WorldWideScience

Sample records for baseline xfel undulator

  1. Scheme for Generation highly monochromatic X-Rays from a baseline XFEL undulator

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-03-01

    One goal of XFEL facilities is the production of narrow bandwidth X-ray radiation. The self-seeding scheme was proposed to obtain a bandwidth narrower than that achievable with conventional X-ray SASE FELs. A self-seeded FEL is composed of two undulators separated by a monochromator and an electron beam bypass that must compensate for the path delay of X-rays in the monochromator. This leads to a long bypass, with a length in the order of 40-60 m, which requires modifications of the baseline undulator configuration. As an attempt to get around this obstacle, together with a study of the self-seeding scheme for the European XFEL, here we propose a novel technique based on a pulse doubler concept. Using a crystal monochromator installed within a short magnetic chicane in the baseline undulator, it is possible to decrease the bandwidth of the radiation well beyond the XFEL design down to 10 -5 . The magnetic chicane can be installed without any perturbation of the XFEL focusing structure, and does not interfere with the baseline mode of operation. We present a feasibility study and we make exemplifications with the parameters of the SASE2 line of the European XFEL. (orig.)

  2. The full potential of the baseline SASE undulators of the European XFEL

    International Nuclear Information System (INIS)

    Agapov, Ilya; Geloni, Gianluca; Feng, Guangyao; Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Zagorodnov, Igor

    2014-04-01

    The output SASE characteristics of the baseline European XFEL, recently used in the TDRs of scientific instruments and X-ray optics, have been previously optimized assuming uniform undulators without considering the potential of undulator tapering in the SASE regime. Here we demonstrate that the performance of European XFEL sources can be significantly improved without additional hardware. The procedure simply consists in the optimization of the undulator gap configuration for each X-ray beamline. Here we provide a comprehensive description of the soft X-ray photon beam properties as a function of wavelength and bunch charge. Based on nominal parameters for the electron beam, we demonstrate that undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime. We illustrate this fact for the SASE3 beamline. The FEL code Genesis has been extensively used for these studies. Based on these findings we suggest that the requirements for the SASE3 instrument (SCS, SQS) and for the SASE3 beam transport system be updated.

  3. MaRIE Undulator & XFEL Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Laboratory; Marksteiner, Quinn R. [Los Alamos National Laboratory; Anisimov, Petr Mikhaylovich [Los Alamos National Laboratory; Buechler, Cynthia Eileen [Los Alamos National Laboratory

    2015-03-23

    The 22 slides in this presentation treat the subject under the following headings: MaRIE XFEL Performance Parameters, Input Electron Beam Parameters, Undulator Design, Genesis Simulations, Risks, and Summary It is concluded that time-dependent Genesis simulations show the MaRIE XFEL can deliver the number of photons within the required bandwidth, provided a number of assumptions are met; the highest risks are associated with the electron beam driving the XFEL undulator; and risks associated with the undulator and/or distributed seeding technique may be evaluated or retired by performing early validation experiments.

  4. Nonlinear undulator tapering in conventional SASE regime at baseline electron beam parameters as a way to optimize the radiation characteristics of the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-09-15

    We demonstrate that the output radiation characteristics of the European XFEL sources at nominal operation point can be easily made significantly better than what is currently reported in the TDRs of scientific instruments and X-ray optics. In fact, the output SASE characteristics of the baseline European XFEL have been previously optimized assuming uniform undulators at a nominal operating point of 5 kA peak current, without considering the potential of undulator tapering in the SASE regime. In order to illustrate this point, we analyze the case of an electron bunch with nominal parameters. Based on start-to-end simulations, we demonstrate that nonlinear undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime, without modification to the baseline design. The FEL code Genesis has been extensively used for these studies. In order to increase our confidence in simulation results, we cross-checked outcomes by reproducing simulations in the deep nonlinear SASE regime with tapered undulator using the code ALICE.

  5. Scheme for simultaneous generation of three-color ten GW-level X-ray pulses from baseline XFEL undulator and multi-user distribution system for XFEL laboratory

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-01-01

    The baseline design of present XFEL projects only considers the production of a single photon beam at fixed wavelength from each baseline undulator. At variance, the scheme described in this paper considers the simultaneous production of high intensity SASE FEL radiation at three different wavelengths. We present a feasibility study of our scheme, and we make exemplifications with parameters of the baseline SASE2 line of the European XFEL operating in simultaneous mode at 0.05 nm, 0.15 nm and 0.4 nm. Our technique for generating the two colors at 0.05 nm and 0.15 nm is based in essence on a ''fresh bunch'' technique. For the generation of radiation at 0.4 nm we propose to use an ''afterburner'' technique. Implementation of these techniques does not perturb the baseline mode of operation of the SASE2 undulator. The present paper also describes an efficient way to obtain a multi-user facility. It is shown that, although the XFEL photon beam from a given undulator is meant for a single user, movable multilayer X-ray mirrors can be used to serve many users simultaneously. The proposed photon beam distribution system would allow to switch the FEL beam quickly between many experiments in order to make an efficient use of the source. Distribution of photons is achieved on the basis of pulse trains and it is possible to distribute the multicolor photon beam among many independent beam lines, thereby enabling many users to work in parallel with different wavelengths. (orig.)

  6. Proposal to generate 10 TW level femtosecond X-ray pulses from a baseline undulator in conventional SASE regime at the European XFEL

    International Nuclear Information System (INIS)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor; Geloni, Gianluca

    2013-08-01

    Output characteristics of the European XFEL have been previously studied assuming an operation point at 5 kA peak current. In this paper we explore the possibility to go well beyond such nominal peak current level. In order to illustrate the potential of the European XFEL accelerator complex we consider a bunch with 0.25 nC charge, compressed up to a peak current of 45 kA. An advantage of operating at such high peak current is the increase of the X-ray output peak power without any modification to the baseline design. Based on start-to-end simulations, we demonstrate that such high peak current, combined with undulator tapering, allows one to achieve up to a 100-fold increase in a peak power in the conventional SASE regime, compared to the nominal mode of operation. In particular, we find that 10 TW-power level, femtosecond x-ray pulses can be generated in the photon energy range between 3 keV and 5 keV, which is optimal for single biomolecule imaging. Our simulations are based on the exploitation of all the 21 cells foreseen for the SASE3 undulator beamline, and indicate that one can achieve diffraction to the desired resolution with 15 mJ (corresponding to about 3.10 13 photons) in pulses of about 3 fs, in the case of a 100 nm focus at the photon energy of 3.5 keV.

  7. Proposal to generate 10 TW level femtosecond X-ray pulses from a baseline undulator in conventional SASE regime at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-08-15

    Output characteristics of the European XFEL have been previously studied assuming an operation point at 5 kA peak current. In this paper we explore the possibility to go well beyond such nominal peak current level. In order to illustrate the potential of the European XFEL accelerator complex we consider a bunch with 0.25 nC charge, compressed up to a peak current of 45 kA. An advantage of operating at such high peak current is the increase of the X-ray output peak power without any modification to the baseline design. Based on start-to-end simulations, we demonstrate that such high peak current, combined with undulator tapering, allows one to achieve up to a 100-fold increase in a peak power in the conventional SASE regime, compared to the nominal mode of operation. In particular, we find that 10 TW-power level, femtosecond x-ray pulses can be generated in the photon energy range between 3 keV and 5 keV, which is optimal for single biomolecule imaging. Our simulations are based on the exploitation of all the 21 cells foreseen for the SASE3 undulator beamline, and indicate that one can achieve diffraction to the desired resolution with 15 mJ (corresponding to about 3.10{sup 13} photons) in pulses of about 3 fs, in the case of a 100 nm focus at the photon energy of 3.5 keV.

  8. Undulator systems for the TESLA X-FEL

    International Nuclear Information System (INIS)

    Pflueger, J.; Tischer, M.

    2002-01-01

    A large X-ray FEL lab is under consideration within the TESLA project and is supposed to be operated in parallel with the TESLA linear collider. There will be five SASE FELs and five conventional spontaneous undulators. A conceptual design study has been made for the undulator systems for these X-FELs. It includes segmentation into 6.1 m long undulator 'cells'. Each consists of a 5 m long undulator 'segment', a separate quadrupole, one horizontal and one vertical corrector, and a phase shifter. These items are presented and discussed

  9. Opportunities for two-color experiments at the SASE3 undulator line of the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca; Mazza, Tommaso; Meyer, Michael; Serkez, Svitozar [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-06-15

    X-ray Free Electron Lasers (XFELs) have been proven to generate short and powerful radiation pulses allowing for a wide class of novel experiments. If an XFEL facility supports the generation of two X-ray pulses with different wavelengths and controllable delay, the range of possible experiments is broadened even further to include X-ray-pump/X-ray-probe applications. In this work we discuss the possibility of applying a simple and cost-effective method for producing two-color pulses at the SASE3 soft X-ray beamline of the European XFEL. The technique is based on the installation of a magnetic chicane in the baseline undulator and can be accomplished in several steps. We discuss the scientific interest of this upgrade for the Small Quantum Systems (SQS) instrument, in connection with the high-repetition rate of the European XFEL, and we provide start-to-end simulations up to the radiation focus on the sample, proving the feasibility of our concept.

  10. Purified SASE undulator configuration to enhance the performance of the soft x-ray beamline at the European XFEL

    International Nuclear Information System (INIS)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor; Geloni, Gianluca

    2013-08-01

    The purified SASE (pSASE) undulator configuration recently proposed at SLAC promises an increase in the output spectral density of XFELs. In this article we study a straightforward implementation of this configuration for the soft x-ray beamline at the European XFEL. A few undulator cells, resonant at a subharmonic of the FEL radiation, are used in the middle of the exponential regime to amplify the radiation, while simultaneously reducing the FEL bandwidth. Based on start-to-end simulations, we show that with the proposed configuration the spectral density in the photon energy range between 1.3 keV and 3 keV can be enhanced of an order of magnitude compared to the baseline mode of operation. This option can be implemented into the tunable-gap SASE3 baseline undulator without additional hardware, and it is complementary to the self-seeding option with grating monochromator proposed for the same undulator line, which can cover the photon energy range between about 0.26 keV and 1 keV.

  11. Circular polarization opportunities at the SASE3 undulator line of the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-08-15

    XFELs provide X-ray pulses with unprecedented peak brightness and ultrashort duration. They are usually driven by planar undulators, meaning that the output radiation is linearly polarized. For many experimental applications, however, polarization control is critical: besides the ability to produce linearly polarized radiation, one often needs the possibility of generating circularly polarized radiation with a high, stable degree of polarization. This may be achieved by using a first part of the XFEL undulator to produce bunching and then, by propagating the the bunched beam through an ''afterburner'' - a short undulator with tunable polarization, where only limited gain takes place. One of the issues that one needs to consider in this case is the separation of the circularly polarized radiation obtained in the radiator from the linearly polarized background produced in the first part of the FEL. In this article we review several methods to do so, including the inverse tapering technique. In particular, we use the Genesis FEL code to simulate a case study pertaining to the SASE3 FEL line at the European XFEL with up-to-date parameters and we confirm that a high degree of circular polarization is expected. Moreover, we propose to further improve the effectiveness of the inverse tapering technique either via angular separation of the linearly polarized radiation or strongly defocusing it at the sample position. In this way we exploit the unique flexibility of the European XFEL from both the electron beam and the photon beam optics side.

  12. Magnetic design of an Apple-X afterburner for the SASE3 undulator of the European XFEL

    Science.gov (United States)

    Li, Peng; Wei, Tao; Li, Yuhui; Pflueger, Joachim

    2017-10-01

    In its startup configuration the SASE3 beamline of the European XFEL provides only soft X-ray radiation, linearly polarized in the horizontal plane. In order to enhance capabilities of this beamline an afterburner scheme is proposed. It will be used as a coherent radiator using the micro-bunched electron beam of the linear SASE3 system. Radiation with variable polarization, which covers the full SASE3 wavelength range can be generated. For the radiator a new type of undulator design called Apple-X will be used. In this paper the design is described and magnet parameters, which are compatible with the SASE3 afterburner are determined using RADIA simulations. The end structure of such a device is optimized for minimum 1st field integrals.

  13. Longitudinal impedance and wake from XFEL undulators. Impact on current-enhanced SASE schemes

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-06-15

    In this article we derive longitudinal impedance and wake function for an undulator setup with arbitrary undulator parameter, taking into account a finite transverse size of the electron bunch. Earlier studies considered a line density-distribution of electrons instead. We focus our attention on the long-wavelength asymptote (compared with resonance wavelength), at large distance of the electron bunch from the undulator entrance compared to the overtaking length, and for large vacuumchamber size compared to the typical transverse size of the field. These restrictions define a parameter region of interest for practical applications. We calculate a closed expression for impedance and wake function that may be evaluated numerically in the most general case. Such expression allows us to derive an analytical solution for a Gaussian transverse and longitudinal bunch shape. Finally, we study the feasibility of current-enhanced SASE schemes (ESASE) recently proposed for LCLS, that fall well-within our approximations. Numerical estimations presented in this paper indicate that impedance-induced energy spread is sufficient to seriously degrade the FEL performance. Our conclusion is in contrast with results in literature, where wake calculations for the LCLS case are given in free-space, as if the presence of the undulator were negligible. (orig.)

  14. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-07-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scattering. The self-seeding scheme with the wake monochromator is extremely compact, and takes almost no cost and time to be implemented. The upgrade proposed in this paper could take place during the commissioning stage of the European XFEL, opening a vast new range of applications from the very beginning of operations.We present feasibility study and examplifications for the SASE2 line of the European XFEL. (orig.)

  15. Photon beam properties at the European XFEL (December 2010 revision)

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2011-09-15

    A new set of baseline parameters of the electron beam and undulator for the European XFEL project has been defined recently. Changes refer to the electron beam emittance, charge, operation at different electron energies, and change of undulator period. According to the present concept, it is planned to vary charge from 20 pC to 1 nC allowing control of the FWHM radiation pulse duration. Operation at different electron energies of 17.5 GeV, 14 GeV, and 10.5 GeV will allow extension of the wavelength range to longer wavelengths. Electron bunches with different charges possess different properties. These features have an impact on photon beam properties which should be taken into account at the design stage optical beamlines and instruments and planning user experiments. In this note we present an overview of the radiation properties generated by SASE FEL radiators driven by electron beam with revised baseline parameters. (orig.)

  16. The European XFEL Project

    CERN Document Server

    Trunk, U

    2008-01-01

    The European XFEL project is a 4th generation photon source to be built in Hamburg. Electron bunches, accelerated to 17.5GeV by the XFEL linac, are distributed to three long SASE undulators. There photon pulses with full lateral coherence and wavelengths between 0.1nm and 4.9nm (12.4 keV and 0.8 keV) are generated for three beamlines. It will deliver around 1012photons within each 100 fs pulse, reaching a peak brilliance of 1033photonss−1mm−2mrad−2(0.1%BW)−1. Thus it will offer unprecedented possibilities in photon science research including nano-object imaging and studies (e.g. by coherent X-ray scattering) and ultra fast dynamic analysis of plasma and chemical reactions (e.g. by X-ray photo correlation spectroscopy). The detector requirements for such studies are extremely challenging: position sensitive area detectors have to provide a dynamic range of ≥ 104, with single-photon sensitivity, while withstanding radiation doses up to 1GGy (TID). Furthermore the detectors have to record data from tra...

  17. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    International Nuclear Information System (INIS)

    Brinkmann, R.; Schneidmiller, E.A.; Sekutowicz, J.; Yurkov, M.V.

    2014-03-01

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion since many years. Recent successes in the dedicated R and D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Aangstrom FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with the energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in sub-Aangstrom regime. As an option for generation of brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  18. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, R.; Schneidmiller, E.A.; Sekutowicz, J.; Yurkov, M.V.

    2014-03-15

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion since many years. Recent successes in the dedicated R and D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Aangstrom FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with the energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in sub-Aangstrom regime. As an option for generation of brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  19. Improvement of the crossed undulator design for effective circular polarization control in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-01-15

    The production of X-ray radiation with a high degree of circular polarization constitutes an important goal at XFEL facilities. A simple scheme to obtain circular polarization control with crossed undulators has been proposed so far. In its simplest configuration the crossed undulators consist of pair of short planar undulators in crossed position separated by an electromagnetic phase shifter. An advantage of this configuration is a fast helicity switching. A drawback is that a high degree of circular polarization (over 90 %) can only be achieved for lengths of the insertion devices significantly shorter than the gain length, i.e. at output power significantly lower than the saturation power level. The obvious and technically possible extension considered in this paper, is to use a setup with two or more crossed undulators separated by phase shifters. This cascade crossed undulator scheme is distinguished, in performance, by a fast helicity switching, a high degree of circular polarization (over 95%) and a high output power level, comparable with the saturation power level in the baseline undulator at fundamental wavelength. We present feasibility study and exemplifications for the LCLS baseline in the soft X-ray regime. (orig.)

  20. Microwave undulator

    International Nuclear Information System (INIS)

    Batchelor, K.

    1986-03-01

    The theory of a microwave undulator utilizing a plane rectangular waveguide operating in the TE/sub 10n/ mode and other higher order modes is presented. Based on this, a possible undulator configuration is analyzed, leading to the conclusion that the microwave undulator represents a viable option for undulator wavelength down to about 1 cm where peak voltage and available microwave power considerations limit effectiveness. 4 refs., 4 figs

  1. Circular polarization control for the European XFEL in the soft X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-06-15

    The possibility of producing X-ray radiation with high degree of circular polarization is an important asset at XFEL facilities. Polarization control is most important in the soft X-ray region.However, the baseline of the European XFEL, including the soft X-ray SASE3 line, foresees planar undulators only, yielding linearly-polarized radiation. It is clear that the lowest-risk strategy for implementing polarization control at SASE3 involves adding an APPLE II-type undulator at the end of the planar undulator, in order to exploit the micro bunching from the baseline FEL. Detailed experience is available in synchrotron radiation laboratories concerning the manufacturing of 5 m-long APPLE II undulators. However, the choice of a short helical radiator leads to the problem of background suppression. The driving idea of our proposal is that the background radiation can be suppressed by spatial filtering. This operation can be performed by inserting slits behind the APPLE II radiator, where the linearly-polarized radiation spot size is about 30 times larger than the radiation spot size from the helical radiator. The last 7 cells of the SASE3 undulator are left with an open gap in order to provide a total 42 m drift section for electron beam and radiation. Due to the presence of the drift the linearly-polarized radiation spot size increases, and the linearly polarized background radiation can be suppressed by the slits. At the same time, the microbunch structure is easily preserved, so that intense (100 GW) coherent radiation is emitted in the helical radiator. We propose a filtering setup consisting of a pair of water cooled slits for X-ray beam filtering and of a 5 m-long magnetic chicane, which creates an offset for slit installation immediately behind the helical radiator. Electrons and X-rays are separated before the slits by the magnetic chicane, so that the electron beam can pass by the filtering setup without perturbations. Based on start-to-end simulations we

  2. Circular polarization control for the European XFEL in the soft X-ray regime

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-06-01

    The possibility of producing X-ray radiation with high degree of circular polarization is an important asset at XFEL facilities. Polarization control is most important in the soft X-ray region.However, the baseline of the European XFEL, including the soft X-ray SASE3 line, foresees planar undulators only, yielding linearly-polarized radiation. It is clear that the lowest-risk strategy for implementing polarization control at SASE3 involves adding an APPLE II-type undulator at the end of the planar undulator, in order to exploit the micro bunching from the baseline FEL. Detailed experience is available in synchrotron radiation laboratories concerning the manufacturing of 5 m-long APPLE II undulators. However, the choice of a short helical radiator leads to the problem of background suppression. The driving idea of our proposal is that the background radiation can be suppressed by spatial filtering. This operation can be performed by inserting slits behind the APPLE II radiator, where the linearly-polarized radiation spot size is about 30 times larger than the radiation spot size from the helical radiator. The last 7 cells of the SASE3 undulator are left with an open gap in order to provide a total 42 m drift section for electron beam and radiation. Due to the presence of the drift the linearly-polarized radiation spot size increases, and the linearly polarized background radiation can be suppressed by the slits. At the same time, the microbunch structure is easily preserved, so that intense (100 GW) coherent radiation is emitted in the helical radiator. We propose a filtering setup consisting of a pair of water cooled slits for X-ray beam filtering and of a 5 m-long magnetic chicane, which creates an offset for slit installation immediately behind the helical radiator. Electrons and X-rays are separated before the slits by the magnetic chicane, so that the electron beam can pass by the filtering setup without perturbations. Based on start-to-end simulations we

  3. The European XFEL project

    International Nuclear Information System (INIS)

    Floettmann, K.

    2005-01-01

    The European XFEL project is a 4th generation synchrotron radiation facility based on the SASE FEL concept and the superconducting TESLA technology for a linear accelerator. In February 2003 the German government decided that the XFEL should be realized as a European project and be located at DESY in Hamburg. The paper will give an overview of the overall layout and parameters of the facility, with emphasis on the accelerator design, technology and physics. (author)

  4. Construction and Commissioning of PAL-XFEL Facility

    Directory of Open Access Journals (Sweden)

    In Soo Ko

    2017-05-01

    Full Text Available The construction of Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL, a 0.1-nm hard X-ray free-electron laser (FEL facility based on a 10-GeV S-band linear accelerator (LINAC, is achieved in Pohang, Korea by the end of 2016. The construction of the 1.11 km-long building was completed by the end of 2014, and the installation of the 10-GeV LINAC and undulators started in January 2015. The installation of the 10-GeV LINAC, together with the undulators and beamlines, was completed by the end of 2015. The commissioning began in April 2016, and the first lasing of the hard X-ray FEL line was achieved on 14 June 2016. The progress of the PAL-XFEL construction and its commission are reported here.

  5. Scheme for femtosecond-resolution pump-probe experiments at XFELs with two-color ten GW-level X-ray pulses

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-01-01

    This paper describes a scheme for pump-probe experiments that can be performed at LCLS and at the European XFEL and determines what additional hardware development will be required to bring these experiments to fruition. It is proposed to derive both pump and probe pulses from the same electron bunch, but from different parts of the tunable-gap baseline undulator. This eliminates the need for synchronization and cancels jitter problems. The method has the further advantage to make a wide frequency range accessible at high peak-power and high repetition-rate. An important feature of the proposed scheme is that the hardware requirement is minimal. Our technique is based in essence on the ''fresh'' bunch technique. For its implementation it is sufficient to substitute a single undulator module with short magnetic delay line, i.e. a weak magnetic chicane, which delays the electron bunch with respect to the SASE pulse of half of the bunch length in the linear stage of amplification. This installation does not perturb the baseline mode of operation. We present a feasibility study and we make exemplifications with the parameters of the SASE2 line of the European XFEL. (orig.)

  6. Micropole undulator

    Science.gov (United States)

    Tatchyn, R.O.; Csonka, P.L.; Cremer, J.T.

    1990-12-11

    Micropole undulators for use in the generation of x-rays from moving charged particles are disclosed. Two rows of spaced apart poles are arranged so that each pole produces a magnetic field aligned with all other similar fields. The poles are the ends of C''-shaped magnets. In each row, adjacent poles are separated by spacers made of a superconducting material. 11 figs.

  7. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  8. Scheme for generating and transporting THz radiation to the X-ray experimental hall at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Decking, Winfried; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2011-12-15

    The design of a THz edge radiation source for the European XFEL is presented.We consider generation of THz radiation from the spent electron beam downstream of the SASE2 undulator in the electron beam dump area. In this way, the THz output must propagate at least for 250 meters through the photon beam tunnel to the experimental hall to reach the SASE2 X-ray hutches. We propose to use an open beam waveguide such as an iris guide as transmission line. In order to efficiently couple radiation into the iris transmission line, generation of the THz radiation pulse can be performed directly within the iris guide. The line transporting the THz radiation to the SASE2 X-ray hutches introduces a path delay of about 20 m. Since THz pump/X-ray probe experiments should be enabled, we propose to exploit the European XFEL baseline multi-bunch mode of operation, with 222 ns electron bunch separation, in order to cope with the delay between THz and X-ray pulses. We present start-to-end simulations for 1 nC bunch operation-parameters, optimized for THz pump/X-ray probe experiments.Detailed characterization of the THz and SASE X-ray radiation pulses is performed. Highly focused THz beams will approach the high field limit of 1 V/atomic size. (orig.)

  9. Hybrid undulator numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Hairetdinov, A.H. [Kurchatov Institute, Moscow (Russian Federation); Zukov, A.A. [Solid State Physics Institute, Chernogolovka (Russian Federation)

    1995-12-31

    3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.

  10. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  11. Extension of self-seeding to hard X-rays >10 keV as a way to increase user access at the European XFEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-11-01

    We propose to use the self-seeding scheme with single crystal monochromator at the European X-ray FEL to produce monochromatic, high-power radiation at 16 keV. Based on start to end simulations we show that the FEL power of the transform-limited pulses can reach about 100 GW by exploiting tapering in the tunable-gap baseline undulator. The combination of high photon energy, high peak power, and very narrow bandwidth opens a vast new range of applications, and includes the possibility to considerably increase the user capacity and fully exploit the high repetition rate of the European XFEL. In fact, dealing with monochromatic hard X-ray radiation one may use crystals as deflectors with minimum beam loss. To this end, a photon beam distribution system based on the use of crystals in the Bragg reflection geometry is proposed for future study and possible extension of the baseline facility. They can be repeated a number of times to forman almost complete (one meter scale) ring with an angle of 20 degrees between two neighboring lines. The reflectivity of crystal deflectors can be switched fast enough by flipping the crystals with piezo-electric devices similar to those for X-ray phase retarders at synchrotron radiation facilities. It is then possible to distribute monochromatic hard X-rays among 10 independent instruments, thereby enabling 10 users to work in parallel. The unmatched repetition rate of the European XFEL would be therefore fully exploited. (orig.)

  12. Extension of self-seeding to hard X-rays >10 keV as a way to increase user access at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    We propose to use the self-seeding scheme with single crystal monochromator at the European X-ray FEL to produce monochromatic, high-power radiation at 16 keV. Based on start to end simulations we show that the FEL power of the transform-limited pulses can reach about 100 GW by exploiting tapering in the tunable-gap baseline undulator. The combination of high photon energy, high peak power, and very narrow bandwidth opens a vast new range of applications, and includes the possibility to considerably increase the user capacity and fully exploit the high repetition rate of the European XFEL. In fact, dealing with monochromatic hard X-ray radiation one may use crystals as deflectors with minimum beam loss. To this end, a photon beam distribution system based on the use of crystals in the Bragg reflection geometry is proposed for future study and possible extension of the baseline facility. They can be repeated a number of times to forman almost complete (one meter scale) ring with an angle of 20 degrees between two neighboring lines. The reflectivity of crystal deflectors can be switched fast enough by flipping the crystals with piezo-electric devices similar to those for X-ray phase retarders at synchrotron radiation facilities. It is then possible to distribute monochromatic hard X-rays among 10 independent instruments, thereby enabling 10 users to work in parallel. The unmatched repetition rate of the European XFEL would be therefore fully exploited. (orig.)

  13. PAL-XFEL cavity beam position monitor pick-up design and beam test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sojeong, E-mail: sojung8681@postech.ac.kr; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-11

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  14. Self-seeding scheme for the soft X-ray line at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-02-15

    This paper discusses the potential for enhancing the capabilities of the European FEL in the soft X-ray regime. A high longitudinal coherence will be the key to such performance upgrade. In order to reach this goal we study a very compact soft X-ray self-seeding scheme originally designed at SLAC. The scheme is based on a grating monochromator, and can be straightforwardly installed in the SASE3 undulator beamline at the European XFEL. For the European XFEL fully-coherent soft X-ray pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap SASE3 undulator. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations we show that soft X-ray FEL power reaches about 800 GW, that is about an order of magnitude higher than the SASE level at saturation (100 GW). The self-seeding setup studied in this work is extremely compact (about 5 m long), and cost-effective. This last characteristic may justify to consider it as a possible addition to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  15. Self-seeding scheme for the soft X-ray line at the European XFEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2012-02-01

    This paper discusses the potential for enhancing the capabilities of the European FEL in the soft X-ray regime. A high longitudinal coherence will be the key to such performance upgrade. In order to reach this goal we study a very compact soft X-ray self-seeding scheme originally designed at SLAC. The scheme is based on a grating monochromator, and can be straightforwardly installed in the SASE3 undulator beamline at the European XFEL. For the European XFEL fully-coherent soft X-ray pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap SASE3 undulator. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations we show that soft X-ray FEL power reaches about 800 GW, that is about an order of magnitude higher than the SASE level at saturation (100 GW). The self-seeding setup studied in this work is extremely compact (about 5 m long), and cost-effective. This last characteristic may justify to consider it as a possible addition to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  16. High harmonics focusing undulator

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, A.A.; Hairetdinov, A.H.; Smirnov, A.V.; Khlebnikov, A.S. [Kurchatov Institute, Moscow (Russian Federation)

    1995-12-31

    It was shown in our previous work that there exist a possibility to enhance significantly the {open_quote}natural{close_quote} focusing properties of the hybrid undulator. Here we analyze the actual undulator configurations which could provide such field structure. Numerical simulations using 2D code PANDIRA were carried out and the enhanced focusing properties of the undulator were demonstrated. The obtained results provide the solution for the beam transport in a very long (short wavelength) undulator schemes.

  17. LCLS undulator production

    International Nuclear Information System (INIS)

    Trakhtenberg, E.; Barsz, T.; Lawrence, G.; Sasaki, S.; Vasserman, I.; White, M.; Goldfarb, G.; Lagonsky, S.; Sorsher, S.; Becker, T.; Dufresne, S.; Schuermann, R.

    2008-01-01

    Design and construction of the undulators for the linac coherent light source (LCLS) at the Stanford Linear Accelerator Center (SLAC) is the responsibility of Argonne National Laboratory (ANL). A full-scale prototype undulator was constructed in-house and extensively tested at Argonne's advanced photon source (APS). The device was tunable to well within the LCLS requirements and was stable for five years. Experience constructing the prototype undulator led us to conclude that with appropriate engineering design and detailed assembly procedures, precision undulators can be constructed by highly-qualified industrial vendors without undulator-construction experience. Argonne's detailed technological knowledge and experience were transferred to the successful bidders who produced outstanding undulators. Our production concept for the 3.4-m-long, fixed-gap, planar-hybrid undulators with a 30-mm period is discussed. Manufacturing, quality assurance, and acceptance testing details are also presented.

  18. Undulator commissioning by characterization of radiation in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2012-11-01

    Full Text Available In x-ray free electron lasers (XFELs where a long undulator composed of many segments is installed, there exist a number of error sources to reduce the FEL gain such as the trajectory error, K value discrepancy, and phase mismatch, which are related to the segmented-undulator structure. Undulator commissioning, which refers to the tuning and alignment processes to eliminate the possible error sources, is thus an important step toward realization of lasing. In the SPring-8 angstrom compact free electron laser (SACLA facility, the undulator commissioning has been carried out by means of characterization of x-ray radiation, i.e., measurements of the spatial and spectral profiles of monochromatized spontaneous undulator radiation as well as by probing the FEL intensity. The achieved tuning and alignment accuracies estimated from the statistics of actual measurements in SACLA show the effectiveness of this commissioning scheme.

  19. XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY

    International Nuclear Information System (INIS)

    Fawley, William; Lindberg, Ryan; Kim, K.-J.; Shvyd'ko, Yuri

    2010-01-01

    The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinal and transverse coherence of the radiation output.

  20. Magnetic force study for the helical afterburner for the European XFEL

    Science.gov (United States)

    Li, Peng; Wei, Tao; Li, Yuhui; Pflueger, Joachim

    2017-05-01

    At present the SASE3 undulator line at the European XFEL is using a planar undulator producing linear polarized soft Xray radiation only. In order to satisfy the demand for circular polarized radiation a helical undulator system, the so-called afterburner is in construction. It will be operated as a radiator using the pre-bunched beam of the SASE3 undulator system. Among several options for the magnetic structure the Apple-X geometry was chosen. This is a pure permanent magnet undulator using NdFeB material. Four magnet arrays are arranged symmetrically the beam axis. Polarization can be changed by adjusting the phase shift (PS) between the two orthogonal structures. The field strength can be adjusted either by gap adjustment or alternatively by the amplitude shift (AS) scheme. For an engineering design the maximum values of forces and torques on each of the components under worst case operational conditions are important. The superposition principle is used to reduce calculation time. It is found that the maximum forces Fx, Fy and Fz for a 2m long Apple-X undulator are 1.8*104N, 2.4*104N and 2.3*104N, respectively. More results are presented in this paper.

  1. Simulations of laser undulators

    Science.gov (United States)

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  2. Circular polarization control for the LCLS baseline in the soft X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    restricted to the LCLS baseline setup. Other facilities e. g. LCLS II or the European XFEL may benefit from this work as well, due to availability of sufficiently long free space at the end of undulator tunnel. (orig.)

  3. Modulated electron bunch with amplitude front tilt in an undulator

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2015-12-01

    In a previous paper we discussed the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. We demonstrated that the effect of aberration of light supplies the basis for understanding phenomena like the deflection of coherent undulator radiation by a dipole magnet. We illustrated this fact by examining the operation of an XFEL under the steady state assumption, that is a harmonic time dependence. We argued that in this particular case the microbunch front tilt has no objective meaning; in other words, there is no experiment that can discriminate whether an electron beam is endowed with a microbunch front tilt of not. In this paper we extend our considerations to time-dependent phenomena related with a finite electron bunch duration, or SASE mode of operation. We focus our attention on the spatiotemporal distortions of an X-ray pulse. Spatiotemporal coupling arises naturally in coherent undulator radiation behind the kick, because the deflection process involves the introduction of a tilt of the bunch profile. This tilt of the bunch profile leads to radiation pulse front tilt, which is equivalent to angular dispersion of the output radiation. We remark that our exact results can potentially be useful to developers of new generation XFEL codes for cross-checking their results.

  4. Flux shunts for undulators

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Hassenzahl, W.V.

    1993-05-01

    Undulators for high-performance applications in synchrotron-radiation sources and periodic magnetic structures for free-electron lasers have stringent requirements on the curvature of the electron's average trajectory. Undulators using the permanent magnet hybrid configuration often have fields in their central region that produce a curved trajectory caused by local, ambient magnetic fields such as those of the earth. The 4.6 m long Advanced Light Source (ALS) undulators use flux shunts to reduce this effect. These flux shunts are magnetic linkages of very high permeability material connecting the two steel beams that support the magnetic structures. The shunts reduce the scalar potential difference between the supporting beams and carry substantial flux that would normally appear in the undulator gap. Magnetic design, mechanical configuration of the flux shunts and magnetic measurements of their effect on the ALS undulators are described

  5. Machine protection for FLASH and the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Lars

    2009-05-15

    The Free-Electron Laser in Hamburg (FLASH) and the future European X-Ray Free-Electron Laser (XFEL) are sources of brilliant extremeultraviolet and X-ray radiation pulses. Both facilities are based on superconducting linear accelerators (linacs) that can produce and transport electron beams of high average power. With up to 90 kW or up to 600 kW of power, respectively, these beams hold a serious potential to damage accelerator components. This thesis discusses several passive and active machine protection measures needed to ensure safe operation. At FLASH, dark current from the rf gun electron source has activated several accelerator components to unacceptable radiation levels. Its transport through the linac is investigated with detailed tracking simulations using a parallelized and enhanced version of the tracking code Astra; possible remedies are evaluated. Beam losses can lead to the demagnetization of permanent magnet insertion devices. A number of beam loss scenarios typical for FLASH are investigated with shower simulations. A shielding setup is designed and its efficiency is evaluated. For the design parameters of FLASH, it is concluded that the average relative beam loss in the undulators must be controlled to a level of about 10{sup -8}. FLASH is equipped with an active machine protection system (MPS) comprising more than 80 photomultiplier-based beam loss monitors and several subsystems. The maximum response time to beam losses is less than 4 {mu}s. Setup procedures and calibration algorithms for MPS subsystems and components are introduced and operational problems are addressed. Finally, an architecture for a fully programmable machine protection system for the XFEL is presented. Several options for the topology of this system are reviewed, with the result that an availability goal of at least 0.999 for the MPS is achievable with moderate hardware requirements. (orig.)

  6. Machine protection for FLASH and the European XFEL

    International Nuclear Information System (INIS)

    Froehlich, Lars

    2009-05-01

    The Free-Electron Laser in Hamburg (FLASH) and the future European X-Ray Free-Electron Laser (XFEL) are sources of brilliant extremeultraviolet and X-ray radiation pulses. Both facilities are based on superconducting linear accelerators (linacs) that can produce and transport electron beams of high average power. With up to 90 kW or up to 600 kW of power, respectively, these beams hold a serious potential to damage accelerator components. This thesis discusses several passive and active machine protection measures needed to ensure safe operation. At FLASH, dark current from the rf gun electron source has activated several accelerator components to unacceptable radiation levels. Its transport through the linac is investigated with detailed tracking simulations using a parallelized and enhanced version of the tracking code Astra; possible remedies are evaluated. Beam losses can lead to the demagnetization of permanent magnet insertion devices. A number of beam loss scenarios typical for FLASH are investigated with shower simulations. A shielding setup is designed and its efficiency is evaluated. For the design parameters of FLASH, it is concluded that the average relative beam loss in the undulators must be controlled to a level of about 10 -8 . FLASH is equipped with an active machine protection system (MPS) comprising more than 80 photomultiplier-based beam loss monitors and several subsystems. The maximum response time to beam losses is less than 4 μs. Setup procedures and calibration algorithms for MPS subsystems and components are introduced and operational problems are addressed. Finally, an architecture for a fully programmable machine protection system for the XFEL is presented. Several options for the topology of this system are reviewed, with the result that an availability goal of at least 0.999 for the MPS is achievable with moderate hardware requirements. (orig.)

  7. THE VISA FEL UNDULATOR

    International Nuclear Information System (INIS)

    CARR, R.; CORNACCHIA, M.; EMMA, P.; NUHN, H.D.; FULAND, R.; JOHNSON, E.; RAKOWSKY, G.; LIDIA, S.; BERTOLINI, L.; LIBKIND, M.; FRIGOLA, P.; PELLEGRINI, C.; ROSENZWEIG, J.

    1998-01-01

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than ±50 pm per field gain length

  8. Sub-micron resolution rf cavity beam position monitor system at the SACLA XFEL facility

    Science.gov (United States)

    Maesaka, H.; Ego, H.; Inoue, S.; Matsubara, S.; Ohshima, T.; Shintake, T.; Otake, Y.

    2012-12-01

    We have developed and constructed a C-band (4.760 GHz) rf cavity beam position monitor (RF-BPM) system for the XFEL facility at SPring-8, SACLA. The demanded position resolution of the RF-BPM is less than 1 μm, because an electron beam and x-rays must be overlapped within 4 μm precision in the undulator section for sufficient FEL interaction between the electrons and x-rays. In total, 57 RF-BPMs, including IQ demodulators and high-speed waveform digitizers for signal processing, were produced and installed into SACLA. We evaluated the position resolutions of 20 RF-BPMs in the undulator section by using a 7 GeV electron beam having a 0.1 nC bunch charge. The position resolution was measured to be less than 0.6 μm, which was sufficient for the XFEL lasing in the wavelength region of 0.1 nm, or shorter.

  9. Cryogenic Permanent Magnet Undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-01-01

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm 2 Co 17 or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  10. Investigation of a free electron laser oscillator in the X-ray wavelength regime for the European XFEL; Untersuchungen zu einem Freie-Elektronen-Laser-Oszillator im Roentgen-Wellenlaengenbereich fuer den European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zemella, Johann Christian Uwe

    2013-09-15

    In this thesis an X-ray free electron laser oscillator for the European XFEL is described. Such an oscillator consists of at least two Bragg deflecting crystals, in this content two or four Diamond crystals, focussing mirrors and an undulator. The advantage of Diamond is caused by the high reflectivity and the high thermal conductivity, which is necessary for dissipate the absorbed energy out of the center of the crystal. In context of this thesis the principle layout of an XFELO for the European XFEL and the FEL process is presented. Effects on the FEL process due to the disturbances of the electron beam or the XFELO cavity are discussed. As second aspect the thermal evolution in the crystal under absorbed XFELO-pulses is investigated. An experiment for the investigation of the thermal evolution of crystals under simulated XFELO conditions is presented.

  11. Investigation of a free electron laser oscillator in the X-ray wavelength regime for the European XFEL

    International Nuclear Information System (INIS)

    Zemella, Johann Christian Uwe

    2013-09-01

    In this thesis an X-ray free electron laser oscillator for the European XFEL is described. Such an oscillator consists of at least two Bragg deflecting crystals, in this content two or four Diamond crystals, focussing mirrors and an undulator. The advantage of Diamond is caused by the high reflectivity and the high thermal conductivity, which is necessary for dissipate the absorbed energy out of the center of the crystal. In context of this thesis the principle layout of an XFELO for the European XFEL and the FEL process is presented. Effects on the FEL process due to the disturbances of the electron beam or the XFELO cavity are discussed. As second aspect the thermal evolution in the crystal under absorbed XFELO-pulses is investigated. An experiment for the investigation of the thermal evolution of crystals under simulated XFELO conditions is presented.

  12. Possible operation of the European XFEL with ultra-low emittance beams

    International Nuclear Information System (INIS)

    Brinkmann, R.; Schneidmiller, E.A.; Yurkov, M.V.

    2010-01-01

    Recent successful lasing of the Linac Coherent Light Source (LCLS) in the hard x-ray regime and the experimental demonstration of a possibility to produce low-charge bunches with ultra-small normalized emittance have lead to the discussions on optimistic scenarios of operation of the European XFEL. In this paper we consider new options that make use of low-emittance beams, a relatively high beam energy, tunable-gap undulators, and a multibunch capability of this facility. We study the possibility of operation of a spontaneous radiator (combining two of them, U1 and U2, in one beamline) in the SASE mode in the designed photon energy range 20-90 keV and show that it becomes possible with ultra-low emittance electron beams similar to those generated in LCLS. As an additional attractive option we consider the generation of powerful soft X-ray and VUV radiation by the same electron bunch for pump-probe experiments, making use of recently invented compact afterburner scheme. We also propose a betatron switcher as a simple, cheap, and robust solution for multi-color operation of SASE1 and SASE2 undulators, allowing to generate 2 to 5 X-ray beams of different independent colors from each of these undulators for simultaneous multi-user operation. We describe a scheme for pump-probe experiments, based on a production of two different colors by two closely spaced electron bunches (produced in photoinjector) with the help of a very fast betatron switcher. Finally, we discuss how without significant modifications of the layout the European XFEL can become a unique facility that continuously covers with powerful, coherent radiation a part of the electromagnetic spectrum from far infrared to gamma-rays. (orig.)

  13. Undulators at the ALS

    International Nuclear Information System (INIS)

    Hoyer, E.; Akre, J.; Chin, J.

    1994-07-01

    At Lawrence Berkeley Laboratory's (LBL) Advanced Light Source (ALS), three 4.6 m long undulators have been completed, tested and installed. A fourth is under construction. The completed undulators include two 5.0 cm period length, 89 period devices (U5.0s) which achieve a 0.85 T effective field at a 14 mm minimum gap and a 8.0 cm period length, 55 period device (U8.0) that reaches a 1.2 T effective field at a 14 mm minimum gap. The undulator under construction is a 10.0 cm period length, 43 period device (U10.0) that is designed to achieve 0.98 T at a 23 mm gap. Undulator magnetic gap variation (rms) is within 25 microns over the periodic structure length. Reproducibility of the adjustable magnetic gap has been measured to be within +/- 5 microns. Gap adjusting range is from 14 mm to 210 mm, which can be scanned in one minute. The 5.1 m long vacuum chambers are flat in the vertical direction to within 0.74 mm and straight in the horizontal direction to within 0.08 mm over the 4.6 m magnetic structure sections. Vacuum chamber base pressures after UHV beam conditioning are. in the mid 10 -11 Torr range and storage ring operating pressures with full current are in the low 10 -10 Torr range. Measurements show that the uncorrelated magnetic field errors are 0.23%, and 0.20% for the two U5.Os and the U8.0 respectively and that the field integrals are small over the 1 cm by 6 cm beam aperture. Device description, fabrication, and measurements are presented

  14. Geoid undulation accuracy

    Science.gov (United States)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  15. Small area detectors at the European XFEL

    Science.gov (United States)

    Turcato, M.; Gessler, P.; Hauf, S.; Kuster, M.; Meyer, M.; Nordgren, J.; Sztuk-Dambietz, J.; Youngman, C.

    2014-05-01

    The detectors to be used at the European XFEL have to deal with the unique time structure of the machine, delivering up to 2700 pulses, with a repetition rate of 4.5 MHz, ten times per second, the very high photon flux and the need to combine single-photon sensitivity and a large dynamic range. This represents a challenge not only for the large-area 2D imaging detectors but also for the smaller-area detectors and makes the use of standard commercial devices impossible. Dedicated solutions are therefore envisaged for small imaging- or strip-detectors. In this contribution the focus is put on two particular small-area detector solutions which are planned to be used at the European XFEL, a strip detector for hard X-rays (with energy 3 < E < 25 keV) and an imaging detector for soft X-rays (0.25 < E < 3 keV). Hard X-rays photon-beam diagnostics as well as hard X-ray absorption and emission spectroscopy at the European XFEL make use of strip detectors as detectors for beam spectrometers or as energy-dispersive detectors in combination with an energy-dispersive element. The European XFEL is establishing cooperation with the Paul Scherrer Institute in Villigen to develop a new version of the Gotthard detector best suited to the European XFEL needs. The use case and the required detector specifications are illustrated. Starting from the present detector version, the modifications planned to adapt it to the European XFEL running conditions are described. These include the capability of running at an increased rate and to provide a veto signal to the large 2D imaging detectors, in order to be able to remove non-interesting images already at early stages of the DAQ system. In another particular application, resonant inelastic X-ray scattering, a Micro-Channel Plate detector matched to a delay-line readout is foreseen to be used. In this case the European XFEL is aiming for a highly customized solution provided by the German company Surface Concept. The use case is described

  16. Tapered undulators for SASE FELs

    CERN Document Server

    Fawley, W M; Vinokurov, N A

    2002-01-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  17. Research of a hybrid undulator

    International Nuclear Information System (INIS)

    Ma Youwu; Wu Bing; Liu Bo

    1995-12-01

    A 1.5 m tapered hybrid undulator has been designed and built for mid-infrared free electron laser experiments at CIAE. The undulator utilizes the REC-steel hybrid configuration. The magnetic gap and magnetic field taper can be continuously adjusted. The rms error of the peak field is less than 0.53%. The electron trajectory deviation is around 0.03 mm. The design of undulator, sorting of magnets in hybrid undulator using simulated annealing technique, the motion of electron beam in the ideal and measured magnetic field, magnetic field measurement technique and magnetic field adjustment are described. (6 refs., 10 figs., 1 tab)

  18. Some new ideas about undulators

    International Nuclear Information System (INIS)

    Halbach, K.

