WorldWideScience

Sample records for baseline neutrino oscillation

  1. Long Baseline Neutrino Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, Brian; /Fermilab

    2009-10-01

    There is compelling evidence for neutrino flavor change as neutrinos propagate. The evidence for this phenomenon has been provided by several experiments observing neutrinos that traverse distances of several hundred kilometers between production and detection. This review outlines the evidence for neutrino flavor change from such experiments and describes recent results in the field.

  2. Long-baseline Neutrino Oscillation at DUNE

    Science.gov (United States)

    Worcester, Elizabeth; DUNE Collaboration Collaboration

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a long-baseline neutrino oscillation experiment with primary physics goals of determining the neutrino mass hierarchy and measuring δc P with sufficient sensitivity to discover CP violation in neutrino oscillation. CP violation sensitivity in DUNE requires careful understanding of systematic uncertainty, with contributions expected from uncertainties in the neutrino flux, neutrino interactions, and detector effects. In this presentation, we will describe the expected sensitivity of DUNE to long-baseline neutrino oscillation parameters, how various aspects of the experimental design contribute to that sensitivity, and the planned strategy for constraining systematic uncertainty in these measurements.

  3. Searching for neutrino oscillation parameters in long baseline experiments

    CERN Document Server

    Vihonen, Sampsa

    2016-01-01

    Developing neutrino astronomy requires a good understanding of the neutrino oscillations mechanism. The European strategy for neutrino oscillation physics sets a high priority on future long baseline neutrino experiments with the aim to measure the intrinsic parameters that govern the neutrino oscillations. In this work we take a look at the next generation of long baseline experiments and discuss their prospects in future research.

  4. Sterile Neutrino Fits to Short-Baseline Neutrino Oscillation Measurements

    Directory of Open Access Journals (Sweden)

    J. M. Conrad

    2013-01-01

    (3 + 2 and (3 + 3 fits, rather than (3 + 1 fits, for future neutrino oscillation phenomenology. These results motivate the pursuit of further short-baseline experiments, such as those reviewed in this paper.

  5. The OPERA long baseline neutrino oscillation experiment

    Science.gov (United States)

    Wilquet, G.

    2008-05-01

    OPERA is a long baseline neutrino oscillation experiment designed to observe the appearance of vτ in a pure vμ beam in the parameter space indicated by the atmospheric neutrinos oscillation signal. The detector is situated in the underground LNGS laboratory under 3 800 water meter equivalent at a distance of 730 km from CERN where the CNGS neutrino beam to which it is exposed originates. It consists of two identical 0.68 kilotons lead/nuclear emulsion targets, each instrumented with a tracking device and complemented by a muon spectrometer. The concept and the status of the detector are described and the first results obtained with cosmic rays and during two weeks of beam commissioning in 2006 are reported.

  6. Short-baseline reactor neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, C. [Department of Physics, Columbia University, New York, NY 10027 (United States)

    2011-08-15

    The neutrino mixing angle {theta}13 is currently a high-priority topic in the field of neutrino physics, with three different reactor neutrino experiments under way, searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a non-zero value of {theta}13 is given, together with a discussion of their sensitivity within the next few years.

  7. Detecting dark energy in long baseline neutrino oscillations

    Institute of Scientific and Technical Information of China (English)

    GU Pei-Hong; BI Xiao-Jun; FENG Bo; YOUNG Bing-Lin; ZHANG Xin-Min

    2008-01-01

    In this paper, we discuss a possibility of studying properties of dark energy in long baseline neutrino oscillation experiments. We consider two types of models of neutrino dark energy. For one type of models the scalar field is taken to be quintessence-like and for the other phantom-like. In these models the scalar fields couple to the neutrinos to give rise to spatially varying neutrino masses. We will show that the two types of models predict different behaviors of the spatial variation of the neutrino masses inside the Earth and consequently result in different signals in long baseline neutrino oscillation experiments.

  8. Future long-baseline neutrino oscillations: View from Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hayato, Yoshinari [Kamioka Observatory, ICRR, The University of Tokyo (Japan)

    2015-07-15

    Accelerator based long-baseline neutrino oscillation experiments have been playing important roles in revealing the nature of neutrinos. However, it turned out that the current experiments are not sufficient to study two major remaining problems, the CP violation in the lepton sector and the mass hierarchy of neutrinos. Therefore, several new experiments have been proposed. Among of them, two accelerator based long-baseline neutrino oscillation experiments, the J-PARC neutrino beam and Hyper-Kamiokande, and MOMENT, have been proposed in Asia. These two projects are reviewed in this article.

  9. The effect of short-baseline neutrino oscillations on LBNE

    Energy Technology Data Exchange (ETDEWEB)

    Louis, William C. [Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-10-15

    Short-baseline neutrino oscillations can have a relatively big effect on long-baseline oscillations, due to the cross terms that arise from multiple mass scales. The existing short-baseline anomalies suggest that short-baseline oscillations can affect the ν{sub μ} → ν{sub e} appearance probabilities by up to 20-40%, depending on the values of the CP-violating parameters.

  10. The effect of short-baseline neutrino oscillations on LBNE

    Science.gov (United States)

    Louis, William C.

    2015-10-01

    Short-baseline neutrino oscillations can have a relatively big effect on long-baseline oscillations, due to the cross terms that arise from multiple mass scales. The existing short-baseline anomalies suggest that short-baseline oscillations can affect the νμ → νe appearance probabilities by up to 20-40%, depending on the values of the CP-violating parameters.

  11. Future long-baseline neutrino oscillations: View from Europe

    Energy Technology Data Exchange (ETDEWEB)

    Patzak, T. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2015-07-15

    Since about a decade the european physics community interested in neutrino and neutrino-astrophysics develops a plan to conceive the next generation large underground neutrino observatory. Recently, the LAGUNA-LBNO collaboration made the outcome of the FP7 design study public which shows a clear path for the realization of such experiment. In this paper the LAGUNA and LAGUNA-LBNO Design studies, resulting in a proposal for the LBNO experiment, will be discussed. The author will focus on the long baseline neutrino oscillation search, especially on the potential to discover the neutrino mass ordering and the search for CP violation in the lepton sector.

  12. Future Long-Baseline Neutrino Oscillations: View from North America

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  13. Future long-baseline neutrino oscillations: View from North America

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Robert J., E-mail: wilson@colostate.edu [Department of Physics, Colorado State University, Fort Collins, CO 80523-1875 (United States)

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  14. Study of neutrino oscillations in long-baseline accelerator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kudenko, Yurii G [Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-06-30

    A review of the title subject is given. The phenomenology of neutrino oscillations in the framework of the so-called neutrino Standard Model ({nu}SM) with three active neutrinos is considered. The recently completed long-baseline accelerator experiment K2K and currently in-progress MINOS and OPERA experiments are described in detail. The oscillation parameters obtained from the global analysis of all oscillation data are given. The short-baseline experiment MiniBooNE and its results on the search for light sterile neutrinos are discussed in detail. Considerable attention is given to searching for {nu}{sub {mu}{yields}{nu}e} oscillations and measuring the {theta}{sub 13} angle in muon neutrino experiments. The concept of the off-axis neutrino beam is reviewed. The T2K experiment, collecting statistics since early 2010, is described for its details and objectives. The NO{nu}A experiment under construction and the next-generation beta beam and neutrino factory experiments are also discussed. (reviews of topical problems)

  15. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  16. Implications of 3+1 short-baseline neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Giunti, Carlo, E-mail: giunti@to.infn.it [INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Laveder, Marco, E-mail: laveder@pd.infn.it [Dipartimento di Fisica ' ' G. Galilei' ' , Universita di Padova, and INFN, Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy)

    2011-12-06

    We present an upgrade of the 3+1 global fit of short-baseline neutrino oscillation data obtained with the addition of KARMEN and LSND {nu}{sub e}+{sup 12}C{yields}{sup 12}N{sub g.s.}+e{sup -} scattering data. We discuss the implications for the measurements of the effective neutrino mass in {beta}-decay and neutrinoless double-{beta}-decay experiments. We find respective predicted ranges of about 0.1-0.7 eV and 0.01-0.1 eV.

  17. Short baseline neutrino oscillations: when entanglement suppresses coherence

    CERN Document Server

    Boyanovsky, Daniel

    2011-01-01

    For neutrino oscillations to take place the entangled quantum state of a neutrino and a charged lepton produced via charged current interactions must be disentangled. Implementing a non-perturbative Wigner-Weisskopf method we obtain the correct \\emph{entangled} quantum state of neutrinos and charged leptons from the (two-body) decay of a parent particle. The source lifetime and disentanglement length scale lead to a suppression of the oscillation probabilities in short-baseline experiments. The suppression is determined by $\\pi\\, L_d/L_{osc}$ where $L_d$ is the \\emph{smallest} of the decay length of the parent particle or the disentanglement length scale. For $L_d \\geq L_{osc}$ coherence and oscillations are suppressed. These effects are more prominent in \\emph{short base line experiments} and at low neutrino energy. We obtain the corrections to the appearance and disappearance probabilities modified by both the lifetime of the source and the disentanglement scale and discuss their implications for accelerato...

  18. Systematic uncertainties in long-baseline neutrino-oscillation experiments

    CERN Document Server

    Ankowski, Artur M

    2016-01-01

    Thanks to global efforts over the past two decades, the phenomenon of neutrino oscillations is now well established. In ongoing experiments, the parameters driving the oscillations are being determined with rapidly increasing precision. Yet there still are open issues that have implications going well beyond neutrino physics. The next two decades are expected to bring definite answers to the neutrino-mass hierarchy and violation of charge-particle (CP) symmetry in neutrino oscillations. The question of the mass hierarchy---whether the neutrino masses follow the pattern of the charged-lepton masses---is relevant for cosmology, astrophysics and unification theories. On the other hand, CP violating oscillations have the potential to give an important, or event dominant, contribution to the matter-antimatter asymmetry in the Universe. For the success of future neutrino-oscillation studies it is, however, necessary to ensure a significant reduction of uncertainties, particularly those related to neutrino-energy re...

  19. Short-baseline neutrino oscillations, Planck, and IceCube

    CERN Document Server

    Cherry, John F; Shoemaker, Ian M

    2016-01-01

    We examine a framework with light new physics, which couples to the Standard Model only via neutrino mixing. Taking the hints from the short-baseline anomalies seriously and combining them with modern cosmological data and recent IceCube measurements, we obtain surprisingly effective constraints on the hidden force: keV $\\lesssim M \\lesssim0.3$ GeV for the mediator mass and $g_{h}>10^{-6}-10^{-3}$ for the coupling constant. Flavor equilibration between the hidden and active neutrinos can be delayed until temperatures of $\\sim 1$ MeV, but not below $\\sim 100$ keV. This scenario can be tested with next-generation Cosmic Microwave Background, IceCube, and oscillation experiments.

  20. A new approach to anti-neutrino running in long baseline neutrino oscillation experiments

    CERN Document Server

    Agarwalla, Sanjib K; Link, Jonathan M; Mohapatra, Debabrata

    2010-01-01

    We study the possibility to replace the anti-neutrino run of a long baseline neutrino oscillation experiment, with anti-neutrinos from muon decay at rest. The low energy of these neutrinos allows the use of inverse beta decay for detection in a Gadolinium-doped water Cerenkov detector. We show that this approach yields a factor of five times larger anti-neutrino event sample. The resulting discovery reaches in theta_13, the mass hierarchy and leptonic CP violation are compared with those from a conventional superbeam experiment with combined neutrino and anti-neutrino running. We find that this approach yields a greatly improved reach for CP violation and theta_13 while leaving the ability to measure the mass hierarchy intact.

  1. Constraints on New Physics from Long Baseline Neutrino Oscillation Experiments

    CERN Document Server

    Honda, Minako; Okamura, Naotoshi; Pronin, Alexey; Takeuchi, Tatsu

    2007-01-01

    New physics beyond the Standard Model can lead to extra matter effects on neutrino oscillation if the new interactions distinguish among the three flavors of neutrino. In a previous paper, we argued that a long-baseline neutrino oscillation experiment in which the Fermilab-NUMI beam in its high-energy mode is aimed at the planned Hyper-Kamiokande detector would be capable of constraining the size of those extra effects, provided the vacuum value of \\sin^2 2\\theta_{23} is not too close to one. In this paper, we discuss how such a constraint would translate into limits on the coupling constants and masses of new particles in various models. The models we consider are: models with generation distinguishing Z's such as topcolor assisted technicolor, models containing various types of leptoquarks, R-parity violating SUSY, and extended Higgs sector models. In several cases, we find that the limits thus obtained could be competitive with those expected from direct searches at the LHC. In the event that any of the pa...

  2. GPS survey in long baseline neutrino-oscillation measurement

    CERN Document Server

    Noumi, H; Inagaki, T; Hasegawa, T; Katoh, Y; Kohama, M; Kurodai, M; Kusano, E; Maruyama, T; Minakawa, M; Nakamura, K; Nishikawa, K; Sakuda, M; Suzuki, Y; Takasaki, M; Tanaka, K H; Yamanoi, Y; 10.1109/TNS.2004.836042

    2004-01-01

    We made a series of surveys to obtain neutrino beam line direction toward SuperKamiokande (SK) at a distance of 250 km for the long- baseline neutrino oscillation experiment at KEK. We found that the beam line is directed to SK within 0.03 mr and 0.09 mr (in sigma) in the horizontal and vertical directions, respectively. During beam operation, we monitored the muon distribution from secondary pions produced at the target and collected by a magnetic horn system. We found that the horn system functions like a lens of a point-to- parallel optics with magnification of approximately -100 and the focal length of 2.3 m. Namely, a small displacement of the primary beam position at the target is magnified about a factor -100 at the muon centroid, while the centroid position is almost stable against a change of the incident angle of the primary beam. Therefore, the muon centroid can be a useful monitor of the neutrino beam direction. We could determine the muon centroid within 6 mm and 12 mm in horizontal and vertical ...

  3. The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    CERN Document Server

    Agarwalla, S.K.; Aittola, M.; Alekou, A.; Andrieu, B.; Antoniou, F.; Asfandiyarov, R.; Autiero, D.; Besida, O.; Balik, A.; Ballett, P.; Bandac, I.; Banerjee, D.; Bartmann, W.; Bay, F.; Biskup, B.; Blebea-Apostu, A.M.; Blondel, A.; Bogomilov, M.; Bolognesi, S.; Borriello, E.; Brancus, I.; Bravar, A.; Buizza-Avanzini, M.; Caiulo, D.; Calin, M.; Calviani, M.; Campanelli, M.; Cantini, C.; Cata-Danil, G.; Chakraborty, S.; Charitonidis, N.; Chaussard, L.; Chesneanu, D.; Chipesiu, F.; Crivelli, P.; Dawson, J.; De Bonis, I.; Declais, Y.; del Amo Sanchez, P.; Delbart, A.; Di Luise, S.; Duchesneau, D.; Dumarchez, J.; Efthymiopoulos, I.; Eliseev, A.; Emery, S.; Enqvist, T.; Enqvist, K.; Epprecht, L.; Erykalov, A.N.; Esanu, T.; Franco, D.; Friend, M.; Galymov, V.; Gavrilov, G.; Gendotti, A.; Giganti, C.; Gilardoni, S.; Goddard, B.; Gomoiu, C.M.; Gornushkin, Y.A.; Gorodetzky, P.; Haesler, A.; Hasegawa, T.; Horikawa, S.; Huitu, K.; Izmaylov, A.; Jipa, A.; Kainulainen, K.; Karadzhov, Y.; Khabibullin, M.; Khotjantsev, A.; Kopylov, A.N.; Korzenev, A.; Kosyanenko, S.; Kryn, D.; Kudenko, Y.; Kuusiniemi, P.; Lazanu, I.; Lazaridis, C.; Levy, J.M.; Loo, K.; Maalampi, J.; Margineanu, R.M.; Marteau, J.; Martin-Mari, C.; Matveev, V.; Mazzucato, E.; Mefodiev, A.; Mineev, O.; Mirizzi, A.; Mitrica, B.; Murphy, S.; Nakadaira, T.; Narita, S.; Nesterenko, D.A.; Nguyen, K.; Nikolics, K.; Noah, E.; Novikov, Yu.; Oprima, A.; Osborne, J.; Ovsyannikova, T.; Papaphilippou, Y.; Pascoli, S.; Patzak, T.; Pectu, M.; Pennacchio, E.; Periale, L.; Pessard, H.; Popov, B.; Ravonel, M.; Rayner, M.; Resnati, F.; Ristea, O.; Robert, A.; Rubbia, A.; Rummukainen, K.; Saftoiu, A.; Sakashita, K.; Sanchez-Galan, F.; Sarkamo, J.; Saviano, N.; Scantamburlo, E.; Sergiampietri, F.; Sgalaberna, D.; Shaposhnikova, E.; Slupecki, M.; Smargianaki, D.; Stanca, D.; Steerenberg, R.; Sterian, A.R.; Sterian, P.; Stoica, S.; Strabel, C.; Suhonen, J.; Suvorov, V.; Toma, G.; Tonazzo, A.; Trzaska, W.H.; Tsenov, R.; Tuominen, K.; Valram, M.; Vankova-Kirilova, G.; Vannucci, F.; Vasseur, G.; Velotti, F.; Velten, P.; Venturi, V.; Viant, T.; Vihonen, S.; Vincke, H.; Vorobyev, A.; Weber, A.; Wu, S.; Yershov, N.; Zambelli, L.; Zito, M.

    2014-01-01

    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $\\sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\\delta_{CP}$ and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure ...

  4. Baseline-dependent neutrino oscillations with extra-dimensional shortcuts

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, Sebastian; Micu, Octavian; Paes, Heinrich [Fakultaet fuer Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Weiler, Thomas J. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2010-07-01

    In extra-dimensional scenarios oscillations between active and sterile neutrinos can be governed by a new resonance in the oscillation amplitude. This resonance results when cancelation occurs between two phase differences, the usual kinematic one coming from the neutrino mass-squared difference, and a new geometric one coming from the difference in travel times of the sterile neutrino through the bulk relative to the active neutrino confined to the brane. An asymmetrically-warped 4+1 dimensional metric is introduced for the brane-bulk system. In this case it is found that the resonance condition involves both the neutrino energy E and the travel distance L on the brane; to a good approximation the resonance condition is on the product LE. The model is rich in implications, including the possibility of multiple solutions to the resonance condition, with ramifications for existing data sets, e.g., LSND and MiniBooNE.

  5. Neutrino oscillations: what is magic about the "magic" baseline?

    CERN Document Server

    Smirnov, A Yu

    2006-01-01

    Physics interpretation of the ``magic'' baseline that can play important role in future oscillation experiments is given. The ``magic'' baseline coincides with the refraction length, $l_0$. The latter, in turn, approximately equals the oscillation length in matter at high energies. Therefore at the baseline $L = l_0$ the oscillation phase is $2\\pi$, and consequently, the ``solar'' amplitude of oscillations driven by the mixing angle $\\theta_{12}$ and mass splitting $\\Delta m^2_{21}$ vanishes. As a result, in the lowest order (i) the interference of amplitudes in the $\

  6. Precision Neutrino Oscillation Physics with an Intermediate Baseline Reactor Neutrino Experiment

    CERN Document Server

    Choubey, S; Piai, M; Choubey, Sandhya

    2003-01-01

    We discuss the physics potential of intermediate $L \\sim 20 \\div 30$ km baseline experiments at reactor facilities, assuming that the solar neutrino oscillation parameters $\\Delta m^2_{\\odot}$ and $\\theta_{\\odot}$ lie in the high-LMA solution region. We show that such an intermediate baseline reactor experiment can determine both $\\Delta m^2_{\\odot}$ and $\\theta_{\\odot}$ with a remarkably high precision. We perform also a detailed study of the sensitivity of the indicated experiment to $\\Delta m^2_{\\rm atm}$, which drives the dominant atmospheric $\

  7. Study on the Neutrino Oscillation with a Next Generation Medium-Baseline Reactor Experiment

    Directory of Open Access Journals (Sweden)

    Chang Dong Shin

    2014-01-01

    Full Text Available For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angle θ13, providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements of θ12,  Δm122, and mass hierarchy will be explored. The precise measurement of θ13 would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package.

  8. Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments

    CERN Document Server

    Abrahao, Thamys; Nunokawa, Hiroshi; Quiroga, Alexander A

    2015-01-01

    The experimental bound on lifetime of nu_3, the neutrino mass eigenstate with the smallest nu_e component, is much weaker than those of nu_1 and nu_2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (~ 50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on nu_3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed chi^2 analysis that the nu_3 lifetime divided by its mass, tau_3/ m_3, can be constrained to be tau_3/m_3 > 7.5 (5.5) x 10^{-11} s/eV at 95% (99%) C.L. by 100 kt.years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run.

  9. Accelerator-based Short-baseline Neutrino Oscillation Experiments

    CERN Document Server

    Gollapinni, Sowjanya

    2015-01-01

    Over the last two decades, several experiments have reported anomalous results that could be hinting at the exciting possibility of sterile neutrino states in the $eV^{2}$ mass scale. Liquid Argon Time Projection Chambers (LArTPCs) are a particularly promising technology to explore this physics due to their fine-grained tracking and exceptional calorimetric capabilities. The MicroBooNE experiment, a 170 ton LArTPC scheduled to start taking data very soon with Fermilab's Booster Neutrino Beam (BNB), will combine LArTPC development with the main physics goal of understanding the low-energy electromagnetic anomaly seen by the MiniBooNE experiment. Looking towards the future, MicroBooNE will become a part of the \\textit{short-baseline neutrino} program which expands the physics capabilities of the BNB in many important ways by adding additional LArTPC detectors to search for light sterile neutrinos and bring a definitive resolution to the set of existing experimental anomalies. This paper will give an overview of...

  10. Appearance-Disappearance Relation in 3+$N_{s}$ Short-Baseline Neutrino Oscillations

    CERN Document Server

    Giunti, C

    2015-01-01

    We derive the relation between the amplitudes of short-baseline appearance and disappearance oscillations in 3+$N_{s}$ neutrino mixing schemes which is the origin of the appearance-disappearance tension that is found from the analysis of the existing data in any 3+$N_{s}$ neutrino mixing scheme. We illustrate the power of the relation to reveal the appearance-disappearance tension in the cases of 3+1 and 3+2 mixing using the results of a global fit of short-baseline neutrino oscillation data.

  11. Prospect of a very long baseline neutrino oscillation experiment HIPA to Beijing

    CERN Document Server

    Chen, H; He, J; Kuang, H; Lu, Y; Ma, Y; Shan, L; Shen, C; Wang, Y; Yang, C; Zhang, X; Zhu, Q; Qing, C; Xiong, Z; Yang, J M; Zhang, Z; Chen, J; Ye, Y; Lee, S C; Wong, H T; Whisnant, K; Young Bing Lin; Chen, Hesheng; Ding, Linkai; He, Jingtang; Kuang, Haohuai; Lu, Yusheng; Ma, Yuqian; Shan, Lianyou; Shen, Changquan; Wang, Yifang; Yang, Changgen; Zhang, Xinmin; Zhu, Qingqi; Qing, Chengrui; Xiong, Zhaohua; Yang, Jin Min; Zhang, Zhaoxi; Chen, Jiaer; Ye, Yanlin; Whisnant, Kerry; Young, Bing-Lin

    2001-01-01

    We discuss the prospects of a very long baseline neutrino oscillation experiment from HIPA to Beijing. The current understanding of neutrino oscillations, both theoretically and experimentally, are summarized. The figure of merits for interested physics measurements are defined and compared at different distances: 300 km, 700 km, 2100 km and 3000 km. We conclude that a baseline more than 2100 km is optimal. A large water cerenkov calorimeter was proposed and its performance is satisfactory from a Monte Carlo simulation study. Such a large detector can do many other measurements on cosmic-rays physics and astrophysics.

  12. SOX: search for short baseline neutrino oscillations with Borexino

    Science.gov (United States)

    Vivier, M.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffliot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquàres, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssiére, C.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2016-05-01

    The Borexino detector has convincingly shown its outstanding performances in the low energy regime through its accomplishments in the observation and study of the solar and geo neutrinos. It is then an ideal tool to perform a state of the art source-based experiment for testing the longstanding hypothesis of a fourth sterile neutrino with ~ eV2 mass, as suggested by several anomalies accumulated over the past three decades in source, reactor, and accelerator-based experiments. The SOX project aims at successively deploying two intense radioactive sources, made of Cerium (antineutrino) and Chromium (neutrino), respectively, in a dedicated pit located beneath the detector. The existence of such an ~ eV2 sterile neutrino would then show up as an unambiguous spatial and energy distortion in the count rate of neutrinos interacting within the active detector volume. This article reports on the latest developments about the first phase of the SOX experiment, namely CeSOX, and gives a realistic projection of CeSOX sensitivity to light sterile neutrinos in a simple (3+1) model.

  13. A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    CERN Document Server

    :,; Aihara, H; Andreopoulos, C; Anghel, I; Ariga, A; Ariga, T; Asfandiyarov, R; Askins, M; Back, J J; Ballett, P; Barbi, M; Barker, G J; Barr, G; Bay, F; Beltrame, P; Berardi, V; Bergevin, M; Berkman, S; Berry, T; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bolognesi, S; Boyd, S B; Bravar, A; Bronner, C; Cafagna, F S; Carminati, G; Cartwright, S L; Catanesi, M G; Choi, K; Choi, J H; Collazuol, G; Cowan, G; Cremonesi, L; Davies, G; De Rosa, G; Densham, C; Detwiler, J; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Emery, S; Ereditato, A; Fernandez, P; Feusels, T; Finch, A; Fitton, M; Friend, M; Fujii, Y; Fukuda, Y; Fukuda, D; Galymov, V; Ganezer, K; Gonin, M; Gumplinger, P; Hadley, D R; Haegel, L; Haesler, A; Haga, Y; Hartfiel, B; Hartz, M; Hayato, Y; Hierholzer, M; Hill, J; Himmel, A; Hirota, S; Horiuchi, S; Huang, K; Ichikawa, A K; Iijima, T; Ikeda, M; Imber, J; Inoue, K; Insler, J; Intonti, R A; Irvine, T; Ishida, T; Ishino, H; Ishitsuka, M; Itow, Y; Izmaylov, A; Jamieson, B; Jang, H I; Jiang, M; Joo, K K; Jung, C K; Kaboth, A; Kajita, T; Kameda, J; Karadhzov, Y; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, J Y; Kim, S B; Kishimoto, Y; Kobayashi, T; Koga, M; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W R; Kudenko, Y; Kutter, T; Kuze, M; Labarga, L; Lagoda, J; Laveder, M; Lawe, M; Learned, J G; Lim, I T; Lindner, T; Longhin, A; Ludovici, L; Ma, W; Magaletti, L; Mahn, K; Malek, M; Mariani, C; Marti, L; Martin, J F; Martin, C; Martins, P P J; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; Mezzetto, M; Minakata, H; Minamino, A; Mine, S; Mineev, O; Miura, M; Monroe, J; Mori, T; Moriyama, S; Mueller, T; Muheim, F; Nakahata, M; Nakamura, K; Nakaya, T; Nakayama, S; Needham, M; Nicholls, T; Nirkko, M; Nishimura, Y; Noah, E; Nowak, J; Nunokawa, H; O'Keeffe, H M; Okajima, Y; Okumura, K; Oser, S M; O'Sullivan, E; Owen, R A; Oyama, Y; Perez, J; Pac, M Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Pistillo, C; Playfer, S; Posiadala-Zezula, M; Poutissou, J -M; Quilain, B; Quinto, M; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M; Redij, A; Retiere, F; Riccio, C; Richard, E; Rondio, E; Rose, H J; Ross-Lonergan, M; Rott, C; Rountree, S D; Rubbia, A; Sacco, R; Sakuda, M; Sanchez, M C; Scantamburlo, E; Scholberg, K; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Shaikhiev, A; Shimizu, I; Shiozawa, M; Short, S; Sinnis, G; Smy, M B; Sobczyk, J; Sobel, H W; Stewart, T; Stone, J L; Suda, Y; Suzuki, Y; Suzuki, A T; Svoboda, R; Tacik, R; Takeda, A; Taketa, A; Takeuchi, Y; Tanaka, H A; Tanaka, H K M; Tanaka, H; Terri, R; Thompson, L F; Thorpe, M; Tobayama, S; Tolich, N; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vagins, M R; Vasseur, G; Vogelaar, R B; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilson, J R; Xin, T; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Zito, M

    2014-01-01

    Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex

  14. Overview of the T2K long baseline neutrino oscillation experiment

    CERN Document Server

    Le, Trung

    2009-01-01

    Neutrino oscillations were discovered by atmospheric and solar neutrino experiments, and have been confirmed by experiments using neutrinos from accelerators and nuclear reactors. It has been found that there are large mixing angles in the $\

  15. Long baseline neutrino oscillation experiment at the AGS. Physics design report

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D.; Carroll, A.; Chiang, I. [Brookhaven National Lab., Long Island, NY (United States); E889 Collaboration

    1995-04-01

    The authors present a design for a multi-detector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the {nu}{sub {mu}}, disappearance channel and the {nu}{sub {mu}} {leftrightarrow} {nu}{sub e} appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68km from the AGS neutrino source. Observed depletion of the {nu}{sub {mu}} flux (via quasi-elastic muon neutrino events, {nu}{sub {mu}}n {yields} {mu}{sup {minus}}p) in the far detectors not attended by an observed proportional increase of the {nu}{sub e} flux (via quasi-elastic electron neutrino events, {nu}{sub e}n {yields} e{sup {minus}}p) in those detectors will be prima facie evidence for the oscillation channel {nu}{sub {mu}} {leftrightarrow} {nu}{sub {tau}}. The experiment is directed toward exploration of the region of the neutrino oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy ({approx} 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.

  16. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    CERN Document Server

    Antonello, M; Bellini, V.; Benetti, P.; Bertolucci, S.; Bilokon, H.; Boffelli, F.; Bonesini, M.; Bremer, J.; Calligarich, E.; Centro, S.; Cocco, A.G.; Dermenev, A.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Golubev, N.; Guglielmi, A.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kose, U.; Mammoliti, F.; Mannocchi, G.; Menegolli, A.; Meng, G.; Mladenov, D.; Montanari, C.; Nessi, M.; Nicoletto, M.; Noto, F.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Potenza, R.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Sobczyk, J.; Spanu, M.; Stefan, D.; Sulej, R.; Sutera, C.M.; Torti, M.; Tortorici, F.; Varanini, F.; Ventura, S.; Vignoli, C.; Wachala, T.; Zani, A.; Adams, C.; Andreopoulos, C.; Ankowski, A.M.; Asaadi, J.; Bagby, L.; Baller, B.; Barros, N.; Bass, M.; Bishai, M.; Bitadze, A.; Bugel, L.; Camilleri, L.; Cavanna, F.; Chen, H.; Chi, C.; Church, E.; Cianci, D.; Collin, G.H.; Conrad, J.M.; De Geronimo, G.; Dharmapalan, R.; Djurcic, Z.; Ereditato, A.; Esquivel, J.; Evans, J.; Fleming, B.T.; Foreman, W.M.; Freestone, J.; Gamble, T.; Garvey, G.; Genty, V.; Goldi, D.; Gramellini, E.; Greenlee, H.; Guenette, R.; Hackenburg, A.; Hanni, R.; Ho, J.; Howell, J.; James, C.; Jen, C.M.; Jones, B.J.P.; Kalousis, L.N.; Karagiorgi, G.; Ketchum, W.; Klein, J.; Klinger, J.; Kreslo, I.; Kudryavtsev, V.A.; Lissauer, D.; Livesly, P.; Louis, W.C.; Luthi, M.; Mariani, C.; Mavrokoridis, K.; McCauley, N.; McConkey, N.; Mercer, I.; Miao, T.; Mills, G.B.; Montanari, D.; Moon, J.; Moss, Z.; Mufson, S.; Norris, B.; Nowak, J.; Pal, S.; Palamara, O.; Pater, J.; Pavlovic, Z.; Perkin, J.; Pulliam, G.; Qian, X.; Qiuguang, L.; Radeka, V.; Rameika, R.; Ratoff, P.N.; Richardson, M.; von Rohr, C.Rudolf; Russell, B.; Schmitz, D.W.; Shaevitz, M.H.; Sippach, B.; Soderberg, M.; Soldner-Rembold, S.; Spitz, J.; Spooner, N.; Strauss, T.; Szelc, A.M.; Taylor, C.E.; Terao, K.; Thiesse, M.; Thompson, L.; Thomson, M.; Thorn, C.; Toups, M.; Touramanis, C.; Van de Water, R.G.; Weber, M.; Whittington, D.; Wongjirad, T.; Yu, B.; Zeller, G.P.; Zennamo, J.; Acciarri, R.; An, R.; Barr, G.; Blake, A.; Bolton, T.; Bromberg, C.; Caratelli, D.; Carls, B.; Convery, M.; Dytmam, S.; Eberly, B.; Gollapinni, S.; Graham, M.; Grosso, R.; Hen, O.; Hewes, J.; Horton-Smith, G.; Johnson, R.A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Li, Y.; Littlejohn, B.; Lockwitz, S.; Lundberg, B.; Marchionni, A.; Marshall, J.; McDonald, K.; Meddage, V.; Miceli, T.; Mooney, M.; Moulai, M.H.; Murrells, R.; Naples, D.; Nienaber, P.; Paolone, V.; Papavassiliou, V.; Pate, S.; Pordes, S.; Raaf, J.L.; Rebel, B.; Rochester, L.; Schukraft, A.; Seligman, W.; St. John, J.; Tagg, N.; Tsai, Y.; Usher, T.; Van de Water, R.; Wolbers, S.; Woodruff, K.; Xu, M.; Yang, T.; Zhang, C.; Badgett, W.; Biery, K.; Brice, S.J.; Dixon, S.; Geynisman, M.; Moore, C.; Snider, E.; Wilson, P.

    2015-01-01

    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible...

  17. Long-Baseline Neutrino Experiments

    Science.gov (United States)

    Diwan, M. V.; Galymov, V.; Qian, X.; Rubbia, A.

    2016-10-01

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We summarize the current best knowledge of neutrino parameters and phenomenology, with a focus on the evolution of the experimental technique. We proceed from the first evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research.

  18. Long-Baseline Neutrino Experiments

    CERN Document Server

    Diwan, M V; Qian, X; Rubbia, A

    2016-01-01

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We proceed from the first evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research.

  19. Systematic uncertainties in long-baseline neutrino oscillations for large θ₁₃

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar; Huber, Patrick; Kopp, Joachim; Winter, Walter

    2013-02-01

    We study the physics potential of future long-baseline neutrino oscillation experiments at large θ₁₃, focusing especially on systematic uncertainties. We discuss superbeams, \\bbeams, and neutrino factories, and for the first time compare these experiments on an equal footing with respect to systematic errors. We explicitly simulate near detectors for all experiments, we use the same implementation of systematic uncertainties for all experiments, and we fully correlate the uncertainties among detectors, oscillation channels, and beam polarizations as appropriate. As our primary performance indicator, we use the achievable precision in the measurement of the CP violating phase $\\deltacp$. We find that a neutrino factory is the only instrument that can measure $\\deltacp$ with a precision similar to that of its quark sector counterpart. All neutrino beams operating at peak energies ≳2 GeV are quite robust with respect to systematic uncertainties, whereas especially \\bbeams and \\thk suffer from large cross section uncertainties in the quasi-elastic regime, combined with their inability to measure the appearance signal cross sections at the near detector. A noteworthy exception is the combination of a γ =100 \\bbeam with an \\spl-based superbeam, in which all relevant cross sections can be measured in a self-consistent way. This provides a performance, second only to the neutrino factory. For other superbeam experiments such as \\lbno and the setups studied in the context of the \\lbne reconfiguration effort, statistics turns out to be the bottleneck. In almost all cases, the near detector is not critical to control systematics since the combined fit of appearance and disappearance data already constrains the impact of systematics to be small provided that the three active flavor oscillation framework is valid.

  20. Neutrino Oscillations

    Directory of Open Access Journals (Sweden)

    G. Bellini

    2014-01-01

    Full Text Available In the last decades, a very important breakthrough has been brought about in the elementary particle physics by the discovery of the phenomenon of the neutrino oscillations, which has shown neutrino properties beyond the Standard Model. But a full understanding of the various aspects of the neutrino oscillations is far to be achieved. In this paper the theoretical background of the neutrino oscillation phenomenon is described, referring in particular to the paradigmatic models. Then the various techniques and detectors which studied neutrinos from different sources are discussed, starting from the pioneering ones up to the detectors still in operation and to those in preparation. The physics results are finally presented adopting the same research path which has been crossed by this long saga. The problems not yet fixed in this field are discussed, together with the perspectives of their solutions in the near future.

  1. Very Long Baseline Neutrino Oscillation Experiments for Precise Measurements of Mixing Parameters and CP Violating Effects

    CERN Document Server

    Diwan, M V; Gallardo, J; Kahn, S; Kirk, H; Marciano, W; Morse, W; Parsa, Z; Samios, Nicholas P; Semertzidis, Y K; Viren, B M; Weng, W; Yamin, P; Frati, W; Lande, K; Mann, A K; Berg, R V; Wildenhain, P S; Klein, J R; Mocioiu, I; Shrock, R E; McDonald, K T

    2003-01-01

    We analyze the prospects of a feasible, very long baseline neutrino oscillation experiment consisting of a conventional horn produced low energy wide band beam and a detector of 500 kT fiducial mass with modest requirements on event recognition and resolution. Such an experiment is intended primarily to measure CP violating effects in the neutrino sector for 3-generation mixing. We analyze the sensitivity of such an experiment. We conclude that this experiment will allow determination of the CP parameter $\\delta_{CP}$, if the currently unknown mixing parameter $\\sin ^2 2 \\theta_{13} \\geq 0.01$, a value about 10 times lower than the present experimental upper limit. In addition to $\\theta_{13}$ and $\\delta_{CP}$, the experiment has great potential for precise measurements of most other parameters in the neutrino mixing matrix including $\\Delta m^2_{32}$, $\\sin^2 2\\theta_{23}$, $\\Delta m^2_{21}\\times \\sin^2 2 \\theta_{12}$, and the mass ordering of neutrinos through the observation of the matter effect in the $\\...

  2. Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO)

    CERN Document Server

    Stahl, A; Guler, A M; Kamiscioglu, M; Sever, R; Yilmazer, A U; Gunes, C; Yilmaz, D; Del Amo Sanchez, P; Duchesneau, D; Pessard, H; Marcoulaki, E; Papazoglou, I A; Berardi, V; Cafagna, F; Catanesi, M G; Magaletti, L; Mercadante, A; Quinto, M; Radicioni, E; Ereditato, A; Kreslo, I; Pistillo, C; Weber, M; Ariga, A; Ariga, T; Strauss, T; Hierholzer, M; Kawada, J; Hsu, C; Haug, S; Jipa, A; Lazanu, I; Cardini, A; Lai, A; Oldeman, R; Thomson, M; Blake, A; Prest, M; Auld, A; Elliot, J; Lumbard, J; Thompson, C; Gornushkin, Y A; Pascoli, S; Collins, R; Haworth, M; Thompson, J; Bencivenni, G; Domenici, D; Longhin, A; Blondel, A; Bravar, A; Dufour, F; Karadzhov, Y; Korzenev, A; Noah, E; Ravonel, M; Rayner, M; Asfandiyarov, R; Haesler, A; Martin, C; Scantamburlo, E; Cadoux, F; Bayes, R; Soler, F J P; Aalto-Setälä, L; Enqvist, K; Huitu, K; Rummukainen, K; Nuijten, G; Eskola, K J; Kainulainen, K; Kalliokoski, T; Kumpulainen, J; Loo, K; Maalampi, J; Manninen, M; Moore, I; Suhonen, J; Trzaska, W H; Tuominen, K; Virtanen, A; Bertram, I; Finch, A; Grant, N; Kormos, L L; Ratoff, P; Christodoulou, G; Coleman, J; Touramanis, C; Mavrokoridis, K; Murdoch, M; McCauley, N; Payne, D; Jonsson, P; Kaboth, A; Long, K; Malek, M; Scott, M; Uchida, Y; Wascko, M O; Di Lodovico, F; Wilson, J R; Still, B; Sacco, R; Terri, R; Campanelli, M; Nichol, R; Thomas, J; Izmaylov, A; Khabibullin, M; Khotjantsev, A; Kudenko, Y; Matveev, V; Mineev, O; Yershov, N; Palladino, V; Evans, J; Söldner-Rembold, S; Yang, U K; Bonesini, M; Pihlajaniemi, T; Weckström, M; Mursula, K; Enqvist, T; Kuusiniemi, P; Räihä, T; Sarkamo, J; Slupecki, M; Hissa, J; Kokko, E; Aittola, M; Barr, G; Haigh, M D; de Jong, J; O'Keeffe, H; Vacheret, A; Weber, A; Galvanin, G; Temussi, M; Caretta, O; Davenne, T; Densham, C; Ilic, J; Loveridge, P; Odell, J; Wark, D; Robert, A; Andrieu, B; Popov, B; Giganti, C; Levy, J -M; Dumarchez, J; Buizza-Avanzini, M; Cabrera, A; Dawson, J; Franco, D; Kryn, D; Obolensky, M; Patzak, T; Tonazzo, A; Vanucci, F; Orestano, D; Di Micco, B; Tortora, L; Bésida, O; Delbart, A; Emery, S; Galymov, V; Mazzucato, E; Vasseur, G; Zito, M; Kudryavtsev, V A; Thompson, L F; Tsenov, R; Kolev, D; Rusinov, I; Bogomilov, M; Vankova, G; Matev, R; Vorobyev, A; Novikov, Yu; Kosyanenko, S; Suvorov, V; Gavrilov, G; Baussan, E; Dracos, M; Jollet, C; Meregaglia, A; Vallazza, E; Agarwalla, S K; Li, T; Autiero, D; Chaussard, L; Déclais, Y; Marteau, J; Pennacchio, E; Rondio, E; Lagoda, J; Zalipska, J; Przewlocki, P; Grzelak, K; Barker, G J; Boyd, S; Harrison, P F; Litchfield, R P; Ramachers, Y; Badertscher, A; Curioni, A; Degunda, U; Epprecht, L; Gendotti, A; Knecht, L; Di Luise, S; Horikawa, S; Lussi, D; Murphy, S; Natterer, G; Petrolo, F; Periale, L; Rubbia, A; Sergiampietri, F; Viant, T

    2012-01-01

    This Expression of Interest (EoI) describes the motivation for and the feasibility studies of a long baseline neutrino oscillation experiment (LBNO) with a new conventional neutrino beamline facility (CN2PY). The beam will be aimed at a next generation deep-underground neutrino observatory comprising a double phase liquid argon (LAr) detector and a magnetized iron calorimeter, located at the Pyh\\"asalmi (Finland) mine at a distance of 2300~km. The double phase LAr Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC) is known to provide excellent tracking and calorimetry performance that can outperform other techniques. An initial 20~kton LAr fiducial volume, as considered here, comparable to the fiducial mass of SuperKamiokande and NOvA, offers a new insight and an increase in sensitivity reach for many physics channels. A magnetized iron calorimeter with muon momentum and charge determination collects an independent neutrino sample, and serves as a tail catcher for CERN beam eve...

  3. Long Baseline Neutrino Experiments

    Science.gov (United States)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  4. Implications of lepton flavour violation on long baseline neutrino oscillation experiments

    CERN Document Server

    Soumya, C

    2016-01-01

    Non-standard neutrino interactions (NSIs), the sub-leading effects in the flavour transitions of neutrinos, play a crucial role in the determination of the various unknowns in neutrino oscillations, such as neutrino mass hierarchy, Dirac CP violating phase and the octant of atmospheric mixing angle. In view of the recent experimental observation of several lepton flavor universality (LFU) violating observables in $B$ decays, we study the possible implications of these interactions in the determination of various neutrino oscillation parameters. We consider the model with an additional $Z'$ boson (which is quite successful in explaining the observed LFU anomalies) and analyze its effect in the lepton flavour violating (LFV) $\\tau$ decays, i.e., $\\tau^- \\to e^- e^+ e^-$ and $\\tau^- \\to e^- \\pi^0$. From the present upper bounds of these decay rates, we obtain the constraints on the new physics parameters, which are related to the corresponding NSI parameters in the neutrino sector by $SU(2)_L$ symmetry. These ne...

  5. Investigation of neutrino oscillations in the T2k long-baseline accelerator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Izmaylov, A. O., E-mail: izmaylov@inr.ru; Yershov, N. V.; Kudenko, Yu. G.; Matveev, V. A.; Mineev, O. V.; Musienko, Yu. V.; Khabibulliun, M. M.; Khotjantsev, A. N.; Shaykhiev, A. T. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2012-02-15

    High-sensitivity searches for transitions of muon neutrinos to electron neutrinos are the main task of the T2K (Tokai-to-Kamioka) second-generation long-baseline accelerator neutrino experiment. The present article is devoted to describing basic principles of T2K, surveying experimental apparatuses that it includes, and considering in detail the muon-range detector (SMRD) designed and manufactured by a group of physicists from the Institute of Nuclear Research (Russian Academy of Sciences, Moscow). The results of the first measurements with a neutrino beam are presented, and plans for the near future are discussed.

  6. Testing Localization in Neutrino Oscillations

    OpenAIRE

    Zhuridov, Dmitry V.

    2012-01-01

    The neutrino wave packet localization in short-baseline neutrino oscillation experiments, such as MiniBooNE, is investigated. It is shown that the transition from localization to delocalization may be observed for large neutrino mass splitting of order 1 eV, e.g., in theories with sterile neutrinos.

  7. Search for sub-eV sterile neutrinos in the precision multiple baselines reactor antineutrino oscillation experiments

    Directory of Open Access Journals (Sweden)

    Shu Luo

    2015-10-01

    Full Text Available According to different effects on neutrino oscillations, the unitarity violation in the MNSP matrix can be classified into the direct unitarity violation and the indirect unitarity violation which are induced by the existence of the light and the heavy sterile neutrinos respectively. Of which sub-eV sterile neutrinos are of most interesting. We study in this paper the possibility of searching for sub-eV sterile neutrinos in the precision reactor antineutrino oscillation experiments with three different baselines at around 500 m, 2 km and 60 km. We find that the antineutrino survival probabilities obtained in the reactor experiments are sensitive only to the direct unitarity violation and offer very concentrated sensitivity to the two parameters θ14 and Δm412. If such light sterile neutrinos do exist, the active–sterile mixing angle θ14 could be acquired by the combined rate analysis at all the three baselines and the mass-squared difference Δm412 could be obtained by taking the Fourier transformation to the L/E spectrum. Of course, for such measurements to succeed, both high energy resolution and large statistics are essentially important.

  8. Neutrino Scattering Uncertainties and their Role in Long Baseline Oscillation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Harris; G. Blazey; Arie Bodek; D. Boehnlein; S. Boyd; William Brooks; Antje Bruell; Howard S. Budd; R. Burnstein; D. Casper; A. Chakravorty; Michael Christy; Jesse Chvojka; M.A.C. Cummings; P. deBarbaro; D. Drakoulakos; J. Dunmore; Rolf Ent; Hugh Gallagher; David Gaskell; Ronald Gilman; Charles Glashausser; Wendy Hinton; Xiaodong Jiang; T. Kafka; O. Kamaev; Cynthia Keppel; M. Kostin; Sergey Kulagin; Gerfried Kumbartzki; Steven Manly; W.A. Mann; Kevin Mcfarland-porter; Wolodymyr Melnitchouk; Jorge Morfin; D. Naples; John Nelson; Gabriel Niculescu; Maria-ioana Niculescu; W. Oliver; Michael Paolone; Emmanuel Paschos; A. Pla-Dalmau; Ronald Ransome; C. Regis; P. Rubinov; V. Rykalin; Willis Sakumoto; P. Shanahan; N. Solomey; P. Spentzouris; P. Stamoulis; G. Tzanakos; Stephen Wood; F.X. Yumiceva; B. Ziemer; M. Zois

    2004-10-01

    The field of oscillation physics is about to make an enormous leap forward in statistical precision: first through the MINOS experiment in the coming year, and later through the NOvA and T2K experiments. Because of the relatively poor understanding of neutrino interactions in the energy ranges of these experiments, there are systematics that can arise in interpreting far detector data that can be as large as or even larger than the expected statistical uncertainties. We describe how these systematic errors arise, and how specific measurements in a dedicated neutrino scattering experiment like MINERvA can reduce the cross section systematic errors to well below the statistical errors.

