Sample records for baseline interferometry radio

  1. Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis. (United States)

    Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C


    The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.

  2. Very-long-baseline radio interferometry observations of low power radio galaxies. (United States)

    Giovannini, G; Cotton, W D; Feretti, L; Lara, L; Venturi, T; Marcaide, J M


    The parsec scale properties of low power radio galaxies are reviewed here, using the available data on 12 Fanaroff-Riley type I galaxies. The most frequent radio structure is an asymmetric parsec-scale morphology--i.e., core and one-sided jet. It is shared by 9 (possibly 10) of the 12 mapped radio galaxies. One (possibly 2) of the other galaxies has a two-sided jet emission. Two sources are known from published data to show a proper motion; we present here evidence for proper motion in two more galaxies. Therefore, in the present sample we have 4 radio galaxies with a measured proper motion. One of these has a very symmetric structure and therefore should be in the plane of the sky. The results discussed here are in agreement with the predictions of the unified scheme models. Moreover, the present data indicate that the parsec scale structure in low and high power radio galaxies is essentially the same. PMID:11607596

  3. Geodesy by radio interferometry - Determinations of baseline vector, earth rotation, and solid earth tide parameters with the Mark I very long baseline radio interferometery system (United States)

    Ryan, J. W.; Clark, T. A.; Coates, R. J.; Ma, C.; Wildes, W. T.


    Thirty-seven very long baseline radio interferometry experiments performed between 1972 and 1978 are analyzed and estimates of baseline vectors between six sites, five in the continental United States and one in Europe are derived. No evidence of significant changes in baseline length is found. For example, with a statistical level of confidence of approximately 85 percent, upper bounds on such changes within the United States ranged from a low of 10 mm/yr for the 850 km baseline between Westford, Massachusetts, and Green Bank, West Virginia, to a high of 90 mm/yr for the nearly 4000 km baseline between Westford and Goldstone, California. Estimates for universal time and for the x component of the position of the earth's pole are obtained. For the last 15 experiments, the only ones employing wideband receivers, the root-mean-square differences between the derived values and the corresponding ones published by the Bureau International de l'Heure are 0.0012 s and 0.018 arc sec respectively. The average value obtained for the radial Love number for the solid earth is 0.62 + or - 0.02 (estimated standard error).

  4. Baseline-dependent sampling and windowing for radio interferometry: data compression, field-of-interest shaping and outer field suppression (United States)

    Atemkeng, M.; Smirnov, O.; Tasse, C.; Foster, G.; Keimpema, A.; Paragi, Z.; Jonas, J.


    Traditional radio interferometric correlators produce regular-gridded samples of the true uv-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the uv-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as "decorrelation" in the uv-space, which is equivalent in the source domain to "smearing". This work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space i.e. the time-frequency interval becomes baseline-dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping and outer field-of-interest suppression are achieved.

  5. Precision Geodesy via Radio Interferometry. (United States)

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F


    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  6. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.


    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  7. CURIE: Cubesat Radio Interferometry Experiment (United States)

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.


    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  8. MARBLE (Multiple Antenna Radio-interferometry for Baseline Length Evaluation): Development of a Compact VLBI System for Calibrating GNSS and Electronic Distance Measurement Devices (United States)

    Ichikawa, R.; Ishii, A.; Takiguchi, H.; Kimura, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hanado, Y.; Koyama, Y.; Kondo, T.; Kurihara, S.; Kokado, K.; Kawabata, R.; Nozawa, K.; Mukai, Y.; Kuroda, J.; Ishihara, M.; Matsuzaka, S.


    We are developing a compact VLBI system with a 1.6-m diameter aperture dish in order to provide reference baseline lengths for calibration. The reference baselines are used to validate surveying instruments such as GPS and EDM and is maintained by the Geospatial Information Authority of Japan (GSI). The compact VLBI system will be installed at both ends of the reference baseline. Since the system is not sensitive enough to detect fringes between the two small dishes, we have designed a new observation concept including one large dish station. We can detect two group delays between each compact VLBI system and the large dish station based on conventional VLBI measurement. A group delay between the two compact dishes can be indirectly calculated using a simple equation. We named the idea "Multiple Antenna Radio-interferometry for Baseline Length Evaluation", or MARBLE system. The compact VLBI system is easy transportable and consists of the compact dish, a new wide-band front-end system, azimuth and elevation drive units, an IF down-converter unit, an antenna control unit (ACU), a counterweight, and a monument pillar. Each drive unit is equipped with a zero-backlash harmonic drive gearing component. A monument pillar is designed to mount typical geodetic GNSS antennas easily and an offset between the GNSS antenna reference point. The location of the azimuth-elevation crossing point of the VLBI system is precisely determined with an uncertainty of less than 0.2 mm. We have carried out seven geodetic VLBI experiments on the Kashima-Tsukuba baseline (about 54 km) using the two prototypes of the compact VLBI system between December 2009 and December 2010. The average baseline length and repeatability of the experiments is 54184874.0 ± 2.4 mm. The results are well consistent with those obtained by GPS measurements. In addition, we are now planning to use the compact VLBI system for precise time and frequency comparison between separated locations.

  9. Joint Multi-baseline SAR Interferometry

    Directory of Open Access Journals (Sweden)

    S. Tebaldini


    Full Text Available We propose a technique to provide interferometry by combining multiple images of the same area. This technique differs from the multi-baseline approach in literature as (a it exploits all the images simultaneously, (b it performs a spectral shift preprocessing to remove most of the decorrelation, and (c it exploits distributed targets. The technique is mainly intended for DEM generation at centimetric accuracy, as well as for differential interferometry. The problem is framed in the contest of single-input multiple-output (SIMO channel estimation via the cross-relations (CR technique and the resulting algorithm provides significant improvements with respect to conventional approaches based either on independent analysis of single interferograms or multi-baselines phase analysis of single pixels of current literature, for those targets that are correlated in all the images, like for long-term coherent areas, or for acquisitions taken with a short revisit time (as those gathered with future satellite constellations.

  10. Very Long Baseline Interferometry: Dependencies on Frequency Stability (United States)

    Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald


    Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.

  11. Interferometry and synthesis in radio astronomy

    CERN Document Server

    Thompson, A Richard; Swenson Jr , George W


    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  12. Range Surveillance Using Radio Interferometry and TDOA Techniques Project (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize a small network of remote sensors to perform Radio Interferometry (RI) and Time Difference of Arrival (TDOA) techniques to...

  13. Radio astronomical interferometry and x-ray's computerized tomography

    International Nuclear Information System (INIS)

    Rodriguez, L.F.


    Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science. (author)

  14. Atmospheric pressure loading parameters from very long baseline interferometry observations (United States)

    Macmillan, D. S.; Gipson, John M.


    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  15. Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network (United States)

    An, T.; Sohn, B. W.; Imai, H.


    The very long baseline interferometry (VLBI) technique offers angular resolutions superior to any other instruments at other wavelengths, enabling unique science applications of high-resolution imaging of radio sources and high-precision astrometry. The East Asia VLBI Network (EAVN) is a collaborative effort in the East Asian region. The EAVN currently consists of 21 telescopes with diverse equipment configurations and frequency setups, allowing flexible subarrays for specific science projects. The EAVN provides the highest resolution of 0.5 mas at 22 GHz, allowing the fine imaging of jets in active galactic nuclei, high-accuracy astrometry of masers and pulsars, and precise spacecraft positioning. The soon-to-be-operational Five-hundred-meter Aperture Spherical radio Telescope (FAST) will open a new era for the EAVN. This state-of-the-art VLBI array also provides easy access to and crucial training for the burgeoning Asian astronomical community. This Perspective summarizes the status, capabilities and prospects of the EAVN.

  16. Detection of atmospheric pressure loading using very long baseline interferometry measurements (United States)

    Vandam, T. M.; Herring, T. A.


    Loading of the Earth by the temporal redistribution of global atmospheric mass is likely to displace the positions of geodetic monuments by tens of millimeters both vertically and horizontally. Estimates of these displacements are determined by convolving National Meteorological Center (NMC) global values of atmospheric surface pressure with Farrell's elastic Green's functions. An analysis of the distances between radio telescopes determined by very long baseline interferometry (VLBI) between 1984 and 1992 reveals that in many of the cases studied there is a significant contribution to baseline length change due to atmospheric pressure loading. Our analysis covers intersite distances of between 1000 and 10,000 km and is restricted to those baselines measured more than 100 times. Accounting for the load effects (after first removing a best fit slope) reduces the weighted root-mean-square (WRMS) scatter of the baseline length residuals on 11 of the 22 baselines investigated. The slight degradation observed in the WRMS scatter on the remaining baselines is largely consistent with the expected statistical fluctuations when a small correction is applied to a data set having a much larger random noise. The results from all baselines are consistent with approximately 60% of the computed pressure contribution being present in the VLBI length determinations. Site dependent coefficients determined by fitting local pressure to the theoretical radial displacement are found to reproduce the deformation caused by the regional pressure to within 25% for most inland sites. The coefficients are less reliable at near coastal and island stations.

  17. Gravity sensing using Very Long Baseline Atom Interferometry (United States)

    Schlippert, D.; Wodey, E.; Meiners, C.; Tell, D.; Schubert, C.; Ertmer, W.; Rasel, E. M.


    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13g and beyond in reach.We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1x10-8 m/s-2Hz-1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <10-13, potentially surpassing the best experiments to date.

  18. An analysis and demonstration of clock synchronization by VLBI. [Very Long Baseline Interferometry for Deep Space Net (United States)

    Hurd, W. J.


    A prototype of a semi-real time system for synchronizing the Deep Space Net station clocks by radio interferometry was successfully demonstrated on August 30, 1972. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time sync estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 ns rms were achieved between Deep Space Stations 11 and 12, both at Goldstone, Calif. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to baseline and source position uncertainties and atmospheric effects are reached. These limitations are under 10 ns for transcontinental baselines.

  19. Ionospheric Power-spectrum Tomography in Radio Interferometry

    NARCIS (Netherlands)

    Koopmans, L V E


    A tomographic method is described to quantify the three-dimensional power spectrum of the ionospheric electrondensity fluctuations based on radio-interferometric observations by a two-dimensional planar array. The method is valid for the first-order Born approximation and might be applicable in

  20. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi


    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  1. Mapping Forest Height in Gabon Using UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Lidar Fusion (United States)

    Simard, M.; Denbina, M. W.


    Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems

  2. Optimal arrays for compressed sensing in snapshot-mode radio interferometry (United States)

    Fannjiang, Clara


    Context. Radio interferometry has always faced the problem of incomplete sampling of the Fourier plane. A possible remedy can be found in the promising new theory of compressed sensing (CS), which allows for the accurate recovery of sparse signals from sub-Nyquist sampling given certain measurement conditions. Aims: We provide an introductory assessment of optimal arrays for CS in snapshot-mode radio interferometry, using orthogonal matching pursuit (OMP), a widely used CS recovery algorithm similar in some respects to CLEAN. We focus on comparing centrally condensed (specifically, Gaussian) arrays to uniform arrays, and randomized arrays to deterministic arrays such as the VLA. Methods: The theory of CS is grounded in a) sparse representation of signals and b) measurement matrices of low coherence. We calculate the mutual coherence of measurement matrices as a theoretical indicator of arrays' suitability for OMP, based on the recovery error bounds in Donoho et al. (2006, IEEE Trans. Inform. Theory, 52, 1289). OMP reconstructions of both point and extended objects are also run from simulated incomplete data. Optimal arrays are considered for objects represented in 1) the natural pixel basis and 2) the block discrete cosine transform (BDCT). Results: We find that reconstructions of the pixel representation perform best with the uniform random array, while reconstructions of the BDCT representation perform best with normal random arrays. Slight randomization to the VLA also improves it dramatically for CS recovery with the pixel basis. Conclusions: In the pixel basis, array design for CS reflects known principles of array design for small numbers of antennas, namely of randomness and uniform distribution. Differing results with the BDCT, however, emphasize the need to study how sparsifying bases affect array design before CS can be optimized for radio interferometry.

  3. Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.


    Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs

  4. The long-period eccentric orbit of the particle accelerator HD 167971 revealed by long baseline interferometry

    NARCIS (Netherlands)

    De Becker, M.; Sana, H.; Absil, O.; Le Bouquin, J.-B.; Blomme, R.


    Using optical long baseline interferometry, we resolved for the first time the two wide components of HD 167971, a candidate hierarchical triple system known to efficiently accelerate particles. Our multi-epoch Very Large Telescope Interferometer observations provide direct evidence for a

  5. The Cubesat Radio Experiment (CURE) and Beyond: Cubesat-based Low Frequency Radio Interferometry (United States)

    Saint-Hilaire, P.; Sundkvist, D. J.; Martinez Oliveros, J. C.; Sample, J. G.; Pulupa, M.; Maruca, B.; Bale, S. D.; Bonnell, J. W.; Mozer, F.; Hurford, G. J.


    We have proposed a 3U cubesat, to carry a low-frequency radio receiver into low-Earth orbit to study solar radio bursts induced by solar flares and Coronal Mass Ejections. Because of the reflective properties of the Earth's ionosphere, observations of radio waves around and below 10 MHz must be made from space. The measurements will allow continuous tracking of radio bursts and associated CMEs through the inner heliosphere. These observations are important since such events are the main cause for space weather disturbances. Data products from the mission will primarily be spectra and waveforms of solar radio type II and III bursts, and the direction to the radio source as it propagates through the inner heliosphere. These data products will be available to the community through an automated pipeline nominally within a few hours of downlink. Additional science data products will be sizes of radio sources obtained via lunar occultations, and local ionospheric plasma density and electron temperature. As a first cubesat with a scientific radio instrument at these frequencies, this project is also intended as a path-finder: the instrument and sub-systems can immediately be duplicated in other cubesats, with the goal of providing the first radio interferometric measurements below the ionospheric cutoff.

  6. Fast imaging by photon counting application to long-baseline optical stellar interferometry

    International Nuclear Information System (INIS)

    Morel, Sebastien


    Image acquisition by photon counting in the visible spectrum with a high precision on photo-events dating is especially useful for ground-based observations. In the first part of this thesis, and after a review of several techniques for photon acquisition and processing, I introduce a new type of photon counting camera, noticeable for its high temporal resolution and its high maximum counting rate: the DELTA (Detector Enhancement by Linear-projections on Three Axes) camera. I describe the concept of this camera, and the engineering solutions (optics, electronics, computing) that could be used for its construction. The second part of my work regards fringe detection and tracking in ground-based and long- baseline optical stellar interferometry. After a statistical approach of the issue, I describe methods introducing a priori information in the data, in order to have a better detection efficiency. One of the proposed methods, using a priori information on the atmospheric piston, requires a precise photo-event dating, and therefore uses methods described in the first part. (author) [fr

  7. Antenna Technology for QUASAT application. [radio antenna for very long base interferometry missions (United States)

    Archer, J. S.; Palmer, W. B.


    A hybrid growth version of the advanced Sunflower, or precision deployable, antenna was adopted as the configuration proposed for the QUASAT very long baseline interferometry mission. The antenna consists of rigid panels of graphite-epoxy facesheets covering aluminum honeycomb sandwich. The six main folding panels are hinged to a cantilevered support ring attached to the periphery of the center section. Six pairs of intermediate panels are located between these panels and are hinged to each other and to the main panels. The flight configuration, antenna weight, a mass properties, frequency, and contour tolerance are discussed. The advantages of the solid antenna surface cover an all-mesh contour are examined.

  8. Meter-wavelength observations of pulsars using very long baseline interferometry. Ph.D. Thesis - Maryland Univ., College Park; [with particular attention to the Crab nebula (United States)

    Vandenberg, N. R.


    The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to aproximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured.


    Directory of Open Access Journals (Sweden)

    A. Tavakkoli


    Full Text Available The area of Kahrood is a small village located in the north-east of Damavand in the center of the Alborz range, north of Iran. Kahrood is located in Haraz valley exactly below the land slide area. To monitor the temporal evolution of the landslide, the conventional small baseline subset (SBAS, a radar differential Synthetic Aperture Radar interferometry (DInSAR algorithm is used for time-series analysis. 19 Interferograms characterized by small spatial and temporal baselines are generated using 14 images. In order to remove the topographic effects, a digital elevation model from the Shuttle Radar Topography Mission (SRTM, with a spatial resolution of 90 m, is used. In the time-series analysis the first image was selected as the temporal reference. In the least squares solution, in order to increase the number of observational equation as well as decrease the temporal fluctuations due to atmospheric and unwrapping errors, a smoothing constraint is incorporated into the inversion problem. We divide the deformation time-series into two main parts. The maximum deformation rate estimated from the first part of the time-series is estimated as 3.3 cm within the landslide area. According to the time series results the land surface is moving away from the satellite. The second part of the deformation time-series showed a small landslide rate up to 0.7 cm. According to the time series results the land surface is moving toward the satellite. The deformation is estimated along the Mean line of sight (LOS. Considering the whole time series, the maximum LOS deformation rate is estimated as 14 cm.

  10. The Combined Radio Interferometry and COSMIC Experiment in Tomography (CRICKET) Campaign (United States)

    Dymond, Kenneth; Coker, Clayton; Bernhardt, Paul; Cohen, Aaron; Crane, Patrick; Kassim, Namir; Lazio, Joseph; Weiler, Kurt; Watts, Christopher; Rickard, Lee J.; Taylor, Greg; Schinzel, Frank; Philstrom, Ylva; Close, Sigrid; Colestock, Patrick; Myers, Steve; Datta, Abirhup

    We report on the Combined Radio Interferometry and COSMIC Experiment in Tomography Campaign (CRICKET) held on September 15 and 17, 2007. The experiment used the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC also known as FORMOSAT-3) in conjunction with the Very Large Array radio telescope, located near Socorro, NM, to study the ionosphere from the global scale down to the regional scale. Each COSMIC satellite includes three instruments capable of measuring the ionosphere: the Tiny Ionospheric Photometer (TIP), a UV radiometer; the GPS Occultation experiment (GOX), a dual-frequency GPS occultation receiver; and the Tri-band Beacon (TBB), a three frequency coherently radiating radio beacon. These three instruments have been demonstrated to be a powerful means for characterizing the global-scale ionosphere. The VLA when deployed at its largest extent and while operating at 73.8 MHz is incredibly sensitive to relative total electron content variations of the regional ionosphere over about a 30-100 km diameter area. In this work, we concentrate on the first set of observations on September 15, 2007 at approximately 0830 UT. We have successfully married these heterogeneous data sets, using a tomographic data fusion approach, to produce a consistent ionospheric specification from the global scale down to the regional scale.

  11. Parasitic Interference in Long Baseline Optical Interferometry: Requirements for Hot Jupiter-like Planet Detection (United States)

    Matter, A.; Lopez, B.; Lagarde, S.; Danchi, W. C.; Robbe-Dubois, S.; Petrov, R. G.; Navarro, R.


    The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appears to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from λ/500 to λ/5 in the L band (λ = 3.5 μm), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively λ/500 ≈ 2 nm and λ/30 ≈ 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to λ/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a


    International Nuclear Information System (INIS)

    Matter, A.; Lopez, B.; Lagarde, S.; Danchi, W. C.; Robbe-Dubois, S.; Petrov, R. G.; Navarro, R.


    The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appears to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from λ/500 to λ/5 in the L band (λ = 3.5 μm), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively λ/500 ∼ 2 nm and λ/30 ∼ 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to λ/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a

  13. The non-thermal radio emitter HD 93250 resolved by long baseline interferometry

    NARCIS (Netherlands)

    Sana, H.; Le Bouquin, J.-B.; Berger, J.-P.; de Koter, A.; Mérand, A.


    As the brightest O-type X-ray source in the Carina nebula, HD 93250 (O4 III(fc)) is X-ray overluminous for its spectral type and has an unusually hard X-ray spectrum. Two different scenarios have been invoked to explain its X-ray properties: wind-wind interaction and magnetic wind confinement. Yet,


    Energy Technology Data Exchange (ETDEWEB)

    Dodson, Richard; Rioja, María J. [International Centre for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009 (Australia); Molina, Sol N.; Gómez, José L., E-mail: [Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain)


    In this paper we describe a new approach for millimeter Very Long Baseline Interferometry (mm-VLBI) calibration that provides bona-fide astrometric alignment of the millimeter-wavelength images from a single source, for the measurement of frequency-dependent effects, such as “core-shifts” near the black hole of active galactic nucleus jets. We achieve our astrometric alignment by solving first for the ionospheric (dispersive) contributions using wide-band centimeter-wavelength observations. Second, we solve for the tropospheric (non-dispersive) contributions by using fast frequency-switching at the target millimeter-wavelengths. These solutions can be scaled and transferred from low frequency to the high frequency. To complete the calibration chain an additional step is required to remove a residual constant phase offset on each antenna. The result is an astrometric calibration and the measurement of the core-shift between 22 and 43 GHz for the jet in BL Lacertae to be −8 ± 5, 20 ± 6 μ as, in R.A. and decl., respectively. By comparison to conventional phase referencing at centimeter-wavelengths we are able to show that this core shift at millimeter-wavelengths is significantly less than what would be predicted by extrapolating the low-frequency result, which closely followed the predictions of the Blandford and Königl conical jet model. As such it would be the first demonstration for the association of the VLBI core with a recollimation shock, normally hidden at low frequencies due to the optical depth, which could be responsible for the γ -ray production in blazar jets.


    International Nuclear Information System (INIS)

    Dodson, Richard; Rioja, María J.; Molina, Sol N.; Gómez, José L.


    In this paper we describe a new approach for millimeter Very Long Baseline Interferometry (mm-VLBI) calibration that provides bona-fide astrometric alignment of the millimeter-wavelength images from a single source, for the measurement of frequency-dependent effects, such as “core-shifts” near the black hole of active galactic nucleus jets. We achieve our astrometric alignment by solving first for the ionospheric (dispersive) contributions using wide-band centimeter-wavelength observations. Second, we solve for the tropospheric (non-dispersive) contributions by using fast frequency-switching at the target millimeter-wavelengths. These solutions can be scaled and transferred from low frequency to the high frequency. To complete the calibration chain an additional step is required to remove a residual constant phase offset on each antenna. The result is an astrometric calibration and the measurement of the core-shift between 22 and 43 GHz for the jet in BL Lacertae to be −8 ± 5, 20 ± 6 μ as, in R.A. and decl., respectively. By comparison to conventional phase referencing at centimeter-wavelengths we are able to show that this core shift at millimeter-wavelengths is significantly less than what would be predicted by extrapolating the low-frequency result, which closely followed the predictions of the Blandford and Königl conical jet model. As such it would be the first demonstration for the association of the VLBI core with a recollimation shock, normally hidden at low frequencies due to the optical depth, which could be responsible for the γ -ray production in blazar jets.

  16. The First Low-frequency Radio Observations of the Solar Corona on ≈200 km Long Interferometer Baseline (United States)

    Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Kumari, Anshu; Hariharan, K.; Barve, Indrajit V.


    The angular size of the smallest, compact radio source that can be observed in the solar atmosphere is one of the intriguing questions in low-frequency radio astronomy. This is important to understand density turbulence in the solar corona and the related angular broadening of the radio source sizes. We used a two-element interferometer with a baseline length of ≈200 km, operating at ≈53 MHz to infer the above limit. Our results indicate that radio sources of angular size ≤15″ exist in the solar corona, where radio emission at the above frequency also originates.

  17. Some characteristics of atmospheric gravity waves observed by radio-interferometry

    Directory of Open Access Journals (Sweden)

    Claude Mercier

    Full Text Available Observations of atmospheric acoustic-gravity waves (AGWs are considered through their effect on the horizontal gradient G of the slant total electron content (slant TEC, which can be directly obtained from two-dimensional radio-interferometric observations of cosmic radio-sources with the Nançay radioheligraph (2.2°E, 47.3°N. Azimuths of propagation can be deduced (modulo 180°. The total database amounts to about 800 h of observations at various elevations, local time and seasons. The main results are:

    a AGWs are partially directive, confirming our previous results.

    b The propagation azimuths considered globally are widely scattered with a preference towards the south.

    c They show a bimodal time distribution with preferential directions towards the SE during daytime and towards the SW during night-time (rather than a clockwise rotation as reported by previous authors.

    d The periods are scattered but are larger during night-time than during daytime by about 60%.

    e The effects observed with the solar radio-sources are significantly stronger than with other radio-sources (particularly at higher elevations, showing the role of the geometry in line of sight-integrated observations.

  18. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.


    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  19. Mars' rotational state and tidal deformations from radio interferometry of a network of landers. (United States)

    Iess, L.; Giuliani, S.; Dehant, V.


    The precise determination of the rotational state of solar system bodies is one of the main tools to investigate their interior structure. Unfortunately the accuracies required for geophysical interpretations are very stringent, and generally unattainable from orbit using optical or radar tracking of surface landmarks. Radio tracking of a lander from ground or from a spacecraft orbiting the planet offers substantial improvements, especially if the lander lifetime is adequately long. The optimal configuration is however attained when two or more landers can be simultaneously tracked from a ground antenna in an interferometric mode. ESA has been considering a network of landers on Mars since many years, and recently this concept has been revived by the study of the Mars Network Science Mission (MNSM). The scientific rationale of MNSM is the investigation of the Mars' interior and atmosphere by means of a network of two or three landers, making it especially suitable for interferometric observations. In order to synthesize an interferometer, the MNSN landers must be tracked simultaneously from a single ground antenna in a coherent two-way mode. The uplink radio signal (at X- or Ka-band) is received by the landers' transponders and retransmitted to ground in the same frequency band. The signals received at ground station are then recorded (typically at few tens of kHz) and beaten against each other to form the output of the interferometer, a complex phasor. The differential phase retain information on Mars' rotational parameters and tidal deformations. A crucial aspect of the interferometric configuration is the rejection of common noise and error sources. Errors in the station location, Earth orientation parameters and ephemerides, path delays due to the Earth troposphere and ionosphere, and, to a good extent, interplanetary plasma are cancelled out. The main residual errors are due to differential path delays from Mars' atmosphere and differential drifts of the

  20. Phase referencing in optical interferometry


    Filho, Mercedes E; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie


    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...

  1. Horizontal and vertical crustal movements from three-dimensional very long baseline interferometry kinematic reference frame: Implication for the reversal timescale revision (United States)

    Heki, Kosuke

    Three-dimensional kinematic reference frame of geodetic very long baseline interferometry (VLBI) stations, tied to a geologic plate motion model, was established using the GLB907 solution by first selecting globally distributed stable plate interior stations and then applying a small translation and a rotation for the entire network in a three-dimensional space so that the differences in the ``horizontal'' velocities between the VLBI observations and the model predictions are minimized. Since the VLBI network is global, we only assume that the horizontal movements of tectonically stable stations obey a plate motion model; we need not introduce any unwarranted constraints to the vertical velocities of specific stations to realize the frame. A suggestive correlation was found between the estimated vertical velocities of North American stations and those predicted by a postglacial rebound model. The revision of the magnetic polarity timescale (MPTS) causes a uniform increase or decrease of the predicted velocities, which could be detected as the small difference between the measured and the predicted relative plate velocities. Direct estimation of the correction suggests that the VLBI data fit best to the model when the NUVEL1 model is corrected by +3.4% (+/-1.2%), which differs significantly from the -4.5% deduced from the astronomical MPTS calibration. This was further confirmed by estimating the rotation rates for individual plate pairs.

  2. Interferometry imaging technique for accurate deep-space probe positioning (United States)

    Zheng, Weimin; Tong, Fengxian; Zhang, Juan; Liu, Lei; Shu, Fengchun


    Very long baseline interferometry (VLBI) is a radio astronomy tool with very high spatial resolution. It uses two or more radio telescopes to track the faraway object and gets its visibility. The intensity distribution image of radio source can be obtained by the inverse Fourier transformation of the visibilities sampled on UV plane perpendicular to the line of sight. Chinese VLBI Network (CVN) consists of 5 radio telescopes, and its highest spatial resolution is equivalent to that of a ∼3000 km diameters single dish antenna. This paper introduces the interferometry imaging principle, the imaging results of ChangE lunar and Mars Express probes. The measured ChangE-3 (CE-3) Rover relative position accuracy is about 1 m by this method. The 1 m accuracy is verified by comparisons with Rover null position and the onboard stereo vision measurement results. The successful imaging of spacecraft indicates that the interferometry imaging technology can be used for accurate spacecraft positioning in the future.

  3. Parsec-scale radio structures in Quasars (United States)

    Coldwell, G.; Paragi, Z.; Gurvits, L.

    Very Long Baseline Interferometry (VLBI) con su nueva extensión para el radio telescopio orbital, VSOP/HALCA, ofrece una incomparable resolución angular alcanzando escalas de milisegundos y submilisegundos de arco a longitudes de onda de centímetros. En este trabajo presentamos observaciones y análisis de estructuras en radio, en escalas de parsec, para 3 radio fuentes extragalácticas de la muestra de VSOP Survey y 1 quasar, 1442+101, del proyecto `VSOP High Redshift'.


    International Nuclear Information System (INIS)

    Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.; Brisken, Walter F.; Deller, Adam T.; Tingay, Steven J.; Wayth, Randall B.


    Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54. The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.

  5. Star Scheduling Mode—A New Observing Strategy for Monitoring Weak Southern Radio Sources with the AuScope VLBI Array (United States)

    McCallum, Lucia; Mayer, David; Le Bail, Karine; Schartner, Matthias; McCallum, Jamie; Lovell, Jim; Titov, Oleg; Shu, Fengchun; Gulyaev, Sergei


    The International Celestial Reference Frame suffers from significantly less observations in the southern hemisphere compared to the northern one. One reason for this is the historically low number of very long baseline interferometry radio telescopes in the south. The AuScope very long baseline interferometry array with three new telescopes on the Australian continent and an identical antenna in New Zealand were built to address this issue. While the overall number of observations in the south has greatly improved since then, a closer look reveals that this improvement is only true for strong radio sources (source flux densities >0.6 Jy). The new array of small very long baseline interferometry antennas has a relatively low baseline sensitivity so that only strong sources can be observed within a short integration time. A new observing strategy, the star scheduling mode, was developed to enable efficient observations of weak sources during geodetic sessions, through the addition of a single more sensitive antenna to the network. This scheduling mode was implemented in the Vienna very long baseline interferometry Software and applied in four 24-h sessions in 2016. These observations provide updated positions and source flux densities for 42 weak southern radio sources and significantly reduce the formal uncertainties for these sources. The star scheduling mode now allows the AuScope very long baseline interferometry array to undertake greater responsibility in monitoring sources in the southern sky, without significantly weakening the session for geodetic purposes.

  6. High-contrast Nulling Interferometry Techniques Project (United States)

    National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...

  7. Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR: A Case Study of Hong Kong, China

    Directory of Open Access Journals (Sweden)

    Fulong Chen


    Full Text Available Owing to the development of spaceborne synthetic aperture radar (SAR platforms, and in particular the increase in the availability of multi-source (multi-band and multi-resolution data, it is now feasible to design a surface displacement monitoring application using multi-temporal SAR interferometry (MT-InSAR. Landslides have high socio-economic impacts in many countries because of potential geo-hazards and heavy casualties. In this study, taking into account the merits of ALOS PALSAR (L-band, good coherence preservation and TerraSAR (X-band, high resolution and short revisit times data, we applied an improved small baseline InSAR (SB-InSAR with 3-D phase unwrapping approach, to monitor slope superficial displacement in Hong Kong, China, a mountainous subtropical zone city influenced by over-urbanization and heavy monsoonal rains. Results revealed that the synergistic use of PALSAR and TerraSAR data produces different outcomes in relation to data reliability and spatial-temporal resolution, and hence could be of significant value for a comprehensive understanding and monitoring of unstable slopes.

  8. VLBI observations of the radio quasar J2228+0110 at z=5.95 and other field sources in multiple-phase-centre mode

    NARCIS (Netherlands)

    Cao, H.M.; Frey, S.; Gurvits, L.; Yang, J.; Hong, X.Y.; Paragi, Z.; Deller, A.T.; Ivezic, Z.


    A patch of sky in the SDSS Stripe 82 was observed at 1.6 GHz with Very Long Baseline Interferometry (VLBI) using the European VLBI Network (EVN). The data were correlated at the EVN software correlator at JIVE (SFXC). There are fifteen known mJy/sub-mJy radio sources in the target field defined by

  9. Speckle interferometry (United States)

    Sirohi, Rajpal S.


    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  10. Speckle Interferometry (United States)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  11. Quantum Interferometry (United States)

    Dowling, Jonathan P.


    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  12. Expanding radio astronomy in Africa

    International Nuclear Information System (INIS)

    Gaylard, M J


    The Square Kilometre Array (SKA) Organisation announced in May 2012 that its members had agreed on a dual site solution for the SKA [1]. South Africa's bid for hosting the SKA has caused a ramp up of radio astronomy in Africa. To develop technology towards the SKA, the South African SKA Project (SKA SA) built a protoype radio telescope in 2007, followed in 2010 the seven antenna Karoo Array Telescope (KAT-7). Next is the 64 antenna MeerKAT, which will merge into SKA Phase 1 in Africa. As SKA Phase 2 is intended to add a high resolution capability with baselines out to 3000 km, the SKA SA brought in partner countries in Africa to host outstations. South Africa has been working with the partners to build capacity to operate the SKA and to benefit from it. The SA Department of Science and Technology (DST) developed a proposal to establish radio telescopes in the partner countries to provide hands-on learning and a capability for Very Long Baseline Interferometry (VLBI) research. Redundant 30 m class satellite antennas are being incorporated in this project.

  13. Observational Model for Precision Astrometry with the Space Interferometry Mission

    National Research Council Canada - National Science Library

    Turyshev, Slava G; Milman, Mark H


    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...

