WorldWideScience

Sample records for based working fluids

  1. Vegetable Oil-Based Metal Working Fluids-A Review

    Directory of Open Access Journals (Sweden)

    Vaibhav Koushik A.V

    2012-06-01

    Full Text Available Metal working fluids are widely employed to increase the machining productivity and quality of metal cutting, but their usage poses a great threat to ecology and health of workers in the industry. Therefore, a need arose to identify eco-friendly and hazard free alternatives to conventional mineral oil based metal working fluids. Vegetable oils have become identified world over as a potential source of environmentally favorable metal working fluids due to a combination of biodegradability, renewability and excellent lubrication performance. Low oxidation and thermal stability, poor low temperature behavior, however limit their potential application as metal working lubricants and has become the thrust area of research of scientists and tribologists world over.

  2. CO2-based mixtures as working fluids for geothermal turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven Alan; Conboy, Thomas M.; Ames, David E.

    2012-01-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for application to a variety of heat sources, including geothermal, solar, fossil, and nuclear power. This work is centered on the supercritical CO{sub 2} (S-CO{sub 2}) power conversion cycle, which has the potential for high efficiency in the temperature range of interest for these heat sources and is very compact-a feature likely to reduce capital costs. One promising approach is the use of CO{sub 2}-based supercritical fluid mixtures. The introduction of additives to CO{sub 2} alters the equation of state and the critical point of the resultant mixture. A series of tests was carried out using Sandia's supercritical fluid compression loop that confirmed the ability of different additives to increase or lower the critical point of CO{sub 2}. Testing also demonstrated that, above the modified critical point, these mixtures can be compressed in a turbocompressor as a single-phase homogenous mixture. Comparisons of experimental data to the National Institute of Standards and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties (REFPROP) Standard Reference Database predictions varied depending on the fluid. Although the pressure, density, and temperature (p, {rho}, T) data for all tested fluids matched fairly well to REFPROP in most regions, the critical temperature was often inaccurate. In these cases, outside literature was found to provide further insight and to qualitatively confirm the validity of experimental findings for the present investigation.

  3. Performance evaluation of organic and titanium based working fluids for high-temperature heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C., E-mail: Calin.Zamfirescu@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Dincer, I., E-mail: Ibrahim.Dincer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Naterer, G., E-mail: Greg.Naterer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada)

    2009-12-10

    In this paper, selected organic and titanium based fluids (biphenyl, biphenylmethane, naphthalene, isoquinoline, titanium tetrabromide and titanium tetraiodide) are assessed thermodynamically as potential working fluids for high temperature mechanical heat pumps. Various applications, such as thermo-chemical cycles for hydrogen production, chemical processes comprising endothermic reactions, steam generators and metallurgical processes, can benefit from such heat pumps as 'green' sources of high temperature heat. The environmental benefit occurs from avoiding fossil fuel heating and therefore reducing carbon dioxide and other pollutant emissions. Through heat pumps, a low-grade heat source from nuclear reactors, industrial waste, geothermal, etc. can be upgraded to high temperatures through a work-to-heat conversion. The work itself can originate from any source of renewable energy (wind, hydro, biomass, solar, etc.). In this paper, available thermo-physical parameters of the selected fluids are presented and appropriate equations of state are constructed to allow a heat pump thermodynamic analysis. Among these working fluids, only biphenyl, naphthalene, titanium tetrabromide and titanium tetraiodide have promising potential. For these fluids, a further parametric study is conducted to investigate the COP for a range of relevant operating conditions, in terms of temperature and pressure. The range of COP values is large, ranging from 1.9 to 7.3, depending on the fluid and temperature levels; the highest COP is obtained with TiI{sub 4}.

  4. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Science.gov (United States)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  5. Hazards of organic working fluids

    International Nuclear Information System (INIS)

    We present several brief reviews on working fluids proposed for use in organic Rankine and bi-phase bottoming cycles. There are several general problems with many organic working fluids: flammability, toxicity, and a tendency to leak through seals. Besides, two of the proposed working fluids are to be used at temperatures above the manufacturer's maximum recommended temperature, and one is to be used in a way different from its customary usage. It may, in some cases, be more profitable to first seek alternative working fluids before committing large amounts of time and money to research projects on unsafe working fluids

  6. Selection of organic Rankine cycle working fluid based on unit-heat-exchange-area net power

    Institute of Scientific and Technical Information of China (English)

    郭美茹; 朱启的; 孙志强; 周天; 周孑民

    2015-01-01

    To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles (ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area (UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15−363.15 K or 443.15−453.15 K, heptane is more suitable at 373.15−423.15 K, and R245ca is a good option at 483.15−503.15 K.

  7. Synthetic Base Fluids

    Science.gov (United States)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  8. Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor

    International Nuclear Information System (INIS)

    In this study, the performance of a SBC (supercritical gas Brayton cycle) using CO2-based binary mixtures as the working fluids have been studied. Based on the thermodynamic analyses, an in-house code has been developed to determine the cycle efficiency and the amounts of heat transfer in the HTR (high temperature recuperator) and the LTR (low temperature recuperator) with different CO2/additive gas ratios. Several gases are selected as potential additives, including O2, He, Ar, Kr, butane and cyclohexane. Compared with the Brayton cycle with pure S–CO2 (supercritical carbon dioxide) as the working fluid, it is found that both CO2–He and CO2–Kr mixtures can improve the thermodynamic performances of the SBC by increasing the cycle efficiency and decreasing the amounts of heat transfer in the HTR and LTR. For the cycles with the pure S–CO2 mixture, CO2–butane mixture and CO2–cyclohexane mixture as the working fluids, the cycle efficiencies decrease with increasing main compressor inlet temperature. However, when the main compressor inlet temperature is above the critical temperature of pure CO2, the cycle efficiencies of the cycles with CO2–butane mixture and CO2–cyclohexane mixture are higher than that of the cycle with pure CO2 as the working fluid. For the cycles with CO2-based binary mixtures and pure S–CO2 as the working fluids, the higher reactor outlet temperature always results into higher cycle efficiencies and larger amount of heat transfer in the HTR and smaller amount of heat transfer in the LTR. - Highlights: • The Brayton cycle performance with different mixtures as working fluids is studied. • Thermodynamic analysis is carried out to evaluate cycle efficiency and heat transfer in HTR and LTR. • The optimum working parameters of the Brayton cycle is proposed to improve working performance

  9. Analyzing the Effectiveness of Microlubrication Using a Vegetable Oil-Based Metal Working Fluid during End Milling AISI 1018 Steel

    Directory of Open Access Journals (Sweden)

    Vasim Shaikh

    2014-01-01

    Full Text Available Microlubrication minimizes the exposure of metal working fluids to the machining operators leading to an economical, safer, and healthier workplace environment. In this study, a vegetable oil-based lubricant was used to conduct wear analysis and to analyze the effectiveness of microlubrication during end milling AISI 1018 steel. A solid carbide cutting tool with bright oxide finish was used with varying cutting speed and feed rate having a constant depth of cut. Abrasion was the dominant wear mechanism for all the cutting tools under consideration. Other than abrasion, sliding adhesive wear of the workpiece materials was also observed. The scanning electron microscope investigation of the used cutting tools revealed microfatigue cracks, welded microchips, and unusual built-up edges on the cutting tools flank and rake side. A full factorial experiment was conducted and regression models were generated for both the sides of tool flank wear. The study shows that with a proper selection of the cutting parameters it is possible to obtain higher tool life.