  9. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  10. Physics Potential of a Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    CERN Document Server

    Abe, K; Andreopoulos, C; Anghel, I; Ariga, A; Ariga, T; Asfandiyarov, R; Askins, M; Back, J J; Ballett, P; Barbi, M; Barker, G J; Barr, G; Bay, F; Beltrame, P; Berardi, V; Bergevin, M; Berkman, S; Berry, T; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bolognesi, S; Boyd, S B; Bravar, A; Bronner, C; Cafagna, F S; Carminati, G; Cartwright, S L; Catanesi, M G; Choi, K; Choi, J H; Collazuol, G; Cowan, G; Cremonesi, L; Davies, G; De Rosa, G; Densham, C; Detwiler, J; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Emery, S; Ereditato, A; Fernández, P; Feusels, T; Finch, A; Fitton, M; Friend, M; Fujii, Y; Fukuda, Y; Fukuda, D; Galymov, V; Ganezer, K; Gonin, M; Gumplinger, P; Hadley, D R; Haegel, L; Haesler, A; Haga, Y; Hartfiel, B; Hartz, M; Hayato, Y; Hierholzer, M; Hill, J; Himmel, A; Hirota, S; Horiuchi, S; Huang, K; Ichikawa, A K; Iijima, T; Ikeda, M; Imber, J; Inoue, K; Insler, J; Intonti, R A; Irvine, T; Ishida, T; Ishino, H; Ishitsuka, M; Itow, Y; Izmaylov, A; Jamieson, B; Jang, H I; Jiang, M; Joo, K K; Jung, C K; Kaboth, A; Kajita, T; Kameda, J; Karadhzov, Y; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, J Y; Kim, S B; Kishimoto, Y; Kobayashi, T; Koga, M; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W R; Kudenko, Y; Kutter, T; Kuze, M; Labarga, L; Lagoda, J; Laveder, M; Lawe, M; Learned, J G; Lim, I T; Lindner, T; Longhin, A; Ludovici, L; Ma, W; Magaletti, L; Mahn, K; Malek, M; Mariani, C; Marti, L; Martin, J F; Martin, C; Martins, P P J; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; Mezzetto, M; Minakata, H; Minamino, A; Mine, S; Mineev, O; Miura, M; Monroe, J; Mori, T; Moriyama, S; Mueller, T; Muheim, F; Nakahata, M; Nakamura, K; Nakaya, T; Nakayama, S; Needham, M; Nicholls, T; Nirkko, M; Nishimura, Y; Noah, E; Nowak, J; Nunokawa, H; O'Keeffe, H M; Okajima, Y; Okumura, K; Oser, S M; O'Sullivan, E; Ovsiannikova, T; Owen, R A; Oyama, Y; Pérez, J; Pac, M Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Pistillo, C; Playfer, S; Posiadala-Zezula, M; Poutissou, J -M; Quilain, B; Quinto, M; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A; Redij, A; Retiere, F; Riccio, C; Richard, E; Rondio, E; Rose, H J; Ross-Lonergan, M; Rott, C; Rountree, S D; Rubbia, A; Sacco, R; Sakuda, M; Sanchez, M C; Scantamburlo, E; Scholberg, K; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Shaikhiev, A; Shimizu, I; Shiozawa, M; Short, S; Sinnis, G; Smy, M B; Sobczyk, J; Sobel, H W; Stewart, T; Stone, J L; Suda, Y; Suzuki, Y; Suzuki, A T; Svoboda, R; Tacik, R; Takeda, A; Taketa, A; Takeuchi, Y; Tanaka, H A; Tanaka, H K M; Tanaka, H; Terri, R; Thompson, L F; Thorpe, M; Tobayama, S; Tolich, N; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vagins, M R; Vasseur, G; Vogelaar, R B; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilson, J R; Xin, T; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Zito, M

    2015-01-01

    Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW $\\times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56\\times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam, it is expected that the leptonic $CP$ phase $\\delta_{CP}$ can be determined to better than 19 degrees for all possible values of $\\delta_{CP}$, and $CP$ violation can be establis...

  11. Exploring Flavor-Dependent Long-Range Forces in Long-Baseline Neutrino Oscillation Experiments

    CERN Document Server

    Chatterjee, Sabya Sachi; Agarwalla, Sanjib Kumar

    2015-01-01

    The Standard Model gauge group can be extended with minimal matter content by introducing anomaly free U(1) symmetry, such as $L_e-L_{\\mu}$ or $L_e-L_{\\tau}$. If the neutral gauge boson corresponding to this global symmetry is ultra-light, then it will give rise to flavor-dependent long-range leptonic force, which can have significant impact on neutrino oscillations. For an instance, the electrons inside the Sun can generate a flavor-dependent long-range potential at the Earth surface, which can suppress the $\

  12. Neutrino Velocity and Neutrino Oscillations

    CERN Document Server

    Minakata, H

    2012-01-01

    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  13. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    Sandip Pakvasa

    2000-01-01

    I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the `conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.

  14. VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS FOR PRECISE MEASURMENTS OF OSCILLATION PARAMETERS AND SEARCH FOR N MU YIELDS N EPSILON.

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; BEAVIS,D.; BRENNAN,M.; CHEN,M.C.; FERNOW,R.; ET AL

    2002-10-18

    Brookhaven National Laboratory and collaborators started a neutrino working group to identify new opportunities in the field of neutrino oscillations and explore how our laboratory facilities can be used to explore this field of research. The memo to the working group and the charge are included in Appendix I. This report is the result of the deliberations of the working group. Previously, we wrote a letter of intent to build a new high intensity neutrino beam at BNL. A new intense proton beam will be used to produce a conventional horn focused neutrino beam directed at a detector located in either the Homestake mine in Lead, South Dakota at 2540 km or the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM at 2880 km. As a continuation of the study that produced the letter of intent, this report examines several items in more detail. We mainly concentrate on the use of water Cherenltov detectors because of their size, resolution, and background rejection capability, and cost. We examine the prospects of building such a detector in the Homestake mine. The accelerator upgrade will be carried out in phases. We expect the first phase to yield a 0.4 MW proton beam and the second phase to result in a 1.0 MW beam. The details of this upgrade will be reported in a companion report. In this report we assume accelerator intensity of 1 MW for calculating event rates and spectra. We also assume a total experimental duration of 5 years with running time of 10{sup 7} seconds per year. We examine the target station and the horn produced neutrino beam with focus on two topics: target and horn design for a 1 MW beam and the broad band spectrum of neutrinos from a 28 GeV proton beam.

  15. Impact of lepton flavor universality violation on CP-violation sensitivity of long-baseline neutrino oscillation experiments

    Science.gov (United States)

    Soumya, C.; Mohanta, R.

    2017-01-01

    The observation of neutrino oscillation as well as the recent experimental results on lepton flavor universality (LFU) violation in B meson decays are indications of new physics beyond the standard model. Many theoretical models, which are introduced in the literature as an extension of SM to explain these observed deviations in LFU, lead to a new kind of interactions, the so-called non-standard interaction (NSI) between the elementary particles. In this paper, we consider a model with an additional Z' boson (which is quite successful in explaining the observed LFU anomalies) and analyze its effect in the lepton flavor violating (LFV) B_d→ τ ^± e^∓ decay modes. From the present upper bound of the B_d→ τ ^± e^∓ branching ratio, we obtain the constraints on the new physics parameters, which are related to the corresponding NSI parameters in the neutrino sector by SU(2)_L symmetry. These new parameters are expected to have potential implications in the neutrino oscillation studies and in this work we investigate the possibility of observing the effects of these interactions in the currently running and upcoming long-baseline experiments, i.e., NOν A and DUNE, respectively.

  16. Neutrino Masses and Oscillations

    CERN Document Server

    Valle, J W F

    2005-01-01

    I summarize the status of three--neutrino oscillations that follow from combining the relevant world's data. The discussion includes the small parameters Delta_m-sol/Delta_m-atm and \\sin^2\\theta_{13}, which characterize the strength of CP violation in neutrino oscillations, the impact of oscillation data on the prospects for probing the absolute scale of neutrino mass in \

  17. Oscillation Parameters with forthcoming Reactor Neutrino Experiments

    CERN Document Server

    Lasserre, Thierry

    2010-01-01

    I review the status of the forthcoming reactor neutrino experiments that toe the cutting edge of neutrino oscillation research. Kilometer baseline oscillation experiments (Double Chooz, Daya Bay, and Reno) will soon play a relevant role providing clean information on the last undetermined neutrino mixing angle !13. A 50-70 km baseline reactor neutrino experiment could later provide the best sensitivity to the !12 mixing angle.

  18. The KASKA project - a Japanese medium-baseline reactor-neutrino oscillation experiment to measure the mixing angle $\\theta_{13}$ -

    CERN Document Server

    Kuze, M

    2005-01-01

    A new reactor-neutrino oscillation experiment, KASKA, is proposed to measure the unknown neutrino-mixing angle $\\theta_{13}$ using the world's most powerful Kashiwazaki-Kariwa nuclear power station. It will measure a very small deficit of reactor-neutrino flux using three identical detectors, two placed just close to the sources and one at a distance of about 1.8km. Its conceptual design and physics reach are discussed.

  19. Neutrino Oscillations With Two Sterile Neutrinos

    Science.gov (United States)

    Kisslinger, Leonard S.

    2016-10-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  20. Neutrino Oscillations With Two Sterile Neutrinos

    CERN Document Server

    Kisslinger, Leonard S

    2016-01-01

    This work estimates the probability of $\\mu$ to $e$ neutrino oscillation with two sterile neutrinos using a 5x5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4x4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  1. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  2. Atmospheric neutrinos and discovery of neutrino oscillations.

    Science.gov (United States)

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  3. Neutrino oscillations: theory and phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.K., E-mail: akhmedov@ictp.trieste.it [Department of Theoretical Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2011-12-15

    A brief overview of selected topics in the theory and phenomenology of neutrino oscillations is given. These include: oscillations in vacuum and in matter; phenomenology of 3-flavour neutrino oscillations; CP and T violation in neutrino oscillations in vacuum and in matter; matter effects on {nu}{sub {mu}}{r_reversible}{nu}{sub {tau}} oscillations; parametric resonance in neutrino oscillations inside the earth; oscillations below and above the MSW resonance; unsettled issues in the theory of neutrino oscillations.

  4. Disentangling neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew G. [Physics Department, Boston University, Boston, MA 02215 (United States)], E-mail: cohen@bu.edu; Glashow, Sheldon L. [Physics Department, Boston University, Boston, MA 02215 (United States)], E-mail: slg@bu.edu; Ligeti, Zoltan [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)], E-mail: ligeti@lbl.gov

    2009-07-13

    The theory underlying neutrino oscillations has been described at length in the literature. The neutrino state produced by a weak decay is usually portrayed as a linear superposition of mass eigenstates with, variously, equal energies or equal momenta. We point out that such a description is incorrect, that in fact, the neutrino is entangled with the other particle or particles emerging from the decay. We offer an analysis of oscillation phenomena involving neutrinos (applying equally well to neutral mesons) that takes entanglement into account. Thereby we present a theoretically sound proof of the universal validity of the oscillation formulae ordinarily used. In so doing, we show that the departures from exponential decay reported by the GSI experiment cannot be attributed to neutrino mixing. Furthermore, we demonstrate that the 'Moessbauer' neutrino oscillation experiment proposed by Raghavan, while technically challenging, is correctly and unambiguously describable by means of the usual oscillation formalae.

  5. Collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max Planck Institute for Physics, Munich (Germany)

    2009-07-01

    Neutrinos emitted by core-collapse supernovae (SNe) represent an important laboratory for both particle physics and astrophysics. While propagating in the dense SN environment, they can feel not only the presence of background matter (via ordinary Mikheev-Smirnov-Wolfenstein effects) but also of the gas of neutrinos and antineutrinos (via neutrino-neutrino interaction effects). The neutrino-neutrino interactions appear to modify the flavor evolution of SN neutrinos in a collective way, completely different from the ordinary matter effects. In these conditions, the flavor evolution equations become highly nonlinear, sometimes resulting in surprising phenomena when the entire neutrino system oscillates coherently as a single collective mode. In this talk, I present the recent results on collective supernova neutrino flavor conversions and I discuss about the sensitivity of these effects to the ordering of the neutrino mass spectrum.

  6. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    G Rajasekaran

    2000-07-01

    The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  7. Neutrino oscillations from warped flavor symmetry: predictions for long baseline experiments T2K, NOvA and DUNE

    CERN Document Server

    Pasquini, Pedro; Valle, J W F

    2016-01-01

    Here we study the pattern of neutrino oscillations emerging from a previously proposed warped model construction incorporating $\\Delta(27)$ flavor symmetry. In addition to a complete description of fermion masses, the model predicts the lepton mixing matrix in terms of two parameters. The good measurement of $\\theta_{13}$ makes these two parameters nearly proportional, leading to an approximate one-parameter description of neutrino oscillations. There is a sharp fourfold degenerate correlation between $\\delta_{CP}$ and the atmospheric mixing angle $\\theta_{23}$, so that maximal $\\theta_{23}$ also implies maximal leptonic CP violation. The predicted electron neutrino and anti-neutrino appearance probabilities indicate that the model should be tested at the T2K, NO$\

  8. Indirect neutrino oscillations

    CERN Document Server

    Babu, K S; Wilczek, Frank; Pati, Jogesh C; Wilczek, Frank

    1995-01-01

    We show how two different scales for oscillations between e and \\mu neutrinos, characterized by different mixing angles and effective mass scales, can arise in a simple and theoretically attractive framework. One scale characterizes direct oscillations, which can accommodate the MSW approach to the solar neutrino problem, whereas the other can be considered as arising indirectly, through virtual transitions involving the \\tau neutrino with a mass \\sim 1 eV. This indirect transition allows the possibility of observable \\bar \

  9. Physics of Neutrino Oscillation

    CERN Document Server

    Mondal, Spandan

    2015-01-01

    The Standard Model of particle physics describes neutrinos as massless, chargeless elementary particles that come in three different flavours. However, recent experiments indicate that neutrinos not only have mass, but also have multiple mass eigenstates that are not identical to the flavour states, thereby indicating mixing. As an evidence of mixing, neutrinos have been observed to change from one flavour to another during their propagation, a phenomenon called neutrino oscillation. We have studied the reasons and derived the probabilities of neutrino flavour change, both in vacuum and in matter. We have also studied the parameters affecting this probability. We have discussed the special case of two-neutrino oscillations. Lastly, we have discussed some basic properties of neutrinos that are reflected in the previous derivations and highlighted a few relevant open problems. To begin with, we have also studied the relevant topics in introductory High Energy Physics and Quantum Mechanics to familiarize with th...

  10. Solar neutrinos: Oscillations or No-oscillations?

    CERN Document Server

    Smirnov, A Yu

    2016-01-01

    The Nobel prize in physics 2015 has been awarded "... for the discovery of neutrino oscillations which show that neutrinos have mass". While SuperKamiokande (SK), indeed, has discovered oscillations, SNO observed effect of the adiabatic (almost non-oscillatory) flavor conversion of neutrinos in the matter of the Sun. Oscillations are irrelevant for solar neutrinos apart from small $\

  11. CPT-Odd resonances in neutrino oscillations

    Science.gov (United States)

    Barger; Pakvasa; Weiler; Whisnant

    2000-12-11

    We consider the consequences for future neutrino factory experiments of small CPT-odd interactions in neutrino oscillations. The nu(&mgr;)-->nu(&mgr;) and nu;(&mgr;)-->nu;(&mgr;) survival probabilities at a baseline L = 732 km can test for CPT-odd contributions at orders of magnitude better sensitivity than present neutrino sector limits. Interference between the CPT-violating interaction and CPT-even mass terms in the Lagrangian can lead to a resonant enhancement of the oscillation amplitude. For oscillations in matter, a simultaneous enhancement of both neutrino and antineutrino oscillation amplitudes is possible.

  12. Solar Neutrino Oscillation Parameters in Experiments with Reactor Anti-Neutrinos

    CERN Document Server

    Choubey, Sandhya

    2004-01-01

    We review the current status of the solar neutrino oscillation parameters. We discuss the conditions under which measurements from future solar neutrino experiments would determine the oscillation parameters precisely. Finally we expound the potential of long baseline reactor anti-neutrino experiments in measuring the solar neutrino oscillation parameters.

  13. Linking solar and long baseline terrestrial neutrino experiments.

    Science.gov (United States)

    Akhmedov, E K; Branco, G C; Rebelo, M N

    2000-04-17

    We show that, in the framework of three light neutrino species with hierarchical masses and assuming no fine tuning between the entries of the neutrino mass matrix, one can use the solar neutrino data to obtain information on the element U(e3) of the lepton mixing matrix. Conversely, a measurement of U(e3) in atmospheric or long baseline accelerator or reactor neutrino experiments would help discriminate between possible oscillation solutions of the solar neutrino problem.

  14. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia [Univ. of Colorado, Boulder, CO (United States)

    2015-06-29

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinosμ) and the appearance of electron neutrinose), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of νe appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of νμ disappearance and νe appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  15. Matter-enhanced CP violation and Dirac unitarity triangles in a low-energy medium-baseline neutrino oscillation experiment

    CERN Document Server

    Xing, Zhi-zhong

    2016-01-01

    The strength of CP violation in an accelerator-based neutrino oscillation experiment is characterized by the matter-corrected parameter \\widetilde{\\cal J}, a counterpart of the fundamental Jarlskog invariant \\cal J. We find a unique range of the neutrino beam energy, E \\lesssim 0.3 GeV, in which the size of \\widetilde{\\cal J} can be amplified as compared with that of {\\cal J}. The ratio \\widetilde{\\cal J}/{\\cal J} peaks at the resonance energy E_* \\simeq 0.14 GeV (or 0.12 GeV) for the normal (or inverted) neutrino mass hierarchy. In the complex plane we show how the three Dirac unitarity triangles of lepton flavor mixing are deformed due to the matter corrections. The probabilities of \

  16. Intermediate baseline appearance experiments and three-neutrino mixing schemes

    CERN Document Server

    Cardall, C Y; Cline, D; Cardall, Christian Y.; Fuller, George M.; Cline, David

    1997-01-01

    Three-neutrino mixing schemes suggested by Cardall \\& Fuller and Acker \\& Pakvasa are compared and contrasted. Both of these schemes seek to solve the solar and atmospheric neutrino problems {\\em and} to account for the possible neutrino oscillation signal in the LSND experiment. These neutrino oscillation schemes have different atmospheric and solar neutrino signatures that will be discriminated by Super-Kamiokande and SNO. They will also have different signatures in proposed long-baseline accelerator and reactor experiments. In particular, both of these schemes would give dramatic (and dramatically different) signals in an ``intermediate baseline'' experiment, such as the proposed ICARUS detector in the Jura mountains 17 km from CERN.

  17. Solar-neutrino oscillations

    Science.gov (United States)

    Krauss, L.; Wilczek, F.

    1985-01-01

    The theory of oscillations of solar neutrinos is developed as it applies to the electron-recoil spectrum in neutrino-electron scattering. The spectral information obtained by such measurements (as opposed to counting total event rates) is crucial for allowing observation of neutrino oscillations for masses down to 500 neV. In this regard, the effects of different masses and mixing angles, as well as such subtleties as thermal and pressure broadening, finite solar-core size, and variable indices of refraction are investigated.

  18. Neutrino oscillations: Present status and outlook

    Indian Academy of Sciences (India)

    Thomas Schwetz

    2009-01-01

    The status of neutrino oscillations from global data is summarized, with the focus on the three-flavour picture. The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Further-more, an outlook on the measurement of the mixing angle 13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type of the neutrino mass ordering by long-baseline experiments in the long term future are given.

  19. Solar mass-varying neutrino oscillations.

    Science.gov (United States)

    Barger, V; Huber, Patrick; Marfatia, Danny

    2005-11-18

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density. Measurements of MeV and lower energy solar neutrinos will provide a rigorous test of the idea.

  20. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia [Univ. of Colorado, Boulder, CO (United States)

    2015-06-29

    This is nal report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is fo- cussed on making precise measurements of neutrino properties using in- tense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino exper- iment [6], currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design e ort for a future Long-Baseline Neu- trino Facility (LBNF) in the US.1 She is also a member of the NA61/SHINE particle production experiment at CERN, but as that e ort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos ( ) and the appearance of electron neutrinos ( e), using a beam of muon neu- trino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K rst reported indications of e appearance [2], a pre- viously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of disappearance and e appearance [1], and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the uni- verse. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This e ort will be very high-priority particle physics project in the US over the next decade.

  1. Pseudoscalar - sterile neutrino interactions: reconciling the cosmos with neutrino oscillations

    CERN Document Server

    Archidiacono, Maria; Giunti, Carlo; Hannestad, Steen; Hansen, Rasmus; Laveder, Marco; Tram, Thomas

    2016-01-01

    The Short BaseLine (SBL) neutrino oscillation anomalies hint at the presence of a sterile neutrino with a mass of around 1 eV. However, such a neutrino is incompatible with cosmological data, in particular observations of the Cosmic Microwave Background (CMB) anisotropies. However, this conclusion can change by invoking new physics. One possibility is to introduce a secret interaction in the sterile neutrino sector mediated by a light pseudoscalar. In this pseudoscalar model, CMB data prefer a sterile neutrino mass that is fully compatible with the mass ranges suggested by SBL anomalies. In addition, this model predicts a value of the Hubble parameter which is completely consistent with local measurements.

  2. Muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Toner, R. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Pawloski, G. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Whitehead, L. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2012-08-15

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 Multiplication-Sign 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new results are presented.

  3. Boxing with neutrino oscillations

    Science.gov (United States)

    Wagner, D. J.; Weiler, Thomas J.

    1999-06-01

    We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables ``boxes'' because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the CP- or T-even oscillation modes, while the imaginary parts are the coefficients for the CP- or T-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that CP violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n>=3 flavors.

  4. Long baseline accelerator neutrino experiments present and future

    CERN Document Server

    Rubbia, André

    2000-01-01

    A nu /sub mu / disappearance effect has been seen in atmospheric neutrino experiments. This has led to the "evidence for neutrino oscillations". The next problem in neutrino physics is to perform the right experiment(s) to elucidate in a comprehensive way the pattern of neutrino masses and mixings. The long baseline experiments will play a fundamental role at settling definitively the question of flavor oscillation and at measuring with good precision the oscillation parameters. The CERN-NGS beam coupled with the proposed ICANOE and OPERA detectors is the only programme capable of sensitive tau and electron appearance searches. (14 refs).

  5. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  6. Lorentz noninvariant oscillations of massless neutrinos are excluded

    CERN Document Server

    Barger, Vernon; Marfatia, Danny; Whisnant, Kerry

    2011-01-01

    The bicycle model of Lorentz noninvariant neutrino oscillations without neutrino masses naturally predicts maximal mixing and a 1/E dependence of the oscillation argument for muon-neutrino to tau-neutrino oscillations of atmospheric and long-baseline neutrinos, but cannot also simultaneously fit the data for solar neutrinos and KamLAND. We search for other possible structures of the effective Hamiltonian for Lorentz noninvariant oscillations of massless neutrinos that naturally have a 1/E dependence at high neutrino energy. Due to the lack of any evidence for direction dependence, we consider only direction-independent oscillations. Although we find a number of models with a 1/E dependence for atmospheric and long-baseline neutrinos, none can also simultaneously fit solar and KamLAND data.

  7. Nuclear propelled vessels and neutrino oscillation experiments.

    Science.gov (United States)

    Detwiler, J; Gratta, G; Tolich, N; Uchida, Y

    2002-11-04

    We study the effect of naval nuclear reactors on the study of neutrino oscillations. We find that the presence of naval reactors at unknown locations and times may limit the accuracy of future very long baseline reactor-based neutrino oscillation experiments. At the same time, we argue that a nuclear powered surface ship such as a large Russian icebreaker may provide an ideal source for precision experiments.

  8. Constraints on neutrinoless double $\\beta$ decay from neutrino oscillation experiments

    CERN Document Server

    Bilenky, S M; Monteno, M

    1997-01-01

    We show that, in the framework of a general model with mixing of three Majorana neutrinos and a neutrino mass hierarchy, the results of the Bugey and Krasnoyarsk reactor neutrino oscillation experiments imply strong limitations for the effective Majorana mass || that characterizes the amplitude of neutrinoless double beta decay. We obtain further limitations on || from the data of the atmospheric neutrino experiments. We discuss the possible implications of the results of the future long baseline neutrino oscillation experiments for neutrinoless double beta decay.

  9. Solar Neutrino Oscillation - An Overview

    CERN Document Server

    Roy, D P

    2005-01-01

    After a brief summary of the neutrino oscillation formalism and the solar neutrino sources and experiments I discuss the matter effect on solar neutrino oscillation. Then I discuss how the resulting alternative solutions are experimentally resolved in favour of the LMA solution, with particular exphasis on the SK, SNO and KL data.

  10. Lorentz violation and neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mewes, Matthew [Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States)

    2011-12-15

    Lorentz violation naturally leads to neutrino oscillations and provides an alternative mechanism that may explain current data. This contribution to the proceedings of The XXII International Conference on Neutrino Physics and Astrophysics provides a brief review of possible signals of Lorentz violation in neutrino-oscillation experiments.

  11. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  12. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  13. Neutrino Oscillations with Nil Mass

    Science.gov (United States)

    Floyd, Edward R.

    2016-09-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and ν ,bar{ν } oscillations are examined.

  14. A study of neutrino oscillations in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Raufer, Tobias Martin [Univ. College, Oxford (United Kingdom)

    2007-01-01

    MINOS is a long-baseline neutrino oscillations experiment located at Fermi National Accelerator Laboratory (FNAL), USA. It makes use of the NuMI neutrino beamline and two functionally identical detectors located at distances of ~1km and ~735km from the neutrino production target respectively. The Near Detector measures the composition and energy spectrum of the neutrino beam with high precision while the Far Detector looks for evidence of neutrino oscillations. This thesis presents work conducted in two distinct areas of the MINOS experiment: analysis of neutral current and charged current interactions. While charged current events are only sensitive to muon neutrino disappearance, neutral current events can be used to distinguish oscillations into sterile neutrinos from those involving only active neutrino species. A complete, preliminary neutral current study is performed on simulated data. This is followed by a more detailed investigation of neutral current neutrino interactions in the MINOS Near Detector. A procedure identifying neutral current interactions and rejecting backgrounds due to reconstruction failures is developed. Two distinct event classification methods are investigated. The selected neutral current events in the Near Detector are used to extract corrections to the neutral current cross-section in the MINOS Monte Carlo simulation as a function of energy. The resulting correction factors are consistent with unity. The main MINOS charged current neutrino disappearance analysis is described. We present the Monte Carlo tuning procedure, event selection, extrapolation from Near to Far Detector and fit for neutrino oscillations. Systematic errors on this measurement are evaluated and discussed in detail. The data are consistent with neutrino oscillations with the following parameters: 2.74 $+0.44\\atop{-0.26}$ x 10-3 eV2 and sin2(2θ23) > 0.87 at 68% confidence level.

  15. A long baseline RICH with a 27-kiloton water target and radiator for detection of neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Ypsilantis, T.; Seguinot, J.; Zichichi, A.

    1997-01-01

    A 27 kt water volume is investigated as a target for a long baseline neutrino beam from CERN to Gran Sasso. Charged secondaries from the neutrino interactions produce Cherenkov photons in water which are imaged as rings by a spherical mirror. The photon detector elements are 14 400 photomultipliers (PM`s) of 127 mm diameter or 3600 HPD`s of 250 mm diameter with single photon sensitivity. A coincidence signal of about 300 pixel elements in time with the SPS beam starts readout in bins of 1 ns over a period of 128 ns. Momentum, direction, and velocity of hadrons and mucons are determined from the width, center, and radius of the rings, respectively. Momentum is measured if multiple scattering dominates the ring width, as is the case for most of the particles of interest. Momentum, direction, and velocity of hadrons and muons are determined from the width, center, and radius of the rings, respectively. Momentum is measured if multiple scattering dominates the ring width, as is the case for most of the particles of interest. Momentum resolutions of 1-10%, mass resolutions of 5-50 MeV, and direction resolutions of < 1 mrad are achievable. Thresholds in water for muons, pions, kaons, and protons are 0.12, 0.16, 0.55, and 1.05 GeV/c, respectively. Electrons and gammas can be measured with energy resolution {sigma}{sub E}/E{approx}8.5%/{radical}E(GeV) and with direction resolution {approx} 1 mrad. The detector can be sited either inside a Gran Sasso tunnel or above ground because it is directional and the SPS beam is pulsed; thus the rejection of cosmic ray background is excellent.

  16. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  17. Neutrino Oscillations with Three Active and Three Sterile Neutrinos

    Science.gov (United States)

    Kisslinger, Leonard S.

    2016-07-01

    This is an extension of estimates of the probability of μ to e neutrino oscillation with one sterile neutrino to three sterile neutrinos, using a 6x6 matrix. Since the mixing angle for only one sterile neutrino has been experimentally determined, we estimate the μ to e neutrino oscillation probability with different mixing angles for two of the sterile neutrinos.

  18. Solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    Srubabati Goswami

    2004-02-01

    This article summarises the status of the solar neutrino oscillation phenomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed areas obtained from global solar analysis and demonstrate the preference of the solar data towards the large-mixing-angle (LMA) MSW solution. A clear confirmation in favour of the LMA solution comes from the KamLAND reactor neutrino data. the KamLAND spectral data in conjunction with the global solar data further narrows down the allowed LMA region and splits it into two allowed zones - a low $ m^{2}$ region (low-LMA) and high $ m^{2}$ region (high-LMA). We demonstrate through a projected analysis that with an exposure of 3 kton-year (kTy) KamLAND can remove this ambiguity.

  19. Massive neutrinos, Lorentz invariance dominated standard model and the phenomenological approach to neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Soln, Josip [Army Research Laboratory (ret.), JZS Phys-Tech, Vienna, VA 22182 (United States)], E-mail: soln.phystech@cox.net

    2009-08-15

    For the electroweak interactions, the massive neutrino perturbative kinematical procedure is developed in the massive neutrino Fock space. The perturbation expansion parameter is the ratio of neutrino mass to its energy. This procedure, within the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)-modified electroweak Lagrangian, calculates the cross-sections with the new neutrino energy projection operators in the massive neutrino Fock space, resulting in the dominant Lorentz invariant standard model massless flavor neutrino cross-sections. As a consequence of the kinematical relations between the massive and massless neutrinos, some of the neutrino oscillation cross-sections are Lorentz invariance violating. But all these oscillating cross-sections, some of which violate the flavor conservation, being proportional to the squares of neutrino masses are practically unobservable in the laboratory. However, these neutrino oscillating cross-sections are consistent with the original Pontecorvo neutrino oscillating transition probability expression at short time (baseline), as presented by Dvornikov. From these comparisons, by mimicking the time dependence of the original Pontecorvo neutrino oscillating transition probability, one can formulate the dimensionless neutrino intensity-probability I, by phenomenologically extrapolating the time t, or, equivalently the baseline distance L away from the collision point for the oscillating differential cross-section. For the incoming neutrino of 10 MeV in energy and neutrino masses from Fritzsch analysis with the neutrino mixing matrix of Harrison, Perkins and Scott, the baseline distances at the first two maxima of the neutrino intensity are L{approx_equal}281 and 9279 km. The intensity I at the first maximum conserves the flavor, while at the second maximum, the intensities violate the flavor, respectively, in the final and initial state. At the end some details are given as to how one should be able to verify experimentally these

  20. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  1. Atmospheric Neutrino Oscillations in Antares

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, J.

    2013-04-15

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm{sub 32}{sup 2}=(3.1±0.9)⋅10{sup −3}eV{sup 2} is obtained, in good agreement with the world average value.

  2. Neutrino Oscillations with Nil Mass

    CERN Document Server

    Floyd, Edward R

    2016-01-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and $\\bar{\

  3. Bruno Pontecorvo and Neutrino Oscillations

    Directory of Open Access Journals (Sweden)

    Samoil M. Bilenky

    2013-01-01

    Full Text Available I discuss briefly in this review, dedicated to the centenary of the birth of the great neutrino physicist Bruno Pontecorvo, the following ideas he proposed: (i the radiochemical method of neutrino detection; (ii the μ - e universality of the weak interaction; (iii the accelerator neutrino experiment which allowed to prove that muon and electron neutrinos are different particles (the Brookhaven experiment. I consider in some details Pontecorvo's pioneering idea of neutrino masses, mixing, and oscillations and the development of this idea by Pontecorvo, by Pontecorvo and Gribov, and by Pontecorvo and myself.

  4. OPERA neutrino oscillation search: Status and perspectives

    Science.gov (United States)

    Gornushkin, Yu.

    2016-07-01

    OPERA is a long-baseline neutrino experiment at the Gran Sasso laboratory (LNGS) designed to search for ν_{{μ}}^{} → ν_{{τ}}^{} oscillations in a direct appearance mode on an event by event basis. OPERA took data in 2008-2012 with the CNGS neutrino beam from CERN. The data analysis is ongoing, with the goal of establishing ν_{{τ}}^{} appearance with a high significance. Complementary studies of the ν_{{μ}}^{} → ν_{{e}}^{} oscillations and atmospheric muons fluxes were performed as well. Current results of the experiment are presented and perspectives discussed.

  5. Resonant solar neutrino oscillation versus laboratory neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chong-Sa

    1987-02-01

    The interplay between resonant solar neutrino oscillations and neutrino oscillations in laboratory experiments is investigated in a 3 generation model. Due to the assumed hierarchy of neutrino masses, together with our choice of a convenient parameterization of the 3 generation mixing matrix, we can derive a simple analytic formula which reduces the solar neutrino problem to an effective 2 generation problem. The reduction makes it apparent that the allowed range of mixing and mass parameters crucially depend on whether the survival probability of solar neutrinos S satisfies S greater than or equal to 1/3 or not. The formulae for probabilities of laboratory neutrino oscillations are also greatly simplified. We argue that a combination of the observed solar neutrino depletion and data obtained from reactor experiments seems to rule out some range of neutrino masses. If a sizable nu/sub ..mu../ ..-->.. nu/sub e/ oscillation is observed at accelerators, as suggested at this Workshop, it severely restricts the range of 2 mixing angles.

  6. Phenomenology of neutrino oscillations at the neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian

    2011-12-19

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain {mu}{sup +} {yields} {nu}{sub e} {yields} {nu}{sub {mu}} {yields} {mu}{sup -} and the right-charge muons coming from the chain {mu}{sup +} {yields} anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} {yields} {mu}{sup -} (similar to {mu}{sup -} chains), where {nu}{sub e} {yields} {nu}{sub {mu}} and anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of {tau} decays, generated by appearance channels {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub e} {yields} {nu}{sub {tau}}, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero {theta}{sub 13}, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the

  7. Neutrino Masses and Flavor Oscillations

    Science.gov (United States)

    Wang, Yifang; Xing, Zhi-Zhong

    2016-10-01

    This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects, will also be addressed.

  8. Neutrino Interactions and Long-Baseline Experiments

    CERN Document Server

    Mosel, Ulrich

    2016-01-01

    The extraction of neutrino mixing parameters and the CP-violating phase requires knowledge of the neutrino energy. This energy must be reconstructed from the final state of a neutrino-nucleus reaction since all long-baseline experiments use nuclear targets. This reconstruction requires detailed knowledge of the neutrino reactions with bound nucleons and of the final state interactions of hadrons with the nuclear environment. Quantum-kinetic transport theory can be used to build an event generator for this reconstruction that takes basic nuclear properties, such as binding, into account. Some examples are discussed that show the effects of nuclear interactions on observables in long-baseline experiments

  9. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias, E-mail: emb@kth.se [Department of Theoretical Physics, School of Engineering Sciences, Royal Institute of Technology (KTH) - AlbaNova University Center, SE-106 91 Stockholm (Sweden); Edsjoe, Joakim, E-mail: edsjo@physto.se [Department of Physics, Stockholm University - AlbaNova University Center, SE-106 91 Stockholm (Sweden); Ohlsson, Tommy, E-mail: tommy@theophys.kth.se [Department of Theoretical Physics, School of Engineering Sciences, Royal Institute of Technology (KTH) - AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2011-12-15

    The prospects to detect neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes.

  10. Light sterile neutrinos, lepton number violating interactions and short baseline neutrino experiments

    Science.gov (United States)

    Babu, K. S.; McKay, D. W.; Mocioiu, Irina; Pakvasa, Sandip

    2016-06-01

    We develop the consequences of introducing a purely leptonic, non-standard interaction (NSI) ΔL = 2, four-fermion effective Lagrangian and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) results from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford medium Energy Neutrino Experiment (KARMEN), seeking a reconciliation between the two. Both v¯e appearance from v¯μ oscillation and v¯e survival after production from NSI decay of the µ+ contribute to the expected signal. This is a unique feature of our scheme. We comment on further implications of the lepton number violating interaction and sterile neutrino-standard neutrino mixing.

  11. Magnus approximation in neutrino oscillations

    Science.gov (United States)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-04-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  12. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    E Kh Akhmedov

    2000-01-01

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we review the parametric resonance of neutrino oscillations in matter. In particular, physical interpretation of the effect and the prospects of its experimental observation in oscillations of solar and atmospheric neutrinos in the earth are discussed.

  13. Review of neutrino oscillations with sterile and active neutrinos

    Science.gov (United States)

    Kisslinger, Leonard S.

    2016-08-01

    Recently neutrino oscillation experiments have shown that it is very likely that there are one or two sterile neutrinos. In this review neutrino oscillations with one, two, three sterile and three active neutrinos, and parameters that are consistent with experiments, are reviewed.

  14. Review of Neutrino Oscillations With Sterile and Active Neutrinos

    CERN Document Server

    Kisslinger, Leonard S

    2016-01-01

    Recently neutrino oscillation experiments have shown that it is very likely that there are one or two sterile neutrinos. In this review neutrino oscillations with one, two, three sterile and three active neutrinos, and parameters that are consistent with experiments, are reviewed.

  15. Long-Baseline Neutrino Physics in the U.S

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Sacha E. [Department of Physics, University of Texas at Austin, 1 University Station C1600, Austin, Texas 78712 (United States)

    2007-06-15

    Long-baseline neutrino oscillation physics in the U.S. is centered at the Fermi National Accelerator Laboratory (FNAL), in particular at the Neutrinos at the Main Injector (NuMI) beamline commissioned in 2004-2005. Already, the MINOS experiment has published its first results confirming the disappearance of {nu}{sub {mu}}'s across a 735 km baseline. The forthcoming NO{nu}A experiment will search for the transition {nu}{sub {mu}}{yields}{nu}{sub e} and use this transition to understand the mass heirarchy of neutrinos. These, as well as other conceptual ideas for future experiments using the NuMI beam, will be discussed. The turn-on of the NuMI facility has been positive, with over 310 kW beam power achieved. Plans for increasing the beam intensity once the Main Injector accelerator is fully-dedicated to the neutrino program will be presented.

  16. Neutrino oscillations and Big Bang Nucleosynthesis

    OpenAIRE

    Bell, Nicole F.

    2001-01-01

    We outline how relic neutrino asymmetries may be generated in the early universe via active-sterile neutrino oscillations. We discuss possible consequences for big bang nucleosynthesis, within the context of a particular 4-neutrino model.

  17. Neutrino production coherence and oscillation experiments

    CERN Document Server

    Akhmedov, Evgeny; Smirnov, Alexei

    2012-01-01

    Neutrino oscillations are only observable when the neutrino production, propagation and detection coherence conditions are satisfied. In this paper we consider in detail neutrino production coherence, taking \\pi\\to \\mu \

  18. Four-Neutrino Oscillations at SNO

    CERN Document Server

    González-Garciá, M Concepción

    2001-01-01

    We discuss the potential of the Sudbury Neutrino Observatory (SNO) to constraint the four-neutrino mixing schemes favoured by the results of all neutrino oscillations experiments. These schemes allow simultaneous transitions of solar $\

  19. Status of sterile neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Schwetz, Thomas

    2013-02-15

    There are several independent hints for neutrino oscillations with a mass-squared difference at the eV{sup 2} scale. If confirmed, this would imply the existence of sterile neutrinos. I discuss the present status of the hints for ν{sub e} disappearance from reactor experiments and Gallium source experiments, as well as from the LSND and MiniBooNE ν{sub μ}→ν{sub e} appearance searches. A consistent interpretation of the global data in terms of neutrino oscillations is challenged by the non-observation of a positive signal in ν{sub μ} disappearance experiments. There is a strong tension in the global data, irrespective of the number of eV-scale neutrino states.

  20. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  1. High intensity neutrino oscillation facilities in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  2. Neutrino Oscillations: A Global Analysis

    CERN Document Server

    Fogli, G L; Marrone, A; Montanino, D; Palazzo, A; Rotunno, A M

    2003-01-01

    We review the status of the neutrino oscillation physics (as of June 2003), with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters in a three generation approach. We consider first the nu_mu-->nu_tau flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at 1 sigma (and dof=1) as: Delta m^2=(2.6 +-0.4) x 10^-3 eV^2 and sin^2(2theta)=1.00+0.00-0.05. Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we analyze the energy spectrum of reactor neutrino events recently observed at KamLAND and combine them with solar and terrestrial neutrino data. We find that the solution to the solar neutrino problem at large mixing angle (LMA) is basically split into two sub-regions, that we denote as LMA-I and LMA-II. The LMA-I solution, characterized by lower values of the squared neutrino mass gap, is favored by...

  3. Active-sterile neutrino oscillations in the early universe with dynamical neutrino asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Saviano, Ninetta

    2013-04-15

    In the last recent years different anomalies observed in short-baseline neutrino oscillation experiments seem to point towards the existence of light sterile neutrinos. These sterile neutrinos can also be produced in the early universe by oscillations of the active neutrinos and can affect different cosmological observables. In order to quantify the abundance of sterile neutrinos, we perform a detailed study of the flavor evolution in (3+1) and (2+1) oscillation schemes, in presence of dynamical primordial neutrino asymmetries L. We find that for |L|≲10{sup −4}eV sterile neutrinos would be completely thermalized creating a tension with the cosmological data. An asymmetry of |L|≳10{sup −3} is then required in order to suppress the sterile production and to reconcile them with cosmology.

  4. Global analyses of neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, M.C., E-mail: maria.gonzalez-garcia@stonybrook.edu [Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d' Estructura i Constituents de la Matèria and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840 (United States); Maltoni, Michele, E-mail: michele.maltoni@csic.es [Instituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Schwetz, Thomas, E-mail: schwetz@kit.edu [Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe (Germany)

    2016-07-15

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  5. Global Analyses of Neutrino Oscillation Experiments

    CERN Document Server

    Gonzalez-Garcia, M C; Schwetz, Thomas

    2015-01-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  6. Global analyses of neutrino oscillation experiments

    Science.gov (United States)

    Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2016-07-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  7. Global Analysis of Neutrino Oscillation

    CERN Document Server

    Goswami, S; Choubey, S; Goswami, Srubabati; Bandyopadhyay, Abhijit; Choubey, Sandhya

    2005-01-01

    We present the constraints on neutrino oscillation parameters $\\Delta m^2_{\\odot}$ and $\\theta_{\\odot}$ governing the solar neutrino oscillations from two generation analysis of solar and KamLAND data. We include the latest 766.3 ton year KamLAND data in our analysis. We also present the allowed values of parameters $\\Delta m^2_{atm}$ and $\\sin^2\\theta_{atm}$ from two generation oscillation analysis of SuperKamiokande atmospheric and K2K data. For both cases we discuss the precision achieved in the present set of experiments and also how the precision can be improved in future. We also obtain the bounds on $\\theta_{13}$ from three generation analysis of global oscillation data. We emphasise on the roles played by different data sets in constraining the allowed parameter ranges.

  8. Global Analysis of Neutrino Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Srubabati [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019 (India); Bandyopadhyay, Abhijit [Theory Group, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta 700 064 (India); Choubey, Sandhya [INFN, Sezione di Trieste and Scuola Internazionale Superiore di Studi Avanzati, I-34014, Trieste (Italy)

    2005-06-15

    We present the constraints on neutrino oscillation parameters {delta}m{sub -}bar {sup 2} and {theta}{sub -}bar governing the solar neutrino oscillations from two generation analysis of solar and KamLAND data. We include the latest 766.3 ton year KamLAND data in our analysis. We also present the allowed values of parameters {delta}m{sub atm}{sup 2} and sin{sup 2}{theta}{sub atm} from two generation oscillation analysis of SuperKamiokande atmospheric and K2K data. For both cases we discuss the precision achieved in the present set of experiments and also how the precision can be improved in future. We also obtain the bounds on {theta}{sub 13} from three generation analysis of global oscillation data. We emphasise on the roles played by different data sets in constraining the allowed parameter ranges.

  9. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    NARCIS (Netherlands)

    S. Adrián-Martínez; . et al.; M.P. Decowski; P. Kooijman; G. Lim; D. Palioselitis; E. Presani; E. de Wolf

    2012-01-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoi

  10. Neutrino oscillations as a probe of dark energy.

    Science.gov (United States)

    Kaplan, David B; Nelson, Ann E; Weiner, Neal

    2004-08-27

    We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. As an example of modifications to the standard picture, we consider simple models that may simultaneously account for the LSND anomaly, KamLAND, K2K, and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE.