  14. A radio counterpart to a neutron star merger. (United States)

    Hallinan, G; Corsi, A; Mooley, K P; Hotokezaka, K; Nakar, E; Kasliwal, M M; Kaplan, D L; Frail, D A; Myers, S T; Murphy, T; De, K; Dobie, D; Allison, J R; Bannister, K W; Bhalerao, V; Chandra, P; Clarke, T E; Giacintucci, S; Ho, A Y Q; Horesh, A; Kassim, N E; Kulkarni, S R; Lenc, E; Lockman, F J; Lynch, C; Nichols, D; Nissanke, S; Palliyaguru, N; Peters, W M; Piran, T; Rana, J; Sadler, E M; Singer, L P


    Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultrarelativistic jet, viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will enable observers to distinguish between these models, and the angular velocity and geometry of the debris will be directly measurable by very long baseline interferometry. Copyright © 2017, American Association for the Advancement of Science.

  15. Long Baseline Observatory (LBO) (United States)

    Federal Laboratory Consortium — The Long Baseline Observatory (LBO) comprises ten radio telescopes spanning 5,351 miles. It's the world's largest, sharpest, dedicated telescope array. With an eye...

  16. Self-calibration: an efficient method to control systematic effects in bolometric interferometry (United States)

    Bigot-Sazy, M.-A.; Charlassier, R.; Hamilton, J.-Ch.; Kaplan, J.; Zahariade, G.


    Context. The QUBIC collaboration is building a bolometric interferometer dedicated to the detection of B-mode polarization fluctuations in the cosmic microwave background. Aims: We introduce a self-calibration procedure related to those used in radio-interferometry to control a wide range of instrumental systematic errors in polarization-sensitive instruments. Methods: This procedure takes advantage of the need for measurements on redundant baselines to match each other exactly in the absence of systematic effects. For a given systematic error model, measuring each baseline independently therefore allows writing a system of nonlinear equations whose unknowns are the systematic error model parameters (gains and couplings of Jones matrices, for instance). Results: We give the mathematical basis of the self-calibration. We implement this method numerically in the context of bolometric interferometry. We show that, for large enough arrays of horns, the nonlinear system can be solved numerically using a standard nonlinear least-squares fitting and that the accuracy achievable on systematic effects is only limited by the time spent on the calibration mode for each baseline apart from the validity of the systematic error model.

  17. An imaging interferometry capability for the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    T. Grydeland


    Full Text Available Interferometric imaging (aperture synthesis imaging is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR, a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE, and meteor studies. Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, field-aligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes. In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies.

  18. An imaging interferometry capability for the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    T. Grydeland


    Full Text Available Interferometric imaging (aperture synthesis imaging is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR, a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE, and meteor studies.

    Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, field-aligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes.

    In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies.

  19. Astronomical optical interferometry, I: Methods and instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov S.


    Full Text Available Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas resolution and astrometry with micro-arcsecond (µas precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are discussed as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers. Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  20. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas


    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  1. Astronomical Optical Interferometry. I. Methods and Instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov, S.


    Full Text Available Previous decade has seen an achievement of large interferometricprojects including 8-10m telescopes and 100m class baselines. Modern computerand control technology has enabled the interferometric combination of lightfrom separate telescopes also in the visible and infrared regimes. Imagingwith milli-arcsecond (mas resolution and astrometry with micro-arcsecond($mu$as precision have thus become reality. Here, I review the methods andinstrumentation corresponding to the current state in the field ofastronomical optical interferometry. First, this review summarizes thedevelopment from the pioneering works of Fizeau and Michelson. Next, thefundamental observables are described, followed by the discussion of the basicdesign principles of modern interferometers. The basic interferometrictechniques such as speckle and aperture masking interferometry, aperture synthesisand nulling interferometry are disscused as well. Using the experience ofpast and existing facilities to illustrate important points, I considerparticularly the new generation of large interferometers that has beenrecently commissioned (most notably, the CHARA, Keck, VLT and LBTInterferometers. Finally, I discuss the longer-term future of opticalinterferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  2. LISA Long-Arm Interferometry (United States)

    Thorpe, James I.


    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  3. Effective correlator for RadioAstron project (United States)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  4. Michelson-type Radio Interferometer for University Education (United States)

    Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.


    Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.

  5. Simultaneous Immersion Mirau Interferometry (United States)

    Lyulko, Oleksandra

    The present work describes a novel imaging technique for label-free no-UV vibration-insensitive imaging of live cells in an epi-illumination geometry. This technique can be implemented in a variety of imaging applications. For example, it can be used for cell targeting as a part of a platform for targeted cell irradiations - single-cell microbeam. The goal of microbeam facilities is to provide biological researchers with tools to study the effects of ionizing radiation on live cells. A common way of cell labeling - fluorescent staining - may alter cellular metabolism and UV illumination presents potential damage for the genetic material. The new imaging technique will allow the researchers to separate radiation-induced effects from the effects caused by confounding factors like fluorescent staining or UV light. Geometry of irradiation endstations at some microbeam facilities precludes the use of transmitted light, e.g. in the Columbia University's Radiological Research Accelerator Facility microbeam endstation, where the ion beam exit window is located just below the sample. Imaging techniques used at such endstations must use epi-illumination. Mirau Interferometry is an epi-illumination, non-stain imaging modality suitable for implementation at a microbeam endstation. To facilitate interferometry and to maintain cell viability, it is desirable that cells stay in cell growth medium during the course of an experiment. To accommodate the use of medium, Immersion Mirau Interferometry has been developed. A custom attachment for a microscope objective has been designed and built for interferometric imaging with the possibility of immersion of the apparatus into cell medium. The implemented data collection algorithm is based on the principles of Phase-Shifting Interferometry. The largest limitation of Phase-Shifting Interferometry is its sensitivity to the vertical position of the sample. In environments where vibration isolation is difficult, this makes image

  6. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola


    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  7. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing


    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  8. The Catalog of Positions of Optically Bright Extragalactic Radio Sources OBRS-1 (United States)

    Petrov, L.


    It is expected that the European Space Agency mission Gaia will make it possible to determine coordinates in the optical domain of more than 500,000 quasars. In 2006, a radio astrometry project was launched with the overall goal of making comparisons between coordinate systems derived from future space-born astrometry instruments and the coordinate system constructed from analysis of global very long baseline interferometry (VLBI) more robust. Investigation of the rotation, zonal errors, and non-alignment of the radio and optical positions caused by both radio and optical structures is needed to validate both techniques. In order to support these studies, the densification of the list of compact extragalactic objects that are bright in both radio and optical ranges is desirable. A set of 105 objects from the list of 398 compact extragalactic radio sources with decl. > -10deg was observed with the Very Long Baseline Array and European VLBI Network (EVN) with the primary goal of producing images with milliarcsecond resolution. These sources are brighter than 18 mag in the V band, and they were previously detected by the EVN. In this paper, coordinates of observed sources have been derived with milliarcsecond accuracies from analysis of these VLBI observations using an absolute astrometry method. The catalog of positions for 105 target sources is presented. The accuracies of source coordinates are in the range of 0.3.7 mas, with a median of 1.1 mas.

  9. Scope of neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.


    This paper deals with the interferometry of well separated coherent beams, where the phase of the beams can be manipulated individually. The basic equation of the dynamical neutron diffraction theory are recalled. The various contributions to the interaction of as low neutron with its surroundings are discussed: the various terms denote the nuclear, magnetic, electromagnetic, intrinsic, gravitational, and weak interaction respectively. Applications to nuclear physics, fundamental physics and solid state physics are successively envisaged

  10. Coal fire interferometry

    International Nuclear Information System (INIS)

    Van Genderen, J.L.; Prakash, A.; Gens, R.; Van Veen, B.; Liding, Chen; Tao, Tang Xiao; Feng, Guan


    This BCRS project demonstrates the use of SAR interferometry for measuring and monitoring land subsidence caused by underground coal fires and underground mining in a remote area of north west China. China is the largest producer and consumer of coal in the world. Throughout the N.W., N. and N.E. of China, the coal-seams are very susceptible to spontaneous combustion, causing underground coal fires. As the thick coal seams are burned out, the overburden collapses, causing land subsidence, and producing new cracks and fissures, which allow more air to penetrate and continue the fire to spread. SAR interferometry, especially differential interferometry has been shown to be able to measure small differences in surface height caused by such land subsidence. This report describes the problems, the test area, the procedures and techniques used and the results obtained. It concludes with a description of some of the problems encountered during the project plus provides some general conclusions and recommendations. 127 refs

  11. Application of interferometry to studies of glacier dynamics

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob


    Multi baseline repeat track interferometry (RTI) can potentially be used to measure both velocities and the micro topography of glaciers. The Danish Center for Remote Sensing (DCRS) in corporation with the Danish Polar Center (DPC) has established a test cite for studies of glacier dynamics on th...

  12. Launch Will Create a Radio Telescope Larger than Earth (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  13. The RadioAstron Dedicated DiFX Distribution

    Directory of Open Access Journals (Sweden)

    Gabriele Bruni


    Full Text Available Distributed FX-architecture (DiFX is a software Very Long Baseline Interferometry (VLBI correlator currently adopted by several main correlation sites around the globe. After the launch of the RadioAstron Space-VLBI mission in 2011, an extension was necessary to handle processing of an orbiting antenna, to be correlated with supporting ground arrays. Here, we present a branch of the main DiFX distribution (2.4, uploaded on the publicly available repository during July 2016, that the Max Planck Institute for Radio Astronomy (MPIfR developed to process data of the three key active galactic nuclei (AGN-imaging RadioAstron science projects, as well as part of the AGN survey project, and General Observing Time (GOT projects proposed since Announcement of Opportunity 2 (AO-2, July 2014–July 2015. It can account for general relativistic correction of an orbiting antenna with variable position/velocity, providing a routine to convert the native RadioAstron Data Format (RDF format to the more common Mark5 B (M5B. The possibility of introducing a polynomial clock allows one to mitigate the effects of spacecraft acceleration terms in near-perigee observations. Additionally, since for the first time polarimetry on space-baselines is available thanks to RadioAstron, this DiFX branch allows one to include the spacecraft orientation information at the correlation stage, in order to perform proper polarization calibration during data reduction. Finally, a fringe-finding algorithm able to manage an arbitrarily large fringe-search window is included, allowing one to increase the search space normally adopted by common software packages like HOPS.

  14. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  15. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A


    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  16. Basics of interferometry

    CERN Document Server

    Hariharan, P


    This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discus

  17. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto


    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  18. Complex master slave interferometry. (United States)

    Rivet, Sylvain; Maria, Michael; Bradu, Adrian; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian


    A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.

  19. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.


    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  20. Parsimonious refraction interferometry

    KAUST Repository

    Hanafy, Sherif


    We present parsimonious refraction interferometry where a densely populated refraction data set can be obtained from just two shot gathers. The assumptions are that the first arrivals are comprised of head waves and direct waves, and a pair of reciprocal shot gathers is recorded over the line of interest. The refraction traveltimes from these reciprocal shot gathers can be picked and decomposed into O(N2) refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. This enormous increase in the number of virtual traveltime picks and associated rays, compared to the 2N traveltimes from the two reciprocal shot gathers, allows for increased model resolution and better condition numbers in the normal equations. Also, a reciprocal survey is far less time consuming than a standard refraction survey with a dense distribution of sources.

  1. A radio/optical reference frame. 5: Additional source positions in the mid-latitude southern hemisphere (United States)

    Russell, J. L.; Reynolds, J. E.; Jauncey, D. L.; de Vegt, C.; Zacharias, N.; Ma, C.; Fey, A. L.; Johnston, K. J.; Hindsley, R.; Hughes, J. A.; Malin, D. F.; White, G. L.; Kawaguchi, N.; Takahashi, Y.


    We report new accurate radio position measurements for 30 sources, preliminary positions for two sources, improved radio postions for nine additional sources which had limited previous observations, and optical positions and optical-radio differences for six of the radio sources. The Very Long Baseline Interferometry (VLBI) observations are part of the continuing effort to establish a global radio reference frame of about 400 compact, flat spectrum sources, which are evenly distributed across the sky. The observations were made using Mark III data format in four separate sessions in 1988-89 with radio telescopes at Tidbinbilla, Australia, Kauai, USA, and Kashima, Japan. We observed a total of 54 sources, including ten calibrators and three which were undetected. The 32 new source positions bring the total number in the radio reference frame catalog to 319 (172 northern and 147 southern) and fill in the zone -25 deg greater than delta greater than -45 deg which, prior to this list, had the lowest source density. The VLBI positions have an average formal precision of less than 1 mas, although unknown radio structure effects of about 1-2 mas may be present. The six new optical postion measurements are part of the program to obtain positions of the optical counterparts of the radio reference frame source and to map accurately the optical on to the radio reference frames. The optical measurements were obtained from United States Naval Observatory (USNO) Black Birch astrograph plates and source plates from the AAT, and Kitt Peak National Observatory (KPNO) 4 m, and the European Southern Observatory (ESO) Schmidt. The optical positions have an average precision of 0.07 sec, mostly due to the zero point error when adjusted to the FK5 optical frame using the IRS catalog. To date we have measured optical positions for 46 sources.

  2. High Annular Resolution Stellar Interferometry. (United States)


    Double- Scar Interferometry and l:s Lessons Astrophys. and Space Sci. 11, 13-19 (1971) Finsen, W. S. Interferometer Observation of Binary Stars Astron. J...Interferometry Sky and Telescope 53, 346-350 (1977) McAlister, H. A. Speckle Interferometric Measurements of Binary Scars IV Astrophys. J. 230, 497-501...Ergebn. Exacten. Naturwiss. 10, 84-96 (1931) Pease, F.G. The Fifty-foot rnterferometer Telescope Armour Engineer, , 125-130 (1925) Perrier, C. An

  3. Anthropogenic impact signatures revealed in the travelling ionospheric disturbances by regional GPS interferometry (United States)

    Zakharov, V. I.; Ilyushin, Ya A.


    With the technique of the radio interferometry of the navigational satellite signals, we investigate the travelling ionospheric disturbances generated by large urban agglomeration. We resolve detailed structure of the ionospheric disturbances field and attribute disturbances to particular atmospheric wave sources in the agglomeration. Wave generation efficiency revealed from the observational data well agrees with the theoretical prediction derived from energetic considerations.

  4. Jets, Arcs and Shocks: NGC 5195 at radio wavelengths (United States)

    Rampadarath, H.; Soria, R.; Urquhart, R.; Argo, M. K.; Brightman, M.; Lacey, C. K.; Schlegel, E. M.; Beswick, R. J.; Baldi, R. D.; Muxlow, T. W. B.; McHardy, I. M.; Williams, D. R. A.; Dumas, G.


    We studied the nearby, interacting galaxy NGC 5195 (M 51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (˜1-pc scale), from our new e-MERLIN observations (˜10-pc scale), and from the Very Large Array (˜100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically-thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Hα and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ˜3-6 × 1041 erg s-1 over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.

  5. Baseline rationing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave

    The standard problem of adjudicating conflicting claims describes a situation in which a given amount of a divisible good has to be allocated among agents who hold claims against it exceeding the available amount. This paper considers more general rationing problems in which, in addition to claims......, there exist baselines (to be interpreted as objective entitlements, ideal targets, or past consumption) that might play an important role in the allocation process. The model we present is able to accommodate real-life rationing situations, ranging from resource allocation in the public health care sector...... to international protocols for the reduction of greenhouse emissions, or water distribution in drought periods. We define a family of allocation methods for such general rationing problems - called baseline rationing rules - and provide an axiomatic characterization for it. Any baseline rationing rule within...

  6. A recent history of science cases for optical interferometry (United States)

    Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre


    Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.

  7. Extreme ultraviolet interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics


    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  8. The faint radio sky: VLBA observations of the COSMOS field (United States)

    Herrera Ruiz, N.; Middelberg, E.; Deller, A.; Norris, R. P.; Best, P. N.; Brisken, W.; Schinnerer, E.; Smolčić, V.; Delvecchio, I.; Momjian, E.; Bomans, D.; Scoville, N. Z.; Carilli, C.


    Context. Quantifying the fraction of active galactic nuclei (AGN) in the faint radio population and understanding their relation with star-forming activity are fundamental to studies of galaxy evolution. Very long baseline interferometry (VLBI) observations are able to identify AGN above relatively low redshifts (z> 0.1) since they provide milli-arcsecond resolution. Aims: We have created an AGN catalogue from 2865 known radio sources observed in the Cosmic Evolution Survey (COSMOS) field, which has exceptional multi-wavelength coverage. With this catalogue we intend to study the faint radio sky with statistically relevant numbers and to analyse the AGN - host galaxy co-evolution, making use of the large amount of ancillary data available in the field. Methods: Wide-field VLBI observations were made of all known radio sources in the COSMOS field at 1.4 GHz to measure the AGN fraction, in particular in the faint radio population. We describe in detail the observations, data calibration, source detection and flux density measurements, parts of which we have developed for this survey. The combination of number of sources, sensitivity, and area covered with this project are unprecedented. Results: We have detected 468 radio sources, expected to be AGN, with the Very Long Baseline Array (VLBA). This is, to date, the largest sample assembled of VLBI detected sources in the sub-mJy regime. The input sample was taken from previous observations with the Very Large Array (VLA). We present the catalogue with additional optical, infrared and X-ray information. Conclusions: We find a detection fraction of 20 ± 1%, considering only those sources from the input catalogue which were in principle detectable with the VLBA (2361). As a function of the VLA flux density, the detection fraction is higher for higher flux densities, since at high flux densities a source could be detected even if the VLBI core accounts for a small percentage of the total flux density. As a function of

  9. Shaken Lattice Interferometry (United States)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana


    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  10. Preview of Blackbeard interferometry (United States)

    Carter, M. J.

    Blackbeard is a broadband VHF measurement satellite experiment designed and built by the Space Science and Technology Division of the Los Alamos National Laboratory. Blackbeard is a piggy-back experiment on the ALEXIS satellite to be launched into a 70 degree inclination orbit at an altitude of 750 km. The satellite experimental operation and data retrieval are controlled through a telemetry link from the Satellite Operations Center (SOC) located at Los Alamos, NM. The primary experimental objectives of Blackbeard are three-fold: (1) Study the dispersion of broad-band impulsive electromagnetic signals -- in particular, the higher-order amplitude and phase distortion due to propagation through the ionosphere. These depend on ionospheric conditions and irregularities. (2) Utilize RF interferometry and scintillation techniques in the low VHF-band to determine the size and extent of ionospheric irregularities and wave structure -- both natural and artificially induced. This narrow-band data will be used to categorize the ionospheric media as undisturbed, oscillatory, or turbulent. These parameters will then be input into transfer function simulations for broad-band propagation and compared with broad-band propagation data from Blackbeard. (3) Survey and characterize background noise in the VHF-band-consisting of (1) cataloging broadcast amplitudes and signatures and mapping their global pattern, and (2) cataloging the signatures of lightning events. Also, correlate emissions in the visible and VHF bands in an attempt to confirm broad-band RF emissions assumed to be associated with lightning.

  11. Landau-Zener-Stueckelberg interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)


    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  12. Self-calibration in optical/infrared interferometry (United States)

    Millour, Florentin; Dalla Vedova, Gaetan


    Optical interferometry produces nowadays images of the observed stars. However, the image quality of the current facilities (VLTI, CHARA) is impaired by the lack of phases measurements. We will describe here a method used to improve the image reconstruction that takes profit of a badly used observable: the wavelength differential phase. This phase shares some properties with the interferometric phase. That method is parent to the self-calibration which was developed in the 80's for radio astronomy to get rid of calibratioon artifacts, and produces a significant improvement on image quality over the current available methods.

  13. Phase estimation in optical interferometry

    CERN Document Server

    Rastogi, Pramod


    Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and pre

  14. Precision measurements with atom interferometry (United States)

    Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.


    Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601


    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D., E-mail: [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)


    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  16. Speckle fields in holographic interferometry (United States)

    Lockshin, Gennady R.; Kozel, Stanislav M.; Bielonuchkin, V. E.


    The objects which are investigated which are investigated with the help of the holographic interferometry methods as a rule scatter light diffusely, therefore the two-expositional hologram reconstructs the result of interference of the speckle-fields f ('4 and f() scattered by th object at the initial (1) and final (2) states.


    International Nuclear Information System (INIS)

    Leon-Tavares, J.; Lobanov, A. P.; Arshakian, T. G.; Chavushyan, V. H.; Doroshenko, V. T.; Sergeev, S. G.; Efimov, Y. S.; Nazarov, S. V.


    We report a relation between radio emission in the inner jet of the Seyfert galaxy 3C 120 and optical continuum emission in this galaxy. Combining the optical variability data with multi-epoch high-resolution very long baseline interferometry observations reveals that an optical flare rises when a superluminal component emerges into the jet, and its maxima is related to the passage of such component through the location of a stationary feature at a distance of ∼1.3 pc from the jet origin. This indicates that a significant fraction of the optical continuum produced in 3C 120 is non-thermal, and it can ionize material in a sub-relativistic wind or outflow. We discuss implications of this finding for the ionization and structure of the broad emission line region, as well as for the use of broad emission lines for determining black hole masses in radio-loud active galactic nucleus.

  18. Development of the Phase-up Technology of the Radio Telescopes: 6.7 GHz Methanol Maser Observations with Phased Hitachi 32 m and Takahagi 32 m Radio Telescopes (United States)

    Takefuji, K.; Sugiyama, K.; Yonekura, Y.; Saito, T.; Fujisawa, K.; Kondo, T.


    For the sake of high-sensitivity 6.7 GHz methanol maser observations, we developed a new technology for coherently combining the two signals from the Hitachi 32 m radio telescope and the Takahagi 32 m radio telescope of the Japanese Very long baseline interferometer Network (JVN), where the two telescopes were separated by about 260 m. After the two telescopes were phased as a twofold larger single telescope, the mean signal-to-noise ratio (S/N) of the 6.7 GHz methanol masers observed by the phased telescopes was improved to 1.254-fold higher than that of the single dish, through a very long baseline interferometry (VLBI) experiment on the 50 km baseline of the Kashima 34 m telescope and the 1000 km baseline of the Yamaguchi 32 m telescope. Furthermore, we compared the S/Ns of the 6.7 GHz maser spectra for two methods. One is a VLBI method and the other is the newly developed digital position switching that is a similar technology to that used in noise-canceling headphones. Finally, we confirmed that the mean S/N of method of the digital position switching (ON-OFF) was 1.597-fold higher than that of the VLBI method.

  19. 3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions

    Directory of Open Access Journals (Sweden)

    Carolina Casadio


    Full Text Available We present total and linearly polarized 3 mm Global mm-VLBI Array (GMVA; mm-VLBI: Very Long Baseline Interferometry observations at millimetre wavelengths images of a sample of blazars and radio galaxies from the VLBA-BU-BLAZAR 7 mm monitoring program designed to probe the innermost regions of active galactic nuclei (AGN jets and locate the sites of gamma-ray emission observed by the Fermi-LAT. The lower opacity at 3 mm and improved angular resolution—on the order of 50 microarcseconds—allow us to distinguish features in the jet not visible in the 7 mm VLBA data. We also compare two different methods used for the calibration of instrumental polarisation and we analyze the resulting images for some of the sources in the sample.

  20. The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation (United States)

    Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John


    The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.

  1. TANAMI: Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry. II. Additional sources (United States)

    Müller, C.; Kadler, M.; Ojha, R.; Schulz, R.; Trüstedt, J.; Edwards, P. G.; Ros, E.; Carpenter, B.; Angioni, R.; Blanchard, J.; Böck, M.; Burd, P. R.; Dörr, M.; Dutka, M. S.; Eberl, T.; Gulyaev, S.; Hase, H.; Horiuchi, S.; Katz, U.; Krauß, F.; Lovell, J. E. J.; Natusch, T.; Nesci, R.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J. F. H.; Stevens, J.; Thompson, D. J.; Tingay, S. J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.


    Context. TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of - 30° declination including high-resolution very long baseline interferometry (VLBI) imaging, radio, optical/UV, X-ray, and γ-ray studies. We have previously published first-epoch8.4 GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and γ-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (> 100 TeV) neutrino events have been found. Aims: We characterize the parsec-scale radio properties of the jets and compare them with the quasi-simultaneous Fermi/LAT γ-ray data. Furthermore, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events compared to the full sample. We test the positional agreement of high-energy neutrino events with various AGN samples. Methods: TANAMI VLBI observations at 8.4 GHz are made with southern hemisphere radio telescopes located in Australia, Antarctica, Chile, New Zealand, and South Africa. Results: Our observations yield the first images of many jets below - 30° declination at milliarcsecond resolution. We find that γ-ray loud TANAMI sources tend to be more compact on parsec-scales and have higher core brightness temperatures than γ-ray faint jets, indicating higher Doppler factors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI jets. The 22 γ-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the > 100 TeV IceCube signal is not simply dominated by a small number of the γ-ray brightest blazars. Instead, a larger number of sources have to contribute to the signal with each individual source having only a small Poisson probability for producing an event in


    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)


    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  3. Precision and Accuracy of Intercontinental Distance Determinations Using Radio Interferometry. (United States)


    applicsible) Air Forcc Gc.’!physics Laborator - LWG F19628-82-K- 0002 Sc ADDRESS ICity,. State and ZIP Code) 10. SOURCE OF FUNDING NOS. [lanscon AFB, MA...error in the calibration phase, E. Hence E tan-’[( Acsin, s- Acoso )/A ] (3.2.5)4s obs s obs cal and the corrected calibration phase will be given by cal m

  4. Angular-domain scattering interferometry. (United States)

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J


    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  5. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M


    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  6. Radio Mariackie


    Tytko, Marek Mariusz


    Tekst dotyczy początków katolickiego Radia Mariackiego w Krakowie w 1993 r. The text concerns the begining of the Mariackie Radio [The Mariackie Broadcasting, the Maria's Radio Station, the Maria's Broadcasting, the Maria's Radio) in Cracow 1993.

  7. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.


    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  8. Holographic interferometry of high pressure

    International Nuclear Information System (INIS)

    McIlwain, M.E.


    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  9. Radio Telescopes' Precise Measurements Yield Rich Scientific Payoffs (United States)


    Having the sharpest pictures always is a big advantage, and a sophisticated radio-astronomy technique using continent-wide and even intercontinental arrays of telescopes is yielding extremely valuable scientific results in a wide range of specialties. That's the message delivered to the American Astronomical Society's meeting in Austin, Texas, by Mark Reid of the Harvard-Smithsonian Center for Astrophysics, a leading researcher in the field of ultra-precise astronomical position measurements. Very Long Baseline Interferometry provides extremely high precision that can extend use of the parallax technique to many more celestial objects. Parallax is a direct means of measuring cosmic distances by detecting the slight shift in an object’s apparent position in the sky caused by Earth’s orbital motion. Credit: Bill Saxton, NRAO/AUI/NSF "Using radio telescopes, we are measuring distances and motions of celestial bodies with unprecedented accuracy. That's helping us better understand many processes ranging from star formation to the scale of the entire Universe," Reid said. The observing technique, called Very Long Baseline Interferometry (VLBI), was pioneered in 1967, but has come into continuous use only in the past 10-15 years. The National Science Foundation's Very Long Baseline Array (VLBA), a system of 10 radio-telescope antennas ranging from Hawaii to the Caribbean, was dedicated in 1993. There are other VLBI systems in Europe and Asia, and large radio telescopes around the world cooperate regularly to increase sensitivity. VLBI observations routinely produce images hundreds of times more detailed than those made at visible-light wavelengths by the Hubble Space Telescope. Several groups of researchers from across the globe use the VLBA to study stellar nurseries in our own Milky Way Galaxy and measure distances to regions where new stars are forming. The key has been to improve measurement accuracy to a factor of a hundred times better than that produced by the

  10. Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission (United States)

    Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.


    Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.


    International Nuclear Information System (INIS)

    Batejat, Fabien; Conway, John E.; Hurley, Rossa; Parra, Rodrigo; Diamond, Philip J.; Lonsdale, Colin J.; Lonsdale, Carol J.


    We present 2 cm and 3.6 cm wavelength very long baseline interferometry images of the compact radio continuum sources in the nearby ultra-luminous infrared galaxy Arp220. Based on their radio spectra and variability properties, we confirm these sources to be a mixture of supernovae (SNe) and supernova remnants (SNRs). Of the 17 detected sources we resolve 7 at both wavelengths. The SNe generally only have upper size limits. In contrast all the SNRs are resolved with diameters ≥0.27 pc. This size limit is consistent with them having just entered their Sedov phase while embedded in an interstellar medium (ISM) of density 10 4 cm -3 . These objects lie on the diameter-luminosity correlation for SNRs (and so also on the diameter-surface brightness relation) and extend these correlations to very small sources. The data are consistent with the relation L∝D -9/4 . Revised equipartition arguments adjusted to a magnetic field to a relativistic particle energy density ratio of 1% combined with a reasonable synchrotron-emitting volume filling factor of 10% give estimated magnetic field strengths in the SNR shells of ∼15-50 mG. The SNR shell magnetic fields are unlikely to come from compression of ambient ISM fields and must instead be internally generated. We set an upper limit of 7 mG for the ISM magnetic field. The estimated energy in relativistic particles, 2%-20% of the explosion kinetic energy, is consistent with estimates from models that fit the IR-radio correlation in compact starburst galaxies.

  12. Astronomers Make First Images With Space Radio Telescope (United States)


    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  13. Interferometry in the era of time-domain astronomy (United States)

    Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean


    The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.

  14. Precision Gravity Tests with Atom Interferometry in Space

    Energy Technology Data Exchange (ETDEWEB)

    Tino, G.M.; Sorrentino, F. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Aguilera, D. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Battelier, B.; Bertoldi, A. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bongs, K. [Midlands Ultracold Atom Research Centre School of Physics and Astronomy University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bouyer, P. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Braxmaier, C. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Gaaloul, N. [Institute of Quantum Optics, Leibniz Universitaet Hannover, Welfengarten 1, D 30167 Hannover (Germany); Gürlebeck, N. [University of Bremen, Centre of Applied Space Technology and Microgravity (ZARM), Am Fallturm, D - 29359 Bremen (Germany); Hauth, M. [Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); and others


    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual {sup 85}Rb-{sup 87}Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  15. The extreme blazar AO 0235+164 as seen by extensive ground and space radio observations (United States)

    Kutkin, A. M.; Pashchenko, I. N.; Lisakov, M. M.; Voytsik, P. A.; Sokolovsky, K. V.; Kovalev, Y. Y.; Lobanov, A. P.; Ipatov, A. V.; Aller, M. F.; Aller, H. D.; Lahteenmaki, A.; Tornikoski, M.; Gurvits, L. I.


    Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra-compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multifrequency VLBA, EVN, and single-dish radio observations. We employ visibility modelling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multiband time delays of the flares. The multifrequency core size and time lags support prevailing synchrotron self-absorption. The intrinsic brightness temperature of the core derived from ground-based very long baseline interferometry (VLBI) is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 μas in the source, which might be responsible for the extreme apparent brightness temperatures of up to 1014 K as measured by RadioAstron. In 2007-2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor Γ = 14, the Doppler factor δ = 21, and the viewing angle θ = 1.7° of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.

  16. Unification in the low radio luminosity regime: evidence from optical line emission (United States)

    Marchã, M. J. M.; Browne, I. W. A.; Jethava, N.; Antón, S.


    We address the question of whether or not the properties of all low-luminosity flat spectrum radio sources, not just the obvious BL Lac objects, are consistent with them being the relativistically beamed counterparts of the low radio luminosity radio galaxies (the Fanaroff-Riley type 1, FR I). We have accumulated data on a well-defined sample of low redshift, core-dominated, radio sources all of which have one-sided core-jet structures seen with very long baseline interferometry, just like most BL Lac objects. We first compare the emission-line luminosities of the sample of core-dominated radio sources with a matched sample of FR I radio galaxies. The emission lines in the core-dominated objects are on average significantly more luminous than those in the comparison sample, inconsistent with the simplest unified models in which there is no orientation dependence of the line emission. We then compare the properties of our core-dominated sample with those of a sample of radio-emitting UGC galaxies selected without bias to core strength. The core-dominated objects fit well on the UGC correlation between line emission and radio core strength found by Verdoes Kleijn et al. The results are not consistent with all the objects participating in a simple unified model in which the observed line emission is orientation independent, though they could fit a single, unified model provided that some FR I radio galaxies have emission line regions that become more visible when viewed along the jet axis. However, they are equally consistent with a scenario in which, for the majority of objects, beaming has minimal effect on the observed core luminosities of a large fraction of the FR I population and that intrinsically stronger cores simply give rise to stronger emission lines. We conclude that FR I unification is much more complex than usually portrayed, and models combining beaming with an intrinsic relationship between core and emission line strengths need to be explored.





    First article: Radio Cinema has become more and more popular in Copenhagen - escalating since the first Radio Cinema event was held in 2013. Now, it is monthly taking place in Gloria Biograf. The audience meets in the darkened cinema auditory and listens to a curated program of podcasts. In this article we investigate how the experience of participating in a Radio Cinema event feels through the theory of Sarah Pink’s Doing Sensory Ethnography (2009). In the first par...

  18. Attosecond electron wave packet interferometry

    International Nuclear Information System (INIS)

    Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.


    Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.

  19. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a revival of the radio era. The satellite radio is a natural choice to bridge the digital gap. It has several novel features like selective addressing and error control. The value-added services from such systems are of particular interest.

  20. Multi-GPU maximum entropy image synthesis for radio astronomy (United States)

    Cárcamo, M.; Román, P. E.; Casassus, S.; Moral, V.; Rannou, F. R.


    The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 min, instead of 2.5 days that takes a sequential version on CPU.