  10. A new method used to evaluate organic working fluids

    International Nuclear Information System (INIS)

    In this paper, we propose a method named “Weight Classification-Hasse Dominance” to evaluate organic working fluids. This new method combines the advantages of both the method of weight determination and the Hasse Diagram Technique (HDT). It can be used to evaluate the thermodynamic performance, environmental protection indicator, and safety requirement of organic working fluid simultaneously. This evaluation method can offer good reference for working fluid selection. Using this method, the organic working fluids which have been phased out and will be phased out by the Montreal Protocol including CFCs (chlorofluorocarbons), HCFCs (hydrochlorofluorocarbons), and HFCs (hydrofluorocarbons) were evaluated. Moreover, HCs (hydrocarbons) can be considered as a completely different kind of organic working fluid from CFCs, HCFCs, and HFCs according to the comparison based on this new evaluation method. - Highlights: • We propose a new method used to evaluate organic working fluids. • This evaluation method can offer good reference for working fluid selection. • CFC, HCFC, and HFC working fluids were evaluated using this evaluation method. • HC can be considered as a totally different working fluid from CFC, HCFC, and HFC

  11. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system

    International Nuclear Information System (INIS)

    Highlights: → Performances of a novel cogeneration system using low-temperature geothermal sources under disturbance conditions were investigated. → It aimed at identifying appropriate fluids yielding high PPR and QQR values. → Fluids group presenting higher normal boiling point values showed averagely 7.7% higher PPR with a larger variation than QQR values under disturbance conditions. → Smaller TP value, higher ηt value, higher geothermal source parameters and lower heating supply parameters led to higher PPR values but lower QQR values. -- Abstract: A novel cogeneration system driven by low-temperature geothermal sources was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The main purpose is to identify appropriate fluids which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Performances of the novel cogeneration system under disturbance conditions have also been studied. Results indicate that fluids group presenting higher normal boiling point values shows averagely 7.7% higher PPR values and R236ea and R245ca outstand among the group. ΔTP (pinch temperature difference in heat exchangers) and ηt (turbine efficiency) values play more important roles on the variation of PPR values. QQR values change slightly with various ΔTP, ηt and ηrp (refrigerant pump efficiency) values while the variation range is larger under various geothermal source and heating supply parameters. Smaller ΔTP value, higher ηt value, higher geothermal source parameters and lower heating supply parameters lead to higher PPR values but lower QQR values.

  12. Laser-launched flyers with organic working fluids

    Science.gov (United States)

    Mulford, Roberta; Swift, Damian

    2003-10-01

    The TRIDENT laser has been used to launch flyers by depositing IR energy in a thin layer of material - the working fluid - sandwiched between the flyer and a transparent substrate. We have investigated the use of working fluids based on organics, chosen as they are quite efficient absorbers of IR energy and should also convert heat to mechanical work more efficiently than materials such as carbon. A thermodynamically complete equation of state was developed for one of the fluids investigated experimentally - a carbohydrate solution - by chemical equilibrium calculations using the CHEETAH program. Continuum mechanics simulations were made of the flyer launch process, modeling the effect of the laser as energy deposition in the working fluid, and taking into account the compression and recoil of the substrate. We compare the simulations with a range of experiments and demonstrate the optimization of substrate and fluid thickness for a given flyer thickness and speed.

  13. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi

    2015-01-01

    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  14. The thermoelectric working fluid: thermodynamics and transport

    OpenAIRE

    Benenti, G.; Ouerdane, H.; Goupil, C.

    2016-01-01

    Thermoelectric devices are heat engines, which operate as generators or refrigerators using the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion efficiency has always been typically quite low, but much effort continues to be devoted to the design of new materials boasting improved transport properties that would make them of the electron crystal-phonon glass type of systems. On the other hand, there are comparatively few studies where a proper thermodynamic ...

  15. Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery

    International Nuclear Information System (INIS)

    Carbon dioxide is a promising natural working fluid that can be used in transcritical Rankine cycles due to environmental and safety concerns. However, the high operation pressure has to be reduced and the relatively low efficiency of the system has to be increased. Traditional working fluids have been widely investigated to reclaim low-grade heat energy, and most of them have high GWPs (global warming potentials) or are flammable or even toxic. Consequently, to mitigate the above disadvantages, we studied zeotropic mixtures of carbon dioxide blends with 7 low GWP working fluids for use in a TRC (transcritical Rankine cycle) for low-grade heat conversion. The results revealed that these zeotropic mixtures can help improve the thermal efficiency of the TRC and decrease the operation pressure compared to that of pure CO2. Owing to the perfect thermal match in the heat transfer process, higher exergy efficiencies were achieved for the entire system when zeotropic mixtures were used than pure CO2. Maximum exergy efficiencies exist for the TRC at the corresponding optimal pressures for each mixture. Finally, the mixture CO2/R161 is recommended for small capacity instruments for its high efficiency, in spite of its high flammability; the mixtures CO2/R1234yf and CO2/R1234ze can be used in TRCs with larger capacities due to their lower flammability. - Highlights: • A TRC (transcritical Rankine cycle) using the blends of CO2 and low GWP working fluids is proposed. • The thermal efficiency is improved and the corresponding high operation pressure is reduced comparing to pure CO2. • The limitation condensation temperature of pure CO2 is solved with the proposed zeotropic mixtures. • The system exergy efficiency of mixtures-based TRC is improved in comparison with that of pure CO2. • Two kinds of zeotropic mixtures are proposed for the application of small and large scale TRCs respectively

  16. Fluid intelligence, working memory and executive functioning.

    Science.gov (United States)

    Colom, Roberto; Rubio, Víctor J; Shih, Pei Chun; Santacreu, José

    2006-11-01

    The causes underlying the correlation between working memory and fluid intelligence remain unknown. There are some researchers who argue that the answer can be found on the presumed executive component of working memory. However, the available empirical evidence is far from conclusive. The present study tested a sample of 229 participants. Intelligence, working memory, and executive functioning were measured by one analytic reasoning test (TRASI), a dual task combining a primary task of deductive reasoning with a secondary task of counting, and the Tower of Hanoi task, respectively. All the 3 measures were computer administered. The results indicate that the shared variance between executive functioning and working memory do not account for the relationship between intelligence and working memory. Some theoretical implications are discussed. PMID:17296123

  17. Visualization of working fluid flow in gravity assisted heat pipe

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2015-05-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.