    1985-11-01

    There are still no helical undulators that satisfy all major requirements. A new helical undulator is described that has at least some of the properties that were not obtainable until now. It can be used in a synchrotron storage ring, is completely accessible from both sides, light with both helicities can be produced, the helical field can be made quite strong, and the period length can be adjusted over a small range. Similarly, there have been some efforts lately to develop undulators with very short periods. It is shown how a hybrid undulator with a period of the order 1 mm can be constructed

  19. Use of PROFIBUS for cryogenic instrumentation at XFEL

    Science.gov (United States)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  20. CW Energy Recovery Operation of XFELs

    International Nuclear Information System (INIS)

    Jacek Sekutowicz; S. Bogacz; Dave Douglas; Peter Kneisel; Gwyn P. Wiliams; Massimo Ferrario; Luca Serafini; Ilan Ben-Zvi; James Rose; Triveni Srinivasan-Rao; Patrick Colestock; Wolf-Dietrich Moeller; Bernd Petersen; Dieter Proch; S. Simrock; James B. Rosenzweig

    2003-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: What will the next generation of the XFEL facilities look like ? Believing that super-conducting technology offers several advantages over room-temperature technology, such as high quality beams with highly populated bunches and the possibility of energy recovery or higher overall efficiency, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program is required over the next few years to arrive at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power. In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  1. Alignment of the VISA Undulator

    International Nuclear Information System (INIS)

    Ruland, Robert E.

    2000-01-01

    As part of the R and D program towards a fourth generation light source, a Self-Amplified Spontaneous Emission (SASE) demonstration is being prepared. The Visible-Infrared SASE Amplifier (VISA) undulator is being installed at Brookhaven National Laboratory. The VISA undulator is an in-vacuum, 4-meter long, 1.8 cm period, pure-permanent magnet device, with a novel, strong focusing, permanent magnet FODO array included within the fixed, 6 mm undulator gap. The undulator is constructed of 99 cm long segments. To attain maximum SASE gain requires establishing overlap of electron and photon beams to within 50 pm rms. This imposes challenging tolerances on mechanical fabrication and magnetic field quality, and necessitates use of laser straightness interferometry for calibration and alignment of the magnetic axes of the undulator segments. This paper describes the magnetic centerline determination, and the fiducialization and alignment processes, which were performed to meet the tolerance goal

  2. Numerical Modeling of Shoreline Undulations

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg

    model has been developed which describes the longshore sediment transport along arbitrarily shaped shorelines. The numerical model is based on a spectral wave model, a depth integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model. First the theoretical...... of the feature and under predicts the migration speeds of the features. On the second shoreline, the shoreline model predicts undulations lengths which are longer than the observed undulations. Lastly the thesis considers field measurements of undulations of the bottom bathymetry along an otherwise straight...... length of the shoreline undulations is determined in the linear regime using a shoreline stability analysis based on the numerical model. The analysis shows that the length of the undulations in the linear regime depends on the incoming wave conditions and on the coastal profile. For larger waves...

  3. Undulator-Based Production of Polarized Photons

    International Nuclear Information System (INIS)

    McDonald, Kirk

    2008-01-01

    'Project Title: Undulator-Based Production of Polarized Photons' DOE Contract Number: FG02-04ER41355 Principal Investigator: Prof. Kirk McDonald Period of Performance: 09/10/2004 thru 08/31/2006 This award was to fund Princeton's activity on SLAC experiment E166, 'Undulator-Based Production of Polarized Positrons' which was performed at SLAC during June and September 2005. Princeton U. fabricated a magnetic spectrometer for this experiment, and participated in the commissioning, operation, and analysis of the experiment, for which Prof. McDonald was a co-spokesperson. The experiment demonstrated that an intense positron beam with 80% longitudinal polarization could be generated by conversion of MeVenergy circularly polarized photons in a thin target, which photons were generated by passage of high-energy electrons through a helical undulator. This technique has since been adopted as the baseline for the polarized positron source of the proposed International Linear Collider. Results of the experiment have been published in Physical Review Letters, vol 100, p 210801 (2008) (see attached .pdf file), and a longer paper is in preparation.

  4. Diffusion effects in undulator radiation

    Directory of Open Access Journals (Sweden)

    Ilya Agapov

    2014-11-01

    Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.

  5. Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodnov, I.; Feng, G.; Limberg, T.

    2016-07-15

    The usage of X-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a larger number of Bragg peaks used for determination of the crystal orientation. Considering the baseline configuration of the European XFEL in Hamburg, and based on beam dynamics simulations, we demonstrate here that the usage of corrugated structures allows for a considerable increase in radiation bandwidth. Data collection with a 3% bandwidth, a few microjoule radiation pulse energy, a few femtosecond pulse duration, and a photon energy of 5.4 keV is possible. For this study we have developed an analytical modal representation of the short-range wake function of the flat corrugated structures for arbitrary offsets of the source and the witness particles.

  6. Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL

    International Nuclear Information System (INIS)

    Zagorodnov, I.; Feng, G.; Limberg, T.

    2016-07-01

    The usage of X-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a larger number of Bragg peaks used for determination of the crystal orientation. Considering the baseline configuration of the European XFEL in Hamburg, and based on beam dynamics simulations, we demonstrate here that the usage of corrugated structures allows for a considerable increase in radiation bandwidth. Data collection with a 3% bandwidth, a few microjoule radiation pulse energy, a few femtosecond pulse duration, and a photon energy of 5.4 keV is possible. For this study we have developed an analytical modal representation of the short-range wake function of the flat corrugated structures for arbitrary offsets of the source and the witness particles.

  7. Conceptual design of an undulator system for a dedicated bio-imaging beamline at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We describe a future possible upgrade of the European XFEL consisting in the construction of an undulator beamline dedicated to life science experiments. The availability of free undulator tunnels at the European XFEL facility offers a unique opportunity to build a beamline optimized for coherent diffraction imaging of complex molecules, like proteins and other biologically interesting structures. Crucial parameters for such bio-imaging beamline are photon energy range, peak power, and pulse duration. Key component of the setup is the undulator source. The peak power is maximized in the photon energy range between 3 keV and 13 keV by the use of a very efficient combination of self-seeding, fresh bunch and tapered undulator techniques. The unique combination of ultra-high peak power of 1 TW in the entire energy range, and ultrashort pulse duration tunable from 2 fs to 10 fs, would allow for single shot coherent imaging of protein molecules with size larger than 10 nm. Also, the new beamline would enable imaging of large biological structures in the water window, between 0.3 keV and 0.4 keV. In order to make use of standardized components, at present we favor the use of SASE3-type undulator segments. The number segments, 40, is determined by the tapered length for the design output power of 1 TW. The present plan assumes the use of a nominal electron bunch with charge of 0.1 nC. Experiments will be performed without interference with the other three undulator beamlines. Therefore, the total amount of scheduled beam time per year is expected to be up to 4000 hours.

  8. An electromagnetic micro-undulator

    International Nuclear Information System (INIS)

    Nassiri, A.; Turner, L.R.

    1997-01-01

    Microfabrication technology using the LIGA (a German acronym for Lithography, Electroforming, and Molding) process offers an attractive alternative for fabricating precision devices with micron-sized features. One such device is a mm-sized micro-undulator with potential applications in a table-top synchrotron light source for medical and other industrial uses. The undulator consists of a silver conductor embedded in poles and substrate of nickel-iron. Electromagnetic modeling of the undulator is done using the eddy current computer code ELEKTRA. Computations predict a field pattern of appropriate strength and quality if the current can be prevented from being shunted from silver by the nickel-iron poles either through insulation or through slotted poles. The design of the undulator along with the computational results are discussed

  9. Research on transition undulator radiation

    International Nuclear Information System (INIS)

    Lu Shuzhuang; Dai Zhimin; Zhao Xiaofeng

    2000-01-01

    The theory of transition undulator radiation was described first, then the properties of infrared and far-infrared transition undulator radiation of SSRF U9.0 were explored by the methods of analytical treatment and numerical simulation, and the influence of beam energy spread, emittance, and magnetic field errors on transition undulator radiation was given also. It was shown that the flux density of the infrared and far-infrared transition undulator radiation of the SSRF U9.0 was high (e.g., the maximum flux density might reach 35 x 10 13 photons/(s·mrad 2 ·BW), collecting angle φ = 0.23 mrad, and the effects of beam energy spread, emittance and magnetic field errors on the radiation flux density were small

  10. A flexible and testable software architecture: applying presenter first to a device server for the DOOCS accelerator control system of the European XFEL

    International Nuclear Information System (INIS)

    Beckmann, A.; Karabekyan, S.; Pflüger, J.

    2012-01-01

    Presenter First (PF) uses a variant of Model View Presenter design pattern to add implementation flexibility and to improve testability of complex event-driven applications. It has been introduced in the context of GUI applications, but can easily be adapted to server applications. This paper describes how Presenter First methodology is used to develop a device server for the Programmable Logic Controls (PLC) of the European XFEL undulator systems, which are Windows PCs running PLC software from Beckhoff. The server implements a ZeroMQ message interface to the PLC allowing the DOOCS accelerator control system of the European XFEL to exchange data with the PLC by sending messages over the network. Our challenge is to develop a well-tested device server with a flexible architecture that allows integrating the server into other accelerator control systems like EPICS. (author)

  11. Theoretical computation of the polarization characteristics of an X-ray free-electron laser with planar undulator

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2015-02-01

    We show that radiation pulses from an X-ray Free-Electron Laser (XFEL) with a planar undulator, which are mainly polarized in the horizontal direction, exhibit a suppression of the vertical polarization component of the power at least by a factor λ 2 w /(4πL g ) 2 , where λ w is the length of the undulator period and L g is the FEL field gain length. We illustrate this fact by examining the XFEL operation under the steady state assumption. In our calculations we considered only resonance terms: in fact, non resonance terms are suppressed by a factor λ 3 w /(4πL g ) 3 and can be neglected. While finding a situation for making quantitative comparison between analytical and experimental results may not be straightforward, the qualitative aspects of the suppression of the vertical polarization rate at XFELs should be easy to observe. We remark that our exact results can potentially be useful to developers of new generation FEL codes for cross-checking their results.

  12. Interferometry using undulator sources

    International Nuclear Information System (INIS)

    Beguiristain, R.; Goldberg, K.A.; Tejnil, E.; Bokor, J.; Medecki, H.; Attwood, D.T.; Jackson, K.

    1996-01-01

    Optical systems for extreme ultraviolet (EUV) lithography need to use optical components with subnanometer surface figure error tolerances to achieve diffraction-limited performance [M.D. Himel, in Soft X-Ray Projection Lithography, A.M. Hawryluk and R.H. Stulen, eds. (OSA, Washington, D.C., 1993), 18, 1089, and D. Attwood et al., Appl. Opt. 32, 7022 (1993)]. Also, multilayer-coated optics require at-wavelength wavefront measurement to characterize phase effects that cannot be measured by conventional optical interferometry. Furthermore, EUV optical systems will additionally require final testing and alignment at the operational wavelength for adjustment and reduction of the cumulative optical surface errors. Therefore, at-wavelength interferometric measurement of EUV optics will be the necessary metrology tool for the successful development of optics for EUV lithography. An EUV point diffraction interferometer (PDI) has been developed at the Center for X-Ray Optics (CXRO) and has been already in operation for a year [K. Goldberg et al., in Extreme Ultra Lithography, D.T. Attwood and F. Zernike, eds. (OSA, Washington, D.C., 1994), K. Goldberg et al., Proc. SPIE 2437, to be published, and K. Goldberg et al., J. Vac. Sci. Technol. B 13, 2923 (1995)] using an undulator radiation source and coherent optics beamline at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. An overview of the PDI interferometer and some EUV wavefront measurements obtained with this instrument will be presented. In addition, future developments planned for EUV interferometry at CXRO towards the measurement of actual EUV lithography optics will be shown. copyright 1996 American Institute of Physics

  13. Development of cryogenic permanent magnet undulator

    International Nuclear Information System (INIS)

    Hara, Toru; Tanaka, Takashi; Shirasawa, Katsutoshi; Kitamura, Hideo; Bizen, Teruhiko; Seike, Takamitsu; Marechal, Xavier; Tsuru, Rieko; Iwaki, Daisuke

    2005-01-01

    A short period undulator increases not only the photon energy of undulator radiation, but also the brilliance due to its increased number of undulator periods. As a result, brilliant undulator radiation becomes available in the photon energy range, which is currently covered by wigglers. In order to develop a short period undulator, high performance magnets are indispensable and superconductive undulators have been actively investigated in recent years. In this paper, however, we propose a new approach, so called a cryogenic permanent magnet undulator using NdFeB magnets at the temperatures around 150 K. The current status of this cryogenic permanent magnet undulator development at SPring-8 is presented including the results of the magnetic field measurements on a prototype undulator. (author)

  14. The properties of undulator radiation

    International Nuclear Information System (INIS)

    Howells, M.R.; Kincaid, B.M.

    1993-09-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray, and hard x-ray spectral regions is under construction in several countries. These sources are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. Some of the novel features of the new sources are discussed, along with the characteristics of the radiation produced, with emphasis on the Advanced Light Source, a third-generation 1.5 GeV storage ring optimized for undulator use. A review of the properties of undulator radiation is presented, followed by a discussion of some of the unique challenges being faced by the builders and users of the new undulator sources. These include difficult mechanical and magnetic tolerance limits, a complex interaction with the storage ring, high x-ray beam power, partial coherence, harmonics, optics contamination, and the unusual spectral and angular properties of undulator radiation

  15. Optimized Bunch Compression System for the European XFEL

    CERN Document Server

    Limberg, Torsten; Brinkmann, Reinhard; Decking, Winfried; Dohlus, Martin; Flöettmann, Klaus; Kim, Yujong; Schneidmiller, Evgeny

    2005-01-01

    The European XFEL bunch compressor system has been optimized for greater flexibility in parameter space. Operation beyond the XFEL design parameters is discussed in two directions: achieving the uppermost number of photons in a single pulse on one hand and reaching the necessary peak current for lasing with a pulse as short as possible on the other. Results of start-to-end calculations including 3D-CSR effects, space charge forces and the impact on wake fields demonstrate the potential of the XFEL for further improvement or, respectively, its safety margin for operation at design values.

  16. Grating monochromator for soft X-ray self-seeding the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-02-15

    Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. The implementation of this method in the soft X-ray wavelength range necessarily involves gratings as dispersive elements. We study a very compact self-seeding scheme with a grating monochromator originally designed at SLAC, which can be straightforwardly installed in the SASE3 type undulator beamline at the European XFEL. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV. The optical system was studied using wave optics method (in comparison with ray tracing) to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations, and errors from each optical element. Wave optics is the only method available, in combination with FEL simulations, for the design of a self-seeding monochromator without exit slit. We show that, without exit slit, the self-seeding scheme is distinguished by the much needed experimental simplicity, and can practically give the same resolving power (about 7000) as with an exit slit. Wave optics is also naturally applicable to calculations of the self-seeding scheme efficiency, which include the monochromator transmittance and the effect of the mismatching between seed beam and electron beam. Simulations show that the FEL power reaches 1 TW and that the spectral density for a TW pulse is about two orders of magnitude higher than that for the SASE pulse at saturation.

  17. Grating monochromator for soft X-ray self-seeding the European XFEL

    International Nuclear Information System (INIS)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Geloni, Gianluca

    2013-02-01

    Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. The implementation of this method in the soft X-ray wavelength range necessarily involves gratings as dispersive elements. We study a very compact self-seeding scheme with a grating monochromator originally designed at SLAC, which can be straightforwardly installed in the SASE3 type undulator beamline at the European XFEL. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV. The optical system was studied using wave optics method (in comparison with ray tracing) to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations, and errors from each optical element. Wave optics is the only method available, in combination with FEL simulations, for the design of a self-seeding monochromator without exit slit. We show that, without exit slit, the self-seeding scheme is distinguished by the much needed experimental simplicity, and can practically give the same resolving power (about 7000) as with an exit slit. Wave optics is also naturally applicable to calculations of the self-seeding scheme efficiency, which include the monochromator transmittance and the effect of the mismatching between seed beam and electron beam. Simulations show that the FEL power reaches 1 TW and that the spectral density for a TW pulse is about two orders of magnitude higher than that for the SASE pulse at saturation.

  18. Undulator radiation in a waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-03-15

    We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)

  19. Undulator radiation in a waveguide

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-03-01

    We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)

  20. Development of a Planar Undulator

    International Nuclear Information System (INIS)

    Deyhim, Alex; Johnson, Eric; Kulesza, Joe; Lyndaker, Aaron; Waterman, Dave; Eisert, Dave; Green, Michael A.; Rogers, Greg; Blomqvist, K. Ingvar

    2007-01-01

    The design of a planar pure permanent magnet undulator is presented. The design requirements and mechanical difficulties for holding, positioning, and driving the magnetic arrays are explored. The structural, thermal, and electrical considerations that influenced the design are then analyzed. And finally detailed magnetic measurements are presented

  1. Transition undulator radiation as bright infrared sources

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  2. Commissioning for the European XFEL facility

    Science.gov (United States)

    Nölle, D.

    2017-06-01

    The European XFEL is a 4th generation light source based on the Self Amplified Spontaneous Emission (SASE) FreeElectron-Laser concept. It is currently being commissioned in North- Germany. The core installation is a 17.5 GeV superconducting accelerator driving 3 SASE lines with photon energies from 1 to beyond 20 keV range with a maximum of 27.000 pulses per second. The international facility is organized as a limited liability company with shareholders from the contributing countries. DESY has taken over the leadership of the accelerator construction consortium, and will be in charge of the operation of the accelerator complex. The facility was set up with contributions from the 11 shareholder countries, either being hardware systems and/or staff or cash contributions. The construction is almost complete, and the commissioning phase has started by the end of 2015. This contribution will report the status of the accelerator complex with emphasis on the commissioning of the accelerator and an outlook to the commissioning of the SASE 1 FEL line.

  3. Proposal for a scheme to generate 10 TW-Level femtosecond X-ray pulses for imaging single protein molecules at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Yefanov, Oleksander [Center for Free-Electron Laser Science, Hamburg (Germany)

    2013-06-15

    Single biomolecular imaging using XFEL radiation is an emerging method for protein structure determination using the ''diffraction before destruction'' method at near atomic resolution. Crucial parameters for such bio-imaging experiments are photon energy range, peak power, pulse duration, and transverse coherence. The largest diffraction signals are achieved at the longest wavelength that supports a given resolution, which should be better than 0.3 nm. We propose a configuration which combines self-seeding and undulator tapering techniques with the emittance-spoiler method in order to increase the XFEL output peak power and to shorten the pulse duration up to a level sufficient for performing bio-imaging of single protein molecules at the optimal photon energy range, i.e. around 4 keV. Experiments at the LCLS confirmed the feasibility of these three new techniques. Based on start-to-end simulations we demonstrate that self-seeding, combined with undulator tapering, allows one to achieve up to a 100-fold increase in peak-power. A slotted foil in the last bunch compressor is added for X-ray pulse duration control. Simulations indicate that one can achieve diffraction to the desired resolution with 50 mJ (corresponding to 10{sup 14} photons) per 10 fs pulse at 3.5 keV photon energy in a 100 nm focus. This result is exemplified using the photosystem I membrane protein as a case study.

  4. Phasing multi-segment undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Elleaume, P.; Vaerenbergh, P. Van

    1996-01-01

    An important issue in the manufacture of multi-segment undulators as a source of synchrotron radiation or as a free-electron laser (FEL) is the phasing between successive segments. The state of the art is briefly reviewed, after which a novel pure permanent magnet phasing section that is passive and does not require any current is presented. The phasing section allows the introduction of a 6 mm longitudinal gap between each segment, resulting in complete mechanical independence and reduced magnetic interaction between segments. The tolerance of the longitudinal positioning of one segment with respect to the next is found to be 2.8 times lower than that of conventional phasing. The spectrum at all gaps and useful harmonics is almost unchanged when compared with a single-segment undulator of the same total length. (au) 3 refs

  5. Observational constraints on undulant cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2005-10-01

    In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.

  6. Coherent radiation in an undulator

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1990-12-01

    This paper is concerned with the synchrotron radiation from an undulating electron beam in a rectangular waveguide. The analysis is based on the dyadic Green's function approach to solve Maxwell's equations in terms of the vector potential. It is shown analytically and numerically that the radiated energy spectrum may differ significantly from the free space results when the undulator length divided by the Lorentz factor of the electron beam is larger than the transverse size of the waveguide. Then, the appearance of the spectrum is changed into a small number of sharp peaks, each corresponding to an excited waveguide mode. The undulator radiation is identified with the wake field in beam instabilities. The concepts of wake function and impedance are introduced to formulate the present problem in the same manner as the beam instability problem, so that the accumulated techniques of the latter can be applied. It is shown that the obtained impedances satisfy the Panofsky-Wenzel theorem and other properties inevitable for wake fields. 4 refs., 2 figs

  7. Detector Development for the European XFEL: Requirements and Status

    International Nuclear Information System (INIS)

    Koch, Andreas; Kuster, Markus; Sztuk-Dambietz, Jolanta; Turcato, Monica

    2013-01-01

    The variety of applications and especially the unique European XFEL time structure will require adequate instrumentation to be developed to exploit the full potential of the light source. Two-dimensional integrating X-ray detectors with ultra-fast read out up to 4.5 MHz for 1024 × 1024 pixel images are under development for a variety of imaging applications. The actual status of the European XFEL detector development projects is presented. Furthermore, an outlook will be given with respect to detector research and development, performance optimization, integration, and commissioning.

  8. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A

    2007-01-01

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  9. Extension of SASE bandwidth up to 2% as a way to increase the efficiency of protein structure determination by X-ray nanocrystallography at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gelonib, Gianluca [European XFEL GmbH, Hamburg (Germany); Yefanov, Oleksandr [Center for Free-Electron Laser Science, Hamburg (Germany)

    2013-06-15

    Femtosecond x-ray nanocrystallography exploiting XFEL radiation is an emerging method for protein structure determination using crystals with sizes ranging from a few tens to a few hundreds nanometers. Crystals are randomly hit by XFEL pulses, producing diffraction patterns at unknown orientations. One can determine these orientations by studying the diffraction patterns themselves, i.e. by indexing the Bragg peaks. The number of indexed individual images and the SASE bandwidth are inherently linked, because increasing the number of Bragg peaks per individual image requires increasing the bandwidth of the spectrum. This calls for a few percent SASE bandwidth, resulting in an increase in the number of indexed images at the same number of hits. Based on start-to-end simulations for the baseline of the European XFEL, we demonstrate here that it is possible to achieve up to a tenfold increase in SASE bandwidth, compared with the nominal mode of operation. This provides a route for further increasing the efficiency of protein structure determination at the European XFEL.We illustrate this concept with simulations of lysozyme nanocrystals.

  10. Impact of a Vertically Polarized Undulator on LCLS Hard X-ray Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-11-14

    The LCLS-II project will install two variable gap, horizontally polarized undulators into the LCLS undulator hall. One undulator is designed to produce soft x-rays spanning an energy range of 200-1250 eV (SXU) while the other is designed for the hard spectral range of 1-25 keV (HXU). The hard x-ray LCLS instruments (X-ray Pump- Probe [XPP], X-ray correlation Spectroscopy [XCS], Coherent X-ray Imaging [CXI], Matter in Extreme Conditions [MEC]) will be repurposed to operate on the HXU line while two new soft x-ray beamlines will be created for the SXU line. An alternate HXU undulator design is being considered that could provide advantages over the present design choice. In particular, the project team is collaborating with Argonne National Laboratory to develop a vertically polarized undulator (VPU). A 1-m prototype VPU device was successfully constructed this year and a full size prototype is in process. A decision to alter the project baseline, which is the construction of a horizontally polarized device, must be made in the coming weeks to not impact the present project schedule. Please note that a change to the soft x-ray undulator is not under discussion at the moment.

  11. Status of the LCLS-II undulators

    Energy Technology Data Exchange (ETDEWEB)

    Wallén, E., E-mail: ejwallen@lbl.gov; Arbelaez, D.; Brown, A.; Dougherty, J.; Corlett, J.; DeMello, A.; Hanzel, K.; Jung, J.-Y.; Leitner, M.; Madur, A.; McCombs, K.; Marks, S.; Munson, D.; Plate, D.; Pucci, J.; Ray, K.; Schlueter, R.; Mateo, E. San [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); D’Ewart, M.; Rowen, M. [SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-07-27

    The new free electron laser facility Linear Coherent Light Source II (LCLS-II) under construction at SLAC National Accelerator Laboratory will use planar variable gap undulators of hybrid type for the production of free electron laser (FEL) radiation. The LCLS-II will include two FELs with two separate rows of undulators to generate soft and hard x-rays. The soft x-rays will be produced by undulators with 39 mm period length (SXR) and the hard x-rays will be produced by undulators with 26 mm period length (HXR). Both the SXR and the HXR undulators are 3.4 m long and they use a common support structure and frame. In total 21 SXR and 32 HXR undulators will be produced by Lawrence Berkeley National Laboratory in collaboration with SLAC National Accelerator Laboratory. A full-scale prototype with 32 mm period length, called HXU, has been assembled at Lawrence Berkeley National Laboratory (LBNL). The present status of the design, prototyping, and pre-series production of the SXR and HXR undulators are presented in this paper together with the first results from measurements on the full scale HXU prototype.

  12. Analysis of field errors in existing undulators

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1990-01-01

    The Advanced Light Source (ALS) and other third generation synchrotron light sources have been designed for optimum performance with undulator insertion devices. The performance requirements for these new undulators are explored, with emphasis on the effects of errors on source spectral brightness. Analysis of magnetic field data for several existing hybrid undulators is presented, decomposing errors into systematic and random components. An attempts is made to identify the sources of these errors, and recommendations are made for designing future insertion devices. 12 refs., 16 figs

  13. EIROforum welcomes the European XFEL as a new member

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The European research facility XFEL has become the eighth member of EIROforum. Just as political and economic interests have become unified within Europe, scientific research is benefiting from a similar alliance.   Massimo Altarelli, Chairman of the XFEL Management Board (left) and Francesco Romanelli, Chairman of the EIROforum (right). In the back (left to right): Francesco Sette (ESRF), Felicitas Pauss (CERN), Iain Mattaj (EMBL), Richard Wagner (ILL), Rowena Sirey (ESO) and David Southwood (ESA). In this day and age, scientific research is oriented towards large-scale projects, which require the involvement of a large number of partners – meaning funding institutes or national governments – and, obviously, the cooperation of the leading experts in a variety of related fields. For these reasons, it is essential to encourage synergies on an international level, combining resources, facilities and expertise. This is the quest of EIROforum, which brings together research organ...

  14. Solid state modulator for klystron power supply XFEL TDS INJ

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  15. Proposed continuous wave energy recovery operation of an XFEL

    International Nuclear Information System (INIS)

    J. Sekutowicz; S. A. Bogacz; D. Douglas; P. Kneisel; G. P. Williams; M. Ferrario; L. Serafini; I. Ben-Zvi; J. Rose; J. Smedley; T. Srinivasan-Rao; W.-D. Moeller; B. Petersen; D. Proch; S. Simrock; P. Colestock; J. B. Rosenzweig

    2004-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: ''What will the next generation of XFEL facilities look like?'' Believing that superconducting technology offers advantages such as high quality beams with highly populated bunches, the possibility of energy recovery and higher overall efficiency than warm technology, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in the machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program should be proposed to arrive in the next few years at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power?'' In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  16. Continuous wave energy recovery operation of an XFEL

    International Nuclear Information System (INIS)

    Jacek Sekutowicz; Bogacz, S. A.; Douglas, D.; Kneisel, Peter; Williams, G. P.; Ferrario, M.; Serafini, L.; Ben-Zvi, I.; Rose, J.; Srinivasan-Rao, T.; Mueller, W.-D.; Petersen, B.; Proch, D.; Simrock, S.; Colestock, P.; Rosenzweig, J. B.

    2003-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: ''What will the next generation of XFEL facilities look like?'' Believing that superconducting technology offers advantages such as high quality beams with highly populated bunches, the possibility of energy recovery and higher overall efficiency than warm technology, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in the machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program should be proposed to arrive in the next few years at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power?'' In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  17. Numerical Simulations of X-Ray Free Electron Lasers (XFEL)

    KAUST Repository

    Antonelli, Paolo

    2014-11-04

    We study a nonlinear Schrödinger equation which arises as an effective single particle model in X-ray free electron lasers (XFEL). This equation appears as a first principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in [A. Fratalocchi and G. Ruocco, Phys. Rev. Lett., 106 (2011), 105504]. Since XFEL are more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudospectral method to investigate numerically the behavior of the model versus that of its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case and in the presence of a periodic lattice. We find the time-averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases [P. Antonelli, A. Athanassoulis, H. Hajaiej, and P. Markowich, Arch. Ration. Mech. Anal., 211 (2014), pp. 711--732].

  18. Effects of angular misalignment on optical klystron undulator radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, G., E-mail: gmishra_dauniv@yahoo.co.in; Prakash, Bramh; Gehlot, Mona

    2015-11-21

    In this paper ,we analyze the important effects of optical klystron undulator radiation with an angular offset of the relativistic electron beam in the second undulator section. An anlytical expression for the undulator radiation is obtained through a transparent and simple procedure.It is shown that the effects of the angular offset is more severe for longer undulator lengths and with higher dispersive field strengths.Both these effects are less pronounced for undulators with large K values.

  19. An electron undulating ring for VLSI lithography

    International Nuclear Information System (INIS)

    Tomimasu, T.; Mikado, T.; Noguchi, T.; Sugiyama, S.; Yamazaki, T.

    1985-01-01

    The development of the ETL storage ring ''TERAS'' as an undulating ring has been continued to achieve a wide area exposure of synchrotron radiation (SR) in VLSI lithography. Stable vertical and horizontal undulating motions of stored beams are demonstrated around a horizontal design orbit of TERAS, using two small steering magnets of which one is used for vertical undulating and another for horizontal one. Each steering magnet is inserted into one of the periodic configulation of guide field elements. As one of useful applications of undulaing electron beams, a vertically wide exposure of SR has been demonstrated in the SR lithography. The maximum vertical deviation from the design orbit nCcurs near the steering magnet. The maximum vertical tilt angle of the undulating beam near the nodes is about + or - 2mrad for a steering magnetic field of 50 gauss. Another proposal is for hith-intensity, uniform and wide exposure of SR from a wiggler installed in TERAS, using vertical and horizontal undulating motions of stored beams. A 1.4 m long permanent magnet wiggler has been installed for this purpose in this April

  20. Experience with small-gap undulators

    International Nuclear Information System (INIS)

    Stefan, P.; Krinsky, S.

    1996-01-01

    Small-gap undulators offer enhanced performance as synchrotron radiation sources, by providing extended tuning range and the possibility of higher photon energies via short-period, small-gap devices. Challenges associated with the operation of small-gap undulators arise from their requirement for small beam apertures and the resulting possibility of lifetime degradation, beam instabilities, and radiation hazards. To investigate these fundamental limitations, we have constructed an R ampersand D small-gap undulator for the X13 straight section of the NSLS 2.584 GeV X-ray Ring and have tested it during studies shifts and normal user shifts during the last year. This device, the NSLS prototype small-gap undulator (PSGU), consists of a variable-aperture vacuum chamber and a 16-mm-period pure-permanent-magnet undulator, both mounted to a common elevator base stage. The design output spectrum of 2.5 keV in the fundamental (and 7.5 keV in the third harmonic) was obtained with a magnet gap of 5.6 mm and an electron beam aperture of 2.5 mm. The partial lifetime contribution for these parameters was observed to be about 40 hr. Details of the synchrotron radiation output spectrum, lifetime dependence on aperture, and bremsstrahlung radiation production will be presented. copyright 1996 American Institute of Physics

  1. Undulator Hall Air Temperature Fault Scenarios

    International Nuclear Information System (INIS)

    Sevilla, J.

    2010-01-01

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about ±2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  2. RF system modeling and controller design for the European XFEL

    International Nuclear Information System (INIS)

    Schmidt, Christian

    2011-06-01

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration. They are not sufficiently suppressed

  3. RF system modeling and controller design for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Christian

    2011-06-15

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H{sub {infinity}} loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration

  4. Cost-effective way to enhance the capabilities of the LCLS baseline

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-08-15

    This paper discusses the potential for enhancing the LCLS hard X-ray FEL capabilities. In the hard X-ray regime, a high longitudinal coherence will be the key to such performance upgrade. The method considered here to obtain high longitudinal coherence is based on a novel single-bunch self-seeding scheme exploiting a single crystal monochromator, which is extremely compact and can be straightforwardly installed in the LCLS baseline undulator. We present simulation results dealing with the LCLS hard X-ray FEL, and show that this method can produce fully-coherent X-ray pulses at 100 GW power level. With the radiation beam monochromatized down to the Fourier transform limit, a variety of very different techniques leading to further improvements of the LCLS performance become feasible. In particular, we describe an efficient way for obtaining full polarization control at the LCLS hard X-ray FEL. We also propose to exploit crystals in the Bragg reflection geometry as movable deflectors for the LCLS X-ray transport systems. The hard X-ray beam can be deflected of an angle of order of a radian without perturbations. The monochromatization of the output radiation constitutes the key for reaching such result. Finally, we describe a newoptical pump - hard X-ray probe technique which will allow time-resolved studies at the LCLS baseline on the femtosecond time scale. The principle of operation of the proposed scheme is essentially based on the use of the time jitter between pump and probe pulses. This eliminates the need for timing XFELs to high-power conventional lasers with femtosecond accuracy. (orig.)

  5. Cost-effective way to enhance the capabilities of the LCLS baseline

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-08-01

    This paper discusses the potential for enhancing the LCLS hard X-ray FEL capabilities. In the hard X-ray regime, a high longitudinal coherence will be the key to such performance upgrade. The method considered here to obtain high longitudinal coherence is based on a novel single-bunch self-seeding scheme exploiting a single crystal monochromator, which is extremely compact and can be straightforwardly installed in the LCLS baseline undulator. We present simulation results dealing with the LCLS hard X-ray FEL, and show that this method can produce fully-coherent X-ray pulses at 100 GW power level. With the radiation beam monochromatized down to the Fourier transform limit, a variety of very different techniques leading to further improvements of the LCLS performance become feasible. In particular, we describe an efficient way for obtaining full polarization control at the LCLS hard X-ray FEL. We also propose to exploit crystals in the Bragg reflection geometry as movable deflectors for the LCLS X-ray transport systems. The hard X-ray beam can be deflected of an angle of order of a radian without perturbations. The monochromatization of the output radiation constitutes the key for reaching such result. Finally, we describe a newoptical pump - hard X-ray probe technique which will allow time-resolved studies at the LCLS baseline on the femtosecond time scale. The principle of operation of the proposed scheme is essentially based on the use of the time jitter between pump and probe pulses. This eliminates the need for timing XFELs to high-power conventional lasers with femtosecond accuracy. (orig.)

  6. Field Optimization for short Period Undulators

    CERN Document Server

    Peiffer, P; Rossmanith, R; Schoerling, D

    2011-01-01

    Undulators dedicated to low energy electron beams, like Laser Wakefield Accelerators, require very short period lengths to achieve X-ray emission. However, at these short period length (LambdaU ~ 5 mm) it becomes difficult to reach magnetic field amplitudes that lead to a K parameter of >1, which is generally desired. Room temperature permanent magnets and even superconductive undulators using Nb-Ti as conductor material have proven insufficient to achieve the desired field amplitudes. The superconductor Nb$_{3}$Sn has the theoretical potential to achieve the desired fields. However, up to now it is limited by several technological challenges to much lower field values than theoretically predicted. An alternative idea for higher fields is to manufacture the poles of the undulator body from Holmium instead of iron or to use Nb-Ti wires with a higher superconductor/copper ratio. The advantages and challenges of the different options are compared in this contribution.

  7. Variable-Period Undulators for Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  8. Variable-Period Undulators For Synchrotron Radiation

    Science.gov (United States)

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  9. Canonical particle tracking in undulator fields

    International Nuclear Information System (INIS)

    Wuestefeld, G.; Bahrdt, J.

    1991-01-01

    A new algebraic mapping routine for particle tracking across wiggler and undulator fields in presented. It is based on a power series expansion of the generating function to guarantee fully canonical transformations. This method is 10 to 100 times faster than integration routines, applied in tracking codes like BETA or RACETRACK. The tracking method presented is not restricted to wigglers and undulators, it can be applied to other magnetic fields as well such as fringing fields of quadrupoles or dipoles if the suggested expansion converges

  10. HOM characterization for beam diagnostics at the european XFEL injector

    CERN Document Server

    Baboi, Nicoletta; Shi, Liangliang; Wamsat, Thomas, DESY; Jones, Roger M; Joshi, Nirav

    2017-01-01

    Higher Order Modes (HOM) excited by bunched electron beams in accelerating cavities carry information about the beam position and phase. This principle is used at the FLASH facility, at DESY, for beam position monitoring in 1.3 and 3.9 GHz cavities. Dipole modes, which depend on the beam offset, are used. Similar monitors are now under design for the European XFEL. In addition to beam position, the beam phase with respect to the accelerating RF will be monitored using monopole modes from the first higher order monopole band. The HOM signals are available from two couplers installed on each cavity. Their monitoring will allow the on-line tracking of the phase stability over time, and we anticipate that it will improve the stability of the facility. As part of the monitor designing, the HOM spectra in the cavities of the 1.3 and 3.9 GHz cryo-modules installed in the European XFEL injector have been measured. This paper will present their dependence on the beam position. The variation in the modal distribution f...

  11. Status of PPI (Pohang Photo-Injector) for PAL XFEL

    CERN Document Server

    Park, Sung-Ju; Oh, Jong-Seok; Park, Chong-Do; Park Jang Ho; Soo Ko In; Wang, Xijie; Woon Parc, Yong

    2005-01-01

    A X-Ray Free Electron Laser (XFEL) project based on the Self-Amplified Spontaneous Emission (SASE) is under progress at the Pohang Accelerator Laboratory (PAL). One of the critical R&D for the PAL XFEL* is to develop the Pohang Photo-Injector (PPI) which is required to deliver electron beams with normalized emittance < 1.5 mm-mrad. In order to achieve the required beam quality with high stability and reliability, we will use photocathode with quantum efficiency > 0.1 % and long lifetime. This will greatly lessen the laser energy requirement for producing flat-top UV pulses, and open the possibility of using only regenerative amplifiers (RGAs) to drive the photocathode RF gun. The RGAs can produce mJs output with much better stability than multi-pass amplifiers. Both the Cs2Te and Mg are under consideration for the possible photo-cathode. To demonstrate the suitability of the Mg and Cs2Te for the future 4th generation light source application, an improved BNL-type S-band RF gun with a high-pe...

  12. Helical undulator based on partial redistribution of uniform magnetic field

    Science.gov (United States)

    Balal, N.; Bandurkin, I. V.; Bratman, V. L.; Fedotov, A. E.

    2017-12-01

    A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  13. Helical undulator based on partial redistribution of uniform magnetic field

    Directory of Open Access Journals (Sweden)

    N. Balal

    2017-12-01

    Full Text Available A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  14. KIAE-1.5-3 undulator performance

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, A.A.; Ivanchenko, S.N.; Khlebnikov, A.S. [Kurchatov Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    Hybrid type undulator with 60 periods of {lambda}{sub w} = 1.5 cm and tunable gap in wide range has been designed and manufactured. Additional side magnet arrays provide high magnetic field (near Halbach limit) along with transverse field profiles for e.b. focusing.

  15. Superconducting Undulator with Variably Polarized Light

    CERN Document Server

    Hwang, Ching Shiang; Ching Fan, Tai; Li, W P; Lin, P H

    2004-01-01

    This study investigates planar in-vacuo superconducting undulators with periodic length of 5 cm (IVSU5) producing linearly and circularly polarized infrared rays or xrays source. The vertically wound racetrack coil is selected for the coil and pole fabrication of the IVSU5. When the up and down magnetic pole arrays with alternative directions rotated wires in the horizontal plane, a helical field radiates circularly polarized light in the electron storage ring, the free electron laser (FEL), and the energy recovery linac (ERL) facilities. Meanwhile, an un-rotated wire is constructed together with the rotated wire on the same undulator is used to switch the linear horizontal and vertical, the right- and left-circular polarization radiation. Given a periodic length of 5 cm and a gap of 23 mm, the maximum magnetic flux density in the helical undulator are Bz = 1.5 T and Bx = 0.5 T when the wires rotated by 20°. This article describes the main factors of the planar and helical undulator design for FEL and...

  16. Undulator tunability and synchrotron ring-energy

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Sheony, G.K.

    1992-01-01

    An undulator has two properties which make it an extremely attractive source of electromagnetic radiation. The first is that the radiation is concentrated in a number of narrow energy bands known as harmonics of the device. The second characteristic is that under favorable operating conditions, the energy of these harmonics can be shifted or open-quote tunedclose quotes over an energy interval which can be as large as two or three times the value of the lowest energy harmonic. Both the photon energy of an undulator as well as its tunability are determined by the period, λ, of the device, the magnetic gap, G (which is larger than the minimum aperture required for injection and operation of the storage ring) and the storage ring energy E R . Given the photon energy, E p , the above parameters ultimately define the limits of operation or tunability of the undulator. In general, the larger the tunability range, the more useful the device. Therefore, for a given required maximum photon energy, it is desirable to find the operating conditions and device parameters which result in the largest tunability interval possible. With this in mind, we have investigated the question of undulator tunability with emphasis on the role of the ring energy in order to find the smallest E R consistent with the desired tunability interval and photon energy. As a guideline, we have included a preliminary criteria, concerning the tunability requirements for the Advanced Photon Source (APS) to be built at Argonne. The analysis is aimed at X-ray undulator sources on the APS but is applicable to any storage ring

  17. Concept of quasi-periodic undulator - control of radiation spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigemi [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventional periodic undulator.

  18. Advanced Analysis in Nanospace Research with the XFEL

    CERN Document Server

    Dosch, H

    2004-01-01

    Little happens in industrialised countries without the use of high-tech materials which are the building blocks of all modern technologies ranging from information, communication, health, energy and environment to transport. In the last decades the development of novel materials has progressed at a breathtaking rate. This has become possible through our microscopic insight into the atomistic structure of condensed matter which finally enabled us to assemble new material systems atom-by-atom. These days, we are facing a revolution in the investigation of nanospace: Through new concepts in accelerator physics, electrons can be forced to emit short-pulsed x-ray laser radiation. Such a futuristic European x-ray free electron laser (XFEL) laboratory is currently being constructed and will allow mankind to finally get holographic snapshots of the motion of atoms and electrons in materials. Ultimate insights into matter, as the realtime-observation of the formation and the breaking of molecular bonds, sound like sci...

  19. Generation of radiation by intense plasma and electromagnetic undulators

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.

  20. Generation of radiation by intense plasma and electromagnetic undulators

    International Nuclear Information System (INIS)

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs

  1. Induction shimming: A new shimming concept for superconductive undulators

    Directory of Open Access Journals (Sweden)

    D. Wollmann

    2008-10-01

    Full Text Available Undulators are the most advanced sources for the generation of synchrotron radiation. The photons generated by a single electron add up coherently along the electron trajectory. In order to do so, the oscillatory motion of the electron has to be in phase with the emitted photons along the whole undulator. Small magnetic errors can cause unwanted destructive interferences. In standard permanent magnet undulators, the magnetic errors are reduced by applying shimming techniques. Superconductive undulators have higher magnetic fields than permanent magnet undulators but shimming is more complex. In this paper it is shown that coupled superconductive loops installed along the surface of the superconductive undulator coil can significantly reduce the destructive effect of the field errors. This new idea might allow the building of undulators with a superior field quality.

  2. First operation of the XFEL linac with the 2 K cryogenic system

    Science.gov (United States)

    Paetzold, T.; Petersen, B.; Schnautz, T.; Ueresin, C.; Zajac, J.

    2017-12-01

    The RF operation of the about 800 superconducting 1.3 GHz 9-cell cavities of the XFEL linac requires helium II bath cooling at 2 K, corresponding to a vapor pressure of 3100 Pa. After the first cool-down of the XFEL linac to 4 K in December, 27th 2016 the operation of the 2 K cryogenic system was started in January, 2nd 2017. The 2 K cryogenic system consist of a 4-stage set of cold compressors to compress helium vapor at a mass flow of up to 100 g/s from 2400 Pa to about 110 kPa and a full flow bypass with an arrangement of heat exchangers and control valves. This paper describes the XFEL refrigerating plant, especially the 2 K cryogenic system, the tuning of the cold compressor regulation to adapt to the XFEL linac static and dynamic heat loads and experience of about 6 months of operation.

  3. Undulators and free-electron lasers

    CERN Document Server

    Luchini, P

    1990-01-01

    This book is a reference text for all those working in free-electron laser research as well as being a learning aid for physicists and graduate students who wish an introduction to this field. Only a basic understanding of relativistic mechanics and electromagnetism is presupposed. After an overview of early developments and general principles of operation, the different models that can be used to describe free-electron lasers are presented, organized according to their range of applicability. The relevent conceptual and mathematical constructs are built up from first principles with attention to obtaining the practically important results in a simple but rigorous way. Interaction of the undulator with the driving electron accelerator and the laser cavity and design of undulator magnets are treated and an overview is given of some typical experiments.

  4. In vacuum undulator task force report

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Kao, C.C.; Stefan, P. [and others

    1998-06-01

    Historically the NSLS has been active in R&D for state-of-the-art electron beams, photon beams and x-ray optics. One of the available straight sections has therefore been dedicated to insertion device R&D. Over the past five to seven years a program aimed at exploiting the very small vertical {beta} function in the straight sections has yielded first a prototype small gap undulator (PSGU) and then an in-vacuum undulator (IVUN). The IVUN sources attain a brightness similar to the existing hybrid wigglers in X21 and X25. They radiate significantly lower total power than the wigglers but produce higher power densities. They provide undulator rather than wiggler spectra. Because of the small gaps and small periods there is not much tunability in these devices and they will have to be purpose-built for a specific scientific program. The original IVUN parameters were chosen for in-elastic x-ray scattering, similar to the scientific program on X21. This put the fundamental at 4.6 keV and the third harmonic at 13.8 keV. The question that this new possible insertion device poses is what science programs can best take advantage of this new insertion device source? To answer this, a task force was formed by M. Hart, NSLS Department Chair and charged with identifying viable scientific programs that could seek outside funding to construct IVUN beamlines. The task force concentrated on experimental programs that are presently being pursued on new insertion devices worldwide. For example, x-ray photon correlation spectroscopy, which takes advantage of the large coherent flux from undulator sources, was considered. However, this program was not considered as the highest priority. The general area of protein crystallography, however, is ideal for the IVUN source. The unique electron beam optics that makes the IVUN possible in the first place also makes the IVUN ideal as a source for microdiffraction.