  1. Two particle interferometry at RHIC

    CERN Document Server

    Laue, F


    We present preliminary results from a pion interferometry analysis of Au+Au collisions at square root (S/sub NN/)=130 GeV, recorded with the STAR (Solenoidal Tracker At RHIC) detector at the Relativistic Heavy Ion Collider (RHIC). The evaluation of three-dimensional correlation functions indicates increasing source sizes with increasing event centrality. The dependence of the calculated HBT radii on transverse momentum is attributed to strong space-momentum correlations (transverse flow). In the study presented in this paper we have not observed anomalously large source sizes as have been predicted as a signal for quark-qluon plasma formation. However, the measured HBT radii seem to follow the trend established at lower energies (AGS/SPS). We find the ratio R/sub o//R/sub s/ approximately =1, suggesting a short duration of pion emission. The "universal" pion phase space density, observed at AGS/SPS, seems to hold also at RHIC. (26 refs).

  2. Synthetic aperture interferometry: error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amiya; Coupland, Jeremy


    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  3. Synthetic aperture interferometry: error analysis

    International Nuclear Information System (INIS)

    Biswas, Amiya; Coupland, Jeremy


    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  4. The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421 (United States)

    Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.


    Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.

  5. Some applications of holographic interferometry in biomechanics (United States)

    Ebbeni, Jean P. L.


    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  6. Space Interferometry Mission Instrument Mechanical Layout (United States)

    Aaron, K.; Stubbs, D.; Kroening, K.


    The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4x10 to the power of negative six arc (about 1 billionth of a degree).

  7. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)


    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  8. Novel Polarimetric SAR Interferometry Algorithms, Phase II (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  9. Novel Polarimetric SAR Interferometry Algorithms, Phase I (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...


    International Nuclear Information System (INIS)

    Kharb, P.; Gabuzda, D. C.; O'Dea, C. P.; Shastri, P.; Baum, S. A.


    We present the results of a parsec-scale polarization study of three FRI radio galaxies-3C66B, 3C78, and 3C264-obtained with Very Long Baseline Interferometry at 5, 8, and 15 GHz. Parsec-scale polarization has been detected in a large number of beamed radio-loud active galactic nuclei, but in only a handful of the relatively unbeamed radio galaxies. We report here the detection of parsec-scale polarization at one or more frequencies in all three FRI galaxies studied. We detect Faraday rotation measures (RMs) of the order of a few hundred rad m -2 in the nuclear jet regions of 3C78 and 3C264. In 3C66B, polarization was detected at 8 GHz only. A transverse RM gradient is observed across the jet of 3C78. The inner-jet magnetic field, corrected for Faraday rotation, is found to be aligned along the jet in both 3C78 and 3C264, although the field becomes orthogonal further from the core in 3C78. The RM values in 3C78 and 3C264 are similar to those previously observed in nearby radio galaxies. The transverse RM gradient in 3C78, the increase in the degree of polarization at the jet edge, the large rotation in the polarization angles due to Faraday rotation, and the low depolarization between frequencies suggest that a layer surrounding the jet with a sufficient number of thermal electrons and threaded by a toroidal or helical magnetic field is a good candidate for the Faraday rotating medium. This suggestion is tentatively supported by Hubble Space Telescope optical polarimetry but needs to be examined in a greater number of sources.

  11. Speckle Shearing Interferometry And Its Application (United States)

    Jingtang, Ke; Hongqing, Zhang; Yeling, He; Yanfu, Chang


    The paper deals with experiments made to verify the theory of bending of plates and related problems by method of speckle shearing interferometry, which is proved to be highly sensitive. Tests carried out on rubber products: (such as tires)and thin-walled containers have demonstrated the prospects of using image-shearing camera in nondestructive in-situ testing of industrial products, suggesting a potentiality still wider than that of holographic interferometry.

  12. Solar Radio (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  13. Radio astronomy

    International Nuclear Information System (INIS)

    Parijskij, Y.N.; Gossachinskij, I.V.; Zuckerman, B.; Khersonsky, V.K.; Pustilnik, S.; Robinson, B.J.


    A critical review of major developments and discoveries in the field of radioastronomy during the period 1973-1975 is presented. The report is presented under the following headings:(1) Continuum radiation from the Galaxy; (2) Neutral hydrogen, 21 cm (galactic and extragalactic) and recombination lines; (3) Radioastronomy investigations of interstellar molecules; (4) Extragalactic radio astronomy and (6) Development in radio astronomy instruments. (B.R.H.)

  14. Designing a new Geodetic Research Data Management System for the Hartebeesthoek Radio Astronomy Observatory (United States)

    Coetzer, Glend Lorraine


    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) participates in astronomic, astrometric and geodetic Very Long Baseline Interferometry (VLBI) observations using both 26- and 15-m diameter radio telescopes. Geodetic data from a Satellite Laser Ranger (SLR), Global Navigation Satellite System (GNSS), Met4 weather stations and a new seismic vault network must be stored at HartRAO and made available to the scientific community. Some data are e-transferred to correlators, analysis centres and space geodesy data providers, while some data are processed locally to produce basic data products. The new South African co-located seismology network of seismic and GNSS instrumentation will generate large volumes of raw data to be stored and archived at HartRAO. The current data storage systems are distributed and outdated, and management systems currently being used will also not be able to handle the additional large volumes of data. This necessitates the design and implementation of a new, modern research data management system which combines all the datasets into one database, as well as cater for current and future data volume requirements. The librarian’s expertise and knowledge will be used in the design and implementation of the new HartRAO Geodetic Research Data Management System (GRDMS). The librarian’s role and involvement in the design and implementation of the new GRDMS are presented here. Progress to date will also be discussed.

  15. Testing and selecting cosmological models with ultra-compact radio quasars

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaolei [Beijing Normal University, Department of Astronomy, Beijing (China); University of Michigan, Department of Physics, Ann Arbor, MI (United States); Cao, Shuo; Qi, Jingzhao; Zhu, Zong-Hong [Beijing Normal University, Department of Astronomy, Beijing (China); Zheng, Xiaogang; Biesiada, Marek [Beijing Normal University, Department of Astronomy, Beijing (China); University of Silesia, Department of Astrophysics and Cosmology, Institute of Phyisics, Katowice (Poland)


    In this paper, we place constraints on four alternative cosmological models under the assumption of the spatial flatness of the Universe: CPL, EDE, GCG and MPC. A new compilation of 120 compact radio quasars observed by very-long-baseline interferometry, which represents a type of new cosmological standard rulers, are used to test these cosmological models. Our results show that the fits on CPL obtained from the quasar sample are well consistent with those obtained from BAO. For other cosmological models considered, quasars provide constraints in agreement with those derived with other standard probes at 1σ confidence level. Moreover, the results obtained from other statistical methods including figure of merit, Om(z) and statefinder diagnostics indicate that: (1) Radio quasar standard ruler could provide better statistical constraints than BAO for all cosmological models considered, which suggests its potential to act as a powerful complementary probe to BAO and galaxy clusters. (2) Turning to Om(z) diagnostics, CPL, GCG and EDE models cannot be distinguished from each other at the present epoch. (3) In the framework of statefinder diagnostics, MPC and EDE will deviate from the ΛCDM model in the near future, while GCG model cannot be distinguished from the ΛCDM model unless much higher precision observations are available. (orig.)

  16. Interplanetary scintillation studies with the Murchison Widefield Array - II. Properties of sub-arcsecond compact sources at low radio frequencies (United States)

    Chhetri, R.; Morgan, J.; Ekers, R. D.; Macquart, J.-P.; Sadler, E. M.; Giroletti, M.; Callingham, J. R.; Tingay, S. J.


    We report the first astrophysical application of the technique of wide-field interplanetary scintillation (IPS) with the Murchison Widefield Array (MWA). This powerful technique allows us to identify and measure sub-arcsecond compact components in low-frequency radio sources across large areas of sky without the need for long-baseline interferometry or ionospheric calibration. We present the results of a 5-min observation of a 30 × 30 deg2 MWA field at 162 MHz with 0.5 s time resolution. Of the 2550 continuum sources detected in this field, 302 (12 per cent) show rapid fluctuations caused by IPS. We find that at least 32 per cent of bright low-frequency radio sources contain a sub-arcsecond compact component that contributes over 40 per cent of the total flux density. Perhaps surprisingly, peaked-spectrum radio sources are the dominant population among the strongly scintillating, low-frequency sources in our sample. While gamma-ray active galactic nuclei are generally compact, flat-spectrum radio sources at higher frequencies (162 MHz), the properties of many of the Fermi blazars in our field are consistent with a compact component embedded within more extended low-frequency emission. The detection of a known pulsar in our field shows that the wide-field IPS technique is at the threshold of sensitivity needed to detect new pulsars using image plane analysis, and scaling the current MWA sensitivity to that expected for SKA-low implies that large IPS-based pulsar searches will be feasible with SKA. Calibration strategies for the SKA require a better knowledge of the space density of compact sources at low radio frequencies, which IPS observations can now provide.

  17. 2. Interferometry and polarimetry. 2.1. Principle of interferometry and polarimetry

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Okajima, Shigeki


    Laser interferometry and polarimetry are useful diagnostics for measuring electron density and the internal magnetic field distribution in the plasma. In this section, principles of interferometry and polarimetry and their applications to plasma diagnostics on LHD (section 2.2) and JT-60 (section 2.3) are descried. (author)

  18. Radio emission from Supernovae and High Precision Astrometry (United States)

    Perez-Torres, M. A.


    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  19. All-Sky Interferometry with Spherical Harmonic Transit Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.Richard [Canadian Inst. Theor. Astrophys.; Sigurdson, Kris [British Columbia U.; Pen, Ue-Li [Canadian Inst. Theor. Astrophys.; Stebbins, Albert [Fermilab; Sitwell, Michael [British Columbia U.


    In this paper we describe the spherical harmonic transit telescope, a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved sky complications of traditional interferometry and so is particularly well suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics that allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor twenty below the 21cm signal even in highly contaminated regions of the sky. This is despite the presence of the angle-frequency mode mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with twenty-first century 21cm science.

  20. Theory of supervirtual refraction interferometry

    KAUST Repository

    Bharadwaj, Pawan


    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so accurate picking of traveltimes in far-offset traces is often prevented. To enhance the signal-to-noise ratio (SNR) of the far-offset traces, we present the theory of supervirtual refraction interferometry where the SNR of far-offset head-wave arrivals can be theoretically increased by a factor proportional to; here, N is the number of receiver or source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with supervirtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals recorded by the geophones. Results with both synthetic traces and field data demonstrate the feasibility of this method. There are at least four significant benefits of supervirtual interferometry: (1) an enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of the data, (2) the SNR of head waves in a trace that arrive later than the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by later-arrival traveltime tomography, (3) common receiver-pair gathers can be analysed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary, and (4) the source statics term is eliminated in the correlation operations so that the timing of the virtual traces is independent of the source excitation time. This suggests the

  1. Parsimonious Refraction Interferometry and Tomography

    KAUST Repository

    Hanafy, Sherif


    We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves, and a pair of reciprocal shot gathers and several infill shot gathers are recorded over the line of interest. Refraction traveltimes from these shot gathers are picked and spawned into O(N2) virtual refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. The virtual traveltimes can be inverted to give the velocity tomogram. This enormous increase in the number of traveltime picks and associated rays, compared to the many fewer traveltimes from the reciprocal and infill shot gathers, allows for increased model resolution and a better condition number with the system of normal equations. A significant benefit is that the parsimonious survey and the associated traveltime picking is far less time consuming than that for a standard refraction survey with a dense distribution of sources.

  2. Spectral Interferometry with Electron Microscopes. (United States)

    Talebi, Nahid


    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.

  3. LED driver for stroboscopic interferometry (United States)

    Paulin, T.; Heikkinen, V.; Kassamakov, I.; Hæggström, E.


    Three different types of white light emitting diodes (LEDs) and three types of single color LEDs were tested as light sources for stroboscopic scanning white light interferometry (SSWLI) for dynamic (MEMS) characterization. Short, intense, light pulses and low duty cycle (DC-10 MHz), and can drive single LEDs at 5A peak current (0.7% duty cycle at 1 MHz). The shortest measured electrical pulses were 6.2 +/- 0.1 ns FDHM. The minimum measured Full Duration at Half Maximum (FDHM) of the optical pulse was 8.4 +/- 0.1 ns using nonphosphor white LED and 32.1 +/- 0.1 ns using white phosphor-converted LED (0.7 % duty cycle at 1 MHz in both cases). The minimum optical pulse FDHM for a single color blue/green LED was 6.4 +/- 0.1 ns. The maximum intensity of these pulses was 630 +/- 40 μW and 540 +/- 30 μW, respectively. All types of white LEDs could be used for stroboscopic SWLI measurements at frequencies up to 2 MHz. For higher frequencies, non-phosphor white LEDs must be used together with a cyan LED to avoid ringing in the SWLI interferogram.

  4. Radio astronomy

    CERN Document Server

    Alder, Berni


    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  5. Satellite Radio

    Indian Academy of Sciences (India)

    communications as well as for point-to-multipoint broadcasting. GENERAL I ARTICLE. Radio is perceived to be an individual's possession because of its portability. It can be ... (See Box 1.) Gsa satellites are used for point-to-point communications as ... digital modulations one uses perceptual coding using auditory masking.

  6. The Feasibility of Radio Direction Finding for Swarm Localization (United States)


    First, basic RDF theory is presented. Next, a laboratory experiment to evaluate RDF using a SDR is developed. Finally, experimental data are presented...vehicles (UAVs) or munitions, will not be significantly affected by multipath. Secondly, many swarms can have antenna arrays attached to the agents...standalone software-defined radio (SDR). First, the theory of phase-interferometry RDF is presented. Next, an RDF system is described and simulated

  7. Wide band interferometry for thickness measurement (United States)

    Costantino, Santiago; Martinez, Oscar E.; Torga, Jorge R.


    In this work we present the concept of wide band interferometry as opposed to white-light interferometry to introduce a thickness measurement method that gains precision when the bandwidth is reduced to an adequate compromise in order to avoid the distortions arising from the material dispersion. The use of the widest possible band is a well established dogma when the highest resolution is desired in distance measurements with white-light interferometry. We will show that the dogma falls when thickness measurements must be carried out due to material dispersion. In fact the precise knowledge of the frequency dependence of the refractive index is essential for adequate thickness retrieval from the optical experiments. The device we present is also useful to obtain the group refractive index that is necessary to calculate the absolute thickness value. As an example, we show the spreading of a silicone oil on a reference surface in real time.

  8. Demonstration of X-ray talbot interferometry

    CERN Document Server

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y


    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  9. Moire interferometry at high temperatures (United States)

    Wu, Jau-Je


    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  10. Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision (United States)


    Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session

  11. Ultra-compact structure in radio quasars as a cosmological probe: a revised study of the interaction between cosmic dark sectors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaogang; Biesiada, Marek; Cao, Shuo; Qi, Jingzhao; Zhu, Zong-Hong, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)


    A new compilation of 012 angular-size/redshift data for compact radio quasars from very-long-baseline interferometry (VLBI) surveys motivates us to revisit the interaction between dark energy and dark matter with these probes reaching high redshifts z ∼ 3.0. In this paper, we investigate observational constraints on different phenomenological interacting dark energy (IDE) models with the intermediate-luminosity radio quasars acting as individual standard rulers, combined with the newest BAO and CMB observation from Planck results acting as statistical rulers. The results obtained from the MCMC method and other statistical methods including figure of Merit and Information Criteria show that: (1) Compared with the current standard candle data and standard clock data, the intermediate-luminosity radio quasar standard rulers , probing much higher redshifts, could provide comparable constraints on different IDE scenarios. (2) The strong degeneracies between the interaction term and Hubble constant may contribute to alleviate the tension of H {sub 0} between the recent Planck and HST measurements. (3) Concerning the ranking of competing dark energy models, IDE with more free parameters are substantially penalized by the BIC criterion, which agrees very well with the previous results derived from other cosmological probes.

  12. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru


    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)


    Energy Technology Data Exchange (ETDEWEB)

    Reines, Amy E. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Deller, Adam T., E-mail:, E-mail: [The Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands)


    A candidate accreting massive black hole (BH) with M{sub BH} {approx} 10{sup 6} M{sub Sun} has recently been identified at the center of the dwarf starburst galaxy Henize 2-10 (He 2-10). This discovery offers the first possibility of studying a growing BH in a nearby galaxy resembling those in the earlier universe, and opens up a new class of host galaxies to search for the smallest supermassive BHs. Here we present very long baseline interferometry observations of He 2-10 taken with the Long Baseline Array (LBA) at 1.4 GHz with an angular resolution of {approx}0.''1 Multiplication-Sign 0.''03. A single compact radio source is detected at the precise location of the putative low-luminosity active galactic nucleus. The physical size of the nuclear radio emission is {approx}<3 pc Multiplication-Sign 1 pc, an order of magnitude smaller than previous constraints from the Very Large Array (VLA), and the brightness temperature of T{sub B} > 3 Multiplication-Sign 10{sup 5} K confirms a non-thermal origin. These LBA observations indicate that the nuclear radio emission originates from a single object, and exclude the possibility of multiple supernova remnants as the origin of the nuclear radio emission previously detected with the VLA at lower resolution. A weaker, more extended, off-nuclear source is also detected with the LBA and a comparison with multi-wavelength ancillary data indicate that, unlike the nuclear source, the off-nuclear source is co-spatial with a super star cluster, lacks a detectable X-ray point-source counterpart, and is almost certainly due to a supernova remnant in the host star cluster.

  14. Seismic interferometry-turning noise into signal

    NARCIS (Netherlands)

    Curtis, A.; Gerstoft, P.; Sato, H.; Snieder, R.; Wapenaar, C.P.A.


    Turning noise into useful data—every geophysicist's dream? And now it seems possible. The field of seismic interferometry has at its foundation a shift in the way we think about the parts of the signal that are currently filtered out of most analyses—complicated seismic codas (the multiply scattered

  15. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.


    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  16. Photopolymer for Optical Holography and Holographic Interferometry

    Czech Academy of Sciences Publication Activity Database

    Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.


    Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers

  17. Space Telecommunications Radio System STRS Cognitive Radio (United States)

    Briones, Janette C.; Handler, Louis M.


    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  18. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii (United States)

    Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y. Y.; Anderson, J. M.; D'Ammando, F.; Hodgson, J.; Honma, M.; Krichbaum, T. P.; Lee, S.-S.; Lico, R.; Lisakov, M. M.; Lobanov, A. P.; Petrov, L.; Sohn, B. W.; Sokolovsky, K. V.; Voitsik, P. A.; Zensus, J. A.; Tingay, S.


    Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem1. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources2,3. Here, we report observations of 3C84 (NGC 1275)—the central galaxy of the Perseus cluster—made with an interferometric array including the orbiting radio telescope of the RadioAstron4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations5 and allows us to measure the jet collimation profile from 102 to 104 gravitational radii (rg) from the black hole. The previously found5, almost cylindrical jet profile on scales larger than a few thousand rg is seen to continue at least down to a few hundred rg from the black hole, and we find a broad jet with a transverse radius of ≳250 rg at only 350 rg from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales ≲102 rg or it is launched from the accretion disk.

  19. Future Looks Bright for Interferometry (United States)


    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  20. Interferometry to Image Surface Spots (United States)

    Perrin, Guy


    I present in this lecture the technique of interferometric imaging at optical/infrared wavelengths. The technique has matured since the pioneering work of Michelson at the end of the XIXth—beginning of the XXth when he first resolved the surface of a star, Betelgeuse, with his colleague Pease. Images were obtained for the first time 20 years ago with the COAST instrument and interferometers have made constant progress to reach the minimum level where blind image reconstruction can be achieved. I briefly introduce the topic to recall why studying the surface and close environment of stars is important in some fields of stellar physics. I introduce the theory of imaging with telescopes and interferometers. I discuss the nature of interferometric data in this wavelength domain and give a few insights on the importance of getting access to visibility phases to obtain information on asymmetries of stellar surfaces. I then present the issue of aperture synthesis with a small number of telescopes, a signature of optical/infrared interferometers compared to the radio domain. Despite the impossibility to measure the phase of visibilities because of turbulence I show that useful information can be recovered from the closure phase. I eventually introduce the principles of image reconstruction and I discuss some recent results on several types of stars.

  1. Radio Telescopes Will Add to Cassini-Huygens Discoveries (United States)


    poorly understood. Predictions of where the Huygens probe will land range from nearly 250 miles east to nearly 125 miles west of the point where its parachute first deploys, depending on which wind model is used. What actually happens to the probe as it makes its parachute descent through Titan's atmosphere will give scientists their best-ever opportunity to learn about Titan's winds. During its descent, Huygens will transmit data from its onboard sensors to Cassini, the "mother ship" that brought it to Titan. Cassini will then relay the data back to Earth. However, the large radio telescopes will be able to receive the faint (10-watt) signal from Huygens directly, even at a distance of nearly 750 million miles. This will not be done to duplicate the data collection, but to generate new data about Huygens' position and motions through direct measurement. Measurements of the Doppler shift in the frequency of Huygens' radio signal made from the Cassini spacecraft, in an experiment led by Mike Bird of the University of Bonn, will largely give information about the speed of Titan's east-west winds. A team led by scientists at NASA's Jet Propulsion Laboratory in Pasadena, CA, will measure the Doppler shift in the probe's signal relative to Earth. These additional Doppler measurements from the Earth-based radio telescopes will provide important data needed to learn about the north-south winds. "Adding the ground-based telescopes to the experiment will not only help confirm the data we get from the Cassini orbiter but also will allow us to get a much more complete picture of the winds on Titan," said William Folkner, a JPL scientist. The VLBA The VLBA CREDIT: NRAO/AUI/NSF (Click on image for VLBA gallery) Another team, led by scientists from the Joint Institute for Very Long Baseline Interferometry in Europe (JIVE), in Dwingeloo, The Netherlands, will use a world-wide network of radio telescopes, including the NRAO telescopes, to track the probe's trajectory with unprecedented

  2. Radio Jove: Jupiter Radio Astronomy for Citizens (United States)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.


    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website ( includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  3. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  4. Kinetic Titration Series with Biolayer Interferometry (United States)

    Frenzel, Daniel; Willbold, Dieter


    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  5. Optical interferometry for biology and medicine

    CERN Document Server

    Nolte, David D


    This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...

  6. Fabry-Perot interferometry: astronomical applications

    International Nuclear Information System (INIS)

    Pismis, P.


    Some properties of the interference of light are presented with emphasis on interferometry by means of a Fabry-Perot etalon. The application of the etalon with a focal reducer to astronomical problems is discussed related in particular to the determination of radial velocities of extended emission objects, in galactic and extragalactic nebulae. Mention is also made of the work carried out in Mexico in this field as well as of developments under way. (author)

  7. Laser interferometry for the Big Bang Observer

    International Nuclear Information System (INIS)

    Harry, Gregory M; Fritschel, Peter; Shaddock, Daniel A; Folkner, William; Phinney, E Sterl


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme

  8. Refining molecular potentials using atom interferometry

    International Nuclear Information System (INIS)

    Forrey, R.C.; Kharchenko, V.; Dalgarno, A.; You, L.


    We present a theoretical study of the index of refraction of argon for the propagation of sodium matter waves. The sensitivity of the index of refraction to the details of the molecular potential curve is analyzed. Our calculations reveal velocity-dependent oscillations in the index of refraction that may be detectable, particularly at low temperatures, in atom interferometry measurements. A procedure for refining molecular potential curves is outlined. copyright 1997 The American Physical Society

  9. Monitoring civil infrastructure using satellite radar interferometry


    Chang, L.


    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new, with potential for operational applications, but currently not exploited to full advantage. Here we investigate how to optimally assess and monitor the structural health of civil infrastructure usi...

  10. Laser interferometry for the Big Bang Observer


    Harry, Gregory M.; Fritschel, Peter; Shaddock, Daniel A.; Folkner, William; Phinney, E. Sterl


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  11. Laser interferometry for the Big Bang Observer

    Energy Technology Data Exchange (ETDEWEB)

    Harry, Gregory M [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Fritschel, Peter [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Shaddock, Daniel A [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Folkner, William [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Phinney, E Sterl [California Institute of Technology, Pasadena, CA 91125 (United States)


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  12. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement (United States)

    Baker, John; Thorpe, Ira


    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  13. Radio Imaging of Envelopes of Evolved Stars (United States)

    Cotton, Bill


    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  14. Quantum Interferometry in Phase Space Theory and Applications

    CERN Document Server

    Suda, Martin


    Quantum Interferometry in Phase Space is primarily concerned with quantum-mechanical distribution functions and their applications in quantum optics and neutron interferometry. In the first part of the book, the author describes the phase-space representation of quantum optical phenomena such as coherent and squeezed states. Applications to interferometry, e.g. in beam splitters and fiber networks, are also presented. In the second part of the book, the theoretical formalism is applied to neutron interferometry, including the dynamical theory of diffraction, coherence properties of superposed beams, and dephasing effects.


    International Nuclear Information System (INIS)

    Bietenholz, M. F.; Bartel, N.; Ransom, R. R.; Lebach, D. E.; Ratner, M. I.; Shapiro, I. I.


    We present measurements of the total radio flux density as well as very long baseline interferometry images of the star, IM Pegasi, which was used as the guide star for the NASA/Stanford relativity mission Gravity Probe B. We obtained flux densities and images from 35 sessions of observations at 8.4 GHz (λ = 3.6 cm) between 1997 January and 2005 July. The observations were accurately phase-referenced to several extragalactic reference sources, and we present the images in a star-centered frame, aligned by the position of the star as derived from our fits to its orbital motion, parallax, and proper motion. Both the flux density and the morphology of IM Peg are variable. For most sessions, the emission region has a single-peaked structure, but 25% of the time, we observed a two-peaked (and on one occasion perhaps a three-peaked) structure. On average, the emission region is elongated by 1.4 ± 0.4 mas (FWHM), with the average direction of elongation being close to that of the sky projection of the orbit normal. The average length of the emission region is approximately equal to the diameter of the primary star. No significant correlation with the orbital phase is found for either the flux density or the direction of elongation, and no preference for any particular longitude on the star is shown by the emission region.

  16. Program reference schedule baseline

    International Nuclear Information System (INIS)


    This Program Reference Schedule Baseline (PRSB) provides the baseline Program-level milestones and associated schedules for the Civilian Radioactive Waste Management Program. It integrates all Program-level schedule-related activities. This schedule baseline will be used by the Director, Office of Civilian Radioactive Waste Management (OCRWM), and his staff to monitor compliance with Program objectives. Chapter 1 includes brief discussions concerning the relationship of the PRSB to the Program Reference Cost Baseline (PRCB), the Mission Plan, the Project Decision Schedule, the Total System Life Cycle Cost report, the Program Management Information System report, the Program Milestone Review, annual budget preparation, and system element plans. Chapter 2 includes the identification of all Level 0, or Program-level, milestones, while Chapter 3 presents and discusses the critical path schedules that correspond to those Level 0 milestones

  17. Distributed correlators for interferometry in space

    NARCIS (Netherlands)

    Rajan, R.T.; Rajan, Raj; Bentum, Marinus Jan; Gunst, A.; Boonstra, A.J.


    New and interesting science drivers have triggered a renewed interest in radio astronomy at ultra long wavelengths. However, at longer wavelengths (beyond 10 meters) ground-based radio astronomy is severely limited by earths ionosphere, in addition to man-made interferences and solar flares. An


    International Nuclear Information System (INIS)

    Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.


    We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 ± 0.08 mas, corresponding to a distance of 1.20 +0.13 –0.10 kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr –1 , corresponding to 8 km s –1 , and show a tendency for expansion. After modeling the expansion of maser spots, we derived an absolute proper motion for the central star of μ x = –2.8 ± 0.2 and μ y = 2.6 ± 0.2 mas yr –1 eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be α J2000 = 07 h 22 m 58. s 3259 ± 0. s 0007, δ J2000 = –25°46'03.''063 ± 0.''010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.


    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Menten, K. M. [Max-Plank-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Zheng, X. W., E-mail: [Department of Astronomy, Nanjing University, Nanjing 210093 (China)


    We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 {+-} 0.08 mas, corresponding to a distance of 1.20{sup +0.13}{sub -0.10} kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr{sup -1}, corresponding to 8 km s{sup -1}, and show a tendency for expansion. After modeling the expansion of maser spots, we derived an absolute proper motion for the central star of {mu}{sub x} = -2.8 {+-} 0.2 and {mu}{sub y} = 2.6 {+-} 0.2 mas yr{sup -1} eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be {alpha}{sub J2000} = 07{sup h}22{sup m}58.{sup s}3259 {+-} 0.{sup s}0007, {delta}{sub J2000} = -25 Degree-Sign 46'03.''063 {+-} 0.''010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.

  20. Scanning White light interferometry: calibration and application to roughness assesment

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report refers to an experimental investigation recently completed. The aim was to gain some knowledge of the application of white light interferometry to surface metrology. The following issues were addressed by the present work: • How a white light interferometry microscope works, what...

  1. Powertrain engineering using holographic/electronic speckle pattern interferometry (United States)

    Chen, Fang; Marchi, Mitchell M.; Allen, Thomas E.


    Novel applications of computer aided holographic interferometry and electronic speckle pattern interferometry in automotive powertrain engineering are presented. Four applications are described: engine manifold/cylinder head interface deformation measurement, engine camcover strain analysis, throttle bore deformation measurement, and alternator modal characterization.

  2. Method and device for carrying out speckle interferometry

    NARCIS (Netherlands)

    Somers, P.A.A.


    Device and method for obtaining a series of interference patterns from an interferometry device, comprising processing means (21) that are connected to detection means (2) of the interferometry device (1). The processing means (21) comprise computing means (22) and memory means (23) connected to the

  3. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space (United States)

    Kohel, James M.


    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  4. Data multiplexing in radio interferometric calibration (United States)

    Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L. V. E.


    New and upcoming radio interferometers will produce unprecedented amount of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full data set using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full data set when a limited number of compute agents are available.

  5. Adding New Colours to Interferometry (United States)


    fibers (yellow cables), as well as the dichroic mirrors by means of which the light beams from the three telescopes are split into separate wavebands. AMBER will also combine three light beams from as many telescopes - this is a world premiere for large telescopes such as the VLT. The ability to combine three beams, rather than just two as in a conventional interferometer, provides a substantial increase in the efficiency of observations, permitting astronomers to obtain simultaneously three baselines instead of one. The combination of these three baselines also permits the computation of the so-called closure phase, an important mathematical quantity that can be used in imaging applications. Exciting scientific opportunites These observational capabilities, characterized by the highest possible image sharpness and enormous sensitivity, make AMBER a unique instrument for addressing a large number of frontline astronomical topics. In particular, it is expected that AMBER will greatly contribute by: * Obtaining very detailed images of dusty discs around young stars for studies of the formation of stars and of planets in other solar systems. With its exceedingly sharp view, AMBER will be able to observe structures of the size of Mercury's orbit in stars located in the major nearby star-forming regions. * Providing new images and spectra that will improve our understanding of the physics of black holes believed to be present in the central parts of all galaxies. AMBER will make it possible to look at the innermost parts of other galaxies, thereby providing information on their central engines. * Detecting for the first time the light of "hot Jupiters", that is planets orbiting very close to their parent stars. It will be possible to determine the mass of these planets and to study their atmosphere directly by means of spectral observations. This is equivalent to detecting - and analysing - the light of a dragonfly in the vicinity of a lighthouse. Next Steps After the first

  6. Shocks in relativistic transverse stratified jets. A new paradigm for radio-loud AGN (United States)

    Hervet, O.; Meliani, Z.; Zech, A.; Boisson, C.; Cayatte, V.; Sauty, C.; Sol, H.


    Context. The transverse stratification of active galactic nuclei (AGN) jets is suggested by observations and theoretical arguments, as a consequence of intrinsic properties of the central engine (accretion disc + black hole) and external medium. On the other hand, the one-component jet approaches are heavily challenged by the various observed properties of plasmoids in radio jets (knots), often associated with internal shocks. Given that such a transverse stratification plays an important role on the jets acceleration, stability, and interaction with the external medium, it should also induce internal shocks with various strengths and configurations, able to describe the observed knots behaviours. Aims: By establishing a relation between the transverse stratification of the jets, the internal shock properties, and the multiple observed AGN jet morphologies and behaviours, our aim is to provide a consistent global scheme of the various AGN jet structures. Methods: Working on a large sample of AGN radio jets monitored in very long baseline interferometry (VLBI) by the MOJAVE collaboration, we determined the consistency of a systematic association of the multiple knots with successive re-collimation shocks. We then investigated the re-collimation shock formation and the influence of different transverse stratified structures by parametrically exploring the two relativistic outflow components with the specific relativistic hydrodynamic code AMRVAC. Results: We were able to link the different spectral classes of AGN with specific stratified jet characteristics, in good accordance with their VLBI radio properties and their accretion regimes. High-frequency synchrotron peaked BL Lacs, associated with advection-dominated accretion flow (ADAF) discs, are consistent with the simulations of a very weak outer jet (<1% of the total energy) and reproduce stationary equal-distance internal shocks damped within a short distance from the central object. Flat spectrum radio quasars

  7. Fabry-Perot interferometry for microplasma diagnostics

    International Nuclear Information System (INIS)

    Hojo, H.; Mase, A.


    A new method for determining the electron density of a thin plasma by means of Fabry-Perot interferometry is proposed. The interferometer consists of two plasma layers and dielectric material surrounded by two plasma layers. The transmittance of electromagnetic waves across the interferometer is calculated, and Fabry-Perot resonances are demonstrated. It is shown that the electron density can be determined from the measurement of the Fabry-Perot resonance frequencies. This method can also be applied to the measurement of conduction electron density in semiconductor films

  8. Ten Years of Speckle Interferometry at SOAR (United States)

    Tokovinin, Andrei


    Since 2007, close binary and multiple stars are observed by speckle interferometry at the 4.1 m Southern Astrophysical Research (SOAR) telescope. The HRCam instrument, observing strategy and planning, data processing and calibration methods, developed and improved during ten years, are presented here in a concise way. Thousands of binary stars were measured with diffraction-limited resolution (29 mas at 540 nm wavelength) and a high accuracy reaching 1 mas; 200 new pairs or subsystems were discovered. To date, HRCam has performed over 11,000 observations with a high efficiency (up to 300 stars per night). An overview of the main results delivered by this instrument is given.