  18. Visualization of working fluid flow in gravity assisted heat pipe

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2015-01-01

    Full Text Available Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.

  19. Base isolation of fluid containers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Cygna Group Inc./ICF Kaiser International, Oakland, CA (United States)

    1995-12-01

    Fluid containers often constitute critical internal equipment in power plants. However, due to possible structure-equipment interaction effect they are particularly vulnerable during strong earthquake events. An effective technique for protecting fluid containers is base isolation. By deflecting the possible seismic input energy into the superstructure, base isolation can substantially reduce seismic demand on the containers, making it more cost effective than equivalent conventional design.

  20. Base isolation of fluid containers

    International Nuclear Information System (INIS)

    Fluid containers often constitute critical internal equipment in power plants. However, due to possible structure-equipment interaction effect they are particularly vulnerable during strong earthquake events. An effective technique for protecting fluid containers is base isolation. By deflecting the possible seismic input energy into the superstructure, base isolation can substantially reduce seismic demand on the containers, making it more cost effective than equivalent conventional design

  1. Working fluid flow visualization in gravity heat pipe

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.

  2. Working fluid flow visualization in gravity heat pipe

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2016-01-01

    Full Text Available Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.

  3. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei;

    2016-01-01

    This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...

  4. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei;

    2016-01-01

    This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...... of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output....... The net power outputs of all the feasible working fluids were ranked including their uncertainties. The method could propagate and quantify the input property uncertainty of the fluidproperty parameters to the ORC model, giving an additional dimension to the fluid selection process. In the given analysis...

  5. Working Memory, Fluid Intelligence, and Science Learning

    Science.gov (United States)

    Yuan, Kun; Steedle, Jeffrey; Shavelson, Richard; Alonzo, Alicia; Oppezzo, Marily

    2006-01-01

    A review of the history of working memory (WM) studies finds that the concept of WM evolved from short-term memory to a multi-component system. Comparison between contemporary WM models reveals: (1) consensus that the content of WM includes not only task-relevant information, but also task-irrelevant information; (2) consensus that WM consists of…

  6. Working fluids and expansion machines for ORC

    Science.gov (United States)

    Richter, Lukáš; Linhart, Jiří

    2016-06-01

    This paper discusses the key technical aspects of the Organic Rankin - Clausius cycle (ORC), unconventional technology with great potential for the use of low-potential heat and the use of geothermal and solar energy, and in connection with the burning of biomass. The principle of ORC has been known since the late 19th century. The development of new organic substances and improvements to the expansion device now allows full commercial exploitation of ORC. The right choice of organic working substances has the most important role in the design of ORC, depending on the specific application. The chosen working substance and achieved operating parameters will affect the selection and construction of the expansion device. For this purpose the screw engine, inversion of the screw compressor, can be used.

  7. Working Fluids for Increasing Capacities of Heat Pipes

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A theoretical and experimental investigation has shown that the capacities of heat pipes can be increased through suitable reformulation of their working fluids. The surface tensions of all of the working fluids heretofore used in heat pipes decrease with temperature. As explained in more detail below, the limits on the performance of a heat pipe are associated with the decrease in the surface tension of the working fluid with temperature, and so one can enhance performance by reformulating the working fluid so that its surface tension increases with temperature. This improvement is applicable to almost any kind of heat pipe in almost any environment. The heat-transfer capacity of a heat pipe in its normal operating-temperature range is subject to a capillary limit and a boiling limit. Both of these limits are associated with the temperature dependence of surface tension of the working fluid. In the case of a traditional working fluid, the decrease in surface tension with temperature causes a body of the liquid phase of the working fluid to move toward a region of lower temperature, thus preventing the desired spreading of the liquid in the heated portion of the heat pipe. As a result, the available capillary-pressure pumping head decreases as the temperature of the evaporator end of the heat pipe increases, and operation becomes unstable. Water has widely been used as a working fluid in heat pipes. Because the surface tension of water decreases with increasing temperature, the heat loads and other aspects of performance of heat pipes that contain water are limited. Dilute aqueous solutions of long-chain alcohols have shown promise as substitutes for water that can offer improved performance, because these solutions exhibit unusual surface-tension characteristics: Experiments have shown that in the cases of an aqueous solution of an alcohol, the molecules of which contain chains of more than four carbon atoms, the surface tension increases with temperature when the

  8. 环保型钻井-压裂通用水基工作液研究%Environment friendly water-based working fluid for universal drilling and fracturing

    Institute of Scientific and Technical Information of China (English)

    郭钢; 张洁

    2011-01-01

    为了减少钻井和压裂作业时油田化学工作液的总耗材量和总排放量,进行了钻井-压裂通用水基基础工作液的研究.选择聚合糖衍生物SJ作为通用工作液的主剂,参照SY/T 5621-1993评价了通用水基工作液作为钻井液的性能.实验结果表明:钻井液流变性、滤失性和抑制性满足油田应用要求,而且抗温能力良好,能够抵抗2800 mg/L的Ca、1900 mg/L的Mg和2500 mg/L的K污染.探索了钻井液转化成压裂液的一体化工艺,参照SY/T 5107-2005评价转化后的压裂液性能.实验结果表明:以SJ为主剂的水基钻井液可以向压裂液转化,实现钻井-压裂水基基础工作液通用的目标,转化后的压裂液抗温极限为83.3℃,流变性、滤失性、携砂性、抗剪切性、破胶性、配伍性和破胶后残渣含量均可以满足油田应用要求.%Fracturing is a necessary measurement to increase production after drilling and completion well in most low permeability oil field.In order to decrease the total amount of supplies and total emissions ofoilfield chemical working fluid in drilling and fracturing treatment, water-based drilling-fracturing universal working fluid was researched.Heter-polysaccharose SJ was chosen as main fluid of current driving fluid, and the performance of drilling-fracturing water-based fluid was evaluated as drilling fluid according to testing procedure of drilling fluid SY/T 5621-1993.The laboratory experiment shows that the rheology behavior, filtration and inhibitive ability could meet the requirement of Changqing Oilfield application.It have well ability of resisting temperature and also could resist the pollution of 2800 mg/L Ca2+, 1900 mg/L Mg2+ and 2500 mg/L K+.Indoor integration process of drilling fluid changing into fracturing fluid was explored.According to SY/T 5107-2005, the property of fracturing fluid was evaluated after it has been transformed.Laboratory result shows that SJ could transform to fracturing fluid

  9. Compare Cooling Effect of Different Working Fluid in Thermosyphon

    Directory of Open Access Journals (Sweden)

    Hrabovský P.

