1 mutations have cellular defects in meningeal development. We use hypomorphic and null alleles of Foxc1 to study the effect of meningeal defects on neocortical organization. Methods Embryos with loss of Foxc1 activity were generated using the hypomorphic Foxc1hith allele and the null Foxc1lacZ allele. Immunohistologic analysis was used to assess cerebral basement membrane integrity, marginal zone heterotopia formation, neuronal overmigration, meningeal defects, and changes in basement membrane composition. Dysplasia severity was quantified using two measures. Results Cortical dysplasia resembling cobblestone cortex, with basement membrane breakdown and lamination defects, is seen in Foxc1 mutants. As Foxc1 activity was reduced, abnormalities in basement membrane integrity, heterotopia formation, neuronal overmigration, and meningeal development appeared earlier in gestation and were more severe. Surprisingly, the basement membrane appeared intact at early stages of development in the face of severe deficits in meningeal development. Prominent defects in basement membrane integrity appeared as development proceeded. Molecular analysis of basement membrane laminin subunits demonstrated that loss of the meninges led to changes in basement membrane composition. Interpretation Cortical dysplasia can be caused by cellular defects in the meninges. The meninges are not required for basement membrane establishment but are needed for remodeling as the brain expands. Specific changes in basement membrane composition may contribute to subsequent breakdown. Our study raises the possibility that primary meningeal defects may cortical dysplasia in some cases. PMID:20976766

  13. Basement radon entry and stack driven moisture infiltration reduced by active soil depressurization

    Science.gov (United States)

    C.R. Boardman; Samuel V. Glass

    2015-01-01

    This case study presents measurements of radon and moisture infiltration from soil gases into the basement of an unoccupied research house in Madison, Wisconsin, over two full years. The basement floor and exterior walls were constructed with preservative-treated lumber and plywood. In addition to continuous radon monitoring, measurements included building air...

  14. Indoors and health: results of a systematic literature review assessing the potential health effects of living in basements.

    Science.gov (United States)

    Mezzoiuso, Angelo Giosué; Gola, Marco; Rebecchi, Andrea; Riccò, Matteo; Capolongo, Stefano; Buffoli, Maddalena; Tirani, Marcello; Odone, Anna; Signorelli, Carlo

    2017-10-23

    A new law approved in March 2017 in the Lombardy Region makes it possible to live in basements. Basements are defined as buildings partly below curb level but with at least one-half of its height above the curb. Basements' features and structural characteristics might pose risks to human health. In this paper we adopt a multidisciplinary approach to assess the potential health effects of living in basements. In particular, we define a conceptual framework to describe basements' structural characteristics which are risk factors, as well as the mechanisms through which they impact on human health. We also conduct a systematic review on the scientific databases PubMed,Embase, DOAJ, Proquest and EBSCO to retrieve, pool and critically analyze all available research that quantified the risk of living in basements for different health outcomes. Available evidence suggests living in basements increases the risk of respiratory diseases (asthma and allergic disorders); more heterogeneous data are available for cancers and cardiovascular diseases. As more quantitative data need to be prospectively retrieved to assess and monitor the risk of living in basements for human health, clear minimum requirements for light, air, sanitation and egress are to be defined by technical experts and enforced by policy makers.

  15. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Papet, Sebastien

    2000-01-01

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO 2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol -1 . Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author) [fr

  17. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries

    Science.gov (United States)

    2017-01-01

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201

  18. Magnetic basement in the central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, K.V.L.N.S.; Ramana, M.V.; Ramprasad, T.; Desa, M.; Subrahmanyam, V.; Krishna, K.S.; Rao, M.M.M.

    Analyses of about 6000 km of processed magnetic data in the central Bay of Bengal using Analytical Signal Processing and Werner Deconvolution techniques revealed that the depth to top of the magnetic basement varies between 5 and 12 km from the sea...

  19. Improved Access To Aging Ocean Basement Biosphere For Microbial Geochemical Studies

    Science.gov (United States)

    Cowen, J. P.; Glazer, B.; Rappe, M.; Kenig, F.; Fisher, A.; Copson, D.; Harris, D.; Jolly, J.; Nuzzio, D.

    2005-12-01

    CORK observatories affixed to Integrated Ocean Drilling Program (IODP) boreholes offer an unprecedented opportunity to study biogeochemical properties and microbial diversity in circulating fluids from sediment-buried ocean basement. Preliminary 16S rRNA gene sequence data from 65 degrees C fluids escaping from the top of the over-pressured ODP borehole 1026B, on the flanks of the Juan de Fuca Ridge indicated the presence of diverse Bacteria and Archaea, including gene clones with varying degrees of relatedness to known dissimilatory nitrate reducers (with ammonia production), thermophilic sulfate reducers, and thermophilic fermentative heterotrophs, consistent with fluid chemistry measurements. However, questions remain regarding microbial community structure, key metabolic pathways and rates, and redox chemistry of the basement fluids, along with concerns for contamination issues. We describe ongoing developments intended to address key in situ analytical and sampling challenges including: 1) The new generation CORKs' dedicated microbiological/geochemical fluid delivery system specifically designed to minimize chemical contamination and surface biofouling; and 2) Development of a seafloor instrument sled for coupling to the CORK's bio-fluid delivery system for acquisition of real-time, in situ electrochemical (voltammetry) redox chemistry data on basement fluids, in addition to in situ particle filtration of basement fluids for molecular genetics, culturing and biogeochemical studies. Results of the first deployment of this instrument sled to new CORK observatory 1301A in Cascadia Basin, on the flanks of the Juan de Fuca Ridge, will be described.

  20. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  1. Radio-iodination of plasma membranes of toad bladder epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, H J; Edelman, I S [California Univ., San Francisco (USA). Cardiovascular Research Inst.; California Univ., San Francisco (USA). Dept. of Medicine; California Univ., San Francisco (USA). Dept. of Biochemistry and Biophysics)

    1979-01-01

    The present report describes high yield enzymatic radio-iodination of the apical and basal-lateral plasma membranes of toad bladder epithelium with /sup 125/I-Na, by a procedure that does not breach the functional integrity of the epithelium, as assessed by the basal and vasopressin-sensitive short-circuit current (SCC). Iodination of basal-lateral plasma membranes, at a yield comparable to that obtained with apical labelling, was attained after about 30 min of exposure of the intact bladder to the labelling solutions. Approximately 25% of the basal-lateral labeling was lost when the epithelial cells were harvested after collagenase treatment, implying that some iodination of the basement membrane had taken place. Less than 10% of iodination of the apical or basal-lateral surfaces was accounted for by lipid-labeling. Analysis of the labeled apical and basal-lateral species by enzymatic digestion and thin layer chromatography disclosed that virtually all the radioactivity was present as mono-iodotyrosine (MIT). (orig./AJ).

  2. Removal of bacteriophages with different surface charges by diverse ceramic membrane materials in pilot spiking tests.

    Science.gov (United States)

    Hambsch, B; Bösl, M; Eberhagen, I; Müller, U

    2012-01-01

    This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.

  3. Accumulation of worn-out GBM material substantially contributes to mesangial matrix expansion in diabetic nephropathy

    NARCIS (Netherlands)

    Kriz, Wilhelm; Loewen, Jana; Federico, Giuseppina; van den Born, Jacob; Groene, Elisabeth; Groene, Hermann Josef

    2017-01-01

    Thickening of the glomerular basement membrane (GBM) and expansion of the mesangial matrix are hallmarks of diabetic nephropathy (DN), generally considered to emerge from different sites of overproduction: GBM components from podocytes and mesangial matrix from mesangial cells. Reevaluation of 918

  4. Basement structure of the United Arab Emirates derived from an analysis of regional gravity and aeromagnetic database

    Science.gov (United States)

    Ali, M. Y.; Fairhead, J. D.; Green, C. M.; Noufal, A.

    2017-08-01

    Gravity and aeromagnetic data covering the whole territory of the United Arab Emirates (UAE) have been used to evaluate both shallow and deep geological structures, in particular the depth to basement since it is not imaged by seismic data anywhere within the UAE. Thus, the aim has been to map the basement so that its structure can help to assess its control on the distribution of hydrocarbons within the UAE. Power spectrum analysis reveals gravity and magnetic signatures to have some similarities, in having two main density/susceptibility interfaces widely separated in depth such that regional-residual anomaly separation could effectively be undertaken. The upper density/susceptibility interface occurs at a depth of about 1.0 km while the deeper interface varies in depth throughout the UAE. For gravity, this deeper interface is assumed to be due to the combined effect of lateral changes in density structures within the sediments and in depth of basement while for magnetics it is assumed the sediments have negligible susceptibility and the anomalies unrelated to the volcanic/magmatic bodies result from only changes in depth to basement. The power spectrum analysis over the suspect volcanic/magmatic bodies indicates they occur at 5 km depth. The finite tilt-depth and finite local wavenumber methods were used to estimate depth to source and only depths that agree to within 10% of each other were used to generate the depth to basement map. This depth to basement map, to the west of the UAE-Oman Mountains, varies in depth from 5 km to in excess of 15 km depth and is able to structurally account for the location of the shear structures, seen in the residual magnetic data, and the location of the volcanic/magmatic centres relative to a set of elongate N-S to NE-SW trending basement highs. The majority of oilfields in the UAE are located within these basement highs. Therefore, the hydrocarbon distribution in the UAE basin appears to be controlled by the location of the

  5. Divergent mechanisms underlie Smad4-mediated positive regulation of the three genes encoding the basement membrane component laminin-332 (laminin-5)

    International Nuclear Information System (INIS)

    Zboralski, Dirk; Böckmann, Miriam; Zapatka, Marc; Hoppe, Sabine; Schöneck, Anna; Hahn, Stephan A; Schmiegel, Wolff; Schwarte-Waldhoff, Irmgard

    2008-01-01

    Functional inactivation of the tumor suppressor Smad4 in colorectal and pancreatic carcinogenesis occurs coincident with the transition to invasive growth. Breaking the basement membrane (BM) barrier, a prerequisite for invasive growth, can be due to tumor induced proteolytic tissue remodeling or to reduced synthesis of BM molecules by incipient tumor cells. Laminin-332 (laminin-5), a heterotrimeric BM component composed of α3-, β3- and γ2-chains, has recently been identified as a target structure of Smad4 and represents the first example for expression control of an essential BM component by a tumor and invasion suppressor. Biochemically Smad4 is a transmitter of signals of the TGFβ superfamily of cytokines. We have reported previously, that Smad4 functions as a positive transcriptional regulator of constitutive and of TGFβ-induced transcription of all three genes encoding Laminin-332, LAMA3, LAMB3 and LAMC2. Promoter-reporter constructs harboring 4 kb upstream regions, each of the three genes encoding Laminin-322 as well as deletion and mutations constructs were established. Promoter activities and TGFβ induction were assayed through transient transfections in Smad4-negative human cancer cells and their stable Smad4-positive derivatives. Functionally relevant binding sites were subsequently confirmed through chromatin immunoprecipitation. Herein, we report that Smad4 mediates transcriptional regulation through three different mechanisms, namely through Smad4 binding to a functional SBE site exclusively in the LAMA3 promoter, Smad4 binding to AP1 (and Sp1) sites presumably via interaction with AP1 family components and lastly a Smad4 impact on transcription of AP1 factors. Whereas Smad4 is essential for positive regulation of all three genes, the molecular mechanisms are significantly divergent between the LAMA3 promoter as compared to the LAMB3 and LAMC2 promoters. We hypothesize that this divergence in modular regulation of the three promoters may lay the

  6. Eggshell membrane-templated porous gold membranes using nanoparticles as building blocks

    International Nuclear Information System (INIS)

    Ashraf, S.; Khalid, Z. M.; Hussain, I.

    2013-01-01

    Highly porous gold membrane-like structures are formed using eggshell membrane, as such and heat denatured, as a template and gold nanoparticles as building blocks. Gold nanoparticles were produced in-situ on the eggshell membranes without using additional reducing agents. The morphology and loading of gold nanoparticles can easily be controlled by adjusting the pH and thus the redox potential of eggshell membranes. Lower pH favored the formation of irregularly-shaped but dense gold macro/ nanocrystals whereas higher pH(8-9) favored the formation of fairly uniform but less dense gold nanoparticles onto the eggshell membranes. Heat treatment of eggshell membrane-gold nanoparticle composites formed at pH 8-9 led to the formation of highly porous membrane like gold while mimicking the original structure of eggshell membrane. All these materials have been thoroughly characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma - atomic emission spectroscopy (ISP-AES). These highly porous membrane-like gold materials may have potential applications in catalysis, biosensors, electrode materials, optically selective coatings, heat dissipation and biofiltration. (author)

  7. Natural-basement ventilation as a radon-mitigation technique. Final report Jun 89-Feb 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-04-01

    The report documents a study of natural basement ventilation in two research houses during both the summer cooling season and the winter heating season. (NOTE: Natural basement ventilation has always been recommended as a way to reduce radon levels in houses. However, its efficacy has never been documented. It has generally been assumed to be a very inefficient mitigation strategy since it was believed that dilution was the mechanism by which radon levels were reduced.) Ventilation rates, environmental and house operating parameters, and radon levels have been monitored; it can be concluded that natural ventilation can reduce radon levels two ways: (1) by simple dilution, and (2) although less obvious, by providing a pressure break that reduces basement depressurization and thus the amount of radon-contaminated soil gas drawn into the house. Thus, basement ventilation can be a much more effective mitigation strategy than was previously believed. It might be especially useful in houses with low radon concentrations (of the order of 10 pCi/L) or those with low levels that cannot be mitigated cost-effectively with conventional technology

  8. Basement characterization and crustal structure beneath the Arabia-Eurasia collision (Iran): A combined gravity and magnetic study

    Science.gov (United States)

    Mousavi, Naeim; Ebbing, Jörg

    2018-04-01

    We present a study on the depth to basement and magnetic crustal domains beneath the Iranian Plateau by modeling aeromagnetic and gravity data. First, field processing of the aeromagnetic data was undertaken to estimate the general characteristics of the magnetic basement. Afterwards, inverse modeling of aeromagnetic data was carried out to estimate the depth to basement. The obtained model of basement was refined using combined gravity and magnetic forward modeling. Hereby, we were able to distinguish different magnetic domains in the uppermost crust (10-20 km depths) influencing the medium to long wavelength trends of the magnetic anomalies. Magnetic basement mapping shows that prominent shallow magnetic features are furthermore located in the volcanic areas, e.g. the Urumieh Dokhtar Magmatic Assemblage. The presence of ophiolite outcrops in SE Iran implies that shallow oceanic crust (with high magnetization) is the main source of one of the biggest magnetic anomalies in entire Iran area located north of the Makran.

  9. Analisis Risiko pada Proyek Pembangunan Parkir Basement Jalan Sulawesi Denpasar

    Directory of Open Access Journals (Sweden)

    I Wayan Muka

    2015-04-01

    Full Text Available Construction of Basement Parking Sulawesi Road Denpasar is a government attempt to tackle congestion and parking problems in the city of Denpasar. This activity is highly correlated with the location of Badung Market. This study aims to identify risks arising, assess the level of acceptance of risk analysis, risk mitigation and ownership of dominant risk. The results showed 25 risks identified. Of the risks identified are 24 risk dominant with 5 risk category is unacceptable occurrence of accidents in the project, the landslide during basement excavation, the lack of security fence project that can cause accidents especially hazard fell during basement excavation, the damage caused by natural disasters and the workers were not using safety equipment. Additionally identified 19 risk category is undesirable, one acceptable risk category. Dominant risk is unacceptable risks do 11 mitigation measures such as building damage due to natural disasters (force majeure, which is also a risk with follow-up by reducing the risk that anticipated early preparing for disasters and transfer risk to another party by insuring the work to others. Ownership is the most dominant risk of the contractor. The parties should consider the risks unacceptable category and also should pay attention to the risks classified as undesirable.

  10. Maxillary Sinus Membrane Elevation With Simultaneous Installation of Implants Without the Use of a Graft Material

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Schou, Søren

    2017-01-01

    OBJECTIVE: To compare implant treatment outcome after maxillary sinus membrane elevation with simultaneous installation of implants with or without the use of graft material applying the lateral window technique. MATERIALS AND METHODS: MEDLINE/PubMed, Cochrane Library, and Embase search in combin...

  11. Use of natural basement ventilation to control radon in single family dwellings

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-01-01

    Natural basement ventilation has always been recommended as a means of reducing radon levels in houses. However, its efficacy has never been documented. In these experiments, natural ventilation has for the first time been studied systematically in two research houses during both the summer cooling season and the winter heating season. Ventilation rates, environmental and house operating parameters, as well as radon levels, have been monitored. It can be definitely concluded from radon entry rate calculations that natural ventilation can reduce radon levels in two ways. The first is by simple dilution. The second is by reducing basement depressurization and thus the amount of radon-contaminated soil gas drawn into the structure. Therefore, basement ventilation can be an effective mitigation strategy under some circumstances. It might be especially useful in houses with low radon concentrations (of the order of 370 Bq m -1 ) or those with low levels and which cannot be mitigated cost-effectively with conventional technology. (Author)

  12. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  13. Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Samer Al-Gharabli

    2018-05-01

    Full Text Available Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE, mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM, single-area electron diffraction (SAED analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20 and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20 and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.

  14. Survey of Jaemtland county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Antal, I.; Bergman, S.; Freden, C.; Gierup, J.; Stoelen, L.K.; Thunholm, B.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Jaemtland county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  15. Survey of Dalarna county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Gierup, J.; Kuebler, L.; Linden, A.; Ripa, M.; Stoelen, L.K.; Thunholm, B.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Dalarna county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  16. Survey of Scania county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Gierup, J.; Kuebler, L.; Pamnert, M.; Persson, Magnus; Thunholm, B.; Wahlgren, C.H.; Wikman, H.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Scania county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  17. Non-reciprocal elastic wave propagation in 2D phononic membranes with spatiotemporally varying material properties

    Science.gov (United States)

    Attarzadeh, M. A.; Nouh, M.

    2018-05-01

    One-dimensional phononic materials with material fields traveling simultaneously in space and time have been shown to break elastodynamic reciprocity resulting in unique wave propagation features. In the present work, a comprehensive mathematical analysis is presented to characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space. The analytical dispersion relations, in the presence of the spatiotemporal material variations, are validated numerically using finite 2D membranes with a prescribed number of cells. Using omnidirectional excitations at the membrane's center, wave propagations are shown to exhibit directional asymmetry that increases drastically in the direction of the material travel and vanishes in the direction perpendicular to it. The topological nature of the predicted dispersion in different propagation directions are evaluated using the computed Chern numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity index (NRI) which confirms the theoretical dispersion predictions as well as the finite simulations. The presented framework can be extended to plate-type structures as well as 3D spatiotemporally modulated phononic crystals.

  18. Testing of indoor radon-reduction techniques in basement houses having adjoining wings. Final report, August 1988-September 1989

    International Nuclear Information System (INIS)

    Messing, M.

    1990-11-01

    The report gives results of tests of indoor radon reduction techniques in 12 existing Maryland houses, with the objective of determining when basement houses with adjoining wings require active soil depressurization (ASD) treatment of both wings, and when treatment of the basement alone is sufficient. In five basement houses with adjoining slabs on grade, ASD treatment of both wings provided an incremental additional radon reduction of 0 to 5.2 pCi/L, compared to ASD treatment of either one of the slabs alone. However, basement-only treatment reduced radon to <4 pCi/L in all five houses. In six basement houses having adjoining crawl spaces, ASD treatment of both wings (including sub-liner depressurization of the crawl space) provided little additional reduction compared to basement-only treatment, when sub-slab communication was good. When communication was not good, treatment of both wings was required to achieve <4 pCi/L. Tests of one fully slab-on-grade house showed that, when there is good aggregate under the slab, a one-pipe sub-slab depressurization system can achieve <1-2 pCi/L, even when there are forced-air supply ducts under the slab

  19. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  20. Basement configuration of KG offshore basin from magnetic anomalies

    Indian Academy of Sciences (India)

    of charnockites of neighbouring EGMB and onshore K–G basin areas indicates that EGMB geology. (charnockites ... Marine magnetic anomalies; offshore K–G basin; magnetic basement; extension of EGMB geology; continent– oceanic boundary. ..... of India; J. Australian Petroleum Exploration Association. 14 29–41.

  1. Utilization of Shrimp Skin Waste (Sea Lobster) As Raw Material for the Membrane Filtration

    International Nuclear Information System (INIS)

    Rupiasih, Ni Nyoman; Windari, Putri; Sumadiyasa, Made; Suyanto, Hery

    2017-01-01

    In view of the increasing littering of the sea banks by shells of crustaceans, a study was carried out to investigate the extraction and characterization of chitosan from skin waste of sea lobster i.e. ‘Bamboo Lobster’ ( Panulirus versicolor ). Chitosan was extracted using conventional methods such as pretreatment, demineralization, deprotienization, and deacetylation. The result showed that the degree of deacetylation of chitosan obtained is 70.02%. The FTIR spectra of the chitosan gave a characteristic of –NH 2 band at 3447 cm –1 and carbonyl group band at 1655 cm −1 . This chitosan has been used to prepare membrane. The chitosan membrane 2% has been prepared using phase inversion method with precipitation by solvent evaporation. The membranes were characterized by FTIR spectrophotometer, Nova 1200e using BJH method, and filtration method. The results show that thickness of the membrane is about 134 μm. The FTIR spectra show that functional groups present in the membrane are -NH, -CH, C=O, and -OH. Using BJH method obtained that the pore diameter is 3.382 nm with pore density is 8.95 x 10 5 pores/m 3 . By filtration method obtained that pure water flux (PWF) of the membrane are 386.662 and 489.627 1/m 2 .h at pressure 80-85 kPa and 90-100 kPa, respectively. These results show that skin waste of sea lobster was discovered as a raw material to prepare chitosan membrane. The membrane obtained is belonged to mesoporous group which may use in microfiltration process. (paper)

  2. Research on the combination of water and membranes as a structural building material.

    NARCIS (Netherlands)

    Pronk, A.D.C.; Maffei, R.; Martin, H.J.; Lazaro, C.; Domingo, A.