  9. Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry. (United States)

    Nowbahar, Arash; Mansard, Vincent; Mecca, Jodi M; Paul, Mou; Arrowood, Tina; Squires, Todd M


    A range of academic and industrial fields exploit interfacial polymerization in producing fibers, capsules, and films. Although widely used, measurements of reaction kinetics remain challenging and rarely reported, due to film thinness and reaction rapidity. Here, polyamide film formation is studied using microfluidic interferometry, measuring monomer concentration profiles near the interface during the reaction. Our results reveal that the reaction is initially controlled by a reaction-diffusion boundary layer within the organic phase, which allows the first measurements of the rate constant for this system.

  10. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail:, E-mail:, E-mail: [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)


    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  11. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.


    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  12. Frequency scanning interferometry for CLIC component fiducialisation

    CERN Document Server

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department


    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  13. Radio frequency detection assembly and method for detecting radio frequencies (United States)

    Cown, Steven H.; Derr, Kurt Warren


    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  14. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space (United States)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; hide


    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  15. Applications of atom interferometry - from ground to space (United States)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang


    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9

  16. Diffusion in solids with holographic interferometry (United States)

    Liu, Dingyu


    It is of great importance for the formation of p-n junction in semiconductors by penetrating some impurities through the depth near the surface, so it has long been paid attention to control the concentration distribution of impurities during the diffusion process. In recent years, ionic carburizing, and ion bombardment penetration etc. for the treatment of metal surface have also attracted by material sciences. It requires that the diffusion depth and the diffusion time of the impurities should be under precise control. Different methods, such as the method of radioisotopic detection and the method of chemical analysis have been adopted, however, the reports of different workers are very different, especially in the real time measurement, so, finding new method is never ending. In 1984, H. Fenichel have performed experiments on the solutions of table salt and sugar with the method of holographic interferometry. As for metals which are opaque for the visible light, but they become transparent by making them into a very thin film so that, in principle, the diffusion of atoms within a film is capable of measure by holographic interferometry. Alternatively, the electromagnetic waves within 1 - 70 micrometers wavelengths may be utilized, some materials, such as high purified germanium and silicon are good materials for infrared transmission. Some fluorides of alkaline-earth metals have high transmittance in the range of 1 - 8 micrometers , the concentration of impurities in the semiconductor and metal surface treatment are of 1015 - 1020 atoms per cubic cm, which is capable of detection.

  17. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.


    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  18. GLINT. Gravitational-wave laser INterferometry triangle (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine


    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  19. Frequency domain interferometry mode observations of PMSE using the EISCAT VHF radar

    Directory of Open Access Journals (Sweden)

    P. B. Chilson


    Full Text Available During the summer of 1997 investigations into the nature of polar mesosphere summer echoes (PMSE were conducted using the European incoherent scatter (EISCAT VHF radar in Norway. The radar was operated in a frequency domain interferometry (FDI mode over a period of two weeks to study the frequency coherence of the returned radar signals. The operating frequencies of the radar were 224.0 and 224.6 MHz. We present the first results from the experiment by discussing two 4-h intervals of data collected over two consecutive nights. During the first of the two days an enhancement of the FDI coherence, which indicates the presence of distinct scattering layers, was found to follow the lower boundary of the PMSE. Indeed, it is not unusual to observe that the coherence values are peaked around the heights corresponding to both the lower- and upper-most boundaries of the PMSE layer and sublayers. A Kelvin-Helmholtz mechanism is offered as one possible explanation for the layering structure. Additionally, our analysis using range-time-pseudocolor plots of signal-to-noise ratios, spectrograms of Doppler velocity, and estimates of the positions of individual scattering layers is shown to be consistent with the proposition that upwardly propagating gravity waves can become steepened near the mesopause.Key words: Ionosphere (polar ionosphere · Meteorology and Atmospheric Dynamics (middle atmosphere dynamics · Radio Science (Interferometry

  20. Frequency domain interferometry mode observations of PMSE using the EISCAT VHF radar

    Directory of Open Access Journals (Sweden)

    P. B. Chilson

    Full Text Available During the summer of 1997 investigations into the nature of polar mesosphere summer echoes (PMSE were conducted using the European incoherent scatter (EISCAT VHF radar in Norway. The radar was operated in a frequency domain interferometry (FDI mode over a period of two weeks to study the frequency coherence of the returned radar signals. The operating frequencies of the radar were 224.0 and 224.6 MHz. We present the first results from the experiment by discussing two 4-h intervals of data collected over two consecutive nights. During the first of the two days an enhancement of the FDI coherence, which indicates the presence of distinct scattering layers, was found to follow the lower boundary of the PMSE. Indeed, it is not unusual to observe that the coherence values are peaked around the heights corresponding to both the lower- and upper-most boundaries of the PMSE layer and sublayers. A Kelvin-Helmholtz mechanism is offered as one possible explanation for the layering structure. Additionally, our analysis using range-time-pseudocolor plots of signal-to-noise ratios, spectrograms of Doppler velocity, and estimates of the positions of individual scattering layers is shown to be consistent with the proposition that upwardly propagating gravity waves can become steepened near the mesopause.

    Key words: Ionosphere (polar ionosphere · Meteorology and Atmospheric Dynamics (middle atmosphere dynamics · Radio Science (Interferometry

  1. Rationing with baselines

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave


    We introduce a new operator for general rationing problems in which, besides conflicting claims, individual baselines play an important role in the rationing process. The operator builds onto ideas of composition, which are not only frequent in rationing, but also in related problems...... such as bargaining, choice, and queuing. We characterize the operator and show how it preserves some standard axioms in the literature on rationing. We also relate it to recent contributions in such literature....

  2. The TDAQ Baseline Architecture

    CERN Multimedia

    Wickens, F J

    The Trigger-DAQ community is currently busy preparing material for the DAQ, HLT and DCS TDR. Over the last few weeks a very important step has been a series of meetings to complete agreement on the baseline architecture. An overview of the architecture indicating some of the main parameters is shown in figure 1. As reported at the ATLAS Plenary during the February ATLAS week, the main area where the baseline had not yet been agreed was around the Read-Out System (ROS) and details in the DataFlow. The agreed architecture has: Read-Out Links (ROLs) from the RODs using S-Link; Read-Out Buffers (ROB) sited near the RODs, mounted in a chassis - today assumed to be a PC, using PCI bus at least for configuration, control and monitoring. The baseline assumes data aggregation, in the ROB and/or at the output (which could either be over a bus or in the network). Optimization of the data aggregation will be made in the coming months, but the current model has each ROB card receiving input from 4 ROLs, and 3 such c...

  3. Seeing Stars - Intensity Interferometry in the Laboratory & on the Ground (United States)

    Carlile, Colin; Dravins, Dainis


    has been sent to CTA expressing these intentions. An attractive aspect of II is its complementarity to the principle goal of CTA - the exploration of high energy cosmic rays via the Cherenkov light they generate in the atmosphere. This can only be observed under the most demanding atmospheric conditions whereas II can be recorded when conditions are poor: with a bright Moon, during periods of turbulence; in hazy conditions; or after dusk and before dawn. Two further advantages of implementing an II option on CTA are the minimal marginal costs incurred to an already 400M€ investment and, secondly, that even a few telescopes would produce unique scientific results even in the early days when the CTA array is far from complete. [1] Dainis Dravins and Colin Carlile, SPIE Newsroom (2016), [2] D. Dravins, T. Lagadec, P.D. Nuñez, Nature Communications 6, 6852 (2015)

  4. Impact of cognitive radio on radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.; Baan, W.A.


    The introduction of new communication techniques requires an increase in the efficiency of spectrum usage. Cognitive radio is one of the new techniques that fosters spectrum efficiency by using unoccupied frequency spectrum for communications. However, cognitive radio will increase the transmission


    National Aeronautics and Space Administration — The Mars Pathfinder (MPF) Radio Science (RS) data archive contains both raw radio tracking data collected during the surface lifetime of the MPF Lander and results...

  6. Over-the-Air Deep Learning Based Radio Signal Classification (United States)

    O'Shea, Timothy James; Roy, Tamoghna; Clancy, T. Charles


    We conduct an in depth study on the performance of deep learning based radio signal classification for radio communications signals. We consider a rigorous baseline method using higher order moments and strong boosted gradient tree classification and compare performance between the two approaches across a range of configurations and channel impairments. We consider the effects of carrier frequency offset, symbol rate, and multi-path fading in simulation and conduct over-the-air measurement of radio classification performance in the lab using software radios and compare performance and training strategies for both. Finally we conclude with a discussion of remaining problems, and design considerations for using such techniques.

  7. La radio digital

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Cortés S.


    Full Text Available La radio digital es un producto de la llamada convergencia digital. Las nuevas tecnologías interconectadas permiten la aparición de nuevos modos de audiencia y la implementación de herramientas versátiles. Habla del problema de los estándares, de la radio satelital, la radio digital terrestre, las radios internacionales, la interactividad.

  8. Monitoring gas reservoirs by seismic interferometry (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico


    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  9. SAMSI: An orbiting spatial interferometer for micro-arc second astronomical observations. [Spacecraft Array for Michelson Spatial Interferometry (SAMSI) (United States)

    Stachnik, R. V.; Gezari, D. Y.


    The concept and performance of (SAMSI) Spacecraft Array for Michelson Spatial Interferometry, an orbiting spatial interferometer comprised of three free-flying spacecraft, two collector telescopes and a central mixing station are described. In the one-dimensional interferometry mode orbits exist which provide natural scanning of the baseline. These orbits place extremely small demands on thrusters and fuel consumption. Resolution of 0.00001 arcsecond and magnitude limits of mv = 15 to 20 are achievable in a single orbit. In the imaging mode, SAMSI could synthesize images equivalent to those produced by equal diameter filled apertures in space, making use of the fuel resupply capability of a space station. Simulations indicate that image reconstruction can be performed with milliarcsecond resolution to a visual magnitude 12 in 12 hr of spiral scanning integration time.

  10. Ionosphere and Radio Communication

    Indian Academy of Sciences (India)

    ionosphere is used for radio communication and navigation as it reflects long, medium, as well as short radio waves. Since solar radiation is the main cause of the existence of iono- sphere, any variation in the radiations can affect the entire radio communication system. This article attempts to briefly introduce the readers to ...

  11. Plasma diagnostics by resonant interferometry and holography

    Energy Technology Data Exchange (ETDEWEB)

    Dreiden, G.V.; Zaidel, A.N.; Ostrovskaya, G.V.; Ostrovskii, Yu.I.; Pobedonostseva, N.A.; Tanin, L.V.; Filippov, V.N.; Shedova, E.N.


    The methods of resonant interferometry and holography are discussed, and their ranges of applicability are estimated. Resonant methods enjoy a high sensitivity and a high selectivity in comparison with ordinary interferometric and holographic methods. Their primary field of application is with dense plasmas, although in individual cases it is possible to determine atomic densities down to N/sub a/ = 10/sup 9/ cm/sup -3/ and below. For a plasma with N/sub a/ = 10/sup 18/-10/sup 19/ cm/sup -3/ the minimum detectable atomic density is about N/sub a/ = 10/sup 14/ cm/sup -3/. The specific requirements on light sources and methods for studying them are described. The capabilities of these methods are demonstrated for the cases of potassium, sodium, lithium, and hydrogen plasmas; the atomic and electron densities are determined, and the plasma dynamics is studied.

  12. Atom interferometry using a shaken optical lattice (United States)

    Weidner, C. A.; Yu, Hoon; Kosloff, Ronnie; Anderson, Dana Z.


    We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lattice. By phase modulating (shaking) the lattice, we control the momentum state of the atoms. Through a sequence of shaking functions, the atoms undergo an interferometer sequence of splitting, propagation, reflection, reverse propagation, and recombination. Each shaking function in the sequence is optimized with a genetic algorithm to achieve the desired momentum state transitions. As with conventional atom interferometers, the sensitivity of the shaken lattice interferometer increases with interrogation time. The shaken lattice interferometer may also be optimized to sense signals of interest while rejecting others, such as the measurement of an ac inertial signal in the presence of an unwanted dc signal.

  13. Compressed-sensing wavenumber-scanning interferometry (United States)

    Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli


    The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.

  14. Active SU(1,1) atom interferometry (United States)

    Linnemann, D.; Schulz, J.; Muessel, W.; Kunkel, P.; Prüfer, M.; Frölian, A.; Strobel, H.; Oberthaler, M. K.


    Active interferometers use amplifying elements for beam splitting and recombination. We experimentally implement such a device by using spin exchange in a Bose-Einstein condensate. The two interferometry modes are initially empty spin states that get spontaneously populated in the process of parametric amplification. This nonlinear mechanism scatters atoms into both modes in a pairwise fashion and generates a non-classical state. Finally, a matched second period of spin exchange is performed that nonlinearly amplifies the output signal and maps the phase onto readily detectable first moments. Depending on the accumulated phase this nonlinear readout can reverse the initial dynamics and deamplify the entangled state back to empty spin states. This sequence is described in the framework of SU(1,1) mode transformations and compared to the SU(2) angular momentum description of passive interferometers.

  15. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.


    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  16. Edge effects in composites by moire interferometry (United States)

    Czarnek, R.; Post, D.; Herakovich, C.


    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  17. Externally Dispersed Interferometry for Precision Radial Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E


    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  18. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.


    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  19. Multi-Axis Heterodyne Interferometry (MAHI) (United States)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft

  20. Speckle interferometry of asteroids. I - 433 Eros (United States)

    Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.


    Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.

  1. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques (United States)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.


    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  2. Interference analysis for UAV connectivity over LTE using aerial radio measurements

    DEFF Research Database (Denmark)

    Kovacs, Istvan; Amorim, Rafhael Medeiros de; Nguyen, Huan Cong


    for these services is that the radio communication link must reliably cover a wide(er) area, when compared to the visual-line-of-sight range radio links currently used. Standardized cellular systems such as Long Term Evolution UMTS (LTE), are an obvious candidate to provide the radio communication link to UAVs....... In this paper, we use empirical measurements in live rural LTE networks to assess the impact of uplink and downlink radio interference on the UAV radio connectivity performance. Further, we provide a baseline analysis on the potential of interference mitigation schemes, needed to provide a reliable radio...

  3. Ham radio for dummies

    CERN Document Server

    Silver, H Ward


    An ideal first step for learning about ham radio Beyond operating wirelessly, today's ham radio operators can transmit data and pictures; use the Internet, laser, and microwave transmitters; and travel to places high and low to make contact. This hands-on beginner guide reflects the operational and technical changes to amateur radio over the past decade and provides you with updated licensing requirements and information, changes in digital communication (such as the Internet, social media, and GPS), and how to use e-mail via radio. Addresses the critical use of ham radio for replacing downe

  4. Investigation of surface deformations by double exposure holographic interferometry

    International Nuclear Information System (INIS)

    Ecevit, F.N.; Guven, H.; Aydin, R.


    Surface deformations of rigid bodies produced by thermal as well as mechanical strains have been investigated using double-exposure holographic interferometry. The recorded interference fringes have been discussed qualitatively. (author). 9 refs, 4 figs

  5. The digital holographic interferometry in resonant acoustic spectroscopy

    International Nuclear Information System (INIS)



    The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)

  6. Radiography of Spanish Radio

    Directory of Open Access Journals (Sweden)

    Dra. Emma Rodero Antón


    Full Text Available In its eighty years of existence, radio has been always characterized to adapt to the social, cultural and technological transformations. Thus it has been until this moment. Nevertheless, some years ago, the authors and professionals of this medium have been detecting a stagnation that affects to its structure. At a time in continuous technological evolution, radio demands a deep transformation. For that reason, from the conviction of which the future radio, public and commercial, will necessarily have to renew itself, in this paper we establish ten problems and their possible solutions to the radio crisis in order to draw an x-ray of radio in Spain. Radio has future, but it is necessary to work actively by it. That the radio continues being part of sound of our life, it will depend on the work of all: companies, advertisers, professionals, students, investigators and listeners.

  7. Using Optical Interferometry for GEO Satellites Imaging: An Update (United States)


    Using Optical Interferometry for GEO satellites imaging: an update Sergio R. Restainoa,J. Thomas Armstronga, Ellyn K. Bainesa, Henrique R. Schmitta...of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...detection of a satellite . Keywords: geostationary satellites , optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to

  8. 2017 Annual Technology Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hand, M. M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beiter, Philipp C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turchi, Craig S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feldman, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maness, Michael [Formerly NREL; O' Connor, Patrick [Oak Ridge National Laboratory


    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), the National Renewable Energy Laboratory annually provides an organized and centralized set of such cost and performance data. The ATB uses the best information from the Department of Energy national laboratories' renewable energy analysts as well as information from the Energy Information Administration for fuel-based technologies. The ATB has been reviewed by experts and it includes the following electricity generation technologies: land-based wind, offshore wind, utility-scale solar photovoltaics (PV), commercial-scale solar PV, residential-scale solar PV, concentrating solar power, geothermal power, hydropower, coal, natural gas, nuclear, and conventional biopower. This webinar presentation introduces the 2017 ATB.

  9. Survey Layanan Publik Pemantauan Frekuensi Radio untuk Radio Amatir Dan Radio Antar Penduduk Indonesia


    Azwar Aziz


    Berlatar belakang fenomena penggunaan amatir radio dan komunikasi radio antar penduduk yang berkaitan dengan faktor layanan publik dari monitor frekuensi radio, dimana peneliti memfokuskan pada permasalahan kondisi pelayanan publik yang diberikan oleh pemerintah tentang penggunaan radio non komersial yang digunakan oleh perorangan. Penelitian ini memperlihatkan penggiat amatir radio dan komunikasi radio antar penduduk bervariasi, mulai dari yang tidak mempunyai izin sampai pada yang memiliki ...

  10. Pumped-Up SU(1,1) Interferometry. (United States)

    Szigeti, Stuart S; Lewis-Swan, Robert J; Haine, Simon A


    Although SU(1,1) interferometry achieves Heisenberg-limited sensitivities, it suffers from one major drawback: Only those particles outcoupled from the pump mode contribute to the phase measurement. Since the number of particles outcoupled to these "side modes" is typically small, this limits the interferometer's absolute sensitivity. We propose an alternative "pumped-up" approach where all the input particles participate in the phase measurement and show how this can be implemented in spinor Bose-Einstein condensates and hybrid atom-light systems-both of which have experimentally realized SU(1,1) interferometry. We demonstrate that pumped-up schemes are capable of surpassing the shot-noise limit with respect to the total number of input particles and are never worse than conventional SU(1,1) interferometry. Finally, we show that pumped-up schemes continue to excel-both absolutely and in comparison to conventional SU(1,1) interferometry-in the presence of particle losses, poor particle-resolution detection, and noise on the relative phase difference between the two side modes. Pumped-up SU(1,1) interferometry therefore pushes the advantages of conventional SU(1,1) interferometry into the regime of high absolute sensitivity, which is a necessary condition for useful quantum-enhanced devices.

  11. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.


    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  12. A Research-Informed Approach to Teaching about Interferometry in STEM Classrooms (United States)

    Wallace, Colin Scott; Chambers, Timothy G.; Kamenetzky, Julia R.; Prather, Edward E.; Hornstein, Seth D.


    In collaboration with Associated Universities Inc. (AUI), we have engaged in a research and curriculum development program to create a new suite of evidence-based educational materials that bring the science of radio interferometry into STEM classrooms. These materials, which include Think-Pair-Share questions, presentation slides, and a new Lecture-Tutorial, can be used together or separately to help students understand the advantages of radio interferometers over single telescopes. Appropriate for physical science classrooms from middle school to the introductory college level, the learner-centered active engagement activities we developed are going through an iterative research and assessment process to ensure that they enable students to achieve increased conceptual understandings and reasoning skills. In this talk, we present several of the conceptually challenging collaborative learning tasks that students encounter with this new suite of educational materials and some of the assessment questions we are using to assess the efficacy of their use in general education college-level astronomy courses.

  13. Using Seismic Interferometry to Investigate Seismic Swarms (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.


    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  14. The radio structure of radio-quiet quasars

    NARCIS (Netherlands)

    Leipski, C.; Falcke, H.D.E.; Bennert, N.; Hüttemeister, S.


    Aims.We investigate the radio emitting structures of radio-quiet active galactic nuclei with an emphasis on radio-quiet quasars to study their connection to Seyfert galaxies.
    Methods: .We present and analyse high-sensitivity VLA radio continuum images of 14 radio-quiet quasars and six Seyfert

  15. Senior radio listeners

    DEFF Research Database (Denmark)

    Blaakilde, Anne Leonora

    Radiobroadcasting and the hardware materialization of radio have during the 20th century changed significantly, which means that senior radio listeners have travelled along with this evolution from large, impressive radio furnitures to DAB and small, wireless, mobile devices, and from grave...... and solemn radio voices to lightharted, laughing and chatting speakers. Senior radio listerners have experienced the development and refinements of technique, content and genres. It is now expected of all media users that they are capable of crossing media, combining, juggling and jumping between various...... media platforms, not the least when listening to radio. The elder generation is no exception from this. Recently, for instance, the Danish public broadcast DR has carried out an exodus of programmes targeted for the senior segment. These programmes are removed from regular FM and sent to DAB receivers...

  16. Monitoring of Land-Surface Deformation in the Karamay Oilfield, Xinjiang, China, Using SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Yusupujiang Aimaiti


    Full Text Available Synthetic Aperture Radar (SAR interferometry is a technique that provides high-resolution measurements of the ground displacement associated with various geophysical processes. To investigate the land-surface deformation in Karamay, a typical oil-producing city in the Xinjiang Uyghur Autonomous Region, China, Advanced Land Observing Satellite (ALOS Phased Array L-band Synthetic Aperture Radar (PALSAR data were acquired for the period from 2007 to 2009, and a two-pass differential SAR interferometry (D-InSAR process was applied. The experimental results showed that two sites in the north-eastern part of the city exhibit a clear indication of land deformation. For a further evaluation of the D-InSAR result, the Persistent Scatterer (PS and Small Baseline Subset (SBAS-InSAR techniques were applied for 21 time series Environmental Satellite (ENVISAT C-band Advanced Synthetic Aperture Radar (ASAR data from 2003 to 2010. The comparison between the D-InSAR and SBAS-InSAR measurements had better agreement than that from the PS-InSAR measurement. The maximum deformation rate attributed to subsurface water injection for the period from 2003 to 2010 was up to approximately 33 mm/year in the line of sight (LOS direction. The interferometric phase change from November 2007 to June 2010 showed a clear deformation pattern, and the rebound center has been expanding in scale and increasing in quantity.

  17. Senior radio listeners

    DEFF Research Database (Denmark)

    Blaakilde, Anne Leonora

    Radiobroadcasting and the hardware materialization of radio have during the 20th century changed significantly, which means that senior radio listeners have travelled along with this evolution from large, impressive radio furnitures to DAB and small, wireless, mobile devices, and from grave...... media platforms, not the least when listening to radio. The elder generation is no exception from this. Recently, for instance, the Danish public broadcast DR has carried out an exodus of programmes targeted for the senior segment. These programmes are removed from regular FM and sent to DAB receivers...

  18. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai


    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  19. Laser Wakefield diagnostic using holographic longitudinal interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Esarey, E.; Leemans, W.P.


    We propose a diagnostic technique for wakefield measurement in plasma channels. A new technique for plasma channel creation, the Ignitor Heater scheme was proposed and experimentally tested in hydrogen and nitrogen previously. It makes use of two laser pulses. The Ignitor, an ultrashort (sub 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used to heat the existing spark via in-verse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. Laser pulses injected into such plasma channels produce a plasma wake that has a phase velocity close to the speed of light. A discussion of plasma wake measurements, using a Longitudinal Interferometry Wakefield Diagnostic Based on Time Domain Rayleigh Refractometry with Holographic Inversion, will be presented.

  20. General Relativistic Effects in Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.


    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  1. White light interferometry applications in nanometrology (United States)

    Damian, V. S.; Bojan, M.; Schiopu, P.; Iordache, I.; Ionita, B.; Apostol, D.


    Precise three-dimensional (3D) information is demanded by many new industries such as: semiconductor, photonics, MEMS, communications, microprocessing etc. [1, 2]. The problem is to select the proper measurement methods for material characteristics in the measurement field, from the point of view of the measurement accuracy and errors that can appear [1, 4, 3, 5]. There are several optical 3D measurements approaches, e.g.: triangulation, grating projection with phase shift, moiré with phase shift, confocal and (white light) interferometry (WLI) [2, 3]. They can measures: surface profile, roughness, step height, microstructure, and other surface parameters. The white light interferometers allows generally surface profiling with high accuracy with no phase ambiguity errors, making them more suitable for profiling stepped or discontinuous surfaces. WLI technique to determine the thickness of thin coating on reflective materials is very effective. One of the first techniques to utilize the short coherence of the white light source was the scanning interference microscope. There are on the market a variety of scanning white light interferometers. Measurement calibration is done using the short coherence feature of white light. Some of the presented applications in nanometrology are thin films thickness measurements of: carbons films on glass, metallic films on Silicon, ablated small holes diameter, and profiles of micro / nanostructure.

  2. Multifrequency perturbations in matter-wave interferometry (United States)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.


    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  3. Bounding the Higgs boson width through interferometry. (United States)

    Dixon, Lance J; Li, Ye


    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  4. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.


    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  5. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry (United States)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto


    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  6. From master slave interferometry to complex master slave interferometry: theoretical work (United States)

    Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian


    A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.

  7. Fundamental properties of stars using asteroseismology from Kepler and CoRoT and interferometry from the CHARA Array

    DEFF Research Database (Denmark)

    Huber, D.; Ireland, M.J.; Bedding, T.R.


    We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining...... interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes, and high-resolution spectroscopy, we derive a full set of near-model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency...

  8. Digital Double-Pulse Holographic Interferometry for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    H.J. Tiziani


    Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.

  9. Calibration artefacts in radio interferometry - III. Phase-only calibration and primary beam correction (United States)

    Grobler, T. L.; Stewart, A. J.; Wijnholds, S. J.; Kenyon, J. S.; Smirnov, O. M.


    This is the third installment in a series of papers in which we investigate calibration artefacts. Calibration artefacts (also known as ghosts or spurious sources) are created when we calibrate with an incomplete model. In the first two papers of this series, we developed a mathematical framework which enabled us to study the ghosting mechanism itself. An interesting concomitant of the second paper was that ghosts appear in symmetrical pairs. This could possibly account for spurious symmetrization. Spurious symmetrization refers to the appearance of a spurious source (the antighost) symmetrically opposite an unmodelled source around a modelled source. The analysis in the first two papers indicates that the antighost is usually very faint, in particular, when a large number of antennas are used. This suggests that spurious symmetrization will mainly occur at an almost undetectable flux level. In this paper, we show that phase-only calibration produces an antighost that is N-times (where N denotes the number of antennas in the array) as bright as the one produced by phase and amplitude calibration and that this already bright ghost can be further amplified by the primary beam correction.

  10. Radio Surveys: an Overview

    NARCIS (Netherlands)

    Morganti, Raffaella

    Radio astronomy has provided important surveys that have made possible key (and sometimes serendipitous) discoveries. I will briefly mention some of the past continuum and line (HI) radio surveys as well as new, on-going surveys and surveys planned for the near future. This new generation of large

  11. Ionosphere and Radio Communication

    Indian Academy of Sciences (India)

    The upperionosphere is used for radio communication and navigationas it reflects long, medium, as well as short radio waves. Sincesolar radiation is the main cause of the existence of ionosphere,any variation in the radiations can affect the entireradio communication system. This article attempts to brieflyintroduce the ...

  12. Writing for Radio. (United States)

    Tupper, Marianna S.


    Describes a 24-hour commercial radio station simulation class project for eighth-grade language arts. Students wrote their own scripts, chose music and were disc jockeys on their own music and talk shows, and prepared news and traffic reports. Guest speakers from actual commercial radio came in to discuss issues such as advertising, censorship,…


    Directory of Open Access Journals (Sweden)

    M. A. Lebedeva


    Full Text Available This paper presents SAR interferometric data obtained in the study of surface deformations of different origin within the Upper Angara-Muya interbasin link of the northeastern segment of the Baikal rift system, Russia. Differential SAR interferometry using images with small perpendicular baselines was applied in this geodynamical study. The potential of using ENVISAT/ASAR and ALOS/PALSAR data is discussed. New geodynamical data on recent strain patterns were obtained. The endogenous linear-localized and areal deformations were revealed in the influence zone of the active Muyakan fault. The origin of these deformations is discussed. The landslide that negatively affects the Baikal-Amur railway facilities is also studied. The use of SAR data for detailed study and monitoring of the landslide is discussed. It is confirmed that natural hazard in the study area is growing due to the ongoing landsliding.

  14. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results

    NARCIS (Netherlands)

    Raucoules, D.; Bourgine, B.; Michele, M. de; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; Agudo, M.; Engdahl, M.


    This article presents the main results of the Persistent Scatterer Interferometry Codes Cross Comparison and Certification for long term differential interferometry (PSIC4) project. The project was based on the validation of the PSI (Persistent Scatterer Interferometry) data with respect to

  15. Progress in electron- and ion-interferometry

    International Nuclear Information System (INIS)

    Hasselbach, Franz


    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods-e.g. mapping and visualization of electric and magnetic fields-were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are-due to the absence of lenses with their aberrations-not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new sources

  16. Absolute marine gravimetry with matter-wave interferometry. (United States)

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F


    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  17. Pipeline monitoring with interferometry in non-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    McCardle, Adrian; Rabus, Bernhard; Ghuman, Parwant [MacDonald Dettwiler, Richmond, BC (Canada); Freymueller, Jeff T. [University of Alaska, Fairbanks (United States)


    Interferometry has become a proven technique for accurately measuring ground movements caused by subsidence, landslides, earthquakes and volcanoes. Using space borne sensors such as the ERS, ENVISAT and RADARSAT satellites, ground deformation can be monitored on a millimeter level. Traditionally interferometry has been limited to arid areas however new technology has allowed for successful monitoring in vegetated regions and areas of changing land-cover. Analysis of ground movement of the Trans-Alaskan pipeline demonstrates how these techniques can offer pipeline engineers a new tool for observing potential dangers to pipeline integrity. Results from Interferometric Point Target Analysis were compared with GPS measurements and speckle tracking interferometry was demonstrated to measure a major earthquake. (author)

  18. Practical optical interferometry imaging at visible and infrared wavelengths

    CERN Document Server

    Buscher, David F


    Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...

  19. Integrated Optics Achromatic Nuller for Stellar Interferometry (United States)

    Ksendzov, Alexander


    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  20. Intracavity interferometry using synchronously pumped OPO (United States)

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan; Navrátil, Petr


    The concept of system for intracavity interferometry based on the beat note detection in subharmonic synchronously intracavity pumped optical parametrical oscillator (OPO) is presented. The system consisted of SESAM-modelocked, picosecond, diode pumped Nd:YVO4 laser, operating at wavelength 1.06 μm and tunable linear intracavity pumped OPO based on MgO:PPLN crystal, widely tunable in 1.5 μm able to deliver two independent trains of picosecond pulses. The optical length of the OPO cavity was set to be exactly twice the pumping cavity length. In this configuration the OPO produces signal pulses with the same repetition frequency as the pump laser but the signal consists of two completely independent pulse trains. For purpose of pump probe measurements the setup signal with half repetition rate and scalable amplitude was derived from the OPO signal using RF signal divider, electropotical modulator and fiber amplifier. The impact of one pump beam on the sample is detected by one probing OPO train, the other OPO train is used as a reference. The beat note measured using the intracavity interferometer is proportional to phase modulation caused by the pump beam. The bandwidth of observed beat-note was less than 1 Hz (FWHM), it corresponds to a phase shift measurement error of less than 1.5 × 10-7 rad without any active stabilization. Such compact low-cost system could be used for ultra-sensitive phase-difference measurements (e.g. nonlinear refractive index measurement) for wide range of material especially in spectral range important for telecom applications.

  1. Photon exchange and decoherence in neutron interferometry

    International Nuclear Information System (INIS)

    Sulyok, G.


    The general subject of the present work concerns the action of time-dependent, spatially restricted magnetic fields on the wave function of a neutron. Special focus lies on their application in neutron interferometry. For arbitrary time-periodic fields, the corresponding Schroedinger equation is solved analytically. It is then shown, how the occurring exchange of energy quanta between the neutron and the modes of the magnetic field appears in the temporal modulation of the interference pattern between the original wavefunction and the wavefunction altered by the magnetic field. By Fourier analysis of the time-resolved interference pattern, the transition probabilities for all possible energy transfers are deducible. Experimental results for fields consisting of up to five modes are presented. Extending the theoretical approach by quantizing the magnetic field allows deeper insights on the underlying physical processes. For a coherent field state with a high mean photon number, the results of the calculation with classical fields is reproduced. By increasing the number of field modes whose relative phases are randomly distributed, one approaches the noise regime which offers the possibility of modelling decoherence in the neutron interferometer. Options and limitations of this modelling procedure are investigated in detail both theoretically and experimentally. Noise sources are applied in one or both interferometer path, and their strength, frequency bandwidth and position to each other is varied. In addition, the influence of increasing spatial separation of the neutron wave packet is examined, since the resulting Schroedinger cat-like states play an important role in decoherence theory. (author) [de

  2. Super-virtual refraction interferometry: Theory

    KAUST Repository

    Bharadwaj, Pawan


    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so prevents accurate picking of traveltimes in far-offset traces. To enhance the signal-to-noise ratio of the far-offset traces, we present the theory of super-virtual refraction interferometry where the signal-to-noise ratio (SNR) of far-offset head-wave arrivals can be theoretically increased by a factor proportional to N; here, N is the number of receiver and source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with super-virtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals. There are at least three significant benefits to this methodology: 1). enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of data, 2). the SNR of head waves in a trace that arrive after the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by traveltime tomography, and 3). common receiver-pair gathers can be analyzed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary. © 2011 Society of Exploration Geophysicists.