    2015-01-01

    Full Text Available This work examines cooling effect of various working fluids types, which are used in thermosyphon at cooling electrical component, it’s connected to power supply. Measurement is realized at various heat output, which maximal value is limited with maximal operating value of electrical component.

  10. Compare Cooling Effect of Different Working Fluid in Thermosyphon

    Science.gov (United States)

    Hrabovský, P.; Nemec, P.; Malcho, M.

    2015-05-01

    This work examines cooling effect of various working fluids types, which are used in thermosyphon at cooling electrical component, it's connected to power supply. Measurement is realized at various heat output, which maximal value is limited with maximal operating value of electrical component.

  11. New era for CO2 as a working fluid

    International Nuclear Information System (INIS)

    During the past decade there has been extensive international activity to find acceptable alternatives to ozone-depleting CFC and HCFC substances that have been widely used as working fluids in refrigerating and heat pump plants. At present, the so-called natural working fluids constitute the most environmentally friendly alternative, and they include first of all ammonia, hydrocarbons and carbon dioxide (CO2). NTNU and SINTEF Energy Research, Norway, have been pioneers in the development of refrigerating and heat pump systems that use CO2 as a working fluid. The favourable technical and environmental properties of CO2 as well as the promising results have now led to considerable international interest in CO2 technology for refrigerating and heat pump applications. Two examples are international licensing for Norwegian CO2 technology and co-operation with Indonesia on CO2 for refrigeration

  12. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Ahmad

    2016-08-11

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  13. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Ahmad [United Technologies Research Center, East Hartford, CT (United States)

    2013-01-29

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  14. Physically-based fluid animation: A survey

    Institute of Scientific and Technical Information of China (English)

    TAN Jie; YANG XuBo

    2009-01-01

    In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large number of new results in recent years. We classify and discuss the existing methods within three categories: Lagrangian method, Eulerian method and Lattice-Boltzmann method. We then introduce techniques for seven different kinds of special fluid effects. Finally we review the latest hot research areas and point out some future research trends, including surface tracking, fluid control, hybrid method, model reduction, etc.

  15. Advanced power cycles with mixture as the working fluid

    OpenAIRE

    Jonsson, Maria

    2003-01-01

    The world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventiona...

  16. FORMATE-BASED FLUIDS: FORMULATION AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2008-12-01

    Full Text Available Formate-based fluids has been successfully used in over hunders HPHT well operations since they introduced in field practice. They have many advantages when compared with conventional HPHT drilling and completion fluids such as: minimal formation damage, maintenance of additve properties at high temperatures, reduced hydraulic flow resistance, low potential for differential sticking, naturally lubricating, very low corrosion rates, biodegradable and pose little risk to the environment etc. Formate-based fluids can be applied during deep slim hole drilling, shale drilling, reservoir drilling, salt and gas hydrate formations drilling. The laboratory research was carried out to evaluate the rheological behavior of formate-based fluids as a function of temperature. Formate-based fluids were formulated using potassium formate brine, xanthan polymer, PAC, starch and calcium carbonate. Experimental results show that potassium formate improves the thermal stability of polymers.

  17. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    Science.gov (United States)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    2014-01-01

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  18. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R. N. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076, India and Government Engineering College Bharuch, Gujarat - 392002 (India); Bapat, S. L.; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2014-01-29

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  19. Power cycles with ammonia-water mixtures as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Thorin, Eva

    2000-05-01

    It is of great interest to improve the efficiency of power generating processes, i.e. to convert more of the energy in the heat source to power. This is favorable from an environmental point of view and can also be an economic advantage. To use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of steam turbine processes. This thesis includes studies of power cycles with ammonia-water mixtures as working fluid utilizing different kinds of heat sources for power and heat generation. The thermophysical properties of the mixture are also studied. They play an important role in the calculations of the process performance and for the design of its components, such as heat exchangers. The studies concern thermodynamic simulations of processes in applications suitable for Swedish conditions. Available correlations for the thermophysical properties are compared and their influence on simulations and heat exchanger area predictions is investigated. Measurements of ammonia-water mixture viscosities using a vibrating wire viscometer are also described. The studies performed show that power cycles with ammonia-water mixtures as the working fluid are well suited for utilization of waste heat from industry and from gas engines. The ammonia-water power cycles can give up to 32 % more power in the industrial waste heat application and up to 54 % more power in the gas engine bottoming cycle application compared to a conventional Rankine steam cycle. However, ammonia-water power cycles in small direct-fired biomass-fueled cogeneration plants do not show better performance than a conventional Rankine steam cycle. When different correlations for the thermodynamic properties are used in simulations of a simple ammonia-water power cycle the difference in efficiency is not larger than 4 %, corresponding to about 1.3 percentage points. The differences in saturation properties between the correlations are, however, considerable at high

  20. Clay-based geothermal drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  1. Numerical Studies On Bubble Pump With Alternate Working Fluids

    Directory of Open Access Journals (Sweden)

    L. Bruno Augustin

    2013-10-01

    Full Text Available The importance of energy conservation in the context of growing global population and dwindling fossil fuel resources cannot be overemphasized. Energy can be conserved by using it more efficiently. The energy spent for an application should be of the correct amount and type. It would make more sense to spend heat energy for heating rather than the high grade electricity as most of the electric power in the world is generated from driving heat engines, for which heat is supplied from the combustion of fossil fuels. At the same time, depletion of these conventional resources also poses a serious problem in meeting energy requirements. In this paper, the bubble pump, which is an integral part of diffusion- absorption refrigeration system, has been investigated numerically .A thermally driven bubble pump, which can be powered by solar thermal energy, is used to lift the liquid. The bubble pump runs on solar energy and reduces the amount of energy spent by replacing the compressor in conventional vapour absorption refrigeration system. As a result of the absence of any mechanical moving part, the refrigerator is silent and very reliable in addition to an economical and environmental friendly device. The concept of such a pump is already in existence but optimization studies are yet to be extensively investigated. This paper deals with the comparison of various parameters of the bubble pump using water and Nonane as the working fluid. Numerical simulation of the bubble pump is carried out using simple numerical equations which assume slug flow in the bubble pump. The mass flow rate, the sensible heating time and position of heating element are varied and the effect it has on diameter of the pipe, pumping ratio and the heat required is studied for both the working fluids

  2. Gas inflow in oil base fluids; Influxo de gas em fluidos a base de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, Welmar [PETROBRAS, Rio de Janeiro (Brazil). Dept. de Perfuracao. Div. de Fluidos de Perfuracao; Boas, Mario Barbosa V. [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1989-12-31

    One of the major problems related to the use of oil base fluids is the dissolution of the natural gas in the fluid. This paper attempts initially at making a bibliographical review of all that was written on the subject of drilling fluids up to now. It also mentions some theoretical aspects regarding the process of gas dissolution in diesel oils, in order to produce an understanding of how the dissolution mechanism is processed. For a same increase in measured volume on the surface, the amount of gas incorporated into the fluid is significantly larger if the gas is dissolved in the oil phase than if it is emulsified in the fluid, as occurs when the fluid is water base. A rig team used to working with water-base fluids may be surprised with the fact that an increase of 20 bbl of fluid on the surface of a 5000 m well can mean the incorporation of about 1800 m{sup 3} of gas, if the fluid is oil-base and all the gas is in solution instead of the incorporation of 900 m{sup 3} if the fluid is water base. This paper has the goal of warning drilling engineers and technicians about this problem, as well as presenting charts and equations that allow for a more realistic evaluation of the amount of gas incorporated into oil fluids. (author) 16 refs., 7 figs., 2 tabs.