  11. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T R; Davenne, T; Densham, C; Fitton, M; Kelliher, D; Loveridge, P; Machida, S; Prior, C; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Wildner, E; Efthymiopoulos, I; Garoby, R; Gilardoni, S; Hansen, C; Benedetto, E; Jensen, E; Kosmicki, A; Martini, M; Osborne, J; Prior, G; Stora, T; Melo-Mendonca, T; Vlachoudis, V; Waaijer, C; Cupial, P; Chancé, A; Longhin, A; Payet, J; Zito, M; Baussan, E; Bobeth, C; Bouquerel, E; Dracos, M; Gaudiot, G; Lepers, B; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V; Bielski, J; Kozien, M; Lacny, L; Skoczen, B; Szybinski, B; Ustrycka, A; Wroblewski, A; Marie-Jeanne, M; Balint, P; Fourel, C; Giraud, J; Jacob, J; Lamy, T; Latrasse, L; Sortais, P; Thuillier, T; Mitrofanov, S; Loiselet, M; Keutgen, Th; Delbar, Th; Debray, F; Trophine, C; Veys, S; Daversin, C; Zorin, V; Izotov, I; Skalyga, V; Burt, G; Dexter, A C; Kravchuk, V L; Marchi, T; Cinausero, M; Gramegna, F; De Angelis, G; Prete, G; Collazuol, G; Laveder, M; Mazzocco, M; Mezzetto, M; Signorini, C; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Migliozzi, P; Moro, R; Palladino, V; Gelli, N; Berkovits, D; Hass, M; Hirsh, T Y; Schaumann, M; Stahl, A; Wehner, J; Bross, A; Kopp, J; Neuffer, D; Wands, R; Bayes, R; Laing, A; Soler, P; Agarwalla, S K; Villanueva, A Cervera; Donini, A; Ghosh, T; Cadenas, J J Gómez; Hernández, P; Martín-Albo, J; Mena, O; Burguet-Castell, J; Agostino, L; Buizza-Avanzini, M; Marafini, M; Patzak, T; Tonazzo, A; Duchesneau, D; Mosca, L; Bogomilov, M; Karadzhov, Y; Matev, R; Tsenov, R; Akhmedov, E; Blennow, M; Lindner, M; Schwetz, T; Martinez, E Fernández; Maltoni, M; Menéndez, J; Giunti, C; García, M C González; Salvado, J; Coloma, P; Huber, P; Li, T; López-Pavón, J; Orme, C; Pascoli, S; Meloni, D; Tang, J; Winter, W; Ohlsson, T; Zhang, H; Scotto-Lavina, L; Terranova, F; Bonesini, M; Tortora, L; Alekou, A; Aslaninejad, M; Bontoiu, C; Kurup, A; Jenner, L J; Long, K; Pasternak, J; Pozimski, J; Back, J J; Harrison, P; Beard, K; Bogacz, A; Berg, J S; Stratakis, D; Witte, H; Snopok, P; Bliss, N; Cordwell, M; Moss, A; Pattalwar, S; Apollonio, M

    2013-01-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  12. Configurations of the Long-Baseline Neutrino Experiment

    CERN Document Server

    Barger, Vernon; Chatterjee, Animesh; Gandhi, Raj; Marfatia, Danny; Masud, Mehedi

    2014-01-01

    We perform a comprehensive study of the ability of the Long-Baseline Neutrino Experiment (LBNE) to answer outstanding questions in the neutrino sector. We consider the sensitivities to the mass hierarchy, the octant of $\\theta_{23}$ and to CP violation using data from beam and atmospheric neutrinos. We evaluate the dependencies on the precision with which $\\theta_{13}$ will be measured by reactor experiments, on the detector size, beam power and exposure time, on detector magnetization, and on the systematic uncertainties achievable with and without a near detector. We find that a 35 kt LBNE with a near detector will resolve the eight-fold degeneracy that is intrinsic to long baseline experiments and will meet the primary goals of oscillation physics that it is designed for.

  13. The minimal 3+2 neutrino model versus oscillation anomalies

    CERN Document Server

    Donini, A; Lopez-Pavon, J; Maltoni, M; Schwetz, T

    2012-01-01

    We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard $3\

  14. Compact Perturbative Expressions For Neutrino Oscillations in Matter

    CERN Document Server

    Denton, Peter B; Parke, Stephen J

    2016-01-01

    We further develop and extend a recent perturbative framework for neutrino oscillations in uniform matter density so that the resulting oscillation probabilities are accurate for the complete matter potential versus baseline divided by neutrino energy plane. This extension also gives the exact oscillation probabilities in vacuum for all values of baseline divided by neutrino energy. The expansion parameter used is related to the ratio of the solar to the atmospheric $\\Delta m^2$ scales but with a unique choice of the atmospheric $\\Delta m^2$ such that certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using a mixing matrix formulation, this framework has the exceptional feature that the neutrino oscillation probability in matter has the same structure as in vacuum, to all orders in the expansion parameter. It also contains all orders in the matter potential and $\\sin\\theta_{13}$. It facilitates immediate physical interpretation of the analytic results, and makes the expression...

  15. GENIUS project, neutrino oscillations and Cosmology neutrinos reveal their nature?

    CERN Document Server

    Czakon, M; Zralek, M; Gluza, J

    2000-01-01

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and $(\\beta\\beta)_{0 \

  16. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Justin; /University Coll. London; Whitehead, Lisa; /Brookhaven

    2010-01-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 x 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented.

  17. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Lisa [Brookhaven National Laboratory, Building 510E, P.O. Box 5000, Upton, NY 11973-5000 (United States); Evans, Justin [Physics building, University College London, Gower Street, London - WC1E 6BT (United Kingdom)

    2010-07-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a nonzero value for the neutrino mixing angle {theta}{sub 13}. The present 7x10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented. (author)

  18. Pseudoscalar—sterile neutrino interactions: reconciling the cosmos with neutrino oscillations

    Science.gov (United States)

    Archidiacono, Maria; Gariazzo, Stefano; Giunti, Carlo; Hannestad, Steen; Hansen, Rasmus; Laveder, Marco; Tram, Thomas

    2016-08-01

    The Short BaseLine (SBL) neutrino oscillation anomalies hint at the presence of a sterile neutrino with a mass of around 1 eV. However, such a neutrino is incompatible with cosmological data, in particular observations of the Cosmic Microwave Background (CMB) anisotropies. However, this conclusion can change by invoking new physics. One possibility is to introduce a secret interaction in the sterile neutrino sector mediated by a light pseudoscalar. In this pseudoscalar model, CMB data prefer a sterile neutrino mass that is fully compatible with the mass ranges suggested by SBL anomalies. In addition, this model predicts a value of the Hubble parameter which is completely consistent with local measurements.

  19. Pseudoscalar—sterile neutrino interactions: reconciling the cosmos with neutrino oscillations

    DEFF Research Database (Denmark)

    Archidiacono, Maria; Gariazzo, Stefano; Giunti, Carlo;

    2016-01-01

    The Short BaseLine (SBL) neutrino oscillation anomalies hint at the presence of a sterile neutrino with a mass of around 1 eV. However, such a neutrino is incompatible with cosmological data, in particular observations of the Cosmic Microwave Background (CMB) anisotropies. However, this conclusio....... In addition, this model predicts a value of the Hubble parameter which is completely consistent with local measurements....

  20. Multipole expansion method for supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Huaiyu; Shalgar, Shashank, E-mail: duan@unm.edu, E-mail: shashankshalgar@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  1. Collective neutrino oscillations and spontaneous symmetry breaking

    Science.gov (United States)

    Duan, Huaiyu

    2015-08-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.

  2. Collective neutrino oscillations and spontaneous symmetry breaking

    CERN Document Server

    Duan, Huaiyu

    2015-01-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillation...

  3. Confronting the Stochastic Neutrino Mixing Mechanism and the sterile neutrino hypothesis as a solution to the short baseline neutrino anomalies

    CERN Document Server

    Zavanin, E M; de Holanda, P C; Peres, O L G

    2015-01-01

    We compare the solutions to the short baseline neutrino anomaly based on oscillations to sterile neutrinos and the Stochastic Neutrino Mixing Mechanism (SNMM) through an analysis of the present neutrino data. The SNMM suggests worse fits than a 3 + 1 sterile neutrino model, although it cannot be discarded by present data. We propose an experiment to distinguish between both solutions, based on placing a $^8$Li source inside a 5kton-yr detector (like SNO). We studied the sensitivity of such an experiment, which makes it possible to discriminate within $2\\sigma$ the SNMM from the 3+1 sterile hypothesis for some particular values of the relevant parameters in 5 kton-years of running.

  4. Neutrino flavor oscillations in rotating matter

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We study the evolution of the neutrinos system in rotating matter. Neutrinos are supposed to be mixed massive particles interacting with background fermions by means of the electroweak forces. First we find the solutions of wave equations for the neutrino mass eigenstates in matter. Then we study the behavior of neutrino flavor eigenstates in background matter. The problems of neutrino bound states and neutrino flavor oscillations are discussed. We also derive the analog of the quantum mechanical evolution equation for the system of two flavor neutrinos in rotating matter and analyze its solution for the particular initial condition for neutrino flavor eigenstates.

  5. Neutrino oscillations in core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Ru [TU Darmstadt (Germany); University of Minnesota, MN (United States); Huther, Lutz [TU Darmstadt (Germany); Fischer, Tobias; Martinez-Pinedo, Gabriel [TU Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Qian, Yong-Zhong [University of Minnesota, MN (United States)

    2013-07-01

    Neutrino oscillations play an important role in determining the spectra of neutrinos emitted from core-collapse supernova and must be considered in the analysis of supernova neutrino detection to understand both the supernova dynamics and the unknown neutrino mass hierarchy. We have studied neutrino oscillations in supernovae using the emission spectra of neutrinos and the dynamically evolving supernova density profile from a state-of-the-art supernova model. We find that in this model, different regions of neutrino oscillations are well separated. Collective neutrino oscillations happen at the innermost part such that the spectra of electron neutrinos and mu/tau neutrinos are partly swapped for the first few seconds in the cooling phase. Then, the high and low MSW resonances that occur after collective oscillations are both adiabatic. Using these results, we find that in this model, neutrino oscillations have little effect on the nucleosynthesis in the neutrino-driven winds. However, the detection of such a signal could possibly allow us to differentiate the neutrino mass hierarchy and to extract the shock revival time.

  6. Matter Effects On Neutrino Oscillations

    Science.gov (United States)

    Gordon, Michael

    An introduction to neutrino oscillations in vacuum is presented, followed by a survey of various techniques for obtaining either exact or approximate expressions for numu → nue oscillations in matter. The method developed by Arafune, Koike, and Sato uses a perturbative analysis to find an approximation for the evolution operator. The method used by Freund yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the eigenvalues and eigenvectors, and then using those to find modified mixing angles with the matter effect taken into account. The method devised by Mann, Kafka, Schneps, and Altinok produces an exact expression for the oscillation by determining explicitly the evolution operator. These methods are compared to each other using the T2K, MINOS, NOnuA, and LBNE parameters.

  7. Nuclear Physics and Astrophysics of Neutrino Oscillations

    CERN Document Server

    Balantekin, A B

    2016-01-01

    For a long time very little experimental information was available about neutrino properties, even though a minute neutrino mass has intriguing cosmological and astrophysical implications. This situation has changed in recent decades: intense experimental activity to measure many neutrino properties took place. Some of these developments and their implications for astrophysics and cosmology are briefly reviewed with a particular emphasis on neutrino magnetic moments and collective neutrino oscillations

  8. Collective Oscillations and Diffuse Supernova Neutrino Background

    Science.gov (United States)

    Kar, Kamales; Chakraborty, Sovan; Choubey, Sandhya

    2012-01-01

    Core-collapse supernova explosions give rise to the emission of a huge flux of neutrinos of all flavors. In this article we describe the phenomenon neutrino-neutrino interaction of these weakly interacting particles at the very high density central region of the stellar core giving rise to non-linear collective oscillations in both the neutrino and antineutrino sectors. The effect of the collective oscillations on the Diffuse Supernova Neutrino Background is elaborated with emphasis on its future detection and the connection of that to neutrino mass hierarchy.

  9. Neutrino Oscillation Physics Potential of the T2K Experiment

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodr'iguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; King, S; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Riccio, C; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; S'anchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shaker, F; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-01-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle $\\theta_{13}$ have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal $\\sin^22\\theta_{23}$, the octant of $\\theta_{23}$, and the mass hierarchy, in addition to the measurements of $\\delta_{CP}$, $\\sin^2\\theta_{23}$, and $\\Delta m^2_{32}$, for various combinations of $\

  10. A New Type of Accessible Environmental Influences on Neutrino Oscillation

    Institute of Scientific and Technical Information of China (English)

    CHANG Chao-Hsi; DONG Hui-Shi; FENG Tai-Fu; FENG Xi-Chen; LI Xue-Qian; MA Feng-Cai; TAO Zhi-Jian

    2001-01-01

    Considering a new type of environment influences,we use a two-energy-level (v1-v2) quantum system to investigate neutrino oscillations in medium.Besides the matter effects derived by Wolfenstein,there may exist extra terms due to a unitary evolution of the system between pure and mixed states,so the evolution equation is modified obviously.We show that the extra terms may play some role and induce observable effects in solar neutrino problem, especially,in the long baseline neutrino oscillation experiments which are under serious consideration recently,if the parameters fall into a suitable region.

  11. Neutrino Masses and Oscillations

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  12. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2012-08-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δ m322 = (3.1 ± 0.9) ṡ10-3eV2 is obtained, in good agreement with the world average value.

  13. Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    CERN Document Server

    Adrian-Martinez, S; Albert, A; Andre, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhoefer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J -L; Galata, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gomez-Gonzalez, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Herold, B; Hoessl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefevre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Riviere, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Samtleben, D F E; Sanchez-Losa, A; Sapienza, P; Schmid, J; Schnabel, J; Schoeck, F; Schuller, J -P; Schuessler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallee, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zuniga, J

    2012-01-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of $\\Delta m_{32}^2=(3.1\\pm 0.9)\\cdot 10^{-3}$ eV$^2$ is obtained, in good agreement with the world average value.

  14. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/ Paranimf 1, 46730 Gandia (Spain); Al Samarai, I. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, 68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/ Paranimf 1, 46730 Gandia (Spain); Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); Aubert, J.-J. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); and others

    2012-08-14

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of {Delta}m{sub 32}{sup 2}=(3.1{+-}0.9) Dot-Operator 10{sup -3} eV{sup 2} is obtained, in good agreement with the world average value.

  15. Measurement of Atmospheric Neutrino Oscillations with Very Large Volume Neutrino Telescopes

    Directory of Open Access Journals (Sweden)

    J. P. Yáñez

    2015-01-01

    Full Text Available Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.

  16. Measurement of atmospheric neutrino oscillations with very large volume neutrino telescopes

    CERN Document Server

    Yañez, J P

    2015-01-01

    Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies, and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters, and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.

  17. Another look at synchronized neutrino oscillations

    CERN Document Server

    Akhmedov, Evgeny

    2016-01-01

    In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena -- synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.

  18. Another look at synchronized neutrino oscillations

    Science.gov (United States)

    Akhmedov, Evgeny; Mirizzi, Alessandro

    2016-07-01

    In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena - synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.

  19. Systematic errors in long baseline oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A.; /Fermilab

    2006-02-01

    This article gives a brief overview of long baseline neutrino experiments and their goals, and then describes the different kinds of systematic errors that are encountered in these experiments. Particular attention is paid to the uncertainties that come about because of imperfect knowledge of neutrino cross sections and more generally how neutrinos interact in nuclei. Near detectors are planned for most of these experiments, and the extent to which certain uncertainties can be reduced by the presence of near detectors is also discussed.

  20. Results and Status of the T2K and NOvA long-baseline neutrino experiments

    Science.gov (United States)

    Muether, Mathew

    2016-03-01

    The discovery of neutrino oscillations and the resulting implication that neutrinos have mass, recently awarded the Nobel Prize in Physics, has bolstered a world-wide effort to exploit this effect as a handle on the properties of neutrinos. In the decades since the initial discovery of neutrino oscillations, great strides have been made in understanding the nature of these elusive particles, yet important and fundamental questions remain open, such as: How are the neutrino masses ordered? And Do neutrinos and antineutrinos oscillate differently? The current generation of accelerator based long-baseline neutrino oscillation experiments, T2K in Japan and NOvA in the United States, are actively pursuing the answers to these questions. In this talk, I will review the recent results and current status of the T2K and NOvA long-baseline neutrino experiments.

  1. Recherche des oscillations de Neutrinos $\

    CERN Document Server

    Gangler, E

    1997-01-01

    Le detecteur nomad, place sur le faisceau de neutrinos wide-band-beam du sps, de contamination en neutrino tau marginale, permet de rechercher des oscillations neutrino muon - tau dans la region de pertinence cosmologique et de distinguer statistiquement les courants charges des neutrinos tau essentiellement par leur mesure cinematique. Une large part du travail de these a donc ete consacree a la reconstruction des evenements dans les chambres a derive, cible instrumentee et cur de l'experience, dont la physique de detection est decrite. Une methode de recherche de traces fut developpee, utilisant certaines informations d'un autre sous-detecteur de nomad, le trd. Pour combler une perte d'efficacite de reconstruction, une methode de recherche de traces courtes s'appuyant sur des vertex deja constitues fut developpee en exploitant les potentialites du filtre de kalman, algorithme iteratif d'ajustement de traces. Ces methodes sont utilisees en production par la collaboration. Cette these porte sur la recherche d...

  2. Are solar neutrino oscillations robust?

    CERN Document Server

    Miranda, O G; Valle, J W F

    2006-01-01

    Prompted by the recent 766.3 ton-yr data sample just released by the KamLAND collaboration we have reconsidered the status of the large mixing angle (LMA) oscillation (OSC) interpretation of the data in a more general framework where non-standard neutrino interactions (NSI) are present. Such interactions may be regarded as a generic feature of actual models of neutrino mass. This implies the existence of three LMA solutions, instead of the unique solution which holds in the absence of NSI, LMA-I. Moreover, in addition to the two ``light-side'' OSC+NSI solutions LMA-0 and LMA-I, there is a new ``dark-side'' solution (LMA-D) with sin^2 theta_Sol = 0.70. We give the status of all LMA OSC and OSC+NSI solutions in view of the latest solar and KamLAND data. It is unlikely that more precise KamLAND measurements will resolve the ambiguity in the determination of the solar neutrino mixing angle theta_Sol, as they are expected to constrain mainly Delta m^2. We comment on the potential of future solar neutrino experimen...

  3. Dissipative Effect in Long Baseline Neutrino Experiments

    CERN Document Server

    Oliveira, Roberto L N

    2016-01-01

    The propagation of neutrinos in long baselines experiments may be influenced by dissipation effects. Using Lindblad Master Equation we evolve neutrinos taking into account these dissipative effects. The MSW and the dissipative effects may change the probabilities behavior. In this work, we show and explain how the behavior of the probabilities can change due to the decoherence and relaxation effects acting individually with the MSW effect. A new exotic peak appears in this case and we show the difference between the decoherence and relaxation effects in the appearance of this peak. We also adapt the usual approximate expression for survival and appearance probabilities with all possible decoherence effects. We suppose the baseline of DUNE and show how each decoherence parameters change the probabilities analyzing the possible modification using numeric and analytic approach.

  4. Neutrino oscillations in the presence of super-light sterile neutrinos

    Science.gov (United States)

    Divari, Paraskevi; Vergados, John

    2016-07-01

    In this paper, we study the effect of conversion of super-light sterile neutrino (SLSN) to electron neutrino in matter like that of the Earth. In the Sun the resonance conversion between SLSN and electron neutrino via the neutral current is suppressed due to the smallness of neutron number. On the other hand, neutron number density can play an important role in the Earth, making the scenario of SLSN quite interesting. The effect of CP-violating phases on active-SLSN oscillations is also discussed. Reactor neutrino experiments with medium or short baseline may probe the scenario of SLSN.

  5. Solar models and solar neutrino oscillations

    OpenAIRE

    2004-01-01

    We provide a summary of the current knowledge, theoretical and experimental, of solar neutrino fluxes and of the masses and mixing angles that characterize solar neutrino oscillations. We also summarize the principal reasons for doing new solar neutrino experiments and what we think may be learned from the future measurements.

  6. Branch II : Neutrino Oscillations at Low Energies

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, A., E-mail: anatael@in2p3.fr [CNRS/IN2P3. Laboratoire d' Astro-Particule et Cosmologie. 10 rue Alice Domont et Leonie Duquet. Paris. 75205. Cedex 13 (France); Volpe, C., E-mail: volpe@ipno.in2p3.fr [Institut de Physique Nucleaire Orsay and University of Paris XI,CNRS/IN2P3, F-91406 Orsay cedex (France)

    2011-08-15

    We summarize here briefly the experimental and theoretical results presented at the NOW2010 workshop during the parallel session Branch II 'Oscillations at low energies'. The topics have covered open problems and recent advances in solar neutrinos, reactor and geo-neutrinos, as well as neutrinos from core-collapse supernovae.

  7. Probing Extra Dimensions with Neutrino Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Machado, P.A.N. [Instituto de Fisica, Universidade de Sao Paulo, C. P. 66.318, 05315-970 Sao Paulo (Brazil); Nunokawa, H. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, C. P. 38071, 22452-970 Rio de Janeiro (Brazil); Zukanovich Funchal, R., E-mail: zukanov@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, C. P. 66.318, 05315-970 Sao Paulo (Brazil)

    2011-08-15

    We consider a model where sterile neutrinos can propagate in a large compactified extra dimension (a) giving rise to Kaluza-Klein (KK) modes and the Standard Model left-handed neutrinos are confined to a 4-dimensional spacetime brane. The KK modes mix with the standard neutrinos modifying their oscillation pattern. We examine current experiments in this framework obtaining stringent limits on a.

  8. Constant matter neutrino oscillations in a parametrization-free formulation

    Science.gov (United States)

    Flores, L. J.; Miranda, O. G.

    2016-02-01

    Neutrino oscillations are now a well-established and deeply studied phenomena. Their mixing parameters, except for the C P phase, are measured with good accuracy. The three-neutrino oscillation picture in matter is currently of great interest due to the different long-baseline neutrino experiments that are already running or under construction. In this work, we reanalyze the exact expression for the neutrino probabilities (in a constant density medium) and introduce an approximate formula. Our results are shown in a formulation that is independent of the parametrization and could be useful for unitary tests of the leptonic mixing matrix. We illustrate how the approximation, besides being simple, can reproduce the neutrino probabilities with good accuracy.

  9. Constant matter neutrino oscillations in a parametrization-free formulation

    CERN Document Server

    Flores, L J

    2015-01-01

    Neutrino oscillations are now a well stablished and deeply studied phenomena. Its mixing parameters, except for the CP-phase, are measured with good accuracy. Three neutrino oscillation picture in matter is currently of great interest due to the different long baseline neutrino experiments that are already running or under construction. In this work we re-analyze the exact expression for the neutrino probabilities (in a constant density medium) and introduce an approximate formula. Our results are showed in a formulation that is independent of the parametrization and could be useful for unitary tests of the leptonic mixing matrix. We illustrate how the approximation, besides being simple, can reproduce the neutrino probabilities with good accuracy.

  10. Neutrino Flavor Oscillations without Flavor Mixing Angles

    CERN Document Server

    Dienes, Keith R; Dienes, Keith R.; Sarcevic, Ina

    2001-01-01

    We demonstrate that sizable neutrino flavor oscillations can be generated in a model with large extra spacetime dimensions even if the physics on the brane is flavor-diagonal, the bulk neutrino theory is flavor-neutral, and the brane/bulk couplings are flavor-blind. We also discuss several phenomenological aspects of the ``bulk-mediated'' neutrino oscillations inherent in this model. [Based on talks given at Neutrino 2000 (Sudbury, Canada, June 2000), the Aspen Workshop on Neutrinos with Mass (Aspen, Colorado, July 2000), and DARK 2000 (Heidelberg, Germany, July 2000).

  11. Field theory description of neutrino oscillations

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We review various field theory approaches to the description of neutrino oscillations in vacuum and external fields. First we discuss a relativistic quantum mechanics based approach which involves the temporal evolution of massive neutrinos. To describe the dynamics of the neutrinos system we use exact solutions of wave equations in presence of an external field. It allows one to exactly take into account both the characteristics of neutrinos and the properties of an external field. In particular, we examine flavor oscillations an vacuum and in background matter as well as spin flavor oscillations in matter under the influence of an external electromagnetic field. Moreover we consider the situation of hypothetical nonstandard neutrino interactions with background fermions. In the case of ultrarelativistic particles we reproduce an effective Hamiltonian which is used in the standard quantum mechanical approach for the description of neutrino oscillations. The corrections to the quantum mechanical Hamiltonian a...

  12. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    CERN Document Server

    Acciarri, R.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; Anderson, J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Anghel, I.; Anjos, J. d.; Ankowski, A.; Antonello, M.; Aranda Fernandez, A.; Ariga, A.; Ariga, T.; Aristizabal, D.; Arrieta-Diaz, E.; Aryal, K.; Asaadi, J.; Asner, D.; Athar, M.S.; Auger, M.; Aurisano, A.; Aushev, V.; Autiero, D.; Avila, M.; Back, J.J.; Bai, X.; Baibussinov, B.; Baird, M.; Balantekin, B.; Baller, B.; Ballett, P.; Bambah, B.; Bansal, M.; Bansal, S.; Barker, G.J.; Barletta, W.A.; Barr, G.; Barros, N.; Bartosz, B.; Bartoszek, L.; Bashyal, A.; Bass, M.; Bay, F.; Beacom, J.; Behera, B.R.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benetti, P.A.; Bercellie, A.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, R.; Bertolucci, S.; Bhandari, B.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Biery, K.; Bishai, M.; Blackburn, T.; Blake, A.; Blaszczyk, F. d. M.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Bocean, V.; Boffelli, F.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bonesini, M.; Boone, T.; Booth, C.; Bordoni, S.; Borysova, M.; Bourguille, B.; Boyd, S.B.; Brailsford, D.; Brandt, A.; Bremer, J.; Brice, S.; Bromberg, C.; Brooijmans, G.; Brown, G.; Brown, R.; Brunetti, G.; Bu, X.; Buchanan, N.; Budd, H.; Bugg, B.; Calafiura, P.; Calligarich, E.; Calvo, E.; Camilleri, L.; Campanelli, M.; Cantini, C.; Carls, B.; Carr, R.; Cascella, M.; Castromonte, C.; Mur, E.Catano; Cavanna, F.; Centro, S.; Cervera Villanueva, A.; Chalifour, M.; Chandratre, V.B.; Chatterjee, A.; Chattopadhyay, S.; Chattopadhyay, S.; Chaussard, L.; Chembra, S.; Chen, H.; Chen, K.; Chen, M.; Cherdack, D.; Chi, C.; Childress, S.; Choubey, S.; Choudhary, B.C.; Christodoulou, G.; Christofferson, C.; Church, E.; Cianci, D.; Cline, D.; Coan, T.; Cocco, A.; Coelho, J.; Cole, P.; Collin, G.; Conrad, J.M.; Convery, M.; Corey, R.; Corwin, L.; Cranshaw, J.; Crivelli, P.; Cronin-Hennessy, D.; Curioni, A.; Cushing, J.; Adams, D.L.; Dale, D.; Das, S.R.; Davenne, T.; Davies, G.S.; Davies, J.; Dawson, J.; De, K.; de Gouvea, A.; de Jong, J.K.; de Jong, P.; De Lurgio, P.; Decowski, M.; Delbart, A.; Densham, C.; Dharmapalan, R.; Dhingra, N.; Di Luise, S.; Diamantopoulou, M.; Diaz, J.S.; Diaz Bautista, G.; Diwan, M.; Djurcic, Z.; Dolph, J.; Drake, G.; Duchesneau, D.; Duvernois, M.; Duyang, H.; Dwyer, D.A.; Dye, S.; Dytman, S.; Eberly, B.; Edgecock, R.; Edmunds, D.; Elliott, S.; Elnimr, M.; Emery, S.; Endress, E.; Eno, S.; Ereditato, A.; Escobar, C.O.; Evans, J.; Falcone, A.; Falk, L.; Farbin, A.; Farnese, C.; Farzan, Y.; Fava, A.; Favilli, L.; Felde, J.; Felix, J.; Fernandes, S.; Fields, L.; Finch, A.; Fitton, M.; Fleming, B.; Forest, T.; Fowler, J.; Fox, W.; Fried, J.; Friedland, A.; Fuess, S.; Fujikawa, B.; Gago, A.; Gallagher, H.; Galymov, S.; Gamble, T.; Gandhi, R.; Garcia-Gamez, D.; Gardiner, S.; Garvey, G.; Gehman, V.M.; Gendotti, A.; Geronimo, G. d.; Ghag, C.; Ghoshal, P.; Gibin, D.; Gil-Botella, I.; Gill, R.; Girardelli, D.; Giri, A.; Glavin, S.; Goeldi, D.; Golapinni, S.; Gold, M.; Gomes, R.A.; Gomez Cadenas, J.J.; Goodman, M.C.; Gorbunov, D.; Goswami, S.; Graf, N.; Graf, N.; Graham, M.; Gramelini, E.; Gran, R.; Grant, C.; Grant, N.; Greco, V.; Greenlee, H.; Greenler, L.; Greenley, C.; Groh, M.; Grullon, S.; Grundy, T.; Grzelak, K.; Guardincerri, E.; Guarino, V.; Guarnaccia, E.; Guedes, G.P.; Guenette, R.; Guglielmi, A.; Habig, A.T.; Hackenburg, R.W.; Hackenburg, A.; Hadavand, H.; Haenni, R.; Hahn, A.; Haigh, M.D.; Haines, T.; Hamernik, T.; Handler, T.; Hans, S.; Harris, D.; Hartnell, J.; Hasegawa, T.; Hatcher, R.; Hatzikoutelis, A.; Hays, S.; Hazen, E.; Headley, M.; Heavey, A.; Heeger, K.; Heise, J.; Hennessy, K.; Hewes, J.; Higuera, A.; Hill, T.; Himmel, A.; Hogan, M.; Holanda, P.; Holin, A.; Honey, W.; Horikawa, S.; Horton-Smith, G.; Howard, B.; Howell, J.; Hurh, P.; Huston, J.; Hylen, J.; Imlay, R.; Insler, J.; Introzzi, G.; Ioanisyan, D.; Ioannisian, A.; Iwamoto, K.; Izmaylov, A.; Jackson, C.; Jaffe, D.E.; James, C.; James, E.; Jediny, F.; Jen, C.; Jhingan, A.; Jimenez, S.; Jo, J.H.; Johnson, M.; Johnson, R.; Johnstone, J.; Jones, B.J.; Joshi, J.; Jostlein, H.; Jung, C.K.; Junk, T.; Kaboth, A.; Kadel, R.; Kafka, T.; Kalousis, L.; Kamyshkov, Y.; Karagiorgi, G.; Karasavvas, D.; Karyotakis, Y.; Kaur, A.; Kaur, P.; Kayser, B.; Kazaryan, N.; Kearns, E.; Keener, P.; Kemboi, S.; Kemp, E.; Kettell, S.H.; Khabibullin, M.; Khandaker, M.; Khotjantsev, A.; Kirby, B.; Kirby, M.; Klein, J.; Kobilarcik, T.; Kohn, S.; Koizumi, G.; Kopylov, A.; Kordosky, M.; Kormos, L.; Kose, U.; Kostelecky, A.; Kramer, M.; Kreslo, I.; Kriske, R.; Kropp, W.; Kudenko, Y.; Kudryavtsev, V.A.; Kulagin, S.; Kumar, A.; Kumar, G.; Kumar, J.; Kumar, L.; Kutter, T.; Laminack, A.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Learned, J.; Lebrun, P.; Lee, D.; Lee, H.; Lee, K.; Lee, W.M.; Leigui de Oliveira, M.A.; Li, Q.; Li, S.; Li, S.; Li, X.; Li, Y.; Li, Z.; Libo, J.; Lin, C.S.; Lin, S.; Ling, J.; Link, J.; Liptak, Z.; Lissauer, D.; Littenberg, L.; Littlejohn, B.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N.; Loew, T.; Lokajicek, M.; Long, K.; Lopes, M.D.L.; Lopez, J.P.; Losecco, J.; Louis, W.; Lowery, J.; Luethi, M.; Luk, K.; Lundberg, B.; Lundin, T.; Luo, X.; Lux, T.; Lykken, J.; Machado, A.A.; Macier, J.R.; Magill, S.; Mahler, G.; Mahn, K.; Malek, M.; Malhotra, S.; Malon, D.; Mammoliti, F.; Mancina, S.; Mandal, S.K.; Mandodi, S.; Manly, S.L.; Mann, A.; Marchionni, A.; Marciano, W.; Mariani, C.; Maricic, J.; Marino, A.; Marshak, M.; Marshall, C.; Marshall, J.; Marteau, J.; Martin-Albo, J.; Martinez, D.; Matsuno, S.; Matthews, J.; Mauger, C.; Mavrokoridis, K.; Mayilyan, D.; Mazzucato, E.; McCauley, N.; McCluskey, E.; McConkey, N.; McDonald, K.; McFarland, K.S.; McGowan, A.M.; McGrew, C.; McKeown, R.; McNulty, D.; McTaggart, R.; Mefodiev, A.; Mehrian, M.; Mehta, P.; Mei, D.; Mena, O.; Menary, S.; Mendez, H.; Menegolli, A.; Meng, G.; Meng, Y.; Mertins, D.; Merritt, H.; Messier, M.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Milincic, R.; Miller, W.; Mills, G.; Mineev, O.; Miranda, O.; Mishra, C.S.; Mishra, S.R.; Mitrica, B.; Mladenov, D.; Mocioiu, I.; Mohanta, R.; Mokhov, N.; Montanari, C.; Montanari, D.; Moon, J.; Mooney, M.; Moore, C.; Morfin, J.; Morgan, B.; Morris, C.; Morse, W.; Moss, Z.; Mossey, C.; Moura, C.A.; Mousseau, J.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, S.; Musser, J.; Musser, R.; Nakajima, Y.; Naples, D.; Napolitano, J.; Navarro, J.; Navas, D.; Nelson, J.; Nessi, M.; Newcomer, M.; Ng, Y.; Nichol, R.; Nicholls, T.C.; Nikolics, K.; Niner, E.; Norris, B.; Noto, F.; Novakova, P.; Novella, P.; Nowak, J.; Nunes, M.S.; O'Keeffe, H.; Oldeman, R.; Oliveira, R.; Olson, T.; Onishchuk, Y.; Osta, J.; Ovsjannikova, T.; Page, B.; Pakvasa, S.; Pal, S.; Palamara, O.; Palazzo, A.; Paley, J.; Palomares, C.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Park, J.; Parke, S.; Parsa, Z.; Pascoli, S.; Patterson, R.; Patton, S.; Patzak, T.; Paulos, B.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Peeters, S.; Pennacchio, E.; Perch, A.; Perdue, G.N.; Periale, L.; Perkin, J.D.; Pessard, H.; Petrillo, G.; Petti, R.; Petukhov, A.; Pietropaolo, F.; Plunkett, R.; Pordes, S.; Potekhin, M.; Potenza, R.; Potukuchi, B.; Poudyal, N.; Prokofiev, O.; Pruthi, N.; Przewlocki, P.; Pushka, D.; Qian, X.; Raaf, J.L.; Raboanary, R.; Radeka, V.; Radovic, A.; Raffelt, G.; Rakhno, I.; Rakotondramanana, H.T.; Rakotondravohitra, L.; Ramachers, Y.A.; Rameika, R.; Ramsey, J.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Rebel, B.; Regenfus, C.; Reichenbacher, J.; Reitzner, D.; Remoto, A.; Renshaw, A.; Rescia, S.; Richardson, M.; Rielage, K.; Riesselmann, K.; Robinson, M.; Rochester, L.; Rodrigues, O.B.; Rodrigues, P.; Roe, B.; Rosen, M.; Roser, R.M.; Ross-Lonergan, M.; Rossella, M.; Rubbia, A.; Rubbia, C.; Rucinski, R.; von Rohr, C.Rudolph; Russell, B.; Ruterbories, D.; Saakyan, R.; Sahu, N.; Sala, P.; Samios, N.; Sanchez, F.; Sanchez, M.; Sands, B.; Santana, S.; Santorelli, R.; Santucci, G.; Saoulidou, N.; Scaramelli, A.; Schellman, H.; Schlabach, P.; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Schukraft, A.; Schwehr, J.; Segreto, E.; Seibert, S.; Sepulveda-Quiroz, J.A.; Sergiampietri, F.; Sexton-Kennedy, L.; Sgalaberna, D.; Shaevitz, M.; Shahi, J.; Shahsavarani, S.; Shanahan, P.; Shankar, S.U.; Sharma, R.; Sharma, R.K.; Shaw, T.; Shrock, R.; Shyrma, I.; Simos, N.; Sinev, G.; Singh, I.; Singh, J.; Singh, J.; Singh, V.; Sinnis, G.; Sippach, W.; Smargianaki, D.; Smy, M.; Snider, E.; Snopok, P.; Sobczyk, J.; Sobel, H.; Soderberg, M.; Solomey, N.; Sondheim, W.; Sorel, M.; Sousa, A.; Soustruznik, K.; Spitz, J.; Spooner, N.J.; Stancari, M.; Stancu, I.; Stefan, D.; Steiner, H.M.; Stewart, J.; Stock, J.; Stoica, S.; Stone, J.; Strait, J.; Strait, M.; Strauss, T.; Striganov, S.; Sulej, R.; Sullivan, G.; Sun, Y.; Suter, L.; Sutera, C.M.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Soldner-Rembold, S.; Talaga, R.; Tamsett, M.; Tariq, S.; Tatar, E.; Tayloe, R.; Taylor, C.; Taylor, D.; Terao, K.; Thiesse, M.; Thomas, J.; Thompson, L.F.; Thomson, M.; Thorn, C.; Thorpe, M.; Tian, X.; Tiedt, D.; Timm, S.C.; Tonazzo, A.; Tope, T.; Topkar, A.; Torres, F.R.; Torti, M.; Tortola, M.; Tortorici, F.; Toups, M.; Touramanis, C.; Tripathi, M.; Tropin, I.; Tsai, Y.; Tsang, K.V.; Tsenov, R.; Tufanli, S.; Tull, C.; Turner, J.; Tzanov, M.; Tziaferi, E.; Uchida, Y.; Urheim, J.; Usher, T.; Vagins, M.; Vahle, P.; Valdiviesso, G.A.; Valerio, L.; Vallari, Z.; Valle, J.; Van Berg, R.; Van de Water, R.; Van Gemmeren, P.; Varanini, F.; Varner, G.; Vasseur, G.; Vaziri, K.; Velev, G.; Ventura, S.; Verdugo, A.; Viant, T.; Vieira, T.V.; Vignoli, C.; Vilela, C.; Viren, B.; Vrba, T.; Wachala, T.; Wahl, D.; Wallbank, M.; Walsh, N.; Wang, B.; Wang, H.; Wang, L.; Wang, T.; Warburton, T.K.; Warner, D.; Wascko, M.; Waters, D.; Watson, T.B.; Weber, A.; Weber, M.; Wei, W.; Weinstein, A.; Wells, D.; Wenman, D.; Wetstein, M.; White, A.; Whitehead, L.; Whittington, D.; Wilking, M.; Willhite, J.; Wilson, P.; Wilson, R.J.; Winslow, L.; Wittich, P.; Wojcicki, S.; Wong, H.H.; Wood, K.; Worcester, E.; Worcester, M.; Wu, S.; Xin, T.; Yanagisawa, C.; Yang, S.; Yang, T.; Yarritu, K.; Ye, J.; Yeh, M.; Yershov, N.; Yonehara, K.; Yu, B.; Yu, J.; Zalesak, J.; Zalewska, A.; Zamorano, B.; Zang, L.; Zani, A.; Zani, A.; Zavala, G.; Zeller, G.; Zhang, C.; Zhang, C.; Zimmerman, E.D.; Zito, M.; Zwaska, R.

    2016-01-01

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  13. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  14. Neutrino oscillations and the seesaw origin of neutrino mass

    Science.gov (United States)

    Miranda, O. G.; Valle, J. W. F.

    2016-07-01

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  15. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  16. Neutrino oscillations: Recent results and future directions

    Indian Academy of Sciences (India)

    Amitava Raychaudhuri

    2000-01-01

    A brief introduction to the phenomena of vacuum neutrino oscillations and resonant flavour conversion is presented with a heavy pedagogic leaning. Variants of these ideas, e.g., neutrino helicity flip in a magnetic field, violation of the equivalence principle, etc. are outlined. A few vexing issues pertaining to the quantum mechanics of neutrino oscillations are discussed. Expectations from some of the future experiments are summarized.

  17. Neutrino mass and oscillation: An introductory review

    Indian Academy of Sciences (India)

    D P Roy

    2000-01-01

    After a brief introduction to neutrino mass via the see-saw model I discuss neutrinomixing and oscillation, first in vacuum and then its matter enhancement. Then the solar and atmospheric neutrino oscillation data are briefly reviewed. Finally I discuss the problem of reconciling hierarchical neutrino masses with at least one large mixing, as implied by these data. A minimal see-saw model for reconciling the two is discussed.

  18. Neutrino Oscillations in Dense Matter

    Science.gov (United States)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  19. Constraints on sterile neutrino oscillations using DUNE near detector

    Science.gov (United States)

    Choubey, Sandhya; Pramanik, Dipyaman

    2017-01-01

    DUNE (Deep Underground Neutrino Experiment) is a proposed long-baseline neutrino experiment in the US with a baseline of 1300 km from Fermi National Accelerator Laboratory (Fermilab) to Sanford Underground Research Facility, which will house a 40 kt Liquid Argon Time Projection Chamber (LArTPC) as the far detector. The experiment will also have a fine grained near detector for accurately measuring the initial fluxes. We show that the energy range of the fluxes and baseline of the DUNE near detector is conducive for observing νμ →νe oscillations of Δm2 ∼ eV2 scale sterile neutrinos, and hence can be effectively used for testing to very high accuracy the reported oscillation signal seen by the LSND and MiniBooNE experiments. We study the sensitivity of the DUNE near detector to sterile neutrino oscillations by varying the baseline, detector fiducial mass and systematic uncertainties. We find that the detector mass and baseline of the currently proposed near detector at DUNE will be able to test the entire LSND parameter region with good precision. The dependence of sensitivity on baseline and detector mass is seen to give interesting results, while dependence on systematic uncertainties is seen to be small.

  20. Constraints on sterile neutrino oscillations using DUNE near detector

    Directory of Open Access Journals (Sweden)

    Sandhya Choubey

    2017-01-01

    Full Text Available DUNE (Deep Underground Neutrino Experiment is a proposed long-baseline neutrino experiment in the US with a baseline of 1300 km from Fermi National Accelerator Laboratory (Fermilab to Sanford Underground Research Facility, which will house a 40 kt Liquid Argon Time Projection Chamber (LArTPC as the far detector. The experiment will also have a fine grained near detector for accurately measuring the initial fluxes. We show that the energy range of the fluxes and baseline of the DUNE near detector is conducive for observing νμ→νe oscillations of Δm2∼ eV2 scale sterile neutrinos, and hence can be effectively used for testing to very high accuracy the reported oscillation signal seen by the LSND and MiniBooNE experiments. We study the sensitivity of the DUNE near detector to sterile neutrino oscillations by varying the baseline, detector fiducial mass and systematic uncertainties. We find that the detector mass and baseline of the currently proposed near detector at DUNE will be able to test the entire LSND parameter region with good precision. The dependence of sensitivity on baseline and detector mass is seen to give interesting results, while dependence on systematic uncertainties is seen to be small.

  1. Physics prospects of future neutrino oscillation experiments in Asia

    CERN Document Server

    Hagiwara, K

    2004-01-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the poten...

  2. Measurement of Neutrino Oscillation by the K2K Experiment

    CERN Document Server

    Ahn, M H; Andringa, S; Aoki, S; Aoyama, Y; Argyriades, J; Asakura, K; Ashie, R; Berghaus, F; Berns, H G; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Boyd, S C; Burguet-Castell, J; Casper, D; Catala, J; Cavata, C; Cervera-Villanueva, Anselmo; Chen, S M; Cho, K O; Choi, J H; Dore, U; Echigo, S; Espinal, X; Fechner, M; Fernández, E; Fujii, K; Fujii, Y; Fukuda, S; Fukuda, Y; Gómez-Cadenas, Juan José; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayashi, K; Hayato, Y; Helmer, R L; Higuchi, I; Hill, J; Hiraide, K; Hirose, E; Hosaka, J; Ichikawa, A K; Ieiri, M; Iinuma, M; Ikeda, A; Inagaki, T; Ishida, T; Ishihara, K; Ishii, H; Ishii, T; Ishino, H; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jang, J S; Jeon, E J; Jeong, I S; Joo, K K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kang, B H; Kato, I; Kato, Y; Kearns, E; Kerr, D; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, B J; Kim, H I; Kim, J H; Kim, J Y; Kim, S B; Kitamura, M; Kitching, P; Kobayashi, K; Kobayashi, T; Kohama, M; Konaka, A; Koshio, Y; Kropp, W; Kubota, J; Kudenko, Yu G; Kume, G; Kuno, Y; Kurimoto, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Lim, S H; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Martens, K; Maruyama, T; Matsuno, S; Matveev, V; Mauger, C; McConnel Mahn, K B; McGrew, C; Mikheyev, S; Minakawa, M; Minamino, A; Mine, S; Mineev, O V; Mitsuda, C; Mitsuka, G; Miura, M; Moriguchi, Y; Morita, T; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakata, F; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nishino, H; Nishiyama, S; Nitta, K; Noda, S; Noumi, H; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Okumura, M; Onchi, M; Oser, S M; Otaki, T; Oyama, Y; Pac, M Y; Park, H; Pierre, F; Rodríguez, A; Saji, C; Sakai, A; Sakuda, M; Sakurai, N; Sánchez, F; Sarrat, A; Sasaki, T; Sato, H; Sato, K; Scholberg, K; Schroeter, R; Sekiguchi, M; Seo, E; Sharkey, E; Shima, A; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M B; So, H; Sobel, H; Sorel, M; Stone, J; Sulak, L; Suga, Y; Suzuki, A; Suzuki, Y; Tada, M; Takahashi, T; Takasaki, M; Takatsuki, M; Takenaga, Y; Takenaka, K; Takeuchi, H; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, H; Tanaka, K; Tanaka, M; Tanaka, Y; Tashiro, K; Terri, R; T'Jampens, S; Tornero-Lopez, A; Toshito, T; Totsuka, Y; Ueda, S; Vagins, M; Whitehead, L; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamada, Y; Yamamoto, S; Yamanoi, Y; Yanagisawa, C; Yershov, N V; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M

    2006-01-01

    We present measurements of nu_mu disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment. One hundred and twelve beam-originated neutrino events are observed in the fiducial volume of Super-Kamiokande with an expectation of 158.1^{+9.2}_{-8.6} events without oscillation. A distortion of the energy spectrum is also seen in 58 single-ring muon-like events with reconstructed energies. The probability that the observations are explained by the expectation for no neutrino oscillation is 0.0015% (4.3sigma). In a two flavor oscillation scenario, the allowed Delta m^2 region at sin^2(2theta) is between 1.9 and 3.5 x 10^{-3} eV^2 at the 90% C.L. with a best-fit value of 2.8 x 10^{-3} eV^2.

  3. Compact perturbative expressions for neutrino oscillations in matter

    Science.gov (United States)

    Denton, Peter B.; Minakata, Hisakazu; Parke, Stephen J.

    2016-06-01

    We further develop and extend a recent perturbative framework for neutrino oscillations in uniform matter density so that the resulting oscillation probabilities are accurate for the complete matter potential versus baseline divided by neutrino energy plane. This extension also gives the exact oscillation probabilities in vacuum for all values of baseline divided by neutrino energy. The expansion parameter used is related to the ratio of the solar to the atmospheric ∆ m 2 scales but with a unique choice of the atmospheric ∆ m 2 such that certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using a mixing matrix formulation, this framework has the exceptional feature that the neutrino oscillation probability in matter has the same structure as in vacuum, to all orders in the expansion parameter. It also contains all orders in the matter potential and sin θ 13. It facilitates immediate physical interpretation of the analytic results, and makes the expressions for the neutrino oscillation probabilities extremely compact and very accurate even at zeroth order in our perturbative expansion. The first and second order results are also given which improve the precision by approximately two or more orders of magnitude per perturbative order.

  4. Neutrino oscillations: From a historical perspective to the present status

    Energy Technology Data Exchange (ETDEWEB)

    Bilenky, S., E-mail: bilenky@gmail.com [Joint Institute for Nuclear Research, Dubna, R-141980 (Russian Federation); TRIUMF 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada (Canada)

    2016-07-15

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum are given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  5. On the theory of neutrino mixing and oscillations

    CERN Document Server

    Bilenky, S M

    2010-01-01

    A brief review of the status of neutrino oscillations is given. The phenomenology of neutrino mixing and the standard seesaw mechanism of neutrino mass generation is discussed. Different approaches to neutrino oscillations are considered and compared. The role of the Heisenberg space-momentum uncertainty relation and the Mandelstam-Tamm time-energy uncertainty relation in neutrino oscillations is discussed in some detail.