  3. Interferometry correlations in central p+Pb collisions (United States)

    Bożek, Piotr; Bysiak, Sebastian


    We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.

  4. Unlocking radio broadcasts

    DEFF Research Database (Denmark)

    Skov, Mette; Lykke, Marianne


    This poster reports the preliminary results of a user study uncovering the information seeking behaviour of humanities scholars dedicated to radio research. The study is part of an interdisciplinary research project on radio culture and auditory resources. The purpose of the study is to inform...... the design of information architecture and interaction design of a research infrastructure that will enable future radio and audio based research. Results from a questionnaire survey on humanities scholars‟ research interest and information needs, preferred access points, and indexing levels are reported...

  5. Radio broadcasting via satellite (United States)

    Helm, Neil R.; Pritchard, Wilbur L.


    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  6. Shoestring Budget Radio Astronomy (United States)

    Hoot, John E.


    The commercial exploitation of microwave frequencies for cellular, WiFi, Bluetooth, HDTV, and satellite digital media transmission has brought down the cost of the components required to build an effective radio telescope to the point where, for the cost of a good eyepiece, you can construct and operate a radio telescope. This paper sets forth a family of designs for 1421 MHz telescopes. It also proposes a method by which operators of such instruments can aggregate and archive data via the Internet. With 90 or so instruments it will be possible to survey the entire radio sky for transients with a 24 hour cadence.

  7. Observations of a radio source in the nucleus of M81 with dimensions less than 1300 astronomical units

    International Nuclear Information System (INIS)

    Kellermann, K.I.; Shaffer, D.B.; Pauliny-Toth, I.I.K.; Preuss, E.; Witzel, A.


    Very long baseline interferometer observations of the nucleus of M81 show an unresolved radio source with linear dimensions < or approximately 1300 AU. This is the smallest extragalactic radio source whose size has been directly measured. Its luminosity is intermediate between that of the compact radio source at the galactic center and the luminosity of compact sources found in the centers of extended radio galaxies and quasars

  8. Mechanical Strain Measurement from Coda Wave Interferometry (United States)

    Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.


    Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the

  9. Laser interferometry of radiation driven gas jets (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.


    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  10. DairyBISS Baseline report

    NARCIS (Netherlands)

    Buizer, N.N.; Berhanu, Tinsae; Murutse, Girmay; Vugt, van S.M.


    This baseline report of the Dairy Business Information Service and Support (DairyBISS) project presents the findings of a baseline survey among 103 commercial farms and 31 firms and advisors working in the dairy value chain. Additional results from the survey among commercial dairy farms are

  11. Music, radio and mediatization

    DEFF Research Database (Denmark)

    Michelsen, Morten; Krogh, Mads


    Mediatization has become a key concept for understanding the relations between media and other cultural and social fields. Contributing to the discussions related to the concept of mediatization, this article discusses how practices of radio and music(al life) influence each other. We follow Deacon......’s and Stanyer’s advice to supplement the concept of mediatization with ‘a series of additional concepts at lower levels of abstraction’ and suggest, in this respect, the notion of heterogeneous milieus of music–radio. Hereby, we turn away from the all-encompassing perspectives related to the concept...... of mediatization where media as such seem to be ascribed agency. Instead, we consider historical accounts of music–radio in order to address the complex nonlinearity of concrete processes of mediatization as they take place in the multiple meetings between a decentred notion of radio and musical life....

  12. Social cognitive radio networks

    CERN Document Server

    Chen, Xu


    This brief presents research results on social cognitive radio networks, a transformational and innovative networking paradigm that promotes the nexus between social interactions and cognitive radio networks. Along with a review of the research literature, the text examines the key motivation and challenges of social cognitive radio network design. Three socially inspired distributed spectrum sharing mechanisms are introduced: adaptive channel recommendation mechanism, imitation-based social spectrum sharing mechanism, and evolutionarily stable spectrum access mechanism. The brief concludes with a discussion of future research directions which ascertains that exploiting social interactions for distributed spectrum sharing will advance the state-of-the-art of cognitive radio network design, spur a new line of thinking for future wireless networks, and enable novel wireless service and applications.

  13. Eratosthenes via Ham Radio (United States)

    Koser, John F.


    A secondary geology class used Eratosthenes' method for measuring the circumference of the earth by comparing their measurements of the shadow of a vertical rod to the measurements made by another person contacted by ham radio. (MLH)

  14. Matter wave interferometry in the light of Schroedinger's wave mechanics

    International Nuclear Information System (INIS)


    This is a pre-conference abstracts collection for 67 oral presentations and posters, 62 of them are in INIS scope and are treated individually. The subject matters are interferometers (mainly neutron), interferometry experiments and the related interpretation - and epistemological problems of quantum theory. (qui)

  15. Phase knife-edge laser Schlieren diffraction interferometry with ...

    Indian Academy of Sciences (India)

    The use of phase knife-edge as viewing diaphragm in Schlieren diffraction interferometry not only enhances the fringe contrast but also avoids the loss in phase information as it lets through light from all parts of the test object and its thin interfacing makes the method suitable even for studying weak disturbances. Keywords.

  16. Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Thomas D.


    Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.

  17. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.


    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  18. Time-lapse controlled-source electromagnetics using interferometry

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Wapenaar, C.P.A.

    In time-lapse controlled-source electromagnetics, it is crucial that the source and the receivers are positioned at exactly the same location at all times of measurement. We use interferometry by multidimensional deconvolution (MDD) to overcome problems in repeatability of the source location.

  19. Microquake seismic interferometry with SVD-enhanced Green's function recovery


    Melo, Gabriela; Malcolm, Alison E.


    The conditions under which seismic interferometry (SI) leads to the exact Green's function (GF) are rarely met in practice. As a result, we generally recover only estimates of the true GF. This raises the questions: How good an approximation to the GF can SI give? Can we improve this estimated GF?

  20. Application of Persistent Scatterer Interferometry (PSI) in monitoring ...

    Indian Academy of Sciences (India)

    Keywords. Slope instability; landslide; Lesser Himalaya; remote sensing; radar interferometry. Abstract. Orogenic movements and sub-tropical climate have rendered the slopes of the Himalayan region intensely deformed and weathered. As a result, the incidences of slope failure are quite common all along the Himalayan ...

  1. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)


    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  2. Exploitation of distributed scatterers in synthetic aperture radar interferometry

    NARCIS (Netherlands)

    Samiei Esfahany, S.


    During the last decades, time-series interferometric synthetic aperture radar (InSAR) has emerged as a powerful technique to measure various surface deformation phenomena of the earth. Early generations of time-series InSAR methodologies, i.e. Persistent Scatterer Interferometry (PSI), focused on

  3. Pion interferometry theory for the hydrodynamic stage of multiple processes

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.


    The double pion inclusive cross section for identical particles is described in hydrodynamical theory of multiparticle production. The pion interferometry theory is developed for the case when secondary particles are generated against the background of internal relativistic motion of radiative hadron matter. The connection between correlation functions in various schemes of experiment is found within the framework of relativistic Wigner functions formalism

  4. Micro-Gal level gravity measurements with cold atom interferometry

    International Nuclear Information System (INIS)

    Zhou Min-Kang; Duan Xiao-Chun; Chen Le-Le; Luo Qin; Xu Yao-Yao; Hu Zhong-Kun


    Developments of the micro-Gal level gravimeter based on atom interferometry are reviewed, and the recent progress and results of our group are also presented. Atom interferometric gravimeters have shown high resolution and accuracy for gravity measurements. This kind of quantum sensor has excited world-wide interest for both practical applications and fundamental research. (topical review)

  5. Global-scale seismic interferometry : Theory and numerical examples

    NARCIS (Netherlands)

    Ruigrok, E.N.; Draganov, D.S.; Wapenaar, K.


    Progress in the imaging of the mantle and core is partially limited by the sparse distribution of natural sources; the earthquake hypocenters are mainly along the active lithospheric plate boundaries. This problem can be approached with seismic interferometry. In recent years, there has been

  6. Michelson wide-field stellar interferometry : Principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.


    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in

  7. Wireless radio a history

    CERN Document Server

    Coe, Lewis


    ""Informative...recommended""--Choice; ""interesting...a good read...well worth reading""--Contact Magazine. This history first looks at Marconi's wireless communications system and then explores its many applications, including marine radio, cellular telephones, police and military uses, television and radar. Radio collecting is also discussed, and brief biographies are provided for the major figures in the development and use of the wireless.

  8. ¿Radios ciudadanas?


    López Vigil, José Ignacio


    Educativas, sindicales, populares, comunitarias, libres, rebeldes, participativas, alternativas, alterativas, han sido las denominaciones de la radio cuando su proyecto está al servicio de la gente. Palabras apropiadas y nobles -dice elautor-pero devaluadas, a las que ahora se agrega la radio ciudadana, para relievarla como ejercicio depoder y espacio de verdadera participación de la genteenla vida de su nación.

  9. An Exceptional Radio Flare in Markarian 421

    Directory of Open Access Journals (Sweden)

    Richards Joseph L.


    Full Text Available In September 2012, the high-synchrotron-peaked (HSP blazar Markarian 421 underwent a rapid wideband radio flare, reaching nearly twice the brightest level observed in the centimeter band in over three decades of monitoring. In response to this event we carried out a five epoch centimeter- to millimeter-band multifrequency Very Long Baseline Array (VLBA campaign to investigate the aftermath of this emission event. Rapid radio variations are unprecedented in this object and are surprising in an HSP BL Lac object. In this flare, the 15 GHz flux density increased with an exponential doubling time of about 9 days, then faded to its prior level at a similar rate. This is comparable with the fastest large-amplitude centimeter-band radio variability observed in any blazar. Similar flux density increases were detected up to millimeter bands. This radio flare followed about two months after a similarly unprecedented GeV gamma-ray flare (reaching a daily E > 100 MeV flux of (1.2 ± 0.7 × 10−6 ph cm−2 s−1 reported by the Fermi Large Area Telescope (LAT collaboration, with a simultaneous tentative TeV detection by ARGO-YBJ. A cross-correlation analysis of long-term 15 GHz and LAT gamma-ray light curves finds a statistically significant correlation with the radio lagging ~40 days behind, suggesting that the gamma-ray emission originates upstream of the radio emission. Preliminary results from our VLBA observations show brightening in the unresolved core region and no evidence for apparent superluminal motions or substantial flux variations downstream.

  10. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner


    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  11. Future prospects for stellar intensity interferometry

    International Nuclear Information System (INIS)

    Lake, R.J.W.


    Full text: The technique of Stellar Intensity lnterferometry (SII) was first successfully demonstrated by Hanbury-Brown in 1956 at Jodrell Bank. SII uses the correlation in intensity fluctuations of starlight as a function of observational baseline to determine angular diameters and other gross features of main sequence stars. In 1962 an observatory was established by Hanbury-Brown in Narrabri NSW. Between 1965 and 1972 the angular diameters of 32 stars covering the spectral range O to F were measured. Orbital parameters of several unresolved binary stars were also determined and attempts were made by the author to directly measure the limb darkening of Sirius and the rotational distortion of Altair. Following the success of the Narrabri SII the Australian Federal Government provided a grant to Sydney University to develop a Very Large SII capable of making observational measurements on about a thousand stars. The development of this VLSII was however shelved in preference to the development of a potentially more sensitive long baseline Michelson Stellar Interferometer. This latter instrument known as SUSI (Sydney University Stellar Interferometer) has been in operation at Narrabri since 1995. Encouraged by the early results of SUSI and their own efforts in the use of active optics to reduce the effects of atmospheric scintillation a number of international observatories are now active in the development of long baseline or large aperture Michelson Stellar Interferometers. However SII while sacrificing sensitivity has a number of technical advantages over MSI as SII is far less sensitive to atmospheric effects and can be readily developed to work over very long baselines. This paper through technical review and theoretical modeling examines how a modern VLSII could be constructed and operated and addresses the limitations to its sensitivity. In particular it examines how existing Australian industry could contribute to the development of a VLSII with sufficient

  12. Program Baseline Change Control Procedure

    International Nuclear Information System (INIS)


    This procedure establishes the responsibilities and process for approving initial issues of and changes to the technical, cost, and schedule baselines, and selected management documents developed by the Office of Civilian Radioactive Waste Management (OCRWM) for the Civilian Radioactive Waste Management System. This procedure implements the OCRWM Baseline Management Plan and DOE Order 4700.1, Chg 1. It streamlines the change control process to enhance integration, accountability, and traceability of Level 0 and Level I decisions through standardized Baseline Change Proposal (BCP) forms to be used by the Level 0, 1, 2, and 3 Baseline Change Control Boards (BCCBs) and to be tracked in the OCRWM-wide Configuration Information System (CIS) Database.This procedure applies to all technical, cost, and schedule baselines controlled by the Energy System Acquisition Advisory Board (ESAAB) BCCB (Level 0) and, OCRWM Program Baseline Control Board (PBCCB) (Level 1). All baseline BCPs initiated by Level 2 or lower BCCBs, which require approval from ESAAB or PBCCB, shall be processed in accordance with this procedure. This procedure also applies to all Program-level management documents controlled by the OCRWM PBCCB

  13. Astrometry of southern radio sources (United States)

    White, Graeme L.; Jauncey, David L.; Harvey, Bruce R.; Savage, Ann; Gulkis, Samuel; Preston, Robert A.


    An overview is presented of a number of astrometry and astrophysics programs based on radio sources from the Parkes 2.7 GHz catalogs. The programs cover the optical identification and spectroscopy of flat-spectrum Parkes sources and the determination of their milliarcsecond radio structures and positions. Work is also in progress to tie together the radio and Hipparcos positional reference frames. A parallel program of radio and optical astrometry of southern radio stars is also under way.

  14. Tether enabled spacecraft systems for ultra long wavelength radio astronomy (United States)

    Gemmer, Thomas; Yoder, Christopher D.; Reedy, Jacob; Mazzoleni, Andre P.


    This paper describes a proposed CubeSat mission to perform unique experiments involving interferometry and tether dynamics. A 3U CubeSat is to be placed in orbit where it will separate into three 1U CubeSats connected by a total of 100 m of tether. The separation between the three units will allow for the demonstration of high resolution radio interferometry. The increased resolution will provide access to the Ultra-Long Wavelength (ULW) scale of the electromagnetic spectrum, which is largely unexplored. During and after completion of the primary experiment, the CubeSat will be able to gather data on tethered dynamics of a space vehicle. Maneuvers to be performed and studied include direct testing of tether deployment and tethered formation flying. Tether deployment is a vital area where more data is needed as this is the phase where many tethered missions have experienced complications and failures. There are a large number of complex dynamical responses predicted by the theory associated with the deployment of an orbiting tethered system. Therefore, it is imperative to conduct an experiment that provides data on what dynamic responses actually occur.

  15. 324 Building Baseline Radiological Characterization

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Reeder, J.C. Cooper


    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  16. Baseline restoration using current conveyors

    International Nuclear Information System (INIS)

    Morgado, A.M.L.S.; Simoes, J.B.; Correia, C.M.


    A good performance of high resolution nuclear spectrometry systems, at high pulse rates, demands restoration of baseline between pulses, in order to remove rate dependent baseline shifts. This restoration is performed by circuits named baseline restorers (BLRs) which also remove low frequency noise, such as power supply hum and detector microphonics. This paper presents simple circuits for baseline restoration based on a commercial current conveyor (CCII01). Tests were performed, on two circuits, with periodic trapezoidal shaped pulses in order to measure the baseline restoration for several pulse rates and restorer duty cycles. For the current conveyor based Robinson restorer, the peak shift was less than 10 mV, for duty cycles up to 60%, at high pulse rates. Duty cycles up to 80% were also tested, being the maximum peak shift 21 mV. The peak shift for the current conveyor based Grubic restorer was also measured. The maximum value found was 30 mV at 82% duty cycle. Keeping the duty cycle below 60% improves greatly the restorer performance. The ability of both baseline restorer architectures to reject low frequency modulation is also measured, with good results on both circuits

  17. Methodology for heritage conservation in Belgium based on multi-temporal interferometry (United States)

    Bejarano-Urrego, L.; Verstrynge, E.; Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Derauw, D.; Hayen, R.; Van Balen, K.


    Soil differential settlements that cause structural damage to heritage buildings are precipitating cultural and economic value losses. Adequate damage assessment as well as protection and preservation of the built patrimony are priorities at national and local levels, so they require advanced integration and analysis of environmental, architectural and historical parameters. The GEPATAR project (GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium) aims to create an online interactive geo-information tool that allows the user to view and to be informed about the Belgian heritage buildings at risk due to differential soil settlements. Multi-temporal interferometry techniques (MTI) have been proven to be a powerful technique for analyzing earth surface deformation patterns through time series of Synthetic Aperture Radar (SAR) images. These techniques allow to measure ground movements over wide areas at high precision and relatively low cost. In this project, Persistent Scatterer Synthetic Aperture Radar Interferometry (PS-InSAR) and Multidimensional Small Baseline Subsets (MSBAS) are used to measure and monitor the temporal evolution of surface deformations across Belgium. This information is integrated with the Belgian heritage data by means of an interactive toolbox in a GIS environment in order to identify the level of risk. At country scale, the toolbox includes ground deformation hazard maps, geological information, location of patrimony buildings and land use; while at local scale, it includes settlement rates, photographic and historical surveys as well as architectural and geotechnical information. Some case studies are investigated by means of on-site monitoring techniques and stability analysis to evaluate the applied approaches. This paper presents a description of the methodology being implemented in the project together with the case study of the Saint Vincent's church which is located on a former colliery zone. For

  18. Application of Extended Kalman Filter in Persistant Scatterer Interferometry to Enhace the Accuracy of Unwrapping Process (United States)

    Tavakkoli Estahbanat, A.; Dehghani, M.


    In interferometry technique, phases have been modulated between 0-2π. Finding the number of integer phases missed when they were wrapped is the main goal of unwrapping algorithms. Although the density of points in conventional interferometry is high, this is not effective in some cases such as large temporal baselines or noisy interferograms. Due to existing noisy pixels, not only it does not improve results, but also it leads to some unwrapping errors during interferogram unwrapping. In PS technique, because of the sparse PS pixels, scientists are confronted with a problem to unwrap phases. Due to the irregular data separation, conventional methods are sterile. Unwrapping techniques are divided in to path-independent and path-dependent in the case of unwrapping paths. A region-growing method which is a path-dependent technique has been used to unwrap PS data. In this paper an idea of EKF has been generalized on PS data. This algorithm is applied to consider the nonlinearity of PS unwrapping problem as well as conventional unwrapping problem. A pulse-pair method enhanced with singular value decomposition (SVD) has been used to estimate spectral shift from interferometric power spectral density in 7*7 local windows. Furthermore, a hybrid cost-map is used to manage the unwrapping path. This algorithm has been implemented on simulated PS data. To form a sparse dataset, A few points from regular grid are randomly selected and the RMSE of results and true unambiguous phases in presented to validate presented approach. The results of this algorithm and true unwrapped phases were completely identical.

  19. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott (United States)

    Miller Goss, W.


    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  20. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne


    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  1. Radio coverage statistics. (United States)

    Lynn, W


    The Clearinghouse on Development Communication surveyed 135 countries in Asia, Africa, Europe, North and South America, for U.S.A.I.D., to determine the number of radio and television broadcast stations and receivers. Some of the data were obtained from the World Factbook, the World Radio and TV Handbook, and the World Radio and T.V. Facts and Figures, from 1979 to 1981. In those countries where stations are privately owned, audience surveys are often available. In 2 out of 3 developing countries, however, stations are government owned, and no such information is available. Numbers of receivers can sometimes be ascertained from receiver license applications. There is a need for more complete information on broadcast demographics, listening and viewing patterns by the community of world development program personnel.

  2. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki


    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  3. Radio structure in quasars

    International Nuclear Information System (INIS)

    Barthel, P.D.


    In this thesis, observational attention is given to the extended extragalactic radio sources associated with quasars. The isolated compact radio sources, often identified with quasars, are only included in the discussions. Three aspects of the radio structure in quasars and their cosmic evolution are considered: a study of the parsec scale morphology in quasar cores, in relation to the extended morphologies; an investigation of possible epoch dependent hotspot properties as well as a more detailed investigation of this fine scale structure; a VLA project was carried out to obtain morphological information on scales of 0.5 arcsec on high redshift quasars and to investigate possible epoch dependent morphological properties. MERLIN observations at 0.1 arcsec resolution to supplement the VLA data were initiated. (Auth.)

  4. Allow for Uncertainty - Indeterminacy & RadioRadio Research 2013


    Watson, Rob


    Radio is faced with the challenge of rapidly changing technology and social practices. How can the study of radio be adapted to account for these changes, and what issues will need to be prioritised in the future.

  5. Radio Astronomy in Malaysia: Current Status and Outreach Activities (United States)

    Hashim, N.; Abidin, Z. Z.; Ibrahim, U. F. S. U.; Umar, R.; Hassan, M. S. R.; Rosli, Z.; Hamidi, Z. S.; Ibrahim, Z. A.


    In this paper, we will present the current status of radio astronomical research and outreach in Malaysia. We will also present a short history of our research group, which is currently the only radio astronomical facility in Malaysia. Our group is called the Radio Cosmology Research Lab and was established in 2005 by Dr Zamri Zainal Abidin and Prof Dr Zainol Abidin Ibrahim. We will discuss the future plans for this group including our keen interest in being part of a more global network of radio astronomers. We are already an active member of the South-East Asia Astronomy Network (SEAAN) and aims to have a radio astronomical facility in order to join the Global Very Long Baseline Interferometer (VLBI) as well becoming a research hub for the future Square Kilometer Array (SKA) project. We will also present some of the scientific goals of our group including providing a platform for radio astronomers to be able to do observations of weak and high red-shifted radio objects such as galaxy clusters and supernovae.

  6. Radio Emission from Supernovae

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.


    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  7. Developing RESRAD-BASELINE for environmental baseline risk assessment

    International Nuclear Information System (INIS)

    Cheng, Jing-Jy.


    RESRAD-BASELINE is a computer code developed at Argonne developed at Argonne National Laboratory for the US Department of Energy (DOE) to perform both radiological and chemical risk assessments. The code implements the baseline risk assessment guidance of the US Environmental Protection Agency (EPA 1989). The computer code calculates (1) radiation doses and cancer risks from exposure to radioactive materials, and (2) hazard indexes and cancer risks from exposure to noncarcinogenic and carcinogenic chemicals, respectively. The user can enter measured or predicted environmental media concentrations from the graphic interface and can simulate different exposure scenarios by selecting the appropriate pathways and modifying the exposure parameters. The database used by PESRAD-BASELINE includes dose conversion factors and slope factors for radionuclides and toxicity information and properties for chemicals. The user can modify the database for use in the calculation. Sensitivity analysis can be performed while running the computer code to examine the influence of the input parameters. Use of RESRAD-BASELINE for risk analysis is easy, fast, and cost-saving. Furthermore, it ensures in consistency in methodology for both radiological and chemical risk analyses

  8. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya


    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  9. High-speed real-time holographic interferometry (United States)

    Yamamoto, Yoshitaka


    The principle of holography was invented by Dr. Gabor in 1948 before the invention of the laser. In 1962, after the invention of laser (in 1960: the first demonstration of laser oscillation by Maiman was achieved using a ruby cubic crystal), the off-axis reference beam holography was developed by Prof. Leith and Mr. Upatnieks. One of the most useful measuring techniques of the holography is a holographic interferometry. Holography enable to storage signal wave fronts and reconstruct it at later time, then the interference between the reconstructed signal wave fronts and the wave fronts come from the object to be able to generate an interference fringes. Real-time holographic interferometry can measure real-time phase-change of phenomena. Therefore, this method has the performance of continuously measuring phase change by coupling with high-speed cameras.

  10. Phase and fringe order determination in wavelength scanning interferometry. (United States)

    Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel


    A method to obtain unambiguous surface height measurements using wavelength scanning interferometry with an improved repeatability, comparable to that obtainable using phase shifting interferometry, is reported. Rather than determining the conventional fringe frequency-derived z height directly, the method uses the frequency to resolve the fringe order ambiguity, and combine this information with the more accurate and repeatable fringe phase derived z height. A theoretical model to evaluate the method's performance in the presence of additive noise is derived and shown to be in good agreement with experiments. The measurement repeatability is improved by a factor of ten over that achieved when using frequency information alone, reaching the sub-nanometre range. Moreover, the z-axis non-linearity (bleed-through or ripple error) is reduced by a factor of ten. These order of magnitude improvements in measurement performance are demonstrated through a number of practical measurement examples.

  11. Optical Distortion Evaluation in Large Area Windows using Interferometry (United States)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.


    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  12. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    International Nuclear Information System (INIS)

    Stuhler, J; Fattori, M; Petelski, T; Tino, G M


    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy


    Directory of Open Access Journals (Sweden)

    Muchiar Muchiar


    Full Text Available Simpangan getaran sebuah membran berupa membran bundar yang bergetar sinusoidal, telah dvisualisasikan dengan menggunakan Metode Interferometri Pola Spekel Elektronik. Pola spekel dari permukaan membran pada saat tidak bergetar dan pada saat sedang bergetar pada frekuensi dan amplitudo tertentu, masing-masing, direkam dengan kamera CCD dan datanya disimpan didalam komputer. Selanjutnya, masing-masing data pola spekel membran yang sedang bergetar tersebut di substraksi dengan data pola spekel membran dalam keadaan diam. Hasil yang diperoleh berupa visualisasi citra spekel simpangan rata-rata permukaan membran yang disertai dengan pola frinji tertentu. Bentuk dari pola frinji yang terjadi bersesuaian dengan pola simpangan getaran yang dialami oleh bagian permukaan membran. Sedangkan jumlah pola frinji yang terjadi bersesuain dengan besarnya simpangan rata-rata yang terjadi. Metode ini mensyaratkan perioda getaran membran jauh lebih pendek dibandingkan waktu perekaman kamera CCD. Dari segi kualitas, metode ini menghasilkan citra tidaklah sebaik atau setajam yang diperoleh dengan Metode Interferometri Holografi.

  14. Spectrally controlled interferometry for measurements of flat and spherical optics (United States)

    Salsbury, Chase; Olszak, Artur G.


    Conventional interferometry is widely used to measure spherical and at surfaces with nanometer level precision but is plagued by back reflections. We describe a new method of isolating the measurement surface by controlling spectral properties of the source (Spectrally Controlled Interferometry - SCI). Using spectral modulation of the interferometer's source enables formation of localized fringes where the optical path difference is non-zero. As a consequence it becomes possible to form white-light like fringes in common path interferometers, such as the Fizeau. The proposed setup does not require mechanical phase shifting, resulting in simpler instruments and the ability to upgrade existing interferometers. Furthermore, it allows absolute measurement of distance, including radius of curvature of lenses in a single setup with possibility of improving the throughput and removing some modes of failure.

  15. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight. (United States)

    Abramson, Nils H


    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.

  16. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.


    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...... front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise.......Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  17. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning


    depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order......This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...

  18. A novel plasmonic interferometry and the potential applications (United States)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.


    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  19. A reconfigurable radio architecture for Cognitive Radio in emergency networks

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria


    Cognitive Radio has been proposed as a promising technology to solve today’s spectrum scarcity problem. Cognitive Radio is able to sense the spectrum to find the free spectrum, which can be optimally used by Cognitive Radio without causing interference to the licensed user. In the scope of the

  20. Spectrum management and radio resource management considering cognitive radio systems

    NARCIS (Netherlands)

    Haartsen, J.C.; Wieweg, Lasse; Huschke, Jörg


    International fora and some national administrations define a cognitive radio (CR) as a pioneering radio communication system that would be capable of altering and adapting its transmitter and receiver parameters based on communication and the exchange of information with related detectable radio

  1. Radio Fatwa : Islamic Tanya-Jawab Programmes on Radio Dakwah

    NARCIS (Netherlands)



    The present article is a study of radio fatwa in Indonesia with special reference to the Tanya-Jawab genres in radio dakwah.The concept of fatwa has changed over time. Such Islamic Tanya-Jawab programmes broadcast on radio dakwah are important to understand how fatwa is disseminated by means of

  2. Radio spectra of Gigahertz Peaked Spectrum radio sources

    NARCIS (Netherlands)

    deVries, WH; Barthel, PD; ODea, CP

    A well defined sample of 72 Gigahertz Peaked Spectrum radio sources is compiled, having turnover frequencies in the range of 0.5 - 10 GHz. Using this sample, the canonical GPS radio spectrum is constructed, which is found to have a constant shape, independent of AGN type, redshift or radio

  3. 75 FR 10439 - Cognitive Radio Technologies and Software Defined Radios (United States)


    ..., such as keys, passwords or biometric data. 11. Finally, as software defined radio and security... concerning the use of open source software to implement security features in software defined radios (SDRs... radios; and (2) its policy on the confidentiality of software that controls security measures in software...

  4. Cepheid distances from infrared long-baseline interferometry. I. VINCI/VLTI observations of seven Galactic Cepheids (United States)

    Kervella, P.; Nardetto, N.; Bersier, D.; Mourard, D.; Coudé du Foresto, V.


    We report the angular diameter measurements of seven classical Cepheids, X Sgr, η Aql, W Sgr, ζ Gem, β Dor, Y Oph and ℓ Car that we have obtained with the VINCI instrument, installed at ESO's VLT Interferometer (VLTI). We also present reprocessed archive data obtained with the FLUOR/IOTA instrument on ζ Gem, in order to improve the phase coverage of our observations. We obtain average limb darkened angular diameter values of /line{θLD}[X Sgr] = 1.471 ± 0.033 mas, /line{θLD[η Aql] = 1.839 ± 0.028 mas, /line{θLD}[W Sgr] = 1.312 ± 0.029 mas, /line{θLD}[β Dor] = 1.891 ± 0.024 mas, /line{θLD}[ζ Gem] =1.747 ± 0.061 mas, /line{θLD}[Y Oph] = 1.437 ± 0.040 mas, and /line{θLD}[ℓ Car] = 2.988 ± 0.012 mas. For four of these stars, η Aql, W Sgr, β Dor, and ℓ Car, we detect the pulsational variation of their angular diameter. This enables us to compute directly their distances, using a modified version of the Baade-Wesselink method: d[η Aql] = 276+55-38 pc, d[W Sgr] = 379+216-130 pc, d[β Dor] = 345+175-80 pc, d[ℓ Car] = 603+24-19 pc. The stated error bars are statistical in nature. Applying a hybrid method, that makes use of the Gieren et al. (\\cite{gieren98}) Period-Radius relation to estimate the linear diameters, we obtain the following distances (statistical and systematic error bars are mentioned): d[X Sgr] = 324 ± 7 ± 17 pc, d[η Aql] = 264 ± 4 ± 14 pc, d[W Sgr] = 386 ± 9 ± 21 pc, d[β Dor] = 326 ± 4 ± 19 pc, d[ζ Gem] = 360 ± 13 ± 22 pc, d[Y Oph] = 648 ± 17 ± 47 pc, d[ℓ Car] = 542 ± 2 ± 49 pc. Tables 3 to 10 are only available in electronic form at

  5. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  6. Pion interferometry of ultra-relativistic hadronic collisions

    International Nuclear Information System (INIS)

    Kolehmainen, K.


    Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs

  7. Real-time laser holographic interferometry for aerodynamics

    International Nuclear Information System (INIS)

    Lee, G.


    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer. 13 references

  8. Using Atom Interferometry to Search for New Forces

    International Nuclear Information System (INIS)

    Wacker, Jay G.


    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10 2 and near-future advances will be able to rewrite the limits for forces with ranges from 100 (micro)m to 1km.

  9. Laser Development for Gravitational-Wave Interferometry in Space (United States)

    Numata, Kenji; Camp, Jordan


    We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.

  10. Conoscopic interferometry of surface-acoustic-wave substrate crystals. (United States)

    Ayräs, P H; Friberg, A T; Kaivola, M A; Salomaa, M M


    Conoscopic interferometry is applied for determining the crystal orientation of lithium niobate and other commonly employed substrate wafers for integrated-optic and surface-acoustic-wave devices. The method is particularly applicable for detecting the orientation of the optic axes of the strongly birefringent niobate but is less sensitive for lithium tantalate or quartz. Conoscopic interference is a low-cost and easy-to-use method that is especially suitable for laboratory usage.

  11. Using atom interferometry to search for new forces

    International Nuclear Information System (INIS)

    Wacker, Jay G.


    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10 2 and near-future advances may be able to rewrite the limits for forces with ranges from 1 mm to 100 m.

  12. Planet finding prospects for the Space Interferometry Mission


    Ford, Eric B.; Tremaine, Scott


    The Space Interferometry Mission (SIM) will make precise astrometric measurements that can be used to detect planets around nearby stars. We have simulated SIM observations and estimated the ability of SIM to detect planets with given masses and orbital periods and measure their orbital elements. We combine these findings with an estimate of the mass and period distribution of planets determined from radial velocity surveys to predict the number and characteristics of planets SIM would likely...

  13. Neutron Interferometry in NPI Řež

    Czech Academy of Sciences Publication Activity Database

    Vrána, Miroslav; Mikula, Pavol; Lukáš, Petr; Ioffe, A.; Nistler, W.


    Roč. 70, - (2001), s. 465-467 ISSN 0031-9015. [Proceedings of the International Sympozium on Advanced Science Research /1./. Tokai, 31.10.2000-02.11.2000] R&D Projects: GA ČR GV202/97/K038; GA AV ČR IAA1048003 Institutional research plan: CEZ:AV0Z1048901 Keywords : neutron interferometry * scattering lenght Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.628, year: 2001

  14. Deformation Measurement Of Lumbar Vertebra By Holographic Interferometry (United States)

    Matsumoto, Toshiro; Kojima, Arata; Ogawa, Ryoukei; Iwata, Koichi; Nagata, Ryo


    The mechanical properties of normal lumbar vertebra and one with the interarticular part cut off to simulate hemi-spondylolysis were measured by the double exposure holographic interferometry. In the normal lumbar vertebra, displacement due to the load applied to the inferior articular process was greater than that of superior articular process under the same load. The interarticular part was subjected to the high stress. From these points, one of the valuable data to consider the cause of spondylolysis was obtained.