    2009-01-01

    The aim of this paper is to investigate the combination of water and membranes for temporary architectural applications. Water as a construction material, can be useful for three different purposes: first of all, thanks to its thermal mass, it can be used as a medium for cooling down or heating up

  3. Reactivated basement structures in the central Savannah River area and their relationship to coastal plain deformation

    International Nuclear Information System (INIS)

    Cumbest, R.J.; Price, V.; Temples, T.J.; Fallaw, W.C.; Snipes, D.S.

    1993-01-01

    Structural surface mapping and geophysical studies have identified several faults in the crystalline basement and overlying Coastal Plain sedimentary sequences in the central Savannah River area. Major subsurface basement shear zones occur parallel to and near Upper Three Runs Creek and Tinker Creek and are associated with linear aeromagnetic anomalies. Reflection seismic imaging of the basement shows a band of southeast dipping events parallel to Upper Three Runs Creek. Drill core from basement contain phyllonites, mylonites, fault breccia and pseudotachylite. The magnetic anomalies also mark the boundary separating greenschist facies metavolcanic rocks from amphibolite facies felsic gneiss, schist, and amphibolite. These features are similar to those that characterize other Paleozoic faults of the Eastern Piedmont Fault system. Reflection seismic imaging shows the sub-Cretaceous unconformity as well defined and easily identified event as well as easily traced laterally extensive events in Coastal Plain sequences. The unconformity and sedimentary sequences are faulted or deformed in several locations which also coincide with changes in dip of the unconformity. In the vicinity of Upper Three Runs Creek the unconformity shows a broad warping across which the elevation drops to the southeast and sedimentary sequences show a marked rate of thickening southeast. This indicates deformation of the basement exerted a control on deposition of the Coastal Plain sediments with down to the southeast movement. The basement shear zones are closely associated with the Dunbarton basin and are probable reactivated Paleozoic structures associated with extensional basin development as commonly seen associated with extensional basins on the east coast of North America

  4. Presence of. gamma. G and. beta. 1C globulins in renal glomeruli of aging and neonatally x-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Guttman, P H; Wuepper, K D; Fudenberg, H H

    1967-01-01

    A renal lesion in rodents, termed progressive intercapillary glomerulosclerosis (IGS), is characterized by gradual increase in the thickness of the mesangium due to cell proliferation, clustering, and pleomorphism of the mesangial cells, accumulation of PAS-positive mesangial matrix and progressive increase in the thickness of capillary basement membranes. Electron microscopy reveals deposits of electron-dense material in kidneys with IGS suggestive of plasma proteins in the mesangial matrix and in the basement membranes. IGS appears early in life and progresses with age. Whole body irradiation or direct irradiation of the kidneys causes acceleration of the glomerular lesion. A latent period precedes the onset of demonstrable histologic changes following x-ray; this latent period is of shorter duration in animals irradiated late in life. In previous studies, the possible role of an immune mechanism in the pathogenesis of IGS was suggested by the following observations: (1) the progressive course of the disease after a latent period following a single exposure to x-ray; (2) the similarity of the lesions to those seen in experimental immune disease of the kidney in rodents; (3) the presence of electron-dense material suggesting plasma protein deposits in the basement membranes and matrix; and (4) the potentiating effect of neonatal thymectomy on the course of radiation-induced IGS.

  5. Dissolution of biogenic ooze over basement edifices in the equatorial Pacific with implications for hydrothermal ventilation of the oceanic crust

    Science.gov (United States)

    Bekins, B.A.; Spivack, A.J.; Davis, E.E.; Mayer, L.A.

    2007-01-01

    Recent observations indicate that curious closed depressions in carbonate sediments overlying basement edifices are widespread in the equatorial Pacific. A possible mechanism for their creation is dissolution by fluids exiting basement vents from off-axis hydrothermal flow. Quantitative analysis based on the retrograde solubility of calcium carbonate and cooling of basement fluids during ascent provides an estimate for the dissolution capacity of the venting fluids. Comparison of the dissolution capacity and fluid flux with typical equatorial Pacific carbonate mass accumulation rates shows that this mechanism is feasible. By maintaining sediment-free basement outcrops, the process may promote widespread circulation of relatively unaltered seawater in the basement in an area where average sediment thicknesses are 300-500 m. The enhanced ventilation can explain several previously puzzling observations in this region, including anomalously low heat flux, relatively unaltered seawater in the basement, and aerobic and nitrate-reducing microbial activity at the base of the sediments. ?? 2007 The Geological Society of America.

  6. New polymer material for CO_2 capture by membrane separation process

    International Nuclear Information System (INIS)

    Solimando, Xavier

    2016-01-01

    In this PhD thesis, two types of membrane materials were developed for CO_2 separation. The first ones associate a reference polymer material (Pebax) with new pseudo-peptidic bio-conjugates additives. These pseudo-peptide-polymer bio-conjugates were obtained by a 'grafting-to' synthetical pathway from alkyne-functionalized 1:1[a/a-Na-Bn-hydrazino] dimer and tetramer pseudopeptides. Poly(diethylene glycol acrylate) (PEDEGA) oligomeric part was synthesized under controlled conditions using Single Electron Transfer Living Radical Polymerization (SET-LRP) from an azido-functionalized initiator allowing direct coupling via CuAAC 'click' chemistry. The influence of these additives on CO_2 sorption and separation properties was analyzed in terms of properties-morphology-structure relationships. These original additives allowed to enhance CO_2 separation performances of the reference membrane, increasing CO_2 permeability by 46%, and maintaining good selectivities aCO_2/N_2 = 44 et aCO_2/CH_4 = 13. In another work, two families of poly(urethane-imide)s (PUIs) with controlled architecture were developed for obtaining membrane materials with high content in ethylene-oxide units while avoiding their crystallization. Linear multi-blocks PUIs were first synthesized by polycondensation with different sizes of Jeff amine polyether soft block, corresponding to soft block contents varying from 40 to 70%wt. To further increase the soft phase content until a very high level (85%wt), grafted multi-blocks PUIs were obtained by a 'grafting-to' strategy from an alkyne-functionalized precursor PUI and azido-PEDEGA oligomers with different molar weights. The evolution of their CO_2 separation performances were correlated to their soft phase content, morphology and CO_2 sorption ability. For the maximum soft phase content (85%wt), high performances were obtained for CO_2 separation (PCO_2 = 196 Barrer; aCO_2/N_2 = 39 et aCO_2/CH_4 = 12). Compared to the precursor PUI, the grafting strategy

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  8. Shock pressure estimation in basement rocks of the Chicxulub impact crater using cathodoluminescence spectroscopy of quartz

    Science.gov (United States)

    Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017

  9. Soil inertia and shallow basement envelope impact on cellar internal temperature

    Directory of Open Access Journals (Sweden)

    Naima Sakami

    2016-06-01

    Full Text Available This work deals with a three dimensional numerical study of heat transfer by conduction between the soil and the shallow basement in the city of Marrakech (Morocco. The heat transfer equation is solved by the finite difference method using the implicit alternative direction (ADI. The internal temperature of the cellar is computed by using energy balance equation in the cellar. The objective of this work is to evaluate the effects of the nature of the soil, the nature of the walls, the thickness of the walls of the cellar and the distance L far from the cellar on the internal temperature and the heat exchanged between the soil and the shallow basement

  10. Percolation of diagenetic fluids in the Archaean basement of the Franceville basin

    Science.gov (United States)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; Albani, Abderrazak El; Cuney, Michel; Boiron, Marie-Christine; Gauthier-Lafaye, François

    2014-01-01

    The Palaeoproterozoic Franceville basin, Gabon, is mainly known for its high-grade uranium deposits, which are the only ones known to act as natural nuclear fission reactors. Previous work in the Kiéné region investigated the nature of the fluids responsible for these natural nuclear reactors. The present work focuses on the top of the Archaean granitic basement, specifically, to identify and date the successive alteration events that affected this basement just below the unconformity separating it from the Palaeoproterozoic basin. Core from four drill holes crosscutting the basin-basement unconformity have been studied. Dating is based on U-Pb isotopic analyses performed on monazite. The origin of fluids is discussed from the study of fluid inclusion planes (FIP) in quartz from basement granitoids. From the deepest part of the drill holes to the unconformable boundary with the basin, propylitic alteration assemblages are progressively replaced by illite and locally by a phengite + Fe chlorite ± Fe oxide assemblage. Illitic alteration is particularly strong along the sediment-granitoid contact and is associated with quartz dissolution. It was followed by calcite and anhydrite precipitation as fracture fillings. U-Pb isotopic dating outlines three successive events: a 3.0-2.9-Ga primary magmatic event, a 2.6-Ga propylitic alteration and a late 1.9-Ga diagenetic event. Fluid inclusion microthermometry suggests the circulation of three types of fluids: (1) a Na-Ca-rich diagenetic brine, (2) a moderately saline (diagenetic + meteoric) fluid, and (3) a low-salinity fluid of probable meteoric origin. These fluids are similar to those previously identified within the overlying sedimentary rocks of the Franceville basin. Overall, the data collected in this study show that the Proterozoic-Archaean unconformity has operated as a major flow corridor for fluids circulation, around 1.9 Ga. highly saline diagenetic brines; hydrocarbon-rich fluids derived from organic matter

  11. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials

  12. Gravitational sliding of the Mt. Etna massif along a sloping basement

    Science.gov (United States)

    Murray, John B.; van Wyk de Vries, Benjamin; Pitty, Andy; Sargent, Phil; Wooller, Luke

    2018-04-01

    Geological field evidence and laboratory modelling indicate that volcanoes constructed on slopes slide downhill. If this happens on an active volcano, then the movement will distort deformation data and thus potentially compromise interpretation. Our recent GPS measurements demonstrate that the entire edifice of Mt. Etna is sliding to the ESE, the overall direction of slope of its complex, rough sedimentary basement. We report methods of discriminating the sliding vector from other deformation processes and of measuring its velocity, which averaged 14 mm year-1 during four intervals between 2001 and 2012. Though sliding of one sector of a volcano due to flank instability is widespread and well-known, this is the first time basement sliding of an entire active volcano has been directly observed. This is important because the geological record shows that such sliding volcanoes are prone to devastating sector collapse on the downslope side, and whole volcano migration should be taken into account when assessing future collapse hazard. It is also important in eruption forecasting, as the sliding vector needs to be allowed for when interpreting deformation events that take place above the sliding basement within the superstructure of the active volcano, as might occur with dyke intrusion or inflation/deflation episodes.

  13. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

  14. Geology of the plutonic basement rocks of Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2004-01-01

    Exposures of basement rocks on Stewart Island provide a c. 70 km long by 50 km wide map of part of the Median Batholith that spans the margin of the Western Province. Because of their distance from the present plate boundary, these rocks are relatively unaffected by Cenozoic tectonism, allowing examination of unmodified Carboniferous-Cretaceous relationships within the Median Batholith. Thirty individual plutons (>c.20 km 2 ) have been mapped along with numerous relatively small intrusions ( 2 ). The large plutons form 85-90% of the Median Batholith on Stewart Island while the many smaller intrusions comprise 10-15%, mostly in the north. Lithologies include: biotite ± minor hornblende granodiorite, granite and leucogranite with accessory titanite - magmatic epidote and allanite (c. 50%); biotite ± muscovite ± garnet granite with S-type affinities (c. 10%); alkaline quartz monzonite, granite, and alkali feldspar granite with rare aegirine and blue-green amphibole (c. 3%); quartz monzodiorite and diorite with hornblende > biotite (c. 23%); gabbro and anorthosite (c. 12%) and ultramafic rocks (c. 2%). U-Pb zircon and monazite dating indicates that c. 12% of these plutonic rocks were emplaced during the Carboniferous between 345 and 290 Ma, c. 20% in the Early-Middle Jurassic at c. 170-165 Ma, c. 30% in the latest Jurassic to earliest Cretaceous between 152 and 128 Ma, and c. 38% in the Early Cretaceous between 128 and 100 Ma. The distribution of Pegasus Group schists and peraluminous granitoid rocks indicates that the northern limit of extensive early Paleozoic Western Province basement is located either within the Gutter Shear Zone or at the Escarpment Fault, 10-15 km south of the Freshwater Fault System previously thought to mark this boundary. Carboniferous and Middle Jurassic magmatism extended plutonic basement northwards as far as the Freshwater Fault System, while further magmatism during the latest Jurassic and earliest Cretaceous produced the basement

  15. lithologic characterisation of the basement aquifers of awe and ...

    African Journals Online (AJOL)

    Global Journal

    resistivity exceeded 3000 ohm-m, then the bedrock is fresh and prospect for water is low (Olayinka and. Olorunfemi, 1992; Olorunfemi and Olorunniwo, 1990). Groundwater zones are found in the weathered and fractured zones in basement areas. In Ibarapa area of SW, Nigeria the associated fractured bedrock aquifers.

  16. Stress rotation along pre-Cenozoic basement structures

    Science.gov (United States)

    Reiter, K.; Heidbach, O.; Henk, A.

    2017-12-01

    The in-situ stress state of the Earth's crust is under investigation since decades for both, scientific and economic purposes. Several methods have been established to indicate the contemporary orientation of the maximum compressive horizontal stress (SHmax). It is assumed that the same forces that drive plate motion are the first order stress sources and one could presume that SHmax is always parallel to plate motion, which is the case for some regions. However, deviations from this general trend occur in many regions. Therefore, second and third order sources of stress have been identified that potentially cause regional and local stress rotation with respect to the long wave-length trend imposed by plate tectonic forces. One group of such subordinate stress sources are lateral heterogeneities based on structures, petrothermal or petrophysical properties. The World Stress Map (WSM) project compiles systematically data records of the present day SHmax orientation. The increasing amount of stress orientation data allows to investigate areas with consistent stress rotation, divergent to the regional stress pattern. In our work we analyse the stress pattern variability and its causes beneath Germany. In the Molasse Basin in the Alpine foreland the SHmax orientation is perpendicular to the Alpine front as a consequence of gravitational potential energy of the orogen. SHmax is oriented in N-S direction in the central Alpine foreland and within the North German Basin. Between both, within the Mid-German Crystalline High, SHmax is divergent oriented in SE-NW direction. Neither gravitational potential energy nor petrothermal effects can be indicated as stress source. But when comparing the stress pattern with the Variscan basement structures it is obvious that SHmax is perpendicular oriented to this Palaeozoic basement structures. Therefore, petrophysical heterogeneities can be expected as reason for the observed stress rotation. Two assumptions can be made for the Mid

  17. Microporous membranes from polyolefin-polyamide blend materials

    Czech Academy of Sciences Publication Activity Database

    Meier-Haack, J.; Valko, M.; Lunkwitz, K.; Bleha, Miroslav

    2004-01-01

    Roč. 163, 1-3 (2004), s. 215-221 ISSN 0011-9164. [Membrane Science and Technology Conference PERMEA 2003. Tatranské Matliare, 07.09.2003-11.09.2003] Institutional research plan: CEZ:AV0Z4050913 Keywords : microporous membranes * polypropylene polyamide blends * reactive extrusion Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.057, year: 2004

  18. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  19. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  20. Tectonic inheritage from adjacent basement, north of the Campos Basin; Heranca tectonica no embasamento adjacente no norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Felipe R. [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil); Castro, Joel C. de [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas. Dept. de Geologia Aplicada; Souza, Iata A. de; Castro, Joel C. de [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas

    2008-07-01

    The evolution of the Atlantic Brazilian basins is a target of researches since the firth discovery of oil deposits. With the advance of the geophysical methods the understanding of the structures in depth became possible. The objective of this paper is to determine if the adjacent basement in the north of Campos Basin has significant influence in the identification of areas that can contain hydrocarbons. Therefore, lineaments had been extracted with SRTM images of continental basement and the main alignment was correlated with gravimetric anomalies map and seismic data. Eight levels on seismic data had been interpreted (basement, top rift, shallow water Albian, Albian, mid-Oligocene and mid-Miocene). In all levels were identified a fault normal system, which cut sediments since basement until the Recent. The main direction of the basement is NE-SW, and the alignments formed for basin basement faults coincide with this direction, what indicates that the system is active and also genetically related. (author)

  1. Asymmetric Effects of Subaerial and Subaqueous Basement Slopes on Self-Similar Morphology of Prograding Deltas

    Science.gov (United States)

    Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun

    2017-12-01

    Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.

  2. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Iron porphyrin-modified PVDF membrane as a biomimetic material and its effectiveness on nitric oxide binding

    Science.gov (United States)

    Can, Faruk; Demirci, Osman Cahit; Dumoulin, Fabienne; Erhan, Elif; Arslan, Leyla Colakerol; Ergenekon, Pınar

    2017-10-01

    Nitric oxide (NO) is a reactive gas well-known as an air pollutant causing severe environmental problems. NO is also an important signaling molecule having a strong affinity towards heme proteins in the body. Taking this specialty as a model, a biomimetic membrane was developed by modification of the membrane surface with iron-porphyrin which depicts very similar structure to heme proteins. In this study, PVDF membrane was coated with synthesized (4-carboxyphenyl)-10,15,20-triphenyl-porphyrin iron(III) chloride (FeCTPP) to promote NO fixation on the surface. The coated membrane was characterized in terms of ATR-IR spectra, contact angle measurement, chemical composition, and morphological structure. Contact angle of original PVDF first decreased sharply after plasma treatment and surface polymerization steps but after incorporation of FeCTPP, the surface acquired its hydrophobicity again. NO binding capability of modified membrane surface was evaluated on the basis of X-ray Photoelectron. Upon exposure to NO gas, a chemical shift of Fe+3 and appearance of new N peak was observed due to the electron transfer from NO ligand to Fe ion with the attachment of nitrosyl group to FeCTPP. This modification brings the functionality to the membrane for being used in biological systems such as membrane bioreactor material in biological NO removal technology.

  4. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  5. Uranium deposits in the metamorphic basement of the Rouergue massif. Genesis and extension of related albitization processes

    International Nuclear Information System (INIS)

    Schmitt, J.M.

    1982-02-01

    Albitization processes in the Rouergue metamorphic basement, probably Permian aged is evidenced. Late development of uranium orebodies occured within albitized zones. The detection of the latter serves as a highly valuable indirect guide for prospecting this type of deposits in a metamorphic basement [fr

  6. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    Science.gov (United States)

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. © 2013, National Ground Water Association.

  7. KUALITAS UDARA DALAM RUANG DI DAERAH PARKIR BASEMENT DAN PARKIR UPPERGROUND (STUDI KASUS DI SUPERMARKET SEMARANG

    Directory of Open Access Journals (Sweden)

    Haryono S Huboyo

    2016-03-01

    Full Text Available Ever increasing building growth in urban areas is limited by land availability. Lack of space in this area lead to build high rise building rather landed building. In this type of building, parking area is built in the basement and or upperground inside the building. Within this enclosed space, indoor air quality might a problem. This study focus to compare emerged pollutants between basement parking area and upperground parking area in supermarket building. The dust sampler, the impinger and the CO monitor were used to measure TSP, NO2 and CO concentrations respectively in these areas during supermarket operations. In the basement area, in particular, the TSP concentrations tend to exceeds 300 µg/m3 mainly at weekend period. While for NO2 and CO concentrations still meet the air quality standard. Based on these findings it seems the main source of pollutants was derived from dust resuspension. Thus, the mitigation measures to reduce this dust resuspension should be emphasized in order to prevent air quality deterioration in the basement parking area.

  8. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  9. Fine needle aspiration cytology of dermal cylindroma

    Directory of Open Access Journals (Sweden)

    Parikshaa Gupta

    2014-01-01

    Full Text Available In this paper, we have described fine needle aspiration cytology (FNAC of a rare case of dermal cylindroma. A 40-year-old female presented with a lateral mid-cervical swelling fixed to the skin. FNAC smears showed multiple clusters of small, round to oval cells with hyperchromatic nuclei, inconspicuous nucleoli and scant cytoplasm. In addition, the background showed deposits of basement membrane type material. This was dark magenta colored pinkish globular material. The globules were occasionally surrounded by the basal type of cells. Occasional cells with elongated nuclei were also noted. Cytological diagnosis of skin adnexal tumor possibly cylindroma was offered. Subsequent histopathology of the swelling showed sheets and clusters of cells in a jigsaw puzzle-like fashion. Deposition of abundant basement membrane-like material was noted in between the tumor cells. A diagnosis of cylindorma was offered. FNAC along with the subcutaneous location of the tumor and absence of primary salivary gland tumor may help to diagnose such rare case.

  10. Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application

    International Nuclear Information System (INIS)

    Sarwar, J.; Mansoor, B.