  5. A short period undulator for MAX

    International Nuclear Information System (INIS)

    Ahola, H.; Meinander, T.

    1992-01-01

    A hybrid undulator for generation of high brilliance synchrotron radiation in the photon energy range of 60--600 eV at the 550 MeV electron storage ring MAX in Lund, Sweden has been designed and built at the Technical Research Centre of Finland in close collaboration with MAX-lab of Lund University. At the rather modest electron energy of MAX this photon energy range can be reached only by an undulator featuring a fairly short period and the smallest possible magnetic gap. Even then, higher harmonics (up to the 13th) of the radiation spectrum must be utilized. An optimization of the magnetic design resulted in a hybrid configuration of NdFeB magnets and soft iron poles with a period of 24 mm and a minimum magnetic gap of 7--10 mm. A variable-gap vacuum chamber allows reduction of the vacuum gap from a maximum of 20 mm, needed for injection, down to 6 mm during stored beam operation. A special design of this chamber permits a magnetic gap between pole tips that is only 1 mm larger than the vacuum gap. Adequate field uniformity was ensured by calibration of magnets to equal strength at their true operating point and verification of the homogeneity of their magnetization. Magnetic measurements included Hall probe scans of the undulator field and flip coil evaluations of the field integral

  6. Undulator-based production of polarized positrons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G. [Tel-Aviv Univ. (Israel); Barley, J. [Cornell Univ., Ithaca, NY (United States); Batygin, Y. [SLAC, Menlo Park, CA (US)] (and others)

    2009-05-15

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a one-meter-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (orig.)

  7. Delta undulator for Cornell energy recovery linac

    Directory of Open Access Journals (Sweden)

    Alexander B. Temnykh

    2008-12-01

    Full Text Available In anticipation of a new era of synchrotron radiation sources based on energy recovery linac techniques, we designed, built, and tested a short undulator magnet prototype whose features make optimum use of the unique conditions expected in these facilities. The prototype has pure permanent magnet (PPM structure with 24 mm period, 5 mm diameter round gap, and is 30 cm long. In comparison with conventional undulator magnets it has the following: (i full x-ray polarization control.—It may generate varying linear polarized as well as left and right circular polarized x rays with photon flux much higher than existing Apple-II–type devices. (ii 40% stronger magnetic field in linear and approximately 2 times stronger in circular polarization modes. This advantage translates into higher x-ray flux. (iii Compactness.—The prototype can be enclosed in a ∼20  cm diameter cylindrical vacuum vessel. These advantages were achieved through a number of unconventional approaches. Among them is control of the magnetic field strength via longitudinal motion of the magnet arrays. The moving mechanism is also used for x-ray polarization control. The compactness is achieved using a recently developed permanent magnet soldering technique for fastening PM blocks. We call this device a “Delta” undulator after the shape of its PM blocks. The presented article describes the design study, various aspects of the construction, and presents some test results.

  8. Undulator A diagnostics at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Ilinski, P.

    1998-01-01

    Diagnostics of Undulator A number-sign 2 (UA2) radiation was performed during the October 1997 mn at the Advanced Photon Source (APS). The UA2 undulator is a standard 3.3-cm-period APS Undulator A, which was positioned downstream from the center of the straight section at Sector 8. The diagnostics included the angular-spectral measurements of the undulator radiation to determine the undulator radiation absolute spectral flux and the particle beam divergence. The results of the absolute spectral flux measurements are compared to the undulator spectrum calculated from measured undulator magnetic field. The particle's energy spread was determined from spectra comparison. Previously, the authors reported the first measurements made on Undulator A at the APS. The purpose of the present report is to summarize the results of the diagnostics performed on the Sector 8 undulator at the request of the IMM-CAT staff, and to present a more general discussion of undulator radiation sources at the APS and details of their diagnostics

  9. First operating experience with the helium cooling supply of the superconducting XFEL linear accelerator; Erste Betriebserfahrungen mit der Heliumkaelteversorgung des supraleitenden XFEL-Linearbeschleunigers

    Energy Technology Data Exchange (ETDEWEB)

    Bozhko, Y.; Escherich, K.; Jensch, K.; Petersen, B.; Schnautz, T.; Sellmann, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Decker, L.; Ueresin, C.; Zajac, J. [Linde Kryotechnik, Pfungen (Switzerland); Paetzold, T. [Linde Kryotechnik, Hamburg (Germany); ENGIE, Hamburg (Germany)

    2017-07-01

    In Hamburg, the European XFEL project was completed. The superconducting XFEL linear accelerator was commissioned in the course of 2017. The linear accelerator supplies electron bundles with an energy of up to 17.5 GeV and serves as the source of a free-electron laser (XFEL), which provides light with extreme intensity and brilliance with wavelengths in the X-ray range (0.2-0.05 nm). The active part of the linear accelerator consists of 96 cryomodules, each with 8 high-frequency resonators (cavities) and a superconducting magnet packet. The approx. 800 cavities made of high-purity niobium are operated at 1.3 GHz and cooled in a helium II bath at a temperature of 2.0 K. The cavities are surrounded by two thermal shields at temperatures of 5-8 K and 40-80 K. Parallel to the main accelerator, an injector is supplied with two cryogenic modules. The cryogenics of the XFEL linear accelerator includes a helium refrigeration system with design capacities of 2 KW at 2 K, 4 KW at 5/8 K and 24 KW at 40/80 K, various helium transfer lines, a branched distribution system and connection boxes between the module chains in the accelerator tunnel. It is reported on the commissioning of the components and first operating experience. [German] In Hamburg wurde das Europaeische XFEL Projekt fertiggestellt. Der supraleitende XFEL Linearbeschleuniger wurde im Laufe des Jahres 2017 in Betrieb genommen. Der Linearbeschleuniger liefert Elektronenpakete mit einer Energie von bis zu 17,5 GeV und dient als Quelle eines Freien-Elektronen-Lasers (XFEL), der Licht mit extremer Intensitaet und Brillanz mit Wellenlaengen im Roentgenbereich (0,2-0,05 nm) bereitstellt. Der aktive Teil des Linearbeschleunigers besteht aus 96 Kryomodulen mit jeweils 8 Hochfrequenzresonatoren (Kavitaeten) und einem supraleitenden Magnetpaket. Die ca. 800 Kavitaeten aus hochreinem Niob werden bei 1,3 GHz betrieben und in einem Helium-II-Bad bei einer Temperatur von 2,0 K gekuehlt. Die Kavitaeten sind von zwei thermischen

  10. Way to increase the user access at the LCLS baseline

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg; Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-10-15

    Although the LCLS photon beam is meant for a single user, the baseline undulator is long enough to serve two users simultaneously. To this end, we propose a setup composed of two simple elements: an X-ray mirror pair for X-ray beam deflection, and a short (4 m-long) magnetic chicane, which creates an offset for mirror pair installation in the middle of the baseline undulator. The insertable mirror pair can be used for spatial separation of the X-ray beams generated in the first and in the second half of the baseline undulator. The method of deactivating one half and activating another half of the undulator is based on the rapid switching of the FEL amplification process. As proposed elsewhere, using a kicker installed upstream of the LCLS baseline undulator and an already existing corrector in the first half of the undulator, it is possible to rapidly switch the X-ray beam from one user to another, thus providing two active beamlines at any time. We present simulation results dealing with the LCLS baseline, and show that it is possible to generate two saturated SASE X-ray beams in the whole 0.8-8 keV photon energy range in the same baseline undulator. These can be exploited to serve two users. Implementation of the proposed technique does not perturb the baseline mode of operation of the LCLS undulator. Moreover, the magnetic chicane setup is very flexible, and can be used as a self-seeding setup too. We present simulation results for the LCLS baseline undulator with SHAB (second harmonic afterburner) and show that one can produce monochromatic radiation at the 2nd harmonic as well as at the 1st. We describe an efficient way for obtaining multi-user operation at the LCLS hard X-ray FEL. To this end, a photon beam distribution system based on the use of crystals in the Bragg reflection geometry is proposed. The reflectivity of crystal deflectors can be switched fast enough by flipping the crystals with piezoelectric devices similar to those for X-ray phase retarders

  11. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  12. Permanent magnets including undulators and wigglers

    CERN Document Server

    Bahrdt, J

    2010-01-01

    After a few historic remarks on magnetic materials we introduce the basic definitions related to permanent magnets. The magnetic properties of the most common materials are reviewed and the production processes are described. Measurement techniques for the characterization of macroscopic and microscopic properties of permanent magnets are presented. Field simulation techniques for permanent magnet devices are discussed. Today, permanent magnets are used in many fields. This article concentrates on the applications of permanent magnets in accelerators starting from dipoles and quadrupoles on to wigglers and undulators.

  13. Wakefields in the LCLS Undulator Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Bane, K.L.F.; /SLAC; Zagorodov, I.; /DESY

    2006-07-17

    For a short bunch in an elliptical collimator we demonstrate that, as in a purely round collimator, the wake can be estimated from the primary fields of the beam alone. We obtain the wakes in the LCLS rectangular-to-round, undulator transitions using a hybrid method that includes indirect numerical (field) integration and an analytical potential energy term. For the LCLS 1 nC bunch charge configuration, we find the wake-induced energy change in the transitions to be small compared to that due to the resistance of the beam pipe walls.

  14. Microbunch preserving in-line system for an APPLE II helical radiator at the LCLS baseline

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL Project Team, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-05-15

    In a previous work we proposed a scheme for polarization control at the LCLS baseline, which exploited the microbunching from the planar undulator. After the baseline undulator, the electron beam is transported through a drift by a FODO focusing system, and through a short helical radiator. The microbunching structure can be preserved, and intense coherent radiation is emitted in the helical undulator at fundamental harmonic. The driving idea of this proposal is that the background linearly-polarized radiation from the baseline undulator is suppressed by spatial filtering. Filtering is achieved by letting radiation and electron beam through Be slits upstream of the helical radiator, where the radiation spot size is about ten times larger than the electron beam transverse size. Several changes considered in the present paper were made to improve the previous design. Slits are now placed immediately behind the helical radiator. The advantage is that the electron beam can be spoiled by the slits, and narrower slits width can be used for spatial filtering. Due to this fundamental reason, the present setup is shorter than the previous one. The helical radiator is now placed immediately behind the SHAB undulator. It is thus sufficient to use the existing FODO focusing system of the SHAB undulator for transporting themodulated electron beam. This paper presents complete GENESIS code calculations for the new design, starting from the baseline undulator entrance up to the helical radiator exit including the modulated electron beam transport by the SHAB FODO focusing system. (orig.)

  15. Microbunch preserving in-line system for an APPLE II helical radiator at the LCLS baseline

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-05-01

    In a previous work we proposed a scheme for polarization control at the LCLS baseline, which exploited the microbunching from the planar undulator. After the baseline undulator, the electron beam is transported through a drift by a FODO focusing system, and through a short helical radiator. The microbunching structure can be preserved, and intense coherent radiation is emitted in the helical undulator at fundamental harmonic. The driving idea of this proposal is that the background linearly-polarized radiation from the baseline undulator is suppressed by spatial filtering. Filtering is achieved by letting radiation and electron beam through Be slits upstream of the helical radiator, where the radiation spot size is about ten times larger than the electron beam transverse size. Several changes considered in the present paper were made to improve the previous design. Slits are now placed immediately behind the helical radiator. The advantage is that the electron beam can be spoiled by the slits, and narrower slits width can be used for spatial filtering. Due to this fundamental reason, the present setup is shorter than the previous one. The helical radiator is now placed immediately behind the SHAB undulator. It is thus sufficient to use the existing FODO focusing system of the SHAB undulator for transporting themodulated electron beam. This paper presents complete GENESIS code calculations for the new design, starting from the baseline undulator entrance up to the helical radiator exit including the modulated electron beam transport by the SHAB FODO focusing system. (orig.)

  16. X-FEL revolution - X-ray lasers to probe matter

    International Nuclear Information System (INIS)

    Collet, E.; Cammarata, M.; Harmand, M.; Couprie, M.E.

    2015-01-01

    X-ray free electron lasers (X-FEL) are now able to generate X-ray pulses of a few femto-seconds (1 fs = 10"-"1"5 s), which allows the real-time observation of the movements of atoms. The changes in the structure of a material can be seen whatever the material, this is illustrated with the PYP protein (that is the photo-receptor of a bacterium), the changes between an initial state and 100 ps after light excitation show the displacement of the atoms of the protein. The brightness of X-FEL can be so high that it allows the study of nano-metric structures but it enables X-FEL radiation to ionize matter and the crystal sample may be destroyed, this becomes the new limit of X-FEL applied to crystallography. Another application of X-FEL to structure studies is to allow the study of systems that are not crystal systems like macromolecules, proteins or even viruses. Hundreds of patterns of X-ray diffractions of an object are combined to form a 3-dimensional image of the object in the wave vector space and it is then possible but very complex to deduce the real 3-dimensional structure of the object. (A.C.)

  17. Mechanical design and fabrication of pure-permanent magnet undulator

    International Nuclear Information System (INIS)

    Chouksey, Sanjay; Vinit Kumar; Abhay Kumar; Krishnagopal, Srinivas

    2003-01-01

    A 50 mm period, 2.5 m long (50 periods), pure permanent magnet, variable gap undulator using NdFeB magnets is being built in two sections, each 1.25 m long. We present details of the mechanical design, fabrication experience, assembly and inspection of the undulator. (author)

  18. The performance of a superconducting micro-undulator prototype

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Jiang, Z.Y.; Ingold, G.; Yu, L.H.; Sampson, W.B.

    1990-05-01

    We report on the performance of a prototype of a super-ferric micro-undulator. The micro-undulator consists of a continuous winding of niobium-titanium wire wound on a low carbon steel yoke. It is about 3 periods long with a period of 8.8 mm and a gap of 4.4 mm. The undulator achieves the a peak magnetic field on axis of over 0.5 Tesla. Asymmetry of the field pattern due to a dipole component was identified, analyzed and a correction has been applied to the undulator ends to produce a symmetric field distribution. Within the precision of the measurement the field pattern produced by the super-ferric undulator needed no correction. 4 refs., 7 figs

  19. Short-Period RF Undulator for a SASE Nanometer source

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2011-01-01

    Analysis is described towards development of a RF undulator with a period < 1 cm, an undulator parameter K of the order of unity, and a gap greater than 2.25 mm. The application for the undulator is for a SASE source to produce 1 nm wavelength radiation using a low energy electron beam in the range 1-2 GeV. Particle orbit calculations in a conventional standing-wave resonator configuration show that the presence of a co-propagating component of RF field can cause deleterious motion for the undulating electrons that can seriously degrade their radiation spectrum. To obviate this problem, resonator designs were devised in which only the counter-propagating field components interact with the particles. Two resonator configurations with the same undulator parameter K = 0.4 have been devised and are described in this report.

  20. Inductive Shimming of Superconductive Undulators - Preparations for a realistic test

    CERN Document Server

    Schoerling, D; Bernhard,; Burkart, F; Ehlers, S; Gerstl, S; Grau, A; Peiffer, P; Rossmanith, R; Wollmann, D

    2010-01-01

    The monochromaticity and intensity of synchrotron light emitted by undulators strongly depend on the undulator field quality. For the particular case of superconductive undulators it was shown recently that their field quality can be significantly improved by an array of coupled high temperature superconductor loops attached to the surface of the superconductive undulator. Local field errors induce currents in the coupled closed superconducting loops and, as a result, the hereby generated magnetic field minimizes the field errors. In previous papers the concept was described theoretically and a proof-of-principle experiment was reported. This paper reports on a prepatation experiment for the first quantitative measurement of the phase error reduction in a 13-period short model undulator equipped with a full-scale induction shimming system.

  1. Magnetic Measurements of the Background Field in the Undulator Hall

    International Nuclear Information System (INIS)

    Fisher, Andrew

    2010-01-01

    The steel present in the construction of the undulator hall facility has the potential for changing the ambient fields present in the undulator hall. This note describes a measurement done to make a comparison between the fields in the hall and in the Magnetic Measurement Facility. In order for the undulators to have the proper tuning, the background magnetic field in the Undulator Hall should agree with the background field in the Magnetic Measurements Facility within .5 gauss. In order to verify that this was the case measurements were taken along the length of the undulator hall, and the point measurements were compared to the mean field which was measured on the MMF test bench.

  2. First lasings at IR-and FIR range using hybrid type undulator (FEL facility 4) and Halbach type undulator

    International Nuclear Information System (INIS)

    Takii, T.; Oshita, E.; Okuma, S.; Wakita, K.; Koga, A.; Tomimasu, T.; Ohasi, K.

    1997-01-01

    First lasing at 18μm was achieved by using a 2.7-m long hybrid type undulator (undulator 4) for far-infrared FELs and a 6.72-m long optical cavity installed at the 33-MeV beam line of the downstream of the FEL facility 1 (FEL-1). We are challenged at two-color FEL oscillation in mid-infrared range using the undulator 1 (λ u=3.4mm) and in far-infrared range using the undulator 4 (λ u=9mm). At first, a 30-MeV, 60-A beam passed through the undulator 1 without lasing is transported using a QFQDBQFQDBQFQDQF system and is used for lasing at the undulator 4. However, six pairs of steering coils had to be attached on the beam duct to reduce the deviation of the electron beam trajectory due to the vertical field distribution induced by the built-in electromagnets. The minimum gap of the undulator 4 was designed to be 35mm. However, the steering coils attached on the beam duct increased the gap up to 52mm. Therefore, the hybrid type undulator was replaced by a new Halbach type one (λ u=8mm, N=30) after the first lasing at 18μm on October 24, '96. The New FEL facility 4 was installed in the middle of December and first lasing at 18.6μm was achieved on December 26, within 10 hours operation. (author)

  3. Analysis of the cool down related cavity performance of the European XFEL vertical acceptance tests

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc; Schaffran, J.

    2017-09-15

    For the European X-Ray Free Electron Laser (XFEL) cavity production, the cold radio-frequency (RF) test of the cavities at 2 K after delivery from the two vendors was the mandatory acceptance test. It has been previously reported, that the cool down dynamics of a cavity across T{sub c} has a significant influence on the observed intrinsic quality factor Q{sub 0}, which is a measure of the losses on the inner cavity surface. A total number of 367 cool downs is used to analyze this correlation and we show that such a correlation is not observed during the European XFEL cavity production.

  4. Design of a cryo-cooled artificial channel-cut crystal monochromator for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaohao, E-mail: xiaohao.dong@xfel.eu; Sinn, Harald, E-mail: harald.sinn@xfel.eu [European XFEL GmbH, Hamburg, D-22761 (Germany); Shu, Deming, E-mail: shu@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL ( http://www.xfel.eu/ ). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  5. Advanced photon source low-energy undulator test line

    International Nuclear Information System (INIS)

    Milton, S.V.

    1997-01-01

    The injector system of the Advanced Photon Source (APS) consists of a linac capable of producing 450-MeV positrons or > 650-MeV electrons, a positron accumulator ring (PAR), and a booster synchrotron designed to accelerate particles to 7 GeV. There are long periods of time when these machines are not required for filling the main storage ring and instead can be used for synchrotron radiation research. We describe here an extension of the linac beam transport called the Low-Energy Undulator Test Line (LEUTL). The LEUTL will have a twofold purpose. The first is to fully characterize innovative, future generation undulators, some of which may prove difficult or impossible to measure by traditional techniques. These might include small-gap and superconducting undulators, very long undulators, undulators with designed-in internal focusing, and helical undulators. This technique also holds the promise of extending the magnetic measurement sensitivity beyond that presently attainable. This line will provide the capability to directly test undulators before their possible insertion into operating storage rings. A second use for the test line will be to investigate the generation of coherent radiation at wavelengths down to a few tens of nanometers

  6. Spontaneous emission spectra from a staggered-array undulator

    International Nuclear Information System (INIS)

    Shimada, Shigeki; Okada, Kouji; Masuda, Kai; Sobajima, Masaaki; Yoshikawa, Kiyoshi; Ohnishi, Masami; Yamamoto, Yasushi; Toku, Hisayuki

    1997-01-01

    A staggered-array undulator set inside the superconducting solenoid coils is shown to be able to provide high undulator fields larger than the longitudinal magnetic fields, a small undulator period, easy tunability through the solenoid coil current, and compact and easy fabrication. The overall performance characteristics of this undulator were studied mainly with respect to iron and aluminum disk widths, and spontaneous emission spectra through the numerical calculations. The maximum undulator field is found to be obtained for the ratio of the aluminum disk width to the undulator period of 0.45. The line widths (FWHM) of the spontaneous emission spectra, however, do not show N w -1 dependence on the number of the undulator period N w for practical beams with a Gaussian distribution, compared with for a single electron. The energy spread among various parameters is seen to play an important role in reducing the FWHM with increase of N w . The large tunability of the wavelength is proved to cover 6-10 mm by changing the solenoid magnetic field from 0.4 T to 1.6 T. (author)

  7. Enhancement of harmonic generation using a two section undulator

    International Nuclear Information System (INIS)

    Prazeres, R.; Glotin, F.; Jaroszynski, D.A.; Ortega, J.M.; Rippon, C.

    1999-01-01

    Enhancement of the 2nd and 3rd harmonic of the wavelength of a Free-Electron Laser (FEL) has been measured when a single electron beam is crossing a two-section undulator. To produce the harmonic radiation enhancement, the undulator is arranged so that the resonance wavelength of the 2nd undulator (downstream) matches a harmonic of the 1st undulator (upstream). Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction efficiency, through a hole in one of the cavity mirrors. We present measurements that show that the optical power at the 2nd and 3rd harmonic can be enhanced, by about one order of magnitude, in two configurations: when the resonance wavelength of the 2nd undulator matches the harmonic of 1st one (harmonic configuration), or when the gap of the 2nd undulator is slightly larger than first one (step-tapered configuration). We examine the dependence of the harmonic power on the gap of the 2nd undulator. This fundamental/harmonic mode of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture

  8. Performance of a hard x-ray undulator at CHESS

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Batterman, B.W.; Bedzyk, M.J.; Finkelstein, K.; Henderson, C.; Merlini, A.; Schildkamp, W.; Shen, Q.; White, J.; Blum, E.B.; Viccaro, P.J.; Mills, D.M.; Kim, S.; Shenoy, G.K.; Robinson, K.E.; James, F.E.; Slater, J.M.

    1989-01-01

    A 3.3-cm period Nd-Fe-B hybrid undulator has been designed and successfully operated in the Cornell Electron Storage Ring (CESR). This 2-m-long, 123-pole insertion device is a prototype of one of the undulators planned for the Advanced Photon Source. In dedicated operation, the undulator produced the expected brightness at 5.437 GeV with the fundamental x-ray energy ranging from 4.3 to 7.9 keV corresponding to a change in gap from 1.5 to 2.8 cm

  9. Perspectives on micropole undulators in synchrotron radiation technology

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.; Toor, A.

    1989-01-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized

  10. Perspectives on micropole undulators in synchrotron radiation technology

    Science.gov (United States)

    Tatchyn, Roman; Csonka, Paul; Toor, Arthur

    1989-07-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.

  11. Synchrotron radiation from magnetic undulators as a prospective diagnostic tool

    International Nuclear Information System (INIS)

    Barbini, R.; Ciocci, F.; Dattoli, G.; Torre, A.; Ginnessi, L.

    1989-01-01

    The brightness of the radiation emitted by an ultrarelativistic e-beam passing through a magnetic undulator is sensitive to the beam quality (namely, energy spread and emittances) and to the undulator characteristics (i.e., possible random errors both in intensity and direction of magnetization, etc.) The spectrum distortion induced by the above effects and the possibility of using the undulator radiation as a diagnostic tool is discussed. Finally the importance of near-field effects when the radiation is detectedunfocussed off-axis and how they can combine with the effects induced by the beam emittances to produced a larger on-axis inhomogeneous broadening

  12. First test results for an adjustable phase undulator

    International Nuclear Information System (INIS)

    Carr, R.; Nuhn, H.D.; Corbett, J.

    1992-01-01

    An Adjustable Phase Undulator (APU) was installed and tested on the beamline 5 of the SPEAR storage ring. The APU has the same magnetic structure as a conventional adjustable gap undulator (AGU), but its magnetic field is varied by changing the longitudinal position between the rows of magnets, while keeping the gap between them fixed. The tests described here show that this undulator performs according to theoretical predictions and numerical models. The main reason to consider a phase adjustable design is the substantial reduction in size, complexity, and cost over comparable conventional designs. (author) 4 refs.; 3 figs

  13. Highlights from e-EPS: New milestone reached for the European XFEL construction

    CERN Multimedia

    Jorge Rivero González

    2013-01-01

    e-EPS News is an addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   In June 2013 an important milestone was reached for the European X-ray free-electron laser [XFEL] with the completion of its underground portion. Located in the Hamburg area (Germany), the European XFEL is one of the largest and most ambitious European projects to date. Starting full operations in 2016, the European XFEL is expected to generate intensive, ultrashort X-ray flashes that will open up entirely new areas of research with X-rays that are currently inaccessible. Organisations from 12 European countries, Denmark, France, Germany, Greece, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden and Switzerland are members of the European XFEL consortium, with the Deutsches Elektronen-Synchrotron [DESY] as the main shareholder. The total length of the facility will be 3.4km and ...

  14. Disentangling detector data in XFEL studies of temporally resolved solution state chemistry

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim; Kjær, Kasper Skov; Biasin, Elisa

    2015-01-01

    With the arrival of X-ray Free Electron Lasers (XFELs), 2D area detectors with a large dynamic range for detection of hard X-rays with fast readout rates are required for many types of experiments. Extracting the desired information from these detectors has been challenging due to unpredicted flu...

  15. Status of the laboratory infrastructure for detector calibration and characterization at the European XFEL

    Science.gov (United States)

    Raab, N.; Ballak, K.-E.; Dietze, T.; Ekmedzič, M.; Hauf, S.; Januschek, F.; Kaukher, A.; Kuster, M.; Lang, P. M.; Münnich, A.; Schmitt, R.; Sztuk-Dambietz, J.; Turcato, M.

    2016-12-01

    The European X-ray Free Electron Laser (XFEL.EU) will provide unprecedented peak brilliance and ultra-short and spatially coherent X-ray pulses in an energy range of 0.25 to 25 keV . The pulse timing structure is unique with a burst of 2700 pulses of 100 fs length at a temporal distance of 220 ns followed by a 99.4 ms gap. To make optimal use of this timing structure and energy range a great variety of detectors are being developed for use at XFEL.EU, including 2D X-ray imaging cameras that are able to detect images at a rate of 4.5 MHz, provide dynamic ranges up to 105 photons per pulse per pixel under different operating conditions and covering a large range of angular resolution \\cite{requirements,Markus}. In order to characterize, commission and calibrate this variety of detectors and for testing of detector prototypes the XFEL.EU detector group is building up an X-ray test laboratory that allows testing of detectors with X-ray photons under conditions that are as similar to the future beam line conditions at the XFEL.EU as is possible with laboratory sources [1]. A total of four test environments provide the infrastructure for detector tests and calibration: two portable setups that utilize low power X-ray sources and radioactive isotopes, a test environment where a commercial high power X-ray generator is in use, and a pulsed X-ray/electron source which will provide pulses as short as 25 ns in XFEL.EU burst mode combined with target anodes of different materials. The status of the test environments, three of which are already in use while one is in commissioning phase, will be presented as well as first results from performance tests and characterization of the sources.

  16. First undulators for the Advanced Light Source

    International Nuclear Information System (INIS)

    Hoyer, E.; Akre, J.; Chin, J.

    1993-05-01

    The first three undulators, each 4.6 m in length, for the Advanced Light source (ALS) at Lawrence Berkeley Laboratory (LBL), are near completion and are undergoing qualification tests before installation into the storage ring. Two devices have 5.0-cm period lengths, 89 periods, and achieve an effective field of 0.85 T at the 14 mm minimum magnetic gap. The other device has a period length of 8.0 cm, 55 periods, and an effective field of 1.2 T at the minimum 14 mm gap. Measurements on the first 5 cm period device show the uncorrelated field errors to be 0.23%, which is less than the required 0.25%. Measurements of gap control show reproducibility of ±5 microns or better. The first vacuum chamber, 5.0 m long, is flat to within 0.53 mm over the 4.6 m magnetic structure section and a 4 x 10 -11 Torr pressure was achieved during vacuum tests. Device description, fabrication, and measurements are presented

  17. Wakefields in the LCLS Undulator Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl L.F.; /SLAC; Zagorodnov, Igor A.; /DESY

    2005-08-15

    We have studied longitudinal wakefields of very short bunches in non-cylindrically symmetric (3D) vacuum chamber transitions using analytical models and the computer program ECHO. The wake (for pairs of well-separated, non-smooth transitions) invariably is resistive, with its shape proportional to the bunch distribution. For the example of an elliptical collimator in a round beam pipe we have demonstrated that--as in the cylindrically symmetric (2D) case--the wake can be obtained from the static primary field of the beam alone. We have obtained the wakes of the LCLS rectangular-to-round transitions using indirect (numerical) field integration combined with a primary beam field calculation. For the LCLS 1 nC bunch charge configuration we find that the total variation in wake-induced energy change is small (0.03% in the core of the beam, 0.15% in the horns of the distribution) compared to that due to the resistive wall wakes of the undulator beam pipe (0.6%).

  18. Development of a superconducting elliptically polarized undulator

    International Nuclear Information System (INIS)

    Chen, S D; Liang, K S; Jan, J C; Hwang, C S

    2010-01-01

    A superconducting, elliptically polarized undulator (SEPU24) with a period of length 24 mm was developed to provide first-harmonic photons from a 0.8 GeV storage ring for extreme-ultraviolet (EUV) lithography experiment. In SEPU24, two layers of a magnet array structure - with and without rotated magnet arrays - are combined to generate a helical field that provides radiation with wavelength 13.5 nm in the in-band energy. The arrays of iron and aluminium poles were wound with a racetrack coil vertically as for the magnet pole array. The elliptical field is created when the up and down magnet-pole arrays pass excitation currents in alternate directions. SEPU24 is designed with a magnet of gap 6.8 mm, yielding magnetic flux density B x =B z =0.61 T of the helical field. A prototype magnet was fabricated with a diode for quench protection, and assembled in a test dewar to test the magnet performance. A cryogenic Hall-probe system with a precise linear stage was used to measure the distribution of the magnetic field. We describe the design concept and algorithm, the engineering design, the calculation of the magnetic field, the construction and testing of the 10-pole prototype magnet and related issues.

  19. Micropole undulators: Novel insertion devices for synchrotron sources

    International Nuclear Information System (INIS)

    Toor, A.; Csonka, P.; Tatchyn, R.

    1989-01-01

    Micropole undulators (wigglers) are undulators (wigglers) with submillimeter periods and are referred to, generically, as micropole insertion devices. Compared to ordinary insertion devices, whose period λ u is typically ≥l cm, micropole devices have periods smaller by a factor f≤10. Therefore, the first-harmonic radiation emitted by a micropole undulator will have its photon energy E γ increased by f and its spectral purity Δλ/λ by f, provided the total length of the undulator l u stays unchanged, and magnetic field errors, as well as the electron-beam emittance, are sufficiently small. Furthermore, to generate photons of the same E γ as from the conventional device, the electron-beam energy E e can be reduced by f 1/2 , resulting in significantly lower construction and operating costs. Radiative energy losses can be correspondingly diminished for the associated storage rings. In this paper we report on results recently obtained by us in the practical implementation and design of micropole undulators at the Stanford Synchrotron Radiation Laboratory (SSRL) and the Lawrence Livermore National Laboratory (LLNL). Based on our work, micropole undulators with f≤10 4 appear feasible at the present time

  20. Layout considerations on the 25GeV/300kW beam dump of the XFEL project

    International Nuclear Information System (INIS)

    Maslov, M.; Sychev, V.; Schmitz, M.

    2006-08-01

    The European X-Ray Free Electron Laser (XFEL) project, which is currently under design at DESY, requires 3 beam dumps downstream of the accelerator. By means of energy deposition, temperature and mechanical stress calculations the layout of a solid edge cooled beam dump is presented. This dump is able to withstand a high cyclic impact, as induced by each subsequent bunch train of up to 2.5.10 13 electrons in combination with a large amount of dissipated power density (∼1.8 kW/cm) coming from a beam with an average power of up to 300 kW at a variable energy up to 25 GeV. The cyclic impact is faced by using graphite as a core material in the dump and setting a lower limit for the incoming beam size at σ beam ≥2 mm. Introducing a slow (not within the bunch train) circular beam sweep answers the question of heat extraction. Alternative layouts are investigated in order to avoid active beam sweeping. Unfortunately more severe risks and disadvantages are coming along with them. That is why theses solutions are not regarded as reliable alternatives and the dump design with beam sweeping is considered to be the baseline solution, for which a technical layout is under way. (orig.)

  1. Layout considerations on the 25GeV/300kW beam dump of the XFEL project

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, M.; Sychev, V. [Institute for High Energy Physics (IHEP), Protvino (Russian Federation); Schmitz, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-08-15

    The European X-Ray Free Electron Laser (XFEL) project, which is currently under design at DESY, requires 3 beam dumps downstream of the accelerator. By means of energy deposition, temperature and mechanical stress calculations the layout of a solid edge cooled beam dump is presented. This dump is able to withstand a high cyclic impact, as induced by each subsequent bunch train of up to 2.5.10{sup 13} electrons in combination with a large amount of dissipated power density ({approx}1.8 kW/cm) coming from a beam with an average power of up to 300 kW at a variable energy up to 25 GeV. The cyclic impact is faced by using graphite as a core material in the dump and setting a lower limit for the incoming beam size at {sigma}{sub beam}{>=}2 mm. Introducing a slow (not within the bunch train) circular beam sweep answers the question of heat extraction. Alternative layouts are investigated in order to avoid active beam sweeping. Unfortunately more severe risks and disadvantages are coming along with them. That is why theses solutions are not regarded as reliable alternatives and the dump design with beam sweeping is considered to be the baseline solution, for which a technical layout is under way. (orig.)

  2. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    Science.gov (United States)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  3. Undulator sources at a 8 GeV storage ring

    International Nuclear Information System (INIS)

    Harami, Taikan.

    1989-06-01

    The use of undulators plays an important role as a high brilliance sources of synchrotron photon at a facility having an electron (or positron) storage ring. This paper describes the characteristics, tunability from gap variation and brilliance of synchrotron photon from undulators at a 8 GeV storage ring. The numerical studies show the following results. (1) Undulators for a 8 GeV storage ring can cover the first harmonic photon energy range from about 0.3 to 30 keV and the third harmonic photon from 0.85 to 70 keV. (2) The brilliance of undulator can be expected to be the order of 10 21 photons/(sec mm 2 mrad 2 0.1% band width mA), without size and angular spread in the electron beam (diffraction limit). (3) The peak brilliance has a broad maximum as a function of β function of the lattice and is shown to be practically independent on the β function. The peak brilliance is calculated to be the order of 10 16 photons/(sec mm 2 mrad 2 0.1% band width mA) at the electron beam emittance of 5 x 10 -9 m·rad (undulator length 2 m). (4) The nuclei of 57 Fe, 119 Sn and 238 U are expected to be the candidates for the Moessbauer scattering experiment using synchrotron photon from a 8 GeV storage ring. (author)

  4. Development of a cryogenic permanent magnet undulator at the ESRF

    International Nuclear Information System (INIS)

    Kitegi, Ch.

    2008-12-01

    In 2004, at SPring-8, Toru Hara proposed a new concept of undulator with a short period and a high field: the Cryogenic Permanent Magnet Undulator (CPMU). The purpose of this concept is to cool Nd 2 Fe 14 B magnets at 150 K. This cooling allows magnets which have a higher remanence to be used, up to 40% higher than that of the magnets traditionally used in undulators. In order to assess the technological possibility of producing such undulator, a 2 m long undulator with a 18 mm period has been proposed at the ESRF. This piece of work presents the design and the construction of this CPMU at the ESRF. First a magnetic model of the CPMU is introduced; it is based on measurements of the magnetization curve at cryogenic temperature performed at the Louis Neel Laboratory. This model forecasts an increase of the peak field of 8% and of the field integral of 0.2 Gm at around 150 K. A unique magnetic measurement bench has been developed at the ESRF. This bench allows both the in vacuum local field and field integral to be measured. Its design and construction are presented. Finally we have reviewed the measurements at room and cryogenic temperature. These measurements are in agreement with the magnetic model. (author)

  5. Electron Beam Alignment Strategy in the LCLS Undulators

    International Nuclear Information System (INIS)

    Nuhn, H

    2007-01-01

    The x-ray FEL process puts very tight tolerances on the straightness of the electron beam trajectory (2 (micro)m rms) through the LCLS undulator system. Tight but less stringent tolerances of 80 (micro)m rms vertical and 140 (micro)m rms horizontally are to be met for the placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through beam-based alignment (BBA) based on electron energy variations. Conventional alignment will set the start conditions for BBA. Precision-fiducialization of components mounted on remotely adjustable girders and the use of beam-finder wires (BFW) will satisfy placement tolerances. Girder movement due to ground motion and temperature changes will be monitored continuously by an alignment monitoring system (ADS) and remotely corrected. This stabilization of components as well as the monitoring and correction of the electron beam trajectory based on BPMs and correctors will increase the time between BBA applications. Undulator segments will be periodically removed from the undulator Hall and measured to monitor radiation damage and other effects that might degrade undulator tuning

  6. Permanent-magnet helical undulator for a millimeter-wave free electron laser

    International Nuclear Information System (INIS)

    Lee, Jongmin; Jeong, Young-Uk; Lee, Byung-Cheol; Kim, Sun-Kook; Cho, Sung-Oh

    1995-01-01

    Permanent-magnet helical undulator for a millimeter-wave free-electron laser was designed and constructed. The configuration of the undulator is based on bifilar-type permanent-magnet helical undulator and Halbach-type planar undulator. This new configuration shows enhanced magnetic field and low field error. Period, total length and peak magnetic-field amplitude of the undulator is 36 mm, 900 mm and 1.44 kG, respectively. Adiabatic tapering of the magnetic field in end sides of the undulator was achieved using stepped soft-iron tubes. (author)

  7. Perspectives of imaging of single protein molecules with the present design of the European XFEL. Pt. 1. X-ray source, beamline optics and instrument simulations

    International Nuclear Information System (INIS)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor; Geloni, Gianluca; Yefanov, Oleksandr

    2014-08-01

    The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 μm and 1 μm size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between X-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal SASE1 output power is about 50 GW. This is very far from the level required for single biomolecule imaging, even assuming perfect beamline and focusing efficiency. Here we demonstrate that the parameters of the accelerator complex and of the SASE1 undulator offer an opportunity to optimize the SPB beamline for single biomolecule imaging with minimal additional costs and time. Start to end simulations from the electron injector at the beginning of the accelerator complex up to the generation of diffraction data indicate that one can achieve diffraction without diffraction with about 0.5 photons per Shannon pixel at near-atomic resolution with 10 13 photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 10 23 ph/cm 2 . This result is exemplified using the RNA Pol II molecule as a case study.

  8. Perspectives of imaging of single protein molecules with the present design of the European XFEL. Pt. 1. X-ray source, beamline optics and instrument simulations

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Yefanov, Oleksandr [Center for Free-Electron Laser Science, Hamburg (Germany)

    2014-08-15

    The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 μm and 1 μm size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between X-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal SASE1 output power is about 50 GW. This is very far from the level required for single biomolecule imaging, even assuming perfect beamline and focusing efficiency. Here we demonstrate that the parameters of the accelerator complex and of the SASE1 undulator offer an opportunity to optimize the SPB beamline for single biomolecule imaging with minimal additional costs and time. Start to end simulations from the electron injector at the beginning of the accelerator complex up to the generation of diffraction data indicate that one can achieve diffraction without diffraction with about 0.5 photons per Shannon pixel at near-atomic resolution with 10{sup 13} photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 10{sup 23}ph/cm{sup 2}. This result is exemplified using the RNA Pol II molecule as a case study.

  9. Development of new S-band SLED for PAL-XFEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik [Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 (Korea, Republic of); Lee, Heung-Soo, E-mail: lhs@postech.ac.kr [Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 (Korea, Republic of); Noh, Sungju; Oh, Kyoungmin [VitzroTech, Ansan, Gyeonggi 15603 (Korea, Republic of)

    2017-01-21

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  10. Development of new S-band SLED for PAL-XFEL Linac

    Science.gov (United States)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin

    2017-01-01

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  11. Eigenmode simulations of third harmonic superconducting accelerating cavities for FLASH and the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [Manchester Univ. (United Kingdom). School of Physics and Astronomy; The Cockcroft Institute, Daresbury, Warrington (United Kingdom)

    2012-06-15

    The third harmonic nine-cell cavity (3.9 GHz) for FLASH and the European XFEL has been investigated using simulations performed with the computer code CST Microwave Studio registered. The band structure of monopole, dipole, quadrupole and sextupole modes for an ideal cavity has been studied. The higher order modes for the nine-cell structure are compared with that of the cavity mid-cell. The R/Q of these eigenmodes are calculated.

  12. X-ray spectroscopy and X-ray crystallography of metalloenzymes at XFELs

    International Nuclear Information System (INIS)

    Yano, Junko

    2016-01-01

    The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting crystallography data and X-ray emission spectra, using an energy dispersive spectrometer at ambient conditions. In addition, we have developed a way to collect metal L-edge data of dilute samples using soft X-rays at XFELs. The advantages and challenges of these methods will be described in this review. (author)

  13. Intra-bunch-train transverse dynamics in the superconducting accelerators FLASH and European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Hellert, Thorsten

    2017-11-15

    FLASH and the European XFEL are linear accelerator driven SASE-FELs, operating in a pulsed mode with long bunch-trains. Multi-bunch FEL operation requires longitudinal and transverse stability within the bunch-train. The purpose of this work is to investigate the intra-bunch-train transverse dynamics at FLASH and XFEL. Key relationships of superconducting RF cavity operation, their misalignments and the resulting impact on the intra-bunch-train trajectory variation are described. In this thesis a numerical model is developed and simulations for different accelerating sections at FLASH and XFEL are performed. With the current operational setup significant intra-bunch-train trajectory variation must be considered, hence approaches for their reduction are discussed. The theoretical studies are compared to experimental results at FLASH. The observed trajectory variation during multi-bunch user runs is analyzed and related to causal intra-bunch-train variations of the RF and the following impact on the multi-bunch SASSE performance. Furthermore, HOM-based cavity misalignment measurements are performed and the deduction of misalignments from multi-bunch data is considered.

  14. Intra-bunch-train transverse dynamics in the superconducting accelerators FLASH and European XFEL

    International Nuclear Information System (INIS)

    Hellert, Thorsten

    2017-11-01

    FLASH and the European XFEL are linear accelerator driven SASE-FELs, operating in a pulsed mode with long bunch-trains. Multi-bunch FEL operation requires longitudinal and transverse stability within the bunch-train. The purpose of this work is to investigate the intra-bunch-train transverse dynamics at FLASH and XFEL. Key relationships of superconducting RF cavity operation, their misalignments and the resulting impact on the intra-bunch-train trajectory variation are described. In this thesis a numerical model is developed and simulations for different accelerating sections at FLASH and XFEL are performed. With the current operational setup significant intra-bunch-train trajectory variation must be considered, hence approaches for their reduction are discussed. The theoretical studies are compared to experimental results at FLASH. The observed trajectory variation during multi-bunch user runs is analyzed and related to causal intra-bunch-train variations of the RF and the following impact on the multi-bunch SASSE performance. Furthermore, HOM-based cavity misalignment measurements are performed and the deduction of misalignments from multi-bunch data is considered.

  15. Simulation of electromagnetic scattering through the E-XFEL third harmonic cavity module

    CERN Document Server

    Joshi, N.Y; Shiliang, L; Baboi, N

    2017-01-01

    The European XFEL (E-XFEL) is being fabricated in Hamburg to serve as an X-ray Free Electron Laser light source. The electron beam will be accelerated through linacs consisting of 1.3GHz superconducting cavities along a length of 2.1km. In addition, third harmonic cavities will improve the quality of the beam by line arising the field profile and hence reducing the energy spread. There are eight 3.9GHz cavities within a single module AH1 of E-XFEL. The beam-excited electromagnetic(EM) field in these cavities can be decomposed into a series of eigenmodes. These modes are, in general, not cut-off between one cavity and the next, as they are able to couple to each other through out the module. Here for the first time, we evaluate components of the scattering matrix for module AH1. This is a computation ally expensive system, and hence we employ a Generalized Scattering Matrix(GSM)technique to allow rapid computation with reduced memory requirements. Verification is provided on reduced structures, which are...

  16. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  17. Production of linear polarization by segmentation of helical undulator

    International Nuclear Information System (INIS)

    Tanaka, T.; Kitamura, H.

    2002-01-01

    A simple scheme to obtain linearly polarized radiation (LPR) with a segmented undulator is proposed. The undulator is composed of several segments each of which forms a helical undulator and has helicity opposite to those of adjacent segments. Due to coherent sum of radiation, the circularly polarized component is canceled out resulting in production of LPR without any higher harmonics. The radiation from the proposed device is investigated analytically, which shows that a high degree of linear polarization is obtained in spite of a finite beam emittance and angular acceptance of optics, if a sufficiently large number of segments and an adequate photon energy are chosen. Results of calculation to investigate practical performances of the proposed device are presented

  18. Intensity interferometry at the X13A undulator beamline

    International Nuclear Information System (INIS)

    Gluskin, E.; McNulty, I.; Yang, L.; Randall, K.J.; Johnson, E.D.

    1993-01-01

    We are constructing a soft x-ray intensity interferometer and an undulator based beamline to demonstrate intensity interferometry in the x-ray region. The 10-period soft x-ray undulator at the NSLS provides the necessary coherent flux; the X13A beamline is designed to preserve the spatial coherence of the bright x-ray beam and provide sufficient temporal coherence using a horizontally deflecting spherical grating monochromator. Using the interferometer, which consists of an array of small slits, a wedge-shaped beamsplitter and two fast microchannel plate detectors, we expect to measure the spatial coherence of the undulator beam and therefore the size of the source in the vertical plane. Details of the bean-dine design and the interferometer experiment are discussed

  19. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  20. Permanent magnet steerers for canted undulators at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Le Bec, G., E-mail: lebec@esrf.fr [ESRF, 6 r. J. Horowitz, BP 220, 38043 Grenoble Cedex 9 (France); Chavanne, J. [ESRF, 6 r. J. Horowitz, BP 220, 38043 Grenoble Cedex 9 (France)

    2012-02-01

    A number of canted undulators will be installed at the ESRF. Permanent Magnet Steerers will be used for providing canting angles up to 5.4 mrad. These steerers have been optimized in view of the limited space available and the required field quality. The magnetic interaction between the steerers and the undulators may lead to additional optical phase errors: auxiliary poles have been added to obtain a fast decrease of the fringe field. The transverse homogeneity of the magnetic field integral is another strong design constraint. Good homogeneity was reached by optimizing the profiles of the iron poles. Eight steerers have been constructed and magnetic measurements have been performed.