  6. Neutrino oscillations: from an historical perspective to the present status

    Science.gov (United States)

    Bilenky, S.

    2016-05-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum is given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  7. Neutrino oscillations: from an historical perspective to the present status

    CERN Document Server

    Bilenky, S

    2016-01-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum is given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  8. Neutrino oscillations: From a historical perspective to the present status

    Science.gov (United States)

    Bilenky, S.

    2016-07-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum are given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  9. Collective neutrino oscillations in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  10. Report of the US long baseline neutrino experiment study

    CERN Document Server

    Barger, V; Bogert, D; Bromberg, C; Curioni, A; Dierckxsens, M; Diwan, M; Dufour, F; Finley, D; Fleming, B T; Gallardo, J; Heim, J; Huber, P; Jung, C K; Kahn, S; Kearns, E; Kirk, H; Kirk, T; Lande, K; Laughton, C; Lee, W Y; Lesko, K; Lewis, C; Litchfield, P J; Mann, A K; Marchionni, A; Marciano, W; Marfatia, D; Marino, A D; Marshak, M; Menary, S; McDonald, K; Messier, M; Pariseau, W; Parsa, Z; Pordes, S; Potenza, R; Rameika, R; Saoulidou, N; Simos, N; Van Berg, R; Viren, B; Whisnant, K; Wilson, R; Winter, W; Yanagisawa, C; Yumiceva, F; Zimmerman, E D; Zwaska, R

    2007-01-01

    This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability could be unique compared to anywhere else in the world because of the available beam intensity and baseline distances. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermi National Accelerator Laboratory and, as the study evolved, it also provided responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the ...

  11. A CERN-based high-intensity high-energy proton source for long baseline neutrino oscillation experiments with next-generation large underground detectors for proton decay searches and neutrino physics and astrophysics

    CERN Document Server

    Rubbia, A

    2010-01-01

    The feasibility of a European next-generation very massive neutrino observatory in seven potential candidate sites located at distances from CERN ranging from 130 km to 2300 km, is being considered within the LAGUNA design study. The study is providing a coordinated technical design and assessment of the underground research infrastructure in the various sites, and its coherent cost estimation. It aims at a prioritization of the sites within summer 2010 and a start of operation around 2020. In addition to a rich non-accelerator based physics programme including the GUT-scale with proton decay searches, the detection of a next-generation neutrino superbeam tuned to measure the flavor-conversion oscillatory pattern (i.e. 1st and 2nd oscillation maxima) would allow to complete our understanding of the leptonic mixing matrix, in particular by determining the neutrino mass hierarchy and by studying CP-violation in the leptonic sector, thereby addressing the outstanding puzzle of the origin of the excess of matter ...

  12. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Stephen James [College of William and Mary, Williamsburg, VA (United States)

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  13. NOvA Short-Baseline Tau-Neutrino Appearance Search

    Science.gov (United States)

    Keloth, Rijeesh

    2017-01-01

    Three-flavor neutrino oscillations have successfully explained a wide range of neutrino oscillation experiment results. However, anomalous results, such as the electron-antineutrino appearance excess seen by LSND and MiniBooNE, do not fit the three-flavor paradigm and can be explained by the addition of a sterile neutrino at a larger mass scale than the existing three flavor mass states. The NOvA experiment consists of two finely segmented, liquid scintillator detectors operating 14.6 mrad off-axis from the NuMI muon-neutrino beam. The Near Detector is located on the Fermilab campus, 1 km from the NuMI target, while the Far Detector is located at Ash River, MN, 810 km from the NuMI target. The NOvA experiment is primarily designed to measure electron-neutrino appearance at the Far Detector using the Near Detector to control systematic uncertainties; however, the Near Detector is well suited for searching for anomalous short-baseline oscillations. I will present a novel method for selecting tau neutrino interactions with high purity at the Near Detector using a convolutional neural network. Using this method, the sensitivity to anomalous short-baseline tau-neutrino appearance due to sterile neutrino oscillations will be presented.

  14. Atmospheric neutrino oscillations for earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter

    2016-04-05

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  15. Atmospheric Neutrino Oscillations for Earth Tomography

    CERN Document Server

    Winter, Walter

    2015-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can robustly measure the lower mantle density of the earth with a precision at the level of 4-5 percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  16. Atmospheric neutrino oscillations for Earth tomography

    Science.gov (United States)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  17. Accelerator-based neutrino oscillation searches

    Science.gov (United States)

    Whitehouse, D. A.; Rameika, R.; Stanton, N.

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends on the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increased intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery cannot be overstated. The current experimental status and future possibilities are discussed.

  18. Collective Neutrino Oscillations in two dimensions

    Science.gov (United States)

    Shalgar, Shashank; Abbar, Sajad; Duan, Huaiyu

    2015-10-01

    The modification of neutrino flavor oscillation probabilities in the presence of ambient neutrino gas is non-linear in nature. This leads to interesting phenomenology that is not well understood. In this paper we study the effect of removing spatial symmetry in a simplified two dimensional toy model. We focus on the linear stability analysis of the problem and note the presence of instability in both hierarchies. We also note significant modification of neutrino oscillation probabilities due to presence of ambient matter. The presence of spurious oscillations makes the study of the problem using numerical simulations very challenging. DE-SC0008142.

  19. Four-Neutrino Oscillation Solutions of the Solar Neutrino Problem

    CERN Document Server

    Giunti, C; Peña-Garay, C

    2000-01-01

    We present an analysis of the neutrino oscillation solutions of the solar neutrino problem in the framework of four-neutrino mixing where a sterile neutrino is added to the three standard ones. We perform a fit to the full data set corresponding to the 825-day Super-Kamiokande data sample as well as to Chlorine, GALLEX and SAGE and Kamiokande experiments. In our analysis we use all measured total event rates as well as all Super-Kamiokande data on the zenith angle dependence and the recoil electron energy spectrum. We consider both transitions via the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism as well as oscillations in vacuum (just-so) and find the allowed solutions for different values of the additional mixing angles. This framework permits transitions into active or sterile neutrinos controlled by the additional parameter $\\cos^2(\\vartheta_{23}) \\cos^2(\\vartheta_{24})$ . We discuss the maximum allowed values of this additional mixing parameter for the different solutions.

  20. Resonant oscillations of massless neutrinos in matter

    Science.gov (United States)

    Valle, J. W. F.

    1987-12-01

    Oscillations of neutrinos propagating in matter do not require that neutrinos are massive, at a fundamental level. Even if neutrinos are massless as a consequence of an exact symmetry - such as total lepton number - they can oscillate into one another if the weak interaction has a small non-universal component, whose existence would signal physics beyond the standard model. The experimental constraints and theoretical plausibility of the mechanism are discussed. Coherent neutrino and antineutrino scattering could substantially affect the late thermal phase neutrino signal from a supernova explosion. I am thankful to Peter Rosen and Lincoln Wolfenstein, organizers of the Workshop on Solar and Astrophysical neutrinos, for the hospitality extended to me Aspen, where this work was partially done. I am also sincerely indebted to Sergey Petcov for help in deriving the evolution equation, Joe Schechter and Lincoln Wolfenstein for valuable discussions and to James Wilson and George Fuller for discussions on the Dynamics of supernovae.

  1. Supernova Neutrino Nucleosynthesis of Light Elements with Neutrino Oscillations

    CERN Document Server

    Yoshida, T; Yokomakura, H; Kimura, K; Takamura, A; Hartmann, D H

    2006-01-01

    Light element synthesis in supernovae through neutrino-nucleus interactions, i.e., the nu-process, is affected by neutrino oscillations in the supernova environment. There is a resonance of 13-mixing in the O/C layer, which increases the rates of charged-current nu-process reactions in the outer He-rich layer. The yields of 7Li and 11B increase by about a factor of 1.9 and 1.3, respectively, for a normal mass hierarchy and an adiabatic 13-mixing resonance, compared to those without neutrino oscillations. In the case of an inverted mass hierarchy and a non-adiabatic 13-mixing resonance, the increase in the 7Li and 11B yields is much smaller. Observations of the 7Li/11B ratio in stars showing signs of supernova enrichment could thus provide a unique test of neutrino oscillations and constrain their parameters and the mass hierarchy.

  2. Supernova neutrino nucleosynthesis of light elements with neutrino oscillations.

    Science.gov (United States)

    Yoshida, Takashi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H

    2006-03-10

    Light element synthesis in supernovae through neutrino-nucleus interactions, i.e., the v process, is affected by neutrino oscillations in the supernova environment. There is a resonance of 13-mixing in the O/C layer, which increases the rates of charged-current -process reactions in the outer He-rich layer. The yields of 7Li and 11B increase by about a factor of 1.9 and 1.3, respectively, for a normal mass hierarchy and an adiabatic 13-mixing resonance, compared to those without neutrino oscillations. In the case of an inverted mass hierarchy and a nonadiabatic 13-mixing resonance, the increase in the 7Li and 11B yields is much smaller. Observations of the 7Li/11B ratio in stars showing signs of supernova enrichment could thus provide a unique test of neutrino oscillations and constrain their parameters and the mass hierarchy.

  3. Tau Neutrinos Favored over Sterile Neutrinos in Atmospheric Muon Neutrino Oscillations

    CERN Document Server

    Fukuda, S; Ishitsuka, M; Itow, Y; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Earl, M A; Habig, A; Kearns, E T; Messier, M D; Scholberg, K; Stone, J L; Sulak, Lawrence R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, David William; Gajewski, W; Kropp, W R; Mine, S; Price, L R AU Fukuda, S; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ishii, T; Kobayashi, T; Nakamura, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Kohama, M; Suzuki, A T; Inagaki, T; Nishikawa, K; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Goodman, J A; Guillian, G; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B M; Yanagisawa, C; Kirisawa, M; Inaba, S; Mitsuda, C; Miyano, K; Okazawa, H; Saji, C; Takahashi, M; Takahata, M; Nagashima, Y; Nitta, K; Takita, M; Yoshida, M; Kim, S B; Ishizuka, T; Etoh, M; Gando, Y; Hasegawa, T; Inoue, K; Ishihara, K; Maruyama, T; Shirai, J; Suzuki, A; Koshiba, M; Hatakeyama, Y; Ichikawa, Y; Koike, M; Nishijima, K; Fujiyasu, H; Ishino, H; Morii, M; Watanabe, Y; Golebiewska, U; Kielczewska, D; Boyd, S C; Stachyra, A L; Wilkes, R J; Young, K K

    2000-01-01

    The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live-days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.

  4. Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations.

    Science.gov (United States)

    Fukuda, S; Fukuda, Y; Ishitsuka, M; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Price, L R; Smy, M; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D

    2000-11-01

    The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.

  5. Lepton asymmetry and neutrino oscillations interplay

    Energy Technology Data Exchange (ETDEWEB)

    Kirilova, Daniela, E-mail: dani@astro.bas.bg [Bulgarian Academy of Sciences, Institute of Astronomy and NAO (Bulgaria)

    2013-03-15

    We discuss the interplay between lepton asymmetry L and {nu} oscillations in the early Universe. Neutrino oscillations may suppress or enhance previously existing L. On the other hand L is capable to suppress or enhance neutrino oscillations. The mechanism of L enhancement in MSW resonant {nu} oscillations in the early Universe is numerically analyzed. L cosmological effects through {nu} oscillations are discussed. We discuss how L may change the cosmological BBN constraints on neutrino and show that BBN model with {nu}{sub e}{r_reversible}{nu}{sub s} oscillations is extremely sensitive to L - it allows to obtain the most stringent constraints on L value. We discuss also the cosmological role of active-sterile {nu} mixing and L in connection with the indications about additional relativistic density in the early Universe, pointed out by BBN, CMB and LSS data and the analysis of global {nu} data.

  6. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  7. Probing the GUT Scale with Neutrino Oscillations

    Science.gov (United States)

    Eddine Ennadifi, Salah

    In the light of the theoretical and experimental developments in neutrino sector and their imprtance, we study its connection with new physics above the electroweak scale MEW ~ 102GeV . In particular, by considering the neutrino oscillations with the possible effective mass, we investigate, according to the experimental data, the underlying GUT scale MGUT ~ 1015GeV .

  8. On the status of neutrino mixing and oscillations

    OpenAIRE

    2002-01-01

    Evidences in favor of neutrino oscillations, obtained in the solar and atmospheric neutrino experiments, are discussed. Neutrino oscillations in the solar and atmospheric ranges of the neutrino mass-squared differences are considered in the framework of the minimal scheme with the mixing of three massive neutrinos.

  9. Establishing atmospheric neutrino oscillations with Super-Kamiokande

    Science.gov (United States)

    Kajita, T.; Kearns, E.; Shiozawa, M.

    2016-07-01

    In this article we review the discovery of atmospheric neutrino oscillation by the Super-Kamiokande experiment. This review outlines the sequence of observations and their associated publications that solved the atmospheric neutrino anomaly and established the existence of neutrino oscillations with nearly maximal mixing of muon neutrinos and tau neutrinos. We also discuss subsequent and ongoing studies that use atmospheric neutrinos to continue to reveal the nature of the neutrino.

  10. The standard model of particle physics. Neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Giacomelli, Giorgio, E-mail: giacomelli@bo.infn.i [Physics Department, University of Bologna and INFN Sez. of Bologna, Viale Berti Pichat 6/2, Bologna (Italy)

    2009-10-15

    The Standard Model (SM) of Particle Physics was tested to great precision by experiments at the highest energy colliders (LEP, Hera, Tevatron, Slac). The only missing particle is the Higgs boson, which will be the first particle to be searched for at the new Large Hadron Collider (LHC) at CERN. The SM anticipated that there are 3 types of left handed neutrinos. Experiments on atmospheric and solar neutrinos (made in Japan, Italy, Canada, Russia and the US) have shown the existence of neutrino oscillations, which imply that neutrinos have very small mass differences and violate the conservation of individual leptonic numbers. Neutrino oscillations were verified in long baseline neutrino experiments (in Japan and in the USA); and cosmology has given reasonably precise indications on the sum of the neutrino masses. In this paper will be summarized some of the main properties of the SM and some of the main results obtained in the field and the experiments in preparation. Some of the main open questions will be briefly discussed.

  11. Neutrino Oscillations Present Status and Future Plans

    CERN Document Server

    Thomas, Jennifer

    2008-01-01

    This book reviews the status of a very exciting field - neutrino oscillations - at a very important time. The fact that neutrinos have mass has only been proved in the last few years and the acceptance of that fact has opened up a whole new area of study to understand the fundamental parameters of the mixing matrix. The book summarizes the results from all the experiments which have played a role in the measurement of neutrino oscillations and briefly describes the scope of some new planned experiments. Contributions include a theoretical introduction by Stephen Parke from FNAL, as well as art

  12. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Tian [Iowa State U.

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  13. Spectrometry of the Earth using neutrino oscillations

    Science.gov (United States)

    Taketa, Akimichi; Rott, Carsten

    2016-04-01

    Neutrinos have favorable properties for measuring the elemental composition deep inside the earth's interior. First, they propagate a long distance almost undisturbed through the earth due to their weak interactions with matter. Secondly, neutrino oscillations in matter are sensitive to the electron density of the medium traversed by them. Therefore, neutrinos can be used for a probe to determine the average atomic mass ratio Z/A of the earth's core by comparing with the earth's nucleus density distribution that is inferred from seismic observations. There is a little uncertainty in densities of the earth's core, but our knowledge of its main light element is still not fixed. With the advent of the new-generation megaton neutrino detectors, neutrino oscillation mass spectrometry will allow us to constrain directly the light elements in the earth's outer core. We report the detail of this novel technic and the sensitivity study.

  14. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Ruth B. [Univ. of Cambridge (United Kingdom). Pembroke College

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  15. A Neutrino Apparatus with Improved Capabilities for a short baseline $\

    CERN Document Server

    Gómez-Cadenas, J J; Bueno, A G

    1996-01-01

    We propose the conceptual design of a Neutrino ApparatUS with Improved CApAbilities (NAUSICAA). This detector could be used for a new, short-baseline, high sensitivity \\osc oscillation search experiment at the CERN-SPS neutrino beam, as well as at the future Fermilab Main Injector neutrino beam. The heart of the detector is a finely instrumented target, made of a sandwich of a light Z material and high resolution tracking detectors. Downstream of the target there are tracking detectors for momentum measurement, followed by a compensating calorimeter. All these systems are contained within magnet providing a magnetic field of about 1 Tesla. Following the magnet there is a muon detector. Unlike previous experiments, NAUSICAA would be capable of searching for the \\tau signature using both kinematical and vertex criteria {\\it simultaneously}. Detailed Monte Carlo calculations show that NAUSICAA could improve the sensitivity of the on-going experiments, CHORUS and NOMAD by an order of magnitude in a four-year neut...

  16. Progress in neutrino oscillation searches and their implications

    Indian Academy of Sciences (India)

    Srubabati Goswami

    2003-02-01

    Neutrino oscillation, in which a given flavor of neutrino transforms into another is a powerful tool for probing small neutrino masses. The intrinsic neutrino properties involved are neutrino mass squared difference 2 and the mixing angle in vacuum . In this paper I will summarize the progress that we have achieved in our search for neutrino oscillation with special emphasis on the recent results from the Sudbury Neutrino Observatory (SNO) on the measurement of solar neutrino fluxes. I will outline the current bounds on the neutrino masses and mixing parameters and discuss the major physics goals of future neutrino experiments in the context of the present picture.

  17. Massive neutrinos flavor mixing of leptons and neutrino oscillations

    CERN Document Server

    2015-01-01

    Since the discovery of neutrino oscillations neutrino physics has become an interesting field of research in physics. They imply that neutrino must have a small mass and that the neutrinos, coupled to the charged leptons, are mixtures of the mass eigenstates, analogous to the flavor mixing of the quarks. The mixing angles for the quarks are small, but for the leptons two of the mixing angles are large. The masses of the three neutrinos must be very small, less than 1 eV, but from the oscillation experiments we only know the mass differences — the absolute masses are still unknown. Also we do not know, if the masses of the neutrinos are Dirac masses, as the masses of the charged leptons and of the quarks, or whether they are Majorana masses. In this volume, an overview of the present state of research in neutrino physics is given by well-known experimentalists and theorists. The contents — originated from talks and discussions at a recent conference addressing some of the most pressing open questions in n...

  18. Relic neutrino decoupling with flavour oscillations revisited

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Pablo F. de [Instituto de Física Corpuscular (CSIC-Universitat de València),Parc Científic UV, C/ Catedrático José Beltrán 2, E-46980 Paterna (Valencia) (Spain); Institute for Theoretical Particle Physics and Cosmology (TTK),RWTH Aachen University, D-52056 Aachen (Germany); Pastor, Sergio [Instituto de Física Corpuscular (CSIC-Universitat de València),Parc Científic UV, C/ Catedrático José Beltrán 2, E-46980 Paterna (Valencia) (Spain)

    2016-07-28

    We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, N{sub eff}. We find a value of N{sub eff}=3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), predicted in many theoretical models where neutrinos acquire mass. For two sets of NSI parameters allowed by present data, we find that N{sub eff} can be reduced down to 3.040 or enhanced up to 3.059.

  19. Accelerator-based neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  20. Resurrection of large lepton number asymmetries from neutrino flavor oscillations

    CERN Document Server

    Barenboim, Gabriela; Park, Wan-Il

    2016-01-01

    We numerically solve the evolution equations of neutrino three-flavor density matrices, and show that, even if neutrino oscillations mix neutrino flavors, large lepton number asymmetries are still allowed in certain limits by Big Bang Nucleosynthesis (BBN).

  1. Present Aspects and Future Prospects of Neutrino Mass and Oscillation

    CERN Document Server

    Ghosh, Monojit

    2016-01-01

    Neutrinos are neutral, spin-$\\frac{1}{2}$ particles which undergo only weak interactions. The experimentally observed phenomenon of neutrino oscillation establishes the fact that neutrinos are massive and there is mixing between different neutrino flavours. This constitutes the first unambiguous hint towards the physics Beyond Standard Model (BSM). In the BSM theories, the neutrino mass terms in the Lagrangian lead to the non-diagonal neutrino mass matrix in the flavour basis which depends on neutrino mass and mixing parameters. Thus knowledge of the neutrino oscillation parameters and understanding the underlying symmetries of the neutrino mass matrix are very important as they can give an insight to the new physics beyond Standard Model. Therefore the measurement of different oscillation parameters and studying the structure of the neutrino mass matrix are some of the main goals in neutrino physics at present. In this thesis we have studied the potential of present/future neutrino oscillation experiments an...

  2. Extrinsic and intrinsic CPT asymmetries in neutrino oscillations

    Directory of Open Access Journals (Sweden)

    Tommy Ohlsson

    2015-04-01

    Full Text Available We reconsider the extrinsic and possible intrinsic CPT violation in neutrino oscillations, and point out an identity, i.e., AαβCP=AβαCPT+AαβT, among the CP, T, and CPT asymmetries in oscillations. For three-flavor oscillations in matter of constant density, the extrinsic CPT asymmetries AeeCPT, AeμCPT, AμeCPT, and AμμCPT caused by Earth matter effects have been calculated in the plane of different neutrino energies and baseline lengths. It is found that two analytical conditions can be implemented to describe the main structure of the contours of vanishing extrinsic CPT asymmetries. Finally, without assuming intrinsic CPT symmetry in the neutrino sector, we investigate the possibility to constrain the difference of the neutrino CP-violating phase δ and the antineutrino one δ¯ using a low-energy neutrino factory and the super-beam experiment ESSνSB. We find that |δ−δ¯|≲0.35π in the former case and |δ−δ¯|≲0.7π in the latter case can be achieved at the 3σ confidence level if δ=δ¯=π/2 is assumed.

  3. Relic neutrino decoupling with flavour oscillations revisited

    CERN Document Server

    de Salas, Pablo F

    2016-01-01

    We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, N_eff. We find a value of N_eff=3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), ...

  4. Velocities of pulsars and neutrino oscillations

    CERN Document Server

    Kusenko, A; Kusenko, Alexander; Segre, Gino

    1996-01-01

    We show that two long-standing astrophysical puzzles may have a simultaneous solution. Neutrino oscillations, biased by the magnetic field, alter the shape of the neutrinosphere in a cooling protoneutron star emerging from the supernova collapse. The resulting anisotropy in the momentum of outgoing neutrinos can be the origin of the observed proper motions of pulsars. Since the birth velocities generated this way are proportional to the strength of the magnetic field, this may also explain the observed isotropy of the gamma-ray bursts if they originate from old neutron stars. The connection between the motion of pulsars and neutrino oscillations results in a prediction for the \\tau neutrino mass of m(\

  5. Measurement of atmospheric neutrino oscillations with PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Krings, Kai; Coenders, Stefan; Euler, Sebastian; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    With IceCube's low-energy extension DeepCore it is possible to study atmospheric neutrino oscillations in the energy range between 10 GeV and 100 GeV. Current analyses are sensitive to the first minimum of the survival probability of atmospheric muon neutrinos at about 25 GeV for vertically upgoing neutrinos. For the 'Precision IceCube Next Generation Upgrade' (PINGU) it is planned to install additional strings with a denser spacing inside the DeepCore volume. By this, PINGU will lower the neutrino energy threshold to a few GeV. In this talk it is investigated how the accuracy of the measurement of the oscillation parameters θ{sub 23} and Δm{sub 32} can be improved by PINGU with respect to DeepCore.

  6. Probing Neutrino Oscillation Parameters using High Power Superbeam from ESS

    CERN Document Server

    Agarwalla, Sanjib Kumar; Prakash, Suprabh

    2014-01-01

    A high-power neutrino superbeam experiment at the ESS facility has been proposed such that the source-detector distance falls at the second oscillation maximum, giving very good sensitivity to the measurement of CP violation. In this work, we explore the comparative physics reach of the experiment in terms of leptonic CP-violation, precision on atmospheric parameters, non-maximal theta23, and its octant for a variety of choices for the baselines. We also vary the neutrino vs. the anti-neutrino running time for the beam, and study its impact on the physics goals of the experiment. We find that for the determination of CP violation, 540 km baseline with 7 years of neutrino and 3 years of anti-neutrino (7nu+3nubar) run-plan performs the best and one expects a 4sigma sensitivity to CP violation for 59% of true values of deltaCP. The projected reach for the 200 km baseline with 7nu+3nubar run-plan is somewhat worse with 4sigma sensitivity for 51% of true values of deltaCP. On the other hand, for the discovery of a...

  7. Neutrino oscillations in medium with periodic square potential

    CERN Document Server

    Kazarian, N A

    2007-01-01

    We have investigated two flavor neutrino oscillations in medium with periodic step electron number density profile. An approximate analytical solution have been found when the length of the density fluctuation is smaller then the neutrino oscillation length.

  8. A global analysis of neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Fogli, G.L. [Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Via Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Lisi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Marrone, A. [Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Via Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Montanino, D. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Via Arnesano, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, Via Arnesano, 73100 Lecce (Italy); Palazzo, A. [Cluster of Excellence, Origin and Structure of the Universe, Technische Universität München, Boltzmannstraße 2, D-85748 Garching (Germany); Rotunno, A.M. [Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Via Amendola 173, 70126 Bari (Italy)

    2013-02-15

    We present a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle θ{sub 13} at reactor experiments, which have confirmed previous indications in favor of θ{sub 13}>0. Recent data presented at this Conference are also included. We focus on the correlations between θ{sub 13} and the mixing angle θ{sub 23}, as well as between θ{sub 13} and the neutrino CP-violation phase δ. We find interesting indications for θ{sub 23}<π/4 and possible hints for δ∼π, with no significant difference between normal and inverted mass hierarchy.

  9. The natural parameterization of cosmic neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Palladino, Andrea [INFN, Gran Sasso Science Institute, L' Aquila, AQ (Italy); Vissani, Francesco [INFN, Gran Sasso Science Institute, L' Aquila, AQ (Italy); INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy)

    2015-09-15

    The natural parameterization of vacuum oscillations in three neutrino flavors is studied. Compact and exact relations of its three parameters with the ordinary three mixing angles and CP-violating phase are obtained. Its usefulness is illustrated by considering various applications: the study of the flavor ratio and of its uncertainties, the comparison of expectations and observations in the flavor triangle, and the intensity of the signal due to Glashow resonance. The results in the literature are easily reproduced and in particular the recently obtained agreement of the observations of IceCube with the hypothesis of cosmic neutrino oscillations is confirmed. It is argued that a Gaussian treatment of the errors appropriately describes the effects of the uncertainties on the neutrino oscillation parameters. (orig.)

  10. The natural parameterization of cosmic neutrino oscillations

    Science.gov (United States)

    Palladino, Andrea; Vissani, Francesco

    2015-09-01

    The natural parameterization of vacuum oscillations in three neutrino flavors is studied. Compact and exact relations of its three parameters with the ordinary three mixing angles and CP-violating phase are obtained. Its usefulness is illustrated by considering various applications: the study of the flavor ratio and of its uncertainties, the comparison of expectations and observations in the flavor triangle, and the intensity of the signal due to Glashow resonance. The results in the literature are easily reproduced and in particular the recently obtained agreement of the observations of IceCube with the hypothesis of cosmic neutrino oscillations is confirmed. It is argued that a Gaussian treatment of the errors appropriately describes the effects of the uncertainties on the neutrino oscillation parameters.

  11. Quantum correlations in terms of neutrino oscillation probabilities

    OpenAIRE

    Ashutosh Kumar Alok; Subhashish Banerjee; Uma Sankar, S.(Indian Institute of Technology Bombay, Mumbai, 400076, India)

    2016-01-01

    Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given flavour eigenstate. Given this mode entanglement, it is pertinent to consider the relation between the oscillation probabilities and other quantum correlations. In this work, we show that all the well-known quantum correlations, such as the Bell's inequality, are directly related to the neutrino oscillation probabilities. The results of the neutrino oscillation experiments, which measure t...

  12. Limits on neutrino oscillations in the CNGS neutrino beam and event classification with the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Ferber, Torben

    2012-09-15

    OPERA, the oscillation project with emulsion-tracking apparatus, is a long-baseline neutrino oscillation experiment. It combines an almost pure, high-energy {nu}{sub {mu}} beam produced at the SPS accelerator at CERN, Switzerland, with the OPERA neutrino detector located at a distance of about 730 km in the LNGS underground laboratory in Italy. By using a lead/photo emulsion target, {nu}{sub {tau}} charged current (CC) interactions of {nu}{sub {tau}} from {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations can be observed on an event-by-event basis with very low background rates. Within this thesis, a {nu}{sub {mu}}{yields}{nu}{sub {mu}} disappearance search is described that uses a flux normalization. independent measurement of the CC event fraction as a function of the hadronic energy as measured by the electronic detectors of OPERA. This allows to derive limits on {nu}{sub {mu}}{yields}{nu}{sub {mu}} oscillations, complementary to the main {nu}{sub {tau}} appearance analysis. For maximal mixing, vertical stroke {Delta}m{sup 2}{sub 23} vertical stroke >4.4 x 10{sup -3} eV{sup 2} is excluded at 90% C.L. by the disappearance analysis. This thesis represents the first application of this method, including systematic uncertainties, in a long-baseline neutrino oscillation experiment.

  13. Capabilities of long-baseline experiments in the presence of a sterile neutrino

    CERN Document Server

    Dutta, Debajyoti; Kayser, Boris; Masud, Mehedi; Prakash, Suprabh

    2016-01-01

    Assuming that there is a sterile neutrino, we ask what then is the ability of long-baseline experiments to i) establish that neutrino oscillation violates CP, ii) determine the three-neutrino mass ordering, and iii) determine which CP-violating phase or phases are the cause of any CP violation that may be observed. We find that the ability to establish CP violation and to determine the mass ordering could be very substantial. However, the effects of the sterile neutrino could be quite large, and it might prove very difficult to determine which phase is responsible for an observed CP violation. We explain why a sterile neutrino changes the long-baseline sensitivities to CP violation and to the mass ordering in the ways that it does. We note that long-baseline experiments can probe the presence of sterile neutrinos in a way that is different from, and complementary to, the probes of short-baseline experiments. We explore the question of how large sterile-active mixing angles need to be before long-baseline expe...

  14. Neutrino oscillations in a turbulent plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T. [Instituto de Física, Universidade de São Paulo, São Paulo, SP, CEP 05508-090 Brazil and IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Haas, F. [Departamento de Física, Universidade Federal do Paraná, Curitiba PR, CEP 81531-990 (Brazil)

    2013-07-15

    A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.

  15. NEUTRINO SUPER BEAM FACILITY FOR A LONG BASELINE EXPERIMENT FROM BNL TO HOMESTAKE.

    Energy Technology Data Exchange (ETDEWEB)

    KAHN,S.

    2002-10-21

    An upgrade to the BNL Alternate Gradient Synchrotron (AGS) could produce a very intense proton source at a relatively low cost. Such a proton beam could be used to generate a conventional neutrino beam with a significant flux at large distances from the laboratory. This provides the possibility of a very long baseline neutrino experiment at the Homestake mine. The construction of this facility would allow a program of experiments to study many of the aspects of neutrino oscillations including CP violations. This study examines a 1 MW proton source at BNL and a large 1 megaton detector positioned at the Homestake Mine as the ultimate goal of a staged program to study neutrino oscillations.

  16. Time-Dependent Collective Neutrino Oscillations in Supernovae

    Science.gov (United States)

    Abbar, Sajad; Duan, Huaiyu

    2015-10-01

    Neutrinos can experience self-induced flavor conversion in core-collapse supernovae due to neutrino-neutrino forward scattering. Previously a stationary supernova model, the so called ``neutrino bulb model,'' was used exclusively to study collective neutrino oscillations in the core-collapse supernova. We show that even a small time-dependent perturbation in neutrino fluxes on the surface of the proto-neutron star can lead to fast varying collective oscillations at large radii. This result calls for time-dependent supernova models for the study of collective neutrino oscillations. This work was supported by DOE EPSCoR Grant DE-SC0008142 at UNM.

  17. Probing CP violation in neutrino oscillations with neutrino telescopes

    CERN Document Server

    Blum, Kfir; Waxman, Eli

    2007-01-01

    Measurements of flavor ratios of astrophysical neutrino fluxes are sensitive to the two yet unknown mixing parameters $\\theta_{13}$ and $\\delta$ through the combination $\\sin\\theta_{13}\\cos\\delta$. We extend previous studies by considering the possibility that neutrino fluxes from more than a single type of sources will be measured. We point out that, if reactor experiments establish a lower bound on $\\theta_{13}$, then neutrino telescopes might establish an upper bound on $|\\cos\\delta|$ that is smaller than one, and by that prove that CP is violated in neutrino oscillations. Such a measurement requires several favorable ingredients to occur: (i) $\\theta_{13}$ is not far below the present upper bound; (ii) The uncertainties in $\\theta_{12}$ and $\\theta_{23}$ are reduced by a factor of about two; (iii) Neutrino fluxes from muon-damped sources are identified, and their flavor ratios measured with accuracy of order 10% or better. For the last condition to be achieved with the planned km^3 detectors, the neutrino...

  18. Atmospheric neutrino oscillations with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Andreas [TU Muenchen (Germany); Collaboration: IceCube-Collaboration

    2012-07-01

    IceCube is a cubic kilometer scale neutrino telescope completed in December 2010 optimized for neutrino energies on the TeV to PeV scale. With its more densely instrumented DeepCore subarray in the center, the performance in the 10 GeV to 1 TeV energy range has been improved significantly. We present the status of an analysis using IceCube and DeepCore in the 79-string configuration which operated from May 2010 until May 2011. In this configuration it is expected to be sensitive to standard neutrino oscillations by atmospheric muon neutrino disappearance with a maximum effect around 30 GeV and for vertically upgoing events. An atmospheric neutrino event sample is extracted from DeepCore data in the energy range 15 GeV-150 GeV. Higher energetic atmospheric neutrinos detected by IceCube serve as a control sample for which no oscillation effects are expected.

  19. Neutrino-nucleus interactions and the determination of oscillation parameters

    CERN Document Server

    Benhar, Omar; Mariani, Camillo; Meloni, Davide

    2015-01-01

    We review the status and prospects of theoretical studies of neutrino-nucleus interactions, and discuss the influence of the treatment of nuclear effects on the determination of oscillation parameters. The models developed to describe the variety of reaction mechanisms contributing to the nuclear cross sections are analysed, with emphasis placed on their capability to reproduce the available electron scattering data.The impact of the uncertainties associated with the description of nuclear dynamics on the the oscillation parameters is illustrated through examples, and possible avenues towards a better understanding of the signals detected by long baseline experiments are outlined.

  20. Neutrino oscillations and superluminal propagation

    CERN Document Server

    Magueijo, Joao

    2011-01-01

    We digress on the implications of recent claims of superluminal neutrino propagation. No matter how we turn it around such behaviour is very odd and sits uncomfortably even within "far-fetched" theories. In the context of non-linear realizations of the Lorentz group (where superluminal misbehaviour is run of the mill) one has to accept rather contrived constructions to predict superluminal properties for the neutrino. The simplest explanation is to require that at least one of the mass states be tachyonic. We show that due to neutrino mixing, the flavor energy does not suffer from the usual runaway pathologies of tachyons. For non-tachyonic mass states the theories become more speculative. A neutrino specific dispersion relation is exhibited, rendering the amplitude of the effect reasonable for a standard Planck energy. This uses the fact that the beam energy is close to the geometrical average of the neutrino and Planck mass; or, seen in another way, the beam energy is unexceptional but its gamma factor is v...

  1. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia Diane

    2004-08-10

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while {approx}2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 {+-} 0.065(stat.){+-}{sub 0.068}{sup 0.065}(sys.){+-}0.02(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, via the elastic-scattering interaction is [2.21{+-}0.22(stat.){+-}{sub 0.12}{sup 0.11}(sys.){+-}0.01(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, and via the neutral-current interaction is [5.05{+-}0.23(stat.){+-}{sub 0.37}{sup 0.31}(sys.){+-}0.06(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}. The electron-only flux seen via the charged-current interaction is more than 7{sigma} below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  2. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia Diane [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ~2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)±$0.065\\atop{0.068}$(sys.)±0.02(theor.)] x 106cm-2s-1, via the elastic-scattering interaction is [2.21±0.22(stat.)±$0.12\\atop{0.11}$(sys.)±0.01(theor.)] x 106cm-2s-1, and via the neutral-current interaction is [5.05±0.23(stat.)±$0.31\\atop{0.37}$(sys.)±0.06(theor.)] x 106cm-2s-1. The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  3. Evidence For Oscillation Of Atmospheric Neutrinos

    CERN Document Server

    Fukuda, Y; Ichihara, E; Inoue, K; Ishihara, K; Ishino, H; Itow, Y; Kajita, T; Kameda, J; Kasuga, S; Kobayashi, K; Kobayashi, Y; Koshio, Y; Miura, M; Nakahata, M; Nakayama, S; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Totsuka, Y; Yamada, S; Earl, M A; Habig, A; Kearns, E T; Messier, M D; Scholberg, K; Stone, J L; Sulak, Lawrence R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, David William; Gajewski, W; Halverson, P G; Hsu, J; Kropp, W R; Price, L R; Reines, F; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Flanagan, J W; Kibayashi, A; Learned, J G; Matsuno, S; Stenger, Victor J; Takemori, D; Ishii, T; Kanzaki, J I; Kobayashi, T; Mine, S; Nakamura, K; Nishikawa, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Echigo, S; Kohama, M; Suzuki, A T; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Conner, Z; Goodman, J A; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Mauger, C; McGrew, C; Sharkey, E; Viren, B M; Yanagisawa, C; Doki, W; Miyano, K; Okazawa, H; Saji, C; Takahata, M; Nagashima, Y; Takita, M; Yamaguchi, T; Yoshida, M; Kim, S B; Etoh, M; Fujita, K; Hasegawa, A; Hasegawa, T; Hatakeyama, S; Iwamoto, T; Koga, M; Maruyama, T; Ogawa, H; Shirai, J; Suzuki, A; Tsushima, F; Koshiba, M; Nemoto, M; Nishijima, K; Futagami, T; Hayato, Y; Kanaya, Y; Kaneyuki, K; Watanabe, Y; Kielczewska, D; Doyle, R A; George, J S; Stachyra, A L; Wai, L L; Wilkes, R J; Young, K K

    1998-01-01

    We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year (535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross sections are unable to explain our observation. The data are consistent, however, with two-flavor nu_mu nu_tau oscillations with sin^2(2theta)>0.82 and 5x10^-4 < delta m^2 < 6x10^-3 eV^2 at 90% confidence level.

  4. KamLAND's precision neutrino oscillation measurements

    Science.gov (United States)

    Decowski, M. P.

    2016-07-01

    The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δ m212 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo-ν‾e). The collaboration also reported on a variety of other topics related to particle and astroparticle physics.

  5. Influence of flavor oscillations on neutrino beam instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: titomend@ist.utl.pt [Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo SP (Brazil); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS (Brazil); Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  6. Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy

    CERN Document Server

    Ando, Shin'ichiro; Mocioiu, Irina

    2009-01-01

    If dark energy (DE) couples to neutrinos, then there may be apparent violations of Lorentz/CPT invariance in neutrino oscillations. The DE-induced Lorentz/CPT violation takes a specific form that introduces neutrino oscillations that are energy independent, differ for particles and antiparticles, and can lead to novel effects for neutrinos propagating through matter. We show that ultra-high-energy neutrinos may provide one avenue to seek this type of Lorentz/CPT violation in \

  7. Evidence for an oscillatory signature in atmospheric neutrino oscillations.

    Science.gov (United States)

    Ashie, Y; Hosaka, J; Ishihara, K; Itow, Y; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Nambu, R; Obayashi, Y; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Taki, K; Yamada, S; Ishitsuka, M; Kajita, T; Kaneyuki, K; Nakayama, S; Okada, A; Okumura, K; Ooyabu, T; Saji, C; Takenaga, Y; Desai, S; Kearns, E; Likhoded, S; Stone, J L; Sulak, L R; Walter, C W; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Gajewski, W; Kropp, W R; Liu, D W; Mine, S; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Ellsworth, R W; Tasaka, S; Guillian, G; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Messier, M D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kobayashi, T; Maruyama, T; Nakamura, K; Nitta, K; Oyama, Y; Sakuda, M; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hayashi, K; Inagaki, T; Kato, I; Maesaka, H; Morita, T; Nakaya, T; Nishikawa, K; Sasaki, T; Ueda, S; Yamamoto, S; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Sullivan, G W; Turcan, D; Scholberg, K; Habig, A; Fukuda, Y; Jung, C K; Kato, T; Kobayashi, K; Malek, M; Mauger, C; McGrew, C; Sarrat, A; Sharkey, E; Yanagisawa, C; Toshito, T; Miyano, K; Tamura, N; Ishii, J; Kuno, Y; Nagashima, Y; Takita, M; Yoshida, M; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Koshiba, M; Nakajima, Y; Nishijima, K; Harada, T; Ishino, H; Nishimura, R; Watanabe, Y; Kielczewska, D; Zalipska, J; Berns, H G; Gran, R; Shiraishi, K K; Stachyra, A; Washburn, K; Wilkes, R J

    2004-09-01

    Muon neutrino disappearance probability as a function of neutrino flight length L over neutrino energy E was studied. A dip in the L/E distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The observed L/E distribution constrained nu(micro)nu(tau) neutrino oscillation parameters; 1.9x10(-3)0.90 at 90% confidence level.

  8. On entanglement in neutrino mixing and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2010-06-01

    We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.

  9. On entanglement in neutrino mixing and oscillations

    CERN Document Server

    Blasone, M; De Siena, S; Illuminati, F

    2010-01-01

    We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.

  10. Neutrino oscillations in low density medium.

    Science.gov (United States)

    Ioannisian, A N; Smirnov, A Y

    2004-12-10

    We have solved the evolution equation for neutrinos in a low density medium, Vnu(e), we have found the attenuation effect: a decrease of the sensitivity to remote structures, d>l(nu)E/DeltaE, where l(nu) is the oscillation length and DeltaE/E is the energy resolution of a detector.

  11. Atmospheric Neutrino Oscillations in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Groß, A. [Technische Universität München, D-85748 Garching (Germany)

    2013-04-15

    We present the results of an analysis of data collected by IceCube/DeepCore in 2010-2011 resulting in the first significant detection of neutrino oscillations in a high-energy neutrino telescope. A low-energy muon neutrino sample (20–100GeV) containing the oscillation signal was extracted from data collected by DeepCore. A high-energy muon neutrino sample (100GeV–10TeV) was extracted from IceCube data in order to constrain the systematic uncertainties. The non-oscillation hypothesis was rejected with more than 5σ. We fitted the oscillation parameters Δm{sub 23}{sup 2} and sin{sup 2}2θ{sub 23} to these data samples. In a 2-flavor formalism we find Δm{sub 23}{sup 2}=(2.5±0.6)⋅10{sup −3}eV{sup 2} and sin{sup 2}2θ{sub 23}>0.92 while maximum mixing is favored. These results are in good agreement with the world average values.

  12. Anti-neutrino oscillations with T2K

    CERN Document Server

    Salzgeber, M Ravonel

    2015-01-01

    T2K is a long-baseline neutrino oscillation experiment, in which a muon neutrino beam is produced at J-PARC and detected 295 km away at the Super-Kamiokande detector. The T2K experiment observed electron-neutrino appearance in 2012. This observation enables T2K to explore CP violation in the lepton sector by comparing electron-neutrino appearance and electron-antineutrino appearance. Indeed, the number of observed electron neutrino events up to 2012 is, though within statistical fluctuation, larger than the expectation, which suggests maximal CP violation. Since 2013, T2K has been accumulating data with a muon antineutrino beam. If the suggested maximal CP violation is true, electron-antineutrino appearance would be suppressed. The signal is further suppressed by the smaller cross section for antineutrinos compared to neutrinos. Hence the observation of electron-antineutrino appearance is an important next step. Furthermore, the CPT theorem imposes that the muon disappearance rate must be the same for muon ne...

  13. Neutrino-nucleus interactions: from nuclear dynamics to neutrino oscillations

    Directory of Open Access Journals (Sweden)

    Martini M.

    2014-03-01

    Full Text Available We present a theory of neutrino interactions with nuclei aimed at the description of several partial cross sections, namely quasielastic and multinucleon emission, coherent and incoherent single-pion production. We put a special emphasis on the multinucleon emission channel which is related to the two particle-two hole excitations. As we suggested, this channel can account in particular for the unexpected behavior of the quasielastic cross section measured by MiniBooNE. The impact of the multinucleon emission channel on the neutrino energy reconstruction procedure hence on the determination on the neutrino oscillation parameters, is also analyzed in connection with the recent T2K and MiniBooNE results.

  14. Future Long-Baseline Neutrino Facilities and Detectors

    Directory of Open Access Journals (Sweden)

    Milind Diwan

    2013-01-01

    Full Text Available We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  15. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  16. Aspects of Neutrino Oscillation in Alternative Gravity Theories

    CERN Document Server

    Chakraborty, Sumanta

    2015-01-01

    Neutrino spin and flavour oscillation in curved spacetime have been studied for the most general static spherically symmetric configuration. Using the symmetry properties we have derived spin oscillation frequency for neutrino moving along a geodesic or in a circular orbit. Starting from the expression of neutrino spin oscillation frequency we have shown that even in this general context, in high energy limit the spin oscillation frequency for neutrino moving along circular orbit vanishes. This finally lends itself to non-zero probability of neutrino helicity flip. While for neutrino flavour oscillation we have derived general results for oscillation phase, which subsequently have been applied to different gravity theories. These include dilaton field coupled to Maxwell field tensor, generalization of Schwarzschild solution by introduction of quadratic curvature terms of all possible form to the Einstein-Hilbert action and finally regular black hole solutions. In all these cases using the solar neutrino oscil...

  17. Some comments on high precision study of neutrino oscillations

    Science.gov (United States)

    Bilenky, S. M.

    2015-07-01

    I discuss here some problems connected with the high precision study of neutrino oscillations. In the general case of n-neutrino mixing I derive a convenient expression for transition probability in which only independent terms (and mass-squared differences) enter. For three-neutrino mixing I discuss a problem of a definition of a large (atmospheric) neutrino mass-squared difference. I comment also possibilities to reveal the character of neutrino mass spectrum in future reactor neutrino experiments.

  18. Studying neutrino oscillations using quasi-elastic events in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Kumaratunga, Sujeewa Terasita [Univ. of Minnesota, Minneapolis, MN (United States)

    2008-02-01

    MINOS (Main Injector Neutrino Oscillation Search), is a long baseline neutrino experiment designed to search for neutrino oscillations using two detectors at Fermi National Accelerator Laboratory, IL (Near Detector) and Soudan, MN (Far Detector). It will study vμ → vτ oscillations and make a measurement on the oscillation parameters, Δm$2\\atop{23}$ and sin223, via a vμ beam made at Fermilab. Charge current neutrino interactions in the MINOS detectors are of three types: quasi-elastic scattering (QEL), resonance scattering (RES) and deep inelastic scattering (DIS). Of these, quasi-elastic scattering leaves the cleanest signal with just one μ and one proton in the final state, thus rendering the reconstruction of the neutrino energy more accurate. This thesis will outline a method to separate QEL events from the others in the two detectors and perform a calculation of Δm$2\\atop{23}$ and sin223 using those events. The period under consideration was May 2005 to February 2006. The number of observed quasi-elastic events with energies below 10 GeV was 29, where the expected number was 60 ± 3. A fit to the energy distribution of these events gives Δm$2\\atop{23}$ = 2.91$+0.49\\atop{-0.53}$(stat)$+0.08\\atop{-0.09}$(sys) x 10-3 eV2 and sin223 = 0.990-0.180(stat)-0.030(sys).