    2016-01-01

    Highlights: • Thermal cycling of paraffin waxes phase change materials. • Differential Scanning Calorimetry and thermogravimetric study of the materials. • Characterization of the phase change materials via Temperature History Method. • Investigation of suitability of materials for indirect solar desalination system. • Paraffin waxes are suitable for non-membrane indirect solar desalination system. - Abstract: Phase change material as a thermal energy storage medium has been widely incorporated in various technologies like solar air/water heating, buildings, and desalination for efficient use and management of fluctuating solar energy. Temperature and thermal energy requirements dictate the selection of an appropriate phase change material for its application in various engineering systems. In this work, two phase change materials belonging to organic paraffin wax class have been characterized to obtain their thermophysical properties. The melting/solidification temperatures, latent heat of fusion and heat capacities of the phase change materials have been investigated using Differential Scanning Calorimetry, Thermogravimetric analysis and Temperature History Method. Thermal cycles up to 300 are performed to investigate melting and solidification reversibility as well as degradation over time. It is shown that the selected paraffin waxes have reversible phase change with no degradation of thermophysical properties over time. It is also shown that melting/solidification temperature and thermal energy storage capabilities make them suitable for their application as a thermal energy storage medium, in high temperature vapour compression, multi-stage flash and multi-effect distillation processes of non-membrane based indirect desalination systems.

  11. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  12. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  13. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhang, Li; Amirkhiz, Babak Shalchi; Tan, Xuehai; Xu, Zhanwei; Wang, Huanlei; Olsen, Brian C.; Holt, Chris M.B.; Mitlin, David [Chemical and Materials Engineering, University of Alberta, Edmonton, AB (Canada); National Institute for Nanotechnology (NINT), NRC, Edmonton, AB (Canada)

    2012-04-15

    Supercapacitor electrode materials are synthesized by carbonizing a common livestock biowaste in the form of chicken eggshell membranes. The carbonized eggshell membrane (CESM) is a three-dimensional macroporous carbon film composed of interwoven connected carbon fibers containing around 10 wt% oxygen and 8 wt% nitrogen. Despite a relatively low surface area of 221 m{sup 2} g{sup -1}, exceptional specific capacitances of 297 F g{sup -1} and 284 F g{sup -1} are achieved in basic and acidic electrolytes, respectively, in a 3-electrode system. Furthermore, the electrodes demonstrate excellent cycling stability: only 3% capacitance fading is observed after 10 000 cycles at a current density of 4 A g{sup -1}. These very attractive electrochemical properties are discussed in the context of the unique structure and chemistry of the material. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Development of proton conducting materials and membranes based on lanthanum tungstate for hydrogen separation from gas mixtures

    International Nuclear Information System (INIS)

    Seeger, Janka

    2013-01-01

    Lanthanum tungstate La 6-x WO 12-δ (named LWO) is a ceramic material with mixed protonic electronic conductivity. Thereby it is a good candidate membrane material for hydrogen separation from synthesis gas in a fossil pre-combustion power plant. This work shows a material optimization by substitution targeted to clearly enhance the mixed conductivity and thereby the hydrogen flow through the LWO membrane. The first part of the work shows the synthesis and characterization of unsubstituted LWO. It points out that monophase LWO powder can be reproducibly synthesized. The La/W-ratio has to be considerably smaller than the nominal ratio of La/W = 6.0. It also depends on the used sintering conditions. Different relevant properties of LWO like stability in conditions close to application, thermal expansion, sintering behavior or microstructure were determined. Furthermore, the electrical conductivity of the material was investigated. LWO exhibits a prevailing protonic conductivity up to 750 C in wet atmospheres. Under dry atmospheres n-type conductivity was dominating. Oxygen ion and n-type conductivity dominated in wet and dry atmospheres above 750 C. The main part of the work is concerned with the development of new LWO based materials by substitutions. The aim is to achieve an improved mixed protonic electronic conductivity. Substitution elements for lanthanum side were Mg, Ca, Sr, Ba, Ce, Nd, Tb, Y and Al, while for the tungsten side Mo, Re and Ir were used. The total conductivity of the developed materials was investigated and compared to that of the unsubstituted LWO. The substitution of lanthanum led to no appreciable enhancement of the conductivity whereas the substitution of tungsten with 20 mol% molybdenum or 20 mol% rhenium clearly improved it. This caused a hydrogen flow about seven times higher for 20 mol% molybdenum- and about ten times higher for 20 mol% rhenium-substituted LWO in comparison with the unsubstituted LWO at 700 C. In the last part of the

  15. Regional trends in radiogenic heat generation in the Precambrian basement of the Western Canadian Basin

    Science.gov (United States)

    Jones, F. W.; Majorowicz, J. A.

    Radiogenic heat generation values for 381 basement samples from 229 sites in the western Canadian basin exhibit a lognormal frequency distribution. The mean value = 2.06 (S.D. = 1.22) µWm-3 is larger than the radiogenic heat generation values reported for the shield in the Superior (ca. 1.2 µWm-3, Jessop and Lewis, 1978) and Churchill (ca. 0.7 µWm-3, Drury, 1985) provinces. When equal Log A contour intervals are used to map the basement heat generation, three large zones of relatively high heat generation are found. One coincides with the Peace River Arch basement structure and one with the Athabasca axis (Darnley, 1981). There is no apparent indication of increased heat flow through the Paleozoic formations associated with these two zones. The third zone, in southwestern Saskatchewan, coincides with a high heat flow zone in the Swift Current area. The lack of correlation between heat flow and heat generation in Alberta may be due to the disturbance to the heat flow in the Paleozoic formations by water motion, or may indicate that the heat is from uranium, thorium and potassium isotope enrichment near the basement surface rather than enrichment throughout the entire upper crust.

  16. Impact of climate changes during the last 5 million years on groundwater in basement aquifers.

    Science.gov (United States)

    Aquilina, Luc; Vergnaud-Ayraud, Virginie; Les Landes, Antoine Armandine; Pauwels, Hélène; Davy, Philippe; Pételet-Giraud, Emmanuelle; Labasque, Thierry; Roques, Clément; Chatton, Eliot; Bour, Olivier; Ben Maamar, Sarah; Dufresne, Alexis; Khaska, Mahmoud; Le Gal La Salle, Corinne; Barbecot, Florent

    2015-09-22

    Climate change is thought to have major effects on groundwater resources. There is however a limited knowledge of the impacts of past climate changes such as warm or glacial periods on groundwater although marine or glacial fluids may have circulated in basements during these periods. Geochemical investigations of groundwater at shallow depth (80-400 m) in the Armorican basement (western France) revealed three major phases of evolution: (1) Mio-Pliocene transgressions led to marine water introduction in the whole rock porosity through density and then diffusion processes, (2) intensive and rapid recharge after the glacial maximum down to several hundred meters depths, (3) a present-day regime of groundwater circulation limited to shallow depth. This work identifies important constraints regarding the mechanisms responsible for both marine and glacial fluid migrations and their preservation within a basement. It defines the first clear time scales of these processes and thus provides a unique case for understanding the effects of climate changes on hydrogeology in basements. It reveals that glacial water is supplied in significant amounts to deep aquifers even in permafrosted zones. It also emphasizes the vulnerability of modern groundwater hydrosystems to climate change as groundwater active aquifers is restricted to shallow depths.

  17. Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, P.J.; Pollet, B.G. [PEM Fuel Cell Research Group, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2010-08-15

    This review describes some recent developments in the area of flow field plates (FFPs) for proton exchange membrane fuel cells (PEMFCs). The function, parameters and design of FFPs in PEM fuel cells are outlined and considered in light of their performance. FFP materials and manufacturing methods are discussed and current in situ and ex situ characterisation techniques are described. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges

    KAUST Repository

    Kim, Wun-gwi; Nair, Sankar

    2013-01-01

    strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D

  19. Membranous glomerulopathy with spherules: an uncommon variant with obscure pathogenesis.

    Science.gov (United States)

    Kowalewska, Jolanta; Smith, Kelly D; Hudkins, Kelly L; Chang, Anthony; Fogo, Agnes B; Houghton, Donald; Leslie, Deena; Aitchison, John; Nicosia, Roberto F; Alpers, Charles E

    2006-06-01

    Occasional case reports of membranous glomerulopathy described unique subepithelial accumulations of an unusual type of immune deposit composed of spherular structures. The identity of such structures as nuclear pores has been suggested, but not established. We identified a cohort of patients (n = 14, including 1 patient with disease recurrence in an allograft) who presented with nephrotic syndrome and had renal biopsy specimens with light and immunofluorescence microscopic findings characteristic of membranous glomerulopathy. These patients were distinguished by ultrastructural studies that showed glomerular capillary wall accumulations of subepithelial immune deposits composed of uniform spherular structures, while lacking the typical granular electron-dense deposits seen in membranous glomerulopathy. The molecular identity of these spherular structures as nuclear pores was tested by using immunofluorescence microscopy and immunohistochemistry with mouse monoclonal antinuclear pore antibodies (Covance, Princeton, NJ) and anti-Nuclear Pore-O-Linked Glycoprotein (Affinity BioReagents Inc, Golden, CO) antibodies. Measurement of spherular structures by using high-magnification electron microscopy showed an average diameter of 84.5 nm, which correlated well with accepted diameters of nuclear pores (80 to 120 nm). Immunofluorescence microscopy and immunoperoxidase staining with both antibodies showed characteristic beaded staining of nuclear membranes of multiple cell types within normal control kidney, but no staining of immune-type deposits within glomerular basement membranes. These cases form a rare, but distinctive, morphological subclass of membranous glomerulopathy. The antigenic specificity of immune deposits in these cases remains elusive.

  20. Basement tectonics and flexural subsidence along western continental margin of India

    Directory of Open Access Journals (Sweden)

    D.K. Pandey

    2017-09-01

    Full Text Available The Paleocene-recent post-rift subsidence history recorded in the Mumbai Offshore Basin off western continental margin of India is examined. Results obtained through 2-D flexural backstripping modelling of new seismic data reveal considerable thermo-tectonic subsidence over last ca. 56 Myr. Reverse post-rift subsidence modelling with variable β stretching factor predicts residual topography of ca. 2000 m to the west of Shelf Margin Basin and fails to restore late Paleocene horizon and the underlying igneous basement to the sea level. This potentially implies that: (1 either the igneous basement formed during the late Cretaceous was emplaced under open marine environs; or (2 a laterally varying cumulative subsidence occurred within Mumbai Offshore Basin (MOB during ca. 68 to ca. 56 Ma. Pre-depositional topographic variations at ca. 56 Ma across the basin could be attributed to the extensional processes such as varied lower crustal underplating along Western Continental Margin of India (WCMI. Investigations about basement tectonics after unroofing of sediments since late Paleocene from this region support a transitional and heavily stretched nature of crust with high to very high β factors. Computations of past sediment accumulation rates show that the basin sedimentation peaked during late Miocene concurrently with uplift of Himalayan–Tibetan Plateau and intensification of Indian monsoon system. Results from basin subsidence modelling presented here may have significant implications for further studies attempting to explore tectono–climatic interactions in Asia.

  1. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  2. Fracture Analysis of basement rock: A case example of the Eastern Part of the Peninsular Malaysia

    International Nuclear Information System (INIS)

    Shamsuddin, A; Ghosh, D

    2015-01-01

    In general, reservoir rocks can be defined into carbonates, tight elastics and basement rocks. Basement rocks came to be highlighted as their characteristics are quite complicated and remained as a significant challenge in exploration and production area. Motivation of this research is to solve the problem in some area in the Malay Basin which consist fractured basement reservoirs. Thus, in order to increase understanding about their characteristic, a study was conducted in the Eastern part of the Peninsular Malaysia. The study includes the main rock types that resemble the offshore rocks and analysis on the factors that give some effect on fracture characteristic that influence fracture systems and fracture networks. This study will allow better fracture prediction which will be beneficial for future hydrocarbon prediction in this region

  3. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  4. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  5. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Peinemann, Klaus-Viktor

    2010-01-01

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  6. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  7. Preparation and Characterization of Lignin-based Membrane Material

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2015-07-01

    Full Text Available Lignin-based membrane material was prepared from lignosulfonate extracted from sulfite pulping. The effects of formaldehyde, polyvinyl alcohol (PVA, urea, borax, glutaraldehyde (GD, and dimethyl phthalate (DMP on tensile strength and water absorption were investigated. The experimental results showed that the optimum conditions were as follows: a reaction temperature of 85 °C, 22.22 wt.% lignosulfonate, 1.59 wt.% borax, 22.22 wt.% urea, 31.75 wt.% formaldehyde, 22.22 wt.% PVA, 32.32 wt.% GD (to PVA glue, and 32.32 wt.% DMP (to PVA glue. Under these conditions, the tensile strength reached 2.2 ×104 Pa and the water absorption was 35.2%. The products were characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The results showed that the product components were compatible in this system, and the introduction of cross-linking agents may have resulted in a decrease in pore size.

  8. Aeromagnetic imaging of the basement morphology in part of the ...

    African Journals Online (AJOL)

    Aeromagnetic imaging of the basement morphology in part of the middle Benue trough, Nigeria. GC Onyedim, MO Awoyemi, EA Ariyibi, JB Arubayi. Abstract. No Abstract. Journal of Mining and Geology Vol. 42 (2) 2006: pp. 157-163. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  9. Hierarchically mesoporous silica materials prepared from the uniaxially stretched polypropylene membrane and surfactant templates

    International Nuclear Information System (INIS)

    Wang Xiaocong; Ma Jin; Liu Jin; Zhou Chen; Zhao, Yan; Yi Shouzhi; Yang Zhenzhong

    2006-01-01

    Hierarchically mesoporous silica materials with a bimodal distribution were template-prepared from uniaxially stretched polypropylene membrane in the presence of a surfactant via a sol-gel process. Their regularity and morphologies were characterized by transmission electron microscopy (TEM), x-ray diffraction and Brunauer-Emmett-Teller (BET) surface area analysis. The larger channel pores formed by removing the microfibrils of uniaxially stretched polypropylene membrane have a broad pore size distribution, and their size is around 13 nm. In contrast, the smaller mesopores formed by surfactant templates have a narrow distribution; their size is about 3.9 nm. The size of the smaller pores could be tuned from 2 to 6 nm by selecting different surfactants and by changing the concentration of reactants

  10. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Hassager, Ole; Kristensen, Susanne Brogaard; Larsen, Johannes Ruben

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric material is described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasing pressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranes described by these models develop a local thinning of the membrane which may lead to bursting in finite time. (C) 1999 Elsevier Science B.V. All rights reserved....

  11. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  12. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  13. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    Science.gov (United States)

    Cornelius, Christopher J [Albuquerque, NM

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  14. Disease: H01721 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01721 Anti-glomerular basement membrane (GBM) disease; Goodpasture syndrome Goodp...asture syndrome (GS), or anti-glomerular basement membrane (anti-GBM) disease, is a rare and organ-specific ...n of the alpha 3 chain of type IV collagen [alpha3(IV)NC1], found in the glomerular and alveolar basement me

  15. Mitigating leaks in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O' Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon

    2018-02-27

    Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.

  16. A low-δ18O intrusive breccia from Koegel Fontein, South Africa: Remobilisation of basement that was hydrothermally altered during global glaciation?

    Science.gov (United States)

    Olianti, Camille A. E.; Harris, Chris

    2018-02-01

    The Cretaceous Koegel Fontein igneous complex is situated on the west coast of South Africa, and has a high proportion of rocks with abnormally low δ18O values. The rocks with the lowest δ18O values (- 5.2‰) belong to intrusive matrix-supported breccia pipes and dykes, containing a variety of clast types. The breccia rocks range in SiO2 from 44 to 68 wt% and their whole-rock δ18O values vary between - 5.2‰ and + 1.8‰. The major and trace element composition of the breccia rocks is consistent with them containing variable proportions of clasts of Cretaceous intrusive rocks and basement gneiss and the matrix being fluidized material derived from the same source as the clasts. Based on the nature of the clasts contained in the breccia, it was emplaced just prior to intrusion of the main Rietpoort Granite at 134 Ma. All components of the breccia have low δ18O value and, at least in the case of the gneiss clasts, this predates incorporation in the fluidized material. Although the early Cretaceous appears to have been a period of cold climate, it is unlikely that the δ18O values of ambient precipitation ( - 10‰) would have been low enough to have generated the required 18O-depletion. The basement gneiss was probably 2-3 km below the Cretaceous surface, minimizing the possibility of interaction with isotopically unmodified meteoric water, and there is no evidence for foundered blocks of cover rocks in the breccia. There is, therefore, no evidence for downwards movement of material. We favour a model where basement gneiss interacted with extremely 18O-depleted fluid during crustal reworking at 547 Ma, a time of global glaciation. Low-δ18O metamorphic fluids produced by dehydration melting of 18O-depleted gneiss became trapped and, as the fluid pressure increased, failure of the seal resulted in explosive upwards movement of fluidized breccia. Migration was along pre-existing dykes, incorporating fragments of these dykes, as well as the country rock gneiss.

  17. Reliability of residential basements as blast shelters

    International Nuclear Information System (INIS)

    Longinow, A.; Mohammadi, J.

    1983-01-01

    This paper describes an analysis method for predicting the probability of failure of a wood-framed basement when subjected to a static, uniformly distributed load. The analysis considers the primary failure modes of each framing member and determines the probability of failure for each mode acting alone. The failure probability of the system as a whole is then bounded. The upper bound is determined on the assumption that the failure modes are independent, while the lower bound is determined on the assumption that the failure modes are perfectly correlated. The analysis is described with reference to an example problem

  18. Numerical analysis of temperature distribution due to basement radiogenic heat production, St. Lawrence Lowlands, eastern Canada

    Science.gov (United States)

    Liu, Hejuan; Giroux, Bernard; Harris, Lyal B.; Mansour, John

    2017-04-01

    Although eastern Canada is considered as having a low potential for high-temperature geothermal resources, the possibility for additional localized radioactive heat sources in Mesoproterozoic Grenvillian basement to parts of the Palaeozoic St. Lawrence Lowlands in Quebec, Canada, suggests that this potential should be reassessed. However, such a task remains hard to achieve due to scarcity of heat flow data and ambiguity about the nature of the basement. To get an appraisal, the impact of radiogenic heat production for different Grenville Province crystalline basement units on temperature distribution at depth was simulated using the Underworld Geothermal numerical modelling code. The region south of Trois-Rivières was selected as representative for the St. Lawrence Lowlands. An existing 3D geological model based on well log data, seismic profiles and surface geology was used to build a catalogue of plausible thermal models. Statistical analyses of radiogenic element (U, Th, K) concentrations from neighbouring outcropping Grenville domains indicate that the radiogenic heat production of rocks in the modelled region is in the range of 0.34-3.24 μW/m3, with variations in the range of 0.94-5.83 μW/m3 for the Portneuf-Mauricie (PM) Domain, 0.02-4.13 μW/m3 for the Shawinigan Domain (Morin Terrane), and 0.34-1.96 μW/m3 for the Parc des Laurentides (PDL) Domain. Various scenarios considering basement characteristics similar to the PM domain, Morin Terrane and PDL Domain were modelled. The results show that the temperature difference between the scenarios can be as much as 12 °C at a depth of 5 km. The results also show that the temperature distribution is strongly affected by both the concentration of radiogenic elements and the thermal conductivity of the basement rocks. The thermal conductivity in the basement affects the trend of temperature change between two different geological units, and the spatial extent of thermal anomalies. The validity of the results was

  19. Composite membrane with integral rim

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  20. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane technology is particularly attractive due to its low energy operating cost, low maintenance, smaller equipment footprint, and relatively facile retrofit integration with existing power plant designs. From a techno-economic standpoint, the separation of CO2 from flue gas requires membranes that can process extremely high amounts of CO2 over a short time period, a property defined as the membrane "permeance". In contrast, the membrane's CO2/N2 selectivity has only a minor effect on the overall cost of some separation processes once a threshold permeability selectivity of ca. 20 is reached. Given the above criteria, the critical properties when developing membrane materials for postcombustion CO2 separation are CO2 permeability (i.e., the rate of CO2 transport normalized to the material thickness), a reasonable CO2/N2 selectivity (≥20), and the ability to be processed into defect-free thin

  1. Where are uranium and thorium stored in the Archean basement

    Energy Technology Data Exchange (ETDEWEB)

    Schwinner, R

    1949-01-01

    The author advances a theory which makes it possible to predict where prospecting for new deposits of uranium and thorium should prove successful. According to this theory, such deposits occur chiefly where the equatorial and the meridional branches of the oldest primitive rock systems cross one another. An outline of the earth's Archean basement is included.

  2. Amniotic membranes as prosthetic material: experimental utilization data of a rat model.

    Science.gov (United States)

    Zachariou, Z

    1997-10-01

    Prosthetic materials are applied for closing big tissue defects, the repair of traumatized organs, or hernias. Because nonabsorbable synthetic materials are rigid, possess a defined and unchangeable size, and foreign body reaction (FBR) may occur, biological materials may be an alternative. In experimental studies in rats the authors implanted the fetal parts of the human amniotic membranes and examined the utilization and FBR induced in a standardized model. In addition amnion (AM) was combined with vicryl-net (VN) for higher implant stability. Fifteen, 30 and 90 days after implantation, macroscopic appearance was examined, and light microscopy and immunohistology testing of the specimens were performed. Adhesions to parenchymal organs and omentum were present irrespective of the side facing the abdominal cavity. AM induced a rapid FBR, which diminished with time. Chorion (CH) and parts of the AM were resorbed within the examined period after infiltration with recipient cells and neovascularisation. The combined implant, AM, and VN showed best results because disadvantages of one material could be compensated for by the advantages of the other. The studies show that AM, in its anatomic definition, combined with VN proves to be a safe and reliable prosthetic material for the use in tissue defects.