  1. Characterization of undulator radiation at the Photon Factory

    International Nuclear Information System (INIS)

    Maezawa, Hideki; Kitamura, Hideo; Sasaki, Taizo; Suzuki, Yoshio

    1986-01-01

    Spectra of undulator radiation of the Photon Factory undulator, model PMU-2, were measured in a scale of absolute brightness in the soft X-ray region for various values of the K-parameter from 0.72 to 1.66. A significant reduction of the peak brightness was observed, whereas we also observed a relatively sharp edge at the high energy side of the first harmonic. The results show that the peak brightness and the band width are highly dependent on the beam parameters and the geometry of spectral observation. (orig.)

  2. Characterization of undulator radiation at the photon factory

    Science.gov (United States)

    Maezawa, Hideki; Suzuki, Yoshio; Kitamura, Hideo; Sasaki, Taizo

    1986-05-01

    Spectra of undulator radiation of the Photon Factory undulator, model PMU-2, were measured in a scale of absolute brightness in the soft X-ray region for various values of the K-parameter from 0.72 to 1.66. A significant reduction of the peak brightness was observed, whereas we also observed a relatively sharp edge at the high energy side of the first harmonic. The results show that the peak brightness and the band width are highly dependent on the beam parameters and the geometry of spectral observation.

  3. Observation of the undulator radiation from the positron beam

    International Nuclear Information System (INIS)

    Maezawa, Hideki.

    1986-02-01

    A spectral measurement of the 1st harmonic of the undulator radiation emitted from positron beam was made on Dec. 21, 1985 during a test operation of the Photon Factory storage ring with the 2.5 GeV positron beam which was stored up to 5.5 mA. In comparison to the same measurement performed with the electron beam, no appreciable difference in the spectral properties of the undulator radiation was found between the two cases under the condition of the low beam current of a few mA. (author)

  4. Baseline rationing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave

    The standard problem of adjudicating conflicting claims describes a situation in which a given amount of a divisible good has to be allocated among agents who hold claims against it exceeding the available amount. This paper considers more general rationing problems in which, in addition to claims...... to international protocols for the reduction of greenhouse emissions, or water distribution in drought periods. We define a family of allocation methods for such general rationing problems - called baseline rationing rules - and provide an axiomatic characterization for it. Any baseline rationing rule within...... the family is associated with a standard rule and we show that if the latter obeys some properties reflecting principles of impartiality, priority and solidarity, the former obeys them too....

  5. Magnetic measurement, sorting optimization and adjustment of SDUV-FEL hybrid undulator

    International Nuclear Information System (INIS)

    Wang Tao; Jia Qika

    2007-01-01

    Construction of an undulator includes magnet block measurement, sorting, field measurement and adjustment. Optimizing SDUV-FEL undulator by simulated annealing algorithm using measurement results of the magnet blocks by Helmholtz coil before installing undulator magnets, the cost function can be reduced by three orders of magnitude. The practical parameters of one segment meet the design specifications after adjusting the magnetic field. (authors)

  6. Calculations of magnetic field errors caused by mechanical accuracy at infra-red undulator construction

    International Nuclear Information System (INIS)

    Matyushevskij, E.A.; Morozov, N.A.; Syresin, E.M.

    2005-01-01

    At the Joint Institute for Nuclear Research (Dubna) the electromagnetic undulator with maximal magnetic field 1.2 T and 40 cm period is under development. The computer models for the undulator magnet system were realized on the basis of POISSON and RADIA codes. The undulator magnetic field imperfections due to the design errors were simulated by the models

  7. Formation test of the plasma micro-undulator

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Noriyasu; Hashimoto, Kiyoshi; Aoki, Nobutada; Kimura, Hironobu; Konagai, Chikara; Nakagawa, Satoshi [Toshiba Corp., Yokohama, Kanagawa (Japan); Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    An electrostatic plasma micro-undulator was demonstrated by utilizing methods of a laser interference and resonant photoionization. An ion-ripple can be formed across a relativistic electron beam injected into the micro-undulator. Thereby, synchrotron radiation light can be projected. Neodymium (Nd) target is ablated by a pulsed Nd-YAG laser beam, and the vapor is ionized by another laser beam with a wavelength tuned to a resonant ionization line of Nd atom. The laser beam for ionization is irradiated into Nd vapor using interference optics, and a micro-sized plasma-ripple corresponding to the interference fringes is shaped. In the experiment, the interference fringe with a periodic length from 10 to 300 {mu}m was formed, and the plasma-ripple was observed. The plasma density of order of 10{sup 13} cm{sup -3}, under the experimental condition, was not sufficient to obtain an effect expected as an undulator. However, optimization of a distance from the ablation spot to the laser plasma fringe and increase of laser power could achieve an undulator parameter K of more than 0.1. (author)

  8. Tapering of the CHESS-APS undulator: Results and modelling

    International Nuclear Information System (INIS)

    Lai, B.; Viccaro, P.J.; Dejus, R.; Gluskin, E.; Yun, W.B.; McNulty, I.; Henderson, C.; White, J.; Shen, Q.; Finkelstein, K.

    1992-01-01

    When the magnetic gap of an undulator is tapered along the beam direction, the slowly varying peak field B o introduces a spread in the value of the deflection parameter K. The result is a broad energy-band undulator that still maintains high degree of spatial collimation. These properties are very useful for EXAFS and energy dispersive techniques. We have characterized the CHESS-APS undulator (1 υ = 3.3cm) at one tapered configuration (10% change of the magnetic gap from one end of the undulator to the other). Spatial distribution and energy spectra of the first three harmonics through a pinhole were measured. The on-axis first harmonic width increased from 0.27 keV to 0.61 keV (FWHM) at the central energy of E 1 = 6.6 keV (K average = 0.69). Broadening in the angular distribution due to tapering was minimal. These results will be compared with computer modelling which simulates the actual electron trajectory in the tapered case

  9. Test of an undulated vacuum chamber for the ISR

    CERN Multimedia

    1975-01-01

    This picture shows mechanical tests of an undulated vacuum chamber for downstream arms of ISR intersections. This chamber, made of 0.3 mm thick inconel, had inner dimensions of 150 mm by 50 mm. The deflection under vacuum is measured by dial gauges. On the left one sees the large vessel where vacuum chambers were tested at pressures above atmospheric pressure.

  10. The E166 experiment: Development of an undulator-based ...

    Indian Academy of Sciences (India)

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a ...

  11. Design issues for cryogenic cooling of short period superconducting undulators

    International Nuclear Information System (INIS)

    Green, M.A.; Dietderich, D.R.; Marks, S.; Prestemon, S.O.; Schlueter, R.D.

    2003-01-01

    Superconducting insertion devices, which produce periodic magnetic fields, have been built and installed in a number of synchrotron-light source storage-rings. For the most part, these devices have been wigglers, which have relatively long period lengths. This report concerns itself with the special cryogenic issues associated with short period undulators. The motivation for considering the incorporation of superconducting technology in insertion device designs is to achieve higher magnetic fields than can be achieved with more conventional permanent magnet technology. Since the peak field decreases sharply with increased magnet gap to period ratio, the cryogenic design of the magnet system is crucial. In particular, the insulation required for a warm vacuum bore device is impractical for short period undulators. This report describes the issues that are related to a cold bore (∼4 K) and an intermediate temperature bore (30 to 70 K) designs. The criteria for the use of small cryocoolers for cooling a short period undulator are presented. The problems associated with connecting small coolers to an undulator at 4.2 K are discussed

  12. Advantage and Challenges of $Nb_3Sn$ Superconducting Undulators

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Barzi, E. [Fermilab; Turrinoni, D. [Fermilab; Ivanyushenkov, Yu. [Argonne; Kesgin, I. [Argonne

    2018-04-01

    Utilization of Nb3Sn superconducting wires offers the possibility to increase undulators’ nominal operation field and temperature margin, but requires overcoming chal-lenges that are described in this paper. The achievable field levels for a Nb3Sn version of superconducting undulators being developed at APS-ANL and the conductor choice are also presented and discussed.

  13. Spatial uncertainty of a geoid undulation model in Guayaquil, Ecuador

    Directory of Open Access Journals (Sweden)

    Chicaiza E.G.

    2017-06-01

    Full Text Available Geostatistics is a discipline that deals with the statistical analysis of regionalized variables. In this case study, geostatistics is used to estimate geoid undulation in the rural area of Guayaquil town in Ecuador. The geostatistical approach was chosen because the estimation error of prediction map is getting. Open source statistical software R and mainly geoR, gstat and RGeostats libraries were used. Exploratory data analysis (EDA, trend and structural analysis were carried out. An automatic model fitting by Iterative Least Squares and other fitting procedures were employed to fit the variogram. Finally, Kriging using gravity anomaly of Bouguer as external drift and Universal Kriging were used to get a detailed map of geoid undulation. The estimation uncertainty was reached in the interval [-0.5; +0.5] m for errors and a maximum estimation standard deviation of 2 mm in relation with the method of interpolation applied. The error distribution of the geoid undulation map obtained in this study provides a better result than Earth gravitational models publicly available for the study area according the comparison with independent validation points. The main goal of this paper is to confirm the feasibility to use geoid undulations from Global Navigation Satellite Systems and leveling field measurements and geostatistical techniques methods in order to use them in high-accuracy engineering projects.

  14. Measurement, sorting and tuning of LCLS undulator magnets

    CERN Document Server

    Vasserman, I B; Dejus, Roger J; Moog, E; Trakhtenberg, E; Vinokurov, N A

    2002-01-01

    Currently, a Linac Coherent Light Source (LCLS) prototype undulator is under construction. The prototype is a 3.4-m-long hybrid-type undulator with fixed gap of 6 mm. The period length is 30 mm and the number of poles is 226. For this undulator, 450 NdFeB magnet blocks are used. This project does not have demanding requirements for multipole component errors, but the field strength at x=0 should be as precise as possible to provide proper particle steering and phase errors. The first set of magnetic blocks has been measured. The strength and direction of magnetization of the magnet blocks are measured using a Helmholtz coil system. In addition to this, Hall probe measurements are performed for magnet blocks while they are mounted in a specially designed cassette with vanadium-permendur poles. The magnet blocks will be sorted using these data to minimize errors. Computer simulations show that magnets may be sorted in decreasing strengths with little or no additional tuning of the undulators.

  15. Undulator based scanning microscope at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Rarback, H.; Shu, D.; Ade, H.; Jacobsen, C.; Kirz, J.; McNulty, I.; Rosser, R.

    1986-01-01

    A second generation scanning soft x-ray microscope is under construction, designed to utilize the dramatic increase in source bightness available at the soft x-ray undulator. The new instrument is expected to reduce image acquisition time by a factor of about 100, and to improve resolution, stability, and reproducibility

  16. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  17. Triggering for Magnetic Field Measurements of the LCLS Undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-12-13

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  18. Spatial uncertainty of a geoid undulation model in Guayaquil, Ecuador

    Science.gov (United States)

    Chicaiza, E. G.; Leiva, C. A.; Arranz, J. J.; Buenańo, X. E.

    2017-06-01

    Geostatistics is a discipline that deals with the statistical analysis of regionalized variables. In this case study, geostatistics is used to estimate geoid undulation in the rural area of Guayaquil town in Ecuador. The geostatistical approach was chosen because the estimation error of prediction map is getting. Open source statistical software R and mainly geoR, gstat and RGeostats libraries were used. Exploratory data analysis (EDA), trend and structural analysis were carried out. An automatic model fitting by Iterative Least Squares and other fitting procedures were employed to fit the variogram. Finally, Kriging using gravity anomaly of Bouguer as external drift and Universal Kriging were used to get a detailed map of geoid undulation. The estimation uncertainty was reached in the interval [-0.5; +0.5] m for errors and a maximum estimation standard deviation of 2 mm in relation with the method of interpolation applied. The error distribution of the geoid undulation map obtained in this study provides a better result than Earth gravitational models publicly available for the study area according the comparison with independent validation points. The main goal of this paper is to confirm the feasibility to use geoid undulations from Global Navigation Satellite Systems and leveling field measurements and geostatistical techniques methods in order to use them in high-accuracy engineering projects.

  19. Numerical modeling of shoreline undulations part 1: Constant wave climate

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen

    2013-01-01

    integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model.First the length of the shoreline undulations is determined in the linear regime using a stability analysis. Next the further evolution from the linear to the fully non-linear regime is described...

  20. Triggering for Magnetic Field Measurements of the LCLS Undulators

    International Nuclear Information System (INIS)

    Hacker, Kirsten

    2010-01-01

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  1. APPLE-II type quasi-periodic variably polarizing undulator at HiSOR

    International Nuclear Information System (INIS)

    Sasaki, Shigemi; Miyamoto, Atsushi; Goto, Kiminori

    2012-01-01

    A newly constructed quasi-periodic APPLE-II undulator was installed in the HiSOR ring at Hiroshima Synchrotron Radiation Center, Hiroshima University during the summer shutdown period in 2011. This 1.8 m-long undulator has a period length of 78 mm. In this article, the mechanism of magnetic field generation for various polarization modes of APPLE undulator, the principle of quasi-periodic undulator and the performance of HiSOR QP-APPLE-II undulator are described. (author)

  2. Design of a short-period superconducting undulator at KEK-PF

    Energy Technology Data Exchange (ETDEWEB)

    Ohmi, K.; Ikeda, N.; Ishii, S.

    1998-06-01

    A short-period undulator using a superconducting magnet is proposed. This undulator has been designed to install in the KEK-Photon Factory 2.5-GeV or 6.5-GeV storage ring. The idea of a staggered wiggler, developed in Stanford university, is used in this undulator. The target of the period and K value of the undulator are set to be 1 cm and 1, respectively. We can obtain monochromatic photons with an energy of {approx} 5keV or {approx} 40 keV by using the undulator. (author)

  3. Undulator physics and coherent harmonic generation at the MAX-lab electron storage ring

    International Nuclear Information System (INIS)

    Werin, Sverker.

    1991-01-01

    This work presents the undulator and harmonic generation project at the electron storage ring MAX-lab at University of Lund. The theory of undulator radiation, laser coherent harmonic generation, optical klystron amplifiers and FELs is treated in one uniform way, with complete solutions of the necessary equations. The permanent magnet undulator is described in some detail, along with the installation of the undulator in the storage ring. Details regarding the emitted radiation, the electron beam path in the undulator and other results are analysed. Finally harmonic generation using a Nd:YAG laser and the creation of coherent photons at the third harmonic (355 nm) is described. (author)

  4. Magnetic performance of DEVU25.20h undulator at IDDL, DAVV,India

    Science.gov (United States)

    Mishra, G.; Gehlot, Mona; Sharma, Geetanjali; Khullar, Roma

    2016-10-01

    In this paper, we describe the design development and magnetic performance of a prototype DEVU25.20h, variable gap hybrid undulator at IDD laboratory, DAVV, Indore, India. The undulator is NdFeB based hybrid undulator with twenty five period and 20 mm each period length. Low cost M35 grade cobalt steel is used as the pole material of the undulator. The abc coefficients of the new pole material is prescribed and the measured performance and characteristics of the undulator is evaluated using RADIA. The detailed design parameters and performance indicators are summarized in Table 1 and Table 2 respectively.

  5. Singular value decomposition as a tool for background corrections in time-resolved XFEL scattering data

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer

    2014-01-01

    The development of new X-ray light sources, XFELs, with unprecedented time and brilliance characteristics has led to the availability of very large datasets with high time resolution and superior signal strength. The chaotic nature of the emission processes in such sources as well as entirely novel...... detector demands has also led to significant challenges in terms of data analysis. This paper describes a heuristic approach to datasets where spurious background contributions of a magnitude similar to (or larger) than the signal of interest prevents conventional analysis approaches. The method relies...

  6. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    Science.gov (United States)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  7. Circular polarization with crossed-planar undulators in high-gain FELs

    CERN Document Server

    Kim, K J K J

    2000-01-01

    We propose a crossed undulator configuration for a high-gain free-electron laser to allow versatile polarization control. This configuration consists of a long (saturation length) planar undulator, a dispersive section, and a short (a few gain lengths) planar undulator oriented perpendicular to the first one. In the first undulator, a radiation component linearly polarized in the x-direction is amplified to saturation. In the second undulator, the x-polarized component propagates freely, while a new component, polarized in the y-direction, is generated and reaches saturation in a few gain lengths. By adjusting the strength of the dispersive section, the relative phase of two radiation components can be adjusted to obtain a suitable polarization for the total radiation field, including the circular polarization. The operating principle of the high-gain crossed undulator, which is quite different from that of the crossed undulator for spontaneous radiation, is illustrated in terms of 1-D FEL theory.

  8. Performance of a superconducting, high field subcentimeter undulator

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Ingold, G.; Sampson, W.; Woodle, M.

    1991-01-01

    A Superconducting 8.80mm wavelength undulator is under construction for the 500nm Free-Electron Laser at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. We present results on the design, construction and performance of this novel undulator structure. A field on axis of 0.51T has been measured for a 4.40mm gap, with a current 20% below the quench current. Our simple design focuses on minimizing the accumulation of errors by minimizing the numbers of parts and by using a ferromagnetic yoke. The magnetic field error is less than 0.30% rms as manufactured (without shimming). The third harmonic content is less than 0.1% of the fundamental

  9. The U5.0 Undulator for the ALS

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Halbach, K.; Hassenzahl, W.V.; Humphries, D.; Kincaid, B.; Lancaster, H.; Plate, D.

    1991-05-01

    The U5.0 Undulator, an 89 period, 5 cm period length, 4.6 m long insertion device has been designed and is in fabrication. This undulator will be the first high brightness source, in the 50 to 1500 eV range, for the Advanced Light Source (ALS) and is scheduled for completion in 1992. A modular hybrid configuration utilizing Nd-Fe-B permanent magnet material and vanadium permendur is used that achieves 0.837 Tesla effective peak field. Correction of the vertical field integral is with permanent magnet rotors at the ends. Gap adjustment is with an arrangement of roller screws, chains drives, a gear reduction unit and a stepper motor driven by a closed loop control system. The vacuum chamber design is a two-piece, machined and welded 5083-H321 aluminum construction of 5.1 m length. Magnetic design, subsystem design and fabrication progress are presented. 12 refs., 4 figs., 2 tabs

  10. Design and performance of the APPLE-Knot undulator

    International Nuclear Information System (INIS)

    Ji, Fuhao; Chang, Rui; Zhou, Qiaogen; Zhang, Wei; Ye, Mao; Sasaki, Shigemi; Qiao, Shan

    2015-01-01

    The design and performance of the Apple-Knot undulator which can generate photons with arbitrary polarization and low on-axis heat load are presented. Along with the development of accelerator technology, synchrotron emittance has continuously decreased. This results in increased brightness, but also causes a heavy heat load on beamline optics. Recently, optical surfaces with 0.1 nm micro-roughness and 0.05 µrad slope error (r.m.s.) have become commercially available and surface distortions due to heat load have become a key factor in determining beamline performance, and heat load has become a serious problem at modern synchrotron radiation facilities. Here, APPLE-Knot undulators which can generate photons with arbitrary polarization, with low on-axis heat load, are reported

  11. Design and performance of the APPLE-Knot undulator

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fuhao [Department of Physics, State Key Laboratory of Surface Physics, and Laboratory of Advanced Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of (China); Chang, Rui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People’s Republic of (China); Zhou, Qiaogen; Zhang, Wei [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, People’s Republic of (China); Ye, Mao [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People’s Republic of (China); Sasaki, Shigemi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Hiroshima 739-0046 (Japan); Qiao, Shan, E-mail: qiaoshan@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People’s Republic of (China); School of Physical Science and Technology, ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, People’s Republic of (China)

    2015-06-09

    The design and performance of the Apple-Knot undulator which can generate photons with arbitrary polarization and low on-axis heat load are presented. Along with the development of accelerator technology, synchrotron emittance has continuously decreased. This results in increased brightness, but also causes a heavy heat load on beamline optics. Recently, optical surfaces with 0.1 nm micro-roughness and 0.05 µrad slope error (r.m.s.) have become commercially available and surface distortions due to heat load have become a key factor in determining beamline performance, and heat load has become a serious problem at modern synchrotron radiation facilities. Here, APPLE-Knot undulators which can generate photons with arbitrary polarization, with low on-axis heat load, are reported.

  12. Enhanced coherent undulator radiation from bunched electron beams

    International Nuclear Information System (INIS)

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.; Smith, T.I.

    1996-01-01

    When energetic bunches of electrons traverse an undulator field, they can spontaneously emit radiation both coherently and incoherently. Although it has generally been assumed that undulator radiation is incoherent at wavelengths short compared to the longitudinal size of the electron bunch, several recent observations have proved this assumption false. Furthermore, the appearance of coherent radiation is often accompanied by a significant increase in radiated power. Here we report observations of strongly enhanced coherent spontaneous radiation together with direct measurements, using transition radiation techniques, of the electron distributions responsible for the coherent emission. We also report demonstrated enhancements in the predicted spontaneous radiated power by as much as 6x10 4 using electron bunch compression. copyright 1996 American Institute of Physics

  13. Absolute measurement of undulator radiation in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Maezawa, H.; Kitamura, H.; Sasaki, T.; Mitani, S.; Osaka City Univ.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Tokyo Univ.; Mikuni, A.; Tokyo Univ., Tanashi

    1983-01-01

    The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy #betta#, the field parameter K, and the angle of observation THETA in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula lambdasub(n)=lambda 0 /2n#betta# 2 (1+K 2 /2+#betta# 2 THETA 2 ), and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed. (orig.)

  14. Magnetic design of a 14 mm period prototype superconducting undulator

    Energy Technology Data Exchange (ETDEWEB)

    Gehlot, Mona, E-mail: mona_gehlot@yahoo.com [Insertion Device Development Laboratory, School of Physics, Devi Ahilya University, Indore 452001, MP (India); Mishra, G. [Insertion Device Development Laboratory, School of Physics, Devi Ahilya University, Indore 452001, MP (India); Institute of Engineering, UNAM (Mexico); Soleil, Paris (France); Trillaud, Frederic [Institute of Engineering, UNAM (Mexico); Sharma, Geetanjali [Soleil, Paris (France)

    2017-02-21

    In this paper we report the design of a 14 mm period prototype superconducting undulator that is under fabrication at Insertion Device Development Laboratory (IDDL) at Devi Ahilya Vishwavidyalaya, Indore, India. The field computations are made in RADIA and results are presented in an analytical form for computation of the on axis field and the field on the surface of the coil. On the basis of the findings, a best fit is presented for the model to calculate the field dependence on the gap and the current density. The fit is compared with Moser-Rossmanith formula proposed earlier to predict the magnetic flux density of a superconducting undulator. The field mapping is used to calculate the field integrals and its dependence on gap and current densities as well.

  15. Effects of wigglers and undulators on beam dynamics

    International Nuclear Information System (INIS)

    Smith, L.

    1986-08-01

    Synchrotron light facilities are making ever increasing use of wigglers and undulators, to the extent that these devices are becoming a significant part of the beam optical system of the storage ring itself. This paper presents a theoretical formulation for investigating the effect of wigglers and undulators on beam dynamics in the approximation that the wiggler parameter, K, divided by γ is a small number and that the number of wiggler periods in one device is large. In addition to the linear forces which must be taken into account when tuning and matching the ring, nonlinear stop bends are created, with even orders more serious than odd orders. Some numerical examples are given for devices similar to those proposed for the 1-2 GeV Synchrotron Radiation Source at Lawrence Berkeley Laboratory

  16. Optimal propulsion of an undulating slender body with anisotropic friction.

    Science.gov (United States)

    Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco

    2018-01-24

    This study investigates theoretically and numerically the propulsive sliding of a slender body. The body sustains a transverse and propagative wave along its main axis, and undergoes anisotropic friction caused by its surface texture sliding on the floor. A model accounting for the anisotropy of frictional forces acting on the body is implemented. This describes the propulsive force and gives the optimal undulating parameters for efficient forward propulsion. The optimal wave characteristics are effectively compared to the undulating motion of a slithering snakes, as well as with the motion of sandfish lizards swimming through the sand. Furthermore, numerical simulations have indicated the existence of certain specialized segments along the body that are highly efficient for propulsion, explaining why snakes lift parts of their body while slithering. Finally, the inefficiency of slithering as a form of locomotion to ascend a slope is discussed.

  17. Metrology and quality assurance for European XFEL long flat mirrors installation

    Science.gov (United States)

    Freijo Martín, Idoia; Vannoni, Maurizio; Sinn, Harald

    2017-06-01

    The European XFEL is a large-scale user facility under construction in Hamburg, Germany. It will provide a transversally fully coherent X-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 milliseconds long pulse train at 10Hz), short wavelength (down to 0.05 nm), short pulses (in the femtoseconds scale) and high average brilliance (1.6x1025 photons / s / mm2 / mrad2/ 0.1% bandwidth)1. Due to the short wavelength and high pulse energies, mirrors need to have a high-quality surface, have to be very long (1 m), and at the same time an effective cooling system has to be implemented. Matching these tight specifications and assessing them with high precision optical measurements is very challenging. The mirrors go through a complicated and long process, starting from classical polishing to deterministic polishing, ending with a special coating and a final metrology assessment inside their mechanical mounts just before the installation. The installation itself is also difficult for such big mirrors and needs special care. In this contribution we will explain how we implemented the installation process, how we used the metrology information to optimize the installation procedure and we will show some preliminary results with the first mirrors installed in the European XFEL beam transport.

  18. XFEL diffraction measurements of shocked Fe and Fe alloys for planetary science

    Science.gov (United States)

    Krygier, Andrew; Harmand, M.; Morard, G.; Nemausat, R.; Fiquet, G.; McBride, E.; Appel, K.; Albertazzi, B.; Benuzzi-Mounaix, A.; Koenig, M.; Vinci, T.; Kodama, R.; Miyanishi, K.; Ozaki, N.; Hartley, N.; Konopkova, Z.; Galtier, E.; Lee, H.-J.; Nagler, B.; Svitlyk, V.

    2017-10-01

    Earth's core is composed of Fe mixed with small amounts of light elements like Si, O, and C. Determining the phase relations of Fe and derivative alloys is important for understanding the cores of Earth and terrestrial exoplanets. High pressure and temperature conditions can be achieved with high power lasers, but the states are highly transient and their characterization has been limited by the lack of appropriate platforms. The recent advance of facilities with high-power lasers coupled to XFELs enables characterization of shocked states with the powerful suite of X-ray techniques used by the static community. Here we present results from recent X-ray diffraction measurements of shocked Fe alloys at the coupled XFEL-optical laser at SACLA (EH5) and LCLS (MEC). This work is supported by the French Agence Nationale de la Recherche with the ANR IRONFEL 12-PDOC-0011, the ERC PLANETDIVE, and under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  19. Development of a hard x-ray wavefront sensor for the EuXFEL

    Science.gov (United States)

    Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry

    2017-05-01

    We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

  20. Computation of the brightness of the variably-polarizing undulator

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.; Schettini, G.; Carpanese, M.

    1999-02-01

    Undulators, producing variably polarized radiation, generate magnetic fields which induce different types of electron motion (vertically, horizontally sinusoidal and helical). The properties of the emitted radiation reflect the complexity of the motion and cannot be described with the method based on the conventional Bessel functions expansion. It's shown that the problem can be overcome by exploiting a method which employs generalized forms of Bessel functions. The proposed technique provides an effective tool to analyze the properties of the emitted radiation [it

  1. Construction of CHESS compact undulator magnets at Kyma

    Science.gov (United States)

    Temnykh, Alexander B.; Lyndaker, Aaron; Kokole, Mirko; Milharcic, Tadej; Pockar, Jure; Geometrante, Raffaella

    2015-05-01

    In 2014 KYMA S.r.l. has built two CHESS Compact Undulator (CCU) magnets that are at present installed and successfully operate at the Cornell Electron Storage Ring. This type of undulator was developed for upgrade of Cornell High Energy Synchrotron Source beam-lines, but it can be used elsewhere as well. CCU magnets are compact, lightweight, cost efficient and in-vacuum compatible. They are linearly polarized undulators and have a fixed gap. Magnetic field tuning is achieved by phasing (shifting) top magnetic array relative bottom. Two CCUs constructed by KYMA S.r.l. have 28.4 mm period, 6.5 mm gap, 0.93 T peak field. Magnetic structure is of PPM type, made with NdFeB (40UH grade) permanent magnet material. Transitioning from the laboratory to industrial environment for a novel design required additional evaluation, design adjusting and extensive testing. Particular attention was given to the soldering technique used for fastening of the magnetic blocks to holders. This technique had thus far never been used before for undulator magnet construction by industry. The evaluation included tests of different types of soldering paste, measurements of strength of solder and determining the deformations of the soldered magnet and holder under simulated loading forces. This paper focuses on critical features of the CCU design, results of the soldering technique testing and the data regarding permanent magnets magnetization change due to soldering. In addition it deals with optimization-assisted assembly and the performance of the assembled devices and assesses some of the results of the CCU magnets operation at CESR.

  2. Antiaging activity of low molecular weight peptide from Paphia undulate

    Science.gov (United States)

    Chen, Xin; Cai, Bingna; Chen, Hua; Pan, Jianyu; Chen, Deke; Sun, Huili

    2013-05-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats, aged Kunming mice, ultraviolet-exposed rats, and thermally injured rats was investigated. P. undulate flesh was homogenized and digested using papain under optimal conditions, then subjected to Sephadex G-25 chromatography to isolate the LMWP. Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities of glutathione peroxidase (GPx) and catalase (CAT), and by decreasing the level of malondialdehyde (MDA). This process was accompanied by increased collagen synthesis. The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia. Furthermore, treatment with the LMWP helped to regenerate elastic fibers and the collagen network, increased superoxide dismutase (SOD) in the serum and significantly decreased MDA. Thermal scald-induced inflammation and edema were also relieved by the LWMP, while wound healing in skin was promoted. These results suggest that the LMWP from P. undulate could serve as a new antiaging substance in cosmetics.

  3. Development of a superconducting undulator for the APS

    International Nuclear Information System (INIS)

    Ivanyushenkov, Y; Abliz, M; Doose, C; Fuerst, J; Hasse, Q; Kasa, M; Trakhtenberg, E; Vasserman, I; Gluskin, E; Lev, V; Mezentsev, N; Syrovatin, V; Tsukanov, V

    2013-01-01

    As the western hemisphere's premier x-ray synchrotron radiation source, the Advanced Photon Source (APS) continues to advance the state of the art in insertion device technology in order to maintain record high brightness, especially in the hard x-ray wavelength region. Due to the unique bunch pattern used for normal APS operations and its ultimate capabilities, the APS has chosen superconducting technology for its future hard x-ray undulator sources. In the last several years, the APS in collaboration with the Budker Institute of Nuclear Physics has being developing the technology for planar, small-period superconducting undulators (SCUs). These developments include the design and construction of several prototypes and the construction of the necessary mechanical, vacuum, and cryogenic infrastructure at the APS site. Several prototypes of the SCU magnetic structure have been built and tested. The first SCU is assembled and will be installed in the APS storage ring at the end of 2012. Expected SCU performance in terms of x-ray brightness should noticeably exceed that of existing APS undulators. Immediately after commissioning, the SCU will be used at APS Sector 6 as the radiation source for high-energy x-ray studies.

  4. Comparison of Powerlifting Performance in Trained Men Using Traditional and Flexible Daily Undulating Periodization.

    Science.gov (United States)

    Colquhoun, Ryan J; Gai, Christopher M; Walters, Jeoffrey; Brannon, Andrew R; Kilpatrick, Marcus W; DʼAgostino, Dominic P; Campbell, Bill I

    2017-02-01

    Colquhoun, RJ, Gai, CM, Walters, J, Brannon, AR, Kilpatrick, MW, D'Agostino, DP, and Campbell, WI. Comparison of powerlifting performance in trained men using traditional and flexible daily undulating periodization. J Strength Cond Res 31(2): 283-291, 2017-Daily undulating periodization (DUP) is a growing trend, both in practice and in the scientific literature. A new form of DUP, flexible daily undulating periodization (FDUP), allows for athletes to have some autonomy by choosing the order of their training. The purpose of this study was to compare an FDUP model to a traditional model of DUP on powerlifting performance in resistance-trained men. Twenty-five resistance-trained men were randomly assigned to one of 2 groups: FDUP (N = 14) or DUP (N = 11). All participants possessed a minimum of 6 months of resistance training experience and were required to squat, bench press, and deadlift 125, 100, and 150% of their body mass, respectively. Dependent variables assessed at baseline and after the 9-week training program included bench press 1 repetition maximum (1RM), squat 1RM, deadlift 1RM, powerlifting total, Wilks Coefficient, fat mass, and fat-free mass (FFM). Dependent variables assessed during each individual training session were motivation to train, Session Rating of Perceived Exertion (Session RPE), and satisfaction with training session. After the 9-week training program, no significant differences in intensity or volume were found between groups. Both groups significantly improved bench press 1RM (FDUP: +6.5 kg; DUP: +8.8 kg), squat 1RM (FDUP: +15.6 kg; DUP: +18.0 kg), deadlift 1RM (FDUP: +14.8 kg; DUP: +13.6 kg), powerlifting total (FDUP: +36.8 kg; DUP: +40.4 kg), and Wilks Coefficient (FDUP: +24.8; DUP: +26.0) over the course of study (p = <0.001 for each variable). There was also a significant increase in FFM (FDUP: +0.8 kg; DUP: +0.8 kg) for both groups (p = 0.003). There were no differences in motivation to train, session RPE, or satisfaction with

  5. Simulation studies of a possible multi-stage XFEL at ELETTRA

    International Nuclear Information System (INIS)

    Fawley, William M.; Barletta, William A.; Bocchetta, Carlo J.; Bonifacio, Rodolfo

    2002-01-01

    Presently there is strong interest in developing a 4th generation light source at VUV and soft x-ray wavelengths at the ELETTRA facility at Trieste. One proposal centers around using the existing linac at 1.0 GeV energy with a new photocathode and bunch compression to achieve an output beam at 600 Amp current, 2-4 mm-mrad normalized emittance, and 0.05 percent instantaneous energy spread. To achieve output radiation in the 10- to 40-nm wavelength region, we consider a multi-stage device which is initiated by a coherent seed laser operating at 200 nm. We present numerical simulations of various undulator/optical-klystron configurations, seeking to optimize the overall output power level while minimizing the total length of undulator sections needed. Our results suggest multi-MW instantaneous powers are possible at 10-nm wavelengths

  6. Electron Signal Detection for the Beam-Finder Wire of the Linac Coherent Light Source Undulator

    International Nuclear Information System (INIS)

    Wu, Juhao; Emma, P.; Field, R.C.; SLAC

    2006-01-01

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. The tight tolerances for positioning the electron beam close to the undulator axis calls for the introduction of Beam Finder Wire (BFW) device. A BFW device close to the upstream end of the undulator segment and a quadrupole close to the down stream end of the undulator segment will allow a beam-based undulator segment alignment. Based on the scattering of the electrons on the BFW, we can detect the electron signal in the main dump bends after the undulator to find the beam position. We propose to use a threshold Cherenkov counter for this purpose. According to the signal strength at such a Cherenkov counter, we then suggest choice of material and size for such a BFW device in the undulator

  7. General design of the layout for new undulator-only beamline front ends

    International Nuclear Information System (INIS)

    Shu Deming; Ramanathan, Mohan; Kuzay, Tuncer M.

    2001-01-01

    A great majority of the Advanced Photon Source (APS) users have chosen an undulator as the only source for their insertion device beamline. Compared with a wiggler source, the undulator source has a much smaller horizontal divergence, providing us with an opportunity to optimize the beamline front-end design further. In this paper, the particular designs and specifications, as well as the optical and bremsstrahlung ray-tracing analysis of the new APS front ends for undulator-only operation are presented

  8. DEVELOPMENT OF SHORT UNDULATORS FOR ELECTRON-BEAM-RADIATION INTERACTION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P. [NICADD, DeKalb; Andorf, M. B. [NICADD, DeKalb; Fagerberg, G. [Northern Illinois U.; Figora, M. [Northern Illinois U.; Sturtz, A. [Northern Illinois U.

    2016-10-19

    Interaction of an electron beam with external field or its own radiation has widespread applications ranging from coherent-radiation generation, phase space cooling or formation of temporally-structured beams. An efficient coupling mechanism between an electron beam and radiation field relies on the use of a magnetic undulator. In this contribution we detail our plans to build short (11-period) undulators with 7-cm period refurbishing parts of the aladdin U3 undulator [1]. Possible use of these undulators at available test facilities to support experiments relevant to cooling techniques and radiation sources are outlined.

  9. A superconducting short period undulator for a harmonic generation FEL experiment

    International Nuclear Information System (INIS)

    Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.

    1993-01-01

    A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6-40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4μm CO 2 seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested

  10. FPGA and optical-network-based LLRF distributed control system for TESLA-XFEL linear accelerator

    Science.gov (United States)

    Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Czarski, Tomasz; Giergusiewicz, Wojciech; Jalmuzna, Wojciech; Olowski, Krysztof; Perkuszewski, Karol; Zielinski, Jerzy; Simrock, Stefan

    2005-02-01

    The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control system for the TESLA-XFEL accelerator. The design of a system basing on the FPGA chips and multi-gigabit optical network was debated. The system design approach was fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of the, DSP enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. Initial parameters of the system model under the design are presented.

  11. Drop-on-Demand Sample Delivery for Studying Biocatalysts in Action at XFELs

    Science.gov (United States)

    Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira; Burgie, Ernest S.; Young, Iris D.; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S.; Michels-Clark, Tara; Clinger, Jonathan A.; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J.; Zhang, Miao; Stan, Claudiu A.; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D.; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G.; Allaire, Marc; Sierra, Raymond G.; Docker, Peter T.; Glownia, James M.; Nelson, Silke; Koglin, Jason E.; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K.; Bollinger, J. Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N.; Vierstra, Richard D.; Sauter, Nicholas K.; Orville, Allen M.; Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    2017-01-01

    X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. Implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method. PMID:28250468

  12. Optical surface properties and their RF limitations of European XFEL cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2017-04-15

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-Ray Free Electron Laser (XFEL) and the International Linear Collider (ILC) HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor specific surface properties which allow to perform a quality control and assurance during the production. In addition, a strong negative correlation of ρ=-0.93 with a significance of 6σ of the integrated grain boundary area ΣA versus the maximal achievable accelerating field E{sub acc,max} has been found.

  13. Design Study of Low-Emittance Injector for SASE-XFEL at Pohang Accelerator Laboratory

    CERN Document Server

    Park, Sungju J; Yun, H J; Kim, D E; Kim, E S; Ko, In Soo; Nam, S H; Oh, Jong Seok

    2004-01-01

    We report on the design study of the low-emittance injector for the SASE-XFEL that is being considered as a possible choice for the next-generation light sources at the Pohang Accelerator Laboratory, POSTECH. Using the PARMELA code, beam dynamics simulations were performed aiming to achieve the invariant-envelope matching at booster entrance, and to insure beam emittance < 1 mm.mrad (at 1-nC bunch charge) at the injector end. We also utilized the MAGIC code for analyzing beam dynamics inside the RF-gun cavities and to confirm the part of PARMELA simulations. Hardware design was done with possible implementation of high-Q.E. photocathode, which could reduce burdens imposed on laser system, thus improving overall system stability and reliability.

  14. Optical surface properties and their RF limitations of European XFEL cavities

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2017-04-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-Ray Free Electron Laser (XFEL) and the International Linear Collider (ILC) HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor specific surface properties which allow to perform a quality control and assurance during the production. In addition, a strong negative correlation of ρ=-0.93 with a significance of 6σ of the integrated grain boundary area ΣA versus the maximal achievable accelerating field E acc,max has been found.

  15. XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states

    Science.gov (United States)

    Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.

    2016-03-01

    Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

  16. The U5.0 Undulator for the ALS

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Halbach, K.; Hassenzahl, W.V.; Humphries, D.; Kincaid, B.; Lancaster, H.; Plate, D.

    1991-01-01

    the U5.0 Undulator, and 89 period, 5 cm period length, 4.6 m long insertion device has been designed, is being fabricated and is scheduled for completion in early 1992. This undulator will be the first high brightness source, in the 50 to 1500 eV range, for the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory. A hybrid magnetic configuration using Nd-Fe-B permanent magnet material and vanadium permendur poles has been selected to achieve the field quality needed to meet performance requirements. The magnetic structure is modular with each half consisting of 5 assembly sections, which provide the periodic structure, and end structures, for entrance and exit correction, mounted on a steel backing beam. Each assembly section consists of 35 half-period pole assemblies bolted to a mount. The required 0.837 Tesla effective peak field at a 1.4 cm gap has been verified with model measurements. Vertical field integral correction is accomplished with the end structures, each having an arrangement of permanent magnet rotors which will be adjusted to minimize electron beam missteering over the undulator operating field range. To reduce the effect of environmental fields, the steel backing beams are connected through parallel, low-reluctance, Ni-Fe hinges. The magnetic structure is connected through four roller-nuts to the drive system that provides gap adjustment with an arrangement of roller screws, chain drives, a gear reduction unit and a stepper motor driven by a closed loop control system. Magnetic structure and drive system support are from a 2.4 m high structure which includes a support base with four vertical supports. The vacuum chamber design is a two-piece machined and welded 5083-H321 aluminum construction of 5.1 m length. Pumping is with a combination of ion, TSP and NEG pumps. Magnetic design, subsystem design and fabrication progress are presented

  17. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  18. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  19. Preparing the BESSY APPLE Undulators for Top-Up Operation

    Science.gov (United States)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.

    2007-01-01

    BESSY plans to go to topping up operation in the near future. A high injection efficiency is essential to avoid particle losses inside the undulator magnets and to ensure a low radiation background in the beamlines. Dynamic and static multipoles of the insertion devices have to be minimized to accomplish this requirement. APPLE II devices show strong dynamic multipoles in the elliptical and vertical polarization mode. Measurements before and after shimming of these multipoles are presented. The static multipoles of the BESSY UE56-2 which are due to systematic block inhomgeneities have successfully been shimmed recovering the full dynamic aperture.

  20. Multiple station beamline at an undulator x-ray source

    DEFF Research Database (Denmark)

    Als-Nielsen, J.; Freund, A.K.; Grübel, G.

    1994-01-01

    The undulator X-ray source is an ideal source for many applications: the beam is brilliant, highly collimated in all directions, quasi-monochromatic, pulsed and linearly polarized. Such a precious source can feed several independently operated instruments by utilizing a downstream series of X......-ray transparent monochromator crystals. Diamond in particular is an attractive monochromator as it is rather X-ray transparent and can be fabricated to a high degree of crystal perfection. Moreover, it has a very high heat conductivity and a rather small thermal expansion so the beam X-ray heat load problem...

  1. A second-generation superconducting undulator cryostat for the APS

    Science.gov (United States)

    Fuerst, J.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.; Shiroyanagi, Y.

    2017-12-01

    A second-generation cryocooler-based cryostat has been designed and built to support a new helically wound superconducting undulator (SCU) magnet for the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The design represents an evolution of existing SCU cryostats currently in operation in the APS storage ring. Value engineering and lessons learned have resulted in a smaller, cheaper, and simpler cryostat design compatible with existing planar magnets as well as the new helically wound device. We describe heat load and quench response results, design and operational details, and the “build-to-spec” procurement strategy.

  2. Undulating fins produce off-axis thrust and flow structures.

    Science.gov (United States)

    Neveln, Izaak D; Bale, Rahul; Bhalla, Amneet Pal Singh; Curet, Oscar M; Patankar, Neelesh A; MacIver, Malcolm A

    2014-01-15

    While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with high-fidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish, whose fin kinematics and fin plus body morphology are measured from a freely swimming knifefish, and a virtual rendering of our robot. Our results indicate that a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted because of the undulatory kinematics of the elongated fin.

  3. Effect of wavelength of fish-like undulation of a hydrofoil in a free ...

    Indian Academy of Sciences (India)

    Thekkethil Namshad

    Abstract. Fish-like undulating body was proposed as an efficient propulsion system, and various mechanisms ... fishes/foil. The present work proposes a unified study for undulating and pitching foil, by varying wavelength k. (from 0.8 to 8.0) of a wave travelling backwards over the ...... and Randall D J (Eds.) Fish physiology.

  4. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    Science.gov (United States)

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  5. Second crystal cooling on cryogenically cooled undulator and wiggler double crystal monochromators

    International Nuclear Information System (INIS)

    Knapp, G. S.

    1998-01-01

    Simple methods for the cooling of the second crystals of cryogenically cooled undulator and wiggler double crystal monochromators are described. Copper braids between the first and second crystals are used to cool the second crystals of the double crystal monochromators. The method has proved successful for an undulator monochromator and we describe a design for a wiggler monochromator

  6. Study for a 6 GeV undulator based synchrotron radiation source

    International Nuclear Information System (INIS)

    Vignola, G.; Barton, M.; Blumberg, R.; Galayda, J.; Krinsky, S.; Luccio, A.; Pellegrini, C.; van Steenbergen, A.; Wang, J.

    1985-01-01

    A partial study for a 6 GeV undulator based synchrotron radiation source for production of high brightness undulator radiation, in the A region, is presented. The basic lattice adopted for the storage ring is a hybrid FODO Chasman-Green lattice, making use of gradient in the dipoles. We discuss also the e beam current limits and the injection parameters

  7. A dynamic method for continuously measuring magnetic field profiles in planar micropole undulators with submillimeter gaps

    International Nuclear Information System (INIS)

    Tatchyn, R.; Oregon Univ., Eugene

    1989-01-01

    Conventional techniques for measuring magnetic field profiles in ordinary undulators rely predominantly on Hall probes for making point-by-point static measurements. As undulators with submillimeter periods and gaps become available, such techniques will start becoming untenable, due to the relative largeness of conventional Hall probe heads and the rapidly increasing number of periods in devices of fixed length. In this paper a method is presented which can rapidly map out field profiles in undulators with periods and gaps extending down to the 100 μm range and beyond. The method, which samples the magnetic field continuously, has been used successfully in profiling a recently constructed 726 μm period undulator, and seems to offer some potential advantages over conventional Hall probe techniques in measuring large-scale undulator fields as well. (orig.)