  19. Sterile neutrino oscillations in core-collapse supernova simulations

    CERN Document Server

    Warren, MacKenzie L; Mathews, Grant; Hidaka, Jun; Kajino, Toshitaka

    2014-01-01

    We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that an interesting oscillation in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.

  20. Short distance neutrino oscillations with Borexino

    Directory of Open Access Journals (Sweden)

    Caminata A.

    2016-01-01

    Full Text Available The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr and anti-neutrinos (Ce. Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  1. Short distance neutrino oscillations with Borexino

    Science.gov (United States)

    Caminata, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Cavalcante, P.; Chepurnov, A.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; di Noto, L.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-07-01

    The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr) and anti-neutrinos (Ce). Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e) into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  2. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tingjun [Stanford Univ., CA (United States)

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  3. Limits on the oscillation plus decay model using published MINOS neutrino and antineutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Abner Leonel Gadelha; Gomes, Ricardo Avelino [Universidade Federal de Goias (UFGO), Goiania (Brazil). Instituto de Fisica; Peres, Orlando Goulart [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin

    2013-07-01

    Full text: The neutrino oscillation model is the theoretical model that explains the so called anomalous neutrino phenomena. Models such as neutrino decay and decoherence failed to explain the neutrino experimental results. Nevertheless, it was proposed that the oscillation model could be the dominant model with the possibility to add alternative models to it and determine limits for the parameters of the additional models. In this phenomenological work we considered the neutrino oscillation plus decay model and used the published data from the MINOS experiment. MINOS is a long-baseline neutrino experiment with two magnetized detectors (the Near Detector at Fermilab, 1 km from the target and depth of 225 meters of water equivalent (mwe), and the Far Detector at Soudan, MN, 735 km from the target and depth of 2100 mwe) exposed to the NuMI (Neutrinos at the Main Injector) beam. We used recent results from neutrino and antineutrino configurations of the NuMI beam and fitted by a 2-flavor oscillation model - transition from ν{sub μ} (ν{sub -}bar{sub μ}) to ν{sub τ} (ν{sub -}bar{sub τ}). We show the best fit and allowed region found for neutrino and antineutrino data, reproducing the published results. We then combined the data and under the oscillation plus decay framework calculated 1D and 2D allowed regions to determine limits for the decay parameter. (author)

  4. Quantum correlations in terms of neutrino oscillation probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Alok, Ashutosh Kumar, E-mail: akalok@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Uma Sankar, S., E-mail: uma@phy.iitb.ac.in [Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-08-15

    Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given flavour eigenstate. Given this mode entanglement, it is pertinent to consider the relation between the oscillation probabilities and other quantum correlations. In this work, we show that all the well-known quantum correlations, such as the Bell's inequality, are directly related to the neutrino oscillation probabilities. The results of the neutrino oscillation experiments, which measure the neutrino survival probability to be less than unity, imply Bell's inequality violation.

  5. Quantum correlations in terms of neutrino oscillation probabilities

    Science.gov (United States)

    Alok, Ashutosh Kumar; Banerjee, Subhashish; Uma Sankar, S.

    2016-08-01

    Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given flavour eigenstate. Given this mode entanglement, it is pertinent to consider the relation between the oscillation probabilities and other quantum correlations. In this work, we show that all the well-known quantum correlations, such as the Bell's inequality, are directly related to the neutrino oscillation probabilities. The results of the neutrino oscillation experiments, which measure the neutrino survival probability to be less than unity, imply Bell's inequality violation.

  6. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Ricoux, Juan Pedro [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2009-01-01

    We perform a search for vμ → ve oscillations, a process which would manifest a nonzero value of the θ13 mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of ve charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in θ13. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  7. Degeneracies in long-baseline neutrino experiments from nonstandard interactions

    CERN Document Server

    Liao, Jiajun; Whisnant, Kerry

    2016-01-01

    We study parameter degeneracies that can occur in long-baseline neutrino appearance experiments due to nonstandard interactions (NSI). For a single off-diagonal NSI parameter, and neutrino and antineutrino measurements at a single L/E, there exists a continuous four-fold degeneracy (related to the mass hierarchy and $\\theta_{23}$ octant) that renders the mass hierarchy, octant, and CP phase unknowable. Even with a combination of NO$\

  8. Neutrino Interactions with Nucleons and Nuclei: Importance for Long Baseline Experiments

    CERN Document Server

    Mosel, Ulrich

    2016-01-01

    This article reviews our present knowledge of neutrino interactions with nucleons. It then discusses the interactions with nuclei, the target material of all presently running and planned long-baseline experiments. Particular emphasis is placed on descriptions of semi-inclusive reactions and full descriptions of the final state; the latter are needed to reconstruct the incoming neutrino energy from final state observations. Monte-Carlo generator and more advanced transport theoretical approaches are then discussed in connection with experimental results on various reaction mechanisms. Finally the effects of uncertainties in the reconstruction of the incoming neutrino energy on oscillation parameters are described. It is argued that the precision era of neutrino physics also needs precision era generators.

  9. Neutrino oscillations with MINOS and MINOS+

    Science.gov (United States)

    Whitehead, L. H.

    2016-07-01

    The MINOS experiment ran from 2003 until 2012 and collected a data sample including 10.71 ×1020 protons-on-target (POT) of beam neutrinos, 3.36 ×1020 POT of beam antineutrinos and an atmospheric neutrino exposure of 37.88 kt yrs. The final measurement of the atmospheric neutrino oscillation parameters, Δ m322 and θ23, came from a full three flavour oscillation analysis of the combined CC νμ and CC ν‾μ beam and atmospheric samples and the CC νe and CC ν‾e appearance samples. This analysis yielded the most precise measurement of the atmospheric mass splitting Δ m322 performed to date. The results are | Δ m322 | = [ 2.28- 2.46 ] ×10-3 eV2 (68%) and sin2 ⁡θ23 = 0.35- 0.65 (90%) in the normal hierarchy, and | Δ m322 | = [ 2.32- 2.53 ] ×10-3 eV2 (68%) and sin2 ⁡θ23 = 0.34- 0.67 (90%) in the inverted hierarchy. The successor to MINOS in the NOνA era at FNAL, MINOS+, is now collecting data mostly in the 3- 10 GeV region, and an analysis of νμ disappearance using the first 2.99 ×1020 POT of data produced results very consistent with those from MINOS. Future data will further test the standard neutrino oscillation paradigm and allow for improved searches for exotic phenomena including sterile neutrinos, large extra dimensions and non-standard interactions.

  10. Magnus approximation for neutrino oscillations with three flavors in matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, Alexis A; D' Olivo, Juan Carlos, E-mail: alexis@nucleares.unam.m, E-mail: dolivo@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Distrito Federal (Mexico)

    2010-01-01

    The Magnus expansion of the evolution operator is used to find approximate analytical solutions to the problem of three neutrino oscillations in matter with varying density. Survival probabilities are calculated for the case of solar and supernova neutrinos.

  11. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    CERN Document Server

    Adams, C; Andrews, M; Anghel, I; Arrieta-Diaz, E; Artuso, M; Asaadi, J; Bai, X; Baird, M; Balantekin, B; Baller, B; Baptista, B; Barker, D; Barletta, W; Barr, G; Bashyal, A; Bass, M; Bellini, V; Berger, B E; Bergevin, M; Berman, E; Berns, H; Bernstein, A; Bernstein, R; Bhatnagar, V; Bhuyan, B; Bishai, M; Blake, A; Blaufuss, E; Bleakley, B; Blucher, E; Blusk, S; Bocean, V; Bolton, T; Breedon, R; Brandt, A; Bromberg, C; Brown, R; Buchanan, N; Bugg, B; Camilleri, L; Carr, R; Carminati, G; Cavanna, F; Chen, A; Chen, H; Chen, K; Cherdack, D; Chi, C; Childress, S; Choudhary, B; Christofferson, C; Church, E; Cline, D; Coan, T; Coelho, J; Coleman, S; Conrad, J; Convery, M; Corey, R; Corwin, L; Davies, G S; Dazeley, S; de Gouvea, A; de Jong, J K; Escobar, C; De, K; Demuth, D; Diwan, M; Djurcic, Z; Dolph, J; Drake, G; Duyang, H; Dye, S; Edmunds, D; Elliott, S; Eno, S; Enomoto, S; Farbin, A; Falk, L; Felde, J; Feyzi, F; Fields, L; Fleming, B; Fowler, J; Fox, W; Friedland, A; Fujikawa, B; Gallagher, H; Gandhi, R; Garvey, G; Gehman, V M; Geronimo, G; Gill, R; Goodman, M C; Goon, J; Graham, M; Gran, R; Grant, C; Greenlee, H; Greenler, L; Guarino, V; Guardincerri, E; Guenette, R; Habib, S; Habig, A; Hackenburg, R W; Hahn, A; Haines, T; Handler, T; Hans, S; Hartnell, J; Harton, J; Hatcher, R; Hatzikoutelis, A; Hays, S; Hazen, E; Headley, M; Heavey, A; Heeger, K; Heise, J; Hellauer, R; Himmel, A; Hogan, M; Holin, A; Horton-Smith, G; Howell, J; Hurh, P; Huston, J; Hylen, J; Imlay, R; Insler, J; Isvan, Z; Jackson, C; Jaffe, D; James, C; Johnson, M; Johnson, R; Johnson, S; Johnston, W; Johnstone, J; Jones, B; Jostlein, H; Junk, T; Kadel, R; Karagiorgi, G; Kaspar, J; Katori, T; Kayser, B; Kearns, E; Keener, P; Kettell, S H; Kirby, M; Klein, J; Koizumi, G; Kopp, S; Kropp, W; Kudryavtsev, V A; Kumar, A; Kumar, J; Kutter, T; Lande, K; Lane, C; Lang, K; Lanni, F; Lanza, R; Latorre, T; La Zia, F; Learned, J; Lee, D; Lee, K; Li, S; Li, Y; Li, Z; Libo, J; Linden, S; Ling, J; Link, J; Littenberg, L; Liu, H; Liu, Q; Liu, T; Losecco, J; Louis, W; Lundberg, B; Lundin, T; Maesano, C; Magill, S; Mahler, G; Malys, S; Mammoliti, F; Mandal, S; Mann, A; Mantsch, P; Marchionni, A; Marciano, W; Mariani, C; Maricic, J; Marino, A; Marshak, M; Marshall, J; Matsuno, S; Mauger, C; Mayer, N; McCluskey, E; McDonald, K; McFarland, K; McKee, D; McKeown, R; McTaggart, R; Mehdiyev, R; Mei, D; Meng, Y; Mercurio, B; Messier, M D; Metcalf, W; Meyhandan, R; Milincic, R; Miller, W; Mills, G; Mishra, S; Sher, S Moed; Mokhov, N; Montanari, D; Moore, C D; Morfin, J; Morse, W; Mufson, S; Muller, D; Musser, J; Naples, D; Napolitano, J; Newcomer, M; Niner, E; Norris, B; Olson, T; Page, B; Pakvasa, S; Paley, J; Palamara, O; Paolone, V; Papadimitriou, V; Park, S; Parsa, Z; Paulos, B; Partyka, K; Pavlovic, Z; Perch, A; Perkin, J D; Peeters, S; Petti, R; Plunkett, R; Polly, C; Pordes, S; Potenza, R; Prakash, A; Prokofiev, O; Perdue, G; Qian, X; Raaf, J L; Radeka, V; Rajendran, R; Rakhno, I; Rameika, R; Ramsey, J; Rebel, B; Rescia, S; Reitzner, D; Richardson, M; Riesselman, K; Robinson, M; Ronquest, M; Rosen, M; Rosenfeld, C; Rucinski, R; Sahijpal, S; Sahoo, H; Samios, N; Sanchez, M C; Schellman, H; Schmitt, R; Schmitz, D; Schneps, J; Scholberg, K; Seibert, S; Shaevitz, M; Shanahan, P; Sharma, R; Shaw, T; Simos, N; Singh, V; Sinnis, G; Sippach, W; Skwarnicki, T; Smy, M; Sobel, H; Soderberg, M; Sondericker, J; Sondheim, W; Spooner, N J C; Stancari, M; Stancu, I; Stefanik, A; Stewart, J; Stone, S; Strait, J; Strait, M; Striganov, S; Sullivan, G; Suter, L; Svoboda, R; Szczerbinska, B; Szydagis, M; Szelc, A; Talaga, R; Tamsett, M; Tariq, S; Tayloe, R; Taylor, C; Taylor, D; Teymourian, A; Themann, H; Thiesse, M; Thomas, J; Thompson, L F; Thomson, M; Thorn, C; Tian, X; Tiedt, D; Toki, W; Tolich, N; Tripathi, M; Tropin, I; Tzanov, M; Urheim, J; Usman, S; Vagins, M; Van Berg, R; Van de Water, R; Varner, G; Vaziri, K; Velev, G; Viren, B; Wachala, T; Wahl, D; Waldron, A; Walter, C W; Wang, H; Wang, W; Warner, D; Wasserman, R; Watson, B; Weber, A; Wei, W; Wendell, R; Wetstein, M; White, A; White, H; Whitehead, L; Whittington, D; Willhite, J; Willis, W; Wilson, R J; Winslow, L; Worcester, E; Wyman, T; Xin, T; Yarritu, K; Ye, J; Yu, J; Yeh, M; Yu, B; Zeller, G; Zhang, C; Zimmerman, E D; Zwaska, R

    2013-01-01

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC...

  12. Neutrino oscillation from the beam with Gaussian-like energy distribution

    CERN Document Server

    Han, Rong-Sheng; Wang, Ke-Lin

    2015-01-01

    A recent neutrino experiment at Daya Bay gives superior data of the distribution of the prompt energy. In this paper, the energy distribution presented in the experiment is simulated by applying a Gaussian-like packet to the neutrino wave function received by the detector. We find that the wave packet of neutrinos is expanded during the propagation. As a result, the mixing angle $\\theta_{13}$ is more difficult to be measured than $\\theta_{12}$ and $\\theta_{23}$ in long baseline experiments. Some other propagation properties, such as the time evaluation of the survival probability, the neutrino oscillation and the $CP$ violation, are also studied with the employment of the coherent state method. When the Gaussian packet width increases, the amplitude of the neutrino oscillation decreases, whereas the oscillation period increases gradually.

  13. Quantum Gravity signals in neutrino oscillations

    CERN Document Server

    Sprenger, Martin; Bleicher, Marcus

    2011-01-01

    We investigate the effect of a Quantum Gravity-induced minimal length on neutrino oscillations. The minimal length is implemented in a phenomenological framework, allowing us to make predictions independently of any fundamental approach. We obtain clear minimal length signatures and discuss their observability in current and future experiments. We present an overview over other scenarios in which the minimal length leaves its signature and show new results concerning minimal length thermodynamics.

  14. An intermediate gamma beta-beam neutrino experiment with long baseline

    CERN Document Server

    Meloni, Davide; Orme, Christopher; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2008-01-01

    In order to address some fundamental questions in neutrino physics a wide, future programme of neutrino oscillation experiments is currently under discussion. Among those, long baseline experiments will play a crucial role in providing information on the value of theta13, the type of neutrino mass ordering and on the value of the CP-violating phase delta, which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an intermediate Lorentz factor gamma=450 and a baseline of 1050 km. This could be achieved in Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in the United Kingdom. We analyse the physics potential of this setup in detail and study two different exposures (1 x 10^{21} and 5 x 10^{21} ions-kton-years). In both cases, we find that the type of neutrino mass hierarchy could be determined at 99% CL, for all values of delta, for sin^2(2 theta13) > 0.03. In the high-exposure scenario, we find that the value of the CP-violating phase delta could be meas...

  15. Pseudo-Dirac neutrinos as a potential complete solution to the neutrino oscillation puzzle

    CERN Document Server

    Geiser, A

    1998-01-01

    A solution for the neutrino mass and mixing pattern is proposed which is compatible with all available experimental data on neutrino oscillations. This solution involves Majorana neutrinos of the pseudo-Dirac type, i.e. $m_{\\rm Majorana} \\ll m_{\\rm Dirac}$. The solar and atmospheric neutrino observations are mainly explained as $\

  16. Relativistic quantum theories and neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Keister, B D [Physics Division, 1015N, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230 (United States); Polyzou, W N, E-mail: polyzou@uiowa.ed [Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242 (United States)

    2010-05-01

    Neutrino oscillations are examined under the broad requirements of Poincare-invariant scattering theory in an S-matrix formulation. This approach can be consistently applied to theories with either field or particle degrees of freedom. The aim of this paper is to use this general framework to identify all of the unique physical properties of this problem that lead to a simple oscillation formula. We discuss what is in principle observable and how many factors that are important in principle end up being negligible in practice.

  17. Bayesian global analysis of neutrino oscillation data

    CERN Document Server

    Bergstrom, Johannes; Maltoni, Michele; Schwetz, Thomas

    2015-01-01

    We perform a Bayesian analysis of current neutrino oscillation data. When estimating the oscillation parameters we find that the results generally agree with those of the $\\chi^2$ method, with some differences involving $s_{23}^2$ and CP-violating effects. We discuss the additional subtleties caused by the circular nature of the CP-violating phase, and how it is possible to obtain correlation coefficients with $s_{23}^2$. When performing model comparison, we find that there is no significant evidence for any mass ordering, any octant of $s_{23}^2$ or a deviation from maximal mixing, nor the presence of CP-violation.

  18. Solar neutrino problem and gravitationally induced long-wavelength neutrino oscillation

    Science.gov (United States)

    Gago; Nunokawa; Zukanovich Funchal R

    2000-05-01

    We have reexamined the possibility of explaining the solar neutrino data through long-wavelength neutrino oscillations induced by a tiny breakdown of the weak equivalence principle of general relativity. We have found that such gravitationally induced oscillations can provide a viable solution to the solar neutrino problem.

  19. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope ANTARES Collaboration

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Carloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J. -P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Petrovic, J.; Piattelli, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sanchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vecchi, M.; Vernin, R.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2012-01-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoi

  20. Expectation values of flavor-neutrino numbers with respect to neutrino-source hadron states --Neutrino oscillations and decay probabilities--

    CERN Document Server

    Fujii, Kanji

    2014-01-01

    On the basis of quantum field theory, we consider a unified description of various processes accompanied by neutrinos, namely weak decays and oscillation processes. The structures of the expectation values of flavor-neutrino numbers with respect to neutrino-source hadron state are investigated. Due to the smallness of neutrino masses, we naturally obtain the old (i.e. pre-mixing) formulas of decay probabilities. Together, it is shown that the oscillation formulas, similar to the usual ones, are applied irrespectively of the details of neutrino-producing processes. The derived oscillation formulas are the same in form as the usually used ones except for the oscillation length.

  1. Long baseline neutrino physics: From Fermilab to Kamioka

    Energy Technology Data Exchange (ETDEWEB)

    DeJongh, Fritz

    2002-03-01

    We have investigated the physics potential of very long baseline experiments designed to measure nu_mu to nu_e oscillation probabilities. The principles of our design are to tune the beam spectrum to the resonance energy for the matter effect, and to have the spectrum cut off rapidly above this energy. The matter effect amplifies the signal, and the cut-off suppresses backgrounds which feed-down from higher energy. The signal-to-noise ratio is potentially better than for any other conventional nu_mu beam experiment. We find that a beam from Fermilab aimed at the Super-K detector has excellent sensitivity to sin^2(2theta_13) and the sign of Delta M^2. If the mass hierarchy is inverted, the beam can be run in antineutrino mode with a similar signal-to-noise ratio, and event rate 55% as high as for the neutrino mode. Combining the Fermilab beam with the JHF-Kamioka proposal adds very complementary information. We find good sensitivity to maximal CP violation for values of sin^2(2theta_13) ranging from 0.001 to 0.05.

  2. Solar Neutrino Oscillation Parameters after KamLAND

    CERN Document Server

    Goswami, S; Choubey, S; Goswami, Srubabati; Bandyopadhyay, Abhijit; Choubey, Sandhya

    2003-01-01

    We explore the impact of the data from the KamLAND experiment in constraining neutrino mass and mixing angles involved in solar neutrino oscillations. In particular we discuss the precision with which we can determine the the mass squared difference $\\Delta m^2_{solar}$ and the mixing angle $\\theta_{solar}$ from combined solar and KamLAND data. We show that the precision with which $\\Delta m^_{solar}$ can be determined improves drastically with the KamLAND data but the sensitivity of KamLAND to the mixing angle is not as good. We study the effect of enhanced statistics in KamLAND as well as reduced systematics in improving the precision. We also show the effect of the SNO salt data in improving the precision. Finally we discuss how a dedicated reactor experiment with a baseline of 70 km can improve the $\\theta_{solar}$ sensitivity by a large amount.

  3. Beyond the New Standard Model in neutrino oscillations

    Indian Academy of Sciences (India)

    M Zralek

    2006-11-01

    We discuss effects of new physics (NP) in neutrino oscillation experiments. Such effects can modify a production neutrino flux, a detection cross-section and a matter transition. As a result, the NP effects change neutrino oscillations both in vacuum and in matter. A relation between the small effects of NP and the oscillation parameters is discussed. It is shown for which parameters the NP effects are suppressed and when they are potentially large. Oscillations of non-unitary mixed neutrinos are presented in more details.

  4. Simulation of neutrino oscillations using discrete-time quantum walk

    CERN Document Server

    Mallick, Arindam; Chandrashekar, C M

    2016-01-01

    Neutrino oscillation is a well-known phenomenon observed in high energy physics. Here starting from a one-spatial dimensional discrete-time quantum walk we present a method to simulate neutrino oscillation. We present the set of walk parameters with which we can obtain the same oscillation probability profile obtained in both, long range and short range neutrino experiment. Our scheme to simulate three-generation neutrino oscillation from quantum walk evolution operators can be physically realized in any low energy experimental setup with access to control a single six-level system, a multiparticle three-qubits or a qubit-qutrit system.

  5. Neutrino Oscillations with MINOS and MINOS+

    CERN Document Server

    Whitehead, Leigh H

    2016-01-01

    The MINOS experiment ran from 2003 until 2012 and collected a data sample including 10.71x10^20 protons-on-target (POT) of beam neutrinos, 3.36x10^20 POT of beam antineutrinos and an atmospheric neutrino exposure of 37.88 kt-yrs. The final measurement of the atmospheric neutrino oscillation parameters, dm^2_32 and theta_23, came from a full three flavour oscillation analysis of the combined CC nu_mu and CC anti-nu_mu beam and atmospheric samples and the CC nu_e and CC anti-nu_e appearance samples. This analysis yielded the most precise measurement of the atmospheric mass splitting dm^2_32 performed to date. The results are |dm^2_32|=[2.28 - 2.46]x10^-3 eV^2 (68\\%) and sin^{2}theta_23=0.35-0.65$ (90\\%) in the normal hierarchy, and |dm^2_32|=[2.32 - 2.53]x10^-3 eV^2 (68\\%) and sin^{2}theta_23=0.34-0.67 (90\\%) in the inverted hierarchy. The successor to MINOS in the NOvA era at FNAL, MINOS+, is now collecting data mostly in the 3-10 GeV region, and an analysis of nu_mu disappearance using the first 2.99x10^20 PO...

  6. Long-Range Lepton Flavor Interactions and Neutrino Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Davoudiasl, H.; Lee, H-S; Marciano, W.

    2011-03-31

    Recent results from the MINOS accelerator neutrino experiment suggest a possible difference between {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance oscillation parameters, which one may ascribe to a new long distance potential acting on neutrinos. As a specific example, we consider a model with gauged B - L{sub e} - 2L{sub {tau}} number which contains an extremely light new vector boson, m{sub Z}, < 10{sup -18} eV and extraordinarily weak coupling {alpha}{prime} {approx}< 10{sup -52}. In that case, differences between {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub {tau}} oscillations can result from a long-range potential due to neutrons in the Earth and the Sun that distinguishes {nu}{sub {mu}} and {nu}{sub {tau}} on Earth, with a potential difference of {approx} 6 x 10{sup -14} eV, and changes sign for anti-neutrinos. We show that existing solar, reactor, accelerator, and atmospheric neutrino oscillation constraints can be largely accommodated for values of parameters that help explain the possible MINOS anomaly by this new physics, although there is some tension with atmospheric constraints. A long-range interaction, consistent with current bounds, could have very pronounced effects on atmospheric neutrino disappearance in the 20-50 GeV range that will be studied with the IceCube DeepCore array, currently in operation, and can have a significant effect on future high-precision long-baseline oscillation experiments which aim for {+-}1% sensitivity, in {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance, separately. Together, these experiments can extend the reach for new long-distance effects well beyond current bounds and test their relevance to the aforementioned MINOS anomaly. We also point out that long-range potentials originating from the Sun could lead to annual modulations of neutrino data at the percent level, due to the variation of the Earth-Sun distance. A similar phenomenology is shown to apply to

  7. Sensitivity to oscillation with a sterile fourth generation neutrino from ultra-low threshold neutrino-nucleus coherent scattering

    CERN Document Server

    Dutta, Bhaskar; Mahapatra, Rupak; Mirabolfathi, Nader; Strigari, Louis E; Walker, Joel W

    2015-01-01

    We discuss prospects for probing short-range sterile neutrino oscillation using neutrino-nucleus coherent scattering with ultra-low energy ($\\sim 10$ eV - 100 eV) recoil threshold cryogenic Si and Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and references available technology based upon economical and scalable detector arrays. The baseline of the experiment is substantially shorter than existing measurements, as near as 1 meter from the reactor core, and is moreover variable, extending continuously up to a range of about 20~meters. This proximity and variety combine to provide extraordinary sensitivity to a wide spectrum of oscillation scales, while facilitating the tidy cancellation of leading systematic uncertainties in the reactor source. For expected exposures, we demonstrate sensitivity to first/fourth neutrino oscillation with a mass gap $\\D...

  8. Complementarity Between Hyperkamiokande and DUNE in Determining Neutrino Oscillation Parameters

    CERN Document Server

    Fukasawa, Shinya; Yasuda, Osamu

    2016-01-01

    In this work we investigate the sensitivity to the neutrino mass hierarchy, the octant of the mixing angle $\\theta_{23}$ and the CP phase $\\delta_{CP}$ in the future long baseline experiments T2HK and DUNE as well as in the atmospheric neutrino observation at Hyperkamiokande (HK). These three experiments have the excellent facility to discover the above mentioned neutrino oscillation parameters in terms of both statistics and matter effect. In our analysis we find that the sensitivity is enhanced greatly if we combine these three experiments. Our results show that the hierarchy sensitivity of both T2HK and HK are limited due to the presence of parameter degeneracy. But this degeneracy is removed when T2HK and HK are added together. With T2HK+HK (DUNE), the neutrino mass hierarchy can be determined at least at $ 5 \\sigma$ (8\\,$\\sigma$) C.L. for any value of true $\\delta_{CP}$. With T2HK+HK+DUNE the significance of the mass hierarchy increases to almost 15 $\\sigma$ for the unfavorable value of $\\delta_{CP}$. Fo...

  9. Study of low-energy neutrino factory at the Fermilab to DUSEL baseline

    Energy Technology Data Exchange (ETDEWEB)

    Kyberd, Paul; Ellis, Malcolm; /Brunel U.; Bross, Alan; Geer, Steve; /Fermilab; Mena, Olga; /Valencia U., IFIC; Long, Ken; /Imperial Coll., London; Pascoli, Silvia; /Durham U., IPPP; Fernandez Martinez, Enrique; /Munich, Max Planck Inst.; McDonald, Kirk; /Princeton U.; Huber, Patrick; /Virginia Tech.

    2009-07-01

    the straight sections of the ring. Since the decay of the muon is well understood, the systematic uncertainties associated with a neutrino beam produced in this manner are very small. Beam diagnostics in the decay ring and a specially designed near detector further reduce the systematic uncertainties of the neutrino beam produced at the Neutrino Factory. In addition since the muon (anti-muon) decays produce both muon and anti-electron neutrinos (anti-muon and electron neutrinos), many oscillation channels are accessible from a Neutrino Factory, further extending the reach in the oscillation parameter space. Over the last decade there have been a number of studies [2-5] that have explored the discovery reach of Neutrino Factories in the small mixing angle, {theta}{sub 13}, and its capability to determine the mass hierarchy and determine if CP is violated in leptons through observation of phase parameter, {delta}. The most recent study to be completed [6], the International scoping study of a future Neutrino Factory and super-beam facility (the ISS), studied the physics capabilities of various future neutrino facilities: super-beam, {beta}-Beam and Neutrino Factory and has determined that the Neutrino Factory with an energy of {approx}25 GeV has the best discovery reach for small values of sin{sup 2}2{theta}{sub 13}, reaching an ultimate sensitivity of between 10{sup -5} and 10{sup -4}. However, for larger values of sin{sup 2}2{theta}{sub 13} (> 10{sup -3}), the sensitivity of other experimental approaches is competitive to that of the 25 GeV Neutrino Factory. The wide-band neutrino beam (WBB) produced at Fermilab and directed towards DUSEL [7] is one such competitor. For the case where sin{sup 2}2{theta}{sub 13} (> 10{sup -3}) is large, initial studies have shown that a Low-Energy Neutrino Factory [8-10] with an energy of, for example, 4 GeV, may be both cost-effective and offers exquisite sensitivity. The required baseline for a Low-Energy Neutrino Factory matches

  10. Probing neutrino oscillation parameters using high power superbeam from ESS

    Science.gov (United States)

    Agarwalla, Sanjib Kumar; Choubey, Sandhya; Prakash, Suprabh

    2014-12-01

    A high-power neutrino superbeam experiment at the ESS facility has been proposed such that the source-detector distance falls at the second oscillation maximum, giving very good sensitivity towards establishing CP violation. In this work, we explore the comparative physics reach of the experiment in terms of leptonic CP-violation, precision on atmospheric parameters, non-maximal θ 23, and its octant for a variety of choices for the baselines. We also vary the neutrino vs. the anti-neutrino running time for the beam, and study its impact on the physics goals of the experiment. We find that for the determination of CP violation, 540 km baseline with 7 years of ν and 3 years of run-plan performs the best and one expects a 5 σ sensitivity to CP violation for 48% of true values of δ CP. The projected reach for the 200 km baseline with run-plan is somewhat worse with 5 σ sensitivity for 34% of true values of δ CP. On the other hand, for the discovery of a non-maximal θ 23 and its octant, the 200 km baseline option with run-plan performs significantly better than the other baselines. A 5σ determination of a non-maximal θ 23 can be made if the true value of sin2 θ 23 ≲ 0.45 or sin2 θ 23 ≳ 0.57. The octant of θ 23 could be resolved at 5 σ if the true value of sin2 θ 23 ≲ 0.43 or ≳ 0.59, irrespective of δ CP.

  11. Phenomenology of future neutrino oscillation experiments

    CERN Document Server

    Schwetz, Thomas

    2010-01-01

    give a brief overview of the phenomenology related to the measurements of the last unknown lepton mixing angle !13, CP violation (CPV) in neutrino os- cillations, and the neutrino mass hierarchy (MH). Sensitivities of upcoming reactor and accelerator experiments to !13 are discussed, showing that within a few years values of sin2 2!13 ! 10−2 will be probed, while CPV andMH mea- surements will be very difÞcult with that generation of experiments. I make some selected remarks on CPV andMH determinations with a subsequent gen- eration of experiment consisting of a high precision/high luminosity oscillation facility. In particular, I emphasize the possibility to explore synergies of such an advanced accelerator facility with a huge multi-purpose detector.

  12. An Appraisal of Muon Neutrino Disappearance at Short Baseline Neutrino Beams

    CERN Document Server

    Stanco, Luca; Longhin, Andrea; Bertolin, Alessandro; Laveder, Marco

    2013-01-01

    Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long standing problem of new Physics beyond the Standard Model. The recent measurements of the third mixing angle $\\theta_{13}$ in the standard mixing oscillation scenario encourage to pursue the still missing results on the leptonic CP violation and the absolute neutrino masses. However, several puzzling and incomplete measurements are in place which deserve an exhaustive evaluation and study. We will report about the present situation of the muon disappearance measurements at small $L/E$ in the context of the current CERN project to revitalize the neutrino field in Europe and the search for sterile neutrinos. We will then illustrate the achievements that a double muon spectrometer can attain in terms of discovery of new neutrino states, performing a newly developed analysis.

  13. Inertial Effects on Berry's Phase of Neutrino Oscillations

    CERN Document Server

    Capozziello, S

    2000-01-01

    The Berry phase of mixed states, as neutrino oscillations, is calculated in a accelerating and rotating reference frame. It turns out to be depending on the vacuum mixing angle, the mass--squared difference and on the coupling between the momentum of the neutrino and the spinorial connection. Berry's phase for solar neutrinos and its geometrical aspects are also discussed.

  14. Proof of Concept of Kinematically Correct Neutrino Flavor Oscillations

    CERN Document Server

    Williams, J M

    2002-01-01

    Assuming neutrinos have a flavor-independent and small but nonzero rest mass, flavor oscillations can be demonstrated which fit the known data without violating any physical law. We require that the neutrino have observable substructure and an effective size, in at least one dimension, expanding after creation to exceed the range of the weak force. Thus, neutrinos are made truly analogous to kaons.

  15. First Anti-neutrino Oscillation Results from the T2K Experiment

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Neutrinos are some of the most abundant but yet most elusive particles in the universe. They have almost no mass, only interact weakly and relatively little is known about their properties. Furthermore it has been firmly established over the last decade that neutrinos can undergo flavour transitions as mass and flavor eigenstates are not identical. These neutrino oscillations have been studied using natural sources as well as nuclear reactors or with neutrinos produced at accelerators. T2K is a long baseline neutrino oscillation beam that uses a beam of muon (anti-)neutrinos that is directed form J-PARC at the east cost of Japan over a distance of almost 300 km to the SuperKamiokande water Cherenkov detector in the west. The facility is complemented by a near detector complex 280 m downstream of the neutrino production target to characterise the beam and the neutrino interaction dynamics. T2K has taken data with a muon neutrino beam since early 2010 and is studying the disappearance of muon neutrinos as well...

  16. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  17. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  18. New Ambiguity in Probing C P Violation in Neutrino Oscillations

    Science.gov (United States)

    Miranda, O. G.; Tórtola, M.; Valle, J. W. F.

    2016-08-01

    If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new C P phase ϕ associated with nonunitarity. This leads to an ambiguity in extracting the "standard" three-neutrino phase δC P, which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of δC P.

  19. New ambiguity in probing CP violation in neutrino oscillations

    CERN Document Server

    Miranda, O G; Valle, J W F

    2016-01-01

    If neutrinos get mass a la seesaw the mixing matrix describing neutrino oscillations can be effectively non-unitary. We show that in this case the neutrino appearance probabilities involve a new CP phase, phi, associated to non-unitarity. This leads to an ambiguity in extracting the "standard" three--neutrino phase delta_CP, which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of delta_CP.

  20. Atmospheric neutrinos, nu_e-nu_s oscillations, and a novel neutrino evolution equation

    CERN Document Server

    Akhmedov, Evgeny

    2016-01-01

    If a sterile neutrino nu_s with an eV-scale mass and a sizeable mixing to the electron neutrino exists, as indicated by the reactor and gallium neutrino anomalies, a strong resonance enhancement of nu_e-nu_s oscillations of atmospheric neutrinos should occur in the TeV energy range. At these energies neutrino flavour transitions in the 3+1 scheme depend on just one neutrino mass squared difference and are fully described within a 3-flavour oscillation framework. We demonstrate that the flavour transitions of atmospheric nu_e can actually be very accurately described in a 2-flavour framework, with neutrino flavour evolution governed by an inhomogeneous Schroedinger-like equation. Evolution equations of this type have not been previously considered in the theory of neutrino oscillations.

  1. Neutrino oscillations: Quantum mechanics vs. quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny Kh.; Kopp, Joachim

    2010-01-01

    A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

  2. Search for short-baseline oscillations at the NOvA Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kasetti, Siva Prasad [Fermialb; Aurisano, Adam [Cincinnati U.; Suter, Louise [Fermilab; Sousa, Alex [Cincinnati U.

    2016-10-03

    Anomalous results from past neutrino experiments have been interpreted as potential evidence for an additional sterile neutrino with a mass on order of 1 eV, but this evidence remains inconclusive. The NOvA Near Detector is a 300 ton almost fully-active fine- grained liquid scintillator detector, that was designed for electron-neutrino identification. The detector is placed along the Fermilab NuMI beam line 1 km from the target and 14.6 mrad off-axis. At this off-axis angle the detector is exposed to a narrow band beam peaked at 2 GeV. Therefore the NOvA Near Detector will see neutrinos with a L/E range that is sensitive to oscillations between active neutrinos and light sterile neutrinos. In this report we discuss NOvA sensitivity from the joint electron-neutrino appeara ce and muon-neutrino disappearance analysis search for short-baseline sterile neutrino mixing.

  3. Introduction to a field-theoretical treatment of neutrino oscillations

    Indian Academy of Sciences (India)

    P Stockinger

    2000-01-01

    We discuss the main features of the field-theoretical approach to neutrino oscillations where one combines neutrino production and detection processes in a single Feynman graph. The ‘oscillating neutrinos’ are represented by inner lines of this graph and appear in the calculation of the cross section of the total process as propagators of the neutrino mass eigenfields. We show that this field-theoretical approach leads to a transparent treatment of neutrino oscillations without ambiguities and provides the correct answer in cases where the standard approach fails.

  4. Linking neutrino oscillations to the nucleosynthesis of elements

    CERN Document Server

    Wu, Meng-Ru; Qian, Yong-Zhong

    2015-01-01

    Neutrino interactions with matter play an important role in determining the nucleosynthesis outcome in explosive astrophysical environments such as core-collapse supernovae or mergers of compact objects. In this article, we first discuss our recent work on the importance of studying the time evolution of collective neutrino oscillations among active flavors in determining their effects on nucleosynthesis. We then consider the possible active-sterile neutrino mixing and demonstrate the need of a consistent approach to evolve neutrino flavor oscillations, matter composition, and the hydrodynamics when flavor oscillations can happen very deep inside the supernovae.

  5. Linking neutrino oscillations to the nucleosynthesis of elements

    Directory of Open Access Journals (Sweden)

    Wu Meng-Ru

    2016-01-01

    Full Text Available Neutrino interactions with matter play an important role in determining the nucleosynthesis outcome in explosive astrophysical environments such as core-collapse supernovae or mergers of compact objects. In this article, we first discuss our recent work on the importance of studying the time evolution of collective neutrino oscillations among active flavors in determining their effects on nucleosynthesis. We then consider the possible active-sterile neutrino mixing and demonstrate the need of a consistent approach to evolve neutrino flavor oscillations, matter composition, and the hydrodynamics when flavor oscillations can happen very deep inside the supernovae.

  6. On a theory of neutrino oscillations with entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris; Kopp, Joachim; /Fermilab; Roberston, R.G.Hamish; /Washington U., Seattle; Vogel, Petr; /Caltech, Kellogg Lab

    2010-06-01

    We show that the standard expression for the neutrino oscillation length can be confirmed even in theoretical approaches that take into account entanglement between the neutrino and its interaction partners. We show this in particular for the formalism developed in arXiv:1004.1847. Finally, we shed some light on the question why plane-wave approaches to the neutrino oscillation problem can yield the correct result for the oscillation length even though they do not explicitly account for the localization of the neutrino source and the detector.

  7. Linking neutrino oscillations to the nucleosynthesis of elements

    Science.gov (United States)

    Wu, Meng-Ru; Martínez-Pinedo, Gabriel; Qian, Yong-Zhong

    2016-02-01

    Neutrino interactions with matter play an important role in determining the nucleosynthesis outcome in explosive astrophysical environments such as core-collapse supernovae or mergers of compact objects. In this article, we first discuss our recent work on the importance of studying the time evolution of collective neutrino oscillations among active flavors in determining their effects on nucleosynthesis. We then consider the possible active-sterile neutrino mixing and demonstrate the need of a consistent approach to evolve neutrino flavor oscillations, matter composition, and the hydrodynamics when flavor oscillations can happen very deep inside the supernovae.

  8. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  9. Generalized mass ordering degeneracy in neutrino oscillation experiments

    CERN Document Server

    Coloma, Pilar

    2016-01-01

    We consider the impact of neutral-current (NC) non-standard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle $\\theta_{12}$ at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence, solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-one corrections from NSI to the NC electron neutrino--quark interaction and can be tested in electron neutrino NC scattering experiments.

  10. Generalized mass ordering degeneracy in neutrino oscillation experiments

    Science.gov (United States)

    Coloma, Pilar; Schwetz, Thomas

    2016-09-01

    We consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  11. Planned reactor and beam experiments on Neutrino Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Maury [Argonne National Lab, Argonne IL 60439 (United States)

    2009-08-15

    Current and future neutrino oscillation experiments are discussed with an emphasis on those that will measure or further limit the neutrino oscillation parameter {theta}{sub 13}. Some {nu}{sub e} disappearance experiments are being planned at nuclear reactors, and more ambitious {nu}{sub {mu}}{yields}{nu}{sub e} appearance experiments are being planned using accelerator beams.

  12. Earth matter effect on active-sterile neutrino oscillations

    Science.gov (United States)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-08-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some experimental observations. In a four-neutrino mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos taking into account the matter effect for a varying terrestrial density.

  13. Neutrino Oscillations in the Atmospheric Parameter Region: From the Early Experiments to the Present

    Directory of Open Access Journals (Sweden)

    G. Giacomelli

    2013-01-01

    Full Text Available The aim of this paper is to provide a historical perspective on the main experimental steps which led to the current picture of neutrino oscillations in the “atmospheric parameter region.” In the 1980s a deficit of atmospheric muon neutrinos was observed with the first generation of underground experiments. In the following decade new experiments provided fundamental results which led to the discovery claims in 1998. At the beginning of the new century neutrino beams of medium and high energy became available and several long baseline experiments were performed and added new information to the atmospheric neutrino puzzle. The interpretation of the results of atmospheric and long baseline neutrino experiments was in terms of dominant νμ→ντ oscillations. Short recollections are made of the SNO solar neutrino measurements, of the results with neutrino telescopes, and of reactor neutrinos to measure sin2θ13. Over the years the phenomenological picture improved in completeness and increased in complexity. A short perspective concludes the paper.

  14. Decoherence and oscillations of supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, Joern [University of Bergen, Institute for Physics and Technology (Norway); Smirnov, Alexei Yu. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); The Abdus Salam ICTP, Trieste (Italy)

    2016-06-15

    Supernova neutrinos have several exceptional features which can lead to interesting physical consequences. At the production point their wave packets have an extremely small size σ{sub x} ∝ 10{sup -11} cm; hence the energy uncertainty can be as large as the energy itself, σ{sub E} ∝ E, and the coherence length is short. On the way to the Earth the wave packets of mass eigenstates spread to macroscopic sizes and separate. Inside the Earth the mass eigenstates split into eigenstates in matter and oscillate again. The coherence length in the Earth is comparable with the radius of the Earth. We explore these features and their consequences. (1) We present new estimates of the wave packet size. (2) We consider the decoherence condition for the case of wave packets with spatial spread and show that it is not modified by the spread. (3) We study the coherence of neutrinos propagating in a multi-layer medium with density jumps at the borders of layers. In this case coherence can be partially restored due to a ''catch-up effect'', increasing the coherence length beyond the usual estimate. This catch-up effect can occur for supernova neutrinos as they cross the shock wave fronts in the exploding star or the core of the Earth. (orig.)

  15. Relating the small parameters of neutrino oscillations

    Directory of Open Access Journals (Sweden)

    Soumita Pramanick

    2015-06-01

    Full Text Available Neutrino oscillations reveal several small parameters, namely, θ13, the solar mass splitting vis-à-vis the atmospheric one, and the deviation of θ23 from maximal mixing. Can these small quantities all be traced to a single source and, if so, how could that be tested? Here a see-saw model for neutrino masses is presented wherein a dominant term generates the atmospheric mass splitting with maximal mixing in this sector, keeping θ13=0 and zero solar splitting. A Type-I see-saw perturbative contribution results in non-zero values of θ13, Δmsolar2, θ12, as well as allows θ23 to deviate from π/4 in consistency with the data while interrelating them all. CP-violation is a natural consequence and is large (δ∼π/2,3π/2 for inverted mass ordering. The model will be tested as precision on the neutrino parameters is sharpened.

  16. Neutrino oscillations in MHD supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, S; Kotake, K [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, T, E-mail: shio.k@nao.ac.j [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2010-01-01

    We calculate the neutrino oscillations numerically in magnetohydrodynamic (MHD) explosion models to see how asphericity has impacts on neutrino spectra. Magneto-driven explosions are one of the most attracting scenarios for producing large scale departures from spherical symmetric geometry, that are reported by many observational data. We find that the event rates at Super-Kamiokande (SK) seen from the polar direction (e.g., the rotational axis of the supernovae) decrease when the shock wave is propagating through H-resonance. In addition, we find that L-resonance in this situation becomes non-adiabatic, and the effect of L-resonance appears in the neutrino signal, because the MHD shock can propagate to the stellar surface without shock-stall after core bounce, and the shock reaches the L-resonance at earlier stage than the conventional spherical supernova explosion models. Our results suggest that we may obtain the observational signatures of the two resonances in SK for Galactic supernova.

  17. Obtaining supernova directional information using the neutrino matter oscillation pattern

    CERN Document Server

    Scholberg, Kate; Wendell, Roger

    2009-01-01

    A nearby core collapse supernova will produce a burst of neutrinos in several detectors worldwide. With reasonably high probability, the Earth will shadow the neutrino flux in one or more detectors. In such a case, for allowed oscillation parameter scenarios, the observed neutrino energy spectrum will bear the signature of oscillations in Earth matter. Because the frequency of the oscillations in energy depends on the pathlength traveled by the neutrinos in the Earth, an observed spectrum contains also information about the direction to the supernova. We explore here the possibility of constraining the supernova location using matter oscillation patterns observed in a detector. Good energy resolution (typical of scintillator detectors), well known oscillation parameters, and optimistically large (but conceivable) statistics are required. Pointing by this method can be significantly improved using multiple detectors located around the globe. Although it is not competitive with neutrino-electron elastic scatter...

  18. Looking into analytical approximations for three-flavor neutrino oscillation probabilities in matter

    Science.gov (United States)

    Li, Yu-Feng; Zhang, Jue; Zhou, Shun; Zhu, Jing-yu

    2016-12-01

    Motivated by tremendous progress in neutrino oscillation experiments, we derive a new set of simple and compact formulas for three-flavor neutrino oscillation probabilities in matter of a constant density. A useful definition of the η-gauge neutrino mass-squared difference Δ∗ ≡ ηΔ31 + (1 - η)Δ32 is introduced, where Δ ji ≡ m j 2 - m i 2 for ji = 21 , 31 , 32 are the ordinary neutrino mass-squared differences and 0 ≤ η ≤ 1 is a real and positive parameter. Expanding neutrino oscillation probabilities in terms of α ≡ Δ21 /Δ∗, we demonstrate that the analytical formulas can be remarkably simplified for η = cos2 θ 12, with θ 12 being the solar mixing angle. As a by-product, the mapping from neutrino oscillation parameters in vacuum to their counterparts in matter is obtained at the order of O({α}^2) . Finally, we show that our approximate formulas are not only valid for an arbitrary neutrino energy and any baseline length, but also still maintaining a high level of accuracy.

  19. A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements

    CERN Document Server

    Bridle, Sarah; Evans, Justin; Fernandez, Susana; Guzowski, Pawel; Soldner-Rembold, Stefan

    2016-01-01

    We perform a comparative analysis of constraints on sterile neutrinos from the Planck experiment and from current and future neutrino oscillation experiments (MINOS, IceCube, SBN). For the first time, we express the Planck constraints on $N_{\\rm eff}$ and $m_{\\rm eff}^{\\rm sterile}$ from the Cosmic Microwave Background in the parameter space used by oscillation experiments using both mass-squared differences and mixing angles. In a model with a single sterile neutrino species and using standard assumptions, we find that the Planck data and the oscillation experiments measuring muon-neutrino disappearance have similar sensitivity.