  3. Working Fluid Stability in Large-Scale Organic Rankine Cycle-Units Using Siloxanes—Long-Term Experiences and Fluid Recycling

    Directory of Open Access Journals (Sweden)

    Tobias G. Erhart

    2016-05-01

    Full Text Available The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC power plants (both heat-led and electricity-led in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS. Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components, is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers and fractions with a higher boiling point (high boilers. As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8. Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006 to € 22 per liter (in 2013, which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.

  4. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    Science.gov (United States)

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. PMID:27268595

  5. Physical-based non-Newtonian fluid animation using SPH

    Science.gov (United States)

    Mao, Hai

    Fluids are commonly seen in our daily lives. They exhibit a wide range of motions, which depend on their physical properties, and often result in amazing visual phenomena. Hence, fluid animation is a popular topic in computer graphics. The animation results not only enrich a computer-generated virtual world but have found applications in generating special effects in motion pictures and in computer games. The three-dimensional (3D) Navier-Stokes (NS) equation is a comprehensive mechanical description of the fluid motions. Smoothed Particle Hydrodynamics (SPH) is a popular particle-based fluid modeling formulation. In physical-based fluid animation, the fluid models are based on the 3D NS equation, which can be solved using SPH based methods. Non-Newtonian fluids form a rich class of fluids. Their physical behavior exhibits a strong and complex stress-strain relationship which falls outside the modeling range of Newtonian fluid mechanics. In physical-based fluid animation, most of the fluid models are based on Newtonian fluids, and hence they cannot realistically animate non-Newtonian fluid motions such as stretching, bending, and bouncing. Based on the 3D NS equation and SPH, three original contributions are presented in this dissertation, which address the following three aspects of fluid animation: (1) particle-based non-Newtonian fluids, (2) immiscible fluid-fluid collision, and (3) heating non-Newtonian fluids. Consequently, more varieties of non-Newtonian fluid motions can be animated, which include stretching, bending, and bouncing.

  6. Theoretical study of ejector refrigeration system with working fluid R410a

    OpenAIRE

    Sandeep Kashyap; Gupta, R. C.

    2011-01-01

    In this paper, simulation program is developed on based of one dimensional mathematical modal to analysis the performance ejector refrigeration cycle with working fluid R410a and also compared with performance of R134a. A performance comparison is made on various operating condition and ejector geometry. The result shows that performance of R134a is better than R410a for area ratio 5.64 and 7.84.

  7. Theoretical study of ejector refrigeration system with working fluid R410a

    Directory of Open Access Journals (Sweden)

    Sandeep Kashyap

    2011-08-01

    Full Text Available In this paper, simulation program is developed on based of one dimensional mathematical modal to analysis the performance ejector refrigeration cycle with working fluid R410a and also compared with performance of R134a. A performance comparison is made on various operating condition and ejector geometry. The result shows that performance of R134a is better than R410a for area ratio 5.64 and 7.84.

  8. Wavelet-based fluid motion estimation

    OpenAIRE

    Dérian, Pierre; Héas, Patrick; Herzet, Cédric; Mémin, Étienne

    2011-01-01

    International audience Based on a wavelet expansion of the velocity field, we present a novel optical flow algorithm dedicated to the estimation of continuous motion fields such as fluid flows. This scale-space representation, associated to a simple gradient-based optimization algorithm, naturally sets up a well-defined multi-resolution analysis framework for the optical flow estimation problem, thus avoiding the common drawbacks of standard multi-resolution schemes. Moreover, wavelet prop...

  9. Influence of regenerator matrix and working fluid on optimisation of design parameters of Stirling cryocoolers

    Science.gov (United States)

    Atrey, M. D.; Bapat, S. L.; Narayankhedkar, K. G.

    The performance of Stirling cryocooler is governed by principal designparameters. The optimum combination of these design parameters gives maximum refrigeration effect and minimum desired efforts. The performance of the cryocooler depends significantly on the regenerator functioning and the working fluids. The mesh size of the regenerator affects dead space, pressure drop, regenerator effectiveness, etc. The working fluids differ in their thermal properties and therefore affect the performance significantly, The present paper aims to study the influence of regenerator matrix and working fluids on these design parameters. The matrix material considered is Phosphor Bronze while the working fluids considered are Helium and Hydrogen.

  10. Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles

    International Nuclear Information System (INIS)

    Low grade thermal energy from sources such as solar, geothermal and industrial waste heat in the temperature range of 380–425 K can be converted to electrical energy with reasonable efficiency using isopentane and R-245fa. While the former is flammable and the latter has considerable global warming potential, their mixture in 0.7/0.3 mole fraction is shown to obviate these disadvantages and yet retain dominant merits of each fluid. A realistic thermodynamic analysis is carried out wherein the possible sources of irreversibilities such as isentropic efficiencies of the expander and the pump and entropy generation in the regenerator, boiler and condenser are accounted for. The performance of the system in the chosen range of heat source temperatures is evaluated. A technique of identifying the required source temperature for a given output of the plant and the maximum operating temperature of the working fluid is developed. This is based on the pinch point occurrence in the boiler and entropy generation in the boiling and superheating regions of the boiler. It is shown that cycle efficiencies of 10–13% can be obtained in the range investigated at an optimal expansion ratio of 7–10. -- Highlights: ► Non-water based working fluids and their mixtures for power generation. ► Results for isopentane, R-245fa and their mixtures. ► Appropriation of irreversibilities in cycle components. ► Entropy generation based identification of heat source temperature

  11. Variable flexure-based fluid filter

    Science.gov (United States)

    Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  12. Working fluid concentration measurement in solar air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.J.; Basurto-Pensado, M.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos (Mexico); Jimenez-Heredia, A.H.; Sanchez-Mondragon, J.J. [Departamento de Optica, Instituto Nacional de Astrofisica Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Apartado Postal 51 y 216, C.P. 72000, Puebla (Mexico)

    2006-02-15

    In order to evaluate on-line corrosive electrolyte concentration in solar air conditioning systems, an optical technique to determine the concentration is being proposed. With this optical sensing method, it is possible to measure the percentage concentration of the aqueous corrosive lithium bromide solution at temperatures ranging from 25{sup o}C to 70{sup o}C and a maximum concentration of 60%. The measurement system is based on the refractive index of the solution and the data correlation, at several temperature and concentration values. The results of this work present a direct method for concentration measurement of corrosive liquids and also show the correlation among the three parameters: refractive index, temperature and weight concentration. This correlation can be used to develop the optical device for solar air conditioning systems to control and improve efficiency. (author)

  13. Distribution of heat flux by working fluid in loop heat pipe

    OpenAIRE

    Nemec Patrik; Malcho Milan

    2016-01-01

    The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  14. Distribution of heat flux by working fluid in loop heat pipe

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2016-01-01

    Full Text Available The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  15. Distribution of heat flux by working fluid in loop heat pipe

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  16. Calculation of working fluid parameters in refrigeration engineering. Practical issues

    Energy Technology Data Exchange (ETDEWEB)

    Malewski, W.