  8. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  9. Up-grading a 4.7-cm-period plane electromagnetic undulator

    CERN Document Server

    Bogachenkov, V A; Papadichev, V A

    1999-01-01

    Electromagnetic undulators have a number of advantages over permanent-magnet undulators. They are less expensive to fabricate and their field is easily regulated by changing the current, without requiring a complex and expensive precision system for changing the undulator gap. Their main weaknesses are that they require a large power supply and that the field is limited due to yoke saturation mainly because of large axial stray fluxes, particularly in simple constructions. Modernization of a 4.7-cm-period, 20-period long plane electromagnetic undulator of simple design is described. Samarium-cobalt permanent magnets were used to increase the field and decrease power consumption. They were placed between adjacent rings (with opposite sign of field) and while increasing the working field they decreased saturation of the iron yokes. Small lateral displacements of permanent magnets were used to equalize field amplitudes in half periods of the undulator with 0.1% accuracy. Matched input and output to and from the ...

  10. Calculated Performance Of The Variable-Polarization Undulator Upgrade To The Daresbury SRS Soft X-Ray Undulator Beamline

    International Nuclear Information System (INIS)

    Roper, Mark D.; Bird, Daniel T.

    2004-01-01

    The soft x-ray beamline 5U1 on the Daresbury Laboratory SRS currently uses a planar undulator, producing linearly polarized radiation in the range 100 to 1000 eV. The undulator is soon to be replaced by a variable-polarization device of the Apple II design. The aim is to produce circularly polarized light in the energy range 265 to 1000 eV, covering the K-edges of C, N and O, and the first row transition element L-edges. This will greatly enhance the provision of circularly polarized soft-x-rays on the SRS and open up new opportunities for experimenters. The device will also produce linear polarization with a selectable angle of polarization with respect to the orbit plane, which is currently unavailable on the SRS. In order to provide the coverage over this energy range, we are exploiting the relatively large emittance of the SRS to allow us to use the second and third harmonics even in circular polarization mode. This paper presents the expected beamline output in various polarization modes and the predicted degree of polarization

  11. Exploring the undulating plateau: the future of global oil supply.

    Science.gov (United States)

    Jackson, Peter M; Smith, Leta K

    2014-01-13

    In this paper, we analyse the factors that will influence long-term oil supply and describe the future form of the global oil supply profile as an 'undulating plateau' rather than an irreversible, short-term peak or an ever upward trend of increasing production. The ultimate transition from a world of relatively plentiful and cheap oil to one of tight supply and high cost will be slow and challenging. An understanding of the signposts for the future path of supply and the drivers of that profile will be critical to managing the transition. The ultimate form of the global supply curve may well be dictated by demand evolution rather than a limited resource endowment in the longer term. Several factors will probably control future global oil supply. We believe that the scale of global oil resource will not constitute a physical supply limit for at least the next two or three decades. However, all categories of oil resources are already more expensive to develop than in the past, requiring high oil prices to stimulate supply growth. Lower rates of oil demand growth relative to economic growth, combined with more challenging supply growth, will probably lead to an undulating plateau sometime after 2040, with demand from non-Organization for Economic Cooperation and Development states continuing to dominate. Upstream investment requirements and oil price volatility will increase towards and beyond the undulating production plateau. In this new world, high oil prices will induce demand destruction, fuel substitution and ever increasing energy efficiency. As we discuss below, the fundamental differences between the IHS Cambridge Energy Research Associates' (IHS CERA) view of the future of oil supply and many peak oil supply models are the timing of the onset of a dramatic slowdown in the rate of growth of supply and the existence or otherwise of a production plateau. We do not dispute that supply will plateau and eventually fall; the question is when, how and at what price

  12. Different charges in the same bunch train at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Kot, Yauhen; Limberg, Torsten; Zagorodnov, Igor

    2013-11-15

    The injector of the European XFEL was initially designed for the operation with 1nC bunch charges. Later the flexibility of the nominal design of the injector with respect to the bunch charge was studied and extended also for smaller bunch charges down to 20 pC. A very tempting upgrade of this extension would be the operation of the European XFEL with different charges in the same train. It would make it suitable also for the experiments which require simultaneously different SASE pulse length or radiation power. Operation of two bunches within the same train sets new requirements on the working points of the injector which are to be satisfied additionally to the ones of a single charge operation. From the beam dynamics point of view here is to mention the similarity of the beam optical functions after the first accelerating module and suitable for lasing shapes of both bunches in the train at the end of the linac. Due to different charges and thus to different space charge forces which act on bunches during the passage of the linac the last condition cannot be easily satisfied even if the similarity of optical functions at the beginning of the linac is achieved. A more subtle analysis of the interplay between mismatch of beam optical functions, emittance growth in the injector and different 6D beam dynamics in the linac is needed with the final goal of successful lasing of both charges. In this paper we have investigated the possibility of the operation of different charges in the bunch train for the nominal design of the injector and for the case that it is extended by an additional laser system on the cathode. We have examined the problem of similarity of beam optical functions for different bunches in a train. We report also about the sensitivity of the beam optical functions on the chosen compression scenario and give an overview over the working points for the settings at the injector for single charge operation as well as combined working points for

  13. Different charges in the same bunch train at the European XFEL

    International Nuclear Information System (INIS)

    Kot, Yauhen; Limberg, Torsten; Zagorodnov, Igor

    2013-11-01

    The injector of the European XFEL was initially designed for the operation with 1nC bunch charges. Later the flexibility of the nominal design of the injector with respect to the bunch charge was studied and extended also for smaller bunch charges down to 20 pC. A very tempting upgrade of this extension would be the operation of the European XFEL with different charges in the same train. It would make it suitable also for the experiments which require simultaneously different SASE pulse length or radiation power. Operation of two bunches within the same train sets new requirements on the working points of the injector which are to be satisfied additionally to the ones of a single charge operation. From the beam dynamics point of view here is to mention the similarity of the beam optical functions after the first accelerating module and suitable for lasing shapes of both bunches in the train at the end of the linac. Due to different charges and thus to different space charge forces which act on bunches during the passage of the linac the last condition cannot be easily satisfied even if the similarity of optical functions at the beginning of the linac is achieved. A more subtle analysis of the interplay between mismatch of beam optical functions, emittance growth in the injector and different 6D beam dynamics in the linac is needed with the final goal of successful lasing of both charges. In this paper we have investigated the possibility of the operation of different charges in the bunch train for the nominal design of the injector and for the case that it is extended by an additional laser system on the cathode. We have examined the problem of similarity of beam optical functions for different bunches in a train. We report also about the sensitivity of the beam optical functions on the chosen compression scenario and give an overview over the working points for the settings at the injector for single charge operation as well as combined working points for

  14. Overview of the superconducting undulator development program at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Casalbuoni, S., E-mail: sara.casalbuoni@kit.edu; Cecilia, A.; Gerstl, S.; Glamann, N.; Grau, A.; Holubek, T.; Meuter, C.; Saez de Jauregui, D.; Voutta, R. [ANKA, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Boffo, C.; Gerhard, Th.; Turenne, M.; Walter, W. [Babcock Noell GmbH, Alfred Nobel Str. 20, 97080 Würzburg (Germany)

    2016-07-27

    Superconducting undulators (SCUs) have the potential to reach higher brilliance and flux with respect to the state of the art permanent magnet insertion devices. ANKA is collaborating with the industrial partner Babcock Noell GmbH (BNG) to realize NbTi conduction cooled planar devices for low emittance light sources, and is developing the instrumentation to characterize the magnetic field properties and to measure the beam heat load to a cold bore needed for the cryogenic design of SCUs. We present here: the most recent results obtained within the ANKA-BNG collaboration, the progress achieved in the development of the instrumentation, and the in house studies on the application of high temperature superconducting (HTS) tape to the SCU technology.

  15. CSEM-steel hybrid wiggler/undulator magnetic field studies

    International Nuclear Information System (INIS)

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields

  16. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  17. Generation of radiation by intense plasma and electromagnetic undulators

    International Nuclear Information System (INIS)

    Joshi, C.

    1989-01-01

    This is a second year progress report which details the work on the generation of radiation by intense plasma and electromagnetic undulators being carried out at UCLA. The status of the experimental work is described and the future directions are outlined. We have completed the first phase of experiments on the plasma wiggler generation and characterization. Suitability of a null-pinch as a plasma source was investigated in great detail. It is found that a w of a few percent can be excited but there are trapped magnetic fields within null-pinch plasma which hinder the injection of the electrons. A new more uniform and field-free plasma source is now being characterized

  18. Generation of radiation by intense plasma and electromagnetic undulators

    International Nuclear Information System (INIS)

    Joshi, C.

    1989-01-01

    This is a second year progress report which details the work on the generation of radiation by intense plasma and electromagnetic undulators being carried out at UCLA. The status of the experimental work is described and the future directions are outlined. We have completed the first phase of experiments on the plasma wiggler generation and characterization. Suitability of a θ-pinch as a plasma source was investigated in great detail. It is found that a w of a few percent can be excited but there are trapped magnetic fields within θ-pinch plasma which hinder the injection of the electrons. A few more uniform and field-free plasma source is now being characterized. 8 refs., 5 figs

  19. Linac Coherent Light Source Undulator RF BPM System

    International Nuclear Information System (INIS)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; Argonne; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; SLAC

    2007-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results

  20. Linac coherent light source (LCLS) undulator RF BPM system

    International Nuclear Information System (INIS)

    Lill, R.; Waldschmidt, G.; Morrison, L.; Smith, S.; Straumann, T; Li, Z.; Johnson, R.

    2006-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

  1. Correction of dynamic multipoles for APPLE-II undulator with flat wires

    International Nuclear Information System (INIS)

    Kikuchi, Y.; Hosaka, M.; Takashima, Y.; Yamamoto, N.; Adachi, M.; Zen, H.; Katoh, M.

    2010-01-01

    APPLE-II undulator can produce quasi-monochromatic light of different polarization though it is a relatively simple magnetic circuit. Therefore, it has been installed in many synchrotron radiation facilities and will be installed in Central Japan Synchrotron Radiation Research Facility under construction in Aichi prefecture. APPLE-II undulator also has been installed in UVSOR facility. When the undulator is operated in vertical polarization mode with narrower gap of 40 mm, the lifetime of electron beam through the storage ring significantly decreases.The reason is considered as dynamic multipole kicks in the undulator, which strongly depends on the undulator gap. Multi-wires, which are installed in the upper surface and the under surface of undulator beam duct, are candidate to compensate the multipole effects, because the multi-wires can generate arbitrary magnetic fields. This paper reports the result of numerical investigation on multipoles in the undulator by a three-dimensional magnetostatics computer code RADIA, the orbital calculation based on the numerical analysis and the preliminary experiment with flat wires. (author)

  2. An undulator with non-adiabatic tapering for the IFEL project

    CERN Document Server

    Varfolomeev, A A; Yarovoi, T V; Musumeci, P; Pellegrini, C; Rosenzweig, J

    2002-01-01

    We describe the design of a planar undulator with unusually strong tapering, for the inverse FEL experiment to be carried out in Neptune Lab. (Nucl. Instr. and Meth. A 410 (1998) 437) at UCLA. A powerful TW CO sub 2 laser will be used to accelerate electrons up to 50-60 MeV in 50 cm long undulator. A strong undulator tapering is needed because of the short Rayleigh length of the laser beam. Both the magnetic field and the undulator period are tapered to provide synchronicity of the laser beam interaction with a captured electron bunch along the whole undulator length. The most critical part of the undulator is the region near the laser focus. The main characteristics of the IFEL, such as the percentage of trapped electrons, energy of accelerated electrons and sensitivity to the laser focus transverse position, are given. The general principles of the design of this undulator construction can also be useful for high efficiency FEL amplifiers of intense laser modes.

  3. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    Science.gov (United States)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  4. A Coherent Compton Backscattering High Gain FEL using an X-Band Microwave Undulator

    CERN Document Server

    Pellegrini, C; Travish, G

    2005-01-01

    We describe a proposed high-gain FEL using an X-band microwave undulator and operating at a wavelength of about 0.5 μm. The FEL electron beam energy is 65 MeV. The beam is produced by the NLCTA X-band linac at SLAC, using an S-band high-brightness photoinjector. The undulator consists of a circular waveguide with an rf wave counter-propagating with respect to the electron beam. The undulator is powered with two high-power X-band klystrons and a dual-moded pulse compressor recently developed at SLAC. This system is capable of delivering flat-top rf pulses of up to 400 ns and a few hundred megawatts. The equivalent undulator period is 1.4 cm, the radius of the circular pipe is 1 cm, and the undulator parameter is about 0.4 for a helical undulator configuration, obtained using two cross-polarized TE modes, or larger for a planar configuration, using one rf polarization. The undulator is about four meters long. The FEL will reach saturation within this distance when operated in a SASE mode. We describe t...

  5. Design of a crystalline undulator based on patterning by tensile Si3N4 strips on a Si crystal

    International Nuclear Information System (INIS)

    Guidi, V.; Lanzoni, L.; Mazzolari, A.; Martinelli, G.; Tralli, A.

    2007-01-01

    A crystalline undulator consists of a crystal with a periodic deformation in which channeled particles undergo oscillations and emit coherent undulator radiation. Patterning by an alternate series of tensile Si 3 N 4 strips on a Si crystal is shown to be a tractable method to construct a crystalline undulator. The method allows periodic deformation of the crystal with the parameters suitable for implementation of a crystalline undulator. The resulting periodic deformation is present in the bulk of the Si crystal with an essentially uniform amplitude, making the entire volume of the crystal available for channeling and in turn for emission of undulator radiation

  6. Mechanical design and fabrication of a prototype undulator for Indus-2

    International Nuclear Information System (INIS)

    Veerabhadhraiah, T.; Sinha, Gautam; Prabhu, S.S.

    2011-01-01

    An Apple II type undulator is proposed for 2.5 GeV SRS. For initial studies of magnetic parameters and manufacturing feasibilities, a 6 periods prototype undulator of period length 72 mm and pole gap 20 mm is under development. Mechanical structure with stringent tolerances is required to achieve the required field quality. Stress analysis has been done to study the deflection under the magnetic forces. The prototype structure along with the magnet block holders has been made and mechanical dimensions and geometric tolerances have been measured. In this paper we present the preliminary mechanical design and assembly of static parts of prototype undulator structure. (author)

  7. Selection of the optimum magnet design for the International Linear Collider positron source helical undulator

    Directory of Open Access Journals (Sweden)

    D. J. Scott

    2007-03-01

    Full Text Available A comparison of possible undulator designs for the International Linear Collider positron source has resulted in a superconducting bifilar wire design being selected. After a comprehensive paper study and fabrication of the two preeminent designs, the superconducting undulator was chosen instead of the permanent magnet alternative. This was because of its superior performance in terms of magnetic field strength and quality, operational flexibility, risk of radiation damage, ease in achieving the required vacuum, and cost. The superconducting undulator design will now be developed into a complete system design for the full 200 m long magnet that is required.

  8. Observation of an optical vortex beam from a helical undulator in the XUV region.

    Science.gov (United States)

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro

    2017-09-01

    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  9. Design and test of a trial undulator for a compact FEL THz radiation source

    International Nuclear Information System (INIS)

    Xiang Shuhua; Xiong Yongqian; Yang Lei; Liu Xialing; Wei Wei; Chen Jinhua

    2012-01-01

    The undulator is the key component in the THz radiation source based on FEL. We created a trial undulator in order to verify the feasibility of property requirements, and the accumulation of engineering experience. With the use of the finite element calculation software OPERA3D, we modify the structural parameters of the undulator gradually to meet the requirements of the peak, width of the good field and first integration. We also proved that the correction magnet could make the field meet the requirement of the second integration by calculation. After fabrication and acceptance, the electron trajectory is calculated based on the measured field. (authors)

  10. Optimization of permanent-magnet undulator magnets ordering using simulated annealing algorithm

    International Nuclear Information System (INIS)

    Chen Nian; He Duohui; Li Ge; Jia Qika; Zhang Pengfei; Xu Hongliang; Cai Genwang

    2005-01-01

    Pure permanent-magnet undulator consists of many magnets. The unavoidable remanence divergence of these magnets causes the undulator magnetic field error, which will affect the functional mode of the storage ring and the quality of the spontaneous emission spectrum. Optimizing permanent-magnet undulator magnets ordering using simulated annealing algorithm before installing undulator magnets, the first field integral can be reduced to 10 -6 T·m, the second integral to 10 -6 T·m 2 and the peak field error to less than 10 -4 . The optimized results are independent of the initial solution. This paper gives the optimizing process in detail and puts forward a method to quickly calculate the peak field error and field integral according to the magnet remanence. (authors)

  11. The APS x-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of third generation synchrotron radiation sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS x-ray undulators will increase the brilliance in the 3-40 KeV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve sub-micron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper

  12. The APS X-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of thirs generation synchrotron sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS X-ray undulators will increase the brilliance in the 3-40 keV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve submicron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper. (orig.)

  13. Stimulated bremsstrahlung of soft x-ray in a longitudinal undulating electric field

    International Nuclear Information System (INIS)

    Kim, S.H.

    1991-01-01

    It is shown that a high-energy electron beam injected into a longitudinal undulating electric field (electric undulator) in the field direction can emit a laser light in the field direction through both stimulated and unstimulated free-electron two-quantum Stark emission. Based on the momentum and energy conservation laws and the time-reversal invariance of the transition probability, a new quantum kinetic equation for the net energy transfer from an electron to the laser wave is derived. By using this equation, the photon concept, and the transition probability calculated by the Dirac equation, the gain spectrum and wavelength of the free-electron laser using the electric undulator are derived. The gain appears to scale as the inverse of the electron beam energy and the cube of the wavelength of the electric undulator

  14. Magnetic Measurement System for the NSLS Superconducting Undulator Vertical Test Facility

    CERN Document Server

    Harder, David; Skaritka, John

    2005-01-01

    One of the challenges of small-gap superconducting undulators is measurement of magnetic fields within the cold bore to characterize the device performance and to determine magnetic field errors for correction or shimming, as is done for room-temperature undulators. Both detailed field maps and integrated field measurements are required. This paper describes a 6-element, cryogenic Hall probe field mapper for the NSLS Superconducting Undulator Vertical Test Facility (VTF). The probe is designed to work in an aperture only 3 mm high. A pulsed-wire insert is also being developed, for visualization of the trajectory, for locating steering errors and for determining integrated multi-pole errors. The pulsed-wire insert will be interchangeable with the Hall probe mapper. The VTF and the magnetic measurement systems can accommodate undulators up to 0.4 m in length.

  15. Simulation Study of the Helical Superconducting Undulator Installation at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Sajaev, V.; Borland, M.; Sun, Y.; Xiao, A.

    2017-06-25

    A helical superconducting undulator is planned for installation at the APS. Such an installation would be first of its kind – helical devices were never installed in synchrotron light sources before. Due to its reduced horizontal aperture, a lattice modification is required to accommodate for large horizontal oscillations during injection. We describe the lattice change details and show the new lattice experimental test results. To understand the effect of the undulator on single-particle dynamics, first, its kick maps were computed using different methods. We have found that often-used Elleaume formula* for kick maps gives wrong results for this undulator. We then used the kick maps obtained by other methods to simulate the effect of the undulator on injection and lifetime.

  16. A concept of a new undulator that will generate irrational higher harmonics in synchrotron radiation

    International Nuclear Information System (INIS)

    Hashimoto, Shinya; Sasaki, Shigemi

    1994-03-01

    A preliminary consideration has been made on an undulator with magnetic poles quasi-periodically aligned along the path of electron beams to discriminate the rational higher harmonics of radiation that are harmful in some synchrotron radiation experiments. The harmonics with irrational ratios in energy generated by the undulator is never simultaneously reflected by a crystal monochromator in the same orientation. A combination of the new undulator and high-resolution crystal monochromator is expected to be very useful on beamlines of high energy radiation in which X-ray mirrors are useless because of too small critical angles of total reflection. Further, a possibility of manufacturing the new undulator has been discussed. (author)

  17. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography

    Science.gov (United States)

    Stagno, J. R.; Liu, Y.; Bhandari, Y. R.; Conrad, C. E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D. R.; White, T. A.; Coe, J. D.; Wiedorn, M. O.; Knoska, J.; Oberthuer, D.; Tuckey, R. A.; Yu, P.; Dyba, M.; Tarasov, S. G.; Weierstall, U.; Grant, T. D.; Schwieters, C. D.; Zhang, J.; Ferré-D'Amaré, A. R.; Fromme, P.; Draper, D. E.; Liang, M.; Hunter, M. S.; Boutet, S.; Tan, K.; Zuo, X.; Ji, X.; Barty, A.; Zatsepin, N. A.; Chapman, H. N.; Spence, J. C. H.; Woodson, S. A.; Wang, Y.-X.

    2017-01-01

    Riboswitches are structural RNA elements that are generally located in the 5‧ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.

  18. Empirical optimization of undulator tapering at FLASH2 and comparison with numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mak, Alan; Curbis, Francesca; Werin, Sverker [Lund Univ. (Sweden). MAX IV Laboratory; Faatz, Bart [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-08-15

    In a free-electron laser equipped with variable-gap undulator modules, the technique of undulator tapering opens up the possibility to increase the radiation power beyond the initial saturation point, thus enhancing the efficiency of the laser. The effectiveness of the enhancement relies on the proper optimization of the taper profile. In this work, a multidimensional optimization approach is implemented empirically in the X-ray free-electron laser FLASH2. The empirical results are compared with numerical simulations.

  19. New implementation of an SX700 undulator beamline at the Advanced Light Source

    International Nuclear Information System (INIS)

    Warwick, T.; Andresen, N.; Comins, J.; Kaznacheyev, K.; Kortright, J.B.; McKean, P.J.; Padmore, H.A.; Shuh, D.K.; Stevens, T.; Tyliszczak, T.

    2004-01-01

    A newly engineered implementation of a collimated SX700-style beam line for soft x-rays is described. This facility is operational at the Advanced Light Source and delivers high brightness undulator beams to a scanning zone plate microscope and to an array of end stations for x-ray spectroscopic studies of wet surfaces. Switching between branches is motorized, servo-steering systems maintain throughput and the monochromator works together with the elliptical undulator for a fully automated facility

  20. Beamline front end for in-vacuum short period undulator at the photon factory storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Miyauchi, Hiroshi, E-mail: hiroshi.miyauchi@kek.jp [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Tahara, Toshihiro, E-mail: ttahara@post.kek.jp; Asaoka, Seiji, E-mail: seiji.asaoka@kek.jp [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-07-27

    The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum short period undulators. The first to fourth short period undulators SGU#17, SGU#03, SGU#01 and SGU#15 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006, 2009 and 2013, respectively. The beamline front end for SGU#15 is described in this paper.

  1. Electromagnetic design, implementation and test of a superconducting undulator with a transverse gradient field amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Afonso Rodriguez, Veronica

    2015-11-25

    This thesis describes the development of a novel superconducting transversal gradient undulator (TGU) designed to form a compact, highly brilliant laser-wakefield accelerator (LWFA) driven radiation source. A TGU in combination with a dispersive beam transport line can be employed to produce undulator radiation with natural bandwidth despite the large energy spread of the LWFA. This thesis documents the construction, first tests and characterization of the full-scale TGU.

  2. Brightness and coherence of radiation from undulators and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, Kwang-Je.

    1987-03-01

    The purpose of this paper is to review the radiation characteristics of undulators and high-gain free electron lasers (FELs). The topics covered are: a phase-space method in wave optics and synchrotron radiation, coherence from the phase-space point of view, discussions of undulator performances in next-generation synchrotron radiation facility and the characteristics of the high-gain FELs and their performances

  3. Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns

    Science.gov (United States)

    Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team

    Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.

  4. An electromagnetic helical undulator for polarized X-rays

    International Nuclear Information System (INIS)

    Gluskin, E.; Vinokurov, N.; Tcheskidov, V.; Medvedko, A.; Evtushenko, Y.; Kolomogorov, V.; Vobly, P.; Antokhin, E.; Ivanov, P.; Vasserman, I. B.; Trakhtenberg, E. M.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Makarov, O.; Moog, E. R.

    1999-01-01

    Linearly and circularly polarized x-rays have been very successfully applied to the study of the properties of materials. Many applications can benefit from the availability of energy-turnable, high-brilliance x-ray beams with adjustable polarization properties. A helical undulator that can generate beams of variable (linear to circular) polarization has been designed and built by the Budker Institute of Nuclear Physics and the Advanced Photon Source. The first harmonic of this 12.8-cm-period device will cover the energy range from 0.4 keV to 3.5 keV. An important feature of this fully electromagnetic device is that it will allow one to generate 100% horizontally (K x =O)or vertically (K y =O) plane-polarized radiation, which will enable many experiments otherwise not technically feasible. With symmetric deflection parameters (K x =K y ), the on-axis radiation will be circularly polarized, with a user-selectable handedness. The polarization can be changed at rates up to 10 Hz

  5. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  6. Orbit Correction for the Newly Developed Polarization-Switching Undulator

    Science.gov (United States)

    Obina, Takashi; Honda, Tohru; Shioya, Tatsuro; Kobayashi, Yukinori; Tsuchiya, Kimichika; Yamamoto, Shigeru

    2007-01-01

    A new scheme of undulator magnet arrangements has been proposed and developed as a polarization-switching radiation source, and its test-stand was installed in the 2.5-GeV Photon Factory storage ring (PF ring) in order to investigate the effects on the beam orbit. The closed orbit distortion (COD) over 200 μm was produced in a vertical direction when we switched the polarization of the radiation from the test-stand. In a horizontal direction, the COD was less than 50μm. The results agreed well with the predictions from the magnetic-field measurement on the bench. In order to suppress the CODs and realize a stable operation of the ring with the polarization-switching, we developed an orbit correction system which consists of an encoder to detect motion of magnets, a pair of beam position monitors (BPMs), signal processing parts, and a pair of steering magnets. We succeeded in suppressing the CODs to the level below 3μm using the system even when we switch the polarization at a maximum frequency of 0.8 Hz.

  7. Up-grading a 4.7-cm-period plane electromagnetic undulator

    International Nuclear Information System (INIS)

    Bogachenkov, V.A.; Kondratyev, K.V.; Papadichev, V.A.

    1999-01-01

    Electromagnetic undulators have a number of advantages over permanent-magnet undulators. They are less expensive to fabricate and their field is easily regulated by changing the current, without requiring a complex and expensive precision system for changing the undulator gap. Their main weaknesses are that they require a large power supply and that the field is limited due to yoke saturation mainly because of large axial stray fluxes, particularly in simple constructions. Modernization of a 4.7-cm-period, 20-period long plane electromagnetic undulator of simple design is described. Samarium-cobalt permanent magnets were used to increase the field and decrease power consumption. They were placed between adjacent rings (with opposite sign of field) and while increasing the working field they decreased saturation of the iron yokes. Small lateral displacements of permanent magnets were used to equalize field amplitudes in half periods of the undulator with 0.1% accuracy. Matched input and output to and from the undulator, respectively, were formed by means of auxiliary permanent magnets and special magnetic screens

  8. Experience on the operation of the 2-in-1 electromagnetic undulator of FELICITA I

    International Nuclear Information System (INIS)

    Geisler, A.; Noelle, D.; Ridder, M.

    1995-01-01

    The 5m-Undulator of FELICITA I has been installed at the final position in the storage ring DELTA in spring 95. Detailed magnetic measurements have been performed in place to get a complete characterization of this device in both possible modes, pure undulator and optical klystron mode, respectively. The undulator consists of 38 identic poles. Four power supplies are connected to the main coils. Three of them drive the central six poles to get the dispersive section with its matching to the outer undulator sections. This setup allows a change between the optical klystron and the pure undulator mode without changing the hardware. For measuring the magnetic field components a hall-probe was used. It was found that correction coils for compensating peak field variations were not necessary, because of errors less then 0.2 %. Only for the purpose of steering correction coils had to be used. The field integrals were also measured with the pulsed-wire technique. For fast response concerning the matching, in particular of the dispersive section this technique was found to be very useful. Because of the large period length of 25 cm the wire sag in the rather long undulator could be neglected

  9. Investigation of the polarization state of dual APPLE-II undulators

    International Nuclear Information System (INIS)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S.; Sawhney, Kawal

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used

  10. Investigation of the polarization state of dual APPLE-II undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hand, Matthew; Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Dhesi, Sarnjeet S.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  11. On quantum effects in spontaneous emission by a relativistic electron beam in an undulator

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-02-15

    Robb and Bonifacio (2011) claimed that a previously neglected quantum effect results in noticeable changes in the evolution of the energy distribution associated with spontaneous emission in long undulators. They revisited theoretical models used to describe the emission of radiation by relativistic electrons as a continuous diffusive process, and claimed that in the asymptotic limit for a large number of undulator periods the evolution of the electron energy distribution occurs as discrete energy groups according to Poisson distribution. We show that these novel results have no physical sense, because they are based on a one-dimensional model of spontaneous emission and assume that electrons are sheets of charge. However, electrons are point-like particles and, as is well-known, the bandwidth of the angular-integrated spectrum of undulator radiation is independent of the number of undulator periods. If we determine the evolution of the energy distribution using a three-dimensional theory we find the well-known results consistent with a continuous diffusive process. The additional pedagogical purpose of this paper is to review how quantum diffusion of electron energy in an undulator with small undulator parameter can be simply analyzed using the Thomson cross-section expression, unlike the conventional treatment based on the expression for the Lienard-Wiechert fields. (orig.)

  12. Fuente de Alimentación para los Imanes Superconductores del Acelerador de Partículas Europeo XFEL

    OpenAIRE

    García, O.; Francés, A.; Fernández, J. M.; Varela, Pablo; Catalanotto, Giuseppe; Alou Cervera, Pedro; Oliver Ramírez, Jesús Angel; Asensi Orosa, Rafael; Prieto López, Roberto; Uceda Antolín, Javier; Cobos Márquez, José Antonio

    2013-01-01

    En este artículo se presenta la fuente de alimentación que se está diseñando para alimentar los imanes superconductores del acelerador de partículas europeo XFEL que se está construyendo en Hamburgo, cuyas características le hacen el más avanzado del mundo. Un imán superconductor es una carga muy inductiva que debe ser controlada en corriente y que presenta una caída de tensión muy baja cuando está en modo superconductor. La fuente debe ser capaz de alimentar esta carga con una alta fiabilida...

  13. Pico-litre Sample Introduction and Acoustic Levitation Systems for Time Resolved Protein Crystallography Experiments at XFELS

    Directory of Open Access Journals (Sweden)

    Peter Docker

    2017-07-01

    Full Text Available The system described in this work is a variant from traditional acoustic levitation first described by, Marzo et al. It uses multiple transducers eliminating the requirement for a mirror surface, allowing for an open geometry as the sound from multiple transducers combines to generate the acoustic trap which is configured to catch pico litres of crystal slurries. These acoustic traps also have the significant benefit of eliminating potential beam attenuation due to support structures or microfluidic devices. Additionally they meet the need to eliminate sample environments when experiments are carried out using an X-ray Free Electron Lasers (XFEL such as the Linac Coherent Light Source (LCLS as any sample environment would not survive the exposure to the X-Ray beam. XFELs generate Light a billion times brighter than the sun. The application for this system will be to examine turn over in Beta lactamase proteins which is responsible for bacteria developing antibiotic resistance and therefore of significant importance to future world health. The system will allow for diffraction data to be collected before and after turnover allowing for a better understanding of the underling processes. The authors first described this work at Nanotech 2017.

  14. UHV testing of vacuum components and diagnostic devices, related to installation of Undulators in Indus-2

    International Nuclear Information System (INIS)

    Ratnakala, K.C.; Tiwari, S.K.; Bhange, N.J.; Yadav, D.P.; Babbar, L.K.; Netram; Sridhar, R.

    2015-01-01

    Two Insertion Devices, both planar Undulators (U1 and U2), have been successfully installed and commissioned in Indus-2, in Raja Ramanna Centre for Advanced Technology, Indore. The radiation from these Undulators are expected to be 2 to 3 orders of magnitude brighter than the radiation from the Bending Magnets. As required for the installation of these Insertion Devices in Indus-2 ring, two vacuum sections (LS 2 and LS 3) were modified. Apart from the main Undulator chambers (which were procured from the Manufacturer), several other components were developed in UHVT Section and Beam Diagnostic Section, for this purpose. The components include Taper chambers, Beam Position Indicators (both Insertion Device BPI-s and Upgraded BPI-s) and RF shielded bellows.Taper chambers were needed for the smooth transition of cross-section of vacuum envelope, from the normal straight section chamber (with dimensions: 36 mm x 86 mm) to the Undulator chamber (with dimensions: 17 mm x 81 mm). These chambers were required at both entry and exit of Undulator chambers. IDBPI-s and Upgraded BPI-s were needed for the precise monitoring of electron beam position, before the entry into the Undulator and after exiting the Undulator, at various critical positions. Bellows were required to be connected at various positions, during the assembly of vacuum chambers, for the mechanical flexibility. RF shielding was mandatory inside these bellows, to provide a smooth contour of the vacuum envelope, inside these bellows. All these components were tested in the UHV Lab, and confirmed for their UHV compatibility, prior to the actual assembly in the ring. Afterwards, these components were successfully installed in Indus-2 ring, by December, 2014. This paper narrates the UHV-tests carried out, including the assembly, leak-testing, baking, pumping etc. and the results. (author)

  15. Gelatinous fibers and variant secondary growth related to stem undulation and contraction in a monkey ladder vine, Bauhinia glabra (Fabaceae).

    Science.gov (United States)

    Fisher, Jack B; Blanco, Mario A

    2014-04-01

    Some of the most striking stem shapes occur in species of Bauhinia (Fabaceae) known as monkey ladder vines. Their mature stems are flattened and develop regular undulations. Although stems have variant (anomalous) secondary growth, the mechanism causing the undulations is unknown. We measured stem segments over time (20 mo), described stem development using light microscopy, and correlated the changes in stem shape with anatomy. Growing stems are initially straight and bear tendrils on short axillary branches. The inner secondary xylem has narrow vessels and lignified fibers. As stems age, they become flattened and increasingly undulated with the production of two lobes of outer secondary xylem (OX) with wide vessels and only gelatinous fibers (G-fibers). Similar G-fibers are present in the secondary phloem and the cortical sclerified layer. In transverse sections, the concave side of each undulation has a greater area and quantity of G-fibers than the opposite convex side. Some older stems are not undulated and have less lobing of OX. Undulation causes a shortening of the stem segments: up to 28% of the original length. Uneven distribution of G-fibers produces tensions that are involved in the protracted development of undulations. While young extending shoots attach by lateral branch tendrils, older stems may maintain their position in the canopy using undulations and persistent branch bases as gripping devices. Flattened and undulated stems with G-fibers produce flexible woody stems.

  16. Coastline undulations on the West Coast of Denmark: Offshore extent, relation to breaker bars and transported sediment volume

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen; Knudsen, Søren B.

    2012-01-01

    This paper deals with field measurements of undulations of the bottom bathymetry along an otherwise straight coast at the Danish West Coast. Two bathymetric datasets and two time series of wave measurements are used in order to determine the following properties: the offshore extent of shoreline...... with undulations on the depth contours between −5m and +2m relative to mean sea level. In the other data set, only undulations on the depth contours between −1m and +1m are well correlated with the shoreline undulations. The main difference in the wave climate between the two locations is the orientation...

  17. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Directory of Open Access Journals (Sweden)

    Jui-Che Huang

    2017-06-01

    Full Text Available An in-vacuum undulator (IVU provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced–heat load, phase errors, and the deformation of support girders.

  18. Quantitative investigation of linear arbitrary polarization in an APPLE-II undulator.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Maccherozzi, Francesco; Apollonio, Marco; Zhu, Jingtao; Dhesi, Sarnjeet S; Sawhney, Kawal

    2018-03-01

    Insertion devices are utilized at synchrotron radiation facilities around the world for their capability to provide a high-brilliance X-ray beam. APPLE-II type undulators are especially important for their capacity to switch between a variety of photon beam polarization states. A high-precision soft X-ray polarimeter has been used to investigate the polarization calibration of an APPLE-II undulator (period length λ u = 64 mm) installed on beamline I06 at Diamond Light Source. Systematic measurement of the beam polarization state at a range of linear arbitrary angles has been compared with the expected result for a given set of undulator gap and row phase parameters calculated from theory. Determination of the corresponding Stokes-Poincaré parameters from the measured data reveals a discrepancy between the two. The limited number of energy/polarization combinations included in the undulator calibration tables necessitates the use of interpolated values for the missing points which is expected to contribute to the discrepancy. However, by modifying the orbit of the electron beam through the undulator by at least 160 µm it has been found that for certain linear polarizations the discrepancies can be corrected. Overall, it is suggested that complete correction of the Stokes-Poincaré parameters for all linear angles would require alteration of both these aspects.

  19. Measurement of position and profile of undulator radiation in Indus-2 using scanning wire monitor

    International Nuclear Information System (INIS)

    Kant, Chander; Lal, Sohan; Raghuwanshi, V.K.; Prasad, Vijendra

    2015-01-01

    Two planar undulators (U1 and U2) for Atomic Molecular Spectroscopy (AMOS) beamline and Angle Resolved Photoelectron Spectroscopy (ARPES) beamline have been installed in Indus-2. The U1 undulator is designed to produce photons in the energy range of 6 eV to 250 eV and U2 undulator is designed to produce photons in the energy range of 30 eV to 600 eV. In order to measure the position and vertical profile of photon beams emitted from these undulators, one scanning wire monitor has been installed in each beamline front end. In these scanning wire monitors, a gold coated tungsten wire of 100 μm thickness, stretched between a fork shaped alumina ceramic holder, is scanned vertically perpendicular to the direction of propagation of photon beam by using a precisely controlled stepper motor. The photo-electron current generated in the wire is measured by an electrometer. A graphical user interface has been developed which facilitates the scanning as per the given range, plots the graphs and stores the scanned data in Excel file. This paper describes our experience and usefulness of these wire monitors during commissioning of planar undulators in Indus-2. (author)

  20. Magnet system optimization for segmented adaptive-gap in-vacuum undulator

    Energy Technology Data Exchange (ETDEWEB)

    Kitegi, C., E-mail: ckitegi@bnl.gov; Chubar, O.; Eng, C. [Energy Sciences Directorates, Brookhaven National Laboratory, Upton NY1 1973 (United States)

    2016-07-27

    Segmented Adaptive Gap in-vacuum Undulator (SAGU), in which different segments have different gaps and periods, promises a considerable spectral performance gain over a conventional undulator with uniform gap and period. According to calculations, this gain can be comparable to the gain achievable with a superior undulator technology (e.g. a room-temperature in-vacuum hybrid SAGU would perform as a cryo-cooled hybrid in-vacuum undulator with uniform gap and period). However, for reaching the high spectral performance, SAGU magnetic design has to include compensation of kicks experienced by the electron beam at segment junctions because of different deflection parameter values in the segments. We show that such compensation to large extent can be accomplished by using a passive correction, however, simple correction coils are nevertheless required as well to reach perfect compensation over a whole SAGU tuning range. Magnetic optimizations performed with Radia code, and the resulting undulator radiation spectra calculated using SRW code, demonstrating a possibility of nearly perfect correction, are presented.

  1. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Science.gov (United States)

    Huang, Jui-Che; Kitamura, Hideo; Yang, Chin-Kang; Chang, Cheng-Hsing; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2017-06-01

    An in-vacuum undulator (IVU) provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs) has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced-heat load, phase errors, and the deformation of support girders.

  2. Commissioning of the soft x-ray undulator beamline at the Siam Photon Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Hideki, E-mail: hideki@slri.or.th; Chaichuay, Sarunyu; Sudmuang, Porntip; Rattanasuporn, Surachet; Jenpiyapong, Watcharapon; Supruangnet, Ratchadaporn; Chanlek, Narong [Synchrotron Light Research Institute, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, Prayoon [School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-07-27

    The synchrotron radiation from the first undulator at the Siam Photon Laboratory was characterized with the photon beam position monitors (BPMs) and grating monochromator. The soft x-ray undulator beamline employs a varied line-spacing plane grating monochromator with three interchangeable gratings. Since 2010, the beamline has delivered photons with energy of 40-160 and 220-1040 eV at the resolving power of 10,000 for user services at the two end- stations that utilize the photoemission electron spectroscopy and microscopy techniques. The undulator power-density distributions measured by the 0.05-mm wire-scan BPM were in good agreement with those in simulation. The flux-density distributions were evaluated in the red-shift measurements, which identify the central cone of radiation and its distribution. Since 2014, the operation of the other insertion devices in the storage ring has started, and consequently bought about the increases in the emittance from 41 to 61 nm·rad and the coupling constant from 4 to 11%. The local electron-orbit correction greatly improved the alignment of the electron beam in the undulator section resulting in the improvements of the photon flux and harmonics peaks of the undulator radiation.

  3. Resorting the NIST undulator using simulated annealing for field error reduction

    International Nuclear Information System (INIS)

    Denbeaux, Greg; Johnson, Lewis E.; Madey, John M.J.

    2000-01-01

    We have used a simulated annealing algorithm to sort the samarium cobalt blocks and vanadium permendur poles in the hybrid NIST undulator to optimize the spectrum of the emitted light. While simulated annealing has proven highly effective in sorting of the SmCo blocks in pure REC undulators, the reliance on magnetically 'soft' poles operating near saturation to concentrate the flux in hybrid undulators introduces a pair of additional variables - the permeability and saturation induction of the poles - which limit the utility of the assumption of superposition on which most simulated annealing codes rely. Detailed magnetic measurements clearly demonstrated the failure of the superposition principle due to random variations in the permeability in the 'unsorted' NIST undulator. To deal with the issue, we measured both the magnetization of the REC blocks and the permeability of the NIST's integrated vanadium permendur poles, and implemented a sorting criteria which minimized the pole-to-pole variations in permeability to satisfy the criteria for realization of superposition on a nearest-neighbor basis. Though still imperfect, the computed spectrum of the radiation from the re-sorted and annealed NIST undulator is significantly superior to that of the original, unsorted device

  4. Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers

    International Nuclear Information System (INIS)

    Kulipanov, Gennadii N

    2007-01-01

    Undulators - periodic magnetic structures that were originally introduced by Vitalii Ginzburg in 1947 for electromagnetic radiation generation using relativistic electrons - are among the key elements of modern synchrotron radiation sources and free electron lasers (FELs). In this talk, the history of three generations of storage ring-based synchrotron X-ray sources using wigglers and undulators is briefly traced. Prospects for two types of next-generation space-coherent X-ray sources are discussed, which use long undulators and energy recovery accelerators or, alternatively, employ linear accelerator-based FELs. The recently developed Novosibirsk terahertz FEL facility, currently the world' s most powerful terahertz source, is described. It was the generation of electromagnetic radiation in this range that Ginzburg discussed in his 1947 work. (oral issue of the journal 'uspekhi fizicheskikh nauk')

  5. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hemmen, J. Leo van [Physik Department, Technical University of Munich, 85747 Garching (Germany)]. E-mail: lvh@tum.de; Leibold, Christian [Physik Department, Technical University of Munich, 85747 Garching (Germany)

    2007-06-15

    Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level.

  6. Polarization Property Measurement of the Long Undulator Radiation Using Cr/C Multilayer Polarization Elements

    International Nuclear Information System (INIS)

    Niibe, Masahito; Mukai, Mikihito; Shoji, Yoshihiko; Kimura, Hiroaki

    2004-01-01

    A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap

  7. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

    International Nuclear Information System (INIS)

    Hemmen, J. Leo van; Leibold, Christian

    2007-01-01

    Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level

  8. Design and Fabrication of Soft Morphing Ray Propulsor: Undulator and Oscillator.

    Science.gov (United States)

    Kim, Hyung-Soo; Lee, Jang-Yeob; Chu, Won-Shik; Ahn, Sung-Hoon

    2017-03-01

    A soft morphing ray propulsor capable of generating an undulating motion in its pectoral fins was designed and fabricated. The propulsor used shape memory alloy for actuation, and the body was made with soft polymers. To determine the effects of undulation in the fins, two models that differed in terms of the presence of undulation were fabricated using different polymer materials. The experimental models were tested with a dynamometer to measure and compare thrust tendencies. Thrust measurements were conducted with various fin beat frequencies. Using the experimental data, the concept of an optimized standalone version of the ray robot was suggested and its prototype was fabricated. The fabricated robot was able to swim as fast as 0.26 body length per second and 38% more efficient than other smart material-based ray-like underwater robots.

  9. Influence of the synchrotron radiation on particle dynamics in a rectangular undulator

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1989-03-01

    This paper is concerned with the synchrotron radiation from an undulating electron beam in a rectangular waveguide. It is shown analytically and numerically that the radiated energy spectrum may differ significantly from the free space result when the undulator length divided by the Lorentz factor of the electron beam is larger than the transverse size of the waveguide. The undulator radiation is identified with the awake field in beam instabilities. The concepts of wake function and impedance are introduced to formulate the present problem in the same manner as the beam instability problem. It is shown that the obtained impedances satisfy the Panofsky-Wenzel theorem and other properties inevitable for wake fields. 5 refs., 2 figs

  10. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    International Nuclear Information System (INIS)

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  11. Development of cryogenic undulators with PrFeB magnets at SOLEIL

    Energy Technology Data Exchange (ETDEWEB)

    Valléau, M., E-mail: valleau@synchrotron-soleil.fr; Benabderrahmane, C.; Briquez, F.; Berteaud, P.; Tavakoli, K.; Zerbib, D.; Chapuis, L.; Marteau, F.; Marcouillé, O.; El Ajjouri, T.; Vétéran, J.; Sharma, G.; Tilmont, M.; Castro, J. Da Silva; N’Guyen, M.-H.; Béchu, N.; Rommeluère, P.; Louvet, M.; Nadji, A.; Herbeaux, C. [Synchrotron-Soleil, L’Orme des Merisisers, 91192 BP 34, Gif Sur Yvette (France); and others

    2016-07-27

    Short period high field undulators are of interest for X-ray brilliance enhancement in synchrotron radiation applications and for compact Free Electron Lasers. Cryogenic in-vacuum undulators [1] are one of the possible solutions. At SOLEIL, PrFeB magnets were directly chosen, even if still under development at that time. Indeed, they enable to avoid the spin transition reorientation phenomenon which occurs with NdFeB magnets [2] and the magnets can be cooled down directly at 77 K. The first selected grade CR53 from Hitachi presents a remanence of 1.35 T at 293 K and 1.57 T at 77 K, with a coercivity of 1355 kA/m at 293 K and 6000 kA/m at 77 K. A 2 m long cryogenic undulator of period 18 mm was first built in-house, with a specific Hall probe bench directly installed in the final vacuum chamber. This first cryogenic undulator has been in operation on the storage ring for 4 years [3]. A second U18 cryo-ready undulator using a slightly different magnet grade with a higher coercivity and modules with magnets surrounded by two half poles for easier magnetic optimization is under construction. A third 3 m long cryo-ready undulator U15 with a period of 15 mm is under development. It will be first used for the LUNEX5 FEL [4, 5] project (COXINEL demonstration of FEL amplification with a laser wakefield acceleration [6]). The measurement bench will include a correction of the Hall probe position and angle, the field integrals will be measured with a stretched wire.