  20. Optical simulation of neutrino oscillations in binary waveguide arrays.

    Science.gov (United States)

    Marini, Andrea; Longhi, Stefano; Biancalana, Fabio

    2014-10-10

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos. In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to explore neutrino interactions in extreme regimes that are expected to play an important role in massive supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as excitation of optical gap solitons propagating along the binary arrays at high excitation intensities.

  1. Search for Sterile Neutrinos at OPERA and other Long--Baseline Experiments

    CERN Document Server

    Stanco, Luca

    2015-01-01

    The OPERA experiment at the CNGS beam has observed muon to tau neutrino oscillations in the atmospheric sector. Based on this result new limits on the mixing parameters of a massive sterile neutrino may be set. Preliminary results of the analysis done in the 3+1 neutrino framework are here presented. An update of the search for sterile neutrinos in the $\

  2. Oscillation and Mixing Among the Three Neutrino Flavors

    CERN Document Server

    Weiler, Thomas J

    2013-01-01

    With the educated, interested non-specialist as the target audience, we overview what is known and not known about contemporary neutrino physics. Theory tells us that neutrinos are the second-most common particle in the Universe, behind only the quanta of radiation called photons. Almost a trillion neutrinos per second enter each human eyeball, and yet we do not see them; these neutrinos, in roughly equal numbers, are emanations from our Sun and relics of the hot "big bang" era of the early Universe. Much of what we know about neutrinos, and hope to learn in the future, is derived from a unique feature of neutrinos -- "oscillation" among neutrino "flavor" types. An initial neutrino flavor will in general oscillate into another flavor as the neutrino propagates in space and time. Oscillations are a quantum mechanical phenomenon. One of the wonders of neutrinos is that their quantum mechanics may be observed over large distances, even astronomically large. We begin this article with neutrino phenomenology in te...

  3. Neutrino oscillations in a curved space-time with rotation

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Adellane A.; Pereira, Rosangela B. [Universidade Federal de Mato Grosso (UFMT), Barra do Garcas, MT (Brazil)

    2011-07-01

    Full text: Several experiments, like Homestake Experiment in the late 1960, which used a chlorine-based detector, observed a deficit in the flux of solar neutrinos. This is the solar neutrino problem. A possible explanation to this problem are the neutrino oscillations, a quantum mechanical phenomenon predicted by Bruno Pontecorvo whereby a neutrino created with a specific lepton flavor (electron, muon or tau) can later be measured to have a different flavor. The probability of measuring a particular flavor for a neutrino varies periodically as it propagates. One possible approach to this problem is to use a background at space-time of Minkowski in the propagation of the neutrinos between the source and the Earth. However, the curved space-time is a more realistic background to neutrino oscillations. We studied the problem of neutrino oscillations in a Riemann space-time in the Lense-Thirring metric rotational using Dirac equation with the prescription of minimum coupling (Levi-Civita connection). The Lense-Thirring effect on the neutrino was confirmed via Dirac Hamiltonian. In particular, we calculated the phase dynamics of the neutrinos and determined the the transition probability in the two-flavor case. We also present a new approach for introducing the torsion space-time into the Dirac equation using the general spin connection (in the context of Riemann-Cartan geometry) and investigated the role of the torsion in the phase of the neutrino via a free parameter b. (author)

  4. Wave-packet treatment of neutrino oscillations and its implications on determining the neutrino mass hierarchy

    CERN Document Server

    Chan, Yat-Long; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi

    2015-01-01

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 $\\sigma$ confidence level.

  5. Constraints on Neutrino Oscillations Using 1258 Days of Super-Kamiokande Solar Neutrino Data

    CERN Document Server

    Fukuda, S; Ishitsuka, M; Itow, Y; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Okada, A; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Desai, S V; Earl, M A; Kearns, E T; Messier, M D; Scholberg, K; Stone, J L; Sulak, Lawrence R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, David William; Gajewski, W; Kropp, W R; Mine, S; Liu, D; Price, L R; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ishii, T; Kobayashi, T; Nakamura, K; Obayashi, Y; Oyama, Y; Sakai, A; Sakuda, M; Kohama, M; Suzuki, A T; Inagaki, T; Nakaya, T; Nishikawa, K; Haines, T J; Blaufuss, E; Dazeley, S A; Lee, K B; Svoboda, R; Chen, M L; Goodman, J A; Guillian, G; Sullivan, G W; Turcan, D; Habig, A; Hill, J; Jung, C K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B M; Yanagisawa, C; Mitsuda, C; Miyano, K; Saji, C; Shibata, T; Kajiyama, Y; Nagashima, Y; Nitta, K; Takita, M; Yoshida, M; Kim, H I; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Etoh, M; Gando, Y; Hasegawa, T; Inoue, K; Ishihara, K; Maruyama, T; Shirai, J; Suzuki, A; Koshiba, M; Hatakeyama, Y; Ichikawa, Y; Koike, M; Nishijima, K; Fujiyasu, H; Ishino, H; Morii, M; Watanabe, Y; Golebiewska, U; Kielczewska, D; Boyd, S C; Stachyra, A L; Wilkes, R J; Young, K K

    2001-01-01

    We report the result of a search for neutrino oscillations using precise measurements of the recoil electron energy spectrum and zenith angle variations of the solar neutrino flux from 1258 days of neutrino-electron scattering data in Super-Kamiokande. The absence of significant zenith angle variation and spectrum distortion places strong constraints on neutrino mixing and mass difference in a flux-independent way. Using the Super-Kamiokande flux measurement in addition, two allowed regions at large mixing are found.

  6. Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data.

    Science.gov (United States)

    Fukuda, S; Fukuda, Y; Ishitsuka, M; Itow, Y; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Okada, A; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Desai, S; Earl, M; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Liu, D W; Price, L R; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ishii, T; Kobayashi, T; Nakamura, K; Obayashi, Y; Oyama, Y; Sakai, A; Sakuda, M; Kohama, M; Suzuki, A T; Inagaki, T; Nakaya, T; Nishikawa, K; Haines, T J; Blaufuss, E; Dazeley, S; Lee, K B; Svoboda, R; Goodman, J A; Guillian, G; Sullivan, G W; Turcan, D; Habig, A; Hill, J; Jung, C K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Mitsuda, C; Miyano, K; Saji, C; Shibata, T; Kajiyama, Y; Nagashima, Y; Nitta, K; Takita, M; Yoshida, M; Kim, H I; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Etoh, M; Gando, Y; Hasegawa, T; Inoue, K; Ishihara, K; Maruyama, T; Shirai, J; Suzuki, A; Koshiba, M; Hatakeyama, Y; Ichikawa, Y; Koike, M; Nishijima, K; Fujiyasu, H; Ishino, H; Morii, M; Watanabe, Y; Golebiewska, U; Kielczewska, D; Boyd, S C; Stachyra, A L; Wilkes, R J; Young, K K

    2001-06-18

    We report the result of a search for neutrino oscillations using precise measurements of the recoil electron energy spectrum and zenith angle variations of the solar neutrino flux from 1258 days of neutrino-electron scattering data in Super-Kamiokande. The absence of significant zenith angle variation and spectrum distortion places strong constraints on neutrino mixing and mass difference in a flux-independent way. Using the Super-Kamiokande flux measurement in addition, two allowed regions at large mixing are found.

  7. Precision Measurement of Neutrino Oscillation Parameters with KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, Thomas [Univ. of California, Berkeley, CA (United States)

    2011-12-01

    This dissertation describes a measurement of the neutrino oscillation parameters m2 21, θ12 and constraints on θ13 based on a study of reactor antineutrinos at a baseline of ~ 180 km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of 2.64 ± 0.07 × 1032 proton-years. For this exposure we expect 2140 ± 74(syst) antineutrino candidates from reactors, assuming standard model neutrino behavior, and 350±88(syst) candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is (NObs - NBkg)/ (NExp) = 0.59 ± 0.02(stat) ± 0.045(syst) which confirms reactor neutrino disappearance at greater than 5σ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are m2 21= 7.60+0.20 -0.19×10-5eV2, θ12 = 32.5 ± 2.9 degrees and sin2 θ13 = 0.025+0.035 -0.035, the 95% confidence-level upper limit on sin2 θ13 is sin2 θ13 < 0.083. Assuming CPT invariance, a combined analysis of KamLAND and solar neutrino data yields best-fit values: m2 21 = 7.60+0.20 -0.20 × 10-5eV2, θ12 = 33.5+1.0 -1.1 degrees, and sin2 θ13 = 0.013 ± 0.028 or sin2 θ13 < 0.06 at the 95% confidence level.

  8. Optical simulation of neutrino oscillations in binary waveguide arrays

    CERN Document Server

    Marini, Andrea; Biancalana, Fabio

    2014-01-01

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modelled through coupled-mode equations, which in the continuous limit lead to two coupled Dirac equations for fermionic particles with different mass states, i.e. neutrinos. We demonstrate that neutrino oscillations can be quenched by nonlinear effects, and we predict the existence of neutrino solitons. Incidentally, these phenomena are expected to play an important role in massive supernova stars. Our results pave the way for using binary waveguide arrays as a classical laboratory for predicting exotic effects in particle physics and astrophysics.

  9. Solar Neutrino Data, Solar Model Uncertainties and Neutrino Oscillations

    CERN Document Server

    Krauss, L M; White, M; Krauss, Lawrence M.; Gates, Evalyn; White, Martin

    1993-01-01

    We incorporate all existing solar neutrino flux measurements and take solar model flux uncertainties into account in deriving global fits to parameter space for the MSW and vacuum solutions of the solar neutrino problem.

  10. Solar Neutrino Data, Solar Model Uncertainties and Neutrino Oscillations

    OpenAIRE

    1992-01-01

    We incorporate all existing solar neutrino flux measurements and take solar model flux uncertainties into account in deriving global fits to parameter space for the MSW and vacuum solutions of the solar neutrino problem.

  11. Silicon detectors for neutrino oscillation experiments

    CERN Document Server

    do Couto e Silva, E

    1998-01-01

    This note describes the technique of using a target equipped with high resolution silicon microstrip detectors for the detection of the topological signature of decays in neutrino oscillation ex periments. Two detectors are presented. The first detector is installed in the NOMAD spectrometer at the CERN SPS neutrino beam. The target consists of four layers passive boron carbide plate s (total mass of 45 kg) interleaved with five layers of silicon microstrip detectors. A total of 600 single--sided silicon microstrip detectors are used amounting to a total area of 1.14 m$^2$. The silicon tracker is made with the longest ladders built to date (72 cm). During the 1997 run about 8000 charged current interactions were estimated to have occurred in the target and data tak ing will continue in 1998. For these events it will be possible to perform a precise measurement of both vertex and kinematical variables. The second detector was installed in September 1997 in a CERN PS pion beam to investigate the possibility of ...

  12. Are the B decay anomalies related to neutrino oscillations?

    Directory of Open Access Journals (Sweden)

    Sofiane M. Boucenna

    2015-11-01

    Full Text Available Neutrino oscillations are solidly established, with a hint of CP violation just emerging. Similarly, there are hints of lepton universality violation in b→s transitions at the level of 2.6σ. By assuming that the unitary transformation between weak and mass charged leptons equals the leptonic mixing matrix measured in neutrino oscillation experiments, we predict several lepton flavor violating (LFV B meson decays. We are led to the tantalizing possibility that some LFV branching ratios for B decays correlate with the leptonic CP phase δ characterizing neutrino oscillations. Moreover, we also consider implications for ℓi→ℓjℓkℓk decays.

  13. Are the B decay anomalies related to neutrino oscillations?

    Science.gov (United States)

    Boucenna, Sofiane M.; Valle, José W. F.; Vicente, Avelino

    2015-11-01

    Neutrino oscillations are solidly established, with a hint of CP violation just emerging. Similarly, there are hints of lepton universality violation in b → s transitions at the level of 2.6σ. By assuming that the unitary transformation between weak and mass charged leptons equals the leptonic mixing matrix measured in neutrino oscillation experiments, we predict several lepton flavor violating (LFV) B meson decays. We are led to the tantalizing possibility that some LFV branching ratios for B decays correlate with the leptonic CP phase δ characterizing neutrino oscillations. Moreover, we also consider implications for ℓi →ℓjℓkℓk decays.

  14. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  15. The impact of sterile neutrinos on CP measurements at long baselines

    CERN Document Server

    Gandhi, Raj; Masud, Mehedi; Prakash, Suprabh

    2015-01-01

    With the Deep Underground Neutrino Experiment (DUNE) as an example, we show that the presence of even one sterile neutrino of mass $\\sim$1 eV can significantly impact the measurements of CP violation in long baseline experiments. Using a probability level analysis and neutrino-antineutrino asymmetry calculations, we discuss the large magnitude of these effects, and show how they translate into significant event rate deviations at DUNE. Our results demonstrate that measurements which, when interpreted in the context of the standard three family paradigm, indicate CP conservation at long baselines, may, in fact hide large CP violation if there is a sterile state. Similarly, any data indicating the violation of CP cannot be properly interpreted within the standard paradigm unless the presence of sterile states of mass O(1 eV) can be conclusively ruled out. Our work underscores the need for a parallel and linked short baseline oscillation program and a highly capable near detector for DUNE, in order that its high...

  16. Neutrino oscillation studies with IceCube-DeepCore

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-07-01

    IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.

  17. Neutrino oscillation studies with IceCube-DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Abraham, K. [Technische Universität München, D-85748 Garching (Germany); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Archinger, M. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Arguelles, C. [Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Arlen, T.C. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S.W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); and others

    2016-07-15

    IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.

  18. Neutrino oscillations in matter and in electromagnetic fields

    CERN Document Server

    Dvornikov, Maxim

    2007-01-01

    We find the solution to the Dirac equation for a massive neutrino with a magnetic moment propagating in background matter and interacting with the twisting magnetic field. Then in frames of the relativistic quantum mechanics approach to the description of neutrino evolution we use the obtained solution to derive neutrino wave functions satisfying the given initial condition. We apply the results to the analysis of neutrino spin oscillations in matter under the influence of the twisting magnetic field. Then on the basis of the yielded results we describe spin-flavor oscillations of Dirac neutrinos that mix and have non-vanishing matrix of magnetic moments. We again formulate the initial condition problem, derive neutrinos wave functions and calculate the transition probabilities for different magnetic moments matrices.

  19. Impacts of Collective Neutrino Oscillations on Supernova Explosions

    CERN Document Server

    Suwa, Yudai; Takiwaki, Tomoya; Liebendoerfer, Matthias; Sato, Katsuhiko

    2011-01-01

    By performing a series of one- and two-dimensional (1-, 2D) hydrodynamic simulations with spectral neutrino transport, we study possible impacts of collective neutrino oscillations on the dynamics of core-collapse supernovae. To model the spectral swapping which is one of the possible outcome of the collective neutrino oscillations, we parametrize the onset time when the spectral swap begins, the radius where the spectral swap occurs, and the threshold energy above which the spectral interchange between heavy-lepton neutrinos and electron/anti-electron neutrinos takes place, respectively. By doing so, we systematically study how the neutrino heating enhanced by the spectral swapping could affect the shock evolution as well as the matter ejection. We also investigate the progenitor dependence using a suite of progenitor models (13, 15, 20, and 25 $M_\\odot$). We find that there is a critical heating rate induced by the spectral swapping to trigger explosions, which significantly differs between the progenitors....

  20. Leptogenesis from Oscillations of Heavy Neutrinos with Large Mixing Angles

    CERN Document Server

    Drewes, Marco; Gueter, Dario; Klaric, Juraj

    2016-01-01

    The extension of the Standard Model by heavy right-handed neutrinos can simultaneously explain the observed neutrino masses via the seesaw mechanism and the baryon asymmetry of the Universe via leptogenesis. If the mass of the heavy neutrinos is below the electroweak scale, they may be found at LHCb, BELLE II, the proposed SHiP experiment or a future high-energy collider. In this mass range, the baryon asymmetry is generated via $CP$-violating oscillations of the heavy neutrinos during their production. We study the generation of the baryon asymmetry of the Universe in this scenario from first principles of non-equilibrium quantum field theory, including spectator processes and feedback effects. We eliminate several uncertainties from previous calculations and find that the baryon asymmetry of the Universe can be explained with larger heavy neutrino mixing angles, increasing the chance for an experimental discovery. For the limiting cases of fast and strongly overdamped oscillations of right-handed neutrinos,...

  1. Implications of Fermionic Dark Matter on recent neutrino oscillation data

    CERN Document Server

    Singirala, Shivaramakrishna

    2016-01-01

    We investigate flavor phenomenology and dark matter in the context of scotogenic model. In this model, the neutrino masses are generated through radiative corrections at one-loop level. Considering the neutrino mixing matrix to be of tri-bimaximal form with additional perturbations to accommodate the recently observed non-zero value of reactor mixing angle $\\theta_{13}$, we obtain the relation between various neutrino oscillation parameters and the model parameters. Working in degenerate heavy neutrino mass spectrum, we obtain light neutrino masses obeying normal heirarchy and also study the relic abundance of fermionic dark matter candidate including coannihilation effects. A viable parameter space is thus obtained, consistent with neutrino oscillation data, relic abundance and various lepton flavor violating decays such as $\\ell_\\alpha\\to\\ell_\\beta\\gamma$ and $\\ell_\\alpha \\to 3 \\, \\ell_\\beta$.

  2. Discussion on Neutrino Oscillation and CPT/Lorentz Invariance Violation

    CERN Document Server

    Luo, Cui-Bai; Du, Yi-Lun; Wang, Yong-Long; Zong, Hong-Shi

    2016-01-01

    Depending on deformed canonical anticommutation relations, massless neutrino oscillation based on CPT /Lorentz invariance viol ation is discussed. It is found that the deformed canonical anti-commutation relations should satisfy the condition of new Moy al product and new non standard commutation relations. Furthermore, by comparing the neutrino experimental data and the above relations, we find that the orders of magnitude of noncommutative parameters or Lorentz invariant Violation parameters $\\mathi t{A}$ is not self-consistent. This means that the previous studies about Lorentz invariance violation in noncommutative field theory may not naturally explain massless neutrino oscillation. In other words, it should be impossible to explain neutrino os cillation by lorentz invariance violation. This conclusion is supported by the latest atmospheric neutrinos experimental resul ts from Super-Kamiokande Collaboration, which show that no evidence of Lorentz invariance violation on atmospheric neutrinos w as observe...

  3. Atmospheric and accelerator neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)

    2006-05-15

    Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.

  4. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  5. Simplified Theory of Neutrino Oscillations in Matter with CP violation

    CERN Document Server

    Johnson, Mikkel B

    2016-01-01

    We obtain approximate analytical expressions for the observable oscillation probabilities characterizing three coupled Dirac neutrinos described by the Standard Neutrino Model. Our expressions are slightly more complicated than the familiar ones, but they are vastly more accurate throughout the entire region of interest at present and envisioned future neutrino facilities. The methods we develop here are applied to the flavor-changing transitions of the $(\

  6. No effect of Majorana phases in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Giunti, C., E-mail: giunti@to.infn.i [INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy)

    2010-03-15

    It is shown that the Majorana phases of the neutrino mixing matrix cannot have any effect in neutrino oscillations, contrary to the argument presented in (arXiv:0912.5266). It is also shown that in a charged-current weak interaction process it is not possible to create a coherent superposition of different flavor neutrinos which is independent of the associated charged leptons.

  7. MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program

    CERN Document Server

    Ballett, Peter; Ross-Lonergan, Mark

    2016-01-01

    Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN program can extend existing bounds on well constrained channels such as $N \\rightarrow \

  8. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  9. Standard and Non-Standard Physics in Neutrino Oscillations

    CERN Document Server

    Maltoni, M

    2003-01-01

    We analyze the impact of recent solar and atmospheric data in the determination of the neutrino oscillation parameters, taking into account that both the solar nu_e and the atmospheric nu_mu may convert to a mixture of active and sterile neutrinos. Furthermore, in the context of the atmospheric neutrino problem we discuss an extended mechanism of neutrino propagation which combines both oscillations and non-standard neutrino-matter interactions. We use the most recent neutrino data, including the 1496-day Super-K solar and atmospheric data samples, the latest SNO spectral and day/night solar data, and the final MACRO atmospheric results. We confirm the clear preference of all the data for pure-active oscillation solutions, bounding the fraction of sterile neutrino involved in oscillations to be less than 52% in the solar sector and less than 40% in the atmospheric sector, at 3 sigma. For the atmospheric case we also derive a bound on the total amount of non-standard neutrino-matter interactions, bounding the ...

  10. Neutrino Oscillations in Intermediate States.II -- Wave Packets

    CERN Document Server

    Asahara, A; Shimomura, T; Yabuki, T

    2004-01-01

    We analyze oscillations of intermediate neutrinos in terms of scattering of particles described by Gaussian wave packets. We study a scalar model as in the previous paper (I) but in realistic situations, where two particles of the initial state and final state are wave packets and neutrinos are in the intermediate state. The oscillation of the intermediate neutrino is found from the time evolution of the total transition probability between the initial state and final state. The effect of a finite lifetime and a finite relaxation time $\\tau$ are also studied. We find that the oscillation pattern depends on the magnitude of wave packet sizes of particles in the initial state and final state and the lifetime of the initial particle. For $\\Delta m^2=10^{-2}$ eV$^2$, the oscillation probability deviates from the standard formula, if the wave packet sizes are around $10^{-13}$ m for 0.4 MeV neutrino.

  11. Measurement of atmospheric neutrino oscillations and matter effects with PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan; Euler, Sebastian; Krings, Kai; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    With IceCube's low-energy extension DeepCore the first significant effects of atmospheric neutrino oscillations have been observed. The planned ''Precision Icecube Next Generation Upgrade'' (PINGU) inside DeepCore will lower the energy threshold to a few GeV, where matter effects of neutrino oscillations have to be taken into account. The Mikheyev-Smirnov-Wolfenstein (MSW) effect modifies the mixing between flavor and mass eigenstates of the neutrinos, resulting in stronger oscillations. Furthermore, neutrinos when passing through the Earth core experience parametric enhancement due to multiple discontinuities in the electron density. In this talk the effects of matter oscillations and the capabilities to measure these effects with PINGU are investigated.

  12. An analytical treatment for three neutrino oscillations in the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; D' Olivo, J.C.; Supanitsky, A.D. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Mexico, D.F. (Mexico)

    2012-08-15

    A simple, and at the same time accurate, description of the Earth matter effects on the oscillations between three neutrino flavors is given in terms of the Magnus expansion for the evolution operator.

  13. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015

    CERN Document Server

    Strait, James; Lundin, Tracy; Willhite, Joshua; Hamernik, Thomas; Papadimitriou, Vaia; Marchionni, Alberto; Kim, Min Jeong; Nessi, Marzio; Montanari, David; Heavey, Anne

    2016-01-01

    This volume of the LBNF/DUNE Conceptual Design Report cover the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  14. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Strait, James [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); McCluskey, Elaine [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lundin, Tracy [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Willhite, Joshua [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Hamernik, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Marchionni, Alberto [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kim, Min Jeong [National Inst. of Nuclear Physics (INFN), Frascati (Italy). National Lab. of Frascati (INFN-LNF); Nessi, Marzio [Univ. of Geneva (Switzerland); Montanari, David [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Heavey, Anne [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  15. Particle production with left-right neutrino oscillations

    Science.gov (United States)

    Enomoto, Seishi; Matsuda, Tomohiro

    2016-03-01

    When the Higgs field starts oscillation after Higgs inflation, gauge bosons are produced nonperturbatively near the enhanced symmetry point (ESP). Just after the particle production, when the Higgs field is going away from the ESP, these gauge bosons gain mass and decay or annihilate into Standard Model (SM) fermions. Left-handed neutrinos can be generated in that way. If one assumes the seesaw mechanism, the mass matrix of a pair of left- and right-handed neutrinos is nondiagonal. Although their mixing in the mass eigenstates is negligible in the true vacuum, it could be significant near the edge of the Higgs oscillation, where the off-diagonal component is large. Therefore, the left-handed neutrinos generated from the gauge bosons can start neutrino oscillation between the right-handed neutrinos. We study the particle production when such left-right (L-R) neutrino oscillation is significant. For a working example, the nonthermal leptogenesis scenario after Higgs inflation is examined, which cannot be realized without the L-R neutrino oscillation. The same mechanism could be applied to other singlet particles whose abundance has been neglected.

  16. Simple and Compact Expressions for Neutrino Oscillation Probabilities in Matter

    CERN Document Server

    Minakata, Hisakazu

    2015-01-01

    We reformulate perturbation theory for neutrino oscillations in matter with an expansion parameter related to the ratio of the solar to the atmospheric Delta m^2 scales. Unlike previous works, we use a renormalized basis in which certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using this perturbation theory we derive extremely compact expressions for the neutrino oscillation probabilities in matter. We find, for example, that the $\

  17. Observation of Atmospheric Neutrino Oscillations in Soudan 2

    CERN Document Server

    Sánchez, M; Alner, G J; Ayres, D S; Barrett, W L; Border, P M; Cobb, J H; Cockerill, D J A; Courant, H; Demuth, D M; Fields, T H; Gallagher, H R; Goodman, M C; Joffe-Minor, T M; Kafka, T; Kasahara, S M; Litchfield, P J; Mann, W A; Marshak, M L; Milburn, R H; Miller, W H; Mualem, L M; Nelson, J K; Napier, A; Oliver, W P; Pearce, G F; Peterson, E A; Petyt, D A; Ruddick, K; Schneps, J; Sousa, A; Speakman, B; Thron, J L; West, N

    2003-01-01

    The effects of oscillations of atmospheric muon neutrinos are observed in the 5.90 fiducial kiloton-year exposure of the Soudan 2 detector. An unbinned maximum likelihood analysis of the neutrino L/E distribution has been carried out using the Feldman-Cousins prescription. The probability of the no oscillation hypothesis is 5.8x10-4. The 90% confidence allowed region in the sin**(2theta), Delta m**2 plane is presented.

  18. Flavor-Universal Form of Neutrino Oscillation Probabilities in Matter

    CERN Document Server

    Minakata, Hisakazu

    2015-01-01

    We construct a new perturbative framework to describe neutrino oscillation in matter with the unique expansion parameter \\epsilon, which is defined as \\Delta m^2_{21} / \\Delta m^2_{ren} with the renormalized atmospheric \\Delta m^2_{ren} \\equiv \\Delta m^2_{31} - s^2_{12} \\Delta m^2_{21}. It allows us to derive the maximally compact expressions of the oscillation probabilities in matter to order \\epsilon in the form akin to those in vacuum. This feature allows immediate physical interpretation of the formulas, and facilitates understanding of physics of neutrino oscillations in matter. Moreover, quite recently, we have shown that our three-flavor oscillation probabilities P(\

  19. Preliminary Measurement of Neutrino Oscillation Parameters By NuMI/MINOS and Calibration Studies for Improving this Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Symes, Philip Andrew [Univ. of Sussex, Brighton (United Kingdom)

    2005-11-01

    This thesis explains the origins of neutrinos and their interactions, and the phenomenon of neutrino oscillations. Experiments for measuring neutrino oscillations are mentioned and the experiment investigated in this thesis, the ''Main Injector Neutrino Oscillation Search'', and its neutrino beam, the Fermi National Accelerator Laboratory's ''Neutrinos At The Main Injector'', are described. MINOS is a long baseline (735 km) neutrino oscillation experiment with a near and a far detector, intended to make precision measurements of the atmospheric sector neutrino oscillation parameters. A measurement is made of the ''atmospheric'' neutrino oscillation parameters, Δm$2\\atop{23}$ and sin2(2θ23), using neutrinos from the NuMI beam. The results of this analysis are compared to measurements at MINOS using neutrinos from the atmosphere and with other experiments. A more detailed method of beam neutrino analysis is discussed, and the extra calibrations needed to perform that analysis properly are described, with special attention paid to two aspects of the calibration, which comprise the bulk of work for this thesis. The light injection calibration system uses LEDs to illuminate the detector readout and provides a normalization of the stability of the detector over time. The hardware and different modi operandi of the system are described. There is a description of installation and commissioning of the system at one of the MINOS detectors. The response normalization of each detector with cosmic ray muons is described. Special attention is paid to the explanation of necessary corrections that must be made to the muon sample in order for the sample to be used to calibrate each detector to the specified accuracy. The performance of the calibration is shown.

  20. Neutrino oscillations at DUNE with improved energy reconstruction

    CERN Document Server

    De Romeri, Valentina; Sorel, Michel

    2016-01-01

    We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to $\\delta_{CP}$, is better reconstructed. These effects lead to a significant improvement in the fraction of values of $\\delta_{CP}$ for which a $5 \\sigma$ discovery of leptonic CP-violation would be possible. The precision of the $\\delta_{CP}$ measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from $26^\\circ$ to $18^\\circ$ for a 300~MW$\\cdot$kt$\\cdot$yr ...

  1. Neutrino oscillations at DUNE with improved energy reconstruction

    Science.gov (United States)

    De Romeri, Valentina; Fernandez-Martinez, Enrique; Sorel, Michel

    2016-09-01

    We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to δ CP, is better reconstructed. These effects lead to a significant improvement in the fraction of values of δ CP for which a 5 σ discovery of leptonic CP-violation would be possible. The precision of the δ CP measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from 26° to 18° for a 300 MW·kt·yr exposure. We therefore believe that this potential gain in physics reach merits further investigations of the detector performance achievable in DUNE.

  2. Solar neutrinos and neutrino physics

    CERN Document Server

    Maltoni, Michele

    2015-01-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. Theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters theta12 and Delta_m21^2 have been measured; theta13 extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3nu paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. T...

  3. Recent neutrino oscillation results from T2K

    Indian Academy of Sciences (India)

    H A Tanaka; on behalf of the T2K Collaboration

    2012-11-01

    The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations in a ∼ 600 MeV muon neutrino beam sent at 295 km from the Japan Proton Accelerator Complex (J-PARC) to the Super Kamiokande (SK) detector in Kamioka. The primary goals of T2K are to search for the appearance of electron neutrinos at SK resulting from 13 > 0 and to precisely measure 23 and $ m_{32}^{2}$ via disappearance. We report on T2K results obtained from neutrino data taken in 2010 and 2011.

  4. VEP oscillation solutions to the solar neutrino problem

    CERN Document Server

    Casini, H; Montemayor, R

    2000-01-01

    We study the solar neutrino problem within the framework of a parametrized post-Newtonian formulation for the gravitational interaction of the neutrinos, which incorporates a violation to the equivalence principle (VEP). Using the current data on the rates and the energy spectrum we find two possible oscillation solutions, both for a large mixing angle. One of them involves the MSW effect in matter and the other corresponds to vacuum oscillations. An interesting characteristic of this mechanism is that it predicts a semi-annual variation of the neutrino flux. Our analysis provides new constraints for some VEP parameters.

  5. Short Wavelength Oscillations with Right-Handed Neutrinos

    CERN Document Server

    Paschos, Emmanuel A

    2016-01-01

    The standard model is extended with three right-handed, singlet neutrinos with general couplings permitted by the $SU(2)_{L}\\times U(1)$ symmetry. The traditional oscillations are accounted for, as usually, by three left-handed neutrinos. The article investigates new structures that develop when the masses of the right-handed states are in the eV range. The new states interfere and oscillate with the standard light neutrinos. New structures appear when the detectors average over short wavelengths. I use these results to present and classify properties of the observed anomalies in the MiniBooNe, reactor and Gallium-detector experiments.

  6. Geometric gravitational origin of neutrino oscillations and mass-energy

    CERN Document Server

    Gonzalez-Martin, Gustavo R

    2012-01-01

    A mass-energy scale for neutrinos was calculated from the null cone curvature using geometric concepts. The scale is variable depending on the gravitational potential and the trajectory inclination with respect to the field direction. The mass-energy at the Earth surface varies from a horizontal value 0.402 eV to a vertical value 0.569 eV. Earth spinor waves with winding numbers n show squared energy differences within ranges from 2.05 x 10*(-3) to 4.10 x 10*(-3) eV*2 for n=0,1 neutrinos and from 6.14 x 10*(-5) to 12.3 x 10*(-5) eV*2 for n=1,2 neutrinos. These waves interfere and the different phase velocities produce neutrino-like oscillations. The experimental results for atmospheric and solar neutrino oscillation mass parameters respectivelly fall within these theoretical ranges. Neutrinos in outer space, where interactions may be neglected, appear as particles travelling with zero mass on null geodesics. These gravitational curvature energies are consistent with neutrino oscillations, zero neutrino rest m...

  7. Neutrino oscillations make their first appearance in OPERA

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    1400 metres underground in the INFN Gran Sasso Laboratory, the Opera experiment has just observed its first candidate for neutrino oscillation – the phenomenon that confirms that neutrinos have mass. It is the first time that an experiment has observed the direct appearance of the new type of neutrinos produced in the oscillation. Opera uses a dedicated beam produced at CERN’s Super Proton Synchrotron (SPS).   Tracks of first candidate event observed by the OPERA experiment. Neutrinos, abundant in cosmic rays, are involved in several of the nuclear reactions that take place in the Sun, and also in radioactive decays. Numerous as they are, they continue to hold many secrets for scientists. One is the fact that the three types of neutrinos—electron, muon and tau neutrinos—can change into each another. This physical phenomenon, known as neutrino ‘oscillations’, was originally described in an article by Bruno Pontecorvo and Vla...

  8. New Physics in {Delta}L = 2 neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Delepine, David; Gonzalez Macias, Vannia [Division de Ciencias e Ingenierias de la Universidad de Guanajuato, C.P. 37150, Leon, Guanajuato (Mexico); Khalil, Shaaban [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, PO Box 43 (Egypt); Lopez Castro, Gabriel [Departamento de Fisica, Cinvestav, Apartado Postal 14-740, 07000 Mexico D.F. (Mexico)

    2011-04-01

    We propose a general framework to constrain {Delta}L = 2 processes by measuring observables associated with neutrino-antineutrino oscillations in {pi}{sup {+-}} decays. First, we use this formalism as a new strategy for detecting the CP-violating phases and the effective mass of muon Majorana neutrinos. Within the generic framework of quantum field theory, we compute the non-factorizable probability for producing a pair of same-charged muons in {pi}{sup {+-}} decays as a distinctive signature of {nu}{sub {mu}}-{nu}*{sub {mu}}. Using the neutrino-antineutrino oscillation probability reported by MINOS collaboration, a new stringent bound on the effective muon-neutrino mass is derived. Secondly, we interpret the production of the pair of same-charged muons as a result of lepton number violating (LNV) interactions at the neutrino source, which allow us to constrain New Physics.

  9. Solar neutrino oscillation parameters after first KamLAND results

    CERN Document Server

    Fogli, G L; Marrone, A; Montanino, D; Palazzo, A; Rotunno, A M

    2003-01-01

    We analyze the energy spectrum of reactor neutrino events recently observed in the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) and combine them with solar and terrestrial neutrino data, in the context of two- and three-family active neutrino oscillations. In the 2-neutrino case, we find that the solution to the solar neutrino problem at large mixing angle (LMA) is basically split into two sub-regions, that we denote as LMA-I and LMA-II. The LMA-I solution, characterized by lower values of the squared neutrino mass gap, is favored by the global data fit. This picture is not significantly modified in the 3-neutrino mixing case. A brief discussion is given about the discrimination of the LMA-I and LMA-II solutions with future KamLAND data. In both the 2- and 3-neutrino cases, we present a detailed analysis of the post-KamLAND bounds on the oscillation parameters.

  10. Probing the neutrino mass matrix in next generation neutrino oscillation experiments

    OpenAIRE

    2005-01-01

    We review the current status of the neutrino mass and mixing parameters needed to reconstruct the neutrino mass matrix. A comparative study of the precision in the measurement of oscillation parameters expected from the next generation solar, atmospheric, reactor and accelerator based experiments is presented. We discuss the potential of $0\

  11. The IceCube Neutrino Observatory VI: Neutrino Oscillations, Supernova Searches, Ice Properties

    OpenAIRE

    The IceCube Collaboration

    2011-01-01

    Atmospheric neutrino oscillations with DeepCore; Supernova detection with IceCube and beyond; Study of South Pole ice transparency with IceCube flashers; Submitted papers to the 32nd International Cosmic Ray Conference, Beijing 2011.

  12. Neutrino Oscillation Effects on Supernova Light Element Synthesis

    CERN Document Server

    Yoshida, T; Yokomakura, H; Kimura, K; Takamura, A; Hartmann, D H

    2006-01-01

    Neutrino oscillations affect light element synthesis through the neutrino-process in supernova explosions. The 7Li and 11B yields produced in a supernova explosion of a 16.2 solar-mass star model increase by factors of 1.9 and 1.3 in the case of large mixing angle solution with normal mass hierarchy and sin^{2}2theta_{13} > 0.002 compared with those without the oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increment of their yields is much smaller. Neutrino oscillations raise the reaction rates of charged-current neutrino-process reactions in the region outside oxygen-rich layers. The number ratio of 7Li/11B could be a tracer of normal mass hierarchy and relatively large theta_{13}, still satisfying sin^{2}2theta_{13} < 0.1, through future precise observations in stars having strong supernova component.

  13. Neutrino oscillation effects in Soudan 2 upward-stopping muons

    Science.gov (United States)

    Allison, W. W. M.; Alner, G. J.; Ayres, D. S.; Barr, G. D.; Barrett, W. L.; Border, P. M.; Cobb, J. H.; Cockerill, D. J. A.; Courant, H.; Demuth, D. M.; Fields, T. H.; Gallagher, H. R.; Goodman, M. C.; Kafka, T.; Kasahara, S. M. S.; Litchfield, P. J.; Mann, W. A.; Marshak, M. L.; Miller, W. H.; Mualem, L.; Nelson, J. K.; Napier, A.; Oliver, W. P.; Pearce, G. F.; Peterson, E. A.; Petyt, D. A.; Ruddick, K.; Sanchez, M.; Schneps, J.; Sousa, A.; Thron, J. L.; West, N.

    2005-09-01

    Upward-going stopping muons initiated by atmospheric νμ and ν¯μ interactions in the rock below the Soudan 2 detector have been isolated, together with a companion sample of neutrino-induced single muons, created within the detector, which travel downwards and exit. The downward-going sample is consistent with the atmospheric-neutrino flux prediction, but the upward-going sample exhibits a sizable depletion. Both are consistent with previously reported Soudan 2 neutrino-oscillation results. Inclusion of the two samples in an all-event likelihood analysis, using recent 3D-atmospheric-neutrino-flux calculations, reduces both the allowed oscillation parameter region and the probability of the no-oscillation hypothesis.

  14. Supernova Neutrinos: Production, Oscillations and Detection

    CERN Document Server

    Mirizzi, Alessandro; Janka, Hans-Thomas; Saviano, Ninetta; Scholberg, Kate; Bollig, Robert; Hudepohl, Lorenz; Chakraborty, Sovan

    2015-01-01

    Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we review the present status of modelling the neutrino physics and signal formation in collapsing and exploding stars. We assess the capability of current and planned large underground neutrino detectors to yield faithful information of the time and flavor dependent neutrino signal from a future Galactic supernova. We show how the observable neutrino burst would provide a benchmark for fundamental supernova physics with unprecedented richness of detail. Exploiting the treasure of the measured neutrino events requires a careful discrimination o...

  15. Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments

    CERN Document Server

    Choubey, S

    2005-01-01

    We discuss to what extent future precision measurements of neutrino mixing observables will influence the information we can draw from a measurement of (or an improved limit on) neutrinoless double beta decay. Whereas the Delta m^2 corresponding to solar and atmospheric neutrino oscillations are expected to be known with good precision, the parameter theta_{12} will govern large part of the uncertainty. We focus in particular on the possibility of distinguishing the neutrino mass hierarchies and on setting a limit on the neutrino mass. We give the largest allowed values of the neutrino masses which allow to distinguish the normal from the inverted hierarchy. All aspects are discussed as a function of the uncertainty stemming from the involved nuclear matrix elements. The implications of a vanishing, or extremely small, effective mass are also investigated. By giving a large list of possible neutrino mass matrices and their predictions for the observables, we finally explore how a measurement of (or an improve...

  16. Exploring new features of neutrino oscillations with very low energy monoenergetic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Vergados, J.D., E-mail: Vergados@cc.uoi.g [University of Ioannina, Ioannina, GR 45110 (Greece); Novikov, Yu.N. [Petersburg Nuclear Physics Institute, 188300, Gatchina (Russian Federation)

    2010-11-01

    In the present work we propose to study neutrino oscillations employing sources of monoenergetic neutrinos following electron capture by the nucleus. Since the neutrino energy is very low the smaller of the two oscillation lengths, L{sub 23}, appearing in this electronic neutrino disappearance experiment can be so small that the full oscillation can take place inside the detector and one may determine very accurately the neutrino oscillation parameters. Since in this case the oscillation probability is proportional to sin{sup 2}2{theta}{sub 13}, one can measure or set a better limit on the unknown parameter {theta}{sub 13}. This is quite important, since, if this mixing angle vanishes, there is not going to be CP violation in the leptonic sector. The best way to detect it is by measuring electron recoils in neutrino-electron scattering. One, however, has to pay the price that the expected counting rates are very small. Thus one needs a very intensive neutrino source and a large detector with as low as possible energy threshold and high energy and position resolution. Both spherical gaseous and cylindrical liquid detectors are studied. Different source candidates are considered.

  17. The analysis of solar models: Neutrinos and oscillations

    Science.gov (United States)

    Ulrich, R. K.; Rhodes, E. J., Jr.; Tomczyk, S.; Dumont, P. J.; Brunish, W. M.

    1983-01-01

    Tests of solar neutrino flux and solar oscillation frequencies were used to assess standard stellar structure theory. Standard and non-standard solar models are enumerated and discussed. The field of solar seismology, wherein the solar interior is studied from the measurement of solar oscillations, is introduced.

  18. Neutrino oscillations in the Kerr-Newman spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Ren Jun [School of Science, Hebei University of Technology, 300130, Tianjin (China); Zhang Chengmin, E-mail: renjun@hebut.edu.c [National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China)

    2010-03-21

    The mass neutrino oscillation in the Kerr-Newman (K-N) spacetime is studied in the plane theta = theta{sub 0}, and general equations of the oscillation phases are given. The effect of the rotation and electric charge on the phase is presented. Then, we consider three special cases. (1) The neutrinos travel along the geodesics with angular momentum L = aE in the equatorial plane. (2) The neutrinos travel along the geodesics with L = 0 in the equatorial plane. (3) The neutrinos travel along the radial geodesics in the direction theta = 0. Finally, we calculate the proper oscillation length in the K-N spacetime. The effect of the gravitational field on the oscillation length is embodied in the gravitational red shift factor. When the neutrino travels out of the gravitational field, a blue shift of the oscillation length takes place. We discuss the variation of the oscillation length influenced by the gravitational field strength, the rotation a{sup 2} and charge Q.

  19. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  20. REPORT OF THE US LONG BASELINE NEUTRINO EXPERIMENT STUDY.

    Energy Technology Data Exchange (ETDEWEB)

    BARGER,V.; FINLEY, D.; LAUGHTON, C.; PORDES, S.; MARCHIONNI, A.; RAMEIKA, R.; SAOULIDOU, N.; ZWASKA, R.; BISHAI, M.; DIWAN, M.; DIERCKXSENS, M.; KIRK, H.; KAHN, S.; SIMOS, N.; MARCIANO, W.; PARSA, Z.; VIREN, B.; ET AL.

    2007-01-01

    This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability is not likely to be challenged anywhere else in the world for at least two decades into the future. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermilab and, as the study evolved, it also provides responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the study results and conclusions are provided in this report and its appendices. A summary of the conclusions is provided in the Executive Summary.

  1. Measurement of neutrino oscillations with the ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Jürgen, E-mail: brunner@cppm.in2p3.fr [Centre de Physique des Particules de Marseille, 163 avenue de Luminy, Case 902, 13288 Marseille (France)

    2013-10-11

    The data taken with ANTARES from 2007 to 2010 with a total lifetime of 863 days have been analysed in view of a possible neutrino oscillation signal. The flux of vertical upward going muon neutrinos should be completely suppressed at energies of 24 GeV due to neutrino oscillations. A dedicated algorithm is used, which allows the reliable reconstruction of muon tracks with energies as low as 20 GeV. The oscillation signal is extracted by comparing two event samples: a low energy sample of vertical upward going tracks seen on a single detector line and a higher energetic set of more isotropic events seen on several detector lines. First results of the measurements of the oscillation parameters are given.

  2. Measurement of atmospheric neutrino oscillations with IceCube.

    Science.gov (United States)

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; Benzvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H-P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Haj Ismail, A; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Palazzo, A; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pinat, E; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-08-23

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm(32)(2)|=(2.3(-0.5)(+0.6))×10(-3) eV(2) and sin(2)(2θ(23))>0.93, and maximum mixing is favored.

  3. Variables for probing neutrino oscillation at super-Kamiokande and the Sudbury Neutrino Observatory

    Indian Academy of Sciences (India)

    Debasish Majumdar

    2000-01-01

    We propose several new variables, insensitive to the absolute flux of the incident solar or supernova neutrino beam, which probe the shape of the observed spectrum at super-Kamiokande and Sudbury Neutrino Observatory experiments and can sensitively signal neutrino oscillations. One class of such variables involve moments of the distributions recorded at the two facilities while another variable, specific to SNO, utilises the integrated charged and neutral current signals. The utility of these variables in the context of supernova neutrinos both from the collapse epoch and the post-bounce era is also discussed.

  4. Particle production with L-R neutrino oscillation

    CERN Document Server

    Enomoto, Seishi

    2016-01-01

    When the Higgs field starts oscillation after Higgs inflation, gauge bosons are produced non-perturbatively near the Enhanced Symmetry Point (ESP). Just after the particle production, when the Higgs field is going away from the ESP, these gauge bosons gain mass and decay or annihilate into Standard Model (SM) fermions. Left-handed neutrinos can be generated in that way. If one assumes the see-saw mechanism, the mass matrix of a pair of left and right-handed neutrinos is non-diagonal. Although their mixing in the mass eigenstates is negligible in the true vacuum, it could be significant near the edge of the Higgs oscillation, where the off-diagonal component is large. Therefore, the left-handed neutrinos generated from the gauge bosons can start neutrino oscillation between the right-handed neutrinos. We study the particle production when such L-R neutrino oscillation is significant. For a working example, the non-thermal leptogenesis scenario after Higgs inflation is examined, which cannot be realized without...

  5. Effect of resonant neutrino oscillation on TeV neutrino flavor ratio from choked GRBs

    Institute of Scientific and Technical Information of China (English)

    Sarira Sahu; Bing Zhang

    2010-01-01

    In the collapsar scenario of the long duration Gamma-Ray Bursts (GRBs), multi-TeV neutrino emission is predicted as the jet makes its way through the stellar envelope. Such a neutrino signal is also expected for more general "failed" GRBs in which a putative jet is "choked" by a heavy envelope. If the Ve→ Vμneutrino oscillation parameters are in the atmospheric neutrino oscillation range, we show that the resonant oscillation of Ve ←→Vμ,t can take place within the inner high density region of the choked jet progenitor with a heavy envelope, altering the V flavor ratio on its surface to φsve:φsvμ:φsvt =5:11:2. Considering vacuum oscillations of these neutrinos on their way to Earth, the final flavor ratio detected on Earth is further modified to either 1:1.095:1.095 for the large mixing angle solution to the solar neutrino data, or 1:1.3:1.3 for maximal mixing among the muon and tau neutrinos in the vacuum.