    1985-01-01

    The author deals with the calculation of cryo and heat pump processes which employ multiple fluid mixtures still lacking sufficient clarification of their materials parameters and characteristics. The Rankine Cycle in the overcritical range and a combination process of resorption/compression with a binary mixture are used to exemplify the calculation of missing materials data by means of a mathematical compensation and correlation procedure. Further examples are taken to test the accuracy of these calculations. (HAG).

  17. Global sensitivity analysis of computer-aided molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    2016-01-01

    study involving the design of a working fluid for an Organic Ranking Cycle (ORC) design for power generation. Morris Screening is found to be favorable over Monte Carlo based standard regression. Monte Carlo based standard regression cannot be applied, because the current model cannot be sufficiently...... linearized. For Morris Screening techniques the critical temperature, the critical pressure and the acentric factor of the working fluid has been identified as the target properties with the highest sensitivity to the net power output of the cycle....

  18. Influence of volume working fluid and ambient temperature on cooling efficiency of loop thermosyphon

    Directory of Open Access Journals (Sweden)

    Nemec P.

    2014-03-01

    Full Text Available Article deal with research of device for electrical component cooling used to heat transfer working fluid phase change. Amount of heat flux transferred by thermosyphon loop depend from amount working fluid and from ambient temperature where is heat removal too. In article is described proposal construction of thermosyphon loop, comparisons of his cooling efficiency if is filled 40 % and 50 % volume of working fluid and condenser (ambient temperature from 20, 30 up to 40 °C at heat load from 40 to 360 W.

  19. Working fluids of a low-temperature geothermally-powered Rankine cycle for combined power and heat generation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The advantages of the novel combined power and heat generation system are free of using additional cooling water circling system for the power generation subsystem as well as maximizing the use of thermal energy in the low-temperature geothermal source. The main purpose is to identify suitable working fluids (wet, isentropic and dry flu-ids) which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Parameters under investigation were evaporating temperature, PPR value and QQR value. Results indicate that there exits an optimum evaporating temperature to maximize the PPR value and minimize the QQR value at the same time for individual fluid. And dry fluids show higher PPR values but lower QQR values. NH3 and R152a outstand among wet fluids. R134a out-stands among isentropic fluids. R236ea, R245ca, R245fa, R600 and R600a outstand among dry fluids. R236ea shows the highest PPR value among the recommended fluids.

  20. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a

  1. Base fluid in improving heat transfer for EV car battery

    Science.gov (United States)

    Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.

    2015-05-01

    This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.

  2. Life Cycle Assessment of Electricity Generation from Low Temperature Waste Heat : The Influence of Working Fluid

    OpenAIRE

    Bai, Lijun

    2012-01-01

    In the metallurgical industry and in refineries and process industries, there is significant amount of waste heat, it is a challenged field to do the research for producing electricity from the energy of waste heat. Traditionallay, Organic Rankine Cycle(ORC)is used for generating electricity from low temperature heat source. Recently researchers are focusing on the supercritical Rankine cycle which uses CO2 as working fluid for which is more environmental friendly working fluid, possilbe redu...

  3. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    Science.gov (United States)

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  4. Evaluation of Active Working Fluids for Brayton Cycles in Space Applications

    Science.gov (United States)

    Conklin, J. C.; Courville, G. E.; Scott, J. H.

    2004-02-01

    The main parameter of interest for space thermal power conversion to electricity is specific power, defined as the total electric power output per unit of system mass, rather than the cycle thermal efficiency. For a closed Brayton cycle, performance with two active working fluids, nitrogen tetroxide and aluminum chloride, is compared to that with an inert mixture of helium and xenon having a molecular mass of 40. A chemically active working fluid is defined here as a chemical compound that has a relatively high molecular weight at temperatures appropriate for the compressor inlet and dissociates to a lighter molecular weight fluid at typical turbine inlet temperatures. The active working fluids may have the advantage of a higher net turbomachinery work output and an advantageous enhancement of the heat transfer coefficient in the heat exchangers. The fundamental theory of the active working fluid concept is presented to demonstrate these potential advantages. Scoping calculations of the heat exchanger mass for a selected spacecraft application of 36.4 kW of electrical power output show that the nitrogen tetroxide active working fluid has an advantageous 7% to 30% lower mass-to-power ratio than that for the inert noble gas mixture, depending on the allowable turbine inlet temperature. The calculations for the aluminum chloride system suggest only a slight improvement in performance relative to the inert noble gas mixture.

  5. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a

  6. Refrigeration engineering 3. Components, working fluids and auxiliary fluids. Standards; Kaeltetechnik 3. Bauteile, Betriebs- und Hilfsstoffe. Normen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Standards and standardisation support economy and society in strengthening, designing and developing regional and global markets; standardisation removes technical obstacles to trading and improves the competitive strength of industrial organisations. Since 1945, the Normenausschuss Kaeltetechnik (German Refrigeration Engineering Standardisation Committee) has been working on national, European and international standards. The DIN catalogue of rules currently comprises about 120 standards and draft standards. During the past few years, many new refrigeration standards have emerged on a national, European and international scale. In order to take account of this development and to provide a handy reference manual for daily use, the new DIN pocket book of refrigeration engineering comprises the tree sections: 1. Safety and environmental protection; 2. Refrigeration systems and motor car cooling; 3. Components, working fluids, auxiliary fluids. This is Vol. 3, which contains relevant standards of flanges, circuit components, refrigerating oils, compressors, etc. (orig.)

  7. Effect of surface texture and working gap on the braking performance of the magnetorheological fluid brake

    Science.gov (United States)

    Wang, Na; Li, Dong Heng; Li Song, Wan; Chao Xiu, Shi; Zhi Meng, Xiang

    2016-10-01

    In this paper, the effect of the surface textures of braking disc on the braking performance is experimentally investigated under the conditions of different working gaps and applied currents. For this purpose, a new configuration of magnetorheological fluid brake (MRB) with adjustable working gap is developed to improve the manufacturing accuracy and cost, and to reduce the problem of replacing the braking disc. In addition, the braking discs with three types of surface texture are designed and machined. Based on the test bed developed for the proposed MRB, a series of experiments are carried out on the manufactured prototype and the results are presented to obtain the relationship among the surface texture of the braking disc, applied current, working gap and the braking performance. The results show that the braking torque is significantly influenced by the working gap and surface texture of the braking disc, and the maximum braking torque is obtained on the conditions of 0.25 mm working gap and the braking disc with square surface texture.