  3. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  4. Circulating Vascular Basement Membrane Fragments are Associated with the Diameter of the Abdominal Aorta and Their Expression Pattern is Altered in AAA Tissue.

    Science.gov (United States)

    Holsti, Mari; Wanhainen, Anders; Lundin, Christina; Björck, Martin; Tegler, Gustaf; Svensson, Johan; Sund, Malin

    2018-04-12

    Abdominal aortic aneurysm (AAA) is characterised by enhanced proteolytic activity, and extracellular matrix (ECM) remodelling in the vascular wall. Type IV and XVIII collagen/endostatin are structural proteins in vascular basement membrane (VBM), a specialised ECM structure. Here the association between plasma levels of these collagens with the aortic diameter and expansion rate is studied, and their expression in aortic tissue characterised. This was a retrospective population based cohort study. Type IV and XVIII collagen/endostatin were analysed in plasma by ELISA assay in 615 men, divided into three groups based on the aortic diameter: 1) normal aorta ≤ 25 mm, 2) sub-aneurysmal aorta (SAA) 26-29 mm, and 3) AAA ≥ 30 mm. Follow up data were available for 159 men. The association between collagen levels and aortic diameter at baseline, and with the expansion rate at follow up were analysed in ordinal logistic regression and linear regression models, controlling for common confounding factors. Tissue expression of the collagens was analysed in normal aorta (n = 6) and AAA (n = 6) by immunofluorescence. Plasma levels of type XVIII collagen/endostatin (136 ng/mL [SD 29] in individuals with a normal aorta diameter, 154 ng/ml [SD 45] in SAA, and 162 ng/ml [SD 46] in AAA; p = .001) and type IV collagen (105 ng/mL [SD 42] normal aorta, 124 ng/ml [SD 46] SAA, and 127 ng/ml [SD 47] AAA; p = .037) were associated with a larger aortic diameter. A significant association was found between the baseline levels of type XVIII/endostatin and the aortic expansion rate (p = .035), but in the multivariable model, only the initial aortic diameter remained significantly associated with expansion (p = .005). Altered expression patterns of both collagens were observed in AAA tissue. Plasma levels of circulating type IV and XVIII collagen/endostatin increase with AAA diameter. The expression pattern of VBM proteins is altered in the aneurysm wall. Copyright

  5. Evaluation of nonuniformity of polymeric membrane materials by positron annihilation technique

    International Nuclear Information System (INIS)

    Shantarovich, V.P.; Kevdina, I.B.; Yampol'skij, Yu.P.

    2000-01-01

    Time distribution of annihilation radiation of positrons in some glass-like polymers including polymer membrane materials in the air and in nitrogen atmosphere was studied experimentally. Main attention is paid to long-lived component of distribution, i.e. ortho-positronium annihilation (positron-electron bound system). Influence of atmospheric oxygen on positronium annihilation characteristics was detected. The conceived notions on the mechanisms of positronium formation, localization and annihilation in the polymers suggest irregularity of distribution of free volumes of different size in the polymer matrix. The concentration and size of the elementary free volumes, as well as sizes of micro heterogeneities containing the volumes are evaluated [ru

  6. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China

    Science.gov (United States)

    Neng, Yuan; Xie, Huiwen; Yin, Hongwei; Li, Yong; Wang, Wei

    2018-04-01

    The Kuqa fold-thrust belt (KFTB) has a complex thrust-system geometry and comprises basement-involved thrusts, décollement thrusts, triangle zones, strike-slip faults, transpressional faults, and pop-up structures. These structures, combined with the effects of Paleogene salt tectonics and Paleozoic basement uplift form a complex structural zone trending E-W. Interpretation and comprehensive analysis of recent high-quality seismic data, field observations, boreholes, and gravity data covering the KFTB has been performed to understand the characteristics and mechanisms of the deformation styles along strike. Regional sections, fold-thrust system maps of the surface and the sub-salt layer, salt and basement structure distribution maps have been created, and a comprehensive analysis of thrust systems performed. The results indicate that the thrust-fold system in Paleogene salt range can be divided into five segments from east to west: the Kela-3, Keshen, Dabei, Bozi, and Awate segments. In the easternmost and westernmost parts of the Paleogene salt range, strike-slip faulting and basement-involved thrusting are the dominant deformation styles, as basement uplift and the limits of the Cenozoic evaporite deposit are the main controls on deformation. Salt-core detachment fold-thrust systems coincide with areas of salt tectonics, and pop-up, imbricate, and duplex structures are associated with the main thrust faults in the sub-salt layer. Distribution maps of thrust systems, basement structures, and salt tectonics show that Paleozoic basement uplift controlled the Paleozoic foreland basin morphology and the distribution of Cenozoic salt in the KFTB, and thus had a strong influence on the segmented structural deformation and evolution of the fold-thrust belt. Three types of transfer zone are identified, based on the characteristics of the salt layer and basement uplift, and the effects of these zones on the fault systems are evaluated. Basement uplift and the boundary of

  7. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    Science.gov (United States)

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  8. The Effect of Mechanical Characteristics of Basal Decollement and Basement Structures on Deformation of the Zagros Basin

    OpenAIRE

    Bahroudi, Abbas

    2003-01-01

    Two fundamental structural elements, basement architecture and basal decollement, play a significant role in the evolution of a tectonically active region. Using different approaches (field data, literature review and analogue models) this thesis demonstrates that these two elements affected the deformation style in the Zagros fold-thrust belt during Mesozoic extensional and Cenozoic contractional episodes. Reassessment of available data suggests a new configuration for the basement to Zagro...

  9. Octopus microvasculature: permeability to ferritin and carbon.

    Science.gov (United States)

    Browning, J

    1979-01-01

    The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.

  10. Disease: H00579 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available to the missense mutations in the COL4A1 in basement membranes. The renal manifestations include hematuria an...erited diseases of the glomerular basement membrane. ... JOURNAL ... Nat Clin Pract N

  11. Environment-sensitive ion-track membranes

    International Nuclear Information System (INIS)

    Yoshida, Masaru

    1996-01-01

    Development of an environment-sensitive porous membrane from ion-track membranes may realize by combining the techniques of ion beam radiation and those of molecular designing and synthesis for intelligent materials. Now, the development of such membrane is progressing with an aim at selecting some specific substances and accurately control its pore size in response to any small environmental stimulus such as temperature change. The authors have been studying the molecular design, synthesis and functional expression of intelligent materials, which are called here as environment-sensitive gels. In this report, the outlines of the apparatus for the production of such porous membrane was described. An organic polymer membrane was irradiated with an ion beam and followed by chemical etching to make ion track pores. Scanning electron microscopic observation for the cross section of the membrane showed that the pore shape varies greatly depending on the ion nuclide used. The characteristics of newly produced porous membranes consisting of CR-30/A-ProDMe and polyethylene-telephtharate were investigated in respect of pore size change responding to temperature. These studies of design, synthesis and functions of such gels would enable to substitute artificial materials for the functions of human sensors. (M.N.). 54 refs

  12. Halogens are key cofactors in building of collagen IV scaffolds outside the cell.

    Science.gov (United States)

    Brown, Kyle L; Hudson, Billy G; Voziyan, Paul A

    2018-05-01

    The purpose of this review is to highlight recent advances in understanding the molecular assembly of basement membranes, as exemplified by the glomerular basement membrane (GBM) of the kidney filtration apparatus. In particular, an essential role of halogens in the basement membrane formation has been discovered. Extracellular chloride triggers a molecular switch within non collagenous domains of collagen IV that induces protomer oligomerization and scaffold assembly outside the cell. Moreover, bromide is an essential cofactor in enzymatic cross-linking that reinforces the stability of scaffolds. Halogenation and halogen-induced oxidation of the collagen IV scaffold in disease states damage scaffold function. Halogens play an essential role in the formation of collagen IV scaffolds of basement membranes. Pathogenic damage of these scaffolds by halogenation and halogen-induced oxidation is a potential target for therapeutic interventions.

  13. Membrane and Films Based on Novel Crown-Containing Dyes as Promising Chemosensoring Materials

    Directory of Open Access Journals (Sweden)

    Sergei Yu. Zaitsev

    2010-12-01

    Full Text Available This paper discusses several works on supramolecular systems such as monolayer and multilayer, polymer films of various crown-containing dyes, surface-active monomers and polymers. Design, production and investigation of the membrane nanostructures based on crown ethers is a rapidly developing field at the “junction” of materials sciences and nanotechnology. These nanostructures can serve as convenient models for studying the self-organization and molecular recognition processes at interfaces that are typical for biomembranes. Based on the results obtained for such structures by absorption and fluorescence spectroscopy, atomic force and Brewster-angle microscopy, surface pressure and surface potential isotherm measurements, the possibility of developing micro- and nanomaterials possessing a set of specified properties (including chemosensor, photochromic and photorefractive materials is demonstrated.

  14. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    Science.gov (United States)

    2014-07-30

    temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use

  15. Research and Development on Oxygen Transport Membranes at the Technical University of Denmark from Materials to Modules

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Pirou, Stéven; Ovtar, Simona

    2016-01-01

    Oxygen transport membranes (OTMs) are inorganic, high temperature devices that have the potential to efficiently supply oxygen to combustion processes, for example for oxy-fired (biomass) gasification or in the cement and steel industry. This work reviews aspects of material selection, design...

  16. Age of Izu-Bonin-Mariana arc basement

    Science.gov (United States)

    Ishizuka, Osamu; Hickey-Vargas, Rosemary; Arculus, Richard J.; Yogodzinski, Gene M.; Savov, Ivan P.; Kusano, Yuki; McCarthy, Anders; Brandl, Philipp A.; Sudo, Masafumi

    2018-01-01

    Documenting the early tectonic and magmatic evolution of the Izu-Bonin-Mariana (IBM) arc system in the Western Pacific is critical for understanding the process and cause of subduction initiation along the current convergent margin between the Pacific and Philippine Sea plates. Forearc igneous sections provide firm evidence for seafloor spreading at the time of subduction initiation (52 Ma) and production of "forearc basalt". Ocean floor drilling (International Ocean Discovery Program Expedition 351) recovered basement-forming, low-Ti tholeiitic basalt crust formed shortly after subduction initiation but distal from the convergent margin (nominally reararc) of the future IBM arc (Amami Sankaku Basin: ASB). Radiometric dating of this basement gives an age range (49.3-46.8 Ma with a weighted average of 48.7 Ma) that overlaps that of basalt in the present-day IBM forearc, but up to 3.3 m.y. younger than the onset of forearc basalt activity. Similarity in age range and geochemical character between the reararc and forearc basalts implies that the ocean crust newly formed by seafloor spreading during subduction initiation extends from fore- to reararc of the present-day IBM arc. Given the age difference between the oldest forearc basalt and the ASB crust, asymmetric spreading caused by ridge migration might have taken place. This scenario for the formation of the ASB implies that the Mesozoic remnant arc terrane of the Daito Ridges comprised the overriding plate at subduction initiation. The juxtaposition of a relatively buoyant remnant arc terrane adjacent to an oceanic plate was more favourable for subduction initiation than would have been the case if both downgoing and overriding plates had been oceanic.

  17. Dense ceramic membranes based on ion conducting oxides

    International Nuclear Information System (INIS)

    Fontaine, M.L.; Larring, Y.; Bredesen, R.; Norby, T.; Grande, T.

    2007-01-01

    This chapter reviews the recent progress made in the fields of high temperature oxygen and hydrogen separation membranes. Studies of membranes for oxygen separation are mainly focusing on materials design to improve flux, and to lesser extent, related to stability issues. High oxygen fluxes satisfying industrial requirements can be obtained but, for many materials, the surface exchange rate is limiting the performance. The current status on electrolyte-type and mixed proton and electron conducting membranes is outlined, highlighting materials with improved stability in typical applications as solid oxide fuel cell technology and gas separation. In our presentation more fundamental aspects related to transport properties, chemical and mechanical stability of membrane materials are also treated. It is concluded that a significantly better understanding of the long term effects of operation in chemical gradients is needed for these types of membrane materials. (authors)

  18. MECHANISM OF LIQUID MEMBRANES AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR

    2002-02-01

    Full Text Available It has been considerably studied on the recycling of waste materials in the source besides of wastewater treatment in the last years. It has been important developments on the using of semiconductor membranes in the recycling of toxic materials such as heavy metals, intensifying the environment protection measures especially in the west countries. Wastewater treatment has been achieved with liquid membranes as it has been achieved with polymeric membrane systems such as ultrafiltration, microfiltration, electrodialysis. At the same time, liquid membranes are used for removal of metal ions in hydrometallurgy. Liquid membranes are also used in biotechnology, medical areas and gas separation process.

  19. A fall-out shelter or basement structure

    International Nuclear Information System (INIS)

    Blatchford, J.M.A.

    1982-01-01

    A strong structure of precast concrete for use as a fallout shelter, tank, basement structure, blast-proof garage is described. It consists of several upright, concrete wall elements, including L-shaped sections, and at least one concrete roof element. The concrete elements are preferably encased in, and may also be supported on, a concrete surround which is formed in situ and which may be secured to the elements by projecting links. The structure may be assembled as an underground or above-ground building. This invention provides a strong structure of quite large span which is relatively simple in construction and can be rapidly assembled. (U.K.)

  20. Membranous glomerulopathy and massive cervical lymphadenopathy due to immunoglobulin G4-disease

    Directory of Open Access Journals (Sweden)

    Kamel El-Reshaid

    2017-01-01

    Full Text Available A 32-year-old male presented with acute and severe nephrotic syndrome as well as massive right cervical lymphadenopathy for <2 years. Computed tomography scan of the chest, abdomen, and pelvis did not reveal any lymphadenopathy. Histopathology and immunohistochemical testing of his lymph node biopsy showed infiltrate enriched with immunoglobulin G4 (IgG4-positive plasma cells. His kidney biopsy showed granular membranous deposits of IgG4 in the basement membrane without interstitial infiltrate. Antiphospholipid 2 receptor antibodies were absent excluding its "idiopathic" nature. Since he was allergic to rituximab, he was treated with corticosteroids for two months and a combination of tacrolimus and mycophenolate. His lymphadenopathy disappeared, and his proteinuria abated. The dose of the latter two medications was reduced to half after four months and will be maintained for a minimum of two years to prevent relapse of his disease.

  1. Light Responsive Polymer Membranes: A Review

    Directory of Open Access Journals (Sweden)

    Fiore Pasquale Nicoletta

    2012-03-01

    Full Text Available In recent years, stimuli responsive materials have gained significant attention in membrane separation processes due to their ability to change specific properties in response to small external stimuli, such as light, pH, temperature, ionic strength, pressure, magnetic field, antigen, chemical composition, and so on. In this review, we briefly report recent progresses in light-driven materials and membranes. Photo-switching mechanisms, valved-membrane fabrication and light-driven properties are examined. Advances and perspectives of light responsive polymer membranes in biotechnology, chemistry and biology areas are discussed.

  2. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  3. Identification of Zones and Areal Extent of Weathered Crystalline Basement in the Archean-Lower Proterozoic Crust of the South Tatar Arch

    Directory of Open Access Journals (Sweden)

    N.B. Amelchenko

    2017-08-01

    Full Text Available Based on the data of geophysical surveys and deep drilling the depth to the crystalline basement and its weathered upper layer at the eastern flank of the South Tartar Arch varies from 1650 to 2500 m. Against the ongoing depletion of hydrocarbon reserves in the Paleozoic reservoirs of the region the basement becomes a promising exploration target. However the study of its architecture, composition and areal extent is largely hindered by so far very limited coring in this interval. In previous research correlation of core data and wireline logs was used for petrophysical characterization and identification of zones in a vertical profile of the upper weathered layer of the basement in the deep parametric test wells 50 Novournyak and 2000 Tyimazy with most complete core recovery. These characterization criteria have been utilized for analysis of 750 deep wells drilled in Bashkortostan within the South Tatar Arch which is bounded in the south by the Serafimovsko-Baltaevskiy Graben. In 340 wells based on wireline and production logs the upper weathered layer of the basement revealed certain distinct features of vertical zonation. The analysis resulted in thickness maps for Zone B and combined thickness maps for Zones B + C where the weathered basement is characterized by two morphological types – linear-areal and linear-fractured. The findings support the initial assumption that the obtained petrophysical characteristics may be applied to identify the weathered crystalline basement in wells with no core.

  4. Effect of fibrin glue on the biomechanical properties of human Descemet's membrane.

    Directory of Open Access Journals (Sweden)

    Shyam S Chaurasia

    Full Text Available BACKGROUND: Corneal transplantation has rapidly evolved from full-thickness penetrating keratoplasty (PK to selective tissue corneal transplantation, where only the diseased portions of the patient's corneal tissue are replaced with healthy donor tissue. Descemet's membrane endothelial keratoplasty (DMEK performed in patients with corneal endothelial dysfunction is one such example where only a single layer of endothelial cells with its basement membrane (10-15 µm in thickness, Descemet's membrane (DM is replaced. It is challenging to replace this membrane due to its intrinsic property to roll in an aqueous environment. The main objective of this study was to determine the effects of fibrin glue (FG on the biomechanical properties of DM using atomic force microscopy (AFM and relates these properties to membrane folding propensity. METHODOLOGY/PRINCIPAL FINDINGS: Fibrin glue was sprayed using the EasySpray applicator system, and the biomechanical properties of human DM were determined by AFM. We studied the changes in the "rolling up" tendency of DM by examining the changes in the elasticity and flexural rigidity after the application of FG. Surface topography was assessed using scanning electron microscopy (SEM and AFM imaging. Treatment with FG not only stabilized and stiffened DM but also led to a significant increase in hysteresis of the glue-treated membrane. In addition, flexural or bending rigidity values also increased in FG-treated membranes. CONCLUSIONS/SIGNIFICANCE: Our results suggest that fibrin glue provides rigidity to the DM/endothelial cell complex that may aid in subsequent manipulation by maintaining tissue integrity.

  5. Effect of Fibrin Glue on the Biomechanical Properties of Human Descemet's Membrane

    Science.gov (United States)

    Chaurasia, Shyam S.; Champakalakshmi, Ravi; Li, Ang; Poh, Rebekah; Tan, Xiao Wei; Lakshminarayanan, Rajamani; Lim, Chwee T.; Tan, Donald T.; Mehta, Jodhbir S.

    2012-01-01

    Background Corneal transplantation has rapidly evolved from full-thickness penetrating keratoplasty (PK) to selective tissue corneal transplantation, where only the diseased portions of the patient's corneal tissue are replaced with healthy donor tissue. Descemet's membrane endothelial keratoplasty (DMEK) performed in patients with corneal endothelial dysfunction is one such example where only a single layer of endothelial cells with its basement membrane (10–15 µm in thickness), Descemet's membrane (DM) is replaced. It is challenging to replace this membrane due to its intrinsic property to roll in an aqueous environment. The main objective of this study was to determine the effects of fibrin glue (FG) on the biomechanical properties of DM using atomic force microscopy (AFM) and relates these properties to membrane folding propensity. Methodology/Principal Findings Fibrin glue was sprayed using the EasySpray applicator system, and the biomechanical properties of human DM were determined by AFM. We studied the changes in the “rolling up” tendency of DM by examining the changes in the elasticity and flexural rigidity after the application of FG. Surface topography was assessed using scanning electron microscopy (SEM) and AFM imaging. Treatment with FG not only stabilized and stiffened DM but also led to a significant increase in hysteresis of the glue-treated membrane. In addition, flexural or bending rigidity values also increased in FG-treated membranes. Conclusions/Significance Our results suggest that fibrin glue provides rigidity to the DM/endothelial cell complex that may aid in subsequent manipulation by maintaining tissue integrity. PMID:22662156

  6. Metasomatic tourmalinite formation along basement-cover decollements, Orobic Alps, Italy

    Science.gov (United States)

    Slack, J.F.; Passchier, C.W.; Zhang, J.S.

    1996-01-01

    Cryptocrystalline tourmalinites that occur discontinuously for ???30 km along basement-cover de??collements of the Orohic Alps (Italy) formed by the metasomatism of aluminous cataclasites derived from Permian conglomerates and/or feldspathic sandstones. Using Al as an immobile element monitor, calculations show that the majority of tourmalinites in the region formed through the addition of moderate to significant amounts of B, Mg, Na, Sr, and Be, and the loss of moderate to significant Mn, Ca, K, P, Rb, Ba, and Cr; minor Si, Ti, V, light REE, and Eu also were lost. Data tor relatively immobile Al, Zr, Th, Sc, Nb, and heavy REE indicate that, on average, these tourmalinites formed through ???12% net mass loss assuming an original conglomerate protolith, or through ???7% net mass loss assuming a sandstone protolith. The B and other introduced constituents in the tourmalinites were deposited by hydrothermal fluids focused along and near basement-cover de??collements. These fluids, believed to be associated with late Hercynian felsic magmatism, probably are related to fluids that formed the tourmaline-rich U-Mo-Zn deposits at the nearby Novazza mine and the U-Zn deposits at the nearby Val Vedello mine.