  12. A new undulator for the extension of the spectral range of the CLIO FEL

    Energy Technology Data Exchange (ETDEWEB)

    Marcouille, O.; Berset, J.M.; Glotin, F. [LURE, Orsay (France)] [and others

    1995-12-31

    We built a new undulator in order to extend the lasing range of the CLIO infrared FEL. Presently, CLIO operates in the wavelength range 2 - 17 {mu}m. Beyond 14 {mu}m, the power decreases rapidly, because of the diffraction losses of the vacuum chamber (7 mm height and 2 m long). Thus, lasing at higher wavelengths implies installing a chamber with a height approximately twice. Then the minimum gap is increased and the maximum deflection parameter, K, is reduced from 2 to 1 : the laser tunability is greatly reduced. This is why a new undulator has been built.

  13. Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density

    International Nuclear Information System (INIS)

    Qiao, S.

    2009-01-01

    Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by a figure-8 operating mode. But there is still no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel operating mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Also the available minimum photon energy of linearly polarized photons can be extended much by this method.

  14. Modeling and designing of variable-period and variable-pole-number undulator

    Directory of Open Access Journals (Sweden)

    I. Davidyuk

    2016-02-01

    Full Text Available The concept of permanent-magnet variable-period undulator (VPU was proposed several years ago and has found few implementations so far. The VPUs have some advantages as compared with conventional undulators, e.g., a wider range of radiation wavelength tuning and the option to increase the number of poles for shorter periods. Both these advantages will be realized in the VPU under development now at Budker INP. In this paper, we present the results of 2D and 3D magnetic field simulations and discuss some design features of this VPU.

  15. Operation of a small-gap undulator on the NSLS X-ray Ring

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, P.M.; Krinsky, S.; Rakowsky, G.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    The authors report results of an on-going experiment being carried out in the X13 straight section of the NSLS X-ray Ring which explores the limits of the operation of small-gap undulators. In particular, they discuss the operation of a 16 mm period small-gap undulator. At an electron beam current of 300 mA the variable gap vacuum chamber has been closed to an inner aperture of 3.8 mm with no effect on the electron beam lifetime. Measurements of the output radiation spectrum at a magnet gap of 7.5 mm are described.

  16. Prototype photon position monitors for undulator beams at the advanced light source

    International Nuclear Information System (INIS)

    Warwick, T.; Shu, D.; Rodricks, B.; Johnson, E.D.

    1992-01-01

    Design criteria are described, and test results are presented, for prototype ALS undulator beam position monitors. The design is based on monitors presently in use at NSLS, with modifications to account for the widely varying and large K values of the undulators to be installed at the ALS. In particular, we have modified the design to simplify the thermal engineering and we have explored techniques to suppress the response of the monitors to soft photons, so that the beam position can be determined by measuring the higher energy photons which are better collimated

  17. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J.; Nikitina, Y.M. [DESY/HASYLAB, Hamburg (Germany)

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  18. Effect of the drift gap between the undulator sections on the operation of the Fusion-FEM

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Militsyn, B. L.; Bongers, W. A.; Bratman, V. L.; Denisov, G. G.; Manintveld, P.; Savilov, A. V.; Varfolomeev, A. A.; Verhoeven, A. G. A.; Urbanus, W. H.

    2000-01-01

    The 'Fusion-FEM' is a free electron MASER based on an electrostatic accelerator. An electron beam of 12 A, 1.35-2 MeV is injected into a step-tapered undulator to generate 1 MW of radiation in the range 130-250 GHz. The undulator is built from two sections with different field strength

  19. Development of beam halo monitors for the European XFEL using radiation hard sensors and demonstration of the technology at FLASH

    International Nuclear Information System (INIS)

    Ignatenko, Alexandr

    2015-05-01

    The European X-Ray Free-Electron Laser (E-XFEL), currently under construction in Hamburg, Germany, is intended to be an international linear accelerator (linac) based user facility. Its electron beam can carry maximal average power of 600 kW. A beam with such a high power needs to be carefully transmitted through the machine and safely dumped after utilization. This is supported by various diagnostics tools. A Beam Halo Monitor (BHM) based on synthetic diamond and sapphire sensors has been designed. Diamond sensors are developed by the company element6 for the detection of ionizing radiation and used previously elsewhere. Sapphire sensors are in this thesis applied for the first time. The BHM concept has been applied already at the Free-electron Laser in Hamburg (FLASH). A module with four diamond and four sapphire sensors was designed, installed inside the beam pipe, commissioned, calibrated and has been successfully operated for 4 years. The system contributed significantly to safe and efficient operation of FLASH. Both types of the sensors for the BHM were characterized. Measurements of radiation tolerance are done in a 10 MeV electron beam for polycrystalline CVD (pCVD) diamond sensors for the first time up to a dose of 10 MGy and for sapphire sensors up to 5 MGy. The charge collection efficiency (CCE) drops as a function of the absorbed dose, is however still sufficient for application as a BHM. To improve a main sensor characteristic, the charge collection efficiency, for sapphire sensors the impurity concentration was reduced and different growth techniques were compared. Finally, charge collection efficiency of about 5 % for a bias voltage of 500 V was reached. The BHM concept for the XFEL is designed and in the construction phase.

  20. Misconception regarding conventional coupling of fields and particles in XFEL codes

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [Europeam XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [DESY Hamburg (Germany)

    2016-01-15

    Maxwell theory is usually treated in the laboratory frame under the standard time order, that is the usual light-signal clock synchronization. In contrast, particle tracking in the laboratory frame usually treats time as an independent variable. As a result, here we argue that the evolution of electron beams is usually treated according to the absolute time convention i.e. using a different time order defined by a non-standard clock synchronization procedure. This essential point has never received attention in the accelerator community. There are two possible ways of coupling fields and particles in this situation. The first, Lorentz's prerelativistic way, consists in a 'translation' of Maxwell's electrodynamics to the absolute time world-picture. The second, Einstein's way, consists in a 'translation' of particle tracking results to the electromagnetic world-picture, obeying the standard time order. Conventional particle tracking shows that the electron beam direction changes after a transverse kick, while the orientation of the microbunching phase front stays unvaried. Here we show that in the ultrarelativistic asymptotic v → c, the orientation of the planes of simultaneity, i.e. the orientation of the microbunching fronts, is always perpendicular to the electron beam velocity when the evolution of the modulated electron beam is treated under Einstein's time order. This effect allows for the production of coherent undulator radiation from a modulated electron beam in the kicked direction without suppression. We hold a recent FEL study at the LCLS as a direct experimental evidence that the microbunching wavefront indeed readjusts its direction after the electron beam is kicked by a large angle, limited only by the beamline aperture. In a previous paper we quantitatively described this result invoking the aberration of light effect, which corresponds to Lorentz's way of coupling fields and particles. The purpose of

  1. Misconception regarding conventional coupling of fields and particles in XFEL codes

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2016-01-01

    Maxwell theory is usually treated in the laboratory frame under the standard time order, that is the usual light-signal clock synchronization. In contrast, particle tracking in the laboratory frame usually treats time as an independent variable. As a result, here we argue that the evolution of electron beams is usually treated according to the absolute time convention i.e. using a different time order defined by a non-standard clock synchronization procedure. This essential point has never received attention in the accelerator community. There are two possible ways of coupling fields and particles in this situation. The first, Lorentz's prerelativistic way, consists in a 'translation' of Maxwell's electrodynamics to the absolute time world-picture. The second, Einstein's way, consists in a 'translation' of particle tracking results to the electromagnetic world-picture, obeying the standard time order. Conventional particle tracking shows that the electron beam direction changes after a transverse kick, while the orientation of the microbunching phase front stays unvaried. Here we show that in the ultrarelativistic asymptotic v → c, the orientation of the planes of simultaneity, i.e. the orientation of the microbunching fronts, is always perpendicular to the electron beam velocity when the evolution of the modulated electron beam is treated under Einstein's time order. This effect allows for the production of coherent undulator radiation from a modulated electron beam in the kicked direction without suppression. We hold a recent FEL study at the LCLS as a direct experimental evidence that the microbunching wavefront indeed readjusts its direction after the electron beam is kicked by a large angle, limited only by the beamline aperture. In a previous paper we quantitatively described this result invoking the aberration of light effect, which corresponds to Lorentz's way of coupling fields and particles. The purpose of

  2. Program reference schedule baseline

    International Nuclear Information System (INIS)

    1986-07-01

    This Program Reference Schedule Baseline (PRSB) provides the baseline Program-level milestones and associated schedules for the Civilian Radioactive Waste Management Program. It integrates all Program-level schedule-related activities. This schedule baseline will be used by the Director, Office of Civilian Radioactive Waste Management (OCRWM), and his staff to monitor compliance with Program objectives. Chapter 1 includes brief discussions concerning the relationship of the PRSB to the Program Reference Cost Baseline (PRCB), the Mission Plan, the Project Decision Schedule, the Total System Life Cycle Cost report, the Program Management Information System report, the Program Milestone Review, annual budget preparation, and system element plans. Chapter 2 includes the identification of all Level 0, or Program-level, milestones, while Chapter 3 presents and discusses the critical path schedules that correspond to those Level 0 milestones

  3. Long Baseline Observatory (LBO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Long Baseline Observatory (LBO) comprises ten radio telescopes spanning 5,351 miles. It's the world's largest, sharpest, dedicated telescope array. With an eye...

  4. Final construction of the C.R.E.O.L. 8 millimeter period hybrid undulator

    Energy Technology Data Exchange (ETDEWEB)

    Tesch, P.; Gallagher, J.; Elias, L. [Center for Research and Education in Optics and Lasers, Orlando, FL (United States)

    1995-12-31

    The construction of an 8 millimeter period hybrid undulator for the C.R.E.O.L. high power far-infared free electron laser has just been completed. This FEL is expected to come on-line in the fall of 1995 and produce close to a kilowatt of continuous power at wavelengths of 225 - 800 microns. The undulator has extremely precise mechanical tolerances and high field uniformity allowing for high electron beam recovery rates. Almost complete beam recovery is required for DC operation at high currents. A novel method for measuring the magnetic properties of individual magnets and sorting the magnets to reduce magnetic field errors will be reported. The peak field and phase errors of the undulator without the pole pieces are reduced through a magnet ordering procedure. These errors are further reduced by inserting and tuning adjustable pole pieces. The reduction of field errors through these two techniques will be presented. An analysis of the final undulator errors and the results of measurements of the mechanical tolerances will be presented.

  5. An acoustical research of the undulating wooden ceiling in the Vyborg Library

    DEFF Research Database (Denmark)

    Mortensen, Bo

    2004-01-01

    Much has been written about the Undulating Ceiling at the lecture hall of the Vyborg Library. Alvar Aalto himself claimed the ceiling to be "ninety-nine per cent acoustically perfect" and the sketches showing the acoustical considerations behind the ceiling-design is often reproduced. But how did...

  6. Design and implementation of VUV-CD and LD measurements using an ac modulated polarizing undulator

    International Nuclear Information System (INIS)

    Yagi-Watanabe, K.; Yamada, T.; Tanaka, M.; Kaneko, F.; Kitada, T.; Ohta, Y.; Nakagawa, K.

    2005-01-01

    VUV circular dichroism (CD) and linear dichroism (LD) have been successfully measured at wavelengths beyond the conventional limit by using an ac modulated polarizing undulator. We have developed CD and LD measuring technique by polarization modulation at the source, without using transmission type polarizing modulator, to extend to the coverage to wavelengths shorter than 140-bar nm. AIST developed in 1986 ac polarizing undulator by using a electron storage ring 'TERAS' based on an original concept. The undulator which can produce any desired polarization of vertical- and horizontal-linear polarization (VLP and HLP) and right- and left-handed circular polarization (RCP and LCP) is specially well suited to both measurements of CD and LD. With this undulator, the polarization alternate in the order of VLP-RCP-HLP-RCP-VLP-LCP-HLP-LCP-VLP-, i.e. when circular polarization is modulated in f Hz, linear polarization alters in 2f Hz. This allows us simultaneous measurements of CD and LD. Since the TERAS can produce ac-modulated polarized radiation of wavelength as short as 40-bar nm, it is expected to have CD and LD measurement extended to 40-bar nm

  7. Comparison of two superconducting elliptical undulators for generating circularly polarized light

    Directory of Open Access Journals (Sweden)

    C. S. Hwang

    2004-09-01

    Full Text Available The potential use of two planar superconducting elliptical undulators—a vertically wound racetrack coil structure and a staggered array structure—to generate a circularly polarized hard x-ray source was investigated. The magnetic poles and wires of the up and down magnet arrays were rotated in alternating directions on the horizontal plane, an elliptical field is generated to provide circularly polarized light in the electron-storage ring and the energy-recovery linac accelerator. Rapid switching between right- and left-circularly polarized radiations is performed using two undulators with oppositely rotated wires and poles. Given a periodic length of 15 mm and a gap of 5 mm, the magnetic-flux densities in the elliptical undulator are B_{z}=1.2   T (B_{x}=0.6   T and B_{z}=0.35   T (B_{x}=0.15   T in the planar vertically wound racetrack coil and the staggered structure with poles rotated by 35° and 25°, respectively. In maximizing the merit of the flux and the width of the effective field region in the two superconducting elliptical undulators, the trade-off rotation angles of the coils and poles are 20° and 5°, for vertically wound racetrack coil and staggered undulators, respectively.

  8. Fabrication of mm-wave undulator cavities using deep x-ray lithography

    International Nuclear Information System (INIS)

    Song, J.J.; Kang, Y.W.; Kustom, R.L.; Lai, B.; Nassiri, A.; Feinerman, A.D.; White, V.; Well, G.M.

    1995-01-01

    The possibility of fabricating mm-wave radio frequency cavities (100-300 GHz) using deep x-ray lithography (DXRL) is being investigated. The fabrication process includes manufacture of precision x-ray masks, exposure of positive resist by x-ray through the mask, resist development, and electroforming of the final microstructure. Highly precise, two-dimensional features can be machined onto wafers using DXRL. Major challenges are: fabrication of the wafers into three-dimensional rf structures; alignment and overlay accuracy of structures; adhesion of the PMMA on the copper substrate; and selection of a developer to obtain high resolution. Rectangular cavity geometry is best suited to this fabrication technique. A 30- or 84-cell 108-GHz mm-wave structure can serve as an electromagnetic undulator. A mm-wave undulator, which will be discussed later, may have special features compared to the conventional undulator. First harmonic undulator radiation at 5.2 KeV would be possible using the Advanced Photon Source (APS) linac system, which provides a low-emittance electron beam by using an rf thermionic gun with an energy as high as 750-MeV. More detailed rf simulation, heat extraction analysis, beam dynamics using a mm-wave structure, and measurements on lOx larger scale models can be found in these proceedings

  9. Blade-type X-ray beam position monitors for SPring-8 undulator beamlines

    CERN Document Server

    Aoyagi, H; Kitamura, H

    2001-01-01

    The X-ray beam position monitors had been designed and installed for SPring-8 insertion device beamlines. These monitors are being utilized for photon beam diagnostics. The beam from the standard undulator in SPring-8 has the total power of 11 kW and the power density of 470 kW/mrad sup 2 , typically. Each monitor has four CVD diamond blades coated with metal for detector heads. We have already introduced three styles of monitors to match various insertion devices in SPring-8. A standard style, or a fixed-blade style, is used mainly for a standard in-vacuum undulator beamlines. A horizontal-blade-drive style and a four-blade-drive style are used for beamlines of a wiggler and a twin helical undulator that have wide power distributions, and for figure-8 undulators that have asymmetric power distributions, respectively. This report describes the design and the structure of these monitors and the beam-tests for the photon beam diagnostics in detail.

  10. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  11. Tuning and characterization of the {open_quotes}Teufel{close_quotes}-undulator

    Energy Technology Data Exchange (ETDEWEB)

    Verschuur, J.W.J.; Ernst, G.J.; Witteman, W.J. [Univ. of Twente, Enschede (Netherlands)

    1995-12-31

    Three important criteria are used to tune the undulator are: reduce longitudinal phase errors, have approximately equal two plane focusing and have a good overlap between the electron beam and the optical beam. Although these criteria are the main design goals it is hard to meet them directly from the assembling. Small errors inevitably appear during the assembly, even when care is taken to keep the tolerances as tight as possible. The magnetic field was constantly monitored during construction using the pulsed wire method. However some kind of tuning mechanism is always needed to improve the performance of the undulator. The undulator we designed and build is of the Hybrid type, i.e. permanent magnets and high permeable poles. The well known method of using small permanent magnets to correct the field errors is nearly impossible due to the presence of iron poles. Hence, as a logical step, we decided to try to correct the various errors with shims in the form of small iron plates. The shims were put on the pole face at the edge of the poles. Different configurations were used to correct the different kind of errors. In the presentation an overview of the various shim configurations will be discussed. Steering errors are quite easy to correct, since only dipole fields are involved. We did put quite some effort in correcting the quadrupole errors. Gradients dBy/dx and dBx/dy were easy to correct with two shims on one side. The other gradients, on the other hand needed extensive shimming to be corrected. The error correction is limited by the presence of sextupole errors. We even found by experience that sextupole errors increased with the number of shims used. The ratio of the focusing strength of the undulator is measured to be 3/2, being slightly stronger in the direction of the wiggle motion. Longitudinal phase errors are introduced by amplitude and wavelength deviations in the undulator.

  12. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    International Nuclear Information System (INIS)

    Debus, Alexander

    2012-01-01

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  13. Location for new research facility determined X-ray laser XFEL to be realized in the federal states of Hamburg and Schleswig-Holstein starting in 2006

    CERN Multimedia

    2003-01-01

    "...The site for the XFEL has now been determined by the research center DESY (Deutsches Elektronen-Synchrotron); it was announced today at a press conference in Hamburg. The 3.3-kilometer-long facility is to be located in the federal states of Hamburg and Schleswig-Holstein. It will begin on the DESY site in Hamburg-Bahrenfeld and run in a north-western direction to the town of Schenefeld (district of Pinneberg), which borders on Hamburg" (1 page).

  14. Design of front end electronics and a full scale 4k pixel readout ASIC for the DSSC X-ray detector at the European XFEL

    International Nuclear Information System (INIS)

    Erdinger, Florian

    2016-01-01

    The goal of this thesis was to design a large scale readout ASIC for the 1-Mega pixel DEPFET Sensor with Signal Compression (DSSC) detector system which is being developed by an international collaboration for the European XFEL (EuXFEL). Requirements for the DSSC detector include single photon detection down to 0.5 keV combined with a large dynamic range of up to 10000 photons at frame rates of up to 4.5 MHz. The detector core concepts include full parallel readout, signal compression on the sensor or ASIC level, filtering, immediate digitization and local storage within the pixel. The DSSC is a hybrid pixel detector, each sensor pixel mates to a dedicated ASIC pixel, which includes the entire specified signal processing chain along with auxiliary circuits. One ASIC comprises 4096 pixels and a full periphery including biasing and digital control. This thesis presents the design of the ASIC, its components and integration are described in detail. Emphasis is put on the design of the analog front-end. The first full format ASIC (F1) has been fabricated within the scope of this thesis along with numerous test chips. Furthermore, the EuXFEL and the DSSC detector system are presented to create the context for the ASIC, which is the core topic of this thesis.

  15. Design of front end electronics and a full scale 4k pixel readout ASIC for the DSSC X-ray detector at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Erdinger, Florian

    2016-11-22

    The goal of this thesis was to design a large scale readout ASIC for the 1-Mega pixel DEPFET Sensor with Signal Compression (DSSC) detector system which is being developed by an international collaboration for the European XFEL (EuXFEL). Requirements for the DSSC detector include single photon detection down to 0.5 keV combined with a large dynamic range of up to 10000 photons at frame rates of up to 4.5 MHz. The detector core concepts include full parallel readout, signal compression on the sensor or ASIC level, filtering, immediate digitization and local storage within the pixel. The DSSC is a hybrid pixel detector, each sensor pixel mates to a dedicated ASIC pixel, which includes the entire specified signal processing chain along with auxiliary circuits. One ASIC comprises 4096 pixels and a full periphery including biasing and digital control. This thesis presents the design of the ASIC, its components and integration are described in detail. Emphasis is put on the design of the analog front-end. The first full format ASIC (F1) has been fabricated within the scope of this thesis along with numerous test chips. Furthermore, the EuXFEL and the DSSC detector system are presented to create the context for the ASIC, which is the core topic of this thesis.

  16. First Grade Baseline Evaluation

    Science.gov (United States)

    Center for Innovation in Assessment (NJ1), 2013

    2013-01-01

    The First Grade Baseline Evaluation is an optional tool that can be used at the beginning of the school year to help teachers get to know the reading and language skills of each student. The evaluation is composed of seven screenings. Teachers may use the entire evaluation or choose to use those individual screenings that they find most beneficial…

  17. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    Science.gov (United States)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  18. Rationing with baselines

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave

    2013-01-01

    We introduce a new operator for general rationing problems in which, besides conflicting claims, individual baselines play an important role in the rationing process. The operator builds onto ideas of composition, which are not only frequent in rationing, but also in related problems...... such as bargaining, choice, and queuing. We characterize the operator and show how it preserves some standard axioms in the literature on rationing. We also relate it to recent contributions in such literature....

  19. A hybrid type undulator for far-infrared FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Zako, A.; Miyauchi, Y.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two FEL facilities of the FELI are now operating in the wavelength range of 1-20 {mu}m. A 3.2-m hybrid type undulator ({lambda}{sub u}=80mm, N=40) has been designed for far-infrared FELs and will be installed in December. It can cover the wavelength of 20-60 {mu}m by changing K-value from 1 to 2.7 for a 28.0-MeV electron beam. It is composed of ferrite magnetic poles and Sm-Co permanent magnets. Commonly wound coils induce alternating magnetic field in ferrite poles. Combination of the induced field and the permanent magnet field can controls the magnetic field between the undulator gap.

  20. Peak Fields of Nb$_{3}$Sn Superconducting Undulators and a Scaling Law

    CERN Document Server

    Kim, S H

    2005-01-01

    The peak fields on the beam axis and the maximum fields in the conductor of Nb$_{3}$Sn superconducting undulators (SCUs) were calculated for an undulator period length of 16 mm. Using a simple scaling law for SCUs [1], the peak fields, as well as the conductor maximum fields and the current densities, were calculated for a period range of 8 to 32 mm. The critical current densities of commercially available Nb$_{3}$Sn superconducting strands were used for the calculations. The achievable peak fields are limited mainly by the flux-jump instabilities at low fields. The possible or feasible peak field will also be compared with that achieved in prototype development of SCUs.

  1. Tuning and switching of band gap of the periodically undulated beam by the snap through buckling

    Directory of Open Access Journals (Sweden)

    Y. Li

    2017-05-01

    Full Text Available We propose highly tuning and switching band gaps of phononic crystals through the snap through buckling by investigating wave propagation in a designed tractable undulated beam with single material and periodically arched shape. A series of numerical analyses are conducted to offer a thorough understanding of the evolution of the band gaps as a function of the vertical applied load. We find out that the interesting snap through buckling induced by the vertical load can alter the width of the band gap of the undulated beam dramatically, even switch them on and off. Our researches show an effective strategy to tune the band gaps of phononic crystals through the snap through buckling behavior.

  2. Commissioning of an APPLE-II Undulator at Daresbury Laboratory for the SRS

    CERN Document Server

    Clarke, James; Scott, Duncan; Shepherd, Ben; Wyles, Naomi

    2005-01-01

    A new variable polarisation undulator of the APPLE-II type has been designed and constructed at Daresbury Laboratory. Initial magnet testing of the 56mm period device was followed by an intensive period of shimming to improve the field quality. After this was successfully completed the undulator was installed into the SRS and tests made of the effect of the device upon the electron beam. This beam commissioning was completed in a very short space of time with the beamline being given full control of the gap and phase of the magnet within a few weeks of installation. This paper summarises the measurement of the magnet and the shimming techniques employed to improve the field quality. It also describes the effect of the device upon the stored 2 GeV electron beam and the measures taken to minimise these effects during user operations.

  3. Thermal analysis of the first canted-undulator front-end components at SSRF

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongmin, E-mail: xuzhongmin@sinap.ac.cn; Feng, Xinkang; Wang, Naxiu; Wu, Guanyuan; Zhang, Min; Wang, Jie

    2015-02-21

    The performance of three kinds of masks: pre-mask, splitter mask and fixed mask-photon shutter, used for the first canted-undulator front end under heat loads at SSRF, is studied. Because these components are shared with two beamlines, the X-rays from both dual undulators and bending magnets can strike on them. Under these complicated conditions, they will absorb much more thermal power than when they operate in usual beamline. So thermal and stress analysis is indispensable for their mechanical design. The method of applying the non-uniform power density using Ansys is presented. During thermal stress analysis, the normal operation or the worst possible case is considered. The finite element analyses results, such as the maximum temperature of the body and the cooling wall and the maximum stress of these components, show the design of them is reasonable and safe.

  4. Use of a mirror as the first optical component for an undulator beamline at the APS

    International Nuclear Information System (INIS)

    Yun, W.; Khounsary, A.; Lai, B.; Gluskin, E.

    1992-09-01

    In the design of Sector II of the Synchrotron Radiation Instrumentation (SRI) CAT, an x-ray mirror with multiple coatings is chosen as the first optical component of the undulator beamline. Two significant advantages of using the mirror are: A significant reduction in the peak radiation heat flux and total power on the downstream monochromator, and (2) availability of the wide-bandpass undulator spectrum between 0--30 key to experimental stations with substantially reduced radiation shielding requirements. The second advantage also allows us to place the monochromator outside the first optics enclosure (FOE) at a large distance from the source to further reduce the peak heat flux on the monochromator. The combined effect is that the inclined crystal monochromator may not be necessary, and a multilayer monochromator can be used because the expected heat fluxes are less than the value that has been demonstrated for those monochromators

  5. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  6. Small-gap undulator experiment on the NSLS X-ray Ring

    International Nuclear Information System (INIS)

    Stefan, P.M.; Krinsky, S.; Rakowsky, G.; Solomon, L.

    1995-01-01

    We report results of an on-going experiment being carried out in the X13 straight section of the NSLS X-ray Ring which explores the limits of the operation of small-gap undulators. In particular, we discuss measurements of stored electron beam lifetime as a function of the vertical aperture presented by a 4-jaw scraper or a variable-aperture vacuum vessel. At an electron beam current of 300 mA the variable-aperture vacuum chamber was closed to an inner aperture of 3.8 mm with no effect on the electron beam lifetime. Measurements of the output radiation spectrum of a 16 mm period undulator at a magnet gap of 7.5 mm are also described

  7. The TDAQ Baseline Architecture

    CERN Multimedia

    Wickens, F J

    The Trigger-DAQ community is currently busy preparing material for the DAQ, HLT and DCS TDR. Over the last few weeks a very important step has been a series of meetings to complete agreement on the baseline architecture. An overview of the architecture indicating some of the main parameters is shown in figure 1. As reported at the ATLAS Plenary during the February ATLAS week, the main area where the baseline had not yet been agreed was around the Read-Out System (ROS) and details in the DataFlow. The agreed architecture has: Read-Out Links (ROLs) from the RODs using S-Link; Read-Out Buffers (ROB) sited near the RODs, mounted in a chassis - today assumed to be a PC, using PCI bus at least for configuration, control and monitoring. The baseline assumes data aggregation, in the ROB and/or at the output (which could either be over a bus or in the network). Optimization of the data aggregation will be made in the coming months, but the current model has each ROB card receiving input from 4 ROLs, and 3 such c...

  8. Development of Control System for Fast Frequency Tuners of Superconducting Resonant Cavities for FLASH and XFEL Experiments

    CERN Document Server

    Przygoda, K

    2011-01-01

    This dissertation covers the recent research and development (R&D) activities of control systems for the fast frequency tuners of TESLA cavities and predicts the implications foreseen for large scale machines such as the FLASH and the planned XFEL. In particular, the framework of the presented activities is the effort toward the: 1. R&D of the driving circuit, 2. R&D of the control algorithm, 3. R&D of the control system. The main result of these activities is the permanent installation of the target piezo control system and its commissioning for 40 cavities divided into 5 accelerating modules at the DESY FLASH facility. The author’s contribution was the study of possible designs of high-voltage, high-current power amplifiers, used for driving the fast frequency tuners, shows that several parameters of such a device needs to be considered. The most important parameter is the input and output power estimation. This arises from the fact that the estimation is the most crucial issue for both po...

  9. Bunch arrival time monitors; Concepts towards improving the sensitivity for low charge operation for FLASH II and XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Penirschke, Andreas; Angelovski, Aleksandar; Jakoby, Rolf [TU Darmstadt, Institut fuer Mikrowellentechnik und Photonik, Merckstr. 25, 64283 Darmstadt (Germany); Sydlo, Cezary; Bousonville, Michael; Czwalinna, Marie Kristin; Schlarb, Holger [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kuhl, Alexander [University of Hamburg, Physics Department, Accelerator Physics Group (Germany); Weiland, Thomas [Technische Univ. Darmstadt (Germany). Inst. fuer Theorie Elektromagnetischer Felder

    2013-07-01

    High gain Free-Electron Lasers can generate ultra short X-ray pulses in the femtosecond range. For a stable operation of the FEL, the precise knowledge of the bunch arrival time is crucial. A novel high bandwidth Bunch Arrival time Monitor was recently installed at FLASH to allow a low charge operation mode with a sub-10 fs resolution for bunch charges of 20 pC or more. The BAM is equipped with cone shaped pickups for the precise measurement of both, the high and low bunch charge operation mode. For the extension of FLASH facility to FLASH II new pickups for the high bandwidth BAMs need to be developed. The new BAM needs to maximize the voltage level of the beam induced signal for low charge operation mode in order to provide sufficient signal strength for the subsequent electronics. In this talk, we present concepts to improve the signal strength at the electro-optic modulators for low charge operation at FLASH II and XFEL.

  10. Influence of higher harmonics of the undulator in X-ray polarimetry and crystal monochromator design.

    Science.gov (United States)

    Marx-Glowna, Berit; Schulze, Kai S; Uschmann, Ingo; Kämpfer, Tino; Weber, Günter; Hahn, Christoph; Wille, Hans Christian; Schlage, Kai; Röhlsberger, Ralf; Förster, Eckhart; Stöhlker, Thomas; Paulus, Gerhard G

    2015-09-01

    The spectrum of the undulator radiation of beamline P01 at Petra III has been measured after passing a multiple reflection channel-cut polarimeter. Odd and even harmonics up to the 15th order, as well as Compton peaks which were produced by the high harmonics in the spectrum, could been measured. These additional contributions can have a tremendous influence on the performance of the polarimeter and have to be taken into account for further polarimeter designs.

  11. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Heimann, P.A.; Mossessian, D. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  12. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  13. Pulse propagation in free-electron lasers with a tapered undulator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered undulator devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristics are presented and are found to change considerably over this range

  14. Effects of undulators on the ALS: The early work on the LBL [Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Jackson, A.

    1988-05-01

    In this paper we describe the early work carried out at LBL on the consequences of installing insertion devices (wigglers and undulators) on the beam dynamics of the ALS. This included analytical and tracking studies, and led to an insight to the reasons behind the predicted reduction in dynamic aperture. For completeness, a description of the unperturbed storage ring characteristics are also given. 3 refs., 16 figs., 2 tabs

  15. Fabrication of mm-wave undulator cavities using deep x-ray lithography

    International Nuclear Information System (INIS)

    Song, J.; Feinerman, A.; Kang, Y.; Kustom, R.; Lai, B.; Nassiri, A.; White, V.; Well, G.M.

    1996-01-01

    The possibility of fabricating mm-wave radio frequency cavities (100 endash 300 GHz) using deep x-ray lithography (DXRL) is being investigated. The fabrication process includes manufacture of precision x-ray masks, exposure of positive resist by x-ray through the mask, resist development, and electroforming of the final microstructure. Highly precise, two-dimensional features can be machined onto wafers using DXRL. Major challenges are: fabrication of the wafers into three-dimensional rf structures; alignment and overlay accuracy of structures; adhesion of the PMMA on the copper substrate; and selection of a developer to obtain high resolution. Rectangular cavity geometry is best suited to this fabrication technique. A 30- or 84-cell 108-GHz mm-wave structure can serve as an electromagnetic undulator. A mm-wave undulator, which will be discussed later, may have special features compared to the conventional undulator. First harmonic undulator radiation at 5.2 keV would be possible using the Advanced Photon Source (APS) linac system, which provides a low-emittance electron beam by using an rf thermionic gun with an energy as high as 750 MeV. More detailed rf simulation, heat extraction analysis, beam dynamics using a mm-wave structure, and measurements on 10x larger scale models can be found in these proceedings [Y.W. Kang et al., open-quote open-quote Design and Construction of Planar mm-wave Accelerating Cavity Structures close-quote close-quote] copyright 1996 American Institute of Physics

  16. Textured dysprosium and gadolinium poles for high-field, short-period hybrid undulators

    International Nuclear Information System (INIS)

    Murokh, Alex; Solovyov, Vyacheslav; Agustsson, Ron; O'Shea, Finn H.; Chubar, Oleg; Chen, Yung; Grandsaert, Thomas

    2014-01-01

    We discuss the feasibility of enhancement of the gap field in a short-period hybrid undulator by using pole inserts with the saturation inductance B s , over that of iron, 2 T. Dysprosium metal, with the saturation inductance of 3.4 T below 90 K, and Gadolinium with B s =2.7 T, appear as good candidates as the optimized pole material. However, due to the high magnetic anisotropy of Dy, such a high level of magnetization can only be realized when the external field lies in the basal plane. This implies that the pole has to be single-crystalline or highly textured. Considering that growing large, >10mm, Dy single crystals is difficult, we propose secondary recrystallization as a method to induce the required texture in thin Dy and Gd foils. The textured foils can be stacked to produce pole inserts of the desired geometry and orientation. Results of small-scale processing and magnetic measurements of thin (20–60 μ) foils provide evidence that the required texture quality can be achieved by a relatively simple sequence of heat-treatments and cold rolling. The advantage of textured Dy and Gd poles is demonstrated in a several period test undulator. -- Highlights: • Textured rare-earth materials for use as undulator pole materials. • We measure the development of texture in Dy and Gd. • We compare the rare-earth materials with high saturation steel in undulators. • Thin sheets of Dy and Gd materials perform similar to single crystals

  17. Magnetic field measurements of the harmonic generation FEL superconducting undulator at BNL-NSLS

    International Nuclear Information System (INIS)

    Solomon, L.; Graves, W.S.; Lehrman, I.

    1994-01-01

    A three stage superconducting undulator (modulator, dispersive section, and radiator) is under construction at Brookhaven National Laboratory. Sections of the radiator, consisting of 25cm long steel yokes, each with 18mm period, 0.54 Tesla field, and 8.6mm gap are under test. The magnetic measurements and operational characteristics of the magnet are discussed. Measurement results and analysis are presented, with emphasis on the integrated field quality. The magnet winding and the effects of the various trims are discussed

  18. Negative-mass mitigation of Coulomb repulsion for terahertz undulator radiation of electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Balal, N.; Magory, E. [Ariel University, Ariel 40700 (Israel); Bandurkin, I. V. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Bratman, V. L. [Ariel University, Ariel 40700 (Israel); Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Savilov, A. V. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)

    2015-10-19

    It is proposed to utilize the effect of negative mass for stabilization of the effective axial size of very dense and short electron bunches produced by photo-injector guns by using combined undulator and strong uniform magnetic fields. It has been shown that in the “abnormal” regime, an increase in the electron energy leads to a decrease in the axial velocity of the electron; due to the negative-mass effect, the Coulomb repulsion of electrons leads to their attraction and formation of a fairly stable and compact bunch “nucleus.” An undulator with a strong uniform magnetic field providing the negative-mass effect is designed for an experimental source of terahertz radiation. The use of the negative-mass regime in this experiment should result in a long-pulse coherent spontaneous undulator emission from a short dense moderately relativistic (5.5 MeV) photo-injector electron bunch with a high (up to 20%) efficiency and a narrow frequency spectrum.

  19. Performance of an undulator for visible and UV FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Miyauchi, Y.; Zako, A.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two infrared free electron lasers (FELs) of the FELI project are now operating in the wavelength range of 1-20{mu}m. A 2.68-m undulator has been constructed for visible and UV FELs covering the wavelength of 1-0.2{mu}m for 100-165 MeV electron beams. It generates alternating, horizontal magnetic field, and wiggles electron beam on a vertical plane. The undulator length and period are 2.68m and 40mm, respectively. The gap of undulator magnets can be changed remotely by using servomotors with an accuracy of 1 {mu}m from the control room. The maximum K-value and related magnetic field strength are 1.9 and 0.5T, respectively, when its gap is set to the minimum value of 16mm. In order to minimize magnetic field reduction due to radiation damage, Sm-Co permanent magnet was adopted. Its structure and the results of magnetic field measurement will be reported.

  20. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  1. An elliptically-polarizing undulator with phase adjustable energy and polarization

    International Nuclear Information System (INIS)

    Lidia, S.

    1993-08-01

    The authors present a planar helical undulator designed to produce elliptically polarized light. Helical magnetic fields may be produced by a variety of undulators with four parallel cassettes of magnets. In their design, all cassettes are mounted in two planes on slides so that they may be moved parallel to the electron beam. This allows the undulator to produce x-rays of left- or right-handed elliptical or circular polarization as well as horizontal or vertical linear polarization. In model calculations, they have found that by sliding the top pair of rows with respect to the bottom pair, or the left pair with respect to the right pair, they retain the polarization setting but change the magnetic field strength, and hence the x-ray energy. This allows them to select both energy and polarization by independent phase adjustments alone, without changing the gap between the rows. Such a design may be simpler to construct than an adjustable gap machine. The authors present calculations that model its operation and its effects on an electron beam

  2. X-ray lithography using wiggler and undulator synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Neureuther, A.R.; Kim, K.J.; Thompson, A.C.; Hoyer, E.

    1983-08-01

    A systems design approach is used to identify feasible options for wiggler and undulator beam lines for x-ray lithography in the 0.5 to 0.2 μm linewidth region over 5 cm by 5 cm fields. Typical parameters from the Wiggler and Undulator in the Advanced Light Source designed at the Lawrence Berkeley Laboratory are used as examples. Moving from the conventional wavelengths of 4 to 9 A to very soft wavelengths around 15 A is shown to be very promising. The mask absorber thickness can be reduced a factor of three so that 0.2 μm features can be made with a 1:1 mask aspect ratio. The mask heating limited exposure time is also reduced a factor of three to 3 sec/cm 2 . However, extremely thin beam line windows (1/4 mil Be) and mask supports (1 μm Si) must be used. A wiggler beam line design using a small slit window at a scanning mirror appears feasible. A unconventional, windowless differentially pumped beam line with dual deflecting mirrors could be used with an undulator source

  3. A simple model based magnet sorting algorithm for planar hybrid undulators

    International Nuclear Information System (INIS)

    Rakowsky, G.

    2010-01-01

    Various magnet sorting strategies have been used to optimize undulator performance, ranging from intuitive pairing of high- and low-strength magnets, to full 3D FEM simulation with 3-axis Helmholtz coil magnet data. In the extreme, swapping magnets in a full field model to minimize trajectory wander and rms phase error can be time consuming. This paper presents a simpler approach, extending the field error signature concept to obtain trajectory displacement, kick angle and phase error signatures for each component of magnetization error from a Radia model of a short hybrid-PM undulator. We demonstrate that steering errors and phase errors are essentially decoupled and scalable from measured X, Y and Z components of magnetization. Then, for any given sequence of magnets, rms trajectory and phase errors are obtained from simple cumulative sums of the scaled displacements and phase errors. The cost function (a weighted sum of these errors) is then minimized by swapping magnets, using one's favorite optimization algorithm. This approach was applied recently at NSLS to a short in-vacuum undulator, which required no subsequent trajectory or phase shimming. Trajectory and phase signatures are also obtained for some mechanical errors, to guide 'virtual shimming' and specifying mechanical tolerances. Some simple inhomogeneities are modeled to assess their error contributions.

  4. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU

    Science.gov (United States)

    Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.

    2018-01-01

    There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.

  5. Multi-Objective Optimization for Pure Permanent-Magnet Undulator Magnets Ordering Using Modified Simulated Annealing

    CERN Document Server

    Chen Nian; Li, Ge

    2004-01-01

    Undulator field errors influence the electron beam trajectories and lower the radiation quality. Angular deflection of electron beam is determined by first field integral, orbital displacement of electron beam is determined by second field integral and radiation quality can be evaluated by rms field error or phase error. Appropriate ordering of magnets can greatly reduce the errors. We apply a modified simulated annealing algorithm to this multi-objective optimization problem, taking first field integral, second field integral and rms field error as objective functions. Undulator with small field errors can be designed by this method within a reasonable calculation time even for the case of hundreds of magnets (first field integral reduced to 10-6T·m, second integral to 10-6T·m2 and rms field error to 0.01%). Thus, the field correction after assembling of undulator will be greatly simplified. This paper gives the optimizing process in detail and puts forward a new method to quickly calculate the rms field e...

  6. A Helical Undulator Wave-guide Inverse Free-Electron Laser

    International Nuclear Information System (INIS)

    Rosenzweig, J.; Bodzin, N.; Frigola, P.; Musumeci, P.; Pellegrini, C.; Travish, G.; Joshi, C.; Tochitsky, S.

    2004-01-01

    With recent success in high gradient, high-energy gain IFEL experiments at the UCLA Neptune Laboratory, future experiments are now being contemplated. The Neptune IFEL was designed to use a tightly focused, highly diffracting, near-TW peak power 10 micron laser. This choice of laser focusing, driven by power-handling limitations of the optics near the interaction region, led to design and use of a very complex undulator, and to sensitivity to both laser misalignment and focusing errors. As these effects limited the performance of the IFEL experiment, a next generation experiment at Neptune has been studied which avoids the use of a highly diffractive laser beam through use of a waveguide. We discuss here the choice of low-loss waveguide, guided mode characteristics and likely power limitations. We also examine a preferred undulator design, which is chosen to be helical in order to maximize the acceleration achieved for a given power. With the limitations of these laser and undulator choices in mind, we show the expected performance of the IFEL using 1D simulations. Three-dimensional effects are examined, in the context of use of a solenoid for focusing and acceleration enhancement

  7. Undulations on the surface of elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Ferrari, A.; Thome, J. R.; Stone, H. A.

    2017-08-01

    A systematic analysis is presented of the undulations appearing on the surface of long bubbles in confined gas-liquid flows. CFD simulations of the flow are performed with a self-improved version of the open-source solver ESI OpenFOAM (release 2.3.1), for Ca =0.002 -0.1 and Re =0.1 -1000 , where Ca =μ U /σ and Re =2 ρ U R /μ , with μ and ρ being, respectively, the viscosity and density of the liquid, σ the surface tension, U the bubble velocity, and R the tube radius. A model, based on an extension of the classical axisymmetric Bretherton theory, accounting for inertia and for the curvature of the tube's wall, is adopted to better understand the CFD results. The thickness of the liquid film, and the wavelength and decay rate of the undulations extracted from the CFD simulations, agree well with those obtained with the theoretical model. Inertial effects appear when the Weber number of the flow We =Ca Re =O (10-1) and are manifest by a larger number of undulation crests that become evident on the surface of the rear meniscus of the bubble. This study demonstrates that the necessary bubble length for a flat liquid film region to exist between the rear and front menisci rapidly increases above 10 R when Ca >0.01 and the value of the Reynolds number approaches 1000.

  8. Control software of a variably polarizing undulator (APPLE type) for SX beamline in the SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Yoichi [Kansai Research Establishment, Japan Atomic Energy Research Institute, Mikazuki, Hyogo (Japan); Shimada, Taihei; Miyahara, Yoshikazu

    1999-12-01

    This paper describes the control software of a variably polarizing undulator (APPLE Type) that was installed at the SX beamline (cell number 23) in the SPring-8 storage ring in February, 1998. This undulator produces a polarized radiation in the energy range of soft X-ray by changing the gap distance between two pairs of permanent magnet arrays (gap movement). The main characteristic of the undulator is a capability to generate right and left circular polarization alternately at a period of 2 sec (0.5 Hz) by high speed phase-shifting (periodic phase movement). The developed software makes a fast correction of the closed orbit distortion (COD) of an electron beam by exciting steering magnets at a rate of time interval of 24 msec (42 Hz) during the movement of magnet arrays. Also, the software is capable to put these magnet arrays into a constant periodic phase movement with an error less than 0.1% for the period of 2 sec. The software was developed in accordance with the directions of SPring-8 standard for software development. (author)

  9. Proposed particle-beam characterizations for the APS undulator test line

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Borland, M.; Milton, S.

    1993-09-01

    A research and development effort is underway at the Advanced Photon Source (APS) to use an rf gun as a low-emittance electron source for injection into the 100- to 650-MeV linac subsystem and subsequently to an undulator test area. This configuration would combine the acceleration capability of the 200-MeV S-band electron linac and the in-line 450-MeV positron linac that normally provide positrons to the positron accumulator ring (PAR). A transport line that bypasses the PAR will bring the electrons to the undulator test area. Characterization techniques will be discussed for the electron beam with a normalized, rms emittance of <10 {pi} mm mrad (1{sigma}) at micropulse charges of up to 350 pC and micropulse durations of {approximately}5 ps (FWHM). Tests proposed include measurement of particle beam transport effects (at one-tenth the storage ring beam rigidity) caused by small undulator field errors as well as operations intended to produce coherent, short wavelength radiation (<200 nm).

  10. Image tuning techniques for enhancing the performance of pure permanent magnet undulators with small gap/period ratios

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    The on-axis field of a small-gap undulator constricted out of pure permanent magnet (PM) blocks arranged in an alternating-dipole (i.e., 2 dipoles/period) array can be substantially varied by positioning monolithic permeable plates above and below the undulator jaws. This simple technique, which can be used to control the 1st harmonic energy in conventional synchrotron radiation (SR) or Free Electron Laser (FEL) applications requiring sub-octave tuning, can also be shown to suppress magnetic inhomogeneities that can contribute to the undulator`s on-axis field errors. If a standard 4 block/period Halbach undulator, composed of PM blocks with square cross sections, is rearranged into an alternating-dipole array with the same period, the peak field that can be generated with superimposed image plates can substantially exceed that of the pure-PM Halbach array. This design technique, which can be viewed as intermediate between the {open_quotes}pure-PM{close_quotes} and standard {open_quotes}hybrid/PM{close_quotes} configurations, provides a potentially cost-effective method of enhancing the performance of small-gap, pure-PM insertion devices. In this paper we report on the analysis and recent characterization of pure-PM undulator structures with superimposed image plates, and discuss possible applications to FEL research.