  6. Precision Search for Muon Antineutrino Disappearance Oscillations Using a Dual Baseline Technique

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Gary Li [Columbia Univ., New York, NY (United States)

    2013-01-01

    A search for short baseline muon antineutrino disappearance with the SciBooNE and MiniBooNE experiments at Fermi National Accelerator Laboratory in Batavia, Illinois is presented. Short baseline muon antineutrino disappearance measurements help constrain sterile neutrino models. The two detectors observe muon antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. A likelihood ratio method was used to set a 90% confidence level upper limit on muon antineutrino disappearance that dramatically improves upon prior sterile neutrino oscillation limits in the Δm2=0.1-100 eV2 region.

  7. Highlights from e-EPS: Neutrino Oscillation / DPG President / Outreach Database

    CERN Multimedia

    2012-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   Asian experiments unlock neutrino oscillation mystery Two reactor experiments, China’s Daya Bay and Korea’s RENO, have made the best measurement of the neutrino mixing angle, θ13, an essential property for neutrino research. The discovery of a non-zero θ13 at approximately 9˚ – which was published in March and April this year – completes our picture of neutrino mixing. This quite large value for the mixing angle will make it easier to conduct future long baseline neutrino experiments. This, in turn, may lead to a better understanding of the matter-antimatter asymmetry seen in the Universe. Neutrino oscillations – the change in flavour&a...

  8. Neutrino oscillations in the presence of super-light sterile neutrinos

    CERN Document Server

    Divari, P C

    2016-01-01

    In the present paper we study the effect of conversion of super-light sterile neutrino (SLSN) to electron neutrino in matter like that of the Earth. In the Sun the resonance conversion between SLSN and electron neutrino via the neutral current is suppressed due to the smallness of neutron number. On the other hand, neutron number density can play an important role in the Earth, making the scenario of SLSN quite interesting. Reactor neutrino experiments with medium baseline can help us to probe this scenario.

  9. Running of Neutrino Oscillation Parameters in Matter with Flavor-Diagonal Non-Standard Interactions of the Neutrino

    CERN Document Server

    Agarwalla, Sanjib Kumar; Saha, Debashis; Takeuchi, Tatsu

    2015-01-01

    In this article we unravel the role of matter effect in neutrino oscillation in the presence of lepton-flavor-conserving, non-universal non-standard interactions (NSI's) of the neutrino. Employing the Jacobi method, we derive approximate analytical expressions for the effective mass-squared differences and mixing angles in matter. It is shown that, within the effective mixing matrix, the Standard Model (SM) W-exchange interaction only affects $\\theta_{12}$ and $\\theta_{13}$, while the flavor-diagonal NSI's only affect $\\theta_{23}$. The CP-violating phase $\\delta$ remains unaffected. Using our simple and compact analytical approximation, we study the impact of the flavor-diagonal NSI's on the neutrino oscillation probabilities for various appearance and disappearance channels. At higher energies and longer baselines, it is found that the impact of the NSI's can be significant in the numu to numu channel, which can probed in future atmospheric neutrino experiments, if the NSI's are of the order of their curren...

  10. Supernova neutrinos: Production, oscillations and detection

    NARCIS (Netherlands)

    Mirizzi, A.; Tamborra, I.; Janka, H.-T.; Saviano, N.; Scholberg, K.; Bollig, R.; Hüdepohl, L.; Chakraborty, S.

    2016-01-01

    Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the h

  11. Constraints on Sterile Neutrino Oscillations using DUNE Near Detector

    CERN Document Server

    Choubey, Sandhya

    2016-01-01

    DUNE (Deep Underground Neutrino Experiment) is a proposed long-baseline neutrino experiment in the US with a baseline of 1300 km from Fermi National Accelerator Laboratory (Fermilab) to Sanford Underground Research Facility, which will house a 40 kt Liquid Argon Time Projection Chamber (LArTPC) as the far detector. The experiment will also have a fine grained near detector for accurately measuring the initial fluxes. We show that the energy range of the fluxes and baseline of the DUNE near detector is conducive for observing $\

  12. Understanding the Earth’s Composition through Neutrino Oscillations

    Science.gov (United States)

    Lowell, Beverly; de Gouvêa, André

    2017-01-01

    While our understanding of the cosmos has improved dramatically in the last decades, we still only have limited knowledge of the inside of our own planet. In particular, we only have indirect information regarding the composition or size of the Earth’s core. We do, however, know neutrinos interact with electrons and therefore their oscillations change as they propagate through matter. We theoretically examine how solar neutrinos propagating through the Earth can offer a look into the composition of its layers. We investigate if neutrinos can detect the Earth’s core by numerically calculating the probability of finding an electron-neutrino and adjusting parameters such as electron density and the radius of the core. It is determined that changing both of these parameters significantly affect the probability, such that neutrinos could be used experimentally to detect the size of a hard, dense core.

  13. Flavor oscillations of low energy neutrinos in the rotating neutron star

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We study flavor oscillations of low energy neutrinos propagating in dense matter of a rotating neutron star. On the basis of the exact solutions of the wave equations for neutrinos mass eigenstates we derive the transition probability for neutrinos having big initial angular momentum. It is found that flavor oscillations of neutrinos with energies of several electron-Volts can be resonancely enhanced.

  14. Neutrino oscillations in the field of a rotating deformed mass

    CERN Document Server

    Geralico, Andrea

    2012-01-01

    The neutrino oscillations in the field of a rotating deformed mass is investigated. The phase shift is evaluated in the case of weak field limit, slow rotation and small deformation. To this aim the Hartle-Thorne metric is used, which is an approximate solution of the vacuum Einstein equations accurate to second order in the rotation parameter $a/M$ and to first order in the mass quadrupole moment $q$. Implications on atmospheric, solar and astrophysical neutrinos are discussed.

  15. Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo

    2014-06-02

    The study of neutrino oscillations is an active field of research. During the last couple of decades many experiments have measured the effects of oscillations, pushing the field from the discovery stage towards an era of precision and deeper understanding of the phenomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this field. IceCube is a 1 km{sup 3} ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in different channels, from which the disappearance of ν{sub μ} is chosen to move forward. It continues by describing a novel method for identifying Cherenkov photons that traveled without being scattered until detected direct photons. These photons are used to reconstruct the incoming zenith angle of muon neutrinos. The total energy of the interacting neutrino is also estimated. In data taken in 343 days during 2011-2012, 1487 neutrino candidates with an energy between 7 GeV and 100 GeV are found inside the DeepCore volume. Compared to the expectation from the atmospheric neutrino flux without oscillations, this corresponds to a deficit of about 500 muon neutrino events. The oscillation parameters that describe the data best are sin{sup 2}(2θ{sub 23})=1(>0.94 at 68 % C.L.) and vertical stroke Δm{sup 2}{sub 32} vertical stroke =2.4{sub -0.4}{sup +0.6}.10{sup -3} eV{sup 2}, which are in agreement with the results reported by other experiments. The simulation follows the data closely

  16. Neutrino Oscillations: New Windows to the Particle World

    Indian Academy of Sciences (India)

    2016-10-01

    The 2015 Nobel Prize in Physics was awarded to two physicists-Takaaki Kajita and Arthur B McDonald, whose teams discoveredthat neutrinos, which come in three flavours, changefrom one flavour to another. This discovery is a major milestonein particle physics as it gives a clear evidence of physicsbeyond the Standard Model. Neutrino oscillation is a quantum mechanicalphenomenon whereby a neutrino created witha specific lepton flavour (electron, muon, or tau) can later bemeasured to have a different flavour. Historical developmentof the field in chronological order of experiments is brieflydescribed in this article.

  17. Neutrino oscillations, seesaw mechanism and the quest for new physics

    CERN Document Server

    Miranda, O G

    2016-01-01

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, have brought neutrino physics to the precision era. Apart from dedicated leptonic CP violation studies, upcoming experiments should probe the unitarity of the lepton mixing matrix. These will shed light on the scale of new physics, such as the seesaw scale, and thereby guide us towards what could be the next step in particle physics. Moreover these efforts may also bring the key to elucidate some of the current cosmological puzzles.

  18. Particle quantum states with indefinite mass and neutrino oscillations

    CERN Document Server

    Lobanov, A E

    2015-01-01

    Spaces of particle states are constructed in such a way that charged leptons, neutrinos, as well as down- and up-type quarks are combined in multiplets with their components being considered as different quantum states of a single particle. In the theory based on the Lagrangian of fermion sector of the Standard Model modified with this approach the phenomenon of neutrino oscillations appears. By example of pion decay it is shown that the states of the neutrino, arising in the process of decay may be described by a superposition of states with identical momenta with very high accuracy.

  19. Neutrino-Nucleus Cross Sections for Oscillation Experiments

    CERN Document Server

    Katori, Teppei

    2016-01-01

    Neutrino oscillations physics is entered in the precision era. In this context accelerator-based neutrino experiments need a reduction of systematic errors to the level of a few percent. Today one of the most important sources of systematic errors are neutrino-nucleus cross sections which in the hundreds-MeV to few-GeV energy region are known with a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of the neutrino-nucleus interaction physics. After introducing neutrino oscillation physics and accelerator-based neutrino experiments, we overview general aspects of the neutrino-nucleus cross sections, both theoretical and experimental views. Then we focus on these quantities in different reaction channels. We start with the quasielastic and quasielastic-like cross section, putting a special emphasis on multinucleon emission channel which attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for th...

  20. Flavor entanglement in neutrino oscillations in the wave packet description

    Science.gov (United States)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2015-10-01

    The wave packet approach to neutrino oscillations provides an enlightening description of quantum decoherence induced, during propagation, by localization effects. Within this approach, we show that a deeper insight into the dynamical aspects of particle mixing can be obtained if one investigates the behavior of quantum correlations associated to flavor oscillations. By identifying the neutrino three-flavor modes with (suitably defined) three-qubit modes, the exploitation of tools of quantum information theory for mixed states allows a detailed analysis of the dynamical behavior of flavor entanglement during free propagation. This provides further elements leading to a more complete understanding of the phenomenon of neutrino oscillations, and a basis for possible applicative implementations. The analysis is carried out by studying the distribution of the flavor entanglement; to this aim, we perform combined investigations of the behaviors of the two-flavor concurrence and of the logarithmic negativities associated with specific bipartitions of the three flavors.

  1. Sensitivity to oscillation with a sterile fourth generation neutrino from ultralow threshold neutrino-nucleus coherent scattering

    Science.gov (United States)

    Dutta, Bhaskar; Gao, Yu; Kubik, Andrew; Mahapatra, Rupak; Mirabolfathi, Nader; Strigari, Louis E.; Walker, Joel W.

    2016-11-01

    We discuss prospects for probing short-range sterile neutrino oscillation using neutrino-nucleus coherent scattering with ultralow energy (˜10 - 100 eV ) recoil threshold cryogenic Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and references developing technology based upon economical and scalable detector arrays. The baseline of the experiment is substantially shorter than existing measurements, as near as about 2 m from the reactor core, and is moreover variable, extending continuously up to a range of about 10 m. This proximity and variety combine to provide extraordinary sensitivity to a wide spectrum of oscillation scales, while facilitating the tidy cancellation of leading systematic uncertainties in the reactor source and environment. With 100 eV sensitivity, for exposures on the order of 200 kg .y , we project an estimated sensitivity to first and fourth neutrino oscillation with a mass gap Δ m2˜1 eV2 at an amplitude sin22 θ ˜10-1, or Δ m2˜0.2 eV2 at unit amplitude. Larger exposures, around 5000 kg .y , together with 10 eV sensitivity are capable of probing more than an additional order of magnitude in amplitude.

  2. Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

    Science.gov (United States)

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-11-22

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  3. Determination of Neutrino mixing parameters after SNO oscillation evidence

    CERN Document Server

    Aliani, P; Picariello, M; Ferrari, R; Torrente-Lujan, E

    2003-01-01

    An updated analysis of all available neutrino oscillation evidence in Solar experiments (SK day and night spectra, global rates from Homestake, SAGE and GALLEX) including the latest SNO CC and NC data is presented. Assuming that the shape of the SNO CC energy spectrum is undistorted and using the information provided by SNO we obtain, for the fraction of electron neutrinos remaining in the solar beam at energies $\\gsim 5$ MeV: $\\phi_{CC}/\\phi_{NC}=0.34^{+0.05}_{-0.04},$ which is nominally $\\sim 30\\sigma$ away from the standard value. The fraction of oscillating neutrinos which into active ones is computed to be: $ (\\Phi_{NC}-\\Phi_{CC})/(\\Phi_{SSM}-\\Phi_{CC})=0.92^{+0.39}_{-0.20} $ nearly $5\\sigma$ deviations from the pure sterile oscillation case. The data is still compatible with an important fraction of sterile component in the solar beam (up to 20% of the total). In the framework of two active neutrino oscillations we determine individual neutrino mixing parameters and their errors in the region of no spec...

  4. Neutrino Oscillation Experiments for Precise Measurements of Oscillation Parameters and Search for numu->nue Appearance and CP Violation

    CERN Document Server

    Beavis, D

    2002-01-01

    The possibility of making a low cost, very intense high energy proton source at the Brookhaven Alternating Gradient Synchrotron (AGS) along with the forthcoming new large underground detectors at either the National Underground Science Laboratory (NUSL) in Homestake, South Dakota or at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, allows us to propose a program of experiments that will address fundamental aspects of neutrino oscillations and CP-invariance violation. This program of experiments is unique because of the extra-long baseline of more than 2500 km from Brookhaven National Laboratory to the underground laboratories in the West, the high intensity of the proposed conventional neutrino beam, and the possibility of constructing a very large array of water Cerenkov detectors with total mass approaching 1 Megaton. As part of this program we also consider experiments at moderately long baselines (~400 km) using other detector technologies that can yield valuable and complementary informa...

  5. Sterile Neutrino Production Through a Matter Effect Enhancement at Long Baselines

    Science.gov (United States)

    Bramante, Joseph

    2013-06-01

    If sterile neutrinos have a neutral coupling to standard model fermions, matter effect resonant transitions to sterile neutrinos and excess neutral-current events could manifest at long baseline experiments. Assuming a single sterile neutrino with a neutral coupling to fermionic matter, we re-examine bounds on sterile neutrino production at long baselines from the MINOS result Pνμ →νs space of sterile neutrino matter effect fits of the LSND and MiniBooNe data, we show that in the case of a vector singlet coupling of sterile neutrinos to matter, some favored parametrizations of these fits would create neutral-current event excesses above standard model predictions at long baseline experiments (e.g. MINOS and OPERA).

  6. Supernova neutrino oscillations: What do we understand?

    Energy Technology Data Exchange (ETDEWEB)

    Dighe, Amol, E-mail: amol@theory.tifr.res.i [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2010-01-01

    We summarize our current understanding of the neutrino flavor conversions inside a core collapse supernova, clarifying the important role played by the 'collective effects' in determining flavor conversion probabilities. The potentially observable {nu}{sub e} and {nu}-bar {sub e} spectra may help us identify the neutrino mixing scenario, distinguish between primary flux models, and learn more about the supernova explosion.

  7. Global Analysis of the Source and Detector Nonstandard Interactions Using the Short Baseline Neutrino- and Antineutrino-Electron Scattering Data

    CERN Document Server

    Khan, Amir N

    2016-01-01

    We present a global analysis of the semileptonic and purely Leptonic nonuniversal and flavor-changing nonstandard neutrino interactions in all the known short-baseline neutrino- and antineutrino-electron scattering experiments. The nonstandard effects at the source and at the detector can be more transparent in these experiments because of the negligibly small ratio between the baselines and the neutrino energies, which is not enough for the neutrinos to oscillate, and thus can be sensitive to the new physics at the both ends. We use data from two electron-neutrino electron scattering experiments and six electron-antineutrino electron scattering experiments and combine them to find the best fits on the nonstandard parameters using the source-only, detector-only analyses, and then find the interplay between the two cases. The bounds obtained in some cases are stronger and new, in some cases comparable to the current ones, and in the other cases weaker. For instance, the bound obtained from the interplay betwee...

  8. Precision measurement of neutrino oscillation parameters at INO-ICAL detector

    Indian Academy of Sciences (India)

    Daljeet Kaur; Md Naimuddin; Sanjeev Kumar Verma

    2016-02-01

    A magnetized Iron CALorimeter (ICAL) detector at the India-based neutrino observatory (INO) is used to study neutrino oscillation sensitivity using atmospheric muon neutrino source. The ICAL detector will be able to detect muon tracks and hadron showers produced by neutrino interactions with the iron target. We have performed precision measurement analysis for the atmospheric neutrino oscillation parameters with the muon neutrino events, generated by Monte Carlo NUANCE event generator. A marginalized 2 analysis based on reconstructed neutrino energy and muon zenith angle binning scheme has been performed to determine the sensitivity for the atmospheric neutrino mixing parameters, ${\\rm sin}^{2} \\theta_{23}$ and $|\\Delta m^{2}_{23}|$.

  9. Constraints on decay plus oscillation solutions of the solar neutrino problem

    CERN Document Server

    Joshipura, A S; Mohanty, S; Joshipura, Anjan S.; Masso, Eduard; Mohanty, Subhendra

    2002-01-01

    We examine the constraints on non-radiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. Decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of $\

  10. First indication of terrestrial matter effects on solar neutrino oscillation.

    Science.gov (United States)

    Renshaw, A; Abe, K; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Tomura, T; Ueno, K; Yokozawa, T; Wendell, R A; Irvine, T; Kajita, T; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Berkman, S; Tanaka, H A; Tobayama, S; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhabar, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2014-03-07

    We report an indication that the elastic scattering rate of solar B8 neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through Earth during nighttime. We determine the day-night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be [-3.2 ± 1.1(stat) ± 0.5(syst)]%, which deviates from zero by 2.7 σ. Since the elastic scattering process is mostly sensitive to electron-flavored solar neutrinos, a nonzero day-night asymmetry implies that the flavor oscillations of solar neutrinos are affected by the presence of matter within the neutrinos' flight path. Super-Kamiokande's day-night asymmetry is consistent with neutrino oscillations for 4 × 10(-5)  eV(2) ≤ Δm 2(21) ≤ 7 × 10(-5) eV(2) and large mixing values of θ12, at the 68% C.L.

  11. First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation

    CERN Document Server

    Renshaw, A; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Tomura, T; Ueno, K; Yokozawa, T; Wendell, R A; Irvine, T; Kajita, T; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Berkman, S; Tanaka, H A; Tobayama, S; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhabar, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2013-01-01

    We report an indication that the elastic scattering rate of solar $^8$B neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through the Earth during nighttime. We determine the day/night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be $(-3.2\\pm1.1(\\text{stat})\\pm0.5(\\text{syst}))\\%$, which deviates from zero by 2.7 $\\sigma$. Since the elastic scattering process is mostly sensitive to electron-flavored solar neutrinos, a non-zero day/night asymmetry implies that the flavor oscillations of solar neutrinos are affected by the presence of matter within the neutrinos' flight path. Super-Kamiokande's day/night asymmetry is consistent with neutrino oscillations for $3\\times10^{-5}$eV$^2\\leq\\Delta m^2_{21}\\leq9\\times10^{-5}$eV$^2$ and large mixing values of $\\theta_{12}$, at the $68\\%$ C.L.

  12. Effects of Recent Reactor Anti-neutrino Spectra on Neutrino Oscillations

    Science.gov (United States)

    Sterbenz, Ciara

    2015-10-01

    The β-decay of nuclear fission fragments produces a very large ve flux from nuclear reactions. The shape of the expected flux has previously been predicted by converting the measured β-electron spectrum to an ve spectrum. Recent reactor neutrino experiments, however, find a large shoulder in the observed ve spectrum relative to this prediction in the energy region 5 - 7 MeV. Accurate knowledge of the expected ve flux from reactors is important for oscillation experiments that only involve one neutrino detector. In this project, I examine the implications of these spectral changes on the ν oscillation result found by the KamLAND experiment. At the time of their finding, the spectral anomaly from 5 - 7 MeV had not be observed. I have re-derived the oscillation parameters Δm2 and sin2 (2 θ) using the anti-neutrino flux from Daya Bay and from nuclear database predictions. With these new expected fluxes, these oscillation parameters shifted and their uncertainties increased. I compare the new oscillation parameters with those derived from solar neutrino oscillation data.

  13. Neutrino Oscillation Searches with the Soudan 2 Detector.

    Science.gov (United States)

    Gallagher, Hugh Michael

    The Soudan 2 detector is a 963 ton iron tracking calorimeter located 2341 feet underground in Soudan Mine State Park, Soudan, Minnesota. Data taken from 1989 until 1993 is analyzed to search for atmospheric neutrino oscillations. In 1.5 fiducial kiloton-years exposure, 169 neutrino events have been identified. These events are classified as to the neutrino interaction that produced them, and a comparison is made of the number of 'track' events, which are primarily caused by the quasi-elastic scattering of nu _mu, to 'shower' events, which are primarily caused by the quasi-elastic scattering of nu_{e}. This track-to-shower ratio is also calculated for a sample of Monte Carlo events which is analyzed in the same manner as the data. These are compared in the form of a 'ratio of ratios'; R = (track/shower) _{data}/(track/shower) _{MC}. The ratio of ratios is sensitive to neutrino oscillations, a value less than one can indicate that muon neutrinos are oscillating into one of the other species. The ratio of ratios measured in this data set is R = 0.75 +/- 0.16 stat. +/- 0.14 syst.

  14. The Physics Of Supernova Neutrino Oscillations

    CERN Document Server

    Kneller, James P

    2015-01-01

    On February 23, 1987 we collected 24 neutrinos from the explosion of a blue super-giant star in the Large Magellanic Cloud confirming the basic paradigm of core-collapse supernova. During the many years we have been waiting for a repeat of that momentous day, the number and size of neutrino detectors around the world has grown considerably. If the neutrinos from the next supernova in our Galaxy arrive tomorrow we shall collect upwards of tens of thousands of events and next generation detectors will increase the amount of data we collect by more than an order of magnitude. But it is also now apparent that the message is much more complex than previously thought because many time, energy and neutrino flavor dependent features are imprinted upon the signal either at emission or by the passage through the outer layers of the star. These features arise due to the explosion dynamics, the physics of nuclei at high temperatures and densities, and the properties of neutrinos. In this proceedings I will present some a...

  15. On the origin of neutrino oscillations through Lorentz violation

    OpenAIRE

    Leite, Julio

    2015-01-01

    The possibility of generating neutrino masses and oscillations through Lorentz- violating models is investigated. In the first model, an interaction between a fermion doublet and a Lorentz-violating gauge field, which play the role of a regulator field and, eventually, decouples from the fermions, is considered. In this case, by solving the (non-perturbative) Schwinger-Dyson equation, we show how masses and oscillations are generated dynamically. In the second model, fermions with LV kinemati...

  16. Associated neutrino mixing and neutrino oscillations in left-right electro weak gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, R.

    1982-12-01

    The question of the associated neutrino mixing is investigated within the frame work of leftright symmetric gauge theory of electro weak interactions. It is shown that the weak leptonic neutral currents are independent of the mixing angle while the charged counterpart crucially depend on them. As the mass of right handed gauge boson becomes very large, the results reduce to those of the standard model, albeit the arbitrarily small mass for the neutrino. With the associated mixing of neutrinos, the muonness changing neutral weak currents are absent at the tree level. A condition for ..nu..sub(..cap alpha..)reversible..nu..sub(..beta..) oscillation is derived as mind(..nu..sub(..cap alpha..))/mind(..nu..sub(..beta..))>msub(..cap alpha..)/msub(..beta..) where ..cap alpha.., ..beta.. stand for e, ..mu.., tau in that order (..cap alpha..not=..beta..). With three neutrino mixing by SO(3) rotation, the present experimental data on neutrino oscillations are satisfactorily explained with the conclusion that ..nu..sub(e) oscilates mostly with ..nu..sub(tau) and vice-versa while ..nu..sub(..mu..) beam suffers very little oscillation. Consequently it is conjectured that most probably Lsub(e) and Lsub(tau) (lepton numbers) are not conversed while Lsub(..mu..) is nearly conserved in weak interaction.

  17. Early Universe Dynamos from Neutrino Oscillations Induced by Torsion

    CERN Document Server

    de Andrade, Garcia

    2016-01-01

    Earlier de Sabbata and Gasperini have shown that neutrinos oscillation which gives them a mass can be induced by torsion. More recently Enqvist et al have shown that it is possible to use massive neutrinos BBN magnetic fields to seed galactic magnetic fields. Thus based on these previous investigations we present several examples of how obtaining cosmological magnetic seed fields as galactic magnetic fields from massive neutrino densities and also from the torsion obtained by Nitsch as $T\\approx{10^{-24}s^{-1}}$ at the present day which yields magnetic seed field of the order of $B_{seed}\\approx{10^{-12}G}$. In the case we use torsion derived from massive neutrinos given by $T_{\

  18. Effect of transition magnetic moments on collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Gouvêa, André de; Shalgar, Shashank, E-mail: degouvea@northwestern.edu, E-mail: shashank@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston IL 60208-3112 (United States)

    2012-10-01

    We study the effect of Majorana transition magnetic moments on the flavor evolution of neutrinos and antineutrinos inside the core of Type-II supernova explosions. We find non-trivial collective oscillation effects relating neutrinos and antineutrinos of different flavors, even if one restricts the discussion to Majorana transition electromagnetic moment values that are not much larger than those expected from standard model interactions and nonzero neutrino Majorana masses. This appears to be, to the best of our knowledge, the only potentially observable phenomenon sensitive to such small values of Majorana transition magnetic moments. We briefly comment on the effect of Dirac transition magnetic moments and on the consequences of our results for future observations of the flux of neutrinos of different flavors from a nearby supernova explosion.

  19. Missing energy and the measurement of the CP-violating phase in neutrino oscillations

    CERN Document Server

    Ankowski, Artur M; Huber, Patrick; Mariani, Camillo; Vagnoni, Erica

    2015-01-01

    In the next generation of long-baseline neutrino oscillation experiments, aiming to determine the charge-parity violating phase $\\delta_{CP}$ in the appearance channel, fine-grained time-projection chambers are expected to play an important role. In this Letter, we analyze an influence of realistic detector capabilities on the $\\delta_{CP}$ sensitivity for a setup similar to that of the Deep Underground Neutrino Experiment. We find that the effect of the missing energy, carried out by undetected particles, is sizable. Although the reconstructed neutrino energy can be corrected for the missing energy, the accuracy of such procedure has to exceed 20\\%, to avoid a sizable bias in the extracted $\\delta_{CP}$ value.

  20. Neutrino oscillations with the full IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube detector and its low energy extension, DeepCore, have recorded over 300,000 atmospheric neutrino events since completion almost two years ago. With an energy threshold of about 10 GeV and the possibility of observing different baselines between source and detector location, these events can be used to probe neutrino oscillations with unprecedented statistics. However, the measurement uncertainties, due to unknown properties of the detector and the medium where it stands, limit the sensitivity of such a study. The particular analysis under discussion is a special attempt to diminish the impact of systematic uncertainties while keeping a large high quality neutrino sample. The tools developed for it, as well as the current status of the analysis are presented.

  1. Missing energy and the measurement of the C P -violating phase in neutrino oscillations

    Science.gov (United States)

    Ankowski, A. M.; Coloma, P.; Huber, P.; Mariani, C.; Vagnoni, E.

    2015-11-01

    In the next generation of long-baseline neutrino oscillation experiments aiming to determine the charge-parity-violating phase δC P in the appearance channel, fine-grained time-projection chambers are expected to play an important role. In this paper, we analyze an influence of realistic detector capabilities on the δC P sensitivity for a setup similar to that of the Deep Underground Neutrino Experiment. We find that the effect of the missing energy carried out by undetected particles is sizable. Although the reconstructed neutrino energy can be corrected for the missing energy, the accuracy of such procedure has to exceed 20%, to avoid a sizable bias in the extracted δC P value.

  2. Oscillation degeneracy in non-standard neutrino interactions

    Science.gov (United States)

    Wright, Warren

    2016-06-01

    The standard theory describing neutrino oscillations only uses the interactions predicted by the Standard Model of particle physics. However, there is plenty of room for non-standard interactions (NSI) to exist. This is because extra interactions are allowed by experimental error bars and even expected at some level from effective theory arguments. This research is focused on examining the phenomenological consequences of the new physics of NSI at large atmospheric neutrino detectors like IceCube DeepCore. Of particular focus are the degeneracies between and within the standard neutrino oscillation parameters and the NSI parameters. These degeneracies will be explored both analytically and numerically, and strategies to lift them will also be discussed. This research is largely based on [1].

  3. Final atmospheric neutrino oscillation results from Soudan 2

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, T [High Energy Physics, Tufts University, 4 Colby St., Medford, MA 02155 (United States)

    2006-05-15

    The final set of Soudan-2 data has been prepared including both events with their vertex within the detector and upgoing stopping muons originating in neutrino interactions within the rock surrounding the detector. This data set was analyzed for effects of atmospheric neutrino oscillations. The resulting probability of no oscillations was found to be 3.2 x 10{sup -5}. The improved 90% CL contour in sin{sup 2}2{theta} x log{sub 10}({delta}m{sup 2}) is given, and found to be independent of the choice of 1D or 3D neutrino flux model. The Soudan 2 allowed contour includes, but is broader than, the 90% CL contours reported by SuperK and MACRO.

  4. Neutrino oscillations in the field of a rotating deformed mass

    Energy Technology Data Exchange (ETDEWEB)

    Geralico, A., E-mail: geralico@icra.it [Physics Department and ICRA, University of Rome “La Sapienza”, I-00185 Rome (Italy); Luongo, O., E-mail: orlando.luongo@roma1.infn.it [Physics Department and ICRA, University of Rome “La Sapienza”, I-00185 Rome (Italy); Institute of Nuclear Science, University of Mexico (Mexico)

    2012-03-12

    The neutrino oscillations in the field of a rotating deformed mass is investigated. The phase shift is evaluated in the case of weak field limit, slow rotation and small deformation. To this aim the Hartle–Thorne metric is used, which is an approximate solution of the vacuum Einstein equations accurate to second order in the rotation parameter a/M and to first order in the mass quadrupole moment q. Implications on atmospheric, solar and astrophysical neutrinos are discussed. -- Highlights: ► We consider neutrino oscillations in the field of a rotating deformed mass. ► We evaluate the phase shift in the case of weak field limit, slow rotation and small deformation. ► Observational implications are discussed.

  5. Violation of the Leggett-Garg Inequality in Neutrino Oscillations

    Science.gov (United States)

    Formaggio, J. A.; Kaiser, D. I.; Murskyj, M. M.; Weiss, T. E.

    2016-07-01

    The Leggett-Garg inequality, an analogue of Bell's inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino oscillations should adhere to quantum-mechanical predictions and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation phenomena can be used to test for violations of the classical bound by performing measurements on an ensemble of neutrinos at distinct energies, as opposed to a single neutrino at distinct times. A study of the MINOS experiment's data shows a greater than 6 σ violation over a distance of 735 km, representing the longest distance over which either the Leggett-Garg inequality or Bell's inequality has been tested.

  6. Optimization of Neutrino Oscillation Parameters Using Differential Evolution

    Institute of Scientific and Technical Information of China (English)

    Ghulam Mustafa; Faisal Akram; Bilal Masud

    2013-01-01

    We show how the traditional grid based method for finding neutrino oscillation parameters △m2 and tan2θ can be combined with an optimization technique,Differential Evolution (DE),to get a significant decrease in computer processing time required to obtain minimal chi-square (x2) in four different regions of the parameter space.We demonstrate efficiency for the two-neutrinos case.For this,the x2 function for neutrino oscillations is evaluated for grids with different density of points in standard allowed regions of the parameter space of △m2 and tan2 θ using experimental and theoretical total event rates of chlorine (Homestake),Gallex+GNO,SAGE,Superkamiokande,and SNO detectors.We find that using DE in combination with the grid based method with small density of points can produce the results comparable with the one obtained using high density grid,in much lesser computation time.

  7. Masses, mélange et oscillations de neutrinos

    CERN Document Server

    Wilquet, Gaston

    The experimental situation concerning the measurements of neutrinos masses, mixing and oscillation is reviewed, as well as of the underlying phenomenology. A particular attention is given to the CERN experimental program to which I took or take part, CHARM-II, CHORUS and OPERA. In the last chapter, I try to put into perspective the medium and long term experimental programme.

  8. An accurate analytic description of neutrino oscillations in matter

    Energy Technology Data Exchange (ETDEWEB)

    Niro, Viviana [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2009-07-01

    We present a simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth.

  9. Atmospheric neutrino oscillations in IceCube-79

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Andreas [Technische Universitaet Muenchen (Germany); Collaboration: IceCube Collaboration

    2013-07-01

    We present the results of an analysis of data collected by IceCube/DeepCore in 2010-2011 when operating in the 79 string configuration. This analysis results in the first significant detection of neutrino oscillations in a high-energy neutrino telescope. A low-energy muon neutrino sample (20-100 GeV) containing the oscillation signal was extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data in order to constrain the systematic uncertainties. The non-oscillation hypothesis was rejected with more than 5σ. We fitted the oscillation parameters Δ m{sup 2}{sub 23} and sin{sup 2}2 θ{sub 23} to these data samples. In a 2-flavor formalism we find Δ m{sup 2}{sub 23} = (2.5±0.6). 10{sup -3} eV{sup 2} and sin{sup 2}2 θ{sub 23} > 0.92 while maximum mixing is favored. These results are in good agreement with the world average values.

  10. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-axis Beam

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodriguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sanchez, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-01-01

    The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to $3.01 \\times 10^{20}$ protons on target. In the absence of neutrino oscillations, $205 \\pm 17$ (syst.) events are expected to be detected and only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum assuming three neutrino flavors, normal mass hierarchy and $\\theta_{23}\\leq \\pi/4$ yields a best-fit mixing angle $\\sin^2(2\\theta_{23})=1.000$ and mass splitting $|\\Delta m^2_{32}| =2.44 \\times 10^{-3}$ eV$^2$/c$^4$. If $\\theta_{23}\\geq \\pi/4$ is assumed, the best-fit mixing angle changes to $\\sin^2(2\\theta_{23})=0.999$ and the mass splitting remains unchanged.

  11. J-PARC Press Release: Electron neutrino oscillation detected at T2K

    CERN Multimedia

    T2K Press Office

    2011-01-01

    Tsukuba, Japan, June 15, 2011. The T2K experiment, whose primary purpose is to study neutrino interactions at a large distance from their source, has detected 6 electron neutrino candidate events based on the data collected before March 11, 2011. For the first time, it was possible to observe an indication that muon neutrinos are able to transform into electron neutrinos over a distance of 295 km through the quantum mechanical phenomena of neutrino flavor oscillations.   The Super-Kamiokande detector, in Japan. © 2011, High Energy Accelerator Research Organization, KEK. The T2K experiment is searching for the neutrino oscillation phenomena, where particular types of neutrinos transform into other types of neutrinos. These observations help determine neutrino masses, as well elucidating the uncharted nature of neutrinos, such as the relationship among three neutrino generations (types). T2K aims at the world’s best sensitivity by detecting neutrinos with the Super-Kamiokande d...

  12. The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment

    CERN Document Server

    Agarwalla, S.K.; Aittola, M.; Alekou, A.; Andrieu, B.; Angus, D.; Antoniou, F.; Ariga, A.; Ariga, T.; Asfandiyarov, R.; Autiero, D.; Ballett, P.; Bandac, I.; Banerjee, D.; Barker, G.J.; Barr, G.; Bartmann, W.; Bay, F.; Berardi, V.; Bertram, I.; Bésida, O.; Blebea-Apostu, A.M.; Blondel, A.; Bogomilov, M.; Borriello, E.; Boyd, S.; Brancus, I.; Bravar, A.; Buizza-Avanzini, M.; Cafagna, F.; Calin, M.; Calviani, M.; Campanelli, M.; Cantini, C.; Caretta, O.; Cata-Danil, G.; Catanesi, M.G.; Cervera, A.; Chakraborty, S.; Chaussard, L.; Chesneanu, D.; Chipesiu, F.; Christodoulou, G.; Coleman, J.; Crivelli, P.; Davenne, T.; Dawson, J.; De Bonis, I.; De Jong, J.; Déclais, Y.; Sanchez, P. Del Amo; Delbart, A.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Duchesneau, D.; Dumarchez, J.; Efthymiopoulos, I.; Eliseev, A.; Emery, S.; Enqvist, K.; Enqvist, T.; Epprecht, L.; Ereditato, A.; Erykalov, A.N.; Esanu, T.; Finch, A.J.; Fitton, M.D.; Franco, D.; Galymov, V.; Gavrilov, G.; Gendotti, A.; Giganti, C.; Goddard, B.; Gomez, J.J.; Gomoiu, C.M.; Gornushkin, Y.A.; Gorodetzky, P.; Grant, N.; Haesler, A.; Haigh, M.D.; Hasegawa, T.; Haug, S.; Hierholzer, M.; Hissa, J.; Horikawa, S.; Huitu, K.; Ilic, J.; Ioannisian, A.N.; Izmaylov, A.; Jipa, A.; Kainulainen, K.; Kalliokoski, T.; Karadzhov, Y.; Kawada, J.; Khabibullin, M.; Khotjantsev, A.; Kokko, E.; Kopylov, A.N.; Kormos, L.L.; Korzenev, A.; Kosyanenko, S.; Kreslo, I.; Kryn, D.; Kudryavtsev, V.A.; Kudenko, Y.; Kumpulainen, J.; Kuusiniemi, P.; Lagoda, J.; Lazanu, I.; Levy, J. -M.; Litchfield, R.P.; Loo, K.; Loveridge, P.; Maalampi, J.; Magaletti, L.; Margineanu, R.M.; Marteau, J.; Martin-Mari, C.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; Mercadante, A.; Mineev, O.; Mirizzi, A.; Mitrica, B.; Morgan, B.; Murdoch, M.; Murphy, S.; Narita, S.; Nesterenko, D.A.; Nguyen, K.; Nikolics, K.; Noah, E.; Novikov, Yu.; O'Keeffe, H.; Odell, J.; Oprima, A.; Palladino, V.; Pascoli, S.; Patzak, T.; Payne, D.; Pectu, M.; Pennacchio, E.; Papaphilippou, Y.; Periale, L.; Pessard, H.; Pistillo, C.; Popov, B.; Przewlocki, P.; Quinto, M.; Radicioni, E.; Ramachers, Y.; Ratoff, P.N.; Ravonel, M.; Rayner, M.; Resnati, F.; Ristea, O.; Robert, A.; Rondio, E.; Rubbia, A.; Rummukainen, K.; Sacco, R.; Saftoiu, A.; Sakashita, K.; Sarkamo, J.; Sato, F.; Saviano, N.; Scantamburlo, E.; Sergiampietri, F.; Sgalaberna, D.; Shaposhnikova, E.; Slupecki, M.; Sorel, M.; Spooner, N.J.C.; Stahl, A.; Stanca, D.; Steerenberg, R.; Sterian, A.R.; Sterian, P.; Still, B.; Stoica, S.; Strauss, T.; Suhonen, J.; Suvorov, V.; Szeptycka, M.; Terri, R.; Thompson, L.F.; Toma, G.; Tonazzo, A.; Touramanis, C.; Trzaska, W.H.; Tsenov, R.; Tuominen, K.; Vacheret, A.; Valram, M.; Vankova-Kirilova, G.; Vanucci, F.; Vasseur, G.; Velotti, F.; Velten, P.; Viant, T.; Vincke, H.; Virtanen, A.; Vorobyev, A.; Wark, D.; Weber, A.; Weber, M.; Wiebusch, C.; Wilson, J.R.; Wu, S.; Yershov, N.; Zalipska, J.; Zito, M.

    2014-01-01

    The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrat...

  13. Pulsar motions from VEP neutrino oscillations

    Science.gov (United States)

    Barkovich, M.; Casini, H.; D'Olivo, J. C.; Montemayor, R.

    2002-07-01

    We show that a violation of the equivalence principle (VEP) can explain pulsar motions. We find that both the translational and rotational velocities can be accounted by VEP induced anisotropies in the linear and angular momentum of the neutrinos emitted by the protoneutron star. The violation needed to obtain the observed motions is compatible with existing boundaries.

  14. Three Generation Neutrino Oscillation Parameters after SNO

    CERN Document Server

    Bandyopadhyay, A; Goswami, S; Kar, K; Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati; Kar, Kamales

    2002-01-01

    We examine the solar neutrino problem in the context of the realistic three neutrino mixing scenario including the SNO charged current rate. The two independent mass squared differences $\\Delta m^2_{21}$ and $\\Delta m^2_{31} \\approx \\Delta m^2_{32}$ are taken to be in the solar and atmospheric range respectively. We incorporate the constraints on $\\Delta$m$^2_{31}$ as obtained by the SuperKamiokande atmospheric neutrino data and determine the allowed values of $\\Delta m^2_{21}$, $\\theta_{12}$ and $\\theta_{13}$ from a combined analysis of solar and CHOOZ data. Our aim is to probe the changes in the values of the mass and mixing parameters with the inclusion of the SNO data as well as the changes in the two-generation parameter region obtained from the solar neutrino analysis with the inclusion of the third generation. We find that the inclusion of the SNO CC rate in the combined solar + CHOOZ analysis puts a more restrictive bound on $\\theta_{13}$. Since the allowed values of $\\theta_{13}$ are constrained to v...

  15. Movement of the pulsars and neutrino oscillations; Movimiento de los pulsares y oscilaciones de neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Barkovich, M.A

    2005-07-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  16. Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova

    NARCIS (Netherlands)

    E. Pllumbi; I. Tamborra; S. Wanajo; H.-T. Janka; L. Hüdepohl

    2015-01-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of a

  17. Analytical approximation of the neutrino oscillation matter effects at large θ{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar [Institute of Physics, Sachivalaya Marg, Sainik School Post,Bhubaneswar 751005, Orissa (India); Kao, Yee [Department of Chemistry and Physics, Western Carolina University,Cullowhee, NC 28723 (United States); Takeuchi, Tatsu [Center for Neutrino Physics, Physics Department, Virginia Tech,Blacksburg, VA 24061 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,Kashiwa-shi, Chiba-ken 277-8583 (Japan)

    2014-04-07

    We argue that the neutrino oscillation probabilities in matter are best understood by allowing the mixing angles and mass-squared differences in the standard parametrization to ‘run’ with the matter effect parameter a=2√2G{sub F}N{sub e}E, where N{sub e} is the electron density in matter and E is the neutrino energy. We present simple analytical approximations to these ‘running’ parameters. We show that for the moderately large value of θ{sub 13}, as discovered by the reactor experiments, the running of the mixing angle θ{sub 23} and the CP violating phase δ can be neglected. It simplifies the analysis of the resulting expressions for the oscillation probabilities considerably. Approaches which attempt to directly provide approximate analytical expressions for the oscillation probabilities in matter suffer in accuracy due to their reliance on expansion in θ{sub 13}, or in simplicity when higher order terms in θ{sub 13} are included. We demonstrate the accuracy of our method by comparing it to the exact numerical result, as well as the direct approximations of Cervera et al., Akhmedov et al., Asano and Minakata, and Freund. We also discuss the utility of our approach in figuring out the required baseline lengths and neutrino energies for the oscillation probabilities to exhibit certain desirable features.

  18. Unity of CP and T Violation in Neutrino Oscillations

    CERN Document Server

    Blom, Martin; Blom, Martin; Minakata, Hisakazu

    2004-01-01

    In a previous work a simultaneous P- CP[P] and P- T[P] bi-probability plot was proposed as a useful tool for unified graphical description of CP and T violation in neutrino oscillation. The ``baseball diamond'' structure of the plot is understood as a consequence of the approximate CP-CP and the T-CP relations obeyed by the oscillation probabilities. In this paper, we make a step forward toward deeper understanding of the unified graphical representation by showing that these two relations are identical in its content, suggesting a truly unifying view of CP and T violation in neutrino oscillations. We suspect that the unity reflects the underlying CPT theorem. We also present calculation of corrections to the CP-CP and the T-CP relations to leading order in Delta m^2_{21} / Delta m^2_{31} and s^2_{13}.

  19. On the origin of neutrino oscillations through Lorentz violation

    Science.gov (United States)

    Leite, Julio

    2015-07-01

    The possibility of generating neutrino masses and oscillations through Lorentz- violating models is investigated. In the first model, an interaction between a fermion doublet and a Lorentz-violating gauge field, which play the role of a regulator field and, eventually, decouples from the fermions, is considered. In this case, by solving the (non-perturbative) Schwinger-Dyson equation, we show how masses and oscillations are generated dynamically. In the second model, fermions with LV kinematics interact via a four-fermion interaction and masses are shown to be generated dynamically when using another non-perturbative method. In both models, the recovery of Lorentz invariance is discussed and it is shown that the only physical observables are the dynamical masses that lead to neutrino oscillations.

  20. Nuclear aspects of neutrino energy reconstruction in current oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Tina; Buss, Oliver; Mosel, Ulrich [Institut fuer Theoretische Physik, Universitaet Giessen (Germany); Alvarez-Ruso, Luis [Departamento de Fisica Teorica and IFIC, Universidad de Valencia - CSIC (Spain)

    2008-07-01

    There is an extensive experimental effort aiming at a precise determination of neutrino oscillation parameters. A critical quantity is the neutrino energy which can not be measured directly but has to be reconstructed from observables. A good knowledge of neutrino-nucleus interactions is thus necessary to minimize the systematic uncertainties in neutrino fluxes, backgrounds and detector responses. A reliable reconstruction has to account for in-medium modifications. We find that in particular final-state interactions inside the target nucleus modify considerably the distributions through rescattering, charge-exchange and absorption. These effects can be simulated with our coupled channel GiBUU transport model where the neutrino first interacts with a bound nucleon producing secondary particles which are then transported out of the nucleus. We consider, besides Fermi motion and Pauli blocking, full in-medium kinematics, mean-field potentials and in-medium spectral functions. In this contribution, we compare the reconstructed quantities obtained within our model to the ones obtained by the current experiments like MiniBooNE, which mostly rely on simple two-body kinematics. We then discuss how these uncertainties influence not only the cross section measurements but also the oscillation results.

  1. Constraining neutrino oscillation parameters with current solar and atmospheric data

    CERN Document Server

    Maltoni, M; Tortola, M A; Valle, José W F

    2003-01-01

    We analyse the impact of recent solar and atmospheric data in the determination of the neutrino oscillation parameters, taking into account that both the solar nu_e and the atmospheric nu_mu may convert to a mixture of active and sterile neutrinos. In addition to the recent SNO neutral current (NC), spectral and day/night data we add the latest 1496-day solar and 1489-day atmospheric Super-K neutrino data samples. By investigating in detail the impact of the recent SNO NC, spectral and day/night data, we confirm the clear preference of the LMA solution of the solar neutrino problem and obtain that the LOW, VAC, SMA solutions are disfavoured with a Delta_chi^2 = 9, 9, 23, respectively. Furthermore, we find that the global solar data constrains the admixture of a sterile neutrino to be less than 45% at 99% CL. A pure sterile solution is ruled out with respect to the active one at 99.996% CL. By performing an improved fit of the atmospheric data, we also update the corresponding regions of oscillation parameters...