  7. Time variation of 222Rn concentration and gamma level in a half-basement room

    International Nuclear Information System (INIS)

    Iimoto, Takeshi; Eguchi, Hoshio; Kosako, Toshiso; Sugiura, Nobuyuki

    1998-01-01

    Correlation between 222 Rn (radon) concentration and gamma level in a half-basement has been discussed. In order to decrease the background count of a whole-body counter (WBC), a ventilation blower of 72 m 2 h -1 was installed. The device succeeded in a big reduction of radon concentration in the half-basement and then the background of WBC (NaI(Tl)) decreased to the 76.5% of the saturated value. Through a radon saturation test the exhalation rate of radon from concrete wall was estimated as 2.1 Bqm -2 h -1 by a simple model calculation. In addition, through a ventilation test, the procedure was analyzed by another simple model. (author)

  8. Disease: H01221 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01221 Epithelial basement membrane corneal dystrophy (EBMD); Cogan microcystic ep...ithelial dystrophy; Map-dot-fingerprint dystrophy Epithelial basement membrane corneal dystrophy (EBMD) is a...e known to cause various forms of corneal dystrophies, have been identified. Sheet-like areas of basement me...on J, Menasche M, Munier FL, Laroche L, Abitbol M, Schorderet DF ... TITLE ... A subset of patients with epithelial basemen

  9. Podocyte expression of membrane transporters involved in puromycin aminonucleoside-mediated injury.

    Directory of Open Access Journals (Sweden)

    Cristina Zennaro

    Full Text Available Several complex mechanisms contribute to the maintenance of the intricate ramified morphology of glomerular podocytes and to interactions with neighboring cells and the underlying basement membrane. Recently, components of small molecule transporter families have been found in the podocyte membrane, but expression and function of membrane transporters in podocytes is largely unexplored. To investigate this complex field of investigation, we used two molecules which are known substrates of membrane transporters, namely Penicillin G and Puromycin Aminonucleoside (PA. We observed that Penicillin G pre-administration prevented both in vitro and in vivo podocyte damage caused by PA, suggesting the engagement of the same membrane transporters by the two molecules. Indeed, we found that podocytes express a series of transporters which are known to be used by Penicillin G, such as members of the Organic Anion Transporter Polypeptides (OATP/Oatp family of influx transporters, and P-glycoprotein, a member of the MultiDrug Resistance (MDR efflux transporter family. Expression of OATP/Oatp transporters was modified by PA treatment. Similarly, in vitro PA treatment increased mRNA and protein expression of P-glycoprotein, as well as its activity, confirming the engagement of the molecule upon PA administration. In summary, we have characterized some of the small molecule transporters present at the podocyte membrane, focusing on those used by PA to enter and exit the cell. Further investigation will be needed to understand precisely the role of these transporter families in maintaining podocyte homeostasis and in the pathogenesis of podocyte injury.

  10. Influence of pre-existing basement faults on the structural evolution of the Zagros Simply Folded belt: 3D numerical modelling

    Science.gov (United States)

    Ruh, Jonas B.; Gerya, Taras

    2015-04-01

    The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.

  11. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  12. Geologic setting of the St. Catherine basement rocks, Sinai, Egypt

    OpenAIRE

    Abdel Maksoud, M. A. [محمد علي عبدالمقصود; Khalek, M. L. Abdel; Oweiss, K. A.

    1993-01-01

    St. Catherine area, some 900 km in size, is dominated by basement rocks Encompassing old continental gneisses, metasediments, greenstone belt, calc-alkaline granites (G-II-granites), rift-related volcanics (RV), and anorogenic within plate granites (G-III-granites). The greenstone belt is composed of subduction-related volcanics (SV) intercalated with metasediments. These volcanics split into older group (moderately metamorphosed) and younger group (slightly metamorphosed). The calc-alkaline ...

  13. Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers

    Directory of Open Access Journals (Sweden)

    Ana Belen Jorge

    2018-06-01

    Full Text Available Carbon nitride materials with graphitic to polymeric structures (gCNH were investigated as catalyst supports for the proton exchange membrane (PEM water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in situ onto carbon nitride support for PEM water electrolysis was explored based on previous preliminary studies conducted in related systems. The results revealed that this preparation route catalyzed the decomposition of the carbon nitride to form a material with much lower N content. This resulted in a significant enhancement of the performance of the gCNH-IrO2 (or N-doped C-IrO2 electrocatalyst that was likely attributed to higher electrical conductivity of the N-doped carbon support.

  14. Disease: H00582 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00582 Benign familial hematuria; Thin basement membrane nephropathy Benign famili...hildhood. The glomerular basement membrane is uniformly thin, but renal function is normal. Heterozygous mut...ations in COL4A3 or COL4A4 lead to reduced collagen network levels in the basemen...MIM: 141200 PMID:18094725 (gene, description) ... AUTHORS ... Gubler MC ... TITLE ... Inherited diseases of the glomerular basemen...Wang YY ... TITLE ... Thin basement membrane nephropathy. ... JOURNAL ... Kidney Int 64:1169-78 (2003) DOI:10.1046/j.1523-1755.2003.00234.x

  15. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  16. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  17. The significance of strike-slip faulting in the basement of the Zagros fold and thrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Hessami, K.; Koyi, H.A.; Talbot, C.J. [Uppsala University (Sweden). Institute of Earth Sciences

    2000-01-01

    Lateral offsets in the pattern of seismicity along the Zagros fold and thrust belt indicate that transverse faults segmenting the Arabian basement are active deep-seated strike-slip faults. The dominant NW-SE trending features of the belt have undergone repeated horizontal displacements along these transverse faults. These reactivated basement faults, which are inherited from the Pan-African construction phase, controlled both deposition of the Phanerozoic cover before Tertiary-Recent deformation of the Zagros and probably the entrapment of hydrocarbons on the NE margin of Arabia and in the Zagros area. We have used observations of faulting recognized on Landsat satellite images, in conjunction with the spatial distribution of earthquakes and their focal mechanism solutions, to infer a tectonic model for the Zagros basement. Deformation in the NW Zagros appears to be concentrated on basement thrusts and a few widely-spaced north-south trending strike-slip faults which separate major structural segments. In the SE Zagros, two main structural domains can be distinguished. A domain of NNW-trending right-lateral faults in the northern part of the SE Zagros implies that fault-bounded blocks are likely to have rotated anticlockwise about vertical axes relative to both Arabia and Central Iran. In contrast, the predominance of NNE-trending left-lateral faults in the southern part of the SE Zagros implies that fault-bounded blocks may have rotated clockwise about vertical axes. We propose a tectonic model in which crustal blocks bounded by strike-slip faults in a zone of simple shear rotate about vertical axes relative to both Arabia and Central Iran. The presence of domains of strike-slip and thrust faulting in the Zagros basement suggest that some of the convergence between Arabia and Central Iran is accommodated by rotation and possible lateral movement of crust along the belt by strike-slip faults, as well as by obvious crustal shortening and thickening along thrust

  18. Green Materials Science and Engineering Reduces Biofouling: Approaches for Medical and Membrane-based Technologies

    Directory of Open Access Journals (Sweden)

    Kerianne M Dobosz

    2015-03-01

    Full Text Available Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety.

  19. Geochronology of the basement rocks, Amazonas Territory, Venezuela and the tectonic evolution of the western Guiana Shield

    Energy Technology Data Exchange (ETDEWEB)

    Gaudette, H E; Olszewski, Jr, W J

    1985-01-01

    The Amazonas Territory of Venezuela is a large area of Precambrian basement rocks overlain in some locales by the supracrustal sedimentary and volcanic rocks of the Roraima Formation. The basement rocks are medium to high grade gneisses with both igneous and sedimentary protoliths, plutonic rocks ranging in composition from granite to tonalite, and meta-volcanic rocks. Rb-Sr whole rock, and U-Pb isotopic analyses of zircons indicate a period of medium to high grade metamorphism and intrusion from 1860 to 1760 Ma. Post-tectonic plutonic activity continued to 1550 Ma. The volcanic rocks of the Roraima Formation in Venezuela give an age of 1746 Ma comparable to volcanic rocks of the Roraima Formation in other parts of the Guiana Shield. The ages and distribution of the basement rocks suggest the presence of a tectonic zone, approximately coincident with the Venezuelan-Colombian border, representing an active orogenic boundary between distinct tectonic provinces. The rocks to the northeast of this zone are part of the Trans-Amazonian of the Guiana Shield, while to the southwest and in adjacent Brazil and Colombia, new younger continental crust has been developed and cratonized. We suggest a model of collision and subduction followed by a chan0140n tectonic style to extensional-vertical to produce the basement rocks of the western Guiana Shield in the Amazonas Territory. (Auth.). 20 refs.; 13 figs.; 2 tabs.

  20. Provenance of Austroalpine basement metasediments: tightening up Early Palaeozoic connections between peri-Gondwanan domains of central Europe and Northern Africa

    Science.gov (United States)

    Siegesmund, S.; Oriolo, S.; Heinrichs, T.; Basei, M. A. S.; Nolte, N.; Hüttenrauch, F.; Schulz, B.

    2018-03-01

    New U-Pb and Lu-Hf detrital zircon data together with whole-rock geochemical and Sm-Nd data were obtained for paragneisses of the Austroalpine basement south of the Tauern Window. Geochemically immature metasediments of the Northern-Defereggen-Petzeck (Ötztal-Bundschuh nappe system) and Defereggen (Drauzug-Gurktal nappe system) groups contain zircon age populations which indicate derivation mainly from Pan-African orogens. Younger, generally mature metasediments of the Gailtal Metamorphic Basement (Drauzug-Gurktal nappe system), Thurntaler Phyllite Group (Drauzug-Gurktal nappe system) and Val Visdende Formation (South Alpine Basement) were possibly derived from more distant sources. Their significantly larger abundances of pre-Pan-African zircons record a more advanced stage of downwearing of the Pan-African belts and erosion of older basement when the Austroalpine terrane was part of the Early Palaeozoic Northern Gondwana passive margin. Most zircon age spectra are dominated by Ediacaran sources, with lesser Cryogenian, Tonian and Stenian contributions and subordinate Paleoproterozoic and Neoarchean ages. These age patterns are similar to those recorded by Cambro-Ordovician sedimentary sequences in northeastern Africa between Libya and Jordan, and in some pre-Variscan basement inliers of Europe (e.g. Dinarides-Hellenides, Alboran microplate). Therefore, the most likely sources seem to be in the northeastern Saharan Metacraton and the Northern Arabian-Nubian Shield (Sinai), further supported by whole-rock Sm-Nd and zircon Lu-Hf data.

  1. Disease: H00576 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available a deficiency of 2-laminin in the basement membrane. Developmental disorder; Kidn... AUTHORS ... Gubler MC ... TITLE ... Inherited diseases of the glomerular basement membrane. ... JOURNAL ... Nat Clin Pract Nephrol 4:24-37 (2008) DOI:10.1038/ncpneph0671 ...

  2. Modified polyether-sulfone membrane: a mini review.

    Science.gov (United States)

    Alenazi, Noof A; Hussein, Mahmoud A; Alamry, Khalid A; Asiri, Abdullah M

    2017-01-01

    Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane.

  3. Rb-Sr and K-Ar isotopic evidence for neoproterozoic (Pan-African) granulite metamorphism from the basement of Mumbai offshore basin, India

    International Nuclear Information System (INIS)

    Rathore, S.S.; Vijan, A.R.; Singh, M.P.; Misra, K.N.; Prabhu, B.N.

    2000-01-01

    Precambrian basement from well HBM-1 in the Heera oil field of Mumbai offshore basin has been dated by Rb-Sr and K-Ar methods. Five granulitic basement samples from three conventional drill cores have yielded Rb-Sr isochron age of 502±25 Ma with an initial Sr ratio of 0.70855±0.00013. This age has been interpreted as the time of granulite facies metamorphism of the basement rocks in the region. Two whole rock samples from the basement of this well have yielded mutually concordant K-Ar ages of 505±16 Ma and 507±17 Ma. The K-Ar ages are significantly similar to Rb-Sr age obtained from this well, suggesting complete isotopic reequilibration around 500 Ma ago. The time of secondary thermal heating around 500 Ma ago in the basement of Heera field coincides with the widespread neoproterozoic (Pan-African) thermo-tectonic event extending from the Arabian Peninsula and eastern Africa covering Madagascar, southern India. Sri Lanka and East Antarctica. This study widens the limit of the Pan-African zone, which hitherto was thought to be confined to the western part (presently southern part) of the Indian subcontinent, towards further east. (author)

  4. Surface analogue outcrops of deep fractured basement reservoirs in extensional geological settings. Examples within active rift system (Uganda) and proximal passive margin (Morocco).

    Science.gov (United States)

    Walter, Bastien; Géraud, Yves; Diraison, Marc

    2014-05-01

    The important role of extensive brittle faults and related structures in the development of reservoirs has already been demonstrated, notably in initially low-porosity rocks such as basement rocks. Large varieties of deep-seated resources (e.g. water, hydrocarbons, geothermal energy) are recognized in fractured basement reservoirs. Brittle faults and fracture networks can develop sufficient volumes to allow storage and transfer of large amounts of fluids. Development of hydraulic model with dual-porosity implies the structural and petrophysical characterization of the basement. Drain porosity is located within the larger fault zones, which are the main fluid transfer channels. The storage porosity corresponds both to the matrix porosity and to the volume produced by the different fractures networks (e.g. tectonic, primary), which affect the whole reservoir rocks. Multi-scale genetic and geometric relationships between these deformation features support different orders of structural domains in a reservoir, from several tens of kilometers to few tens of meters. In subsurface, 3D seismic data in basement can be sufficient to characterize the largest first order of structural domains and bounding fault zones (thickness, main orientation, internal architecture, …). However, lower order structural blocks and fracture networks are harder to define. The only available data are 1D borehole electric imaging and are used to characterize the lowest order. Analog outcrop studies of basement rocks fill up this resolution gap and help the understanding of brittle deformation, definition of reservoir geometries and acquirement of reservoir properties. These geological outcrop studies give information about structural blocks of second and third order, getting close to the field scale. This allows to understand relationships between brittle structures geometry and factors controlling their development, such as the structural inheritance or the lithology (e.g. schistosity, primary

  5. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  6. The cataclasis in the crystalline basement of Northern Switzerland

    International Nuclear Information System (INIS)

    Meyer, J.

    1987-01-01

    In the crystalline basement of Northern Switzerland two main phases of cataclastic deformation can be distinguished: a 'cataclasis 1' in a higher temperature hydrothermal regime, as a consequence of tectonic and magmatic-hydrothermal events in Upper Carboniferous time and a lower temperature 'cataclasis 2', which can be related to Permian tectonics at the northern margin of the Paleozoic Konstanz-Frick trough. These cataclases are interpreted as a result of longlasting and complex tectonic processes at shallow crustal levels. (author) 30 refs., 4 figs

  7. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  8. Risk of a large amount of high-radioactive contaminated water leaking into the reactor building basement of Fukushima Daiichi nuclear power station

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Sawai, Masako

    2013-01-01

    In November 2012 about one and half year after the accident at units 1, 2 and 3 of Fukushima Daiichi nuclear power station, some 405 m 3 /day cooling water was being injected into the melt damaged core and leaked as highly-radioactive contaminated water from damaged lower part of containment into the basement of turbine hall. To treat a large amount of contaminated water in the basement, waste processing plant to remove cesium was installed in June 2011 with desalination plant, which produced clean water for circulating coolant system of damaged nuclear fuel while the rest went to storage. Radioactivity of contaminated water in the basement accumulated at initial almost 80 days of the accident was evaluated about 20% for Cs-137 of core inventory of units 1, 2 and 3 and 2.3% for Sr-90 of core inventory of units 2 and 3. Sr-90 from unit 1 was not released into the basement and almost remained at suppression chamber. By November 2012, Cs-137 released into the basement was evaluated to total about 40% of core inventory and stored contaminated water amounted to about 360 kilotons, while Cs-137 released into the atmosphere was estimated about 3.6% of core inventory with its one third contributed for land contamination. Sr-90 released into the basement was estimated as 6.3% or 4.4% of core inventory based on Sr-90 measured activity of treated water in December or September 2011 with stored contaminated water of 300 kilotons. Cs-137 and Sr-90 contaminated water kept continuously releasing into the basement as long as melt damaged core existed and cooling water washed out Cs-137 and Sr-90 attached on containment walls. Safe store of released radioactivity was highly important and acquired important data was recommended to publish for check and review. (T. Tanaka)

  9. Metallic substrate materials for thin film oxygen transport membranes for application in a fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y.; Baumann, S.; Sebold, D.; Meulenberg, W.A.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF) - IEF-1 Materials Synthesis and Processing

    2010-07-01

    La{sub 0.58}Sr{sub 0.4}CO{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) and Ba{sub 0.5}Sr{sub 0.5}CO{sub 0.8}Fe{sub 3-{delta}} (BSCF5582) exhibit high oxygen permeability due to their high ionic and electronic conductivity. For this reason they are under discussion for application in oxygen transport membranes (OTMs) in zero-emission power plants using oxyfuel technology. A thin film membrane which can increase the oxygen flux is beneficial and a structural substrate is required. Two types of Ni-base alloys were studied as substrate material candidates with a number of advantages, such as high strength, high temperature stability, easy joining and similar thermal expansion coefficient to the selected perovskite materials. Chemical compositions and thermal expansion coefficients of Ni-base alloys were measured in this study. LSCF58428 and BSCF5582 layers were screen printed on Ni-based alloys and co-fired at high temperature in air. The microstructure and element analysis of samples were characterized by scanning electron microscopy (SEM and EDX). A Ni-base alloy, MCrAlY, with a high Al content was the most suitable substrate material, and showed better chemical compatibility with perovskite materials at high temperature than Hastelloy X, which is a chromia-forming Ni-base alloy. A reaction occurred between Sr in the perovskite and the alumina surface layers on MCr-AlY. However, the reaction zone did not increase in thickness during medium-term annealing at 800 C in air. Hence, it is expected that this reaction will not prevent the application of MCr-AlY as a substrate material. (orig.)

  10. Basement of Structure, Main Power and Design Parameters of Mechanism of Removing Sections of Mechanized Sets of Knife Plane Installation

    Science.gov (United States)

    Sysoev, N. I.; Turuk, Yu V.; Kolesnichenko, I. Y.; Lugantsev, B. B.

    2017-10-01

    The reasons for the failure of the pitch stability of the knife-plane installation due to the action of extreme effort in the plane of the seam from the conveyor side on the mechanism of removing sections of mechanized sets are shown. The technique for determining this effort is presented. The constructions of the adaptive mechanisms of the removing sections of mechanized sets with the basements of catamaran type, in the constrictions of which elastic elements (rods) are used, are considered. The constructions of the mechanism of removing a section of the mechanized set with the basement of catamaran type in which the stock of the hydraulic jack is connected with the band loop through the movable rods intermediate basement with a link are worked out. The intermediate basement unloads the stock of the hydraulic jack of the moving installation from the side curving efforts, caused by the action of lateral forces in the plane of the seam on the conveyor side. It increases the reliability and efficiency of work of the knife plane mechanized complex.

  11. Glomerular matrix: synthesis, turnover and role in mesangial expansion

    DEFF Research Database (Denmark)

    Couchman, J R; Beavan, L A; McCarthy, K J

    1994-01-01

    The extracellular matrix has an integral role in development, homeostasis and pathology of the glomerulus. Three spatially distinct matrices are present in the glomerulus: the mesangium, and basement membranes of the capillary loops and Bowman's capsule. Each is dominated by basement membrane com...

  12. Punta del este terrane: meso proterozoic basement and neo proterozoic cover

    International Nuclear Information System (INIS)

    Preciozzi, F.; Sanchez Bettucci, L.; Basei, M.; Peel, E.; Oyhantcabal, P.; Cordani, U.

    2003-01-01

    Full text: Eastern basement of Uruguay consists of Meso and Neoproterozoic rocks. Mesoproterozoic basement had been deformed by pre-Brasiliano and Brasiliano events. Regional variations in this basement and in the Neoproterozoic cover show equivalent deformation styles and intensities. Models proposed for tectonic evolution have been scarce and confusing. Specially, the ones that concern the moment of collision and/or juxtaposition of blocks. The Punta del Este Terrane (PET) is composed of gneisses and migmatites formed between 1000 Ma to 900 Ma (Preciozzi et al., 2001). These rocks had been strongly reworked during Brasiliano and Rio Doce orogenesis (ca. 900-500 Ma). This crustal segment represents a high grade metamorphic terrane, which is correlated to some gneissic complexes southwest of Africa. Particularly, it is correlated to Kibaran-Namaqua Belt in Namibia. U-Pb ages between 1000 Ma and 900 Ma, obtained in zircons from tonalitic granitoids, are interpreted as indicative of their crystallization (Fig. 1). Besides, anatectic fluids related to migmatites leucosomes yielded ages of ca. 520 to 540 Ma. This denotes that superimposed metamorphic conditions during Brasiliano orogenesis reached, at least, lower amphibolite facies. PET basement gneisses present Sm-Nd model ages (TDM) between 2.4 to 1.8 Ga, showing long crustal residence, corroborated by the very negative εNd values of –1.3 and –14.3. During Brazilian orogenesy they were affected by deformation processes and anatexis. Metasedimentary PET cover occurs near La Paloma and Rocha towns. It is represented by a siliciclastic metasedimentary succession corresponding to the Rocha formation. In La Pedrera town recognized three sedimentary facies were (1-3): (1) sandstones and pelites; (2) green pelites; and (3) rhytmites. The transition from facies (1) to facies (3) shows the passage from fluvial environment with tidal influence to tidal flat with predominance of sub tidal deposits (Pazos and S

  13. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  14. Antimetastatic effect of PSK, a protein-bound polysaccharide, against the B16-BL6 mouse melanoma.