  11. Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source

    International Nuclear Information System (INIS)

    2011-01-01

    We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

  12. 2017 Annual Technology Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hand, M. M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beiter, Philipp C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turchi, Craig S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feldman, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maness, Michael [Formerly NREL; O' Connor, Patrick [Oak Ridge National Laboratory

    2018-03-26

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), the National Renewable Energy Laboratory annually provides an organized and centralized set of such cost and performance data. The ATB uses the best information from the Department of Energy national laboratories' renewable energy analysts as well as information from the Energy Information Administration for fuel-based technologies. The ATB has been reviewed by experts and it includes the following electricity generation technologies: land-based wind, offshore wind, utility-scale solar photovoltaics (PV), commercial-scale solar PV, residential-scale solar PV, concentrating solar power, geothermal power, hydropower, coal, natural gas, nuclear, and conventional biopower. This webinar presentation introduces the 2017 ATB.

  13. Cascade self-seeding scheme with wake monochromator for narrow-bandwidth X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-06-15

    Three different approaches have been proposed so far for production of highly monochromatic X-rays from a baseline XFEL undulator: (i) single-bunch selfseeding scheme with a four crystal monochromator in Bragg reflection geometry; (ii) double-bunch self-seeding scheme with a four-crystal monochromator in Bragg reflection geometry; (iii) single-bunch self-seeding scheme with a wake monochromator. A unique element of the X-ray optical design of the last scheme is the monochromatization of X-rays using a single crystal in Bragg-transmission geometry. A great advantage of this method is that the monochromator introduces no path delay of X-rays. This fact eliminates the need for a long electron beam bypass, or for the creation of two precisely separated, identical electron bunches, as required in the other two self-seeding schemes. In its simplest configuration, the self-seeded XFEL consists of an input undulator and an output undulator separated by a monochromator. In some experimental situations this simplest two-undulator configuration is not optimal. The obvious and technically possible extension is to use a setup with three or more undulators separated by monochromators. This amplification-monochromatization cascade scheme is distinguished, in performance, by a small heat-loading of crystals and a high spectral purity of the output radiation. This paper describes such cascade self-seeding scheme with wake monochromators.We present feasibility study and exemplifications for the SASE2 line of the European XFEL. (orig.)

  14. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  15. The U5.0 Undulator for the Advanced Light Source

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Halbach, K.; Hassenzahl, W.V.; Humphries, D.; Kincaid, B.; Lancaster, H.; Plate, D.

    1992-01-01

    The U5.0 Undulator, an 89 period, 5 cm period length, 4.6 m long insertion device has been designed, is being fabricated, and is scheduled for completion in early 1992. This undulator will be the first high brightness source, in the 50 to 1,500 eV range, for the Advanced Light Source at the Lawrence Berkeley Laboratory. A hybrid magnetic configuration using Nd--Fe--B permanent magnet material and vanadium permendur poles has been selected to achieve the field quality needed to meet performance requirements. The magnetic structure is modular with each half consisting of five assembly sections, which provide the periodic structure, and end structures, for entrance and exit correction, mounted on a steel backing beam. Each assembly section consists of 35 half-period pole assemblies bolted to a mount. The required 0.837 T effective peak field at a 1.4 cm gap has been verified with model measurements. Vertical field integral correction is accomplished with the end structures, each having an arrangement of permanent magnet rotors which will be adjusted to minimize electron beam missteering over the undulator operating field range. To reduce the effect of environmental fields, the steel backing beams are connected through parallel, low-reluctance, Ni--Fe hinges. The magnetic structure is connected through four rollernuts to the drive system that provides gap adjustment with an arrangement of roller screws, chain drives, a gear reduction unit, and a stepper motor driven by a closed loop control system. Magnetic structure and drive system support are from a 2.4 m high structure which includes a support base with four vertical supports. The vacuum chamber design is a two-piece machined and welded 5083-H321 aluminum construction of 5.1 m length. Pumping is with a combination of ion, titanium sublimation pump and nonevaporable getter pumps. Magnetic design, subsystem design, and fabrication progress are presented

  16. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    Science.gov (United States)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  17. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    Waldschmidt, G. J.

    1998-01-01

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  18. Ultra-wide-band accumulation of coherent undulator synchrotron radiation in a resonating cavity

    Directory of Open Access Journals (Sweden)

    Y. H. Seo

    2011-06-01

    Full Text Available Cavity accumulation of coherent undulator synchrotron radiation emitted by a train of periodic electron bunches is investigated. Phase-matching conditions for accumulation of radiation emitted by successive bunches are analyzed and numerically confirmed. While the coherent emission of a single bunch is optimal at grazing resonance, the accumulated radiation targeted at the upper resonant frequency of the waveguide mode is found to have much broader bandwidth and higher efficiency as the resonance steps away from the grazing condition. Numerical results confirm that stimulated superradiance is responsible for the accumulated radiation.

  19. Coupling impedance of an in-vacuum undulator: Measurement, simulation, and analytical estimation

    Directory of Open Access Journals (Sweden)

    Victor Smaluk

    2014-07-01

    Full Text Available One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. To get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID straights. The impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  20. Coupling impedance of an in-vacuum undulator: Measurement, simulation, and analytical estimation

    Science.gov (United States)

    Smaluk, Victor; Fielder, Richard; Blednykh, Alexei; Rehm, Guenther; Bartolini, Riccardo

    2014-07-01

    One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. To get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID) straights. The impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  1. Design and test of a short mockup magnet for the superconducting undulator at the SSRF

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jieping, E-mail: jpxu@sinap.ac.cn; Ding, Yi; Cui, Jian; Zhang, Wei; Wang, Hongfei; Yin, Lixin [Department of Mechanical Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2016-07-27

    A superconducting planar undulator is under development at the Shanghai Synchrotron Radiation Facility (SSRF) to provide the SSRF users with higher photon fluxes at higher photon energies. A 5-period magnet was designed and built for feasibility study. The short mockup magnet is composed of NbTi/Cu winding and low carbon steel former and was tested in a vertical cryocooler-cooled cryostat. The nominal current of 387 A was reached after 2 quenches and the maximum current of 433.2 A was achieved. The magnetic field profile was measured and a peak field of 0.93 T was obtained when stably operating at 400 A.

  2. Observation of undulation motion of lipid bilayers by neutron spin echo

    International Nuclear Information System (INIS)

    Yamada, Norifumi L.; Seto, Hideki; Hishida, Mafumi

    2010-01-01

    Aqueous solutions of synthesized phospholipids have been well investigated as model biomembranes. These lipids usually self-assemble into regular stacks of bilayers with a characteristic repeat distance on the order of nm, whereas real biomembrane exist as single bilayers. The key phenomenon in understanding the formation of single isolated bilayers in 'unbinding' of lipid bilayers, in which the inter-bilayer distance of lipid bilayers diverges by the steric interaction due to the membrane undulation. In this paper, we show some results of neutron spin-echo (NSE) experiments to investigate the effect of the steric interaction on unbinding and related phenomena. (author)

  3. Undulating tubular liposomes through incorporation of a synthetic skin ceramide into phospholipid bilayers.

    Science.gov (United States)

    Xu, Peng; Tan, Grace; Zhou, Jia; He, Jibao; Lawson, Louise B; McPherson, Gary L; John, Vijay T

    2009-09-15

    Nonspherical liposomes were prepared by doping L-alpha-phosphatidylcholine (PC) with ceramide VI (a skin lipid). Cryo-transmission electron microscopy shows the liposome shape changing from spherical to an undulating tubular morphology, when the amount of ceramide VI is increased. The formation of tubular liposomes is energetically favorable and is attributed to the association of ceramide VI with PC creating regions of lower curvature. Since ceramides are the major component of skin lipids in the stratum corneum, tubular liposomes containing ceramide may potentially serve as self-enhanced nanocarriers for transdermal delivery.

  4. Laser-plasma accelerator-based single-cycle attosecond undulator source

    Science.gov (United States)

    Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.

    2018-06-01

    Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

  5. Baseline conditions at Olkiluoto

    International Nuclear Information System (INIS)

    2003-09-01

    The main purpose of this report is to establish a reference point - defined as the data collected up until the end of year 2002 - for the coming phases of the Finnish spent nuclear fuel disposal programme. The focus is: to define the current surface and underground conditions at the site, both as regards the properties for which a change is expected and for the properties which are of particular interest for long-term safety or environmental impact; to establish, as far as possible, the natural fluctuation of properties that are potentially affected by construction of the underground laboratory, the ONKALO, and to provide references to data on parameters or use in model development and testing and to use models to assist in understanding and interpreting the data. The emphasis of the baseline description is on bedrock characteristics that are relevant to the long-term safety of a spent fuel repository and, hence, to include the hydrogeological, hydrogeochemical, rock mechanical, tectonic and seismic conditions of the site. The construction of the ONKALO will also affect some conditions on the surface, and, therefore, a description of the main characteristics of the nature and the man-made constructions at Olkiluoto is also given. This report is primarily a road map to the available information on the prevailing conditions at the Olkiluoto site and a framework for understanding of data collected. Hence, it refers to numerous available background reports and other archived information produced over the past 20 years or more, and forms a recapitulation and revaluation of the characterisation data of the Olkiluoto site. (orig.)

  6. Undulant Universe

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Mena, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    If the equation of state for ''dark energy'' varies periodically, the expansion of the Universe may have undergone alternating eras of acceleration and deceleration. We examine a specific form that survives existing observational tests, does not single out the present state of the Universe as exceptional, and suggests a future much like the matter-dominated past: a smooth expansion without a final inflationary epoch.

  7. Potential beneficial effects of electron-hole plasmas created in silicon sensors by XFEL-like high intensity pulses for detector development

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Joel T.; Becker, Julian; Shanks, Katherine S.; Philipp, Hugh T.; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    There is a compelling need for a high frame rate imaging detector with a wide dynamic range, from single x-rays/pixel/pulse to >10{sup 6} x-rays/pixel/pulse, that is capable of operating at both x-ray free electron laser (XFEL) and 3rd generation sources with sustained fluxes of > 10{sup 11} x-rays/pixel/s [1, 2, 3]. We propose to meet these requirements with the High Dynamic Range Pixel Array Detector (HDR-PAD) by (a) increasing the speed of charge removal strategies [4], (b) increasing integrator range by implementing adaptive gain [5], and (c) exploiting the extended charge collection times of electron-hole pair plasma clouds that form when a sufficiently large number of x-rays are absorbed in a detector sensor in a short period of time [6]. We have developed a measurement platform similar to the one used in [6] to study the effects of high electron-hole densities in silicon sensors using optical lasers to emulate the conditions found at XFELs. Characterizations of the employed tunable wavelength laser with picosecond pulse duration have shown Gaussian focal spots sizes of 6 ± 1 µm rms over the relevant spectrum and 2 to 3 orders of magnitude increase in available intensity compared to previous measurements presented in [6]. Results from measurements on a typical pixelated silicon diode intended for use with the HDR-PAD (150 µm pixel size, 500 µm thick sensor) are presented.

  8. X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaguo

    2013-06-15

    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of Xray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations left angle 100 right angle and left angle 111 right angle produced by four vendors, CiS, Hamamatsu, Canberra and Sintef have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron-light source. Using capacitance/ conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the densities of oxide charges and interface traps at the Si-SiO{sub 2} interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the oxide-charge density, the interface-trap density and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the oxide-charge density, the interface-trap density and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO{sub 2} to the Si-SiO{sub 2} interface. To verify the long-term stability of irradiated silicon sensors, annealing studies have been performed at 60 C and 80 C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy as well, and the annealing kinetics of oxide charges and surface current were determined. Moreover, the macroscopic electrical properties of segmented sensors have slao been investigated as function of dose. It is found that the defects introduced by X-rays increase the full depletion voltage, the surface leakage current and the inter-electrode capacitance of the segmented sensor. An

  9. X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL

    International Nuclear Information System (INIS)

    Zhang, Jiaguo

    2013-06-01

    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of Xray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations left angle 100 right angle and left angle 111 right angle produced by four vendors, CiS, Hamamatsu, Canberra and Sintef have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron-light source. Using capacitance/ conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the densities of oxide charges and interface traps at the Si-SiO 2 interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the oxide-charge density, the interface-trap density and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the oxide-charge density, the interface-trap density and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO 2 to the Si-SiO 2 interface. To verify the long-term stability of irradiated silicon sensors, annealing studies have been performed at 60 C and 80 C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy as well, and the annealing kinetics of oxide charges and surface current were determined. Moreover, the macroscopic electrical properties of segmented sensors have slao been investigated as function of dose. It is found that the defects introduced by X-rays increase the full depletion voltage, the surface leakage current and the inter-electrode capacitance of the segmented sensor. An electron

  10. Scheme for generating and transporting THz radiation to the X-ray experimental floor at LCLS baseline

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-08-15

    This paper describes a novel scheme for integrating a coherent THz source in the baseline of the LCLS facility. Any method relying on the spent electron beam downstream of the baseline undulator should provide a way of transporting the radiation up to the experimental floor.Herewe propose to use the dump area access maze. In this way the THz output must propagate with limited size at least for one hundred meters in a maze, following many turns, to reach the near experimental hall. The use of a standard, discrete, open beam-waveguide formed by periodic reflectors, that is a mirror guide, would lead to unacceptable size of the system. To avoid these problems, in this paper we propose an alternative approach based on periodically spaced metallic screens with holes. This quasi-optical transmission line is referred to as an iris line. We present complete calculations for the iris line using both analytical and numerical methods, which we find in good agreement. We present a design of a THz edge radiation source based on the use of an iris line. The proposed setup takes almost no cost nor time to be implemented at the LCLS baseline, and can be used at other facilities as well. The edge radiation source is limited in maximally achievable field strength at the sample. An extension based on the use of an undulator in the presence of the iris line, which is feasible at the LCLS energies, is proposed as a possible upgrade of the baseline THz source. (orig)

  11. Scheme for generating and transporting THz radiation to the X-ray experimental floor at LCLS baseline

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-08-01

    This paper describes a novel scheme for integrating a coherent THz source in the baseline of the LCLS facility. Any method relying on the spent electron beam downstream of the baseline undulator should provide a way of transporting the radiation up to the experimental floor.Herewe propose to use the dump area access maze. In this way the THz output must propagate with limited size at least for one hundred meters in a maze, following many turns, to reach the near experimental hall. The use of a standard, discrete, open beam-waveguide formed by periodic reflectors, that is a mirror guide, would lead to unacceptable size of the system. To avoid these problems, in this paper we propose an alternative approach based on periodically spaced metallic screens with holes. This quasi-optical transmission line is referred to as an iris line. We present complete calculations for the iris line using both analytical and numerical methods, which we find in good agreement. We present a design of a THz edge radiation source based on the use of an iris line. The proposed setup takes almost no cost nor time to be implemented at the LCLS baseline, and can be used at other facilities as well. The edge radiation source is limited in maximally achievable field strength at the sample. An extension based on the use of an undulator in the presence of the iris line, which is feasible at the LCLS energies, is proposed as a possible upgrade of the baseline THz source. (orig)

  12. Combined electromagnetic and permanent magnet undulator to achieve higher field and easier field variation without mechanical movement

    Energy Technology Data Exchange (ETDEWEB)

    Bogachenkov, V.A.; Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Hybrid or pure permanent magnet undulators (PMU) are widely used because they have high field quality, allow easy field correction and do not consume power. Their main drawback is the necessity of moving one half of the magnet relative to the other to change field value, which requires a high precision, remotely controlled (and thus costly) driving system On the other hand, electromagnetic undulatory (EMU) have no problem with field variation, but consume too much power (100 - 400 kW) for high fields. Adding permanent magnets to EMU results in a considerable decrease of power consumption, while retaining the advantage of easily changing field level. A model of a CW combined EM+PM plane undulator having a 4.8 cm period and 8 periods long is described. It is simple in design and cheap in manufacturing: magnet yokes are made of soft steel rings in which 1.6 cm air gaps were cut to form pole faces. Odd yokes are placed to one side of the undulator axis and even yokes to the other with the air gaps on the axis. Each set of yokes is excited by its own separate winding of simple racetrack shape. Undulator deflection parameter K = 1.1 (B = 2.4 kG) can be reached at a 0.78kW power level, i.e., less than 100 W per period, while without PM only a maximum K = 0.8 can be obtained and requires 4 kW power. No water cooling is needed, which greatly simplifies undulator design. The undulator was not optimized relative to the axial-air-gap to ring-width ratio: one might expect some increase in field level for thinner rings. Field amplitude depends also on relative transverse position of odd and even pole faces.

  13. Combined electromagnetic and permanent magnet undulator to achieve higher field and easier field variation without mechanical movement

    International Nuclear Information System (INIS)

    Bogachenkov, V.A.; Papadichev, V.A.

    1995-01-01

    Hybrid or pure permanent magnet undulators (PMU) are widely used because they have high field quality, allow easy field correction and do not consume power. Their main drawback is the necessity of moving one half of the magnet relative to the other to change field value, which requires a high precision, remotely controlled (and thus costly) driving system On the other hand, electromagnetic undulatory (EMU) have no problem with field variation, but consume too much power (100 - 400 kW) for high fields. Adding permanent magnets to EMU results in a considerable decrease of power consumption, while retaining the advantage of easily changing field level. A model of a CW combined EM+PM plane undulator having a 4.8 cm period and 8 periods long is described. It is simple in design and cheap in manufacturing: magnet yokes are made of soft steel rings in which 1.6 cm air gaps were cut to form pole faces. Odd yokes are placed to one side of the undulator axis and even yokes to the other with the air gaps on the axis. Each set of yokes is excited by its own separate winding of simple racetrack shape. Undulator deflection parameter K = 1.1 (B = 2.4 kG) can be reached at a 0.78kW power level, i.e., less than 100 W per period, while without PM only a maximum K = 0.8 can be obtained and requires 4 kW power. No water cooling is needed, which greatly simplifies undulator design. The undulator was not optimized relative to the axial-air-gap to ring-width ratio: one might expect some increase in field level for thinner rings. Field amplitude depends also on relative transverse position of odd and even pole faces

  14. Design, Implementation and Control of a Fish Robot with Undulating Fins

    Directory of Open Access Journals (Sweden)

    Mohsen Siahmansouri

    2011-11-01

    Full Text Available Biomimetic robots can potentially perform better than conventional robots in underwater vehicle designing. This paper describes the design of the propulsion system and depth control of a robotic fish. In this study, inspired by knife fish, we have designed and implemented an undulating fin to produce propulsive force. This undulating fin is a segmental anal fin that produces sinusoidal wave to propel the robot. The relationship between the individual fin segment and phase angles with the overall fin trajectory has also been discussed. This propulsive force can be adjusted and directed for fish robot manoeuvre by a mechanical system with two servomotors. These servomotors regulate the direction and depth of swimming. A wireless remote control system is designed to adjust the servomotors which enables us to control revolution, speed and phase differences of neighbor servomotors of fins. Finally, Field trials are conducted in an outdoor pool to demonstrate the relationship between robotic fish speed and fin parameters like phase difference, the number of phase and undulatory amplitude.

  15. Propagation of electromagnetic waves in the plasma near electron cyclotron resonance: Undulator-induced transparency

    International Nuclear Information System (INIS)

    Shvets, G.; Tushentsov, M.; Tokman, M.D.; Kryachko, A.

    2005-01-01

    Propagation of electromagnetic waves in magnetized plasma near the electron cyclotron frequency can be strongly modified by adding a weak magnetic undulator. For example, both right- and left-hand circularly polarized waves can propagate along the magnetic field without experiencing resonant absorption. This effect of entirely eliminating electron cyclotron heating is referred to as the undulator-induced transparency (UIT) of the plasma, and is the classical equivalent of the well-known quantum mechanical effect of electromagnetically induced transparency. The basics of UIT are reviewed, and various ways in which UIT can be utilized to achieve exotic propagation properties of electromagnetic waves in plasmas are discussed. For example, UIT can dramatically slow down the waves' group velocity, resulting in the extreme compression of the wave energy in the plasma. Compressed waves are polarized along the propagation direction, and can be used for synchronous electron or ion acceleration. Strong coupling between the two wave helicities are explored to impart the waves with high group velocities ∂ω/∂k for vanishing wave numbers k. Cross-helicity coupling for realistic density and magnetic field profiles are examined using a linearized fluid code, particle-in-cell simulations, and ray-tracing WKB calculations

  16. Spontaneous and stimulated undulator radiation by an ultra-relativistic positron channeling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Solov'yov, A.V.; Greiner, W.

    2001-01-01

    We discuss the radiation generated by positrons channeling in a crystalline undulator. The undulator is produced by periodically bending a single crystal with an amplitude much larger than the interplanar spacing. Different approaches for bending the crystal are described and the restrictions on the parameters of the bending are discussed. We also present numeric calculations of the spontaneous emitted radiation and estimate the conditions for stimulated emission. Our investigations show that the proposed mechanism could be an interesting source for high energy photons and is worth to be studied experimentally

  17. Design, development, installation and commissioning of water-cooled pre-masks for undulator front-ends of Indus-2

    International Nuclear Information System (INIS)

    Raghuvanshi, V.K.; Prasad, Vijendra; Garg, S.R.; Jain, Vikas

    2015-01-01

    Recently two undulators U1 and U2 are installed in Indus-2 storage ring at RRCAT, Indore. When U1 and U2 are put in operation, a bright synchrotron radiation (SR) is produced which is transmitted through the zero degree port of the dipole vacuum chamber. In addition, a part of SR beam from the bending magnets, at the upstream and downstream of the undulator, is also overlapped with the undulator SR beam and transmitted in to the front-end through the same port. The front-end is a long ultra high vacuum (UHV) assembly consisting of water-cooled pre-mask, water-cooled shutters, UHV valves, diagnostic devices, safety shutter, vacuum pumps etc which acts as an interface between Indus-2 ring and beamline. Water-cooled pre- masks have been designed to cut a part of unwanted SR beam from the bending magnets. The pre-mask is a first active component in the undulator front-end which is also capable of absorbing high thermal load due to mis-steering of the SR beam from the undulator in the worst case scenario. The watercooled pre-mask consists of a copper block which has fixed aperture with slant faces to distribute the heat flux over a large surface area. The cooling channels are made on outer periphery of the block. The copper block is vacuum brazed with two conflat flanges of stainless steel at the two ends. The pre-mask is designed to absorb thermal load of 3 kW of synchrotron beam from undulator U1 and 2 kW of synchrotron beam from undulator U2. The thermal analysis of the pre-masks was carried out with the help of ANSYS® and the design was optimized with different cooling configurations. The main design criteria was to limit the maximum temperature of the mask less than 60 °C. This is to avoid substantial thermal outgassing from the heated portion which may deteriorate the ultra high vacuum. Pre-masks have been successfully tested, installed and commissioned with synchrotron beam in the undulator front-ends and are operating under vacuum of 5x10 -10 mbar. (author)

  18. Performance Measurement Baseline Change Request

    Data.gov (United States)

    Social Security Administration — The Performance Measurement Baseline Change Request template is used to document changes to scope, cost, schedule, or operational performance metrics for SSA's Major...

  19. European XFEL (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    European X-Ray FEL – free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the “proof of principle” was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  20. Online monitoring of absorbed dose in undulator magnets with RADFET dosimeters at FERMI@Elettra

    International Nuclear Information System (INIS)

    Fröhlich, L.; Casarin, K.; Quai, E.; Holmes-Siedle, A.; Severgnini, M.; Vidimari, R.

    2013-01-01

    The FERMI@Elettra free-electron laser, based on a 1.3 GeV electron linac, requires the monitoring of radiation doses up to a few kGy for the protection of sensitive equipment such as permanent magnet undulators. A new dosimetry system DOSFET-L01, employing an array of RADFETs spread throughout the accelerator, was developed. So far, the system has performed flawlessly for almost two years, taking one dose reading per minute around the clock. The REM RFT-300 sensors were set in zero-bias mode, i.e. with all electrodes grounded during exposure. This choice of mode allows the measurement of a high range of integrated doses – up to a few kGy. The paper describes the new read-out system and its application, calibration measurements in cobalt-60 and 6 MeV bremsstrahlung radiation sources giving rise to a novel response function, and new data on “fade” under the zero-bias mode of use for over 300 days at room temperature. Regular readings from 28 RADFETs placed within seven undulators over the first 20 months of operation of the accelerator demonstrate how the system tracks and locates periods of high and low dose rate and thereby contributes to the protection from beam loss. The readings from the RADFET system are found to be in good agreement with Gafchromic EBT2 film dosimeters. Based on the results reported, the choice of bias mode may be revised so as to reduce fade and improve the accuracy conferred by a positive-bias mode. -- Highlights: ► We developed a system for online dosimetry with RADFET sensors under zero bias. ► The system is calibrated for doses up to 10 kGy with REM RFT-300 sensors. ► We collected data on fade for over 300 days from irradiation. ► We present undulator dose measurements for 20 months of operation of FERMI@Elettra. ► Dose measurements are in good agreement with chemical film dosimeters

  1. Nonintrusive methodology for wellness baseline profiling

    Science.gov (United States)

    Chung, Danny Wen-Yaw; Tsai, Yuh-Show; Miaou, Shaou-Gang; Chang, Walter H.; Chang, Yaw-Jen; Chen, Shia-Chung; Hong, Y. Y.; Chyang, C. S.; Chang, Quan-Shong; Hsu, Hon-Yen; Hsu, James; Yao, Wei-Cheng; Hsu, Ming-Sin; Chen, Ming-Chung; Lee, Shi-Chen; Hsu, Charles; Miao, Lidan; Byrd, Kenny; Chouikha, Mohamed F.; Gu, Xin-Bin; Wang, Paul C.; Szu, Harold

    2007-04-01

    We develop an accumulatively effective and affordable set of smart pair devices to save the exuberant expenditure for the healthcare of aging population, which will not be sustainable when all the post-war baby boomers retire (78 millions will cost 1/5~1/4 GDP in US alone). To design an accessible test-bed for distributed points of homecare, we choose two exemplars of the set to demonstrate the possibility of translation of modern military and clinical know-how, because two exemplars share identically the noninvasive algorithm adapted to the Smart Sensor-pairs for the real world persistent surveillance. Currently, the standard diagnoses for malignant tumors and diabetes disorders are blood serum tests, X-ray CAT scan, and biopsy used sometime in the physical checkup by physicians as cohort-average wellness baselines. The loss of the quality of life in making second careers productive may be caused by the missing of timeliness for correct diagnoses and easier treatments, which contributes to the one quarter of human errors generating the lawsuits against physicians and hospitals, which further escalates the insurance cost and wasteful healthcare expenditure. Such a vicious cycle should be entirely eliminated by building an "individual diagnostic aids (IDA)," similar to the trend of personalized drug, developed from daily noninvasive intelligent databases of the "wellness baseline profiling (WBP)". Since our physiology state undulates diurnally, the Nyquist anti-aliasing theory dictates a minimum twice-a-day sampling of the WBP for the IDA, which must be made affordable by means of noninvasive, unsupervised and unbiased methodology at the convenience of homes. Thus, a pair of military infrared (IR) spectral cameras has been demonstrated for the noninvasive spectrogram ratio test of the spontaneously emitted thermal radiation from a normal human body at 37°C temperature. This invisible self-emission spreads from 3 microns to 12 microns of the radiation wavelengths

  2. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    Science.gov (United States)

    Arnold, N. D.; Attig, J.; Banks, G.; Bechtold, R.; Beczek, K.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Biggs, J. A.; Borland, M.; Boerste, K.; Bosek, M.; Brzowski, W. R.; Budz, J.; Carwardine, J. A.; Castro, P.; Chae, Y.-C.; Christensen, S.; Clark, C.; Conde, M.; Crosbie, E. A.; Decker, G. A.; Dejus, R. J.; DeLeon, H.; Den Hartog, P. K.; Deriy, B. N.; Dohan, D.; Dombrowski, P.; Donkers, D.; Doose, C. L.; Dortwegt, R. J.; Edwards, G. A.; Eidelman, Y.; Erdmann, M. J.; Error, J.; Ferry, R.; Flood, R.; Forrestal, J.; Freund, H.; Friedsam, H.; Gagliano, J.; Gai, W.; Galayda, J. N.; Gerig, R.; Gilmore, R. L.; Gluskin, E.; Goeppner, G. A.; Goetzen, J.; Gold, C.; Gorski, A. J.; Grelick, A. E.; Hahne, M. W.; Hanuska, S.; Harkay, K. C.; Harris, G.; Hillman, A. L.; Hogrefe, R.; Hoyt, J.; Huang, Z.; Jagger, J. M.; Jansma, W. G.; Jaski, M.; Jones, S. J.; Keane, R. T.; Kelly, A. L.; Keyser, C.; Kim, K.-J.; Kim, S. H.; Kirshenbaum, M.; Klick, J. H.; Knoerzer, K.; Koldenhoven, R. J.; Knott, M.; Labuda, S.; Laird, R.; Lang, J.; Lenkszus, F.; Lessner, E. S.; Lewellen, J. W.; Li, Y.; Lill, R. M.; Lumpkin, A. H.; Makarov, O. A.; Markovich, G. M.; McDowell, M.; McDowell, W. P.; McNamara, P. E.; Meier, T.; Meyer, D.; Michalek, W.; Milton, S. V.; Moe, H.; Moog, E. R.; Morrison, L.; Nassiri, A.; Noonan, J. R.; Otto, R.; Pace, J.; Pasky, S. J.; Penicka, J. M.; Pietryla, A. F.; Pile, G.; Pitts, C.; Power, J.; Powers, T.; Putnam, C. C.; Puttkammer, A. J.; Reigle, D.; Reigle, L.; Ronzhin, D.; Rotela, E. R.; Russell, E. F.; Sajaev, V.; Sarkar, S.; Scapino, J. C.; Schroeder, K.; Seglem, R. A.; Sereno, N. S.; Sharma, S. K.; Sidarous, J. F.; Singh, O.; Smith, T. L.; Soliday, R.; Sprau, G. A.; Stein, S. J.; Stejskal, B.; Svirtun, V.; Teng, L. C.; Theres, E.; Thompson, K.; Tieman, B. J.; Torres, J. A.; Trakhtenberg, E. M.; Travish, G.; Trento, G. F.; Vacca, J.; Vasserman, I. B.; Vinokurov, N. A.; Walters, D. R.; Wang, J.; Wang, X. J.; Warren, J.; Wesling, S.; Weyer, D. L.; Wiemerslage, G.; Wilhelmi, K.; Wright, R.; Wyncott, D.; Xu, S.; Yang, B.-X.; Yoder, W.; Zabel, R. B.

    2001-12-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  3. Generation of x-ray radiation in a storage ring by a superconductive cold-bore in-vacuum undulator

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2006-01-01

    Full Text Available The first beam measurements with a cold-bore superconducting in-vacuum undulator in a storage ring are reported. Undulators are x-ray generators in light sources. The physical limitations of these devices limit the intensity and the brilliance of the x-ray beam. At present the undulators are made from permanent magnets. It was shown in earlier papers that at low electron beam intensities superconductive wires in the vacuum beam pipe can overcome the limitations inherent to permanent magnet undulators. It was argued that the use of these novel devices in light sources with high beam currents may be limited by the extreme anomalous skin effect regime in Cu at 4.2 K, which has so far undergone very little investigation, and the power deposited by the infrared part of the synchrotron radiation. The purpose of this paper is to present measurements of these effects at the synchrotron light source ANKA with stored currents up to 200 mA.

  4. Radiation emission at channeling of electrons in a strained layer Si1-xGex undulator crystal

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    ML source. Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation...

  5. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    CERN Document Server

    Arnold, N D; Banks, G; Bechtold, R; Beczek, K; Benson, C; Berg, S; Berg, W; Biedron, S G; Biggs, J A; Boerste, K; Borland, M; Bosek, M; Brzowski, W R; Budz, J; Carwardine, J A; Castro, P; Chae, Y C; Christensen, S; Clark, C; Conde, M; Crosbie, E A; Decker, G A; Dejus, Roger J; Deleon, H; Den Hartog, P K; Deriy, B N; Dohan, D; Dombrowski, P; Donkers, D; Doose, C L; Dortwegt, R J; Edwards, G A; Eidelman, Y; Erdmann, M J; Error, J J; Ferry, R; Flood, R; Forrestal, J; Freund, H; Friedsam, H; Gagliano, J; Gai, W; Galayda, J N; Gerig, R; Gilmore, R L; Gluskin, E; Goeppner, G A; Goetzen, J; Gold, C; Grelick, A E; Hahne, M W; Hanuska, S; Harkay, K C; Harris, G; Hillman, A L; Hogrefe, R; Hoyt, J; Huang, Z; Jagger, J M; Jansma, W G; Jaski, M; Jones, S J; Keane, R T; Kelly, A L; Keyser, C; Kim, K J; Kim, S H; Kirshenbaum, M; Klick, J H; Knoerzer, K; Knott, M; Koldenhoven, R J; Labuda, S; Laird, R; Lang, J; Lenkszus, F R; Lessner, E S; Lewellen, J W; Li, Y; Lill, R M; Lumpkin, Alex H; Makarov, O A; Markovich, G M; McDowell, M; McDowell, W P; McNamara, P E; Meier, T; Meyer, D; Michalek, W; Milton, S V; Moe, H; Moog, E; Morrison, L; Nassiri, A; Noonan, J R; Otto, R; Pace, J; Pasky, S J; Penicka, J M; Pietryla, A F; Pile, G; Pitts, C; Power, J; Powers, T; Putnam, C C; Puttkammer, A J; Reigle, D; Reigle, L; Ronzhin, D; Rotela, E R; Russell, E F; Sajaev, Vadim; Sarkar, S; Scapino, J C; Schröder, K; Seglem, R A; Sereno, N S; Sharma, S K; Sidarous, J F; Singh, O; Smith, T L; Soliday, R; Sprau, G A; Stein, S J; Stejskal, B; Svirtun, V; Teng, L C; Theres, E; Thompson, K; Tieman, B J; Torres, J A; Trakhtenberg, E; Travish, G; Trento, G F; Vacca, J; Vasserman, I B; Vinokurov, N A; Walters, D R; Wang, J; Wang, X J; Warren, J; Wesling, S; Weyer, D L; Wiemerslage, G; Wilhelmi, K; Wright, R; Wyncott, D; Xu, S; Yang, B X; Yoder, W; Zabel, R B

    2001-01-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  6. DairyBISS Baseline report

    NARCIS (Netherlands)

    Buizer, N.N.; Berhanu, Tinsae; Murutse, Girmay; Vugt, van S.M.

    2015-01-01

    This baseline report of the Dairy Business Information Service and Support (DairyBISS) project presents the findings of a baseline survey among 103 commercial farms and 31 firms and advisors working in the dairy value chain. Additional results from the survey among commercial dairy farms are

  7. CHESS upgrade with compact undulator magnets: Operating experience and first results

    Energy Technology Data Exchange (ETDEWEB)

    Temnykh, A., E-mail: abt6@cornell.edu; Dale, D.; Fontes, E.; Lyndaker, A.; Li, Y.; Ruff, J.; Revesz, P.; Woll, A. [Cornell High Energy Synchrotron Source (United States)

    2016-07-27

    In November 2014 two in-air 1.5 m CHESS Compact Undulator (CCU) magnets built by KYMA S.R.l. were installed in Cornell Electron Storage Ring (CESR) in canted arrangement and after few days of commissioning their regular operation started. CCU magnets are compact, lightweight and cost efficient devices. They have very stable magnetic field integrals independent of deflection parameter value. This feature greatly simplifies the storage ring operation. The CCU concept was developed at Cornell in 2011 and the first 1 m in-vacuum CCU magnet was beam-tested in 2012. The article presents CCU concept and some details of the design. It describes also the layout of CCUs installation in CESR, their performance and characteristics. The current status of operation and future plans are discussed as well. Presently, at CHESS two CCU magnets provide radiation for 5 out of 11 experimental stations.

  8. CHESS upgrade with compact undulator magnets: Operating experience and first results

    International Nuclear Information System (INIS)

    Temnykh, A.; Dale, D.; Fontes, E.; Lyndaker, A.; Li, Y.; Ruff, J.; Revesz, P.; Woll, A.

    2016-01-01

    In November 2014 two in-air 1.5 m CHESS Compact Undulator (CCU) magnets built by KYMA S.R.l. were installed in Cornell Electron Storage Ring (CESR) in canted arrangement and after few days of commissioning their regular operation started. CCU magnets are compact, lightweight and cost efficient devices. They have very stable magnetic field integrals independent of deflection parameter value. This feature greatly simplifies the storage ring operation. The CCU concept was developed at Cornell in 2011 and the first 1 m in-vacuum CCU magnet was beam-tested in 2012. The article presents CCU concept and some details of the design. It describes also the layout of CCUs installation in CESR, their performance and characteristics. The current status of operation and future plans are discussed as well. Presently, at CHESS two CCU magnets provide radiation for 5 out of 11 experimental stations.

  9. Towards an exact relativistic theory of Earth's geoid undulation

    International Nuclear Information System (INIS)

    Kopeikin, Sergei M.; Mazurova, Elena M.; Karpik, Alexander P.

    2015-01-01

    The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided. - Highlights: • We apply general relativity to define the exact concept of relativistic geoid. • We derive relativistic equation of geoid and the reference level surface. • We employ the manifold perturbation theory to discuss geoid's undulation

  10. Towards an exact relativistic theory of Earth's geoid undulation

    Energy Technology Data Exchange (ETDEWEB)

    Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211 (United States); Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation); Mazurova, Elena M., E-mail: e_mazurova@mail.ru [Moscow State University of Geodesy and Cartography, 4 Gorokhovsky Alley, Moscow 105064 (Russian Federation); Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation); Karpik, Alexander P., E-mail: rector@ssga.ru [Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation)

    2015-08-14

    The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided. - Highlights: • We apply general relativity to define the exact concept of relativistic geoid. • We derive relativistic equation of geoid and the reference level surface. • We employ the manifold perturbation theory to discuss geoid's undulation.

  11. Modeling and measurement of the ALS U5 undulator end magnetic structures

    International Nuclear Information System (INIS)

    Humphries, D.; Halbach, K.; Hoyer, E.; Kincaid, B.; Marks, S.; Schlueter, R.

    1993-05-01

    The end structures for the ALS U5.0 undulators utilize a system of dual permanent magnet rotors intended to establish gap independent field performance. They may also be used for tuning of the first and second magnetic field integrals of these devices. The behavior of these structures has been studied by means of a two dimensional modeling with the POISSON Group of computer codes. A parametric study of the magnetic field distribution and first and second integrals of the fields has been conducted. In parallel, magnetic measurements of the final completed structures have been performed using an automated Hall probe measurement system. Results of the modeling and measurements are compared. Implications for tuning of the ends of the devices within the context of the electron beam parameters of the ALS are discussed

  12. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  13. FEL small signal gain reduction due to phase error of undulator

    International Nuclear Information System (INIS)

    Jia Qika

    2002-01-01

    The effects of undulator phase errors on the Free Electron Laser small signal gain is analyzed and discussed. The gain reduction factor due to the phase error is given analytically for low-gain regimes, it shows that degradation of the gain is similar to that of the spontaneous radiation, has a simple exponential relation with square of the rms phase error, and the linear variation part of phase error induces the position shift of maximum gain. The result also shows that the Madey's theorem still hold in the presence of phase error. The gain reduction factor due to the phase error for high-gain regimes also can be given in a simple way

  14. Radiative interaction of electrons in a short electron bunch moving in an undulator

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1999-01-01

    This paper presents investigations of the longitudinal radiative force in an electron bunch. The model of the electron bunch assumes line density distribution. General formulas are presented for the calculation of the radiative force in the bunch moving along an arbitrary small-angle trajectory. The case of a motion in an undulator (wiggler) has been studied in detail. Analytical solutions are obtained for a rectangular and for a Gaussian bunch shape. It is shown that the rate of the bunch energy loss due to the radiative interaction is equal to the power of the coherent radiation in the far zone. Numerical estimations presented in the paper show that the effects of induced energy spread due to the radiative interaction can be important for free electron lasers operating in the infrared wavelength range

  15. A water-cooled x-ray monochromator for using off-axis undulator beam

    International Nuclear Information System (INIS)

    Khounsary, A.; Maser, J.

    2000-01-01

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided

  16. Double Emittance Exchanger as a Bunch Compressor for the MaRIE XFEL electron beam line at 1GeV

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Northern Illinois Univ., DeKalb, IL (United States); Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlsten, Bruce Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    We demonstrate an alternative realization of a bunch compressor (specifically the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space.We compare our results with a traditional bunch compressor realized via chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beam line and analyze the eigen-emittances evolution to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters to reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR-effects in our scheme resulting in critical emittance growth and introduce alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.

  17. Program Baseline Change Control Procedure

    International Nuclear Information System (INIS)

    1993-02-01

    This procedure establishes the responsibilities and process for approving initial issues of and changes to the technical, cost, and schedule baselines, and selected management documents developed by the Office of Civilian Radioactive Waste Management (OCRWM) for the Civilian Radioactive Waste Management System. This procedure implements the OCRWM Baseline Management Plan and DOE Order 4700.1, Chg 1. It streamlines the change control process to enhance integration, accountability, and traceability of Level 0 and Level I decisions through standardized Baseline Change Proposal (BCP) forms to be used by the Level 0, 1, 2, and 3 Baseline Change Control Boards (BCCBs) and to be tracked in the OCRWM-wide Configuration Information System (CIS) Database.This procedure applies to all technical, cost, and schedule baselines controlled by the Energy System Acquisition Advisory Board (ESAAB) BCCB (Level 0) and, OCRWM Program Baseline Control Board (PBCCB) (Level 1). All baseline BCPs initiated by Level 2 or lower BCCBs, which require approval from ESAAB or PBCCB, shall be processed in accordance with this procedure. This procedure also applies to all Program-level management documents controlled by the OCRWM PBCCB

  18. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  19. 324 Building Baseline Radiological Characterization

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  20. Baseline restoration using current conveyors

    International Nuclear Information System (INIS)

    Morgado, A.M.L.S.; Simoes, J.B.; Correia, C.M.

    1996-01-01

    A good performance of high resolution nuclear spectrometry systems, at high pulse rates, demands restoration of baseline between pulses, in order to remove rate dependent baseline shifts. This restoration is performed by circuits named baseline restorers (BLRs) which also remove low frequency noise, such as power supply hum and detector microphonics. This paper presents simple circuits for baseline restoration based on a commercial current conveyor (CCII01). Tests were performed, on two circuits, with periodic trapezoidal shaped pulses in order to measure the baseline restoration for several pulse rates and restorer duty cycles. For the current conveyor based Robinson restorer, the peak shift was less than 10 mV, for duty cycles up to 60%, at high pulse rates. Duty cycles up to 80% were also tested, being the maximum peak shift 21 mV. The peak shift for the current conveyor based Grubic restorer was also measured. The maximum value found was 30 mV at 82% duty cycle. Keeping the duty cycle below 60% improves greatly the restorer performance. The ability of both baseline restorer architectures to reject low frequency modulation is also measured, with good results on both circuits

  1. Numeric Simulation on the Performance of an Undulating Fin in the Wake of a Periodic Oscillating Plate

    Directory of Open Access Journals (Sweden)

    Zhang Yong-Hua

    2013-10-01

    Full Text Available A two-dimensional unsteady computational fluid dynamics (CFD method using an unstructured, grid-based and unsteady Navier-Stokes solver with automatic adaptive re-meshing to compute the unsteady flow was adopted to study the hydrodynamic interaction between a periodic oscillating plate and a rigid undulating fin in tandem arrangement. The user-defined function (UDF program was compiled to define the undulating and oscillating motion. First, the influence of the distance between the anterior oscillating plate and the posterior undulating fin on the non-dimensional drag coefficient of the fin was investigated. Ten different distances, D=0.2L, 0.4L, 0.6L, 0.8L, 1.0L, 1.2L, 1.4L, 1.6L, 1.8L and 2.0L, were considered. The performance of the fin for different distances (D is different. Second, the plate oscillating angle (5.7°, 10°, 20°, 30°, 40°, 45°, 50° and frequency (0.5 Hz, 1.0 Hz, 1.5 Hz, 2.0 Hz, 2.5 Hz, 3.0 Hz, 3.5 Hz, 4.0 Hz effects on the non-dimensional drag coefficient of the fin were also implemented. The pressure distribution on the fin was computed and integrated to provide fin forces, which were decomposed into lift and thrust. Meanwhile, the flow field was demonstrated and analysed. Based on the flow structures, the reasons for different undulating performances were discussed. It shows that the results largely depend on the distance between the two objects. The plate oscillating angle and frequency also make a certain contribution to the performance of the posterior undulating fin. The results are similar to the interaction between two undulating objects in tandem arrangement and they may provide a physical insight into the understanding of fin interaction in fishes or bio-robotic underwater propulsors that are propelled by multi fins.

  2. Surface-potential undulation of Alq3 thin films prepared on ITO, Au, and n-Si.

    Science.gov (United States)

    Ozasa, Kazunari; Ito, Hiromi; Maeda, Mizuo; Hara, Masahiko

    2012-01-01

    The surface potential (SP) morphology on thin films of tris(8-hydroxyquinolinato) aluminum (Alq3) was investigated with Kelvin probe force microscopy. Thin Alq3 films of 100 nm were prepared on ITO/glass substrates, Au/mica substrates, and n-Si substrates. Cloud-like morphologies of the SP undulation with 200-400 nm in lateral size were observed for all three types of the substrates. New larger peaks were observed in the cloud-like morphologies when the surfaces were exposed shortly to a light, while the SP average was reduced monotonically. The nonuniform distribution of charged traps and mobility was deduced from the SP undulation morphology and its photoexposure dependences.

  3. Research on the effects of geometrical and material uncertainties on the band gap of the undulated beam

    Science.gov (United States)

    Li, Yi; Xu, Yanlong

    2017-09-01

    Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.

  4. Thermo-mechanical analysis of the white-beam slits for an undulator beamline at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Nian, H.L.T.; Shu, D.; Kuzay, T.M.

    1994-01-01

    A set of precision horizontal and vertical white-beam slits has been designed for an undulator beamline at the Advanced Photon Source. Due to the powerful x-ray heat flux emitted by the undulator, it is difficult to control the thermal distortion within the desired range of 1-2 microns. We analyzed many conceptual designs in an attempt to minimize the thermal distortion of the slits. Even with 1-mm-thick, low-Z material (graphite) coated on the heating surface of a traditional slit, the maximum thermal distortion is over 25 microns. A three-piece slit was then designed to satisfy the requirements. It consists of one large block, two tungsten knife edges, and an OFHC cooling tube (filled with copper mesh) brazed inside the large block. The thermal distortion at the knife edges of this three-piece slit has a relative displacement of less than 2 microns

  5. High-field strong-focusing undulator designs for X-ray Linac Coherent Light Source (LCLS) applications

    International Nuclear Information System (INIS)

    Caspi, S.; Schlueter, R.; Tatchyn, R.