  8. The effect of Bond number on pool boiling for mini-fin surfaces and different working fluids

    Science.gov (United States)

    Strąk, Ewelina; Pastuszko, Robert

    2016-03-01

    Experimental nucleate pool boiling data were collected for structures in the form of extended surfaces sintered with perforated foil. The article describes experimental investigations for two kinds of surfaces: smooth and mini-fins with sintered perforated foil (MFP). The MFP surfaces were manufactured out of perforated copper foil (pore diameters: 0.05 - 0.3 mm) sintered with the mini-fins, uniformly spaced on the base surface. The experiments were carried out at atmospheric pressure for four kinds of the fluids: water, ethanol, FC-72 and Novec 649. The results for these working fluids were compared in terms of the Bond number and other dimensionless parameters. For all working fluids, the heat transfer coefficients obtained for the MFP surfaces were from 2 to 5 times higher than those for the smooth surface. Using a regression analysis with reference to selected physical properties and several characteristic dimensions, it was possible to develop a correlation for the Nusselt number.

  9. Investigation on incomplete condensation of non-azeotropic working fluids in high temperature heat pumps

    International Nuclear Information System (INIS)

    In order to improve high temperature heat pumps (HTHP), firstly, after theoretical analysis is conducted about the heat transfer of non-azeotropic working fluids in the condenser, the possibility of incomplete condensation of non-azeotropic working fluids in the condenser of a HTHP is presented. Secondly, an experimental plan is designed to study the phenomenon, and many working conditions experiments (flow rate, temperature and frequency are changed) are done on a water-to-water heat pump unit. Finally, the incomplete condensation is found, and some relationships are presented between the phenomenon and the parameters, which are helpful to improve the control strategy of the HTHP

  10. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo;

    2016-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers...... to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low......, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important...

  11. Magnetorheology of dimorphic magnetorheological fluids based on nanofibers

    Science.gov (United States)

    Bombard, Antonio J. F.; Gonçalves, Flavia R.; Morillas, Jose R.; de Vicente, Juan

    2014-12-01

    We report a systematic experimental investigation on the use of nanofibers to enhance the magnetorheological (MR) effect in conventional (microsphere-based) MR fluids formulated in polyalphaolefin oil/1-octanol. Two kinds of nanofibers are employed that have very similar morphology but very different magnetic properties. On the one hand we use non-magnetic goethite nanofibers. On the other hand we employ magnetic chromium dioxide nanofibers. For appropriate concentrations the on-state relative yield stress increases up to 80% when incorporating the nanofibers in the formulation. A similar yield stress enhancement is found for both nanofibers investigated (magnetic and non-magnetic) suggesting that the main factor behind this MR enhancement is the particle shape anisotropy. The relative yield stresses obtained by partial substitution of carbonyl iron particles with nanofibers are significantly larger than those measured in previous works on MR fluids formulated by partial substitution with non-magnetic micronsized spherical particles. We also demonstrate that these dimorphic MR fluids also exhibit remarkably larger long-term sedimentation stability while keeping the same penetration and redispersibility characteristics.

  12. Sensitivity analysis of molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    In recent years there is a large availability of low-temperature heat sources in different applications such as waste heat in chemical industries and refrigeration plants as well as renewable energy sources such as biomass combustion, geothermal and solar heat sources. Power cycles are an important...... technology to convert such waste heat sources into usable energy. So far the low-temperature heat is not utilized efficiently for electricity generation. To optimize the heat transfer process and the power generation, the influence of the working fluid, the cycle designs and the operating conditions is vital...... and energy balances for a pump, a condenser, a turbine and an evaporator. As regards sensitivity analysis method, a global sensitivity analysis is performed based on Morris screening to determine which change of input parameters have important effects on the net power output. The screening is composed...

  13. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  14. Evaluation of carbon dioxide blends with isopentane and propane as working fluids for organic Rankine cycles

    International Nuclear Information System (INIS)

    The main theme of this paper is to study the flammability suppression of hydrocarbons by blending with carbon dioxide, and to evaluate these mixtures as possible working fluids in organic Rankine cycle for medium temperature concentrated solar power applications. The analysis takes into account inevitable irreversibilities in the turbine, the pump, and heat exchangers. While the isopentane + CO2 mixture suffers from high irreversibility mainly in the regenerator owing to a large temperature glide, the propane + CO2 mixture performs more or less the same as pure propane albeit with high cycle pressures. In general, large temperature glides at condensing pressures extend the heat recovery into the two-phase dome, which is an advantage. However, at the same time, the shift of the pinch point towards the warm end of the regenerator is found to be a major cause of irreversibility. In fact, as the number of carbon atoms in alkanes decreases, their blend with CO2 moves the pinch point to the colder end of the regenerator. This results in lower entropy generation in the regenerator and improved cycle efficiency of propane + CO2 mixtures. With this mixture, real cycle efficiencies of 15–18% are achievable at a moderate source temperature of 573 K. Applicability for a wide range of source temperatures is found to be an added advantage of this mixture. -- Highlights: ► Non-water based working fluids and their mixtures for power generation. ► Results for carbon dioxide blends with isopentane and propane. ► Appropriation of irreversibilities in cycle components. ► Entropy generation based on pinch point of regenerator and heat source temperature

  15. Physicochemical properties of magnetic fluids based on synthetic oils

    Science.gov (United States)

    Korolev, V. V.; Ramazanova, A. G.; Yashkova, V. I.; Balmasova, O. V.

    2013-04-01

    A technique for synthesizing magnetic fluids based on Alkaren synthetic oil is described. The optimum synthesis conditions for the magnetite are selected, and the magnetic phase-stabilizer quantitative ratio is calculated. A magnetic fluid based on synthetic hydrocarbon oil is synthesized, and its physicochemical characteristics are determined.

  16. VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING

    Institute of Scientific and Technical Information of China (English)

    LIU Demin; LIU Xiaobing

    2008-01-01

    The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/min, 500 r/min and 600 r/min are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.