    Science.gov (United States)

    Matsunaga, K; Ohhara, M; Oguchi, Y; Iijima, H; Kobayashi, H

    1996-01-01

    We examined the effect of PSK, a protein-bound polysaccharide, upon in vivo metastasis and in vitro invasion of the B16-BL6 mouse melanoma cells. (1) PSK suppressed in vivo artificial and spontaneous lung metastases of B16-BL6 in C57BL/6 mice. (2) PSK in a dose-dependent fashion suppressed in vitro invasion and chemotaxis of the tumor cells using filters coated with a reconstituted basement membrane. (3) PSK had little effect on DNA synthesis in tumor cells in vitro, but suppressed tumor cell adhesion to, degradation of, and haptotaxis to components of the basement membrane. (4) PSK suppressed the binding of tumor cells to components of the basement membrane. These findings suggest that PSK may suppress metastasis through inhibition of tumor cell invasion and that this effect is the result of interactions between PSK and components of the basement membrane.

  15. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  16. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  17. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric materialis described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasingpressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranesdescribed by these models develop a local thinning of the membrane which may lead to bursting in finite time....

  18. Basement configuration of KG offshore basin from magnetic anomalies

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.; Swamy, K.V.; Raj, N.

    to Dept. of Science & Technology, New Delhi for granting the Junior Research Fel- lowship through Inspire Programme. This is NIO (CSIR) contribution no. 7132. References Aftalion M, Bowes D R, Dash B and Dempster T J 1988 Late proterozoic charnockites... anomaly map in figure 1. Keywords. Marine magnetic anomalies; offshore K–G basin; magnetic basement; extension of EGMB geology; continent– oceanic boundary. J. Earth Syst. Sci. 125, No. 3, April 2016, pp. 663–668 c© Indian Academy of Sciences 663 664 V...

  19. Late Cretaceous and Cenozoic seafloor and oceanic basement roughness: Spreading rate, crustal age and sediment thickness correlations

    Science.gov (United States)

    Bird, Robert T.; Pockalny, Robert A.

    1994-05-01

    Single-channel seismic data from the South Australian Basin and Argentine Basin, and bathymetry data from the flanks of the Mid-Atlantic Ridge, East Pacific Rise and Southwest Indian Ridge are analysed to determine the root-mean-square (RMS) roughness of the seafloor and oceanic basement created at seafloor spreading rates ranging from 3 to 80 km/Ma (half-rate). For these data, crustal ages range from near zero to 85 Ma and sediment thicknesses range from near zero to over 2 km. Our results are consistent with a negative correlation of basement roughness and spreading rate where roughness decreases dramatically through the slow-spreading regime (oceanic basement roughness and spreading rate appears to have existed since the late Cretaceous for slow and intermediate spreading rates, suggesting that the fundamental processes creating abyssal hill topography may have remained the same for this time period. Basement roughness does not appear to decrease (smooth) with increasing crustal age, and therefore off-ridge degradation of abyssal hill topography by mass wasting is not detected by our data. Seismic data reveal that sediment thickness increases with increasing crustal age in the South Australian Basin and Argentine Basin, but not monotonically and with significant regional variation. We show that minor accumulations of sediment can affect roughness significantly. Average sediment accumulations of less that 50 m (for our 100 km long sample seismic profiles and half-spreading rates ocean ridges.

  20. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    Energy Technology Data Exchange (ETDEWEB)

    Pschirer, James [Alstom Power Inc., Windsor, CT (United States); Burgess, Joshua [Alstom Power Inc., Windsor, CT (United States); Schrecengost, Robert [Alstom Power Inc., Windsor, CT (United States)

    2017-08-16

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the project “Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube

  1. "We Dominate the Basement!": How Asian American Girls Construct a Borderland Community

    Science.gov (United States)

    Tokunaga, Tomoko

    2016-01-01

    This article, based on two years of ethnographic fieldwork, explores the ways in which eight Asian American immigrant high school girls construct a borderland community, which they call the "Basement Group," after the place where they gather at school. While the girls struggle with displacement in the borderlands, including isolation in…

  2. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  3. Influence of membrane properties on fouling in MBRs

    NARCIS (Netherlands)

    van der Marel, P.

    2009-01-01

    The membrane bioreactor (MBR) applies membranes for separating activated sludge and the purified water in the activated sludge process used for wastewater treatment. Membrane fouling occurs by activated sludge material depositing on the membrane surface or inside the membrane pores. The subject of

  4. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.

  5. Autoradiographic study of the penetration of radiolabelled dextrans and inulin through non-keratinized oral mucosa in vitro

    International Nuclear Information System (INIS)

    Alfano, M.C.; Chasens, A.I.; Masi, C.W.

    1977-01-01

    Although a well known barrier effect against the penetration of macromolecules exists at the basement membrane region of epithelial tissues, recent reports suggest that the penetration of smaller molecules may be impeded by this region. Considering the probable importance of the permeability of gingival crevicular tissues in the etiology of inflammatory periodontal disease, the present study was designed to evaluate the barrier function of the basement membrane region of non-keratinized oral mucosal epithelium to a series of radiolabelled penetrating molecules of increasing molecular weight. Tritium labeled inulin (Mw 5,000), dextran 20 (Mw 20,000) and dextran 70 (Mw 70,000) were used as penetrating molecules, and autoradiographic tracer techniques were used to evaluate the barrier function. The study was conducted in vitro to eliminate vascular ''wash-out'' effects and to facilitate study of penetration across the basement membrane region in both directions. The results indicated that although the penetration of inulin and dextran 70 was impeded by the basement membrane region, the penetration of dextran 20 was not affected. Therefore, the barrier function of the basement membrane region is not solely dependent on the molecular weight of the penetration molecule. Mechanisms to account for the findings are described and the significance to periodontal disease is discussed. (author)

  6. Autoradiographic study of the penetration of radiolabelled dextrans and inulin through non-keratinized oral mucosa in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, M C; Chasens, A I; Masi, C W [Block Periodontal Research Laboratories, Department of Periodontics and Oral Medicine, Fairleigh Dickinson University, School of Dentistry, Hackensack, New Jersey, U.S.A.

    1977-01-01

    Although a well known barrier effect against the penetration of macromolecules exists at the basement membrane region of epithelial tissues, recent reports suggest that the penetration of smaller molecules may be impeded by this region. Considering the probable importance of the permeability of gingival crevicular tissues in the etiology of inflammatory periodontal disease, the present study was designed to evaluate the barrier function of the basement membrane region of non-keratinized oral mucosal epithelium to a series of radiolabelled penetrating molecules of increasing molecular weight. Tritium labeled inulin (Mw 5,000), dextran 20 (Mw 20,000) and dextran 70 (Mw 70,000) were used as penetrating molecules, and autoradiographic tracer techniques were used to evaluate the barrier function. The study was conducted in vitro to eliminate vascular ''wash-out'' effects and to facilitate study of penetration across the basement membrane region in both directions. The results indicated that although the penetration of inulin and dextran 70 was impeded by the basement membrane region, the penetration of dextran 20 was not affected. Therefore, the barrier function of the basement membrane region is not solely dependent on the molecular weight of the penetration molecule. Mechanisms to account for the findings are described and the significance to periodontal disease is discussed.

  7. Latest Development on Membrane Fabrication for Natural Gas Purification: A Review

    Directory of Open Access Journals (Sweden)

    Dzeti Farhah Mohshim

    2013-01-01

    Full Text Available In the last few decades, membrane technology has been a great attention for gas separation technology especially for natural gas sweetening. The intrinsic character of membranes makes them fit for process escalation, and this versatility could be the significant factor to induce membrane technology in most gas separation areas. Membranes were synthesized with various materials which depended on the applications. The fabrication of polymeric membrane was one of the fastest growing fields of membrane technology. However, polymeric membranes could not meet the separation performances required especially in high operating pressure due to deficiencies problem. The chemistry and structure of support materials like inorganic membranes were also one of the focus areas when inorganic membranes showed some positive results towards gas separation. However, the materials are somewhat lacking to meet the separation performance requirement. Mixed matrix membrane (MMM which is comprising polymeric and inorganic membranes presents an interesting approach for enhancing the separation performance. Nevertheless, MMM is yet to be commercialized as the material combinations are still in the research stage. This paper highlights the potential promising areas of research in gas separation by taking into account the material selections and the addition of a third component for conventional MMM.

  8. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates.

    Science.gov (United States)

    Aouacheria, Abdel; Geourjon, Christophe; Aghajari, Nushin; Navratil, Vincent; Deléage, Gilbert; Lethias, Claire; Exposito, Jean-Yves

    2006-12-01

    Collagens are thought to represent one of the most important molecular innovations in the metazoan line. Basement membrane type IV collagen is present in all Eumetazoa and was found in Homoscleromorpha, a sponge group with a well-organized epithelium, which may represent the first stage of tissue differentiation during animal evolution. In contrast, spongin seems to be a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton, such as in the well-known bath sponge. In the freshwater sponge Ephydatia mülleri, we previously characterized a family of short-chain collagens that are likely to be main components of spongins. Using a combination of sequence- and structure-based methods, we present evidence of remote homology between the carboxyl-terminal noncollagenous NC1 domain of spongin short-chain collagens and type IV collagen. Unexpectedly, spongin short-chain collagen-related proteins were retrieved in nonsponge animals, suggesting that a family related to spongin constitutes an evolutionary sister to the type IV collagen family. Formation of the ancestral NC1 domain and divergence of the spongin short-chain collagen-related and type IV collagen families may have occurred before the parazoan-eumetazoan split, the earliest divergence among extant animal phyla. Molecular phylogenetics based on NC1 domain sequences suggest distinct evolutionary histories for spongin short-chain collagen-related and type IV collagen families that include spongin short-chain collagen-related gene loss in the ancestors of Ecdyzosoa and of vertebrates. The fact that a majority of invertebrates encodes spongin short-chain collagen-related proteins raises the important question to the possible function of its members. Considering the importance of collagens for animal structure and substratum attachment, both families may have played crucial roles in animal diversification.

  9. Cheap Thin Film Oxygen Membranes

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite...... structure with a crystal size of about 1 to 100 nm, and a method for producing same....

  10. Membrane processes in biotechnology: an overview.

    Science.gov (United States)

    Charcosset, Catherine

    2006-01-01

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.

  11. HeatBar Final Report 2010, Basement Heat Generation and Heat Flow in the western Barents Sea - importance for hydrocarbon systems

    International Nuclear Information System (INIS)

    Pascal, Christophe; Balling, Niels; Barrere, Cecile; Davidsen, Boerre; Ebbing, Joerg; Elvebakk, Harald; Mesli, Melani; Roberts, David; Slagstad, Trond; Willemoes-Wissing, Bjoern

    2011-01-01

    The HeatBar project aimed to determine the relative proportion of heat originating in the basement of the western Barents Sea and, as such, followed the methodologies and scientific approach developed in the course of the 2005-2008 Kontiki Project. We proposed to shed new lights on the thermal state of the basins of the western Barents Sea by (1) determining the heat flow and the relative content in heat-producing elements of the basement onshore northern Norway, (2) building 3D structural models of the basement offshore based on extensive geophysical information and (3) building 3D thermal models of the basins offshore. The present report summarizes the work accomplished in the framework of the project since 2006.(Au)

  12. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-07-01

    Full Text Available Fuel cells are the most clean and efficient power source for vehicles. In particular, proton exchange membrane fuel cells (PEMFCs are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade, the performance of PEMFCs, including energy efficiency, volumetric and mass power density, and low temperature startup ability, have achieved significant breakthroughs. In 2014, fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However, the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review, the technical progress of key materials and components for PEMFCs has been summarized and critically discussed, including topics such as the membrane, catalyst layer, gas diffusion layer, and bipolar plate. The development of high-durability processing technologies is also introduced. Finally, this review is concluded with personal perspectives on the future research directions of this area.

  13. Pressure retarded osmosis for energy production: membrane materials and operating conditions.

    Science.gov (United States)

    Kim, H; Choi, J-S; Lee, S

    2012-01-01

    Pressure retarded osmosis (PRO) is a novel membrane process to produce energy. PRO has the potential to convert the osmotic pressure difference between fresh water (i.e. river water) and seawater to electricity. Moreover, it can recover energy from highly concentrated brine in seawater desalination. Nevertheless, relatively little research has been undertaken for fundamental understanding of the PRO process. In this study, the characteristics of the PRO process were examined using a proof-of-concept device. Forward osmosis (FO), reverse osmosis (RO), and nanofiltration (NF) membranes were compared in terms of flux rate and concentration polarization ratio. The results indicated that the theoretical energy production by PRO depends on the membrane type as well as operating conditions (i.e. back pressure). The FO membrane had the highest energy efficiency while the NF membrane had the lowest efficiency. However, the energy production rate was low due to high internal concentration polarization (ICP) in the PRO membrane. This finding suggests that the control of the ICP is essential for practical application of PRO for energy production.

  14. Observations of hydrotectonic stress/strain events at a basement high at the Nicoya outer rise

    Science.gov (United States)

    Tryon, M. D.; Brown, K. M.

    2005-12-01

    There is substantial and growing evidence from heat flow and coring investigations that the oceanic plate off Costa Rica is highly hydrologically active and that this activity is responsible for one of the most anomalously cold thermal environments encountered in the oceanic environment. Recent work by Fisher, et al. has identified limited regions above certain topographic highs with extremely high heat flows. Pore water profiles from cores above these thinly sedimented basement highs suggest upward flow on the order of ~1 cm/yr. These highs may be the principal regions of out-flow from the basement in this region and, thus, can potentially be used to constrain the general level of hydrologic activity. The nine Chemical and Aqueous Transport (CAT) meters we deployed at one of the highest heatflow sites provide a temporal record of both in-flow and out-flow of aqueous fluids at rates as low as 0.1 mm/yr. Our objective was to provide a direct measurement of long term flow rates to address the following questions: (1) What are the characteristic fluid fluxes at basement highs of the low heat flow region of the northern Costa Rican incoming plate, and (2) is this flow temporally variable? The results of the instrument deployments agree quite closely in general with the coring results in that the background rates are on the order of 1 cm/yr or less. There is, however, considerable detail in the temporal records which suggest small scale tectonic stress transients causing temporary increases in flow rate. While this is certainly not an area of major tectonic activity, the site is located at the top of the outer rise where one would expect bending-related stress and fault reactivation to occur. The CAT meters are capable of detecting minute strain events in the underlying sediments and therefore may be detecting small localized strain events. Two periods of increased flow lasting a few weeks each occur during the 5 month deployment and are indicated on all of the

  15. Basement control in the development of the early cretaceous West and Central African rift system

    Science.gov (United States)

    Maurin, Jean-Christophe; Guiraud, René

    1993-12-01

    The structural framework of the Precambrian basement of the West and Central African Rift System (WCARS) is described in order to examine the role of ancient structures in the development of this Early Cretaceous rift system. Basement structures are represented in the region by large Pan-African mobile belts (built at ca. 600 Ma) surrounding the > 2 Ga West African, Congo and Sao Francisco cratons. Except for the small Gao trough (eastern Mali) located near the contact nappe of the Pan-African Iforas suture zone along the edge of the West African craton, the entire WCARS is located within the internal domains of the Pan-African mobile belts. Within these domains, two main structural features occur as the main basement control of the WCARS: (1) an extensive network of near vertical shear zones which trend north-south through the Congo, Brazil, Nigeria, Niger and Algeria, and roughly east-west through northeastern Brazil and Central Africa. The shear zones correspond to intra-continental strike-slip faults which accompanied the oblique collision between the West African, Congo, and Sao Francisco cratons during the Late Proterozoic; (2) a steep metamorphic NW-SE-trending belt which corresponds to a pre-Pan-African (ca. 730 Ma) ophiolitic suture zone along the eastern edge of the Trans-Saharian mobile belt. The post-Pan-African magmatic and tectonic evolution of the basement is also described in order to examine the state of the lithosphere prior to the break-up which occurred in the earliest Cretaceous. After the Pan-African thermo-tectonic event, the basement of the WCARS experienced a long period of intra-plate magmatic activity. This widespread magmatism in part relates to the activity of intra-plate hotspots which have controlled relative uplift, subsidence and occasionally block faulting. During the Paleozoic and the early Mesozoic, this tectonic activity was restricted to west of the Hoggar, west of Aïr and northern Cameroon. During the Late Jurassic

  16. Performance of EVA-Based Membranes for SCL in Hard Rock

    Science.gov (United States)

    Holter, Karl Gunnar

    2016-04-01

    The bonded property of multi-layered sprayed concrete tunnel linings (SCL) waterproofed with sprayed membranes means that the constituent materials will be exposed to the groundwater without any draining or mechanically separating measures. Moisture properties of the sprayed concrete and membrane materials are therefore important in order to establish the system properties of such linings. Ethyl-vinyl-acetate based sprayed membranes exhibit high water absorption potential under direct exposure to water, but are found to be significantly less hygroscopic and exhibit lower sorptivity (water absorption rate) than sprayed concrete. This material behavior explains the relatively dry in situ condition of the membrane that was observed. Measured in situ moisture content levels of the membrane material in tunnel linings have been found to vary within the range of 30-40 % of the maximum water absorption potential, and show a decreasing trend over the first 4 years after construction has been completed. A model for the mechanical loading, moisture condition and thermal exposure of the membrane and the resulting realistic parameters to be tested is presented. Laboratory testing methods for the membrane materials are evaluated considering possible loads, moisture and freezing exposure. Material testing of membrane materials was conducted with preconditioning to realistic moisture contents and under different temperature conditions including relevant freezing temperatures for tunnel linings. The main effects of the in situ moisture condition of the tested membrane materials are favorable tensile strengths in the range of 1.1-1.5 MPa and low risk of freeze-thaw damage. The crack bridging capacity of the tested membranes is found to be sensitive to temperature. With membrane thicknesses in the range of 3-4 mm, crack bridging capacity up to 4-6 mm opening of the crack width at 23 °C and approximately 1 mm opening at -3 °C was measured for the tested membranes. No significant

  17. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  18. Assessing the geo-electric characteristics of Basement Complex rocks and its implication for groundwater prospecting in Ilorin Metropolis, Nigeria

    Directory of Open Access Journals (Sweden)

    I. P. Ifabiyi

    2016-12-01

    Full Text Available In Basement Complex rocks where rainfall is seasonal, water provision in dry season depends on regolith aquifer. For effective exploitation of groundwater resources, it is reasonable that geophysical investigation be conducted before development of well. In many instances, geophysical surveys may be expensive or nonexistent. Hence, there is a need for spatial analysis which might advise water engineers within such environments. Vertical Electrical Soundings (VES data of 53 locations conducted with ABEM SAS-1000 terrameter using Schlumberger electrode configuration were obtained from the hydrogeology Department of Kwara state Ministry of Water Resources and Lower Niger River Basin and Rural Development Authority, Ilorin. VES locational coordinates were recorded using handheld GPS device. Sound curves were evaluated by partial curve matching approach and computer iteration using WinResist. The results depict six geo-electric regional successions, namely: top soil, lateritic clay, weathered basement, fairly-hard basement, thin fractured and hard basement. The geo-electric succession identified was plotted in Surfer 12 environment, using kriging interpolation method to show spatial distribution pattern of this zone. The spatial pattern is expected to give an insight to the nature of spatial variability of geo-electric layers and assist drillers as well as water resources policy makers in their operations.

  19. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  20. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction

    KAUST Repository

    Pendergast, Mary Theresa M.; Nygaard, Jodie M.; Ghosh, Asim K.; Hoek, Eric M.V.

    2010-01-01

    Composite reverse osmosis (RO) membranes were formed by interfacial polymerization of polyamide thin films over pure polysulfone and nanocomposite-polysulfone support membranes. Nanocomposite support membranes were formed from amorphous non-porous silica and crystalline microporous zeolite nanoparticles. For each hand-cast membrane, water flux and NaCl rejection were monitored over time at two different applied pressures. Nanocomposite-polysulfone supported RO membranes generally had higher initial permeability and experienced less flux decline due to compaction than pure polysulfone supported membranes. In addition, observed salt rejection tended to increase as flux declined from compaction. Crosssectional SEM images verified significant reduction in thickness of pure polysulfone supports, whereas nanocomposites better resisted compaction due to enhanced mechanical stability imparted by the nanoparticles. A conceptual model was proposed to explain the mechanistic relationship between support membrane compaction and observed changes in water flux and salt rejection. As the support membrane compacts, skin layer pore constriction increased the effective path length for diffusion through the composite membranes, which reduced both water and salt permeability identically. However, experimental salt permeability tended to decline to a greater extent than water permeability; hence, the observed changes in flux and rejection might also be related to structural changes in the polyamide thin film. © 2010 Elsevier B.V. All rights reserved.

  1. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction

    KAUST Repository

    Pendergast, Mary Theresa M.