  15. Special topics in infrared interferometry. [Michelson interferometer development (United States)

    Hanel, R. A.


    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  16. Assessing natural hazards in NE Colombia using Sentinel-1 interferometry (United States)

    Olen, Stephanie; Bookhagen, Bodo


    The DIGENTI project (Digitaler Entscheidertisch für das Naturgefahrenmanagement auf Basis von Satellitendaten und VGI (Volunteered Geographic Information)) aims to assess the natural hazard threat to the Cesar and La Guajira departments of northeast Colombia as guidance for decision makers and disaster relief workers. As members of the DIGENTI project, we use Sentinel-1 synthetic aperture radar (SAR) interferometry to detect hillslope movements, delineate settlements, and monitor damage to urban areas. Our study area, located in the remote Serranía del Perijá mountain range on the border of Colombia and Venezuela, is mountainous, highly vegetated, and experiences high and spatially variable rainfall (between 1 and 4 m a-1). The remote nature of the region, coupled with the favorable conditions for mass movements and other hillslope instabilities, make it an ideal location to employ remote sensing techniques to monitor potential natural hazards. In the highly vegetated Serranía del Perijá mountain range, traditional damage proxy mapping is complicated by vegetation-related coherence loss between SAR scenes. Cross-referencing existing maps, we define regions of consistently high coherence as settled or urban areas. Using the spatial extent of settled or urban areas as a mask, we establish an algorithm to use coherence loss only in these regions as a damage proxy in urban areas where the local population will be most affected. Outside of settlements, hillslope instabilities and movements are quantified and mapped using a two-prong approach: (1) Horizontal ground displacement is be calculated by dense amplitude cross-correlation using the topsOffsetApp in the InSAR Scientific Computing Environment (ISCE). This allows the location, direction, and magnitude of mass movements and hillslope instabilities to be identified and mapped; (2) We use a timeseries of interferograms to quantify vertical ground deformation (e.g., as caused by landsliding) during the Sentinel-1

  17. Neutron Interferometry at the National Institute of Standards and Technology

    International Nuclear Information System (INIS)

    Huber, M. G.; Sarenac, D.; Nsofini, J.; Pushin, D. A.; Arif, M.; Wood, C. J.; Cory, D. G.; Shahi, C. B.


    Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR’s older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research

  18. Acoustic noise interferometry in a time-dependent coastal ocean. (United States)

    Godin, Oleg A


    Interferometry of underwater noise provides a way to estimate physical parameters of the water column and the seafloor without employing any controlled sound sources. In applications of acoustic noise interferometry to coastal oceans, the propagation environment changes appreciably during the averaging times that are necessary for the Green's functions to emerge from noise cross-correlations. Here, a theory is developed to quantify the effects of nonstationarity of the propagation environment on two-point correlation functions of diffuse noise. It is shown that temporal variability of the ocean limits from above the frequency range, where noise cross-correlations approximate the Green's functions. The theoretical predictions are in quantitative agreement with results of the 2012 noise interferometry experiment in the Florida Straits. The loss of coherence at high frequencies constrains the passive acoustic remote sensing to exploiting a low-frequency part of measured noise cross-correlations, thus limiting the resolution of deterministic inversions. On the other hand, the passively measured coherence loss contains information about statistical characteristics of the ocean dynamics at unresolved spatial and temporal scales.

  19. Radio Broadcast Technology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Radio Broadcast Technology. Harsh Vardhan. General Article Volume 7 Issue 1 January 2002 pp 53-63. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords. Hertzian ...

  20. Radio Frequency Identification

    Indian Academy of Sciences (India)

    Radio Frequency Identification (RFID) has been around sinceearly 2000. Its use has currently become commonplace as thecost of RFID tags has rapidly decreased. RFID tags have alsobecome more 'intelligent' with the incorporation of processorsand sensors in them. They are widely used now in manyinnovative ways.

  1. A Radio Production Course. (United States)

    Novak, Glenn D.


    Provides a framework for an upper-level basic radio production course. Covers course structure, production assignments, equipment, studio/lab time, grading procedures, textbook and audiovisual materials. Emphasizes theory and practice to provide students with critical and production skills. (PD)

  2. Division x: Radio Astronomy

    NARCIS (Netherlands)

    Taylor, Russ; Chapman, Jessica; Rendong, Nan; Carilli, Christopher; Giovannini, Gabriele; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin; Lazio, Joseph; Morganti, Raffaella; Rubio, Monica; Shastri, Prajval

    This triennium has seen a phenomenal investment in development of observational radio astronomy facilities in all parts of the globe at a scale that significantly impacts the international community. This includes both major enhancements such as the transition from the VLA to the EVLA in North

  3. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian


    Internet radio is one of the growth areas of the Internet but, as this article will show, is fraught with difficulties and frustration for both the modestly-funded broadcaster (bitcaster) and the listener. The article will illustrate some of these problems by means of a short case study of an exi...

  4. Interstellar scintillations of PSR B1919+21: space-ground interferometry (United States)

    Shishov, V. I.; Smirnova, T. V.; Gwinn, C. R.; Andrianov, A. S.; Popov, M. V.; Rudnitskiy, A. G.; Soglasnov, V. A.


    We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radio telescope, together with two ground telescopes: Westerbork (WB) and Green Bank (GB). The maximum baseline projection for the space-ground interferometer was about 60 000 km. We show that interstellar scintillation of this pulsar consists of two components: diffractive scintillations from inhomogeneities in a layer of turbulent plasma at a distance z1 = 440 pc from the observer or homogeneously distributed scattering material to the pulsar; and weak scintillations from a screen located near the observer at z2 = 0.14 ± 0.05 pc. Furthermore, in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift in observed source position. We show that the influence of the ionosphere can be ignored for the space-ground baseline. Analysis of the spatial coherence function for the space-ground baseline (RA-GB) yielded a scattering angle in the observer plane of θscat = 0.7 mas. An analysis of the time-frequency correlation function for weak scintillations yielded an angle of refraction in the direction to the pulsar θref, 0 = 110 ms and a distance to the prism zprism ≤ 2 pc.

  5. Baseline Report on HB2320 (United States)

    State Council of Higher Education for Virginia, 2015


    Staff provides this baseline report as a summary of its preliminary considerations and initial research in fulfillment of the requirements of HB2320 from the 2015 session of the General Assembly. Codified as § 23-7.4:7, this legislation compels the Education Secretary and the State Council of Higher Education for Virginia (SCHEV) Director, in…

  6. Analysis of surface absorbed dose in X-ray grating interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhili, E-mail: [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Ziyu, E-mail: [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)


    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications.

  7. Analysis of surface absorbed dose in X-ray grating interferometry

    International Nuclear Information System (INIS)

    Wang, Zhili; Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao; Wu, Ziyu


    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications

  8. Cognitive radio networks efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang


    PrefaceAcknowledgmentsAbout the AuthorsIntroductionCognitive Radio-Based NetworksOpportunistic Spectrum Access NetworksCognitive Radio Networks with Cooperative SensingCognitive Radio Networks for Cellular CommunicationsCognitive Radio Networks for High-Speed VehiclesCognitive Radio Networks for a Smart GridContent and OrganizationTransmission Slot Allocation in an Opportunistic Spectrum Access NetworkSingle-User Single-Channel System ModelProbabilistic Slot Allocation SchemeOptimal Probabilistic Slot AllocationBaseline PerformanceExponential DistributionHyper-Erlang DistributionPerformance An

  9. Observations of active galactic nuclei from radio to gamma-rays

    International Nuclear Information System (INIS)

    Boeck, Moritz


    , the center of NGC 1052 hosts a clear X-ray source. The massive data set consists of numerous observations with different instruments allowing for detailed analyses. In the X-ray regime deep observations with sensitive telescopes are available, with which the distribution of X-ray emission within the host galaxy can be studied with high angular resolution. Furthermore the spectral properties can be analyzed in detail. Ths analysis allows one to draw conclusions on the environment of the supermassive black hole. Interferometric radio observations with long baselines yield angular resolutions higher than milliarcseconds. In this way it is possible to resolve structures in jets on scales of a tenth of a parsec. Within the scope of this work the available radio observations with this technique, which were performed between 1995 and 2012, were analyzed. With it, the temporal evolution of structures in the jet can be tracked and velocities can be determined. In addition, the typical intensity evolution of features in the jet could be determined. For a better understanding of AGN, studies of AGN samples complement analyses of individual sources. In this work the TANAMI and MOJAVE programs are described, as well as the thereby enabled studies. In both programs AGN samples are monitored with very-long-baseline-interferometry (VLBI). In these long-term studies it is possible to determine jet properties, such as the jet speed, and to compare them with observations in other energy regimes. Contributions to the TANAMI program have been done within the scope of this work, e.g., visualization methods for radio images have been developed. In the last section of this work, the gamma-ray properties of the AGN in the TANAMI and MOJAVE samples are discussed. Initially an overview on gamma-ray astronomy and the Fermi mission, which has been in operation since 2008, is given. Based on data obtained with Fermi-LAT, the properties of the objects in the sample in the energy range of 100 MeV to

  10. Ham Radio is Mir Magic. (United States)

    Evans, Gary


    Presents a classroom activity in which students communicated with U.S. and Russian astronauts via ham radio while they were in orbit on the space station Mir. Gives suggestions for other ham radio classroom activities as well as names of organizations, publications, and grant programs that teachers can access to help in bring ham radio into their…

  11. Gliotransmission modulates baseline mechanical nociception

    Directory of Open Access Journals (Sweden)

    Foley Jeannine C


    Full Text Available Abstract Pain is a physiological and adaptive process which occurs to protect organisms from tissue damage and extended injury. Pain sensation beyond injury, however, is a pathological process which is poorly understood. Experimental models of neuropathic pain demonstrate that reactive astrocytes contribute to reduced nociceptive thresholds. Astrocytes release "gliotransmitters" such as D-serine, glutamate, and ATP, which is extracellularly hydrolyzed to adenosine. Adenosine 1 receptor activation in the spinal cord has anti-nociceptive effects on baseline pain threshold, but the source of the endogenous ligand (adenosine in the spinal cord is unknown. In this study we used a transgenic mouse model in which SNARE-mediated gliotransmission was selectively attenuated (called dnSNARE mice to investigate the role of astrocytes in mediating baseline nociception and the development of neuropathic pain. Under baseline conditions, immunostaining in the dorsal horn of the spinal cord showed astrocyte-specific transgene expression in dnSNARE mice, and no difference in expression levels of the astrocyte marker GFAP and the microglia marker Iba1 relative to wild-type mice. The Von Frey filament test was used to probe sensitivity to baseline mechanical pain thresholds and allodynia following the spared nerve injury model of neuropathic pain. DnSNARE mice exhibit a reduced nociceptive threshold in response to mechanical stimulation compared to wild-type mice under baseline conditions, but nociceptive thresholds following spared nerve injury were similar between dnSNARE and wild-types. This study is the first to provide evidence that gliotransmission contributes to basal mechanical nociception.

  12. The importance of Radio Quiet Zone (RQZ) for radio astronomy (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin


    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  13. Introduction to international radio regulations

    International Nuclear Information System (INIS)

    Radicella, S.M.


    These lecture notes contain an overview of basic problems of the International Radio Regulations. Access to the existing information infrastructure, and to that of the future Information Society, depends critically on radio, especially in poor, remote and sparsely populated regions with under-developed telecommunication infrastructure. How the spectrum of radio frequencies is regulated has profound impact on the society, its security, prosperity, and culture. The radio regulations represent a very important framework for an adequate use of radio and should be known by all of those working in the field

  14. How safe is tuning a radio?: using the radio tuning task as a benchmark for distracted driving. (United States)

    Lee, Ja Young; Lee, John D; Bärgman, Jonas; Lee, Joonbum; Reimer, Bryan


    Drivers engage in non-driving tasks while driving, such as interactions entertainment systems. Studies have identified glance patterns related to such interactions, and manual radio tuning has been used as a reference task to set an upper bound on the acceptable demand of interactions. Consequently, some view the risk associated with radio tuning as defining the upper limit of glance measures associated with visual-manual in-vehicle activities. However, we have little knowledge about the actual degree of crash risk that radio tuning poses and, by extension, the risk of tasks that have similar glance patterns as the radio tuning task. In the current study, we use counterfactual simulation to take the glance patterns for manual radio tuning tasks from an on-road experiment and apply these patterns to lead-vehicle events observed in naturalistic driving studies. We then quantify how often the glance patterns from radio tuning are associated with rear-end crashes, compared to driving only situations. We used the pre-crash kinematics from 34 crash events from the SHRP2 naturalistic driving study to investigate the effect of radio tuning in crash-imminent situations, and we also investigated the effect of radio tuning on 2,475 routine braking events from the Safety Pilot project. The counterfactual simulation showed that off-road glances transform some near-crashes that could have been avoided into crashes, and glance patterns observed in on-road radio tuning experiment produced 2.85-5.00 times more crashes than baseline driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Baseline Removal From EMG Recordings (United States)


    Name(s) and Address(es) Departamento de Ingenieria Electra y Electronica Universidad Publica de Navarra Pamplona, Spain Performing Organization Report...Ingeniería Eléctrica y Electrónica, Universidad Pública de Navarra, Pamplona, Spain 2Servicio de Neurofisiología Clínica, Hospital Virgen del Camino...a time-varying baseline contamination. Acknowledgements: Work funded by the Departamento de Salud del Gobierno de Navarrra and by a Spanish MEC

  16. Radio-capacity of ecosystems

    International Nuclear Information System (INIS)

    Kultakhmedov, Yu.; Kultakhmedova-Vyshnyakova, V.


    This paper consider a universal approach to ecosystems of different types, based on representation of their radio-capacity. The concept of ecosystem includes reproduction of components (bio-productivity) and conditions such as maintaining of environment quality. Radio-capacity in the case of radionuclide pollution appears in accumulation and redistribution of radionuclides in the ecosystem. As a result the radionuclides are redistributed and buried in soil or lake bottom sediments. Estimation models for the radio-capacity of water and terrestrial ecosystems are represented. The calculations of the radio-capacity factor of water ecosystems are performed, and the high radio-capacity of a freshwater reservoir (F=0.6-0.8) and extremely high radio-capacity of a reservoir cascade (F c =0.99) is shown material from the Dnieper's cascade reservoirs. The methods of radio-capacity estimation of agroecosystems, wood and marine ecosystems are developed. (authors)

  17. The Concept of 'Radio Music'

    DEFF Research Database (Denmark)

    Fjeldsøe, Michael


    , educational and didactic effort which would enlighten all of society. For a while it seemed that radio music was considered a genre of its own. To fulfil its function, radio music had to consider technical limitations as well as the educational level and listening modes of the new mass audience. Public radio......, as discussed by Kurt Weill and Paul Hindemith, was at first greeted with great expectations, but soon a more realistic attitude prevailed. Weill, himself a radio critic as well, composed Der Lindberghflug (1929) as a piece of ‘radio music theatre’, but then changed some of its features in order to turn...... it into a didactical play for amateurs, a so-called Lehrstück. The article will present the concept of ‘radio music’ developed within German Neue Sachlichkeit and discuss the relevance of such a concept for current research in the field of radio and music....

  18. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne


    The recent years have seen breathtaking progress in technology, especially in the receiver and digital technologies relevant for radio astronomy, which has at the same time advanced to shorter wavelengths. This is the updated and completely revised 5th edition of the most used introductory text in radio astronomy. It presents a unified treatment of the entire field from centimeter to sub-millimeter wavelengths. Topics covered include instruments, sensitivity considerations, observational methods and interpretations of the data recorded with both single dishes and interferometers. This text is useful to both students and experienced practicing astronomers. Besides making major updates and additions throughout the book, the authors have re-organized a number of chapters to more clearly separate basic theory from rapidly evolving practical aspects. Further, problem sets have been added at the end of each chapter.

  19. Die radio in Afrika

    Directory of Open Access Journals (Sweden)

    S. de Villiers


    Full Text Available Omvang van radio-uitsendings in en na Afrika. — Redes vir die versnelde tempo van uitbreiding. — Radio as die geskikste massa-kommunikasiemiddel vir Afrika. — Faktore wat die verspreiding bemoeilik. — Skouspelagtige toename in luistertalle.Toe Plinius, wat in die jaar 79 oorlede is, in sy „Historia Naturalis” verklaar het dat daar altyd iets nuuts uit Afrika afkomstig is, kon hy nouliks voorsien het dat die „iets" negentien eeue later in die lug sou setel wat hierdie reuse-vasteland oorspan — ’n Babelse spraakverwarring en ’n ongekende, verbete woorde-oorlog in die etergolwe, onder meer daarop bereken om die harte en hoofde van derduisendes te verower.

  20. Stations de radio confessionnelles


    Chandès, Gérard


    L’auteur cherche à définir les propriétés sonores propres aux radios chrétiennes, principalement catholiques. La première partie de l’article se fonde sur l’étude historique des encycliques et des lettres pastorales du Vatican depuis l’inauguration de Radio Vatican et la seconde partie relève de la sémiologie du son. L’auteur cible les deux caractéristiques principales qui rendent compte de la relation à la transcendance divine : la prédilection pour les longues durées et des effets sonores t...

  1. Robust sparse image reconstruction of radio interferometric observations with PURIFY (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves


    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  2. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi


    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.



    Dubovtceva Ludmila I.


    The article is based on years of practical experience, the author highlights the main radio genres in which music correspondent, music reviewer, music commentator, and music leading and a disc jockey work. Theoretical principles of their creative activities are analyzed in common journalistic genres, such as interview, reportage, talk show, live broadcast, radiofilm, as well as specialized genres like concert on demand and music competition. Journalist’ speech is seen as a logical element, th...

  4. Radio Frequency Interference Mitigation (United States)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.


    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  5. Electromagnetic interferometry in wavenumber and space domains in a layered earth

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Fan, Y.; Snieder, R.; Wapenaar, C.P.A.


    With interferometry applied to controlled-source electromagnetic data, the direct field and the airwave and all other effects related to the air-water interface can be suppressed in a data-driven way. Interferometry allows for retreival of the scattered field Green’s function of the subsurface or,

  6. Visualization and direct comparison of large displacements using difference holographic interferometry

    International Nuclear Information System (INIS)

    Necati Ecevit, F.; Aydin, R.


    The difference holographic interferometry provides the possibility of direct comparison of large displacements and deformations of two similar but different objects by application of a special kind of illumination. In this work, the principles of the difference holographic interferometry and the experimental results obtained by applying the single beam technique to large displacements is presented. (author). 10 refs, 4 figs

  7. Measurement of Microscopic Deformations Using Double-Exposure Holographic Interferometry and the Fourier Transform Method

    Directory of Open Access Journals (Sweden)

    Percival Almoro


    Full Text Available Microscopic deformations on the surface of a circular diaphragm were measured using double exposure holographic interferometry and Fourier transform method (FTM. The three-dimensional surface deformations were successfully visualized by applying FTM to holographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. This was calibrated via the Michelson interferometry technique.

  8. New developments in NDT through electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Mohan, S.; Murugesan, P; Mas, R.H.


    Full text: Optical holography and speckle interferometry are the emerging optical techniques that can be used for the measurements of microscopic parameters such as displacement, strain, stress and slope. These techniques are applied in various fields such as surface studies, non destructive testing, speckle metrology and steller interferometry. Even though many new NDT methods are available, the suitability for a specific application is based on the material property, nature of defects and sensitivity of detection. Difficulty in radiographic technique is that it fails in detecting tight cracks, planar defects and debonds. Microwave techniques has limited sensitivity for the defect detection and it is not suitable for the objects with metallic cases since the metals are perfect reflectors for the microwaves. Low modulus material attenuates the acoustic energy completely, making ultrasonic testing techniques not feasible. The recently evolved optoelectronic technique namely Electronic Speckle Pattern interferometry (ESPI) is a fast developing optical technique widely used for measuring displacement components, their derivatives, surface roughness, surface contours, shape and others. Due to non contact nature and high sensitivity, this technique has been used as a powerful on line inspection tool for non destructive pattern of materials in industrial environment. The salient feature of ESPI is its capability to display the correlation fringes in a real time on a monitor without the need of photographic processing or optical filtering. ESPI is an alternate non destructive technique suitable for propellant grains and other low modulus materials used in space vehicle systems. The optoelectronic technique can be used to detect cracks, voids and residual stresses etc.., in the components in the industrial environment. In the present investigation, speckle non destructive testing has been carried out on some selected low modulus materials used in space vehicles. The

  9. Integrated Baseline Review (IBR) Handbook (United States)

    Fleming, Jon F.; Terrell, Stefanie M.


    The purpose of this handbook is intended to be a how-to guide to prepare for, conduct, and close-out an Integrated Baseline Review (IBR). It discusses the steps that should be considered, describes roles and responsibilities, tips for tailoring the IBR based on risk, cost, and need for management insight, and provides lessons learned from past IBRs. Appendices contain example documentation typically used in connection with an IBR. Note that these appendices are examples only, and should be tailored to meet the needs of individual projects and contracts.

  10. Baseline LAW Glass Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab


    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  11. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge


    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  12. IMAP: Interferometry for Material Property Measurement in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.


    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  13. Theory of decoherence in Bose-Einstein condensate interferometry

    International Nuclear Information System (INIS)

    Dalton, B J


    A full treatment of decoherence and dephasing effects in BEC interferometry has been developed based on using quantum correlation functions for treating interferometric effects. The BEC is described via a phase space distribution functional of the Wigner type for the condensate modes and the positive P type for the non-condensate modes. Ito equations for stochastic condensate and non-condensate field functions replace the functional Fokker-Planck equation for the distribution functional and stochastic averages of field function products determine the quantum correlation functions

  14. Recent advances in X-ray and neutron interferometry

    International Nuclear Information System (INIS)

    Bonse, U.


    Since their advent interferometry with X-rays and neutrons have been developed steadily. A number of excellent reviews is covering the development up to about five years ago. Advances since then are treated in this review. Topics included are: Understanding of angstrom wave interferometers, theory of operation, types, contrast, complementarity, strategies and refinement of measurement, nonlinear Fizeau effect with neutrons, action of gravity and inertia of neutron phase, interferometers with separated crystals, interferometer combining X-ray and optical operation, interferometer combining X-ray and neutron operation. (orig.)

  15. Displacement interferometry with stabilization of wavelength in air

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk


    Roč. 20, č. 25 (2012), s. 27830-27837 ISSN 1094-4087 R&D Projects: GA ČR GA102/09/1276; GA ČR GPP102/11/P820; GA TA ČR TA02010711; GA TA ČR TE01020233; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : interferometry * instrumentation * measurement, and metrology Subject RIV: BH - Optics, Masers, Laser s Impact factor: 3.546, year: 2012

  16. Speckle Interferometry with the OCA Kuhn 22" Telescope (United States)

    Wasson, Rick


    Speckle interferometry measurements of double stars were made in 2015 and 2016, using the Kuhn 22-inch classical Cassegrain telescope of the Orange County Astronomers, a Point Grey Blackfly CMOS camera, and three interference filters. 272 observations are reported for 177 systems, with separations ranging from 0.29" to 2.9". Data reduction was by means of the REDUC and Speckle Tool Box programs. Equipment, observing procedures, calibration, data reduction, and analysis are described, and unusual results for 11 stars are discussed in detail.

  17. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry. (United States)

    Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K


    Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

  18. Modelling of a holographic interferometry based calorimeter for radiation dosimetry (United States)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.


    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  19. Holographic interferometry using a digital photo-camera

    International Nuclear Information System (INIS)

    Sekanina, H.; Hledik, S.


    The possibilities of running digital holographic interferometry using commonly available compact digital zoom photo-cameras are studied. The recently developed holographic setup, suitable especially for digital photo-cameras equipped with an un detachable object lens, is used. The method described enables a simple and straightforward way of both recording and reconstructing of a digital holographic interferograms. The feasibility of the new method is verified by digital reconstruction of the interferograms acquired, using a numerical code based on the fast Fourier transform. Experimental results obtained are presented and discussed. (authors)

  20. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Czech Academy of Sciences Publication Activity Database

    Hrabina, Jan; Lazar, Josef; Holá, Miroslava; Číp, Ondřej


    Roč. 13, č. 2 (2013), s. 2206-2219 ISSN 1424-8220 R&D Projects: GA ČR GPP102/11/P820; GA ČR GA102/09/1276; GA AV ČR KAN311610701; GA MŠk ED0017/01/01; GA MŠk(CZ) LC06007 Institutional support: RVO:68081731 Keywords : nanometrology * laser noise * interferometry * nanopositioning * AFM Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.048, year: 2013

  1. Application of linear systems theory to characterize coherence scanning interferometry (United States)

    Mandal, Rahul; Palodhi, Kanik; Coupland, Jeremy; Leach, Richard; Mansfield, Daniel


    This paper considers coherence scanning interferometry as a linear filtering operation that is characterised by a point spread function in the space domain or equivalently a transfer function in the frequency domain. The applicability of the theory is discussed and the effects of these functions on the measured interferograms, and their influence on the resulting surface measurements, are described. The practical characterisation of coherence scanning interferometers using a spherical reference artefact is then considered and a new method to compensate measurement errors, based on a modified inverse filter, is demonstrated.

  2. FED baseline engineering studies report

    Energy Technology Data Exchange (ETDEWEB)

    Sager, P.H.


    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept.

  3. FED baseline engineering studies report

    International Nuclear Information System (INIS)

    Sager, P.H.


    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept

  4. Flexible Adaptation in Cognitive Radios

    CERN Document Server

    Li, Shujun


    This book provides an introduction to software-defined radio and cognitive radio, along with methodologies for applying knowledge representation, semantic web, logic reasoning and artificial intelligence to cognitive radio, enabling autonomous adaptation and flexible signaling. Readers from the wireless communications and software-defined radio communities will use this book as a reference to extend software-defined radio to cognitive radio, using the semantic technology described. Readers with a background in semantic web and artificial intelligence will find in this book the application of semantic web and artificial intelligence technologies to wireless communications. For readers in networks and network management, this book presents a new approach to enable interoperability, collaborative optimization and flexible adaptation of network components. Provides a comprehensive ontology covering the core concepts of wireless communications using a formal language; Presents the technical realization of using a ...

  5. The properties of radio ellipticals

    International Nuclear Information System (INIS)

    Sparks, W.B.; Disney, M.J.; Rodgers, A.W.


    Optical and additional radio data are presented for the bright galaxies of the Disney and Wall survey (1977 Mon. Not. R. Astron. Soc. 179, 235). These data form the basis of a statistical comparison of the properties of radio elliptical galaxies to radio-quiet ellipticals. The correlations may be explained by the depth of the gravitational potential well in which the galaxy resides governing the circumstances under which an elliptical galaxy rids itself of internally produced gas. (author)

  6. The nature of extragalactic radio-jets from high-resolution radio-interferometric observations


    Perucho, Manel


    Extragalactic jets are a common feature of radio-loud active galaxies. The nature of the observed jets in relation to the bulk flow is still unclear. In particular it is not clear whether the observations of parsec-scale jets using the very long baseline interferometric technique (VLBI) reveal wave-like structures that develop and propagate along the jet, or trace the jet flow itself. In this contribution I review the evidence collected during the last years showing that the ridge-lines of he...

  7. Military Mail Radio

    Directory of Open Access Journals (Sweden)

    Bîlbîie Răduţ


    Full Text Available Cultural and scientific personalities from the army, military experts and creators of the doctrine have collaborated with the radio from the beginnings of radiophony, the educational role of this new, persuasive communication channel being evident not only for Romania or the Romanian army but also for all the countries that had radiophony services. This happens in the context of the end of the crisis and the start of economic and social development, promoting culture, creating a solid class of peasants with a certain social status, in villages, together with the priest, teacher and gendarme, increasing of the number of subscriptions and development of the Romanian radiophony.

  8. Radio frequency pulse compression

    International Nuclear Information System (INIS)

    Farkas, Z.D.


    High gradients require peak powers. One possible way to generate high peak powers is to generate a relatively long pulse at a relatively low power and compress it into a shorter pulse with higher peak power. It is possible to compress before dc to rf conversion as is done for the relativistic klystron or after dc to rf conversion as is done with SLED. In this note only radio frequency pulse compression (RFPC) is considered. Three methods of RFPC will be discussed: SLED, BEC, and REC. 3 refs., 8 figs., 1 tab

  9. La radio digital.


    Cortés, Carlos


    La radio digital es un producto de la llamada convergencia digital. Desde la década de1990, nuevos dispositivos electrónicos de recepción y reproducción digital, incluyendo ciertos teléfonos celulares, se comunican entre sí, en los entornos de redes, mediante sencillas interfaces. Por esta razón, ofrecen ventajas antes inexistentes en los medios analógicos. A partir de sistemas de adquisición y producción digital, que comenzaron como simples cintas de audio digital (DAT), la evolución tec...

  10. Central radio sources

    International Nuclear Information System (INIS)

    Phinney, E.S.


    The compact radio sources in the nuclei of most active galaxies lie closer to their centers of activity than any other region accessible to observation, excepting only the broad emission line region. They provide uniquely strong evidence for bulk motion of matter at relativistic velocities, encouraging the belief that the activity originates in a gravitational potential well whose escape velocity is of the order of the speed of light. The observational facts are reviewed as well as several theoretical pictures of them. Those places where systematic observations could help to distinguish the true theoretical picture from the many competing forgeries are emphasized. 76 references

  11. Pluralismo, radio e Internet


    Bruce Girard


    En muchas ocasiones de ha oído hablar que internet y las nuevas tecnologías de la comunicación llevarán a la humanidad a un mundo homogeneizado en donde todos compartirán la misa cultura del “ciberespacio” y hablarán el mismo lenguaje. Nuevas iniciativas en América Latina combinan la tecnología de punta y la radio para poner fin a este mito y contribuir a una comunicación más democrática.

  12. Radio-induced brain lesions

    Directory of Open Access Journals (Sweden)

    Gorgan Mircea Radu


    Full Text Available Introduction : Radiotherapy, an important tool in multimodal oncologic treatment, can cause radio-induced brain lesion development after a long period of time following irradiation.

  13. Radio Frequency Anechoic Chamber Facility (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  14. 327 Building hazard baseline document

    International Nuclear Information System (INIS)



    This document identifies the hazards in the 327 Building at the time that a facility walk through was performed during FY99, presents a PHA of stabilization and deactivation activities, and provides a basis for the hazard evaluation and accident analysis that will be developed in the 327 Building Basis for Interim Operation (BIO). Activities addressed in this hazard baseline document include: (1) Stabilization and deactivation activities in preparation for eventual decommissioning of the 327 Building and the routine handling, processing, and shipment of waste to support these activities. (2) 324/327 Building Minimum Safe Project engineering and maintenance activities to maintain the building and systems viable--especially the Safety SSCs--to allow stabilization, deactivation, and waste handling activities with a minimum of risk to workers, the public, and the environment

  15. Pinellas Plant Environmental Baseline Report

    Energy Technology Data Exchange (ETDEWEB)


    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  16. Integrated Baseline Review (IBR) Handbook (United States)

    Fleming, Jon F.; Kehrer, Kristen C.


    The purpose of this handbook is intended to be a how-to guide to prepare for, conduct, and close-out an Integrated Baseline Review (IBR). It discusses the steps that should be considered, describes roles and responsibilities, tips for tailoring the IBR based on risk, cost, and need for management insight, and provides lessons learned from past IBRs. Appendices contain example documentation typically used in connection with an IBR. Note that these appendices are examples only, and should be tailored to meet the needs of individual projects and contracts. Following the guidance in this handbook will help customers and suppliers preparing for an IBR understand the expectations of the IBR, and ensure that the IBR meets the requirements for both in-house and contract efforts.

  17. Multi-link laser interferometry architecture for interspacecraft displacement metrology (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.


    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80nm/√{Hz} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  18. Multi-link laser interferometry architecture for interspacecraft displacement metrology (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.


    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  19. Atomic interactions in precision interferometry using Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jamison, Alan O.; Gupta, Subhadeep; Kutz, J. Nathan


    We present theoretical tools for predicting and reducing the effects of atomic interactions in Bose-Einstein condensate (BEC) interferometry experiments. To address mean-field shifts during free propagation, we derive a robust scaling solution that reduces the three-dimensional Gross-Pitaevskii equation to a set of three simple differential equations valid for any interaction strength. To model the other common components of a BEC interferometer--condensate splitting, manipulation, and recombination--we generalize the slowly varying envelope reduction, providing both analytic handles and dramatically improved simulations. Applying these tools to a BEC interferometer to measure the fine structure constant, α[S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, Phys. Rev. Lett. 89, 140401 (2002)], we find agreement with the results of the original experiment and demonstrate that atomic interactions do not preclude measurement to better than part-per-billion accuracy, even for atomic species with relatively large scattering lengths. These tools help make BEC interferometry a viable choice for a broad class of precision measurements.

  20. Algorithms and Array Design Criteria for Robust Imaging in Interferometry (United States)

    Kurien, Binoy George

    Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.

  1. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.


    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  2. Complex interferometry potential in case of sufficiently stable diagnostic system (United States)

    Kalal, M.