    1995-01-01

    Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1 angstrom--0.1 angstrom range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B 0 in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 angstrom LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies

  6. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    Science.gov (United States)

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  7. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.; Luo, S. N.

    2018-04-24

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  8. Developing RESRAD-BASELINE for environmental baseline risk assessment

    International Nuclear Information System (INIS)

    Cheng, Jing-Jy.

    1995-01-01

    RESRAD-BASELINE is a computer code developed at Argonne developed at Argonne National Laboratory for the US Department of Energy (DOE) to perform both radiological and chemical risk assessments. The code implements the baseline risk assessment guidance of the US Environmental Protection Agency (EPA 1989). The computer code calculates (1) radiation doses and cancer risks from exposure to radioactive materials, and (2) hazard indexes and cancer risks from exposure to noncarcinogenic and carcinogenic chemicals, respectively. The user can enter measured or predicted environmental media concentrations from the graphic interface and can simulate different exposure scenarios by selecting the appropriate pathways and modifying the exposure parameters. The database used by PESRAD-BASELINE includes dose conversion factors and slope factors for radionuclides and toxicity information and properties for chemicals. The user can modify the database for use in the calculation. Sensitivity analysis can be performed while running the computer code to examine the influence of the input parameters. Use of RESRAD-BASELINE for risk analysis is easy, fast, and cost-saving. Furthermore, it ensures in consistency in methodology for both radiological and chemical risk analyses

  9. A Design Report of the Baseline for PEP-X: an Ultra-Low Emittance Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl; Bertsche, Kirk; Cai, Yunhai; Chao, Alex; Corbett, Willian; Fox, John; Hettel, Robert; Huang, Xiaobiao; Huang, Zhirong; Ng, Cho-Kuen; Nosochkov, Yuri; Novokhatski, Sasha; Radedeau, Thomas; Raubenheimer, Tor; Rivetta, Claudio; Safranek, James; Seeman, John; Stohr, Joachim; Stupakov, Gennady; Wang, Lanfa; Wang, Min-Huey; /SLAC

    2010-06-02

    Over the past year, we have worked out a baseline design for PEP-X, as an ultra-low emittance storage ring that could reside in the existing 2.2-km PEPII tunnel. The design features a hybrid lattice with double bend achromat (DBA) cells in two arcs and theoretical minimum emittance (TME) cells in the remaining four arcs. Damping wigglers are used to reduce the horizontal emittance to 86 pm-rad at zero current for a 4.5 GeV electron beam. At a design current of 1.5 A, the horizontal emittance increases, due to intrabeam scattering, to 164 pm-rad when the vertical emittance is maintained at a diffraction limited 8 pm-rad. The baseline design will produce photon beams achieving a brightness of 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV in a 3.5-m conventional planar undulator. Our study shows that an optimized lattice has adequate dynamic aperture, while accommodating a conventional off-axis injection system. In this report, we present the results of study, including the lattice properties, nonlinear dynamics, intra-beam scattering and Touschek lifetime, RF system, and collective instabilities. Finally, we discuss the possibility of partial lasing at soft X-ray wavelengths using a long undulator in a straight section.

  10. An Energy-Stabilized Varied-Line-Space-Monochromator Undulator Beam Line for PEEM Illumination and Magnetic Circular Dichroism

    International Nuclear Information System (INIS)

    Warwick, Tony; McKinney, Wayne; Domning, Ed; Doran, Andrew; Padmore, Howard

    2006-01-01

    A new undulator beam line has been built and commissioned at the Advanced Light Source for illumination of the PEEM3 microscope. The beam line delivers high flux beams over an energy range from C1s through the transition metals to include the M edges of the magnetic rare earth elements. We present details of the optical design, and data on the performance of the zero-order tracking of the photon energy

  11. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  12. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  13. A variable radius mirror for imaging the exit slit of an SGM undulator beamline at the ALS

    International Nuclear Information System (INIS)

    Warwick, T.; Howells, M.

    1994-01-01

    Bendable metal mirrors have been implemented in two SGM undulator beamlines at the ALS. A piezo-electric actuator is employed to deform the mirror to image the SGM exit slit which moves longitudinally in the beamline as the grating rotates. The design and performance of these mirrors is discussed. Computed deformations and slope errors are compared to those found during optical metrology. The soft x-ray spot size produced at the experiment is shown

  14. A variable radius mirror for imaging the exit slit of an SGM undulator beamline at the ALS

    International Nuclear Information System (INIS)

    Warwick, T.; Howells, M.

    1994-07-01

    Bendable metal mirrors have been implemented in two SGM undulator beamlines at the ALS. A piezo-electric actuator is employed to deform the mirror to image the SGM exit slit which moves longitudinally in the beamline as the grating rotates. The design and performance of these mirrors is discussed. Computed deformations and slope errors are compared to those found during optical metrology. The soft x-ray spot size produced at the experiment is shown

  15. A fixed angle double mirror filter for preparing a pink undulator beam at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Dufresne, E.; Sanchez, T.; Nurushev, T.; Clarke, R.; Dierker, S.B.

    2000-01-01

    Recent advances in X-ray Photon Correlation Spectroscopy (XPCS) use the full bandwidth of an undulator harmonic in order to maximize the coherent flux for small angle X-ray scattering experiments. X-ray mirrors and filters are typically used to select a given harmonic of the spectrum. At the University of Michigan/Howard University/Lucent Technologies, Bell Labs, Collaborative Access Team (MHATT-CAT) undulator beamline of the Advanced Photon Source, we have designed a fixed-angle Double Mirror Filter which will provide a 'pink beam' (i.e., 2-3% bandwidth) for XPCS experiments. This device uses two small mirrors which vertically reflect a 0.1 mmx0.1 mm white beam in a symmetric geometry. The doubly reflected beam propagates parallel to the incident white beam, but is offset vertically by 35 mm. Using the standard offset of the APS allows one to stop the white beam with a standard APS beam stop. In this report, we will describe our design considerations for this instrument. We also report the results of preliminary tests of the performance. The mirrors preserve the transverse coherence of the source, and filter the undulator spectrum as expected

  16. Magnetic field calculation of variably polarizing undulator (APPLE-type) for SX beamline in the SPring-8

    International Nuclear Information System (INIS)

    Kobayashi, Hideki; Sasaki, Shigemi; Shimada, Taihei; Takao, Masaru; Yokoya, Akinori; Miyahara, Yoshikazu

    1996-03-01

    This paper describes the design of a variably polarizing undulator (APPLE-type) to be installed in soft X-ray beamline in the SPring-8 facility. The magnetic field distribution and radiation spectrum expected from this undulator were calculated. The magnetic field strength is varied by changing the gap distance of upper and lower jaws, so it changes the photon energy in soft X-ray range. By moving the relative position of pairs of magnet rows (phase shift), the polarization of radiation is varied circularly, elliptically and linearly in the horizontal and vertical direction. We expect that right and left handed circular polarizations are obtained alternately at a rate of 1 Hz by high speed phase shifting. The repulsive and attractive magnetic force working on the magnet rows were calculated which interfere in phase shifting at high speed. The magnetic force changes with gap distance and phase shift position, and the magnetic force working on a row in the direction of phase shift becomes up to 500 kgf. The construction of this undulator is started in 1996, that will be inserted in the storage ring in 1997. (author)

  17. Surface-micromachined magnetic undulator with period length between 10μm and 1 mm for advanced light sources

    Science.gov (United States)

    Harrison, Jere; Joshi, Abhijeet; Lake, Jonathan; Candler, Rob; Musumeci, Pietro

    2012-07-01

    A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15μm. Simulations indicate that magnetic fields as large as 1.5 T across 50μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.

  18. Dynamical behaviour of FEL devices operating with two undulators having opposite circular polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Rome (Italy); Ottaviani, P.L. [ENEA, Divisione Fisica Applicata, Centro Ricerche, Bologna (Italy); Bucci, L. [ENEA, Guest Rome (Italy)

    2000-07-01

    Optical-Klystron FELs operating with undulators having opposite circular polarizations are characterized by a spontaneous emission spectrum which does not exhibit the characteristic interference pattern. The use of the Madey theorem may allow the conclusion that, for such configuration, the dispersive section does not provide any gain enhancement. In this paper it has been analyzed the problem from a dynamical point of view and clarify how the optical field evolve, what is the role of the bunching and how the consequences of the Madey theorem should be correctly understood. [Italian] Klystron ottici operanti con ondulatori aventi polarizzazione elicoidali opposte, sono caratterizzati da uno spettro di emissione spontanea senza il termine interferenziale dovuto alla sezione dispersiva. L'uso del teorema di Madey indurrebbe alla conclusione che, per una tale configurazione, la sezione dispersiva non induce nessun aumento del guadagno. In questo lavoro analizziamo il problema da un punto di vista dinamico che chiarisce l'evoluzione del campo ottico, quale e' il ruolo del bunching e come le conseguenze del teorema di Madey debbano essere interpretate.

  19. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    Science.gov (United States)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  20. X-ray microprobe characterization of materials: the case for undulators on advanced storage rings

    International Nuclear Information System (INIS)

    Sparks, C.J. Jr.

    1984-01-01

    The unique properties of X rays offer many advantages over electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic X-ray fluorescence and produce higher fluorescent signals to backgrounds than obtained with electrons. Detectable limits for X rays are a few parts per billion and are 10 -3 to 10 -5 less than for electrons. Energy deposition in the sample by X rays is 10 -3 to 10 -4 less than for electrons for the same detectable concentration. High-brightness storage rings, especially in the 6 GeV class with undulators, will be approximately 10 3 brighter in the X-ray energy range from 5 keV to 35 keV than existing storage rings and provide for X-ray microprobes that are as bright as the most advanced electron probes. Such X-ray microprobes will produce unprecedented low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for both chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine

  1. Theory and experiments on the generation of spontaneous emission using a plasma wave undulator

    International Nuclear Information System (INIS)

    Williams, R.L.; Clayton, C.E.; Joshi, C.; Katsouleas, T.; Mori, W.B.; Slater, J.

    1990-01-01

    This paper reports that, the authors are studying the feasibility of using relativistically moving plasma waves as short wavelength undulators for possible FEL and Compton scattering applications at UCLA. The remarkable property of such waves is that the wiggler parameter a w = eA/mc 2 can be on the order 0.1 while their wavelength λ w can be submillimeter. Such waves can be excited by either an intense electron bunch going through a plasma (plasma wake field) or a short but intense laser pulse going through the plasma (laser wake field). A variation of the laser wake field scheme is the plasm beat wave excitation. Here a moderately intense laser pulse containing two frequencies excites the plasm wave resonantly. Using a laser pulse containing 10.27 μm and 9.6 μm lines of the Co 2 laser that is approximately 400 ps (FWHM) and 200 GW of power, we were able to measure a w times the length product of 0.013 cm in our experiments. If a length of 0.75 cm i assumed, this implies an a w of 0.17 for a λ w ∼156 μm. Injection of an electron beam across such a plasma wave proved not to be feasible in these experiments, because the θ-pinch plasma source contained significant trapped magnetic fields. We are currently developing a field free plasma source which will permit transverse electron injection

  2. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    International Nuclear Information System (INIS)

    Longhi, E C; Bencok, P; Dobrynin, A; Rial, E C M; Rose, A; Steadman, P; Thompson, C; Thomson, A; Wang, H

    2013-01-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  3. Development of Compact Soft X-ray Source Based on Laser Undulator

    CERN Document Server

    Kuroda, Ryunosuke; Minamiguchi, S; Saitô, T; Ueyama, D; Washio, Masakazu

    2004-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on backward Compton scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser and 4 MeV high quality electron beam generated from rf gun system. The range of energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein’s coefficient in this range, a dehydration of the specimens is not necessary. As a preliminary experiment, about 300 eV X-ray generation was carried out. As next step, soft X-ray optics with zone plate was proposed for Soft X-ray microscopy. In this conference, we will report details and results of the experiment.

  4. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    Science.gov (United States)

    Chang, Chin-Chun; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10-8 Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  5. Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

    Science.gov (United States)

    Kaligatla, R. B.; Manisha; Sahoo, T.

    2017-09-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  6. Wave Trapping by Dual Porous Barriers Near a Wall in the Presence of Bottom Undulation

    Institute of Scientific and Technical Information of China (English)

    R.B. Kaligatla; Manisha; T. Sahoo

    2017-01-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  7. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    Science.gov (United States)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  8. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Chun, E-mail: chinchun@nsrrc.org.tw; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10{sup −8} Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  9. Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines

    Directory of Open Access Journals (Sweden)

    Ciro Apollonio

    2016-01-01

    Full Text Available One of the main issues arising during the rapid filling of a pipeline is the pressure transient which originates after the entrapped air has been expelled at the air release valve. Because of the difference in density between water and air, a pressure transient originates at the impact of the water column. Many authors have analyzed the problem, both from the theoretical and the experimental standpoint. Nevertheless, mainly vertical or horizontal pipelines have been analyzed, whereas in real field applications, the pipe profile is a sequence of ascending and descending pipes, with air release/vacuum valves at high points. To overcome lack of knowledge regarding this latter case, laboratory experiments were carried out to simulate the filling of an undulating pipeline, initially empty at atmospheric pressure. The pipe profile has a high point where an orifice is installed for air venting, so as to simulate the air release valve at intermediate high point of a supply pipeline. In the experiments, the diameter of the orifice and the opening degree of both upstream and downstream valves were varied, in order to analyze their effect on the pressure transient. The experiments were also carried out with a longer descending pipe, in order to assess the effects on the pressure surge of the air volume downstream of the orifice.

  10. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    Energy Technology Data Exchange (ETDEWEB)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim; Wang, Ju

    2017-06-25

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.

  11. Magnetic measurements and tuning of undulators for the APS FEL project

    International Nuclear Information System (INIS)

    Vasserman, I. B.

    1999-01-01

    Two insertion device magnetic structures have been prepared for the Advanced Photon Source (APS) FEL project [1]. The magnetic structures are standard APS undulatory, 2.4 m long with a 3.3-cm period. Measurements and tuning of the undulatory have been completed at a magnetic gap of about 9.3 mm, where K is 3.1. Special measurement and tuning techniques were used to satisfy the tight trajectory straightness requirement that the second field integral be less than 3.3 kG-cm 2 . The magnetic field strengths of the undulators must be well matched; this leads to the requirement that the magnetic gap must be controlled to better than 10 microns. Proper phasing between the undulatory is ensured by adjusting the length of the drift space between the undulatory. The drift space length that is needed is strongly affected by the end fields of the magnetic structures. The results of measurements of the magnetic field and calculations of the drift length are provided

  12. Development and operation of a Pr_{2}Fe_{14}B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line

    Directory of Open Access Journals (Sweden)

    C. Benabderrahmane

    2017-03-01

    Full Text Available Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE_{2}Fe_{14}B (Rare Earth based magnets at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr_{2}Fe_{14}B instead of Nd_{2}Fe_{14}B, which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K. We describe here the development of a full scale (2 m, 18 mm period Pr_{2}Fe_{14}B cryogenic permanent magnet undulator (U18. The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.

  13. Long baseline neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Gallagher, H.

    2006-01-01

    In this paper I will review briefly the experimental results which established the existence of neutrino mixing, the current generation of long baseline accelerator experiments, and the prospects for the future. In particular I will focus on the recent analysis of the MINOS experiment. (author)

  14. Baseline Report on HB2320

    Science.gov (United States)

    State Council of Higher Education for Virginia, 2015

    2015-01-01

    Staff provides this baseline report as a summary of its preliminary considerations and initial research in fulfillment of the requirements of HB2320 from the 2015 session of the General Assembly. Codified as § 23-7.4:7, this legislation compels the Education Secretary and the State Council of Higher Education for Virginia (SCHEV) Director, in…

  15. A simple method for controlling the line width of SASE X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-04-01

    This paper describes a novel single-bunch self-seeding scheme for generating highly monochromatic X-rays from a baseline XFEL undulator. A self-seeded XFEL consists of two undulators with an X-ray monochromator located between them. Previous self-seeding schemes made use of a four-crystal fixed-exit monochromator in Bragg geometry. In such monochromator the X-ray pulse acquires a cm-long path delay, which must be compensated. For a single-bunch self-seeding scheme this requires a long electron beam bypass, implying modifications of the baseline undulator configuration. To avoid this problem, a double bunch self-seeding scheme based on a special photoinjector setup was recently proposed. At variance, here we propose a new time-domain method of monochromatization exploiting a single crystal in the transmission direction, thus avoiding the problem of extra-path delay for the X-ray pulse. The method can be realized using a temporal windowing technique, requiring a magnetic delay for the electron bunch only. When the incident X-ray beam satisfies the Bragg diffraction condition, multiple scattering takes place and the transmittance spectrum in the crystal exhibits an absorption resonance with a narrow linewidth. Then, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. The radiation power within this wake is much larger than the shot noise power. At the entrance of the second undulator, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch, and amplified up to saturation level. The proposed setup is extremely simple and composed of as few as two simple elements. These are the crystal and the short magnetic chicane, which accomplishes three tasks by itself. It creates an offset for crystal installation, it removes the electron micro-bunching produced in the first undulator, and it acts as a delay line for temporal windowing. Using a single crystal installed within a short magnetic

  16. The potential for extending the spectral range accessible to the european X-ray free electron laser in the direction of longer wavelengths

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    The baseline specifications of European XFEL give a range of wavelengths between 0.1 nm and 2 nm. This wavelength range at fixed electron beam energy 17.5 GeV can be covered by operating the SASE FEL with three undulators which have different period and tunable gap. A study of the potential for the extending the spectral range accessible to the XFEL in the direction of longer wavelengths is presented. The extension of the wavelength range to 6 nm would be cover the water window in the VUV region, opening the facility to a new class of experiments. There are at least two possible sources of VUV radiation associated with the X-ray FEL; the "low (2.5 GeV) energy electron beam dedicated" and the " 17.5 GeV spent beam parasitic" (or "after-burner") source modes. The second alternative, "after-burner undulator" is the one we regard as most favorable. It is possible to place an undulator as long as 80 meters after 2 nm undulator. Ultimately, VUV undulator would be able to deliver output power approaching 100 GW. A b...

  17. Baseline budgeting for continuous improvement.

    Science.gov (United States)

    Kilty, G L

    1999-05-01

    This article is designed to introduce the techniques used to convert traditionally maintained department budgets to baseline budgets. This entails identifying key activities, evaluating for value-added, and implementing continuous improvement opportunities. Baseline Budgeting for Continuous Improvement was created as a result of a newly named company president's request to implement zero-based budgeting. The president was frustrated with the mind-set of the organization, namely, "Next year's budget should be 10 to 15 percent more than this year's spending." Zero-based budgeting was not the answer, but combining the principles of activity-based costing and the Just-in-Time philosophy of eliminating waste and continuous improvement did provide a solution to the problem.

  18. Methods for calibrating the gain and offset of the DSSC detector for the European XFEL using X-ray line sources

    Science.gov (United States)

    Schlee, S.; Weidenspointner, G.; Moch, D.; Kuster, M.; Porro, M.

    2016-01-01

    The DSSC (DEPFET Sensor with Signal Compression) will be a silicon based, 2d 1 Mpx imaging detector for the European X-ray Free Electron Laser Facility (XFEL.EU) in Hamburg, Germany. The DSSC is foreseen for soft X-radiation from 0.5 keV up to 6 keV . Driven by its scientific requirements, the design goals of the detector system are single photon detection, high dynamic range and a high frame rate of up to 4.5 MHz. Signal compression and amplification will be performed in the silicon sensor pixels yielding a low signal noise. Utilizing an in-pixel active filtering stage and an 8/9-bit ADC, the detector will provide parallel read-out of all pixels. In order to calibrate offset and gain, the procedure currently under investigation relies on determining peak positions in measurements with calibration line sources such as 55Fe. Here the status of studies of the stability and performance of a parameterized fit function designed for this task will be presented.

  19. Beam extraction dynamics at the space-charge-limit of the high brightness E-XFEL electron source at DESY-PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ye; Gjonaj, Erion; Weiland, Thomas [TEMF, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2015-07-01

    The physics of the photoemission, as one of the key issues for successful operation of linac based free-electron lasers like the European X-ray Free Electron Laser (E-XFEL) and the Free-electron Laser in Hamburg (FLASH), is playing an increasingly important role in the high brightness DESY-PITZ electron source. We study photoemission physics and discuss full three-dimensional numerical modeling of the electron bunch emission. The beam extraction dynamics at the photocathode has been investigated through the 3D fully electromagnetic (EM) Particle-in-Cell (PIC) solver of CST Particle Studio under the assumption of the photoemission source operating at or close to its space charge limit. PIC simulation results have shown good agreements with measurements on total emitted bunch charge for distinct experimental parameters. Further comparisons showed a general failure for the conventional Poisson solver based tracking algorithm to correctly predict the beam dynamics at the space charge limit. It is furthermore found, that fully EM PIC simulations are also consistent with a simple emission model based on the multidimensional Child-Langmuir law.

  20. Total-reflection x-ray fluorescence with a brillant undulator x-ray source

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.; Numako, C.; Suzuki, M.; Inoue, K.; Yagi, N.

    2000-01-01

    Total-reflection x-ray fluorescence (TXRF) is a highly sensitive technique for analyzing trace elements, because of the very low background from the sample support. Use of third-generation synchrotron x-ray source could further enhance the detection power. However, while such high sensitivity permits the detection of signals from trace elements of interest, it also means that one can observe weak parasitic x-rays as well. If the sample surface becomes even slightly contaminated, owing to air particulates near the beamline, x-ray fluorescence lines of iron, zinc, copper, nickel, chromium, and titanium can be observed even for a blank sample. Another critical problem is the low-energy-side tail of the scattering x-rays, which ultimately restricts the detection capability of the technique using a TXRF spectrometer based on a Si(Li) detector. The present paper describes our experiments with brilliant undulator x-ray beams at BL39XU and BL40XU, at the SPring-8, Harima, Japan. The emphasis is on the development of instruments to analyze a droplet of 0.1 μl containing trace elements of ppb level. Although the beamline is not a clean room, we have employed equipment for preparing a clean sample and also for avoiding contamination during transferring the sample into the spectrometer. We will report on the successful detection of the peak from 0.8 ppb selenium in a droplet (absolute amount 80 fg). We will also present the results of recent experiments obtained from a Johansson spectrometer rather than a Si(Li) detector. (author)

  1. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  2. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion.

    Science.gov (United States)

    Liu, Hanlin; Curet, Oscar M

    2018-06-18

    Undulatory fin propulsion exhibits high degree of maneuver control -- an ideal for underwater vessels exploring complex environments. In this work, we developed and tested a self-contained, free-swimming robot with a single undulating fin running along the length of the robot, which controls both forward motion and directional maneuvers. We successfully replicated several maneuvers including forward swimming, reversed motion, diving, station-keeping and vertical swimming. For each maneuver, a series of experiments were performed as a function of fin frequency, wavelength and traveling wave direction to measure swimming velocities, orientation angles and mean power consumption. In addition, three-dimensional flow fields were measured during forward swimming and station-keeping using volumetric particle image velocimetry (PIV). The efficiency for forward swimming was compared using three metrics: cost of transport, wave efficiency and Strouhal number. The results indicate that the cost of transport exhibits a V-shape trend with the minimum value at low swimming velocity. The robot can reach optimal wave efficiency and locomotor performance at a range of 0.2 to 0.4 St. Volumetric PIV data reveal the shed of vortex tubes generated by the fin during forward swimming and station keeping. For forward swimming, a series of vortex tubes are shed off the fin edge with a lateral and downward direction with respect to the longitudinal axis of the fin. For station keeping, flow measurements suggest that the vortex tubes are shed at the mid-section of the fin while the posterior and anterior segment of the vortex stay attached to the fin. These results agree with the previous vortex structures based on simulations and 2D PIV. The further development of this vessel with high maneuverability and station keeping performance can be used for oceanography, coastal exploration, defense, oil industry and other marine industries where operations are unsafe or impractical for divers or

  3. The European X-ray free-electron laser. Technical design report

    Energy Technology Data Exchange (ETDEWEB)

    Altarelli, Massimo; Brinkmann, Reinhard; Chergui, Majed [and others

    2007-07-15

    The following topics are dealt with: TTF/FLASH in the XFEL context, general layout of the XFEL facility, the XFEL accelerator, undulators for SAES and spontaneous emission, photon beamlines and scientific instruments, infrastructure and auxiliary systems, commissioning and operation, project management and organization, cost and time schedule. (HSI)

  4. The European X-ray free-electron laser. Technical design report

    International Nuclear Information System (INIS)

    Altarelli, Massimo; Brinkmann, Reinhard; Chergui, Majed

    2007-07-01

    The following topics are dealt with: TTF/FLASH in the XFEL context, general layout of the XFEL facility, the XFEL accelerator, undulators for SAES and spontaneous emission, photon beamlines and scientific instruments, infrastructure and auxiliary systems, commissioning and operation, project management and organization, cost and time schedule. (HSI)

  5. Integrated Baseline Review (IBR) Handbook

    Science.gov (United States)

    Fleming, Jon F.; Terrell, Stefanie M.

    2018-01-01

    The purpose of this handbook is intended to be a how-to guide to prepare for, conduct, and close-out an Integrated Baseline Review (IBR). It discusses the steps that should be considered, describes roles and responsibilities, tips for tailoring the IBR based on risk, cost, and need for management insight, and provides lessons learned from past IBRs. Appendices contain example documentation typically used in connection with an IBR. Note that these appendices are examples only, and should be tailored to meet the needs of individual projects and contracts.

  6. Environmental Baseline File National Transportation

    International Nuclear Information System (INIS)

    Harris, M.

    1999-01-01

    This Environmental Baseline File summarizes and consolidates information related to the national-level transportation of commercial spent nuclear fuel. Topics addressed include: shipments of commercial spent nuclear fuel based on mostly truck and mostly rail shipping scenarios; transportation routing for commercial spent nuclear fuel sites and DOE sites; radionuclide inventories for various shipping container capacities; transportation routing; populations along transportation routes; urbanized area population densities; the impacts of historical, reasonably foreseeable, and general transportation; state-level food transfer factors; Federal Guidance Report No. 11 and 12 radionuclide dose conversion factors; and national average atmospheric conditions

  7. Baseline atmospheric program Australia 1993

    International Nuclear Information System (INIS)

    Francey, R.J.; Dick, A.L.; Derek, N.

    1996-01-01

    This publication reports activities, program summaries and data from the Cape Grim Baseline Air Pollution Station in Tasmania, during the calendar year 1993. These activities represent Australia's main contribution to the Background Air Pollution Monitoring Network (BAPMoN), part of the World Meteorological Organization's Global Atmosphere Watch (GAW). The report includes 5 research reports covering trace gas sampling, ozone and radon interdependence, analysis of atmospheric dimethylsulfide and carbon-disulfide, sampling of trace gas composition of the troposphere, and sulfur aerosol/CCN relationship in marine air. Summaries of program reports for the calendar year 1993 are also included. Tabs., figs., refs

  8. Baseline LAW Glass Formulation Testing

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-01-01

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements

  9. Results of stretched wire field integral measurements on the mini-undulator magnet - comparison of results obtained from circular and translational motion of the integrating wire

    International Nuclear Information System (INIS)

    Solomon, L.

    1998-05-01

    Measurements of the multipole content of the Mini-Undulator magnet have been made with two different integrating wire techniques. Both measurements used 43 strand Litz wire stretched along the length of the magnet within the magnet gap. In the first technique, the wire motion was purely translational, while in the second technique the wire was moved along a circular path. The induced voltage in the Litz wire was input into a Walker integrator, and the integrator output was analyzed as a function of wire position for determination of the multipole content of the magnetic field. The mini-undulator magnet is a 10 period, 80 mm per period hybrid insertion device. For all the data contained herein the magnet gap was set at 49 mm. In the mini-undulator magnet, the iron poles are 18mm x 32mm x 86 mm, and the Samarium Cobalt permanent magnet blocks are 22mm x 21mm x 110mm. For this magnet, which is a shortened prototype for the NSLS Soft X-Ray Undulator Magnet, the undulator parameter K = 0.934 B (Tesla)λ(cm), and B(tesla) = 0.534/sinh(πGap/λ). At a gap of 49 mm, the magnetic field is 1590 Gauss

  10. Volumetric PIV of multiple free-swimming maneuvers generated by the KnifeBot: a biomimetic vessel propelled by an undulating fin

    Science.gov (United States)

    Liu, Hanlin; Troolin, Daniel; Hortensius, Ruben; Pothos, Stamatios; Curet, Oscar

    2017-11-01

    An undulating fin represents a remarkable propulsion model for underwater vehicles due to its high propulsive efficiency and considerable locomotor capabilities. In this work, we used a bio-inspired vessel, the KnifeBot to demonstrate the maneuverability of undulating fin propulsion, including forward-backward swimming, station keeping and vertical swimming. This self-contained robotic system uses an undulating ventral fin as the propulsor and features a slender 3D-printed hull with 16 motors, 2 batteries and electronic boards encapsulated inside. We tested the robot in a water-filled tank and used volumetric particle image velocimetry (V3V PIV) to investigate the three-dimensional flow features and vortex structures generated by the undulating ribbon fin in free-swimming maneuvers. Our results indicate that in the forward swimming, a series of vortex tubes are shed off the fin edge. A streamwise jet at an oblique angle to the fin is generated in association with the vortex tubes propelling the robot forward as well as pitching it up. For the hovering maneuver with inward counter-propagating waves. The streamlines develop vertically downward with the tip vortex shed from the fin edge. This downward jet provides substantial heave force for the robot to swim upward or perform station keeping. Our findings will be useful for understanding the mechanical basis of undulating fin propulsion and facilitate the development of bio-inspired vehicles using undulatory propellers. Office of Naval Research under Award Number N00014-16-1-2505.

  11. FED baseline engineering studies report

    Energy Technology Data Exchange (ETDEWEB)

    Sager, P.H.

    1983-04-01

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept.

  12. FED baseline engineering studies report

    International Nuclear Information System (INIS)

    Sager, P.H.

    1983-04-01

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept

  13. Pinellas Plant Environmental Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  14. Integrated Baseline Review (IBR) Handbook

    Science.gov (United States)

    Fleming, Jon F.; Kehrer, Kristen C.

    2016-01-01

    The purpose of this handbook is intended to be a how-to guide to prepare for, conduct, and close-out an Integrated Baseline Review (IBR). It discusses the steps that should be considered, describes roles and responsibilities, tips for tailoring the IBR based on risk, cost, and need for management insight, and provides lessons learned from past IBRs. Appendices contain example documentation typically used in connection with an IBR. Note that these appendices are examples only, and should be tailored to meet the needs of individual projects and contracts. Following the guidance in this handbook will help customers and suppliers preparing for an IBR understand the expectations of the IBR, and ensure that the IBR meets the requirements for both in-house and contract efforts.

  15. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  16. Characterization and long term operation of a novel superconducting undulator with 15 mm period length in a synchrotron light source

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2016-11-01

    Full Text Available A new cryogen-free full scale (1.5 m long superconducting undulator with a period length of 15 mm (SCU15 has been successfully tested in the ANKA storage ring. This represents a very important milestone in the development of superconducting undulators for third and fourth generation light sources carried on by the collaboration between the Karlsruhe Institute of Technology and the industrial partner Babcock Noell GmbH. SCU15 is the first full length device worldwide that with beam reaches a higher peak field than what expected with the same geometry (vacuum gap and period length with an ideal cryogenic permanent magnet undulator built with the best material available PrFeB. After a summary on the design and main parameters of the device, we present here the characterization in terms of spectral properties and the long term operation of the SCU15 in the ANKA storage ring.

  17. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    CERN Document Server

    Kohmura, Y; Awaji, M; Tanaka, T; Hara, T; Goto, S; Ishikawa, T

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper li...

  18. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    International Nuclear Information System (INIS)

    Kohmura, Yoshiki; Suzuki, Yoshio; Awaji, Mitsuhiro; Tanaka, Takashi; Hara, Toru; Goto, Shunji; Ishikawa, Tetsuya

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper limit for the vertical emittance of the electron beam could be obtained as 0.14 nmrad

  19. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    International Nuclear Information System (INIS)

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov, Gennady; Fawley, William M.; Reiche, Sven

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., ∼ 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2

  20. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    CERN Document Server

    Neuman, C P; Barnett, G A; Madey, J M J; O'Shea, P G

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 sup 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these m...

  1. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    International Nuclear Information System (INIS)

    Neuman, C.P.; Ponds, M.L.; Barnett, G.A.; Madey, J.M.J.; O'Shea, P.G.

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these methods to calculate the expected outcome of a COUR experiment. We propose an experiment to demonstrate COUR effects and their applications to SASE FELs

  2. Optimization of the LCLS X-Rray FEL Output Performance in the Presence of Strong Undulator Wakefields

    CERN Document Server

    Reiche, Sven; Emma, Paul; Fawley, William M; Huang, Zhirong; Nuhn, Heinz-Dieter; Stupakov, Gennady

    2005-01-01

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of "start-to-end" simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch ...

  3. Coherent x-rays and vacuum-ultraviolet radiation from storage-ring-based undulators and free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1984-12-01

    High-brightness electron storage rings and permanent-magnet technology provide a basis for the development of coherent radiation in the 10- to 1000-A (xuv) spectral range. The most assured route to the production of coherent x-rays and vuv is the simple interaction between properly constrained relativistic electrons and permanent-magnet undulators, a subject that is already well understood and where technology is well advanced. Other techniques are less well developed, but with increasing degrees of technical challenge they will provide additional coherence properties. Transverse optical klystrons (TOKs) provide an opportunity for additional coherence at certain harmonics of longer-wavelength lasers. Free electron lasers (FELs) extend coherence capabilities substantially through two possible routes: one is the development of suitable mirror coatings. Both FEL techniques would provide vuv radiation and soft x rays with extremely narrow spectral content. Research on all of these techniques (undulators, TOKs, and FELs) is possible in a single facility based on a high-brightness electron storage ring, referred to herein as a Coherent xuv Facility (CXF). Individual items from the report were prepared separately for the data base

  4. Thermo-mechanical analysis of a user filter assembly for undulator/wiggler operations at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Nian, H.L.T.; Kuzay, T.M.; Collins, J.; Shu, D.; Benson, C.; Dejus, R.

    1996-01-01

    This paper reports a thermo-mechanical study of a beamline filter (user filter) for undulator/wiggler operations. It is deployed in conjunction with the current commissioning window assembly on the APS insertion device (ID) front ends. The beamline filter at the Advanced Photon Source (APS) will eventually be used in windowless operations also. Hence survival and reasonable life expectancy of the filters under intense insertion device (ID) heat flu are crucial to the beamline operations. To accommodate various user requirements, the filter is configured to be a multi-choice type and smart to allow only those filter combinations that will be safe to operate with a given ring current and beamline insertion device gap. However, this paper addresses only the thermo-mechanical analysis of individual filter integrity and safety in all combinations possible. The current filter design is configured to have four filter frames in a cascade with each frame holding five filters. This allows a potential 625 total filter combinations. Thermal analysis for all of these combinations becomes a mammoth task considering the desired choices for filter materials (pyrolitic graphite and metallic filters), filter thicknesses, undulator gaps, and the beam currents. The paper addresses how this difficult task has been reduced to a reasonable effort and computational level. Results from thermo-mechanical analyses of the filter combinations are presented both in tabular and graphical format

  5. Micropole Undulators In Synchrotron Radiation Technology: Design And Construction Of A Submillimeter Period Prototype With A 3 Kilogauss Peak Field At SSRL

    Science.gov (United States)

    Tatchyn, Roman; Csonka, Paul

    1986-01-01

    The availability of undulators with submillimeter periods will profoundly affect the future development of soft x-ray sources and their attendant instrumentation. Outputs comparable to those of present-day conventional undulators, obtainable with much lower energy storage rings, is only one promising aspect of such devices. This paper critically examines some of the future prospects of such devices and describes the design and practical construction of a 1" long prototype consisting of 35 periods. A proposed experiment to test this device on a linac is described.

  6. Micropole undulators in synchrotron radiation technology: Design and construction of a submillimeter period prototype with a 3 kilogauss peak field at SSRL

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.

    1987-01-01

    The availability of undulators with submillimeter periods profoundly affects the future development of soft x-ray sources and their attendant instrumentation. Outputs comparable to those of present-day conventional undulators, obtainable with much lower energy storage rings, is only one promising aspect of such devices. This paper critically examines some of the future prospects of such devices and describes the design and practical construction of a 1'' long prototype consisting of 35 periods. A proposed experiment to test this device on a linac is described

  7. The California Baseline Methane Survey

    Science.gov (United States)

    Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.

    2017-12-01

    The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.

  8. Hydrogeology baseline study Aurora Mine

    International Nuclear Information System (INIS)

    1996-01-01

    A baseline hydrogeologic study was conducted in the area of Syncrude's proposed Aurora Mine in order to develop a conceptual regional hydrogeologic model for the area that could be used to understand groundwater flow conditions. Geologic information was obtained from over 2,000 coreholes and from data obtained between 1980 and 1996 regarding water level for the basal aquifer. A 3-D numerical groundwater flow model was developed to provide quantitative estimates of the potential environmental impacts of the proposed mining operations on the groundwater flow system. The information was presented in the context of a regional study area which encompassed much of the Athabasca Oil Sands Region, and a local study area which was defined by the lowlands of the Muskeg River Basin. Characteristics of the topography, hydrology, climate, geology, and hydrogeology of the region are described. The conclusion is that groundwater flow in the aquifer occurs mostly in a westerly direction beneath the Aurora Mine towards its inferred discharge location along the Athabasca River. Baseflow in the Muskeg River is mostly related to discharge from shallow surficial aquifers. Water in the river under baseflow conditions was fresh, of calcium-carbonate type, with very little indication of mineralization associated with deeper groundwater in the Aurora Mine area. 44 refs., 5 tabs., 31 figs

  9. 2016 Annual Technology Baseline (ATB)

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; O' Connor, Patrick; Waldoch, Connor

    2016-09-01

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  10. 2016 Annual Technology Baseline (ATB) - Webinar Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; Porro, Gian; O' Connor, Patrick; Waldoch, Connor

    2016-09-13

    This deck was presented for the 2016 Annual Technology Baseline Webinar. The presentation describes the Annual Technology Baseline, which is a compilation of current and future cost and performance data for electricity generation technologies.

  11. 75 FR 66748 - Notice of Baseline Filings

    Science.gov (United States)

    2010-10-29

    ...- 000] Notice of Baseline Filings October 22, 2010. ONEOK Gas Transportation, L.L.C Docket No. PR11-68... above submitted a revised baseline filing of their Statement of Operating Conditions for services...

  12. 324 Building Baseline Radiological Characterization

    International Nuclear Information System (INIS)

    Reeder, R.J.; Cooper, J.C.

    2010-01-01

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building. A total of 85 technical (100 square centimeter (cm 2 )) smears were collected from the Room 147 hoods, the Shielded Materials Facility (SMF), and the Radiochemical Engineering Cells (REC). Exposure rate readings (window open and window closed) were taken at a distance of 2.5 centimeters (cm) and 30 cm from the surface of each smear. Gross beta-gamma and alpha counts of each smear were also performed. The smear samples were analyzed by gamma energy analysis (GEA). Alpha energy analysis (AEA) and strontium-90 analysis were also performed on selected smears. GEA results for one or more samples reported the presence of manganese-54, cobalt-60, silver-108m antimony-125, cesium-134, cesium-137, europium-154, europium-155, and americium-241. AEA results reported the presence of plutonium-239/240, plutonium-238/ 241 Am, curium-243/244, curium-242, and americium-243. Tables 5 through 9 present a summary by location of the estimated maximum removable and total contamination levels in the Room 147 hoods, the SMF, and the REC. The smear sample survey data and laboratory analytical results are presented in tabular form by sample in Appendix A. The Appendix A tables combine survey data documented in radiological survey reports found in Appendix B and laboratory analytical results reported in the 324 Building Physical and Radiological Characterization Study (Berk, Hill, and Landsman 1998), supplemented by the laboratory analytical results found in Appendix C.

  13. Program Baseline Change Control Board charter

    International Nuclear Information System (INIS)

    1993-02-01

    The purpose of this Charter is to establish the Program Baseline Change Control Board (PBCCB) for the Office of Civilian Radioactive Waste Management (OCRWM) Program, and to describe its organization, responsibilities, and basic methods of operation. Guidance for implementing this Charter is provided by the OCRWM Baseline Management Plan (BMP) and OCRWM Program Baseline Change Control Procedure

  14. 40 CFR 1042.825 - Baseline determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Baseline determination. 1042.825... Provisions for Remanufactured Marine Engines § 1042.825 Baseline determination. (a) For the purpose of this... not valid. (f) Use good engineering judgment for all aspects of the baseline determination. We may...

  15. Fabrication and Test of a Nb$_{3}$Sn Model Magnet With Ceramic Insulation for the Next Generation Undulator of the LHC

    CERN Document Server

    Elias, N; Dalexandro, N; Giloux, C; Bordini, B; Maccaferri, R

    2010-01-01

    The future run of the Large Hadron Collider with lead ions will require important modifications in the synchrotron radiation profile monitor system, which at present comprises two superconducting undulators wound from Nb-Ti conductor, delivering 5 T in a 60 mm gap, and with a period of 280 mm. Whilst the gap and the nominal field of the future undulators will remain the same, the period shall be 140 mm, which translates to a peak field of over 8 T in the coils and hence requires the use of Nb$_{3}$Sn technology. In this paper the electromagnetic design of the undulator is summarized. We describe the fabrication of a race-track coil wound with a 0.8 mm diameter Nb$_{3}$Sn strand with ceramic insulation. Finally, the results of successful tests made at 4.3 K and 1.9 K in a mirror configuration are presented. 10 T at 4.3 K and 11.5 T at 1.9 K were measured in the yoke gap, thus validating this concept for the future undulator.

  16. Investigation of the nonlinear effects of Wiggler and undulator fields on the beam dynamics of particle storage rings in the case of DORIS III

    International Nuclear Information System (INIS)

    Decking, W.

    1995-11-01

    In this thesis I analyze the effects of wiggler and undulator magnetic fields on the beam dynamics of electron/positron storage rings. DORIS III, DESY's synchrotron radiation source is taken as an example. Wigglers and undulators are used for the production of synchrotron radiation or to control beam sizes in storage rings. Their introduction in the lattices of storage rings causes some problems due to the strong nonlinearities of the magnetic fields. Therefore a detailed analysis of the particle dynamics under the influence of wiggler magnetic fields and their field errors is necessary. This thesis provides such an analysis. The problem will be attacked analytically, numerically and experimentally. The analytic approach is based on the treatment of the appropriate Hamiltonian with perturbation theory. The magnetic fields are described with a Fourier series, which covers the main characteristics of wiggler and undulator fields. The main effect of wigglers and undulators is the excitation of fourth order synchro-betatron resonances. The description of field errors and other details of the magnetic fields is achieved by integrating over appropriately distributed current sheets. This allows the modeling of different parameters such as magnet pole width, periodicity errors and errors in the field gradients. (orig./WL)ons of motion in the fields calculated with this method can only be integrated numerically. This would be much too slow to be used in particle tracking codes. Therefore a transfer map b

  17. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Brite, C.; Nian, T.

    1994-01-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper

  18. Start-to-end simulation of self-amplified spontaneous emission free electron lasers from the gun through the undulator

    CERN Document Server

    Borland, M M; Emma, P; Lewellen, J W; Bharadwaj, V K; Fawley, W M; Krejcik, P; Limborg, C; Milton, S V; Nuhn, H D; Soliday, R; Woodley, M

    2002-01-01

    It is widely appreciated that the performance of self-amplified spontaneous emission free-electron lasers (FELs) depends critically on the properties of the drive beam. In view of this, a multi-laboratory collaboration has explored methods and software tools for integrated simulation of the photoinjector, linear accelerator, bunch compressor, and FEL. Rather than create a single code to handle such a system, our goal has been a robust, generic solution wherein pre-existing simulation codes are used sequentially. We have standardized on the use of Argonne National Laboratory's Self-Describing Data Sets file protocol for transfer of data among codes. The simulation codes used are PARMELA, elegant, and GENESIS. We describe the software methodology and its advantages, then provide examples involving Argonne's Low-Energy Undulator Test Line and Stanford Linear Accelerator Center's Linac Coherent Light Source. We also indicate possible future direction of this work.

  19. First experimental results from IBM/TENN/TULANE/LLNL/LBL undulator beamline at the advanced light source

    International Nuclear Information System (INIS)

    Jia, J.J.; Callcott, T.A.; Yurkas, J.; Ellis, A.W.; Himpsel, F.J.; Samant, M.G.; Stoehr, J.; Ederer, D.L.; Carlisle, J.A.; Hudson, E.A.; Terminello, L.J.; Shuh, D.K.; Perera, R.C.C.

    1995-01-01

    The IBM/TENN/TULANE/LLNL/LBL Beamline 8.0 at the advanced light source combining a 5.0 cm, 89 period undulator with a high-throughput, high-resolution spherical grating monochromator, provides a powerful excitation source over a spectral range of 70--1200 eV for surface physics and material science research. The beamline progress and the first experimental results obtained with a fluorescence end station on graphite and titanium oxides are presented here. The dispersive features in K emission spectra of graphite excited near threshold, and found a clear relationship between them and graphite band structure are observed. The monochromator is operated at a resolving power of roughly 2000, while the spectrometer has a resolving power of 400 for these fluorescence experiments

  20. Modular filter design for the white-beam undulator/wiggler beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Brite, C.; Shu, D.; Nian, T.; Wang, Z.; Haeffner, D.; Alp, E.; Kuzay, T.

    1994-01-01

    A new filter has been designed at Argonne National Laboratory that is intended for the use in undulator/wiggler beamlines at the Advanced Photon Source. The water-cooled frame allows up to four individual filter foil banks simultaneously in the beam path. Additionally, the bottom of each frame holds two thin (20 μm) uncooled carbon filters in tandem for low-energy filtering. Therefore, a maximum of 625 filter selection combinations is theoretically possible. The design is intelligent, compact and modular, with great flexibility for the users. To prevent accidental movement of the filter, effort has been taken to provide a mechanically locked, fail-safe actuator system. Programming aspects are under development as part of our general personnel and equipment protection system. Aspects of the design and operational principles of the filter are presented in this paper