    2010-10-01

    Composite reverse osmosis (RO) membranes were formed by interfacial polymerization of polyamide thin films over pure polysulfone and nanocomposite-polysulfone support membranes. Nanocomposite support membranes were formed from amorphous non-porous silica and crystalline microporous zeolite nanoparticles. For each hand-cast membrane, water flux and NaCl rejection were monitored over time at two different applied pressures. Nanocomposite-polysulfone supported RO membranes generally had higher initial permeability and experienced less flux decline due to compaction than pure polysulfone supported membranes. In addition, observed salt rejection tended to increase as flux declined from compaction. Crosssectional SEM images verified significant reduction in thickness of pure polysulfone supports, whereas nanocomposites better resisted compaction due to enhanced mechanical stability imparted by the nanoparticles. A conceptual model was proposed to explain the mechanistic relationship between support membrane compaction and observed changes in water flux and salt rejection. As the support membrane compacts, skin layer pore constriction increased the effective path length for diffusion through the composite membranes, which reduced both water and salt permeability identically. However, experimental salt permeability tended to decline to a greater extent than water permeability; hence, the observed changes in flux and rejection might also be related to structural changes in the polyamide thin film. © 2010 Elsevier B.V. All rights reserved.

  2. Composite membranes and methods for making same

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  3. Hemodialysis-associated neutropenia and hypoxemia: the effect of dialyzer membrane materials.

    Science.gov (United States)

    Hakim, R M; Lowrie, E G

    1982-01-01

    The fall in white blood cells (WBC) and arterial oxygen pressure that occurs during hemodialysis was investigated as a function of different dialysis membranes and different sterilization methods. 8 chronic hemodialysis patients were studied and each was dialyzed with three different membranes: cellulosic hollow fiber, polyacrylonitrile flat sheet and polymethylmethacrylate hollow fiber. Each dialyzer was studied with a dry sterilization method and after formalin treatment. Arterialized blood gas, bicarbonate and WBC were drawn at various intervals throughout dialysis. The effect of the sterilization method was minimal. Cellulosic membranes were shown to cause significantly more neutropenia (p less than 0.001) and hypoxemia (p less than 0.01) than the other two membranes. No significant differences was seen in pH, PCO2 and bicarbonate. The results indicate differences in biocompatibility between different membranes. Clinical implications are discussed.

  4. Geochemical interpretation of the Precambrian basement and overlying Cambrian sandstone on Bornholm, Denmark: Implications for the weathering history

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Yang, Tian

    2017-01-01

    show a depletion of major elements in the following order: Na N Ca N Mg N Si; Al and Ti are immobile and stay constant; K shows sample dependent enrichment or depletion; Fe is slightly enriched. The Cambrian sandstone overlying the basement in the Borggård borehole, assigned to the Gadeby Member...... but lost most of the plagioclase. The LSF has a comparable weathering history (CIA = 63–73), but the plagioclase is better preserved (PIA = 65–78). The significant variation of weathering rates of plagioclase and K-feldspar in the basement granite and the provenance of sandstone from the Borggård borehole...... are likely due to the different permeability developed within the internal crystal structures, a Ca- rich plagioclase original composition of the plagioclase, and the occurrence of weathering in a very humid climate. K metasomatism occurred in the basement granite and sandstone in both the Borggård and the G...

  5. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    International Nuclear Information System (INIS)

    Dumée, Ludovic F.; Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin; Schütz, Jürg

    2016-01-01

    Graphical abstract: - Highlights: • Systematic surface modifications by gas plasma treatment of hydrophobic polymers. • Correlation between plasma parameters and materials surface energy and morphology. • Spectral analysis of the formation of functional groups across the membranes surface. • Relationship between wettability, roughness and performance. - Abstract: The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher

  6. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    Energy Technology Data Exchange (ETDEWEB)

    Dumée, Ludovic F., E-mail: ludovic.dumee@deakin.edu.au [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Schütz, Jürg [CSIRO, Manufacturing Flagship, 75 Pigdons Road, 3216 Waurn Ponds, Victoria (Australia)

    2016-02-15

    Graphical abstract: - Highlights: • Systematic surface modifications by gas plasma treatment of hydrophobic polymers. • Correlation between plasma parameters and materials surface energy and morphology. • Spectral analysis of the formation of functional groups across the membranes surface. • Relationship between wettability, roughness and performance. - Abstract: The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher

  7. Evaluation of the layering of rock strata and basement rock depth of ...

    African Journals Online (AJOL)

    The layering of rock strata and depth to the basement rocks of a Federal University Teaching Hospital premises in Northern Nigeria was investigated in this study with the aim of providing 2D geo-electrical resistivity images of the subsurface for geotechnical development using a modern and state-of-the-art field instrument, ...

  8. Thermo-mechanical properties of mixed ion-electron conducting membrane materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bingxin

    2011-07-01

    The thesis presents thermo-mechanical properties of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) perovskite materials, which are considered as oxygen transport membranes (OTM) for gas separation units. Ring-on-ring bending test with disk-shaped samples and depth-sensitive micro-indentation have been used as macroscopic and microscopic tests, respectively. In addition, the thermo-mechanical properties of a third OTM candidate material La{sub 2}NiO{sub 4+{delta}} (LNO) were investigated. The results of the thermo-mechanical measurements with the BSCF revealed an anomaly between 200 C and 400 C. In particular, the temperature dependence of Young's modulus shows a minimum at {proportional_to} 200 C. Fracture stress and toughness exhibit a qualitatively similar behavior with a minimum between 200 C and 400 C, before recovering between 500 C and 800 C. X-ray diffraction analyses verified that BSCF remains cubic in the relevant temperature range. Hence the anomalies were assumed to be related to the transition of Co{sup 3+} spin states reported for other Co-containing perovskites. This assumption could be experimentally confirmed by magnetic susceptibility measurements. The fracture surfaces of the specimens are not affected by the mechanical anomalies at intermediate temperatures, since only a transgranular fracture mode has been observed. Complementary to the mechanical characterization of BSCF, also the temperature dependency of fracture stress and elastic behavior of LSCF have been determined. Phase compositions of LSCF have been studied by in-situ high temperature XRD. Changes in phase composition with temperature are observed. At ambient temperature the LSCF perovskite material comprises two phases: rhombohedral and cubic symmetry. The ratio of the two phases depends on both cooling rate and atmosphere. The transition of rhombohedral to cubic occurs between 700 C and

  9. Petrophysics Features of the Hydrocarbon Reservoirs in the Precambrian Crystalline Basement

    Science.gov (United States)

    Plotnikova, Irina

    2014-05-01

    A prerequisite for determining the distribution patterns of reservoir zones on the section of crystalline basement (CB) is the solution of a number of problems connected with the study of the nature and structure of empty spaces of reservoirs with crystalline basement (CB) and the impact of petrological, and tectonic factors and the intensity of the secondary transformation of rocks. We decided to choose the Novoelhovskaya well # 20009 as an object of our research because of the following factors. Firstly, the depth of the drilling of the Precambrian crystalline rocks was 4077 m ( advance heading - 5881 m) and it is a maximum for the Volga-Urals region. Secondly, petrographic cut of the well is made on core and waste water, and the latter was sampled regularly and studied macroscopically. Thirdly, a wide range of geophysical studies were performed for this well, which allowed to identify promising areas of collector with high probability. Fourth, along with geological and technical studies that were carried out continuously (including washing and bore hole redressing periods), the studies of the gaseous component of deep samples of clay wash were also carried out, which indirectly helped us estimate reservoir properties and fluid saturation permeable zones. As a result of comprehensive analysis of the stone material and the results of the geophysical studies we could confidently distinguish 5 with strata different composition and structure in the cut of the well. The dominating role in each of them is performed by rocks belonging to one of the structural-material complexes of Archean, and local variations in composition and properties are caused by later processes of granitization on different stages and high temperature diaphthoresis imposed on them. Total capacity of reservoir zones identified according to geophysical studies reached 1034.2 m, which corresponds to 25.8% of the total capacity of 5 rock masses. However, the distribution of reservoirs within the cut

  10. Nature of the Yucatan Block Basement as Derived From Study of Granitic Clasts in the Impact Breccias of Chicxulub Crater

    Science.gov (United States)

    Vera-Sanchez, P.; Rebolledo-Vieyra, M.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-05-01

    The tectonic and petrologic nature of the basement of the Yucatan Block is studied from analyses of basement clasts present in the impact suevitic breccias of Chicxulub crater. The impact breccias have been sampled as part of the drilling projects conducted in the Yucatan peninsula by Petroleos Mexicanos, the National University of Mexico and the Chicxulub Scientific Drilling Project. Samples analyzed come mainly from the Yaxcopoil-1, Tekax, and Santa Elena boreholes, and partly from Pemex boreholes. In this study we concentrate on clasts of the granites, granodiorites and quartzmonzonites in the impact breccias. We report major and trace element geochemical and petrological data, which are compared with data from the granitic and volcanic rocks from the Maya Mountains in Belize and from the Swannee terrane in Florida. Basement granitic clasts analyzed present intermediate to acidic sub-alkaline compositions. Plots of major oxides (e.g., Al2O3, Fe2O3, TiO2 and CaO) and trace elements (e.g., Th, Y, Hf, Nb and Zr) versus silica allow separation of samples into two major groups, which can be compared to units in the Maya Mountains and in Florida basement. The impact suevitic breccia samples have been affected by alteration likely related to the hydrothermal processes associated with the crater melt sheet. Cloritization, seritization and fenitization alterations are recognized, due to the long term hydrothermalism. Krogh et al. (1993) reported U-Pb dates on zircons from the suevitic breccias, which gave dates of 545 +/- 5 Ma and 418 +/- 6 Ma, which were interpreted in terms of the deep granitic metamorphic Yucatan basement. The younger date correlates with the age for the Osceola Granite and the St. Lucie metamorphic complex of the Swannee terrane in the Florida peninsula. The intrusive rocks in the Yucatan basement may be related to approx. 418 Ma ago collisional event in the Late Silurian.

  11. Proteome array identification of bioactive soluble proteins/peptides in matrigel; relevance to stem cell responses

    Science.gov (United States)

    Matrigel and similar commercial products are extracts of the Engelbreth-Holm-Swarm sarcoma that provide a basement-membrane-like attachment factor or gel that is used to grow cells on or in. To ascertain further what proteins may be present in Matrigel, besides its major basement-membrane constitue...

  12. Hydrophobicity measurements of microfiltration and ultrafiltration membranes.

    NARCIS (Netherlands)

    Keurentjes, J.T.F.; Harbrecht, J.G.; Brinkman, D.; Hanemaaijer, J.H.; Cohen Stuart, M.A.; Riet, van 't K.

    1989-01-01

    A method for the determination of the hydrophobicity of membrane materials is developed. The advantage of this method over existing methods is that it is not influenced by the presence of the pores. A piece of the membrane material is submerged horizontally in a liquid with surface tension L.

  13. Gas Permeation Characteristics across Nano-Porous Inorganic Membranes

    Directory of Open Access Journals (Sweden)

    M.R Othman, H. Mukhtar

    2012-10-01

    Full Text Available An overview of parameters affecting gas permeation in inorganic membranes is presented. These factors include membrane physical characteristics, operational parameters and gas molecular characteristics. The membrane physical characteristics include membrane materials and surface area, porosity, pore size and pore size distribution and membrane morphology. The operational parameters include feed flow rate and concentration, stage cut, temperature and pressure. The gas molecular characteristics include gas molecular weight, diameter, critical temperature, critical pressure, Lennard-Jones parameters and diffusion volumes. The current techniques of material characterization may require complementary method in describing microscopic heterogeneity of the porous ceramic media. The method to be incorporated in the future will be to apply a stochastic model and/or fractal dimension. Keywords: Inorganic membrane, surface adsorption, Knudsen diffusion, Micro-porous membrane, permeation, gas separation.

  14. Thermochronology and geochemistry of the Pan-African basement below the Sab'atayn Basin, Yemen

    Science.gov (United States)

    Veeningen, Resi; Rice, A. Hugh N.; Schneider, David A.; Grasemann, Bernhard

    2015-02-01

    Three important lithologies occur in two drill wells from the Pan-African basement underlying the Mesozoic Sab'atayn Basin, in a previously undocumented area of the Pan-African, 83 and 90 km NE of known exposures in Yemen. Cores from well 1 include amphibolite, with basaltic to andesitic compositions, affected by crustal contamination during emplacement into a thickened crust. Deeper in the well, an unfoliated dark red monzogranite has a U-Pb zircon age of 628.8 ± 3.1 Ma and a Rb-Sr biotite cooling age of 591.6 ± 5.8 Ma (∼300 °C). Regional constraints suggest emplacement in a transitional tectonic setting with compressional terrane amalgamation followed by extensional collapse. Sm-Nd isotope analysis yields a TDM model age of 1.24 Ga with negative εNd values, suggesting the monzogranite is part of the Al Bayda island arc terrane. Cores from well 2 contains a weakly deformed, massive (unbedded) medium grey meta-arkose exhibiting essentially no geochemical signature of weathering and with an almost pure dacitic composition. This rock may have been directly derived from an (extrusive) granitoid that was emplaced prior to, or during terrane amalgamation. A (U-Th-Sm)/He zircon age of 156 ± 14 Ma constrains the time of basement cooling to ∼180 °C, synchronous with basin formation. These lithologies provide new insights in the development of the Pan-African basement of Yemen, extending our knowledge of the nearby surface geology to the subsurface.

  15. Biomimetic devices functionalized by membrane channel proteins

    Science.gov (United States)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  16. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  17. Heterogeneity of groundwater storage properties in the critical zone of Irish metamorphic basement from geophysical surveys and petrographic analyses

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Caulfield, John; Nitsche, Janka; Ofterdinger, Ulrich; Wilson, Christopher

    2016-04-01

    Weathered/fractured bedrock aquifers contain groundwater resources that are crucial in hard rock basement regions for rural water supply and maintaining river flow and ecosystem resilience. Groundwater storage in metamorphic rocks is subject to high spatial variations due to the large degree of heterogeneity in fracture occurrence and weathering patterns. Point measurements such as borehole testing are, in most cases, insufficient to characterise and quantify those storage variations because borehole sampling density is usually much lower than the scale of heterogeneities. A suite of geophysical and petrographic investigations was implemented in the weathered/fractured micaschist basement of Donegal, NW Ireland. Electrical Resistivity Tomography provided a high resolution 2D distribution of subsurface resistivities. Resistivity variations were transferred into storage properties (i.e. porosities) in the saturated critical zone of the aquifer through application of a petrophysical model derived from Archie's Law. The petrophysical model was calibrated using complementary borehole gamma logging and clay petrographic analysis at multi-depth well clusters distributed along a hillslope transect at the site. The resulting distribution of porosities shows large spatial variations along the studied transect. With depth, porosities rapidly decrease from about a few % in the uppermost, highly weathered basement to less than 0.5% in the deep unweathered basement, which is encountered at depths of between 10 and 50m below the ground surface. Along the hillslope, porosities decrease with distance from the river in the valley floor, ranging between 5% at the river to less than 1% at the top of the hill. Local traces of regional fault zones that intersect the transect are responsible for local increases in porosity in relation to deeper fracturing and weathering. Such degrees of spatial variation in porosity are expected to have a major impact on the modality of the response of

  18. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    Science.gov (United States)

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  19. Elucidating the role of Cyclooxygenase-2 in the pathogenesis of oral lichen planus - an immunohistochemical study with supportive histochemical analysis.

    Science.gov (United States)

    Singh, Pratyush; Grover, Jasleen; Byatnal, Aditi Amit; Guddattu, Vasudeva; Radhakrishnan, Raghu; Solomon, Monica Charlotte

    2017-05-01

    Oral lichen planus (OLP) is a chronic, inflammatory disorder that affects the oral mucous membrane. During an inflammatory response, several chemokines and cytokines are released by the cells of the immune system. Activation of MMPs, along with mast cell-derived chymase and tryptase, degrades the basement membrane structural proteins, resulting in basement membrane breaks. To investigate the association between the COX-2 expressions, presence of intact or degranulating mast cells within the connective tissue and the extent of basement membrane discontinuity in OLP cases. This study included a total of 50 formalin-fixed paraffin-embedded specimens (FFPE) of histologically confirmed cases of idiopathic oral lichen planus. A retrospective cross-sectional analysis was carried out by immunohistochemistry to study the epithelial expression of COX-2 and by the use of special stains such as toluidine blue and periodic acid-Schiff (PAS) to study the mast cell count and basement membrane changes in the oral mucosal tissue, respectively. There was a significant (P = 0.03) association between the COX-2 expressions and mast cell count. As the intensity of COX-2 expression increased from mild to moderate or severe, the number of mast cell count almost doubled. Interaction between upregulation of COX-2, mast cell and basement membrane sets a vicious cycle which relates to the chronic nature of the disease. Inhibitors of COX-2 may reduce the inflammatory process preceding the immune dysregulation in OLP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Superwetting nanowire membranes for selective absorption.

    Science.gov (United States)

    Yuan, Jikang; Liu, Xiaogang; Akbulut, Ozge; Hu, Junqing; Suib, Steven L; Kong, Jing; Stellacci, Francesco

    2008-06-01

    The construction of nanoporous membranes is of great technological importance for various applications, including catalyst supports, filters for biomolecule purification, environmental remediation and seawater desalination. A major challenge is the scalable fabrication of membranes with the desirable combination of good thermal stability, high selectivity and excellent recyclability. Here we present a self-assembly method for constructing thermally stable, free-standing nanowire membranes that exhibit controlled wetting behaviour ranging from superhydrophilic to superhydrophobic. These membranes can selectively absorb oils up to 20 times the material's weight in preference to water, through a combination of superhydrophobicity and capillary action. Moreover, the nanowires that form the membrane structure can be re-suspended in solutions and subsequently re-form the original paper-like morphology over many cycles. Our results suggest an innovative material that should find practical applications in the removal of organics, particularly in the field of oil spill cleanup.

  1. The Blood Compatibilities of Blood Purification Membranes and Other Materials Developed in Japan

    Directory of Open Access Journals (Sweden)

    Takaya Abe

    2011-01-01

    Full Text Available The biocompatibilities in blood purification therapy are defined as “a concept to stipulate safety of blood purification therapy by an index based on interaction in the body arising from blood purification therapy itself.” The biocompatibilities are associated with not only materials to be used but also many factors such as sterilization method and eluted substance. It is often evaluated based on impacts on cellular pathways and on humoral pathways. Since the biocompatibilities of blood purification therapy in particular hemodialysis are not just a prognostic factor for dialysis patients but a contributory factor for long-term complications, it should be considered with adequate attention. It is important that blood purification therapy should be performed by consistently evaluating not only risks associated with these biocompatibilities but also the other advantages obtained from treatments. In this paper, the biocompatibilities of membrane and adsorption material based on Japanese original which are used for blood purification therapy are described.

  2. Hydrogen superpermeable membrane operation under plasma conditions

    International Nuclear Information System (INIS)

    Bacal, M.; Bruneteau, A.M.; Livshits, A.I.; Alimov, V.N.; Notkin, M.E.

    2003-01-01

    The effect of ion bombardment on hydrogen plasma-driven permeation through a superpermeable niobium membrane was investigated. It was found that the increase of membrane temperature and the doping of membrane material with oxygen results in the decrease of ion bombardment effect and in permeability increase. It was demonstrated that membrane decarbonization leads to the formation of a membrane state resistant to sputtering. Possible applications of the membrane resistant to ion bombardment as plasma facing components are considered

  3. The use of allodermis prepared from Euro skin bank to prepare autologous tissue engineered skin for clinical use.

    Science.gov (United States)

    Deshpande, P; Ralston, D R; MacNeil, S

    2013-09-01

    Over the past two decades a range of 3D models for human skin have been described. Some include native collagen and intrinsic basement membrane proteins and fibroblasts, others are based on xenogeneic collagen or synthetic supports often without fibroblasts. The aim of this study was to look at the influence of media calcium, basement membrane and fibroblasts on the quality of 3D tissue engineered skin produced using human de-epidermized acellular dermis. In this study we deliberately used Euro skin as the source of the donor dermis to examine to what extent this could provide an effective dermal substrate for producing 3D skin for clinical use. Keratinocytes were cultured in the presence and absence of fibroblasts and both with and without basement membrane on decellularized dermis at calcium concentrations ranging from 250μM to 1.6mM over a period of 14 days. Results showed the formation of a well attached epithelium with many of the features of normal skin in the presence of a basement membrane. This was largely independent of the presence of fibroblasts and not greatly influenced by the concentration of calcium in the media. However there was a clear requirement for physiological levels of calcium in the formation of a stratified epithelium in the absence of a basement membrane. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  4. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  5. Retinal Damage Induced by Internal Limiting Membrane Removal

    Directory of Open Access Journals (Sweden)

    Rachel Gelman

    2015-01-01

    Full Text Available The internal limiting membrane (ILM, the basement membrane of the Müller cells, serves as the interface between the vitreous body and the retinal nerve fiber layer. It has a fundamental role in the development, structure, and function of the retina, although it also is a pathologic component in the various vitreoretinal disorders, most notably in macular holes. It was not until understanding of the evolution of idiopathic macular holes and the advent of idiopathic macular hole surgery that the idea of adjuvant ILM peeling in the treatment of tractional maculopathies was explored. Today intentional ILM peeling is a commonly applied surgical technique among vitreoretinal surgeons as it has been found to increase the rate of successful macular hole closure and improve surgical outcomes in other vitreoretinal diseases. Though ILM peeling has refined surgery for tractional maculopathies, like all surgical procedures it is not immune to perioperative risk. The essential role of the ILM to the integrity of the retina and risk of trauma to retinal tissue spurs suspicion with regard to its routine removal. Several authors have investigated the retinal damage induced by ILM peeling and these complications have been manifested across many different diagnostic studies.