  2. Sterile neutrino oscillations in MINOS and hadron production in pC collisions

    Energy Technology Data Exchange (ETDEWEB)

    Tinti, Gemma Maria [Univ. of Oxford (United Kingdom)

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment, starting with a muon-neutrino beam, for the precise measurement of the atmospheric neutrino oscillation parameters |Δm2| and θ23. The Near Detector measures the neutrino flux and spectra before oscillations. The beam propagates for 735 km to the Far Detector, which measures the depleted spectrum after oscillations. The depletion can be interpreted as vμ → vτ oscillations. Subdominant vμ → ve oscillations may be allowed if the mixing angle θ13 ≠ 0. The two detectors are functionally identical in order to cancel systematic errors when using the Near Detector data to constrain the Far Detector prediction. A crucial part of the analysis is the relative calibration between the two detectors, which is known at the 2% level. A calibration procedure to remove the time and temperature dependence of the detector response using through-going cosmic muons is presented here. Although the two-detector approach reduces the systematic uncertainties related to the neutrino flux, a cross check on the neutrino parent meson ratios is performed in this thesis. The cross sections of mesons produced in proton-carbon interactions from the NA49 experiment have been measured and the results have been compared to the MINOS expectations. A neutrino oscillation analysis allowing mixing to a sterile neutrino is performed, under the assumption that the additional mass splitting is Ο(1 eV2). The analysis uses the energy spectrum of the neutral current interaction products, as neutral current interactions are sensitive to sterile neutrino mixing but not to the active flavour neutrino mixing. The neutrino oscillation parameters have been found to be: |Δm2| = 2.43-0.18+0.21 x 10-3 eV2, θ23 = 40.27°-5.17+14.64, θ24 = 0.00°+5.99 and

  3. Sterile Neutrino Fits to Short Baseline and IceCube Data

    CERN Document Server

    Collin, G H; Conrad, J M; Shaevitz, M H

    2016-01-01

    Neutrino oscillation models involving extra mass eigenstates beyond the standard three (3+N) are fit to global short baseline experimental data. We find that 3+1 has a best fit of Delta m^2_41 = 1.75 eV^2 with a Delta chi^2 [null-min] (dof) of 52.34 (3). The 3+2 fit has a Delta chi^2 [null-min] (dof) of 56.99 (7). Bayesian credible intervals are shown for the first time for a 3+1 model. These are found to be in agreement with frequentist intervals. The result from the 3+1 fit are combined with the recent IceCube IC86 muon neutrino disappearance search resulting in a best fit of Delta m^2_41 = 1.75 eV^2 with Delta chi^2 [null-min] (dof) of 50.26 (4) . We find that the combined IceCube and SBL data constrain theta_34 to 2 eV^2, which is a factor of two better than the existing limit.

  4. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ryan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Backhouse, Christopher [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bays, Kirk [California Inst. of Technology (CalTech), Pasadena, CA (United States); Lozier, Joseph [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pershey, Daniel [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-10-06

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award’s proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA’s recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  5. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ryan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Backhouse, Christopher [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bays, Kirk [California Inst. of Technology (CalTech), Pasadena, CA (United States); Lozier, Joseph [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pershey, Daniel [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-10-01

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award’s proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA’s recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  6. Neutrino oscillations in the gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, S. I., E-mail: sgodunov@itep.ru; Pastukhov, G. S., E-mail: grigoriypas@gmail.com [Moscow Institute of Physics and Technology (Russian Federation)

    2011-02-15

    We calculate the gravitational correction to the phase difference between neutrino mass eigenstates for the spherically symmetric gravitational field described by the Schwarzschild metric. This correction was calculated in a number of works, but the results of these works differ from each other. Our result does not coincide with the results ever published. In this work, we make calculations in the simplest way and verify our result by several tests.

  7. Oscillating neutrinos and mu --> e, gamma

    CERN Document Server

    Casas, J A

    2001-01-01

    If neutrino masses and mixings are suitable to explain the atmospheric and solar neutrino fluxes, this amounts to contributions to FCNC processes, in particular mu --> e, gamma. If the theory is supersymmetric and the origin of the masses is a see-saw mechanism, we show that the prediction for BR(mu --> e, gamma) is in general larger than the experimental upper bound, especially if the solar data are explained by a large angle MSW effect, which recent analyses suggest as the preferred scenario. Our analysis is bottom-up and completely general, i.e. it is based just on observable low-energy data. Application of the results to scenarios with approximate top-neutrino unification, like SO(10) models, rules out most of them unless the leptonic Yukawa matrices satisfy very precise (fine-tuned) requirements. Other possible ways-out, like gauge mediated SUSY breaking, are also discussed. The work generalizes previous results of the literature, finding new (and dominant) contributions.

  8. Precise Measurement of Solar Neutrino Oscillation Parameters from Recent Experiments

    Institute of Scientific and Technical Information of China (English)

    YANG Ping; LIU Qiu-Yu

    2009-01-01

    We analyse the available data of solar neutrino experiments up to the date May 2008,including SK-I,SK-II,SNO phase-I,SNO phase-II and first-generation Ga and C1 experiments.They show great improvement in constraints on solar neutrino oscillation parameters.Together with the new results from long base line reactor experiment KamLAND,the parameters are precisely determined,with la allowed region in △m212 = 7 586+0.212-0.203×10-5 eV2,tan2 θ12=0.457+0.076-0.067

  9. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)

    2016-06-15

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)

  10. Active-active and active-sterile neutrino oscillation solutions to the atmospheric neutrino anomaly

    CERN Document Server

    González-Garciá, M Concepción; Peres, O L G; Valle, José W F

    1999-01-01

    We perform a fit to the full data set corresponding to 25.5 kt-yr of data of the Super-Kamiokande experiment as well as to all other experiments in order to compare the two most likely solutions to the atmospheric neutrino anomaly in terms of oscillations in the $\

  11. Neutrino oscillations in magnetized media and implications for the pulsar velocity puzzle

    CERN Document Server

    Grasso, D

    1998-01-01

    After a brief presentation of the general techniques used to determine neutrino potentials in a magnetized medium I will discuss MSW resonant oscillations of active and sterile neutrinos in such environment. Using my results I will reconsider the viability of a solution of the pulsar velocity puzzle based on such a kind of neutrino oscillations.

  12. Panofsky Prize Lecture: Evidence for Oscillation of Atmospheric Neutrinos

    Science.gov (United States)

    Totsuka, Yoji

    2002-04-01

    Atmospheric neutrinos are decay products of pions and kaons (and of their decay products muons) produced by nuclear interactions of cosmic rays with air nuclei. Though their flux is not known well, only within 20 %, physics quantities that are independent of the flux uncertainty exist. The ratio of the number of muon neutrinos to the number of electron neutrinos is estimated to be accurate within 5 %. The other quantity is the shape of the zenith-angle distribution. Kamiokande and Super-Kamiokande are water Cherenkov detectors with 3,000 ton and 50,000 ton pure water, respectively. Kamiokande was operational in 1983 - 1996, and Super-K in 1996 - 2001 and 2003 - in future. We had already noted in 1988 that the observed μ/e ratio, which represented ν_mu/ν_e, was smaller by about 40 %. Later in 1994 we noted that the zenith angle distribution of muon neutrinos was strongly distorted, namely much fewer muons observed in the upward direction, while downward-going muons were what we expected. Electrons were quite normal. In 1996 Super-Kamiokande was ready. Its fiducial volume is 22.5 kton, much larger than Kamiokande's 1.04 kton. In 1998 based on 25.5 kton years of data we presented convincing results on the small μ/e ratio which was caused by fewer number of muons in the upward direction. The essential feature of the observed anomaly was that the disappearance of muon neutrinos depended strongly on their path length and on their energies. Electrons showed no anomaly within the experimental limit. These results were quantitatively and almost uniquely explained by oscillation of muon neutrinos to tau neutrinos, thus evidence for the finite but tiny mass of neutrinos.

  13. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  14. Search for Neutrino Oscillations at CERN PS Using BEBC

    CERN Multimedia

    2002-01-01

    This experiment searches for neutrino oscillations detecting in BEBC neutrinos of different flavours originated by an initial @n&s'@m. beam. A low energy proton beam extracted from the PS is used to provide a @n&s'@m. beam focused towards BEBC. With such a beam two requirements for an experiment of high sensitivity are met:\\\\ \\\\ \\item a) the ratio of the distance travelled by neutrinos over their energy is large; \\item b) the beam is initially a high purity @n&s'@m. beam, the background of @n^e's being a few in a thousand. \\end{enumerate} @n&s'@m.~@A~@v^e oscillations would manifest themselves giving @n^e induced events in BEBC. The chamber filled with a heavy Ne-H^2 mixture is an ideal instrument to detect and measure electrons with momenta from few tens of MeV/c to several GeV/c, as well as the CC @n&s'@m. events for normalization. @n&s'@m.~@A~@n&s'@t. oscillation can be searched for by comparing the measured ratio NC/CC with that expected without oscillations.

  15. Earth matter effect on atmospheric neutrino oscillation in (3+3) model

    CERN Document Server

    Rahman, Mushfiqur

    2015-01-01

    In a recent combined analysis of short baseline neutrino oscillation data by Conrad et al it is shown that (3+3) neutrino model, defined by three active and three sterile neutrinos, results in an overall goodness of $67\\%$ and a compatibility of $90\\%$ among all data sets - to be compared to the compatibility of $0.043\\% $ and $13\\% $ for a (3+1) and a (3+2) model, respectively. Aside from the fact that (3+3) model still finds inconsistencies with MiniBooNE appearance data sets, its high quality overall compatibility and goodness of fit led us to study the atmospheric neutrinos in this model which travel distances of thousands of kilometers through earth. We show that in this mixing scheme matter resonance effect inside earth enhances the small vacuum oscillations into near-maximal transitions and at high energies these maximal transitions occur in the TeV range, whereas at low energies those can occur in the few GeV region. We also calculate the zenith angle distributions of $\

  16. A combined muon-neutrino and electron-neutrino oscillation search at MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, Jocelyn Rebecca [Columbia Univ., New York, NY (United States)

    2006-01-01

    MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from the LSND experiment. If correct, the result implies that a new kind of massive neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE searches for vμ → ve oscillations with the Fermi National Accelerator Laboratory 8 GeV beam line, which produces a vμ beam with an average energy of ~ 0.8 GeV and an intrinsic ve content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with CH2, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the source. This work focuses on the estimation of systematic errors associated with the neutrino flux and neutrino interaction cross section predictions, and in particular, on constraining these uncertainties using in-situ MiniBooNE vμ charged current quasielastic (CCQE) scattering data. A data set with ~ 100,000 events is identified, with 91% CCQE purity. This data set is used to measure several parameters of the CCQE cross section: the axial mass, the Fermi momentum, the binding energy, and the functional dependence of the axial form factor on four-momentum transfer squared. Constraints on the vμ and ve fluxes are derived using the vμ CCQE data set. A Monte Carlo study of a combined vμ disappearance and ve appearance oscillation fit is presented, which improves the vμ → ve oscillation sensitivity of MiniBooNE with respect to a ve appearance-only fit by 1.2-1.5σ, depending on the value of Δm2.

  17. Prospects for reconstruction of leptonic unitarity quadrangle and neutrino oscillation experiments

    Science.gov (United States)

    Verma, Surender; Bhardwaj, Shankita

    2016-06-01

    After the observation of non-zero θ13 the goal has shifted to observe CP violation in the leptonic sector. Neutrino oscillation experiments can, directly, probe the Dirac CP phases. Alternatively, one can measure CP violation in the leptonic sector using Leptonic Unitarity Quadrangle (LUQ). The existence of Standard Model (SM) gauge singlets - sterile neutrinos - will provide additional sources of CP violation. We investigate the connection between neutrino survival probability and rephasing invariants of the 4 × 4 neutrino mixing matrix. In general, LUQ contain eight geometrical parameters out of which five are independent. We obtain CP asymmetry (Pνf→νf‧ -Pνbarf→νbarf‧) in terms of these independent parameters of the LUQ and search for the possibilities of extracting information on these independent geometrical parameters in short baseline (SBL) and long baseline (LBL) experiments, thus, looking for constructing LUQ and possible measurement of CP violation. We find that it is not possible to construct LUQ using data from LBL experiments because CP asymmetry is sensitive to only three of the five independent parameters of LUQ. However, for SBL experiments, CP asymmetry is found to be sensitive to all five independent parameters making it possible to construct LUQ and measure CP violation.

  18. Spin-flavor oscillations of Dirac neutrinos described by relativistic quantum mechanics

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We study spin-flavor oscillations of Dirac neutrinos in matter and magnetic field using the method of relativistic quantum mechanics. We start from the exact solution of the wave equation for a massive neutrino, taking into account external fields. Then we derive an effective Hamiltonian governing neutrino spin-flavor oscillations. We demonstrate the consistency of our approach with the commonly used quantum mechanical method. Our correction to the usual effective Hamiltonian results in the appearance of a new resonance in neutrino oscillations. We discuss applications to spin-flavor neutrino oscillations in the expanding envelope of a supernova. In particular, transitions between right-handed electron neutrinos and sterile neutrinos are studied for a realistic background matter and magnetic field distributions. We also analyze the influence of other factors such as a longitudinal magnetic field, matter polarization, and the non-standard contributions to the neutrino effective potential.

  19. Neutrino oscillations a practical guide to basics and applications

    CERN Document Server

    Suekane, Fumihiko

    2015-01-01

    Neutrino oscillation (N.O.) is the only firm evidence of the physics beyond the Standard Model of particle physics and is one of the hottest topics in elementary particle physics today. This book focuses on the N.O., from its history to the future prospects, from the basic theories to the experiments.     Various phenomena of N.O. are described intuitively with thorough explanations of the fundamental physics behind well-known formulations. For example, while many textbooks start with a discussion of the mixing matrix, this book stresses that N.O. is caused by the transition amplitudes between different neutrino flavors, and that the purpose of N.O. experiments is to measure transition amplitudes and think of its origin. The current understanding of neutrino oscillation is also summarized using the most up-to-date measurements, including the recently measured neutrino mixing angle θ13, and the future prospects of N.O. studies are described as well. The level of this book makes it a bridge between introdu...

  20. Dissipation and {theta} {sub 13} in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.L.N.; Guzzo, M.M. [Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin, Campinas, Sao Paulo (Brazil)

    2013-05-15

    We obtain a complete survival and transition probability involving three neutrino flavors when dissipation effects in vacuum are taken into consideration. In an approach that presents decoherence and relaxation effects, we study the behavior of the probabilities obtained from complete positivity constraints. Making the von Neumann entropy increase in time, many cases can be obtained and studied with the Lindblad master equation with addition of only one or two parameters related to dissipation. New possibilities are obtained when we take into account two decoherence parameters with different magnitudes which are given by reactor and accelerator neutrino oscillation experiments. We also present a model with only one parameter that has an important symmetry property, which can be used when the effective matter potential is important. Furthermore, the dissipation effects can contribute to the appearance of neutrinos that can hide or imitate the {theta} {sub 13} effects and we study these possibilities showing that dissipative effects have an important role in three-neutrino oscillations. (orig.)

  1. Nonadiabatic level crossing in resonant and nonresonant neutrino oscillations

    CERN Document Server

    Kachelriess, M

    2001-01-01

    We study neutrino oscillations and the level-crossing probability PLSZ = exp(–gamman[script F]npi/2) (LSZ stands for Landau-Stückelberg-Zener) in power-law-like potential profiles A(r)[proportional]rn. After showing that the resonance point coincides only for a linear profile with the point of maximal violation of adiabaticity, we point out that the "adiabaticity" parameter gamman can be calculated at an arbitrary point if the correction function [script F]n is rescaled appropriately. We present a new representation for the level-crossing probability, PLSZ = exp(–kappan[script G]n), which allows a simple numerical evaluation of PLSZ in both the resonant and nonresonant cases, and where [script G]n contains the full dependence of PLSZ on the mixing angle theta. As an application we consider the case n = –3 important for oscillations of supernova neutrinos.

  2. Violation of the Leggett-Garg Inequality in Neutrino Oscillations

    CERN Document Server

    Formaggio, J A; Murskyj, M M; Weiss, T E

    2016-01-01

    The Leggett-Garg inequality, an analogue of Bell's inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. Neutrinos, and in particular the phenomenon of neutrino oscillations, should adhere to quantum-mechanical predictions and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation phenomena can be used to test for violations of the classical bound. A study of the MINOS experiment's data shows a greater than 6{\\sigma} violation over a distance of 735 km, representing the longest distance over which either the Leggett-Garg inequality or Bell's inequality has been tested. By exploiting stationarity and the prepared-ensemble condition, rather than weak measurements, our results provide strong evidence against "hidden-variable theories," which are deterministic alternatives to quantum mechanics. Several alternative tests of the Leggett-Garg inequality with neut...

  3. Expectation values of flavor-neutrino currents in field theoretical approach to oscillation problem -- formulation

    CERN Document Server

    Fujii, Kanji; Fujii, Kanji; Shimomura, Takashi

    2004-01-01

    As a possible approach to the neutrino oscillation on the basis of quantum field theory, the expectation values of the flavor-neutrino currents are investigated by employing the finite-time transition matrix in the interaction representation. Such expectation values give us in the simplest form a possible way of treating the neutrino oscillation without recourse to any one flavor-neutrino states. The present paper is devoted to presenting the formulation and the main structures of the relevant expectation values.

  4. Expectation values of flavor-neutrino currents in field theoretical approach to oscillation problem -- formulation

    OpenAIRE

    FUJII, Kanji; Shimomura, Takashi

    2004-01-01

    As a possible approach to the neutrino oscillation on the basis of quantum field theory, the expectation values of the flavor-neutrino currents are investigated by employing the finite-time transition matrix in the interaction representation. Such expectation values give us in the simplest form a possible way of treating the neutrino oscillation without recourse to any one flavor-neutrino states. The present paper is devoted to presenting the formulation and the main structures of the relevan...

  5. Recent results in atmospheric neutrino oscillations in the light of large θ{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Itow, Yoshitaka [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi (Japan); Kobayashi-Maskawa institute for the origin of particles and the universe, Nagoya University, Nagoya, Aichi (Japan)

    2013-02-15

    Atmospheric neutrinos have played important roles in discovery and study of neutrino oscillations with the advantage of wide coverage of energies and flight lengths. Recent discovery of substantially large θ{sub 13} gives a new opportunity for studying atmospheric neutrinos in the context of 3-flavour oscillations in matter. From this point of view, recent analyses of Super-Kamiokande as well as other atmospheric neutrino experiments are discussed.

  6. Efficient numerical integration of neutrino oscillations in matter

    Science.gov (United States)

    Casas, F.; D'Olivo, J. C.; Oteo, J. A.

    2016-12-01

    A special purpose solver, based on the Magnus expansion, well suited for the integration of the linear three neutrino oscillations equations in matter is proposed. The computations are speeded up to two orders of magnitude with respect to a general numerical integrator, a fact that could smooth the way for massive numerical integration concomitant with experimental data analyses. Detailed illustrations about numerical procedure and computer time costs are provided.

  7. Efficient numerical integration of neutrino oscillations in matter

    CERN Document Server

    Casas, Fernando; D'Olivo, Juan Carlos

    2016-01-01

    A special purpose solver, based on the Magnus expansion, well suited for the integration of the linear three neutrino oscillations equations in matter is proposed. The computations are speeded up to two orders of magnitude with respect to a general numerical integrator, a fact that could smooth the way for massive numerical integration concomitant with experimental data analyses. Detailed illustrations about numerical procedure and computer time costs are provided.

  8. Strongest gravitational waves from neutrino oscillations at supernova core bounce

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera Cuesta, H.J. [Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Cosmologia e Fisica Experimental de Altas Energias, Rua Dr. Xavier Sigaud 150, Cep 22290-180, Urca, Rio de Janeiro, RJ (Brazil); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare 34014, Trieste (Italy); Centro Latino-Americano de Fisica, Avenida Wenceslau Braz 71, CEP 22290-140, Fundos, Botafogo, Rio de Janeiro, RJ (Brazil); Fiuza, K. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul Agronomia, Avenida Bento Goncalves 9500, Caixa Postal 15051, Porto Alegre, RS (Brazil)

    2004-07-01

    Resonant active-to-active ({nu}{sub a} {yields}{nu}{sub a}), as well as active-to-sterile ({nu}{sub a} {yields}{nu}{sub s}) neutrino ({nu}) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (anti {nu}) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target {nu} species, the large mass-squared difference between the species ({nu}{sub a} {yields}{nu}{sub s}) implies a huge amount of energy to be given off as gravitational waves (L{sub GW} {proportional_to}10{sup 49} erg s{sup -1}), due to anisotropic but coherent {nu} flow over the oscillation length. This asymmetric {nu}-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter {alpha}{proportional_to}0.1-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino {nu}{sub s} that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from {nu} diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies. (orig.)

  9. Quantum Mechanics of Neutrino Oscillations - Hand Waving for Pedestrians

    OpenAIRE

    Lipkin, Harry J.

    1999-01-01

    Why Hand Waving? All calculations in books describe oscillations in time. But real experiments don't measure time. Hand waving is used to convert the results of a "gedanken time experiment" to the result of a real experiment measuring oscillations in space. Right hand waving gives the right answer; wrong hand waving gives the wrong answer. Many papers use wrong handwaving to get wrong answers. This talk explains how to do it right and also answers the following questions: 1. A neutrino which ...

  10. Entropy, Entanglement, and Transition Probabilities in Neutrino Oscillations

    CERN Document Server

    Blasone, Massimo; De Siena, Silvio; Illuminati, Fabrizio

    2007-01-01

    We show that the phenomenon of flavor oscillations can be described in terms of entangled flavor states belonging to the classes of Bell and W states. We analyze bipartite and multipartite flavor entanglements as measured by the reduced linear entropies of all possible bipartitions. Such entanglement monotones are found to be essentially equivalent to the flavor transition probabilities, that are experimentally accessible quantities. Therefore entanglement acquires a novel, operational physical characterization in the arena of elementary particle physics. We discuss in detail the fundamental cases of two- and three-flavor neutrino oscillations.

  11. Describing neutrino oscillations in matter with Magnus expansion

    Science.gov (United States)

    Ioannisian, A. N.; Smirnov, A. Yu.

    2009-07-01

    We present new formalism for description of the neutrino oscillations in matter with varying density. The formalism is based on the Magnus expansion and has a virtue that the unitarity of the S-matrix is maintained in each order of perturbation theory. We show that the Magnus expansion provides better convergence of series: the restoration of unitarity leads to smaller deviations from the exact results especially in the regions of large transition probabilities. Various expansions are obtained depending on a basis of neutrino states and a way one splits the Hamiltonian into the self-commuting and non-commuting parts. In particular, we develop the Magnus expansion for the adiabatic perturbation theory which gives the best approximation. We apply the formalism to the neutrino oscillations in matter of the Earth and show that for the solar oscillation parameters the second order Magnus adiabatic expansion has better than 1% accuracy for all energies and trajectories. For the atmospheric Δm and small 1-3 mixing the approximation works well (<3% accuracy for sinθ=0.01) outside the resonance region 2.7-8 GeV.

  12. Active to sterile neutrino oscillations: Coherence and MINOS results

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, D., E-mail: dhernand@ictp.it [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34013 Trieste (Italy); Smirnov, A.Yu. [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34013 Trieste (Italy)

    2012-01-05

    We study the {nu}{sub {mu}}-{nu}{sub s} oscillation effects in the near detector of the MINOS experiment. Conceptually, the MINOS search for sterile neutrinos with mass {approx}1 eV realizes an interesting situation of partial decoherence of the neutrino state at the production. This corresponds to a difference of energies of the two mass eigenstates that is comparable with or bigger than the width of the initial state (pion). We show that these effects modify the MINOS bound on mixing of sterile neutrino for {Delta}m{sub 41}{sup 2}{>=}0.5 eV{sup 2} and make the experiment insensitive to oscillations with {Delta}m{sub 41}{sup 2}{>=}15 eV{sup 2}. Oscillations with {Delta}m{sub 41}{sup 2}=(1-3) eV{sup 2} could explain some deficit of events observed in the low energy bins in the near detector and correspondingly the excess of events in the far detector.

  13. Describing neutrino oscillations in matter with Magnus expansion

    Energy Technology Data Exchange (ETDEWEB)

    Ioannisian, A.N. [Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); Institute for Theoretical Physics and Modeling, 375036 Yerevan (Armenia)], E-mail: ara.ioannisyan@cern.ch; Smirnov, A.Yu. [International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-07-21

    We present new formalism for description of the neutrino oscillations in matter with varying density. The formalism is based on the Magnus expansion and has a virtue that the unitarity of the S-matrix is maintained in each order of perturbation theory. We show that the Magnus expansion provides better convergence of series: the restoration of unitarity leads to smaller deviations from the exact results especially in the regions of large transition probabilities. Various expansions are obtained depending on a basis of neutrino states and a way one splits the Hamiltonian into the self-commuting and non-commuting parts. In particular, we develop the Magnus expansion for the adiabatic perturbation theory which gives the best approximation. We apply the formalism to the neutrino oscillations in matter of the Earth and show that for the solar oscillation parameters the second order Magnus adiabatic expansion has better than 1% accuracy for all energies and trajectories. For the atmospheric {delta}m{sup 2} and small 1-3 mixing the approximation works well (<3% accuracy for sin{sup 2}{theta}{sub 13}=0.01) outside the resonance region 2.7-8 GeV.

  14. 11B and constraints on neutrino oscillations and spectra from neutrino nucleosynthesis.

    Science.gov (United States)

    Austin, Sam M; Heger, Alexander; Tur, Clarisse

    2011-04-15

    We study the sensitivity to variations in the triple-alpha and 12C(α,γ)16O reaction rates, of the yield of the neutrino-process isotopes 7Li, 11B, 19F, 138La, and 180Ta in core-collapse supernovae. Compared to solar abundances, less than 15% of 7Li, about 25%-80% of 19F, and about half of 138La is produced in these stars. Over a range of ±2σ for each helium-burning rate, 11B is overproduced and the yield varies by an amount larger than the variation caused by the effects of neutrino oscillations. The total 11B yield, however, may eventually provide constraints on supernova neutrino spectra.

  15. Connecting Leptonic Unitarity Triangle to Neutrino Oscillation with CP Violation in Vacuum and in Matter

    CERN Document Server

    He, Hong-Jian

    2016-01-01

    Leptonic unitarity triangle (LUT) provides fundamental means to geometrically describe CP violation in neutrino oscillation. In this work, we use LUT to present a new geometrical interpretation of the vacuum oscillation probability, and derive a compact new oscillation formula in terms of only 3 independent parameters of the corresponding LUT. Then, we systematically study matter effects for the geometrical formulation of neutrino oscillation with CP violation. Including matter effects, we derive a very compact new oscillation formula by using the LUT formulation. We further demonstrate that this geometrical formula holds well for practical applications to neutrino oscillations in matter, including T2K, MINOS, and NOvA experiments.

  16. Self-induced suppression of collective neutrino oscillations in a supernova.

    Science.gov (United States)

    Duan, Huaiyu; Friedland, Alexander

    2011-03-04

    We investigate collective flavor oscillations of supernova neutrinos at late stages of the explosion. We first show that the frequently used single-angle (averaged coupling) approximation predicts oscillations close to, or perhaps even inside, the neutrinosphere, potentially invalidating the basic neutrino transport paradigm. Fortunately, we also find that the single-angle approximation breaks down in this regime; in the full multiangle calculation, the oscillations start safely outside the transport region. The new suppression effect is traced to the interplay between the dispersion in the neutrino-neutrino interactions and the vacuum oscillation term.

  17. Measurement of Neutrino Oscillation Parameters Using Anti-fiducial Charged Current Events in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Strait, Matthew Levy [Univ. of Minnesota, Minneapolis, MN (United States)

    2010-09-01

    Abstract The Main Injector Neutrino Oscillation Search (MINOS) obse rves the disappearance of muon neutrinos as they propagate in the long baseline Neutri nos at the Main Injector (NuMI) beam. MINOS consists of two detectors. The near detector sam ples the initial composition of the beam. The far detector, 735 km away, looks for an energy-d ependent deficit in the neutrino spectrum. This energy-dependent deficit is interpreted as q uantum mechanical oscillations be- tween neutrino flavors. A measurement is made of the effective two-neutrino mixing parameters Δ m 2 ≈ Δ m 2 23 and sin 2 2 θ ≈ sin 2 2 θ 23 . The primary MINOS analysis uses charged current events in the fiducial volume of the far detector. This analysis uses the roughly equal-sized sample of events that fails the fiducial cut, consisting of interact ions outside the fiducial region of the detector and in the surrounding rock. These events provide a n independent and complementary measurement, albeit weaker due to incomplete reconstructi on of the events. This analysis reports on an exposure of 7 . 25 × 10 20 protons-on-target. Due to poor energy resolution, the meas urement of sin 2 2 θ is much weaker than established results, but the measuremen t of sin 2 2 θ > 0 . 56 at 90% confidence is consistent with the accepted value. The measur ement of Δ m 2 is much stronger. Assuming sin 2 2 θ = 1 , Δ m 2 = (2 . 20 ± 0 . 18[stat] ± 0 . 14[syst]) × 10 - -3 eV 2 .

  18. Measurement of Neutrino Oscillation Parameters Using Anti-fiducial Charged Current Events in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Strait, Matthew Levy [Minnesota U.

    2010-09-01

    Abstract The Main Injector Neutrino Oscillation Search (MINOS) obse rves the disappearance of muon neutrinos as they propagate in the long baseline Neutri nos at the Main Injector (NuMI) beam. MINOS consists of two detectors. The near detector sam ples the initial composition of the beam. The far detector, 735 km away, looks for an energy-d ependent deficit in the neutrino spectrum. This energy-dependent deficit is interpreted as q uantum mechanical oscillations be- tween neutrino flavors. A measurement is made of the effective two-neutrino mixing parameters ∆ m 2 ≈ ∆ m 2 23 and sin 2 2 θ ≈ sin 2 2 θ 23 . The primary MINOS analysis uses charged current events in the fiducial volume of the far detector. This analysis uses the roughly equal-sized sample of events that fails the fiducial cut, consisting of interact ions outside the fiducial region of the detector and in the surrounding rock. These events provide a n independent and complementary measurement, albeit weaker due to incomplete reconstructi on of the events. This analysis reports on an exposure of 7 . 25 × 10 20 protons-on-target. Due to poor energy resolution, the meas urement of sin 2 2 θ is much weaker than established results, but the measuremen t of sin 2 2 θ > 0 . 56 at 90% confidence is consistent with the accepted value. The measur ement of ∆ m 2 is much stronger. Assuming sin 2 2 θ = 1 , ∆ m 2 = (2 . 20 ± 0 . 18[stat] ± 0 . 14[syst]) × 10 − 3 eV 2 .

  19. The Study of Neutrino Oscillations with Emulsion Detectors

    Directory of Open Access Journals (Sweden)

    A. Ereditato

    2013-01-01

    Full Text Available Particle detectors based on nuclear emulsions contributed to the history of physics with fundamental discoveries. The experiments benefited from the unsurpassed spatial and angular resolution of the devices in the measurement of ionizing particle tracks and in their identification. Despite the decline of the technique around the 1970’s caused by the development of the modern electronic particle detectors, emulsions are still alive today thanks to the vigorous rebirth of the technique that took place around the beginning of the 1990’s, in particular due to the needs of neutrino experiments. This progress involved both the emulsion detectors themselves and the automatic microscopes needed for their optical scanning. Nuclear emulsions have marked the study of neutrino physics, notably in relation to neutrino oscillation experiments and to the related first detection of tau-neutrinos. Relevant applications in this field are reviewed here with a focus on the main projects. An outlook is also given trying to address the main directions of the R&D effort currently in progress and the challenging applications to various fields.

  20. A framework for testing leptonic unitarity by neutrino oscillation experiments

    CERN Document Server

    Fong, Chee Sheng; Nunokawa, Hiroshi

    2016-01-01

    If leptonic unitarity is violated by new physics at an energy scale much lower than the electroweak scale, which we call low-scale unitarity violation, it has different characteristic features from those expected in unitarity violation at high-energy scales. They include maintaining flavor universality and absence of zero-distance flavor transition. We present a framework for testing such unitarity violation at low energies by neutrino oscillation experiments. Starting from the unitary 3 active plus $N$ (arbitrary integer) sterile neutrino model we show that by restricting the active-sterile and sterile-sterile neutrino mass squared differences to $\\gtrsim$ 0.1 eV$^2$ the oscillation probability in the $(3+N)$ model becomes insensitive to details of the sterile sector, providing a nearly model-independent framework for testing low-scale unitarity violation. Yet, the presence of the sterile sector leaves trace as a constant probability leaking term, which distinguishes low-scale unitarity violation from the hi...

  1. Reproducing sterile neutrinos and the behavior of flavor oscillations with superconducting-magnetic proximity effects

    Science.gov (United States)

    Baker, Thomas E.

    2016-03-01

    The physics of a superconductor subjected to a magnetic field is known to be equivalent to neutrino oscillations. Examining the properties of singlet-triplet oscillations in the magnetic field, a sterile neutrino is suggested to be represented by singlet Cooper pairs and moderates flavor oscillations between three flavor neutrinos (triplet Cooper pairs). A superconductor-exchange spring system's rotating magnetization profile is used to simulate the mass-flavor oscillations in the neutrino case and the physics of neutrino oscillations are discussed. Connecting the condensed matter system and the particle physics system with this analogy may allow for the properties of the condensed matter system to inform neutrino experiments. Support is graciously acknowledged from the Pat Beckman Memorial Scholarship from the Orange County Chapter of the Achievement Rewards for College Scientists Foundation.

  2. Search for neutrino oscillations at the palo verde nuclear reactors

    Science.gov (United States)

    Boehm; Busenitz; Cook; Gratta; Henrikson; Kornis; Lawrence; Lee; McKinny; Miller; Novikov; Piepke; Ritchie; Tracy; Vogel; Wang; Wolf

    2000-04-24

    We report on the initial results from a measurement of the antineutrino flux and spectrum at a distance of about 800 m from the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium-loaded scintillation detector. We find that the antineutrino flux agrees with that predicted in the absence of oscillations excluding at 90% C.L. nu;(e)-nu;(x) oscillations with Deltam(2)>1.12x10(-3) eV(2) for maximal mixing and sin (2)2straight theta>0.21 for large Deltam(2). Our results support the conclusion that the atmospheric neutrino oscillations observed by Super-Kamiokande do not involve nu(e).

  3. Solar neutrinos and neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Maltoni, Michele [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Smirnov, Alexei Yu. [Max-Planck Institute for Nuclear Physics, Heidelberg (Germany); ICTP, Trieste (Italy)

    2016-04-15

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ{sub 12} and Δm{sup 2}{sub 21} have been measured; θ{sub 13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos. (orig.)

  4. Neutrino mass hierarchy and $\\theta_{13}$ with a magic baseline beta-beam experiment

    CERN Document Server

    Agarwalla, S K; Raychaudhuri, Amitava K; Agarwalla, Sanjib Kumar; Choubey, Sandhya; Raychaudhuri, Amitava

    2006-01-01

    We underscore the physics advantage of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The CERN-INO distance is close to the so-called "magic" baseline which helps evade some of the parameter degeneracies and allows for a better measurement of the neutrino mass hierarchy and $\\theta_{13}$. We expound the possibility of using radioactive $^8B$ and $^{8}Li$ as the source isotopes for the $\

  5. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  6. Comments on the determination of the neutrino mass ordering in reactor neutrino experiments

    CERN Document Server

    Bilenky, S M

    2016-01-01

    We consider the problem of determination of the neutrino mass ordering via precise study of the vacuum neutrino oscillations in the JUNO and other future medium baseline reactor neutrino experiments. We are proposing to resolve neutrino mass ordering by determination of the neutrino oscillation parameters from analysis of the data of the reactor experiments and comparison them with the oscillation parameters obtained from analysis of the solar and KamLAND experiments.

  7. Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Baller, B; Barr, G; Barrett, W L; Becker, B R; Belias, A; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Bower, C; Buckley-Geer, E; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coleman, S J; Culling, A J; De Jong, J K; Dierckxsens, M; Diwan, M V; Dorman, M; Dytman, S A; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Frohne, M V; Gallagher, H R; Godley, A; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Heller, K; Himmel, A; Holin, A; Hsu, L; Hylen, J; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Kim, J J; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Ma, J; Mann, W A; Marchionni, A; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Messier, M D; Metelko, C J; Michael, D G; Miller, W H; Mishra, S R; Moore, C D; Morfn, J; Mualem, i L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovi, Z; Pawloski, G; Pearce, G F; Peck, C W; Petyt, D A; Pittam, R; Plunkett, R K; Rahaman, cA; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Shanahan, P; Smart, W; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Yang, T; Zhang, K; Zwaska, R

    2008-01-01

    We have measured the rates and spectra of neutral-current neutrino interactions in the MINOS detectors, which are separated by 734 km. A depletion in the rate at the far site would indicate mixing between muon neutrinos and a sterile particle. The depletion of the total neutral-current event rate at the far site is limited to be below 17% at 90% confidence level without electron neutrino appearance. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra shows the fraction of muon neutrinos oscillating to a sterile neutino is 0.28^{+0.25}_{-0.28} (stat.+syst.). Including electron neutrino appearance at the current experimental upper bound limits the depletion to be below 21% at 90% confidence level and the fit fraction of muon neutrinos oscillating to a sterile neutrino is 0.43^{+0.23}_{-0.27} (stat.+syst.).

  8. A quantum information theoretic analysis of three flavor neutrino oscillations

    CERN Document Server

    Banerjee, Subhashish; Srikanth, R; Hiesmayr, Beatrix C

    2015-01-01

    Correlations exhibited by neutrino oscillations are studied via quantum information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavour changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum information theoretic quantities capturing different aspects of quantum correlations, we elucidate the differences between the flavour types, shedding light on the quantum-information theoretic aspects of the weak force.

  9. CP-violating Phases in Active-Sterile Solar Neutrino Oscillations

    CERN Document Server

    Long, H W; Giunti, C

    2013-01-01

    Effects of CP-violating phases in active-sterile solar neutrino oscillations are discussed in a general scheme of 3+N_{s} mixing, without any constraint on the mixing between the three active and the N_{s} sterile neutrinos, assuming only a realistic hierarchy of neutrino mass-squared differences. A generalized Parke formula describing the neutrino oscillation probabilities inside the Sun is calculated. The validity of the analytical calculation and the probability variation due to the unknown CP-violating phases are illustrated with a numerical calculation of the evolution equation in the case of 3+1 neutrino mixing.

  10. A Search for Lorentz and CPT Violation in the Neutrino Sector of the Standard Model Extension Using the Near Detectors of the Tokai to Kamioka Neutrino Oscillation Experiment

    Science.gov (United States)

    Clifton, Gary Alexander

    The Tokai to Kamioka (T2K) neutrino experiment is designed to search for electron neutrino appearance oscillations and muon neutrino disappearance oscillations. While the main physics goals of T2K fall into conventional physics, T2K may be used to search for more exotic physics. One exotic physics analysis that can be performed is a search for Lorentz and CPT symmetry violation (LV and CPTV) through short baseline neutrino oscillations. The theoretical framework which describes these phenomena is the Standard Model Extension (SME). Due to its off-axis nature, T2K has two near detectors. A search for LV and CPTV is performed in each detector. The search utilizes charged-current inclusive (CC inclusive) neutrino events to search for sidereal variations in the neutrino event rate at each detector. Two methods are developed; the first being a Fast Fourier Transform method to perform a hypothesis test of the data with a set of 10,000 toy Monte-Carlo simulations that do not have any LV signal in them. The second is a binned likelihood fit. Using three data sets, both analysis methods are consistent with no sidereal variations. One set of data is used to calculate upper limits on combinations of the SME coefficients while the other two are used to constrain the SME coefficients directly. Despite not seeing any indication of LV in the T2K near detectors, the upper limits provided are useful for the theoretical field to continue improving theories which include LV and CPTV.

  11. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  12. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  13. Search for Matter-Dependent Atmospheric Neutrino Oscillations in Super-Kamiokande

    CERN Document Server

    Abe, K; Iida, T; Ikeda, M; Kameda, J; Koshio, Y; Minamino, A; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Ogawa, H; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takeuchi, Y; Ueshima, K; Watanabe, H; Yamada, S; Higuchi, I; Ishihara, C; Kajita, T; Kaneyuki, K; Mitsuka, G; Nishino, H; Okumura, K; Saji, C; Takenaga, Y; Clark, S; Desai, S; Dufour, F; Kearns, E; Likhoded, S; Litos, M; Raaf, Jennifer L; Stone, J L; Sulak, L R; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Dunmore, J; Kropp, W R; Liu, D W; Mine, S; Regis, C; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Hartfield, B; Hill, J; Keig, W E; Jang, J S; Jeong, I S; Kim, J Y; Lim, I T; Scholberg, K; Fechner, M; Tanimoto, N; Walter, C W; Wendell, R; Tasaka, S; Guillian, G; Learned, J G; Matsuno, S; Messier, M D; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Totsuka, Y; Suzuki, A T; Nakaya, T; Tanaka, H; Yokoyama, M; Haines, T J; Dazeley, S; Svoboda, R; Habig, A; Fukuda, Y; Sato, T; Itow, Y; Koike, T; Tanaka, T; Jung, C K; Kato, T; Kobayashi, K; McGrew, C; Sarrat, A; Terri, R; Yanagisawa, C; Tamura, N; Idehara, Y; Sakuda, M; Sugihara, M; Kuno, Y; Yoshida, M; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Seo, H K; Gando, Y; Inoue, K; Furuse, Y; Ishii, H; Nishijima, K; Watanabe, Y; Koshiba, M; Chen, S; Deng, Z; Liu, Y; Kielczewska, D; Berns, H; Shiraishi, K K; Thrane, E; Wilkes, R J

    2008-01-01

    We consider muon neutrino to tau neutrino oscillations in the context of the Mass Varying Neutrino (MaVaN) model, where the neutrino mass can vary depending on the electron density along the flight path of the neutrino. Our analysis assumes a mechanism with dependence only upon the electron density, hence ordinary matter density, of the medium through which the neutrino travels. Fully-contained, partially-contained and upward-going muon atmospheric neutrino data from the Super--Kamiokande detector, taken from the entire SK--I period of 1489 live days, are compared to MaVaN model predictions. We find that, for the case of 2-flavor oscillations, and for the specific models tested, oscillation independent of electron density is favored over density dependence. Assuming maximal mixing, the best-fit case and the density-independent case do not differ significantly.

  14. Probing possible decoherence effects in atmospheric neutrino oscillations.

    Science.gov (United States)

    Lisi, E; Marrone, A; Montanino, D

    2000-08-01

    It is shown that the results of the Super-Kamiokande atmospheric neutrino experiment, interpreted in terms of nu(mu)nu(tau) flavor transitions, can probe possible decoherence effects induced by new physics (e.g., by quantum gravity) with high sensitivity, supplementing current laboratory tests based on kaon oscillations and on neutron interferometry. By varying the (unknown) energy dependence of such effects, one can either obtain strong limits on their amplitude or use them to find an unconventional solution to the atmospheric nu anomaly based solely on decoherence.

  15. Probing the violation of equivalence principle at a muon storage ring via neutrino oscillation

    CERN Document Server

    Datta, A

    2001-01-01

    We examine the possible tests of violation of the gravitational equivalence principle (VEP) at a muon storage ring via neutrino oscillation experiments. If different neutrino flavours couple to the gravitational potential with different strength, flavour eigenstates are no longer the gravitational interaction eigenstates. This leads to the neutrino oscillation. If one starts with $\\mu ^+$ beam then appearance of $\\tau ^\\pm$, $e ^+$ and $\\mu ^-$ in the final state are the signals for neutrino oscillation. We have estimated the number of $\\mu ^-$ and $\\tau^+$ events in this scenario in $\

  16. Global oscillation analysis of solar neutrino data with helioseismically constrained fluxes

    CERN Document Server

    Choubey, S; Kar, K; Antia, H M; Chitre, S M; Choubey, Sandhya; Goswami, Srubabati; Kar, Kamales

    2001-01-01

    A seismic model for the Sun calculated using the accurate helioseismic data predicts a lower $^{8}{B}$ neutrino flux as compared to standard solar models (SSM). However, there persists a discrepancy between the predicted and measured fluxes and it seems necessary to invoke neutrino oscillations to explain the data. In this work, we perform a global and unified oscillation analysis of the latest solar neutrino data using the seismic model fluxes as theoretical predictions. We determine the best-fit values of the neutrino oscillation parameters and the $\\chi^2_{min}$ for both $\

  17. Global three-parameter model for neutrino oscillations using Lorentz violation

    Energy Technology Data Exchange (ETDEWEB)

    Katori, Teppei, E-mail: katori@iucf.indiana.edu [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Kostelecky, V.Alan; Tayloe, Rex [Physics Department, Indiana University, Bloomington, IN 47405 (United States)

    2011-12-15

    A model of neutrino oscillations is presented that has only three degrees of freedom and is consistent with existing data. The model is a subset of the renormalizable sector of the Standard-Model Extension (SME), and it offers an alternative to the standard three-neutrino massive model. All classes of neutrino data are described, including solar, reactor, atmospheric, and LSND oscillations. The disappearance of solar neutrinos is obtained without matter-enhanced oscillations. Quantitative predictions are offered for the ongoing MiniBooNE experiment and for the future experiments OscSNS, NOVA, and T2K.

  18. Updated Global Analysis of the Atmospheric Neutrino Data in terms of neutrino oscillations

    CERN Document Server

    Fornengo, N; Valle, José W F

    2000-01-01

    A global analysis of all the available atmospheric neutrino data is presentedin terms of neutrino oscillations in the nu_mu -> nu_tau and nu_mu -> nu_schannels, where nu_s denotes a sterile neutrino. We perform our analysis of thecontained events data as well as the upward-going neutrino-induced muon fluxes.In addition to the previous data samples of Frejus, Nusex, IMB and Kamiokaexperiments, we include the full data set of the 52 kton-yr ofSuper-Kamiokande, the recent 4.6 kton-yr contained events of Soudan2 and theresults on upgoing muons from the MACRO and Baksan detectors. From thestatistical analysis it emerges that the nu_mu -> nu_tau channel provides thebest agreement with the combined data, with a best fit point of sin^2(2 theta)= 0.99 and Delta m^2 = 3.0 * 10^{-3} eV^2. Although somehow disfavoured, thenu_mu -> nu_s channels cannot be ruled out on the basis of the global fit tothe full set of observables.

  19. Unified understanding of neutrino oscillation and negative mass-square of neutrino

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The author indicates that even a conclusive confirmation of neutrino oscillation does not necessarily imply the existence of massive neutrinos. The negative value of neutrino mass-square may be an alternative key with realistic physical meaning. Reexamining special relativity (SR) we find that there actually exists a formal phase velocity of "de Broglie's wave" in tenporal Lorentz transformation attributed to the intrinsical essence of Minkowski's space. The properties of spacelike interval between two events have already included constrains to describe superluminal motion and SR is compatible with the faster-than-light motion originally in algebraic domain. Pay attention to that the operator representation, p←→ -ih , has just verified for subluminal particles, not for superluminal particles, adhering to de Broglie's coexistence idea between waves and particles, it is possible to deduce a formal two-component Weyl equation to describe any species of free neutrinos with imaginary rest mass, which is equivalent to making use of the Dirac equation for a free spin-1/2 particle with zero rest mass in form.

  20. Neutrino oscillations with IceCube DeepCore and PINGU

    Energy Technology Data Exchange (ETDEWEB)

    DeYoung, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    The IceCube neutrino telescope was augmented with the DeepCore infill array, completed in the 2010/11 austral summer, to enhance its response to neutrinos below 100 GeV. At these energies, neutrino oscillation effects are visible in the flux of atmospheric neutrinos traversing path lengths comparable to the Earth's diameter. Initial measurements of muon neutrino disappearance parameters using data from DeepCore are presented, as well as an estimate of potential future precision. In addition, plans for a Precision IceCube Next Generation Upgrade (PINGU), which could permit determination of the neutrino mass hierarchy within the coming decade, are discussed.