    Classical interferometry is one of the key methods among active optical diagnostics. Its more advanced version, which allows recording and subsequent reconstruction of up to three sets of data using just one data object —a complex interferogram—was developed in the past and became known as complex interferometry. Employing this diagnostics, not only the usual phase shift, but also the amplitude of the probing beam as well as the fringe contrast (leading directly to the phase shift time derivative) can be reconstructed simultaneously from such a complex interferogram. In this paper it will be demonstrated that even in the case of a not particularly good diagnostic beam quality these three quantities can be reconstructed with a high degree of accuracy provided both the diagnostic beam as well as the corresponding optical line feature a reasonable stability. Such stability requirement is important as in an ideal case four shots need to be gradually recorded (one by one): the signal complex interferogram, the reference interferogram as well as the intensity structures of the signal and reference part of the diagnostic beam. Two examples of complex interferograms obtained in experiments will be analyzed: the laser produced plasma (spark in the air) and the high pressure gas jet. A general ray-tracing based iterative algorithm will be outlined in order to increase a precision of the index of refraction spatial profile taking into account refraction effects (omitted in the Abel inversion) and employing the original reconstructed phase shift and amplitude.

  3. Matter wave interferometry as a tool for molecule metrology (United States)

    Gerlich, Stefan; Gring, Michael; Ulbricht, Hendrik; Hornberger, Klaus; Tuexen, Jens; Mayor, Marcel; Arndt, Markus


    Kapitza-Dirac-Talbot-Lau interferometry (KDTLI) has recently been established as an ideal method to perform quantum matter wave experiments with large, highly polarizable molecules in an unprecedented mass range of beyond 1000 atomic mass units [1]. Since the interference visibility reveals important information on the properties of the examined particles, such as their mass and polarizability, we identified KDTLI as a valuable tool for precision metrology. We demonstrate that quantum interferometry can therefore also serve as a powerful complement to mass spectrometry [2], in particular in cases where fragmentation may occur in the detector. Our new method is applicable to a wide range of molecules and is particularly valuable for characterizing neutral molecular beams. [1] S. Gerlich, L. Hackerm"uller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. M"uri, M. Mayor, M. Arndt, Nat. Phys. 2007, 3, 711 - 715. [2] Stefan Gerlich, Michael Gring, Hendrik Ulbricht, Klaus Hornberger, Jens T"uxen, Marcel Mayor, and Markus Arndt, Angew. Chem. Int. Ed. 2008, 47, 6195 - 6198.

  4. The coexistence of cognitive radio and radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.; Baan, W.A.


    An increase of the efficiency of spectrum usage requires the development of new communication techniques. Cognitive radio may be one of those new technique, which uses unoccupied frequency bands for communications. This will lead to more power in the bands and therefore an increasing level of Radio

  5. Radio Astronomy and the Giant Metre-Wave Radio Telescope

    Indian Academy of Sciences (India)

    of light into its constituent colours (or wavelengths, since light of different colours corresponds to light of different wavelengths) is called a ... together to form neutral atoms). The diffuse gas that is found between stars is also a strong emitter of radio-waves. In general, optical telescopes show us where stars are, while radio.

  6. Radio Jove: Citizen Science for Jupiter Radio Astronomy (United States)

    Higgins, C. A.; Thieman, J.; Reyes, F. J.; Typinski, D.; Flagg, R. F.; Greenman, W.; Brown, J.; Ashcraft, T.; Sky, J.; Cecconi, B.; Garcia, L. N.


    The Radio Jove Project ( has been operating as an educational activity for 18 years to introduce radio astronomy activities to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with radio observatories in real-time over the Internet. Recently some of our dedicated citizen science observers have upgraded their systems to better study radio emission from Jupiter and the Sun by adding dual-polarization spectrographs and wide-band antennas in the frequency range of 15-30 MHz. Some of these observations are being used in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, and the Ukrainian URAN2 Radio Telescope. In particular, there is an effort to support the Juno Mission radio waves instrument at Jupiter by using citizen science ground-based data for comparison and polarization verification. These data will be archived through a Virtual European Solar and Planetary Access (VESPA) archive ( for use by the amateur and professional radio science community. We overview the program and display recent observations that will be of interest to the science community.

  7. Radio Astronomy and the Giant Metre-Wave Radio Telescope

    Indian Academy of Sciences (India)

    background, listening intently to this extra-terrestrial signal. For many people of that generation, this is likely to have been their first, and most likely only, exposure to radio astronomy. In some ways, however, what is more surprising is that the general public has some exposure to radio astronomy at all, let alone through a.

  8. Dramatugi Penyiar Radio

    Directory of Open Access Journals (Sweden)

    Hastika Yanti Nora


    Full Text Available Dramaturgy is the work of Erving Goffman. He wrote "Presentation of Self in Everyday Life" in '1959. Following the theatrical analogy, Goffman spoke of a front stage and back stage. The front stage is that part of the performance that generally functions in rather fixed and general ways to define the situation for those who observed the performance. The back stage is situation where facts suppressed in the front or various kinds of informal actions may appear. A back stage is usually adjacent to the front stage, but it also cut off from it. Everyone in this world have to run his role in their everyday life. It also a radio announcer. As an actor, they have to be a nice and friendy person when they perform to make air personality, that is  a good  impression, from their audience. But before their perform in the front stage, there so much to do to prepare in the backstage. The front and back stage is radio announcer dramaturgy.

  9. SI-traceable absolute distance measurement over more than 800 meters with sub-nanometer interferometry by two-color inline refractivity compensation (United States)

    Meiners-Hagen, Karl; Meyer, Tobias; Mildner, Jutta; Pollinger, Florian


    In this work, we demonstrate two-color inline refractivity compensation in a heterodyne synthetic wavelength interferometer for a measurement of absolute distances over several hundred meters with sub-millimeter accuracy. Two frequency-doubled Nd:YAG lasers with a coherence length of more than 1 km are used as light sources. Direct SI traceability is achieved by controlling the lasers' frequency difference in the radio frequency regime. The resulting synthetic wavelengths at 532 nm and 1064 nm are used for the absolute distance measurement and dispersion-based inline refractive index compensation. A standard deviation of 50 μm is achieved for distances up to 864 m. This performance corresponds to a standard deviation of the observable, the difference of the four optical wavelengths, on a sub-nanometer level. Comparison against white light interferometry confirms sub-millimeter accuracy over this distance. Temporally resolved data over 864 m provide quantitative insights into the influence of chromatic beam paths.

  10. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry (Phase 2a)- High Angular Resolution Astronomy at Far-Infrared Wavelengths (United States)

    Rinehart, Stephen

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an eight-meter baseline far-infrared interferometer to fly on a high altitude balloon. The combination of the long baseline with a double-Fourier instrument allows BETTII to simultaneously gain both spatial and spectral information; BETTII is designed for spatially-resolved spectroscopy. The unique data obtained with BETTII will be valuable for understanding how stars form within dense clusters, by isolating individual objects that are unresolved by previous space telescopes and my measuring their spectral energy distributions. BETTII will be also used in future flights to understand the processes in the cores of Active Galactic Nuclei. In addition to these scientific goals, BETTII serves as a major step towards achieving the vision of space-based interferometry. BETTII was first funded through the 2010 APRA program; last year, the proposal also fared well in the APRA review, but for programmatic reasons was only awarded one year of funding. With the current funding, we will complete the BETTII experiment and conduct a Commissioning Flight in August/September 2016. The effort proposed includes full analysis of data from the Commissioning Flight, which will help us determine the technical and scientific capabilities of the experiment. It also includes two science flights, one in each 2017 and 2018, with full data analysis being completed in 2019.

  11. Interstellar scattering of the compact radio source 2005 + 403

    International Nuclear Information System (INIS)

    Mutel, R.L.; Lestrade, J.


    Analysis of Mk III VLBI visibility amplitudes of the compact radio source 2005 + 403 shows an excess at baselines greater than a few diffractive scale lengths compared with that expected from formulas using ensemble-averaged quantities and power-law turbulence with quasi-Kolmogorov spectral indices. The data are in good agreement with the 1989 analysis of Goodman and Narayan, who find that measured visibility amplitudes correspond to the average visibility regime, which differs significantly from the ensemble-averaged results for baselines much longer than one diffractive scale length. 20 refs

  12. Radio design in nanometer technologies

    CERN Document Server

    Ismail, Mohammed


    This is the first volume that looks at the integrated radio design problem as a "piece of a big puzzle" Most books discuss more on communications or more on hardware but not both, this book strikes the right balance between the two and provides the reader with a holistic view of the subject of radio design: current and future trends.

  13. Tuning in to pavement radio

    NARCIS (Netherlands)

    Ellis, S.D.K.


    This article describes a phenomenon known all over Africa, for which there is no really satisfactory term in English but which is summed up in the French term 'radio trottoir', literally 'pavement radio'. It may be defined as the popular and unofficial discussion of current affairs in Africa,

  14. Cognitive Radio for Emergency Networks

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria


    In the scope of the Adaptive Ad-hoc Freeband (AAF) project, an emergency network built on top of Cognitive Radio is proposed to alleviate the spectrum shortage problem which is the major limitation for emergency networks. Cognitive Radio has been proposed as a promising technology to solve

  15. Radio Propagation into Modern Buildings

    DEFF Research Database (Denmark)

    Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Jørgensen, Niels T.K.


    constructions. These materials are used in favor of achieving a proper level of thermal isolation, but it has been noticed that they can impact heavily on radio signal propagation. This paper presents a measurement-based analysis of the outdoor-to-indoor attenuation experienced in several modern constructions...... presented along the paper are useful for future radio network planning considerations....


    African Journals Online (AJOL)


    groups for a regression of body weight on age at first egg, indicating that accelerated growth did not contribute to the advance in ... clocks that operated the radios and the lights. The other two chambers ... Mean body weight at first egg for the birds given the radio noise was not significantly different from the controls (Table).

  17. Dust tori in radio galaxies

    NARCIS (Netherlands)

    van der Wolk, G.; Barthel, P. D.; Peletier, R. F.; Pel, J. W.

    Aims. We investigate the quasar - radio galaxy unification scenario and detect dust tori within radio galaxies of various types. Methods. Using VISIR on the VLT, we acquired sub-arcsecond (similar to 0.40 '') resolution N-band images, at a wavelength of 11.85 mu m, of the nuclei of a sample of 27


    International Nuclear Information System (INIS)

    Wayth, Randall B.; Tingay, Steven J.; Brisken, Walter F.; Deller, Adam T.; Majid, Walid A.; Thompson, David R.; Wagstaff, Kiri L.


    Recent discoveries of dispersed, non-periodic impulsive radio signals with single-dish radio telescopes have sparked significant interest in exploring the relatively uncharted space of fast transient radio signals. Here we describe V-FASTR, an experiment to perform a blind search for fast transient radio signals using the Very Long Baseline Array (VLBA). The experiment runs entirely in a commensal mode, alongside normal VLBA observations and operations. It is made possible by the features and flexibility of the DiFX software correlator that is used to process VLBA data. Using the VLBA for this type of experiment offers significant advantages over single-dish experiments, including a larger field of view, the ability to easily distinguish local radio-frequency interference from real signals, and the possibility to localize detected events on the sky to milliarcsecond accuracy. We describe our software pipeline, which accepts short integration (∼ ms) spectrometer data from each antenna in real time during correlation and performs an incoherent dedispersion separately for each antenna, over a range of trial dispersion measures. The dedispersed data are processed by a sophisticated detector and candidate events are recorded. At the end of the correlation, small snippets of the raw data at the time of the events are stored for further analysis. We present the results of our event detection pipeline from some test observations of the pulsars B0329+54 and B0531+21 (the Crab pulsar).

  19. Hydrogeology baseline study Aurora Mine

    International Nuclear Information System (INIS)


    A baseline hydrogeologic study was conducted in the area of Syncrude's proposed Aurora Mine in order to develop a conceptual regional hydrogeologic model for the area that could be used to understand groundwater flow conditions. Geologic information was obtained from over 2,000 coreholes and from data obtained between 1980 and 1996 regarding water level for the basal aquifer. A 3-D numerical groundwater flow model was developed to provide quantitative estimates of the potential environmental impacts of the proposed mining operations on the groundwater flow system. The information was presented in the context of a regional study area which encompassed much of the Athabasca Oil Sands Region, and a local study area which was defined by the lowlands of the Muskeg River Basin. Characteristics of the topography, hydrology, climate, geology, and hydrogeology of the region are described. The conclusion is that groundwater flow in the aquifer occurs mostly in a westerly direction beneath the Aurora Mine towards its inferred discharge location along the Athabasca River. Baseflow in the Muskeg River is mostly related to discharge from shallow surficial aquifers. Water in the river under baseflow conditions was fresh, of calcium-carbonate type, with very little indication of mineralization associated with deeper groundwater in the Aurora Mine area. 44 refs., 5 tabs., 31 figs

  20. The California Baseline Methane Survey (United States)

    Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.


    The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.

  1. 2016 Annual Technology Baseline (ATB)

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; O' Connor, Patrick; Waldoch, Connor


    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  2. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana


    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  3. High sensitivity Moire interferometry with phase shifting at nano resolution (United States)

    Chen, Bicheng

    Due to insatiate demand for miniaturization of electronics, there is a need for new techniques to measure full-field strain at micro-scale structures. In addition, Micro-Electronic-Mechanical-Systems (MEMS) require a high resolution and high sensitivity material property characterization technique. In this study, a theoretic model for a high sensitivity Moire Interferometry (MI) for measuring nano-scale strain field has been developed. The study also includes the application of the proposed measurement technique for the study of reliability of next generation nano-electronics/power electronics. The study includes both theoretical and experimental work. In the theoretical part, a far field modeling of a Moire Interferometer (MI) using the mode decomposition method is proposed according to the analytical formulation from the scalar diffraction theory. The wave propagation within the defined MI far field domain is solved analytically for a single frequency surface relieved grating structure following the Rayleigh-Sommerfeld formulation under the paraxial approximation. It is shown that the far-field electrical field and the intensity interferogram can be calculated using the mode decomposition method. Furthermore, the near-field (propagation distance EM) theory; and the EM fields are simulated in a few microns region above the surface of the diffraction grating. The study shows that there is a strong correlation (correlation factor R = 0.869) of spatial frequency response between EM field and strain field at the nanoscale. Experimentally, a 164 nm/pixel spatial resolution Moire Interferometer with automated full strain field calculation is proposed. Accurate full strain field maps are generated automatically by a combination of phase shifting technique (temporal data redundancy) and Continuous Wavelet Transform (CWT) (spatial data redundancy). A thermal experiment on BGA packaging is used to demonstrate the advantages of the proposed new design. To enhance the

  4. Implementing Software Defined Radio

    CERN Document Server

    Grayver, Eugene


    Software Defined Radio makes wireless communications easier, more efficient, and more reliable. This book bridges the gap between academic research and practical implementation. When beginning a project, practicing engineers, technical managers, and graduate students can save countless hours by considering the concepts presented in these pages. The author covers the myriad options and trade-offs available when selecting an appropriate hardware architecture. As demonstrated here, the choice between hardware- and software-centric architecture can mean the difference between meeting an aggressive schedule and bogging down in endless design iterations. Because of the author’s experience overseeing dozens of failed and successful developments, he is able to present many real-life examples. Some of the key concepts covered are: Choosing the right architecture for the market – laboratory, military, or commercial Hardware platforms – FPGAs, GPPs, specialized and hybrid devices Standardization efforts to ens...


    Directory of Open Access Journals (Sweden)

    Dubovtceva Ludmila I.


    Full Text Available The article is based on years of practical experience, the author highlights the main radio genres in which music correspondent, music reviewer, music commentator, and music leading and a disc jockey work. Theoretical principles of their creative activities are analyzed in common journalistic genres, such as interview, reportage, talk show, live broadcast, radiofilm, as well as specialized genres like concert on demand and music competition. Journalist’ speech is seen as a logical element, the incoming with music in art-structural relationships. However, it does not become the predominant sound layer and aims to harmonious correlation or local penetration into music opus. In addition, important links in music journalism are defined the auxiliary "offscreen" editor's job and keeping the original sound archive. The author cites a number of own work examples on the air.

  6. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.


    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  7. Radio opaque gloves

    International Nuclear Information System (INIS)

    Whittaker, A.V.; Whittaker, R.E. Jr.; Goldstrom, R.A.; Shipko, F.J.


    Radiation shielding garments and accessories, such as radio-opaque gloves for surgeons, shielding against the harmful x-ray radiation in a fluoroscopic zone, are advantageously different from garments for shielding from other medical uses of x-rays. Such garments are provided with zones of differing opacity, whereby desired sensitivity and ''feel'' through the glove material is retained. One feature is the provision of an ''opacity gradient'' across the glove cross section with opacity being relatively low at the fingertip area (lesser shield-thickness), but relatively high at the less nonprehensile hand zones, such as the palm. Glove fabrication techniques for achieving such an opacity gradient are described. (U.S.)


    Directory of Open Access Journals (Sweden)

    Raquel Salinas


    Full Text Available Se ofrece un amplio análisis sobre la industria electoral, recordando que un candidato a presidente es "un producto para la venta". Se Desmenuzan las estrategias utilizadas en el plebiscito chileno,las elecciones norteamericanas con el NO a BUSH. El Mercadeo Social es una nueva metodología utilizada en proyectos de desarrollo a nivel de campo por ello se hace un esclarecimiento y clarifica el vínculo con la comunicación. Se agrega temas como: Los modelos de recepción de mensajes cuyos marcos conceptuales y metodologías aún no se han adaptado al potencial de esta línea de trabajo.Se analiza la agonía de las radios mineras en Bolivia en la que 42 años de historia y heroísmo se desmoronan.

  9. The Radio Language Arts Project: adapting the radio mathematics model. (United States)

    Christensen, P R


    Kenya's Radio Language Arts Project, directed by the Academy for Educational Development in cooperation with the Kenya Institute of Education in 1980-85, sought to teach English to rural school children in grades 1-3 through use of an intensive, radio-based instructional system. Daily 1/2 hour lessons are broadcast throughout the school year and supported by teachers and print materials. The project further was aimed at testing the feasibility of adaptation of the successful Nicaraguan Radio Math Project to a new subject area. Difficulties were encountered in articulating a language curriculum with the precision required for a media-based instructional system. Also a challenge was defining the acceptable regional standard for pronunciation and grammar; British English was finally selected. An important modification of the Radio Math model concerned the role of the teacher. While Radio Math sought to reduce the teacher's responsibilities during the broadcast, Radio Language Arts teachers played an important instructional role during the English lesson broadcasts by providing translation and checks on work. Evaluations of the Radio language Arts Project suggest significant gains in speaking, listening, and reading skills as well as high levels of satisfaction on the part of parents and teachers.

  10. A Radio Astronomy Science Education Partnership - GAVRT and Radio JOVE (United States)

    Higgins, C. A.; Thieman, J. R.; Bunnell, K.; Soholt, G.


    The planet Jupiter provides an excellent subject to educate, engage, and inspire students and teachers to learn science. The Goldstone Apple-Valley Radio Telescope (GAVRT) program ( and The Radio JOVE project ( each have a long history of allowing students and teachers to interact with scientists and real radio telescopes. The upcoming Juno mission to Jupiter (2011 launch) allows both GAVRT and Radio JOVE to combine efforts and engage with the NASA Juno mission, thus increasing the excitement and learning potential for teachers, students, and the general public. Teachers can attend workshops for training to operate a 34-meter radio telescope and/or build their own simple radio telescope, both of which can be used directly in the classroom. We will overview some classroom activities and highlight some teacher-student experiences. In addition, we will update our efforts on greater Web-based control of the radio telescopes, as well as highlight our upcoming workshops to allow better access for teachers in different parts of the Country.

  11. 324 Building Baseline Radiological Characterization

    International Nuclear Information System (INIS)

    Reeder, R.J.; Cooper, J.C.


    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building. A total of 85 technical (100 square centimeter (cm 2 )) smears were collected from the Room 147 hoods, the Shielded Materials Facility (SMF), and the Radiochemical Engineering Cells (REC). Exposure rate readings (window open and window closed) were taken at a distance of 2.5 centimeters (cm) and 30 cm from the surface of each smear. Gross beta-gamma and alpha counts of each smear were also performed. The smear samples were analyzed by gamma energy analysis (GEA). Alpha energy analysis (AEA) and strontium-90 analysis were also performed on selected smears. GEA results for one or more samples reported the presence of manganese-54, cobalt-60, silver-108m antimony-125, cesium-134, cesium-137, europium-154, europium-155, and americium-241. AEA results reported the presence of plutonium-239/240, plutonium-238/ 241 Am, curium-243/244, curium-242, and americium-243. Tables 5 through 9 present a summary by location of the estimated maximum removable and total contamination levels in the Room 147 hoods, the SMF, and the REC. The smear sample survey data and laboratory analytical results are presented in tabular form by sample in Appendix A. The Appendix A tables combine survey data documented in radiological survey reports found in Appendix B and laboratory analytical results reported in the 324 Building Physical and Radiological Characterization Study (Berk, Hill, and Landsman 1998), supplemented by the laboratory analytical results found in Appendix C.

  12. Statistical baseline assessment in cardiotocography. (United States)

    Agostinelli, Angela; Braccili, Eleonora; Marchegiani, Enrico; Rosati, Riccardo; Sbrollini, Agnese; Burattini, Luca; Morettini, Micaela; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura


    Cardiotocography (CTG) is the most common non-invasive diagnostic technique to evaluate fetal well-being. It consists in the recording of fetal heart rate (FHR; bpm) and maternal uterine contractions. Among the main parameters characterizing FHR, baseline (BL) is fundamental to determine fetal hypoxia and distress. In computerized applications, BL is typically computed as mean FHR±ΔFHR, with ΔFHR=8 bpm or ΔFHR=10 bpm, both values being experimentally fixed. In this context, the present work aims: to propose a statistical procedure for ΔFHR assessment; to quantitatively determine ΔFHR value by applying such procedure to clinical data; and to compare the statistically-determined ΔFHR value against the experimentally-determined ΔFHR values. To these aims, the 552 recordings of the "CTU-UHB intrapartum CTG database" from Physionet were submitted to an automatic procedure, which consisted in a FHR preprocessing phase and a statistical BL assessment. During preprocessing, FHR time series were divided into 20-min sliding windows, in which missing data were removed by linear interpolation. Only windows with a correction rate lower than 10% were further processed for BL assessment, according to which ΔFHR was computed as FHR standard deviation. Total number of accepted windows was 1192 (38.5%) over 383 recordings (69.4%) with at least an accepted window. Statistically-determined ΔFHR value was 9.7 bpm. Such value was statistically different from 8 bpm (P<;10 -19 ) but not from 10 bpm (P=0.16). Thus, ΔFHR=10 bpm is preferable over 8 bpm because both experimentally and statistically validated.

  13. 2016 Annual Technology Baseline (ATB) - Webinar Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; Porro, Gian; O' Connor, Patrick; Waldoch, Connor


    This deck was presented for the 2016 Annual Technology Baseline Webinar. The presentation describes the Annual Technology Baseline, which is a compilation of current and future cost and performance data for electricity generation technologies.

  14. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise. (United States)

    Herman, J. R.; Caruso, J. A.; Stone, R. G.


    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  15. Seismic Interferometry Using Persistent Noise Sources for Temporal Subsurface Monitoring (United States)

    Dales, Philippe; Audet, Pascal; Olivier, Gerrit


    In passive source seismology, seismic interferometry typically refers to the cross correlation of ambient noise to construct an estimate of the Green's function between sensors. The presence of persistent natural and/or anthropogenic sources can bias or prevent the retrieval of these estimated Green's functions. Here we show how these strong persistent sources can be used to measure small changes in the medium between a source and either (or both) source-sensor pairs. The method relies on localizing the sources and using this information to identify and select cross-correlation functions for each source of interest. We illustrate this method by monitoring growth of a block cave at an underground mine using three nearly continuously operating ore crushers which dominate the wavefield. This technique should work equally well in natural environments using sources such as volcanic tremor, hydrothermal bubble cavitation, and microseisms.

  16. Application of resonance interferometry and holography for plasma diagnostics

    International Nuclear Information System (INIS)

    Drejden, G.V.; Zajdel', A.N.; Ostrovksya, G.V.; Ostrovskij, Yu.I.; Pobedonostseva, N.A.; Tanin, L.V.; Filippov, V.N.; Shedova, E.N.


    Methods of resonance interferometry and holography are discussed, and limits of their applications are considered. Resonance methods are distinguished by high sensitivity and selectivity in the comparison with conventional interferometric and holographic methods. Methods discussed are mainly applied in a comparatively dense plasma, although in some cases it can determine atom densities up to Nsub(a) = 10 9 cm -3 and lower. In the case of the plasma with Nsub(e) = 10 18 -10 19 cm -3 a minimal atom density observable is near Nsub(a) = 10 14 cm -3 . Requirements light sources are specified, and investigation methods are described. For potassium, sodium, lithium, and hydrogen plasma as examples the applicability of these methods is illustrated: atom and electron density are determined, and the plasma dynamics is investigated

  17. First measurement of laser wakefield oscillations by longitudinal interferometry

    International Nuclear Information System (INIS)

    Siders, C.W.; Le Blanc, S.P.; Rau, B.; Fisher, D.; Tajima, T.; Downer, M.C.; Babine, A.; Stepanov, A.; Sergeev, A.


    In this paper femtosecond time resolved measurements of the longitudinal and radial structure of laser wakefield oscillations using an all optical technique known as interferometric photon acceleration or longitudinal interferometry. In the experiment a probe pulse co-propagates behind an intense pulse (I=3x10 17 W/cm 2 , λ=0.8μm, τ=100fs) tightly focused in a helium gas. As the pump pulse ionizes the gas and exerts ponderomotive pressure on the resulting plasma, the probe pulses experiences electron density gradients behind the pump pulse which cause both DC phase shifts as well as spectral shifting of the probe pulse frequency spectrum. In order to detect the small changes in the frequency and phase with femtosecond resolution, our photon accelerator diagnostic uses multiple, temporally separated probe pulses which produce frequency domain interferograms. (AIP) copyright 1997 American Institute of Physics

  18. Demystifying back scatter interferometry: a sensitive refractive index detector

    DEFF Research Database (Denmark)

    Jepsen, Søren Terpager; Jørgensen, Thomas Martini; Trydal, Torleif


    acting like a common-path interferometer. METHODS: A HeNe laser is directed at a glass capillary with inner diameter of 1.4 mm and reflected light from air/glass and liquid/glass interfaces interfere to form an RI dependent intensity fringe pattern at a CCD detector. The fringe shift relative......BACKGROUND: Back Scatter Interferometry (BSI) is a sensitive method for detecting changes of the refractive index (RI) in small capillaries. The method was originally developed as an off-axial column detector for use in Liquid Chromatography or Capillary Electrophoresis systems, but it has been...... a set of NaCl standard solutions. RESULTS: Ray-tracing show that the basic interference pattern recorded with BSI can be fully described by two beams, one reflected from the surface of the capillary and a beam reflected from the back of the capillary wall. In accordance we find that the interferometric...

  19. Multi-image oil-film interferometry skin friction measurements

    International Nuclear Information System (INIS)

    Naughton, J W; Hind, M D


    The benefits of analyzing multiple interferogram images obtained using oil-film interferometry in order to determine wall shear stress are assessed. Both dual- and multi-image analysis approaches are implemented and compared to standard single interferogram approaches. Each of the analysis approaches is derived from the thin oil-film equation. To assess the different implementations, both experimental interferograms and simulated oil films are used. The simulations determine the oil-film height as a function of space and time by solving the thin oil-film equation subject to a known wall shear stress distribution, whereas experimental interferograms were obtained in a turbulent flat plate boundary layer. The results of analyzing these data with the three different analysis approaches suggest that they all work equally well when test conditions are approximately steady. For tunnels with long transients at startup or when multiple test conditions need to be measured in a single run, the multi-image approach is recommended. (paper)

  20. Point source atom interferometry with a cloud of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Hoth, Gregory W., E-mail:; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)


    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.

  1. All-optical optoacoustic microscope based on wideband pulse interferometry. (United States)

    Wissmeyer, Georg; Soliman, Dominik; Shnaiderman, Rami; Rosenthal, Amir; Ntziachristos, Vasilis


    Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI.

  2. Demonstration of SU(2)-symmetry by neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.; Zeilinger, A.


    Neutron interferometry provides a direct test of the 4π-symmetry of a fermion wave function. The experiments performed with perfect crystal interferometers to demonstrate that SU(2)-symmetry property are reviewed. The measured periodicity value of 716.8 +- 3.8 degrees, which is the most precise one obtained up to now, is in good agreement with theoretical prediction. Effects are discussed which may give rise to deviations of the experimental result from the 4π value. Furthermore, an account of epistemological aspects is given relating to the question of the operational applicability of the term rotation in the interpretation of the experiments. Finally, proposals for new, more precise, experiments are made. Some of these experiments may have particular relevance in the context of considerations of a breaking of SU(2) symmetry under strong interaction

  3. Super-virtual refraction interferometry: an engineering field data example

    KAUST Repository

    Hanafy, Sherif M.


    The theory of super-virtual refraction interferometry (SVI) was recently developed to enhance the signal-to-noise ratio (SNR) of far-offset traces in refraction surveys. This enhancement of the SNR is proportional to √N and can be as high as N if an iterative procedure is used. Here N is the number of post-critical shot positions that coincides with the receiver locations. We now demonstrate the SNR enhancement of super-virtual refraction traces for one engineering-scale synthetic data and two field seismic data sets. The field data are collected over a normal fault in Saudi Arabia. Results show that both the SNR of the super-virtual data set and the number of reliable first-arrival traveltime picks are significantly increased. © 2012 European Association of Geoscientists & Engineers.

  4. Collinear phase matching for second harmonic generation using conoscopic interferometry (United States)

    De, A.; Puri, A.


    The problem of finding phase-matching directions in noncentrosymmetric biaxial crystals is simplified here by the use of Conoscopic interferometry. Based on vector relations for wave propagation in birefringent media and solutions to phase-matching equations, we show that phase matching directions can be located on the conoscopic interferograms and that fringe numbers for dark-isochromes can be used as a guide to find phase-matching directions for a biaxial crystal. This technique can be generalized and extended to any anisotropic crystal. We have demonstrated this method for the particular case of a biaxial KTiOPO4 crystal, where it is found to be particularly suitable for finding the optimum-phase-matching directions.

  5. Phase retrieval for interferometry imaging from microlens array (United States)

    Zhu, Zhihao; Qiu, Minpu


    It was considered to get interferometry data from microlens array and reconstruct initial image through it directly, while which used to be taken to calculate the phase difference to get the structure of objects in measurement technology. It broke through the depend of resolution improvement on the size of apertures, reducing the volume of image system vastly. Nevertheless, on account of the phase deficiency, this method could not show the details well enough to be generally used in measurement and control systems. Through support estimation of the target, with the feature extraction technology, the deconvolution function could be got, by which the sidelobe and pinniform structure in the "ditry" image caused by the lack of frequency could be eliminated, and phase retrieval was done. Simulation did the reconstruction experiment, yet had got relatively good detail presentations.

  6. Frequency selection for coda wave interferometry in concrete structures. (United States)

    Fröjd, Patrik; Ulriksen, Peter


    This study contributes to the establishment of frequency recommendations for use in coda wave interferometry structural health monitoring (SHM) systems for concrete structures. To this end, codas with widely different central frequencies were used to detect boreholes with different diameters in a large concrete floor slab, and to track increasing damage in a small concrete beam subjected to bending loads. SHM results were obtained for damage that can be simulated by drilled holes on the scale of a few mm or microcracks due to bending. These results suggest that signals in the range of 50-150kHz are suitable in large concrete structures where it is necessary to account for the high attenuation of high-frequency signals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Interferometry and MHD turbulence measurements in toroidal pinches

    International Nuclear Information System (INIS)

    Dutt, T.L.; Evans, D.E.; Wilcock, P.D.


    A 10.6 micron interferometer produced 2 to 3 good quality fringes in the HBTX plasma. There is substantial agreement in the electron densities determined by interferometry and by Thomson scattering, but since the former is an absolute measurement and is systematically lower than the Thomson scattering values, the latter may be too great by about 35%. In RF Pinches, turbulence associated with the instability deflects the beam and corrupts the interferogram. However, if the intensity fluctuations induced in this beam by the turbulence, are measured, as is done in the second experiment performed in the FRSX plasma with a HCN laser, the frequency spectrum of the turbulence can be deduced. In this plasma, rms fluctuations in the density were measured by this means to be 20%, and the dominant frequency of the fluctuations multiplied by the tube diameter was approximately Alfven speed, favouring an interpretation of the gross turbulence in this plasma in terms of Alfen waves. (U.K.)

  8. Transverse beam profile reconstruction using synchrotron radiation interferometry

    Directory of Open Access Journals (Sweden)

    L. Torino


    Full Text Available Transverse beam size measurements in new generation of synchrotron light sources is a challenging task due to their characteristic small beam emittances and low couplings. Since the late 1990s, synchrotron radiation interferometry (SRI has been used in many accelerators to measure the beam size through the analysis of the spatial coherence of the synchrotron light. However, the standard SRI using a double-aperture system provides the beam size projection in a given direction. For this reason, the beam shape is not fully characterized because information about possible transverse beam tilts is not determined. In this report, we describe a technique to fully reconstruct the transverse beam profile based on a rotating double-pinhole mask, together with experimental results obtained at ALBA under different beam couplings. We also discuss how this method allows us to infer ultrasmall beam sizes in case of limitations of the standard SRI.

  9. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.


    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....

  10. Adaptive Interferometry Sensor for Detection of Nanoscale Displacements

    Directory of Open Access Journals (Sweden)

    Roman V. ROMASHKO


    Full Text Available In this work we present an adaptive holographic interferometry sensing system for measurement of nanoscale displacements of micro- and macro-objects. The system is based on using dynamic hologram continuously recorded in photorefractive CdTe crystal. Theoretical limit for displacement detection which can be provided by the system is 0.1 nm. It is experimentally demonstrated that system is able to detect a displacement from 0.7 nm up to 266 nm in linear regime. We also present theoretical model of adaptive interferometer operation which take into account a displacement speed. Due to its adaptive properties the measurement system can be used for inspection of sub-micro-scale objects with arbitrary shape and surface profile.