  6. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  7. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Archibald, J.F.

    1984-08-01

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  8. Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometry data

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2015-01-01

    to be discretized for the calculation of gravity field. This was especially significant in the modeling and inversion of gravity data for determining the depth to the basement. Another important result was developing a novel method of inversion of gravity data to recover the depth to basement, based on the 3D...... Cauchy-type integral representation. Our numerical studies determined that the new method is much faster than conventional volume discretization method to compute the gravity response. Our synthetic model studies also showed that the developed inversion algorithm based on Cauchy-type integral is capable......One of the most important applications of gravity surveys in regional geophysical studies is determining the depth to basement. Conventional methods of solving this problem are based on the spectrum and/or Euler deconvolution analysis of the gravity field and on parameterization of the earth...

  9. Forms of iron in soils on basement complex rocks of Kaduna state in ...

    African Journals Online (AJOL)

    The forms of iron extracted by different methods were studied in soils developed on four basement complex rocks within Northern Guinea Savanna of Nigeria namely: migmatite gneisses, older granite, quartzites and mica schists. The study shows that forms of iron generally decreased in the order of total elemental iron ...

  10. Structural analysis of a fractured basement reservoir, central Yemen

    Science.gov (United States)

    Veeningen, Resi; Rice, Hugh; Schneider, Dave; Grasemann, Bernhard; Decker, Kurt

    2013-04-01

    The Pan-African Arabian-Nubian Shield (ANS), within which Yemen lies, formed as a result of Neoproterozoic collisional events between c. 870-550 Ma. Several subsequent phases of extension occurred, from the Mesozoic (due to the breakup of Gondwana) to the Recent (forming the Gulf of Aden and the Red Sea). These resulted in the formation of numerous horst- and-graben structures and the development of fractured basement reservoirs in the southeast part of the ANS. Two drill cores from the Mesozoic Marib-Shabwa Basin, central Yemen, penetrated the upper part of the Pan-African basement. The cores show both a lithological and structural inhomogeneity, with variations in extension-related deformation structures such as dilatational breccias, open fractures and closed veins. At least three deformation events have been recognized: D1) Ductile to brittle NW-SE directed faulting during cooling of a granitic pluton. U-Pb zircon ages revealed an upper age limit for granite emplacement at 627±3.5 Ma. As these structures show evidence for ductile deformation, this event must have occurred during the Ediacaran, shortly after intrusion, since Rb/Sr and (U-Th)/He analyses show that subsequent re-heating of the basement did not take place. D2) The development of shallow dipping, NNE-SSW striking extensional faults that formed during the Upper Jurassic, simultaneously with the formation of the Marib-Shabwa Basin. These fractures are regularly cross-cut by D3. D3) Steeply dipping NNE-SSW to ENE-WSW veins that are consistent with the orientation of the opening of the Gulf of Aden. These faults are the youngest structures recognized. The formation of ductile to brittle faults in the granite (D1) resulted in a hydrothermally altered zone ca. 30 cm wide replacing (mainly) plagioclase with predominantly chlorite, as well as kaolinite and heavy element minerals such as pyrite. The alteration- induced porosity has an average value of 20%, indicating that the altered zone is potentially a

  11. Selectively gas-permeable composite membrane and process for production thereof

    International Nuclear Information System (INIS)

    Okita, K.; Asako, S.

    1984-01-01

    A selectively gas-permeable composite membrane and a process for producing said composite membrane are described. The composite membrane comprises a polymeric material support and a thin membrane deposited on the support, said thin membrane being obtained by glow discharge plasma polymerization of an organosilane compound containing at least one double bond or triple bond. Alternatively, the composite membrane comprises a polymeric material support having an average pore diameter of at least 0.1 micron, a hardened or cross-linked polyorganosiloxane layer on the support, and a thin membrane on the polyorganosiloxane layer, said thin membrane being obtained by plasma polymerization due to glow discharge of an organosilane compound containing at least one double bond or triple bond

  12. Geology and petrography of basement in south extreme in Sierra Grande de San Luis, Argentina

    International Nuclear Information System (INIS)

    Morosini, A.; Ortiz Suarez, A.

    2007-01-01

    In the south of the Sierra de San Luis is recognized a basement composed by La Escalerilla and Los Puquios granites, accompanied by schist, mylonite s and mafic-ultramafic rocks. The schists, La Escalerilla granite and the mafic -ultramafic rocks are affected by a regional metamorphism in anphibolites facies, the two first present a N-S foliation di ping to east. The mylonite s correspond to a second event of deformation, distributed in thin belts of NNE-SSO direction and inclination to east, developed in green schist to anphibolites facies. Los Puquios granite represents the more young of the basement rocks and the intrusion was associated with a shear zone. Los Puquios granite forms dikes and small plutons cutting La Escalerilla granite and micas chits in high cortical levels

  13. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.; Perez Manriquez, Liliana; Puspasari, Tiara; Scholes, Colin A.; Kentish, Sandra E.; Peinemann, Klaus-Viktor

    2018-01-01

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane

  14. Metal ion separations using reactive membranes

    International Nuclear Information System (INIS)

    Way, J.D.

    1993-01-01

    A membrane is a barrier between two phases. If one component of a mixture moves through the membrane faster than another mixture component, a separation can be accomplished. Membranes are used commercially for many applications including gas separations, water purification, particle filtration, and macromolecule separations (Abelson). There are two points to note concerning this definition. First, a membrane is defined based on its function, not the material used to make the membrane. Secondly, a membrane separation is a rate process. The separation is accomplished by a driving force, not by equilibrium between phases. Liquids that are immiscible with the feed and product streams can also be used as membrane materials. Different solutes will have different solubilities and diffusion coefficients in a liquid. The product of the diffusivity and the solubility is known as the permeability coefficient, which is proportional to the solute flux. Differences in permeability coefficient will produce a separation between solutes at constant driving force. Because the diffusion coefficients in liquids are typically orders of magnitude higher than in polymers, a larger flux can be obtained. Further enhancements can be accomplished by adding a nonvolatile complexation agent to the liquid membrane. One can then have either coupled or facilitated transport of metal ions through a liquid membrane. The author describes two implementations of this concept, one involving a liquid membrane supported on a microporous membrane, and the other an emulsion liquid membrane, where separation occurs to internal receiving phases. Applications and costing studies for this technology are reviewed, and a brief summary of some of the problems with liquid membranes is presented

  15. Uplift, Emergence, and Subsidence of the Gorda Escarpment Basement Ridge Offshore Cape Mendocino, CA

    Science.gov (United States)

    Hoover, Susan M.; Tréhu, Anne M.

    2017-12-01

    The Gorda Escarpment is a topographic step that characterizes the south side of the Mendocino Transform Fault east of 126oW and forms the northern edge of the Vizcaino Block. Seismic reflection data suggest that the basement beneath the northern edge of the Vizcaino is composed of east-west trending slivers of oceanic crust that form a 15 km wide band of buried ridges we call the Gorda Escarpment Basement Ridge (GEBR) to distinguish it from the northwest-trending basement structure that characterizes most of the Vizcaino Block. The history of uplift and subsidence of the GEBR is reconstructed by combining the seismic reflection profiles with age and lithological constraints from ODP Site 1022, gravity cores, and grab samples from the northern face of the Escarpment recovered using a remotely operated vehicle. Uplift of the GEBR began prior to 6 Ma, and it was above sea level 3.7-2.5 Ma. GEBR uplift and emergence coincided with sediment deposition on the southern flank of the GEBR that we interpret as indicative of strong upwelling and turbulence in the lee of a shallow ridge and island chain. A bright reflection, interpreted to be a sill, is observed south of the shallowest part of the GEBR. We speculate that this sill may reflect a larger, hidden intrusion at depth and that thermal expansion of the crust combined with tectonic forces to drive enhanced uplift of this segment of the plate boundary. The GEBR has been subsiding since 2.7 Ma, and its shallowest point is now 1,400 m below sea level.

  16. Basement to surface expressions and critical factors in the genesis of unconformity-related deposits

    International Nuclear Information System (INIS)

    Potter, Eric

    2014-01-01

    Two subprojects: 1) Basement to surface expressions of deep mineralization and refinement of critical factors leading to the genesis of unconformity-related uranium deposits; and 2) Recognition of uranium ore system alteration signatures in complex terranes: IOCG vs albite-hosted uranium vs volcanic-hosted uranium.

  17. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  18. Oxygen- and hydrogen-permeation measurements on-mixed conducting SrFeCo{sub 0.5}O{sub y} ceramic membrane material

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E.; Casagrande, E.; La Barbera, A. [ENEA UTS MAT, CR Casaccia, 00060 S.M. di Galeria, Roma (Italy); Alvisi, M. [ENEA UTS MAT, CR Brindisi, 72100 Brindisi (Italy); Bezzi, G.; Mingazzini, C. [ENEA UTS MAT, CR Faenza, 48018 Faenza (Italy)

    2008-02-15

    The SrFeCo{sub 0.5}O{sub y} system combines high electronic/ionic conductivity with appreciable oxygen permeability at elevated temperatures. This system has potential use in high-temperature electrochemical applications such as solid oxide fuel cells, batteries, sensors, and oxygen separation membranes. Dense ceramic membranes of SrFeCo{sub 0.5}O{sub y} are prepared by pressing a ceramic powder prepared by using a sol-gel combustion technique. Oxygen and hydrogen permeation at high temperature on this material are studied. Measurements are conducted using a time-dependent permeation method at the temperature in the range of 1073-1273 K with oxygen- and hydrogen-driving pressures in the range (3 x 10{sup 2})-(1 x 10{sup 5}) Pa (300-1000 mbar). The maximum oxygen-permeated flux at 1273 K is 6.5 x 10{sup -3} mol m{sup -2} s{sup -1}. The activation energies for the O{sub 2}-permeation fluxes and diffusivities are 240 and 194 kJ/mol, respectively. Due to the high fragility, the high temperature for the measurements and the high oxygen permeation through such material, a special membrane holder, and compression sealing system have been designed and realized for the permeation apparatus. (author)

  19. 46 CFR 154.430 - Material test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant (CG...

  20. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  1. Glutathione S-transferase Mu 2-transduced mesenchymal stem cells ameliorated anti-glomerular basement membrane antibody-induced glomerulonephritis by inhibiting oxidation and inflammation.

    Science.gov (United States)

    Li, Yajuan; Yan, Mei; Yang, Jichen; Raman, Indu; Du, Yong; Min, Soyoun; Fang, Xiangdong; Mohan, Chandra; Li, Quan-Zhen

    2014-01-30

    Oxidative stress is implicated in tissue inflammation, and plays an important role in the pathogenesis of immune-mediated nephritis. Using the anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM-GN) mouse model, we found that increased expression of glutathione S-transferase Mu 2 (GSTM2) was related to reduced renal damage caused by anti-GBM antibodies. Furthermore, mesenchymal stem cell (MSC)-based therapy has shed light on the treatment of immune-mediated kidney diseases. The aim of this study was to investigate if MSCs could be utilized as vehicles to deliver the GSTM2 gene product into the kidney and to evaluate its potential therapeutic effect on anti-GBM-GN. The human GSTM2 gene (hGSTM2) was transduced into mouse bone marrow-derived MSCs via a lentivirus vector to create a stable cell line (hGSTM2-MSC). The cultured hGSTM2-MSCs were treated with 0.5 mM H2O2, and apoptotic cells were measured by terminal dUTP nick-end labeling (TUNEL) assay. The 129/svj mice, which were challenged with anti-GBM antibodies, were injected with 10⁶ hGSTM2-MSCs via the tail vein. Expression of hGSTM2 and inflammatory cytokines in the kidney was assayed by quantitative PCR and western blotting. Renal function of mice was evaluated by monitoring proteinuria and levels of blood urea nitrogen (BUN), and renal pathological changes were analyzed by histochemistry. Immunohistochemical analysis was performed to measure inflammatory cell infiltration and renal cell apoptosis. MSCs transduced with hGSTM2 exhibited similar growth and differentiation properties to MSCs. hGSTM2-MSCs persistently expressed hGSTM2 and resisted H2O2-induced apoptosis. Upon injection into 129/svj mice, hGSTM2-MSCs migrated to the kidney and expressed hGSTM2. The anti-GBM-GN mice treated with hGSTM2-MSCs exhibited reduced proteinuria and BUN (58% and 59% reduction, respectively) and ameliorated renal pathological damage, compared with control mice. Mice injected with hGSTM2-MSCs showed

  2. Numerical Simulation for Mechanism of Airway Narrowing in Asthma

    Science.gov (United States)

    Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi

    A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.

  3. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.

    2018-05-18

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent‐induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant‐derived polyphenol, and terephthaloyl chloride. Alpha‐pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X‐ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut‐off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.

  4. Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P., E-mail: prasri@ece.ucsb.edu, E-mail: srinivasan@lifesci.ucsb.edu [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.

  5. Review of Large Spacecraft Deployable Membrane Antenna Structures

    Science.gov (United States)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  6. A Method for Coupling a Direct Current Power Source Across a Dielectric Membrane or Other Non-Conducting Membrane

    National Research Council Canada - National Science Library

    Steinbrecher, Donald H

    2008-01-01

    .... A second set of plates on the second side of the membrane form a set of coupling capacitors wherein the non-conducting dielectric membrane becomes part of the coupling-capacitor dielectric material...

  7. Development of materials and processes for low-cost production of high-temperature bipolar plates for use in polymer electrolyte membrane fuel cells (PEMFC). Final report; Material- und Verfahrensentwicklung fuer eine kostenguenstige Herstellung von Hochtemperatur-Bipolarplatten zum Einsatz in Polymer-Elektrolyt-Membran Brennstoffzellen (PEM-BZ). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In the context of the project 'Verfahren zur spritzgiesstechnischen Herstellung von HT-BPP' (processes for injection moulding of high-temperature fuel cells), bipolar plates for high-temperature proton exchange membrane fuel cells (HT-PEM-FC) were produced by an injection moulding process suited for mass production. This implied extensive material analyses of fillers and matrix materials. A specific compound for application in fuel cells and suited for mass production was produced on this basis. (orig./AKB)

  8. Membrane-based removal of volatile methylsiloxanes from biogas

    Energy Technology Data Exchange (ETDEWEB)

    Ajhar, Marc

    2011-12-16

    This work investigates the removal of volatile methylsiloxanes (VMS) from biogas using dense, rubbery membranes. It consists of the following: a) thorough overview of already established and still developing siloxane removal technologies, b) detailed investigation of a viable sampling and analytical method, c) screening of different elastomers to identify siloxane-selective membrane materials, d) design of a suitable membrane structure, i.e. theoretical considerations about the thicknesses of the active separation layer and the porous support layer, e) assessment of the siloxane separation performance of a silicone membrane module using both synthetic gas under laboratory conditions and real landfill gas, f) comparison between the state-of-the-art technology (adsorption on activated carbon) and membrane-based processes. Suitable polymers for siloxane removal from biogas exist, however, they are not commercially available as membranes. Among the elastomers studied, Pebax registered 2533 is particularly promising. The use of a membrane made of this material could potentially become new state-of-the-art technology.

  9. Functionalized nanoparticle interactions with polymeric membranes.

    Science.gov (United States)

    Ladner, D A; Steele, M; Weir, A; Hristovski, K; Westerhoff, P

    2012-04-15

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) on porous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ≈ 2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependent not only on surface functionality but on NP core material (Ag, TiO(2), or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Characterization of 222Rn entry into a basement structure surrounded by low permeability soil

    International Nuclear Information System (INIS)

    Ward, D.C.

    1992-01-01

    An experimental facility has been developed to monitor the entry rate and concentration of 222 Rn in two basement type structures surrounded by soil having a permeability on the order of 1- -12 m 2 . A data acquisition system recorded environmental conditions outside and inside the structures, including basement air exchange rates, every 15 min. Indoor 222 Rn concentrations ranged from 400 to 1400 Bq m -3 . The observed 222 Rn entry rate is highly variable and has two primary components; a constant input rate caused by diffusion of 222 Rn through the concrete walls and floor, and a variable rate that depends upon indoor-soil pressure differentials of only a few pascals. Pressure differentials are dependent upon wind speed and wind direction. Stack effect was not significant. During a two week period, with relatively calm winds, diffusion through the concrete walls and floor plus the floor-wall joint accounted for more than 80% of the total 222 Rn entry

  11. Analytical and numerical models for estimating the effect of exhaust ventilation on radon entry in houses with basements or crawl spaces

    International Nuclear Information System (INIS)

    Mowris, R.J.

    1986-08-01

    Mechanical exhaust ventilation systems are being installed in newer, energy-efficient houses and their operation can increase the indoor-outdoor pressure differences that drive soil gas and thus radon entry. This thesis presents simplified models for estimating the pressure driven flow of radon into houses with basements or crawl spaces, due to underpressures induced by indoor-outdoor temperature differences, wind, or exhaust ventilation. A two-dimensional finite difference model is presented and used to calculate the pressure field and soil gas flow rate into a basement situated in soil of uniform permeability. A simplified analytical model is compared to the finite difference model with generally very good agreement. Another simplified model is presented for houses with a crawl space. Literature on radon research is also reviewed to show why pressure driven flow of soil gas is considered to be the major source of radon entry in houses with higher-than-average indoor radon concentrations. Comparisons of measured vs. calculated indoor radon concentrations for a house with a basement showed the simplified basement model underpredicting on average by 25%. For a house with a crawl space the simplified crawl space model overpredicted by 23% when the crawl space vents are open and 48% when the crawl space vents are sealed

  12. Rb/Sr and U/Pb isotopic ages in basement rocks of Mina Gonzalito and Arroyo Salado, Atlantic North-Patagonian Massif, Rio Negro, Argentina

    International Nuclear Information System (INIS)

    Varela, Ricardo; Sato, Ana M.; Cingolani, Carlos A.; Basei, Miguel A.S.; Siga, Oswaldo; Sato, Kei

    1998-01-01

    Isotopic ages from metamorphic and plutonic rocks of the Atlantic area of North Patagonian basement indicate that the main crustal tectonic events occurred during the late Proterozoic to early Paleozoic times. Rb/Sr and U/Pb data in the 550-470 Ma interval suggest an old tecto-thermal activity during the upper Brazilian Cycle (Rio Doce Orogeny). At regional scale, the comparable Neo proterozoic basement of Ventania and sedimentary for eland cover of Tandilia continues to the Northeast, in the Dom Feliciano Belt. A possible correlation of the North Patagonian basement with igneous-metamorphic relics of Central Argentina (Pampean Ranges of San Luis-Cordoba and at La Pampa province) is also indicated. (author)

  13. Dynamics of uranium ore formation in the basement and frame of the Streltsovskaya Caldera

    International Nuclear Information System (INIS)

    Petrov, V.; Schukin, S.

    2014-01-01

    The analysis of geological-geophysical, paleo-geodynamics, mineralogical, geochemical, isotope, geochronological, and thermo-baro-geochemical data allow us to offer a model of uranium ore formation dynamics in the basement and frame of the Streltsovskaya Caldera connected to activity of the fluid-conducting fault zones network with the aim to identify prospective areas The most ancient fluid-conducting structures are inter-block NE-SW, NNE-submeridional, NW-SE and, probably, WNW-sub-latitudinal faults. The oldest NE-SW faults and schistosity zones were formed during Proterozoic tectonic cycle (TC) with reactivation in T3-J2 time due to global reorganization of stress field and reactivation of tectonic movements. The NNE-submeridional and NW-SE faults were extended with increased fluid permeability during Caledonian and Variscan TCs. They also were reactivated in the process of Late Mesozoic tectonic and magmatic activation (TMA). Thus already at early stages of geotectonic evolution within the intersection of NE-SW (N-Urulyunguyevskiy fault) and NNE-submeridional (Chindachinskaya zone) faults the areas of increased fluid and magmatic activity were formed. The dynamics of fault formation in the basement and frame of the Streltsovskaya caldera and its volcano-sedimentary cover differs. In the basement and granite framework NE-SW, NNEsubmeridional and NW-SE faults are interblock structures of the I rank. Their intersection formed areas of long-term circulation of hydrothermal solutions and telescopic appearance of multi-age metasomatites that created conditions for localizing of vein-stockwork mineralization. In volcanosedimentary cover the NE-SW and NNE-submeridional faults should be considered as interblock structures of the I rank where intersections provided inflow of ore-bearing solutions and their redistribution within the cover. Here the main ore distributing role belongs to NW-SE shears. They are intrablock II rank structures which were formed due to dextral

  14. Track membranes, production, properties, applications

    International Nuclear Information System (INIS)

    Oganesjan, Yu.Ts.

    1994-01-01

    The problems of producing track membranes on heavy ion beams of the Flerov Laboratory are considered. The parameters of the running accelerators and equipment for the irradiation of polymer foils are presented. The process of production of track membranes based on different polymeric materials and various applications of the membranes are described. Special attention is given to the principally new applications and devices developed at the Laboratory. This report presents the results obtained by a big group of scientists and engineers working in the field of elaboration, investigation and application of track membranes (author). 21 refs, 20 figs, 1 tab

  15. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Haryadi,; Sugianto, D.; Ristopan, E.

    2015-01-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm −1 and 3300 cm −1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10 −2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  16. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Science.gov (United States)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  17. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  18. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date informatio