  11. P-REx: The Piston Reconstruction Experiment for infrared interferometry (United States)

    Widmann, Felix; Pott, Jörg-Uwe; Velasco, Sergio


    For sensitive infrared interferometry, it is crucial to control the differential piston evolution between the used telescopes. This is classically done by the use of a fringe tracker. In this work, we develop a new method to reconstruct the temporal piston variation from the atmosphere, by using real-time data from adaptive optics (AO) wavefront sensing: the Piston Reconstruction Experiment (P-REx). In order to understand the principle performance of the system in a realistic multilayer atmosphere, it is first extensively tested in simulations. The gained insights are then used to apply P-REx to real data, in order to demonstrate the benefit of using P-REx as an auxiliary system in a real interferometer. All tests show positive results, which encourages further research and eventually a real implementation. Especially, the tests on on-sky data showed that the atmosphere is, under decent observing conditions, sufficiently well structured and stable, in order to apply P-REx. It was possible to conveniently reconstruct the piston evolution in two-thirds of the data sets from good observing conditions (r0 ˜ 30 cm). The main conclusion is that applying the piston reconstruction in a real system would reduce the piston variation from around 10 μm down to 1-2 μm over time-scales of up to two seconds. This suggests an application for mid-infrared interferometry, for example for MATISSE at the very large telescope interferometer or the large binocular telescope interferometer. P-REx therefore provides the possibility to improve interferometric measurements without the need for more complex AO systems than already in regular use at 8-m-class telescopes.

  12. Persistent Scatterer Interferometry (PSI Technique for Landslide Characterization and Monitoring

    Directory of Open Access Journals (Sweden)

    Nicola Casagli


    Full Text Available : The measurement of landslide superficial displacement often represents the most effective method for defining its behavior, allowing one to observe the relationship with triggering factors and to assess the effectiveness of the mitigation measures. Persistent Scatterer Interferometry (PSI represents a powerful tool to measure landslide displacement, as it offers a synoptic view that can be repeated at different time intervals and at various scales. In many cases, PSI data are integrated with in situ monitoring instrumentation, since the joint use of satellite and ground-based data facilitates the geological interpretation of a landslide and allows a better understanding of landslide geometry and kinematics. In this work, PSI interferometry and conventional ground-based monitoring techniques have been used to characterize and to monitor the Santo Stefano d’Aveto landslide located in the Northern Apennines, Italy. This landslide can be defined as an earth rotational slide. PSI analysis has contributed to a more in-depth investigation of the phenomenon. In particular, PSI measurements have allowed better redefining of the boundaries of the landslide and the state of activity, while the time series analysis has permitted better understanding of the deformation pattern and its relation with the causes of the landslide itself. The integration of ground-based monitoring data and PSI data have provided sound results for landslide characterization. The punctual information deriving from inclinometers can help in defining the actual location of the sliding surface and the involved volumes, while the measuring of pore water pressure conditions or water table level can suggest a correlation between the deformation patterns and the triggering factors.

  13. Surface deformation of Taipei basin detected by Differential SAR Interferometry (United States)

    Chen, Y.; Chang, C.; Yen, J.; Lin, M.


    Taiwan island is located between the southeastern periphery of the Eurasian plate and the Philippine Sea plate. The two converging plates produced very active tectonics, and can be seen by the high seismicity and deformation rate. Taipei, the highest populated area, center of politics, and economics in Taiwan, is in Taipei basin at the northern part of the island. There are several faults in and surrounding the basin, and the city is threatened with a high geological hazard potential that we should keep monitoring the crustal deformation to prevent and mitigate the disaster effect. The aims of our study is to apply the DInSAR technique to determine the surface deformation of Taipei basin area, and discussing the relation between the manifestation of deformation and the tectonically active region, Shanjiao fault. In the past few years, Differential SAR Interferometry (DInSAR) has been proved to be a powerful technique for monitoring the neotectonic activities and natural hazards. High spatial sampling rate of DInSAR technique allows studies of surface deformations with centimeter accuracy. In this area, we used ERS-1/2 SAR images acquired from 1993 to 2005 to generate 10 differential interferograms and processed the data using DIAPASON developed by CNES and SRTM global DEM.From our results, the deformation rate in Taipei is generally high in the western end of the basin along the Shanjiao fault and decrease eastward, while the subsidence center often appeared in the center of the Taipei basin. The neotectonic activity of the Shanjiao fault appeared to be insignificant by itself but it seemed to separate the subsiding basin from the surrounding areas. Further comparison between our DInSAR results and isopach of the Taipei basin revealed that the subsidence centers appeared in the interferograms did not coincide with the location where the sediments are thickest. Our results from differential interferometry will be compared to other geodetic measurements such as the

  14. 40 CFR 1042.825 - Baseline determination. (United States)


    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Baseline determination. 1042.825... Provisions for Remanufactured Marine Engines § 1042.825 Baseline determination. (a) For the purpose of this... not valid. (f) Use good engineering judgment for all aspects of the baseline determination. We may...

  15. The Balloon Experimental Twin Telescope for Infrared Interferometry : Returning to Flight (United States)

    National Aeronautics and Space Administration — The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter far-infrared (30-90 micron) Michelson interferometer, designed to fly on a...

  16. Neutron interferometry lessons in experimental quantum mechanics, wave-particle duality, and entanglement

    CERN Document Server

    Rauch, Helmut


    The quantum interference of de Broglie matter waves is probably one of the most startling and fundamental aspects of quantum mechanics. It continues to tax our imaginations and leads us to new experimental windows on nature. Quantum interference phenomena are vividly displayed in the wide assembly of neutron interferometry experiments, which have been carried out since the first demonstration of a perfect silicon crystal interferometer in 1974. Since the neutron experiences all four fundamental forces of nature (strong, weak, electromagnetic, and gravitational), interferometry with neutrons provides a fertile testing ground for theory and precision measurements. Many Gedanken experiments of quantum mechanics have become real due to neutron interferometry. Quantum mechanics is a part of physics where experiment and theory are inseparably intertwined. This general theme permeates the second edition of this book. It discusses more than 40 neutron interferometry experiments along with their theoretical motivation...

  17. On the relation between seismic interferometry and the migration resolution function

    NARCIS (Netherlands)

    Thorbecke, J.W.; Wapenaar, C.P.A.


    Seismic interferometry refers to the process of retrieving new seismic responses by crosscorrelating seismic observations at different receiver locations. Seismic migration is the process of forming an image of the subsurface by wavefield extrapolation. Comparing the expressions for backward

  18. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry, Phase II (United States)

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  19. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry, Phase I (United States)

    National Aeronautics and Space Administration — We propose to design a compact, high-precision, single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Our...

  20. Technology, Empowerment and Community Radio


    Salvatore Scifo


    This article will provide an overview of the conceptual contours of community media and community radio, highlighting some of the key questions shaping the debate and, with the help of a case study, show how digital media in the context of community radio can help local groups to get a voice in their local media systems, and how a university-based radio station, and its students and volunteers, play an important role for a more diverse and vibrant media content available in their area.

  1. Introduction to international radio regulations

    International Nuclear Information System (INIS)

    Struzak, R.


    These notes introduce the ITU Radio Regulations and related UN and WTO agreements that specify how terrestrial and satellite radio should be used in all countries over the planet. Access to the existing information infrastructure, and to that of the future Information Society, depends critically on these regulations. The paper also discusses few problems related to the use of the radio frequencies and satellite orbits. The notes are extracted from a book under preparation, in which these issues are discussed in more detail. (author)

  2. Magnetogasdynamics of double radio sources

    International Nuclear Information System (INIS)

    Nepveu, M.


    The magnetogasdynamical behaviour of plasmoids moving through an ambient gas is investigated numerically with a two-dimensional code, based on the SHASTA scheme. The astrophysical importance of this study lies in the observed extended extragalactic radio sources. It is assumed that plasma clouds with cylinder symmetry are ejected from the nucleus of a galaxy. Their large-scale evolution in the intergalactic medium (IGM) is followed. The gas dynamics of an ejected cloud, the magnetogasdynamics of ejected clouds, the Christiansen-Pacholczyk-Scott picture for radio galaxies and the shear layers in double radio sources are studied. (Auth.)

  3. Shoestring Budget Radio Astronomy (Abstract) (United States)

    Hoot, J. E.


    (Abstract only) The commercial exploitation of microwave frequencies for cellular, WiFi, Bluetooth, HDTV, and satellite digital media transmission has brought down the cost of the components required to build an effective radio telescope to the point where, for the cost of a good eyepiece, you can construct and operate a radio telescope. This paper sets forth a family of designs for 1421 MHz telescopes. It also proposes a method by which operators of such instruments can aggregate and archive data via the Internet. With 90 or so instruments it will be possible to survey the entire radio sky for transients with a 24 hour cadence.

  4. Analysis of reconstructed interference fields in digital holographic interferometry using the polynomial phase transform

    International Nuclear Information System (INIS)

    Gorthi, Sai Siva; Rastogi, Pramod


    A noisy wrapped phase map is the end-output of commonly employed phase estimation methods in digital holographic interferometry. Hence filtering and unwrapping are necessary to obtain continuous phase distributions. This paper introduces a new approach for phase estimation in digital holographic interferometry using the polynomial phase transform. The proposed approach directly provides an accurate estimation of the unwrapped phase distribution from a noisy reconstructed interference field, thereby bypassing cumbersome and error-prone filtering and 2D phase unwrapping procedures

  5. Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry (United States)

    Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell


    We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.

  6. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Czech Academy of Sciences Publication Activity Database

    Krupka, M.; Kálal, M.; Dostál, Jan; Dudžák, Roman; Juha, Libor


    Roč. 12, Aug (2017), s. 1-6, č. článku C08012. ISSN 1748-0221 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : magnetic-field measurements * fully automated-analysis * laser-produced plasmas * image processing * interferometry * plasma diagnostics - interferometry * spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  7. A radio and optical study of Molonglo radio sources (United States)

    Ishwara-Chandra, C. H.; Saikia, D. J.; McCarthy, P. J.; van Breugel, W. J. M.


    We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff-Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu-Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.

  8. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide


    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  9. Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: A comparison with electronic speckle pattern interferometry

    DEFF Research Database (Denmark)

    Rohleder, Henrik; Petersen, Paul Michael; Marrakchi, A.


    and amplitude of the vibrating structure are demonstrated in photorefractive time average interferometry. The photorefractive interferometer is compared with the performance of a commercial electronic speckle pattern interferometer (ESPI). It is shown that the dynamic photorefractive holographic interferometer......Time-average interferometry is dealt with using four-wave mixing in photorefractive Bi12SiO20. By introducing a proper sinusoidal phase shift in the forward pump beam it is possible to measure the amplitude and phase everywhere on a vibrating object. Quantitative measurements of the phase...

  10. Combining L- and X-Band SAR Interferometry to Assess Ground Displacements in Heterogeneous Coastal Environments: The Po River Delta and Venice Lagoon, Italy

    Directory of Open Access Journals (Sweden)

    Luigi Tosi


    Full Text Available From leveling to SAR-based interferometry, the monitoring of land subsidence in coastal transitional environments significantly improved. However, the simultaneous assessment of the ground movements in these peculiar environments is still challenging. This is due to the presence of relatively small built-up zones and infrastructures, e.g., coastal infrastructures, bridges, and river embankments, within large natural or rural lands, e.g., river deltas, lagoons, and farmland. In this paper we present a multi-band SAR methodology to integrate COSMO-SkyMed and ALOS-PALSAR images. The method consists of a proper combination of the very high-resolution X-band Persistent Scatterer Interferometry (PSI, which achieves high-density and precise measurements on single structures and constructed areas, with L-band Short-Baseline SAR Interferometry (SBAS, properly implemented to raise its effectiveness in retrieving information in vegetated and wet zones. The combined methodology is applied on the Po River Delta and Venice coastland, Northern Italy, using 16 ALOS-PALSAR and 31 COSMO-SkyMed images covering the period between 2007 and 2011. After a proper calibration of the single PSI and SBAS solution using available GPS records, the datasets have been combined at both the regional and local scales. The measured displacements range from ~0 mm/yr down to −35 mm/yr. The results reveal the variable pattern of the subsidence characterizing the more natural and rural environments without losing the accuracy in quantifying the sinking of urban areas and infrastructures. Moreover, they allow improving the interpretation of the natural and anthropogenic processes responsible for the ongoing subsidence.

  11. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, T.


    An adaptive response to radiation stress was found as a suppressed induction of chromosomal damage including micronuclei and sister chromatid exchanges in cultured Chinese hamster V79 cells pre-exposed to very low doses of ionizing radiations. The mechanism underlying this novel chromosomal response, called 'radio-adaptive response (RAR)' has been studied progressively. The following results were obtained in recent experiments. 1. Low doses of β-rays from tritiated water (HTO) as well as tritium-thymidine can cause RAR. 2. Thermal neutrons, a high LET radiation, can not act as tritium β-rays or γ-rays. 3. The RAR expression is suppressed not only by the treatment with an inhibitor of protein synthesis but also by RNA synthesis inhibition. 4. Several proteins are newly synthesized concurrently with the RAR expression after the adapting doses, viewed by two-dimensional electrophoresis of cellular proteins. These results suggests that the RAR might be a cellular stress response to a signal produced preferentially by very low doses of low LET radiation under restricted conditions, accompany the inducible specific gene expression. (author)

  12. Beamsteerable GNSS Radio Occultation ASIC (United States)

    National Aeronautics and Space Administration — We will develop an integrated RF ASIC to enable high quality radio occultation (RO) weather observations using the Global Navigations System Satellite (GNSS)...

  13. Miniaturized Digital EVA Radio Project (United States)

    National Aeronautics and Space Administration — Bennett Aerospace and Team Partners propose to develop a small, lightweight, and very power-efficient mobile radio for use on the Lunar surface. Our Team will...

  14. Reconfigurable, Digital EVA Radio Project (United States)

    National Aeronautics and Space Administration — AeroAstro proposes to develop a low-power, low-volume and lightweight, state-of-the-art digital radio capable of operating in a wide variety of bands, from VHF...

  15. Zero-Power Radio Device.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report describes an unpowered radio receiver capable of detecting and responding to weak signals transmit ted from comparatively long distances . This radio receiver offers key advantages over a short range zero - power radio receiver previously described in SAND2004 - 4610, A Zero - Power Radio Receiver . The device described here can be fabricated as an integrated circuit for use in portable wireless devices, as a wake - up circuit, or a s a stand - alone receiver operating in conjunction with identification decoders or other electroni cs. It builds on key sub - components developed at Sandia National Laboratories over many years. It uses surface acoustic wave (SAW) filter technology. It uses custom component design to enable the efficient use of small aperture antennas. This device uses a key component, the pyroelectric demodulator , covered by Sandia owned U.S. Patent 7397301, Pyroelectric Demodulating Detector [1] . This device is also described in Sandia owned U.S. Patent 97266446, Zero Power Receiver [2].

  16. EVA Radio DRATS 2011 Report (United States)

    Swank, Aaron J.; Bakula, Casey J.


    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  17. Radio and line transmission 2

    CERN Document Server

    Roddy, Dermot


    Radio and Line Transmission, Volume 2 gives a detailed treatment of the subject as well as an introduction to additional advanced subject matter. Organized into 14 chapters, this book begins by explaining the radio wave propagation, signal frequencies, and bandwidth. Subsequent chapters describe the transmission lines and cables; the aerials; tuned and coupled circuits; bipolar transistor amplifiers; field-effect transistors and circuits; thermionic valve amplifiers; LC oscillators; the diode detectors and modulators; and the superheterodyne receiver. Other chapters explore noise and interfere

  18. Radio astronomy on the moon

    International Nuclear Information System (INIS)

    Burns, J.O.; Asbell, J.


    The advantages and opportunities for radio astronomy on the moon during the early to mid 21st century are reviewed. In particular, it is argued that the lack of atmosphere, the extremely low seismic activity, the low RF background, and the natural cryogenic environment make the moon (particularly the far side and the poles) a nearly ideal locale for submillimeter/FIR to VLF (below 10 MHz) radio astronomy. 22 references

  19. Thermal radio emission : The brightness temperature and the spectral index of radio emission


    Prigara, F. V.


    The condition of radio emission is proposed, on the base of which the theory of themal radio emission for gaseous disk is developed. This theory explains the radio emission spectra of known types of extended radio sources, located beyond the Solar planetary system. Besides, the thermal radio emission spectra of Venus and Jupiter are explained.

  20. Radio galaxies and their environment

    International Nuclear Information System (INIS)

    van Breugel, W.


    The relationships between radio galaxies and their environment are varied, complex, and evolve with cosmic epoch. Basic questions are what role the environment plays in triggering and fuelling (radio) galaxy activity what the effects of this activity are on its environment, and how radio galaxies and environment evolve. Clearly, this could be the topic of a workshop all in itself and the scope of this review will necessarily be limited. A review of the connections between environment and galaxy activity in general has been given by Heckman. First, I will briefly summarize the relationships between parent galaxy and cluster environments, and radio galaxies. A more detailed discussion of various aspects of this will be given elsewhere by F. Owen, J.0. Burns and R. Perley. I will then discuss the current status of investigations of extended emission-line regions in radio galaxies, again referring elsewhere in this volume for more detailed discussions of some particular aspects (kinematics and ionization mechanisms by K. Meisenheimer; polarization and spectral index lobe asymmetries by G. Pooley). I will conclude with a brief discussion of the current status of observations of high redshift radio galaxies


    Directory of Open Access Journals (Sweden)

    Bysko Maxim V.


    Full Text Available The singularity of this article is that it is entirely based on a critical analysis of only one live musical radio program on the Mayak radio station and dedicated to the life and work of the famous British composer Andrew Lloyd Webber. In principle, the article can be considered a scientific review of the media product. Based on his analysis, the author comes to the paradoxical conclusion that the presence of a listener becomes unnecessary for modern broadcasting. This is stated by many principles of the conduct of the air, presented in the radio program, where all the information load is placed on the guest in the studio, where there is no preparatory work of the DJs, where their inability to navigate the genres of journalism violates communication norms and colloquial ethics, where an obvious deconstructive approach to the material offered for the listener. In addition, the phenomenon of being the DJs in the radio studio exclusively "for themselves" is emphasized by the sound design of the radio program, which runs counter to the logic of auditory perception (for example, the sequence of jingles, as well as the incompetent selection of musical material, which undoubtedly repels professional radio listeners-musicians.

  2. The radio properties of infrared-faint radio sources (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.


    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  3. Assessing ScanSAR Interferometry for Deformation Studies (United States)

    Buckley, S. M.; Gudipati, K.


    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  4. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.


    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  5. Integrated planning: A baseline development perspective

    International Nuclear Information System (INIS)

    Clauss, L.; Chang, D.


    The FEMP Baseline establishes the basis for integrating environmental activity technical requirements with their cost and schedule elements. The result is a path forward to successfully achieving the FERMCO mission. Specific to cost management, the FEMP Baseline has been incorporate into the FERMCO Project Control System (PCS) to provide a time-phased budget plan against which contractor performance is measured with an earned value management system. The result is the Performance Measurement Baseline (PMB), an important tool for keeping cost under control

  6. Prosthetic clone and natural human tooth comparison by speckle interferometry (United States)

    Slangen, Pierre; Corn, Stephane; Fages, Michel; Raynal, Jacques; Cuisinier, Frederic J. G.


    New trends in dental prosthodontic interventions tend to preserve the maximum of "body" structure. With the evolution of CAD-CAM techniques, it is now possible to measure "in mouth" the remaining dental tissues. The prosthetic crown is then designed using this shape on which it will be glued on, and also by taking into account the contact surface of the opposite jaw tooth. Several theories discuss on the glue thickness and formulation, but also on the way to evolve to a more biocompatible crown and also new biomechanical concepts. In order to validate these new concepts and materials, and to study the mechanical properties and mechanical integrity of the prosthesis, high resolution optical measurements of the deformations of the glue and the crown are needed. Samples are two intact premolars extracted for orthodontics reasons. The reference sample has no modifications on the tooth while the second sample tooth is shaped to receive a feldspathic ceramic monoblock crown which will be glued. This crown was manufactured with a chairside CAD-CAM system from an intra-oral optical print. The software allows to realize a nearly perfect clone of the reference sample. The necessary space for the glue is also entered with ideal values. This duplication process yields to obtain two samples with identical anatomy for further processing. The glue joint thickness can also be modified if required. The purpose is to compare the behaviour of a natural tooth and its prosthetic clone manufactured with "biomechanical" concepts. Vertical cut samples have been used to deal with planar object observation, and also to look "inside" the tooth. We have developed a complete apparatus enabling the study of the compressive mechanical behaviour of the concerned tooth by speckle interferometry. Because in plane displacements are of great interest for orthodontic measurements1, an optical fiber in-plane sensitive interferometer has been designed. The fibers are wrapped around piezoelectric

  7. Laser Micromachining and Information Discovery Using a Dual Beam Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Theppakuttaikomaraswamy, Senthil P. [Iowa State Univ., Ames, IA (United States)


    Lasers have proven to be among the most promising tools for micromachining because they can process features down to the size of the laser wavelength (smaller than 1 micrometer) and they provide a non-contact technology for machining. The demand for incorporating in-situ diagnostics technology into the micromachining environment is driven by the increasing need for producing micro-parts of high quality and accuracy. Laser interferometry can be used as an on-line monitoring tool and it is the aim of this work to enhance the understanding and application of Michelson interferometry principle for the in-situ diagnostics of the machining depth on the sub-micron and micron scales. micromachining is done on two different materials and a comprehensive investigation is done to control the width and depth of the machined feature. To control the width of the feature, laser micromachining is done on copper and a detailed analysis is performed. The objective of this experiment is to make a precision mask for sputtering with an array of holes on it using an Nd:YAG laser of 532 nm wavelength. The diameter of the hole is 50 μm and the spacing between holes (the distance between the centers) is 100 μm. Michelson interferometer is integrated with a laser machining system to control the depth of machining. An excimer laser of 308 nm wavelength is used for micromachining. A He-Ne laser of 632.8 nm wavelength is used as the light source for the interferometer. Interference patterns are created due to the change in the path length between the two interferometer arms. The machined depth information is obtained from the interference patterns on an oscilloscope detected by a photodiode. To compare the predicted depth by the interferometer with the true machining depth, a surface profilometer is used to measure the actual machining depth on the silicon. It is observed that the depths of machining obtained by the surface profile measurement are in accordance with the interferometer

  8. Quantitative determination of testosterone levels with biolayer interferometry. (United States)

    Zhang, Hao; Li, Wei; Luo, Hong; Xiong, Guangming; Yu, Yuanhua


    Natural and synthetic steroid hormones are widely spread in the environment and are considered as pollutants due to their endocrine activities, even at low concentrations, which are harmful to human health. To detect steroid hormones in the environment, a novel biosensor system was developed based on the principle of biolayer interferometry. Detection is based on changes in the interference pattern of white light reflected from the surface of an optical fiber with bound biomolecules. Monitoring interactions between molecules does not require radioactive, enzymatic, or fluorescent labels. Here, 2 double-stranded DNA fragments of operator 1 (OP1) and OP2 containing 10-bp palindromic sequences in chromosomal Comamonas testosteroni DNA (ATCC11996) were surface-immobilized to streptavidin sensors. Interference changes were detected when repressor protein RepA bound the DNA sequences. DNA-protein interactions were characterized and kinetic parameters were obtained. The dissociation constants between the OP1 and OP2 DNA sequences and RepA were 9.865 × 10 -9  M and 2.750 × 10 -8  M, respectively. The reactions showed high specifically and affinity. Because binding of the 10-bp palindromic sequence and RepA was affected by RepA-testosterone binding, the steroid could be quantitatively determined rapidly using the biosensor system. The mechanism of the binding assay was as follows. RepA could bind both OP1 and testosterone. RepA binding to testosterone changed the protein conformation, which influenced the binding between RepA and OP1. The percentage of the signal detected negative correlation with the testosterone concentration. A standard curve was obtained, and the correlation coefficient value was approximately 0.97. We could quantitatively determine testosterone levels between 2.13 and 136.63 ng/ml. Each sample could be quantitatively detected in 17 min. These results suggested that the specific interaction between double-stranded OP1 DNA and the RepA protein

  9. IPCC Socio-Economic Baseline Dataset (United States)

    National Aeronautics and Space Administration — The Intergovernmental Panel on Climate Change (IPCC) Socio-Economic Baseline Dataset consists of population, human development, economic, water resources, land...

  10. Radio-frequency wave excitation and damping on a high β plasma column

    International Nuclear Information System (INIS)

    Meuth, H.


    Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k/sub z/ are investigated on the High BETA Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T greater than or equal to 200 eV, n approx. = 10 15 cm -3 ) fast rising (0.4 μs) compression field. The (k/sub z/ = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MW 1 to 1.3 MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k/sub z/ = 0.314 cm -1 ). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k does not equal 0) modes for various filling pressures of deuterium. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements

  11. Radio Frequency Interference Site Survey for Thai Radio Telescopes (United States)

    Jaroenjittichai, P.; Punyawarin, S.; Singwong, D.; Somboonpon, P.; Prasert, N.; Bandudej, K.; Kempet, P.; Leckngam, A.; Poshyachinda, S.; Soonthornthum, B.; Kramer, B.


    Radio astronomical observations have increasingly been threaten by the march of today telecommunication and wireless technology. Performance of radio telescopes lies within the fact that astronomical sources are extremely weak. National Astronomy Research Institute of Thailand (NARIT) has initiated a 5-year project, known as the Radio Astronomy Network and Geodesy for Development (RANGD), which includes the establishment of 40-meter and 13-meter radio telescopes. Possible locations have been narrowed down to three candidates, situated in the Northern part of Thailand, where the atmosphere is sufficiently dry and suitable for 22 and 43 GHz observations. The Radio Frequency Interference (RFI) measurements were carried out with a DC spectrum analyzer and directional antennas at 1.5 meter above ground, from 20 MHz to 6 GHz with full azimuth coverage. The data from a 3-minute pointing were recorded for both horizontal and vertical polarizations, in maxhold and average modes. The results, for which we used to make preliminary site selection, show signals from typical broadcast and telecommunication services and aeronautics applications. The signal intensity varies accordingly to the presence of nearby population and topography of the region.

  12. Alignment sensing for optical cavities using radio-frequency jitter modulation. (United States)

    Fulda, P; Voss, D; Mueller, C; Ortega, L F; Ciani, G; Mueller, G; Tanner, D B


    Alignment sensing is often required in precision interferometry applications such as Advanced LIGO in order to achieve the optimum performance. Currently favored sensing schemes rely on the use of two separate radio-frequency (RF) quadrant photodetectors and Gouy phase telescopes to determine the alignment of a beam relative to an optical cavity axis. In this paper, we demonstrate an alternative sensing scheme that has potential advantages over the current standard schemes. We show that by using electro-optic beam deflectors to impose RF jitter sidebands on a beam, it is possible to extract full alignment signals for two in-line optical cavities from just one single-element photodetector in reflection of each cavity.

  13. Compensation of sampling error in frequency scanning interferometry (United States)

    Shang, Yue; Lin, Jiarui; Yang, Linghui; Ren, Yongjie


    Absolute distance measurement techniques are of significant interest in the field of large volume metrology. Ones which could offer an ability of ADM and high accuracy will improve the efficiency and the quality of large assemblies. Frequency scanning interferometry (FSI) is a kind of ADM technique which use a variable synthetic-wavelength achieved by tuning the optical frequency continuously. FSI could offer a relative accuracy of several ppm in a range of tens of meters. In a FSI ranging system, it is necessary to get knowledge of the tuning range of optical frequency, which could be done by using of gas absorption cell, femtosecond laser comb, F-P etalon and the most used: a predicted auxiliary interferometer. As the result of the measurement is calculated by the tuning range of optical frequency, a length drift of the auxiliary interferometer will make a contribution in error of the result. Analysis of sampling error caused by the drift of the auxiliary interferometer has been done and a real-time compensation system has been proposed to minimize the drift of the auxiliary interferometer. The simulation has proved the analysis and the error has been decreased.

  14. Multiwavelength interferometry system for the Orion laser facility. (United States)

    Patankar, S; Gumbrell, E T; Robinson, T S; Lowe, H F; Giltrap, S; Price, C J; Stuart, N H; Kemshall, P; Fyrth, J; Luis, J; Skidmore, J W; Smith, R A


    We report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam. Example data confirms the broadband achromatic capability of the imaging system with operation from the UV (263 nm) to visible (527 nm) and demonstrates that features as small as 5 μm can be resolved for object sizes of 15 by 10 mm. Results are also shown for an off-harmonic wavelength that will underpin a future capability. The primary optics package is accommodated inside the footprint of a ten-inch manipulator to allow the system to be deployed from a multitude of viewing angles inside the 4 m diameter Orion target chamber.

  15. Probing infrared detectors through energy-absorption interferometry (United States)

    Moinard, Dan; Withington, Stafford; Thomas, Christopher N.


    We describe an interferometric technique capable of fully characterizing the optical response of few-mode and multi-mode detectors using only power measurements, and its implementation at 1550 nm wavelength. EnergyAbsorption Interferometry (EAI) is an experimental procedure where the system under test is excited with two coherent, phase-locked sources. As the relative phase between the sources is varied, a fringe is observed in the detector output. Iterating over source positions, the fringes' complex visibilities allow the two-point detector response function to be retrieved: this correlation function corresponds to the state of coherence to which the detector is maximally sensitive. This detector response function can then be decomposed into a set of natural modes, in which the detector is incoherently sensitive to power. EAI therefore allows the reconstruction of the individual degrees of freedom through which the detector can absorb energy, including their relative sensitivities and full spatial forms. Coupling mechanisms into absorbing structures and their underlying solidstate phenomena can thus be studied, with direct applications in improving current infrared detector technology. EAI has previously been demonstrated for millimeter wavelength. Here, we outline the theoretical basis of EAI, and present a room-temperature 1550 nm wavelength infrared experiment we have constructed. Finally, we discuss how this experimental system will allow us to study optical coupling into fiber-based systems and near-infrared detectors.

  16. Coherent-light-boosted, sub-shot noise, quantum interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Plick, William N; Dowling, Jonathan P [Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Agarwal, Girish S, E-mail: [Department of Physics, Oklahoma State University, Stillwater, OK 74078 (United States)


    We present in this paper a new scheme for optical interferometry. We utilize coherent-beam-stimulated two-mode squeezed light, which interacts with a phase shifter and is then squeezed again before detection. Our theoretical device has the potential to reach far below the shot-noise limit in phase sensitivity. This new proposal avoids the pitfalls of other setups, such as difficulty in creating the required resource. Furthermore, our scheme requires no complicated detection protocol, relying instead only on simple intensity measurement. Also, bright, coherent sources 'boost' squeezed light, creating a very sensitive device. This hybrid scheme relies on no unknown components and can be constructed with current technology. In this paper, we present our analysis of this relatively straightforward device, using the operator propagation method. We derive the phase sensitivity and provide a simple numerical example of the power of our new proposal. Sensitivity to unknown phase shifts scales as a shot-noise-limited Mach-Zehnder interferometer, multiplied by a sub-Heisenberg contribution from the squeezed light.

  17. Coherent-light-boosted, sub-shot noise, quantum interferometry

    International Nuclear Information System (INIS)

    Plick, William N; Dowling, Jonathan P; Agarwal, Girish S


    We present in this paper a new scheme for optical interferometry. We utilize coherent-beam-stimulated two-mode squeezed light, which interacts with a phase shifter and is then squeezed again before detection. Our theoretical device has the potential to reach far below the shot-noise limit in phase sensitivity. This new proposal avoids the pitfalls of other setups, such as difficulty in creating the required resource. Furthermore, our scheme requires no complicated detection protocol, relying instead only on simple intensity measurement. Also, bright, coherent sources 'boost' squeezed light, creating a very sensitive device. This hybrid scheme relies on no unknown components and can be constructed with current technology. In this paper, we present our analysis of this relatively straightforward device, using the operator propagation method. We derive the phase sensitivity and provide a simple numerical example of the power of our new proposal. Sensitivity to unknown phase shifts scales as a shot-noise-limited Mach-Zehnder interferometer, multiplied by a sub-Heisenberg contribution from the squeezed light.

  18. High Precision Signal Processing Algorithm for White Light Interferometry

    Directory of Open Access Journals (Sweden)

    Jeonggon Harrison Kim


    Full Text Available A new signal processing algorithm for absolute temperature measurement using white light interferometry has been proposed and investigated theoretically. The proposed algorithm determines the phase delay of an interferometer with very high precision (<< one fringe by identifying the zero order fringe peak of cross-correlation of two fringe scans of white light interferometer. The algorithm features cross-correlation of interferometer fringe scans, hypothesis testing and fine tuning. The hypothesis test looks for a zero order fringe peak candidate about which the cross-correlation is symmetric minimizing the uncertainty of mis-identification. Fine tuning provides the proposed algorithm with high precision subsample resolution phase delay estimation capability. The shot noise limited performance of the proposed algorithm has been analyzed using computer simulations. Root-mean-square (RMS phase error of the estimated zero order fringe peak has been calculated for the changes of three different parameters (SNR, fringe scan sample rate, coherence length of light source. Computer simulations showed that the proposed signal processing algorithm identified the zero order fringe peak with a miss rate of 3 x 10-4 at 31 dB SNR and the extrapolated miss rate at 35 dB was 3 x 10-8. Also, at 35 dB SNR, RMS phase error less than 10-3 fringe was obtained. The proposed signal processing algorithm uses a software approach that is potentially inexpensive, simple and fast.

  19. Atom interferometry in space: Thermal management and magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman, E-mail:; Rievers, Benny; Herrmann, Sven [Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen (Germany); Schuldt, Thilo [DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen (Germany); DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany)


    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10{sup −4} % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 10{sup 5}. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  20. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Shane R. Cloude


    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.