  17. Energy, exergy analysis and working fluid selection of a Rankine cycle for subsea power system

    International Nuclear Information System (INIS)

    Highlights: • We propose a Rankine cycle based subsea power system for deep ocean power supply. • The turbine directly produces shaft power output. • Electrical heated boiler is utilized to conduct evaporation process. • 5 working fluids are selected and analyzed for the subsea Rankine cycle. • The turbine volumetric flow ratio (VRF) and size parameter (SP) are discussed. - Abstract: In this paper, a subcritical/transcritical Rankine cycle for subsea power system is investigated. By balancing the pressure between the inner and outer side of the rotary seal, the dynamic sealing problem for the subsea power system is minimized. This Rankine cycle is electrical heated and utilizes the surrounding deep seawater as the cooling source. The mathematical model was established based on the first and second law of thermodynamics and the simulation validation was made. Water–steam, CO2, C9H20, C10H22 and C12H26 are selected as the working fluid and the comparison was made. The results show that the subsea Rankine cycle can obtain a higher thermal efficiency as the working depth increases between 1000 and 5000 m. The thermal efficiencies are obtained as: 19.4–26.7% for water–steam cycle, 9.6–31.2% for CO2 cycle, 9.1–14.7% for C9H20 cycle, 8.0–13.5% for C10H22 cycle and 6.3–11.8% for C12H26 cycle, depending on the working depth. With the same working depth, the water–steam cycle has a higher thermal efficiency, exergy efficiency and turbine power output but requires higher total energy input; while the CO2 cycle can obtain a high thermal efficiency, exergy efficiency with lower energy consumption but produces less turbine power output. In addition, it is found exergy destruction mainly occur in the boiler and condenser, accounting for more than 90% in total

  18. Properties of forced convection experimental with silicon carbide based nano-fluids

    Science.gov (United States)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids

  19. The Relationships of Working Memory, Secondary Memory, and General Fluid Intelligence: Working Memory Is Special

    Science.gov (United States)

    Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew

    2010-01-01

    Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting that the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski,…

  20. Effect of working fluids on thermal performance of closed loop pulsating heat pipe

    Science.gov (United States)

    Kolková, Zuzana; Malcho, Milan

    2014-08-01

    Improving the performance of electrical components needs higher heat removal from these systems. One of the solutions available is to use a sealed heat pipe with a throbbing filling, where development meets the current requirements for intensification of heat removal and elimination of moving parts cooling systems. Heat pipes operate using phase change working fluid, and it is evaporation and condensation. They have a meandering shape and are characterized by high intensity of heat transfer, high durability and reliability. Advantage of these tubes is that it is not necessary to create the internal capillary structure for transporting liquid and they need any pump to the working fluid circulation. They have a simple structure, low cost, high performance, and they can be used for various structural applications. The choice of working fluid volume and performance affects thermal performance. Distilled water, ethanol and acetone were used in the performance ranges 0-80%.

  1. EFFECT OF WORKING FLUID AND FILLING RATIO ON PERFORMANCE OF A CLOSED LOOP PULSATING HEAT PIPE

    Directory of Open Access Journals (Sweden)

    E. R. BABU

    2016-06-01

    Full Text Available This paper presents preliminary experimental results on thermal performance of a closed loop pulsating heat pipe (CLPHP using copper tube having internal and external diameter with 2 mm and 3 mm respectively. For the experimentation, filling ratio (FR was varied from 30 % to 70% with 10% increments, four turns and different heat inputs of 10 to 22 W(Watts is supplied to PHP’s. The position of the PHP’s was vertical bottom heat mode. The length of evaporator, adiabatic and condenser section was maintained 55, 80, and 50 mm respectively. The working fluids are selected as Acetone, Methanol, Ethanol, CCL4 (Carbon Tetrachloride, and Benzene. In this study, characteristics of the thermal resistance and average evaporator temperatures at different heat input for various working fluids have been determined. The result shows that, the thermal resistance decreases rapidly with the increase of the heating input from 10 to 22 W. Further, slowly was extended on different working fluids as mentioned. From the experimental results, Acetone was found to be better working fluid as compared to other fluids.

  2. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  3. Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses

    Directory of Open Access Journals (Sweden)

    Kamyar Darvish

    2015-11-01

    Full Text Available The thermodynamic performance of a regenerative organic Rankine cycle that utilizes low temperature heat sources to facilitate the selection of proper organic working fluids is simulated. Thermodynamic models are used to investigate thermodynamic parameters such as output power, and energy efficiency of the ORC (Organic Rankine Cycle. In addition, the cost rate of electricity is examined with exergo-economic analysis. Nine working fluids are considered as part of the investigation to assess which yields the highest output power and exergy efficiency, within system constraints. Exergy efficiency and cost rate of electricity are used as objective functions for system optimization, and each fluid is assessed in terms of the optimal operating condition. The degree of superheat and the pressure ratio are independent variables in the optimization. R134a and iso-butane are found to exhibit the highest energy and exergy efficiencies, while they have output powers in between the systems using other working fluids. For a source temperature was equal to 120 °C, the exergy efficiencies for the systems using R134a and iso-butane are observed to be 19.6% and 20.3%, respectively. The largest exergy destructions occur in the boiler and the expander. The electricity cost rates for the system vary from 0.08 USD/kWh to 0.12 USD/kWh, depending on the fuel input cost, for the system using R134a as a working fluid.

  4. Experimental study of high-performance cooling system pipeline diameter and working fluid amount

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan

    2016-03-01

    This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.

  5. Experimental study of high-performance cooling system pipeline diameter and working fluid amount

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2016-01-01

    Full Text Available This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.

  6. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  7. A thermal logic device based on fluid-solid interfaces

    OpenAIRE

    Murad, Sohail; Puri, Ishwar K.

    2013-01-01

    Thermal rectification requires that thermal conductivity not be a separable function of position and temperature. Investigators have considered inhomogeneous solids to design thermal rectifiers but manipulations of solid lattices are energy intensive. We propose a thermal logic device based on asymmetric solid-fluid resistances that couples two fluid reservoirs separated by solid-fluid interfaces. It is the thermal analog of a three terminal transistor, the hot reservoir being the emitter, th...

  8. Preparation and Properties of ε-Fe3N-Based Magnetic Fluid

    Directory of Open Access Journals (Sweden)

    Huang Wei

    2008-01-01

    Full Text Available AbstractIn this work, ε-Fe3N nanoparticles and ε-Fe3N-based magnetic fluid were synthesized by chemical reaction of iron carbonyl and ammonia gas. The size of ε-Fe3N nanoparticles was tested by TEM and XRD. Stable ε-Fe3N-based magnetic fluid was prepared by controlling the proper ratio of carrier liquid and surfactant. The saturation magnetization of stable ε-Fe3N-based magnetic fluid was calculated according to the volume fraction of the particles in the fluid. The result shows that both the calculated and measured magnetizations increase by increasing the particle concentration. With the increasing concentration of the ε-Fe3N particles, the measured value of the magnetic fluid magnetization gradually departs from the calculated magnetization, which was caused by agglomeration affects due to large volume fraction and large particle size.

  9. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    OpenAIRE

    Pingting Liu; Zhiyu Huang; Hao Deng; Rongsha Wang; Shuixiang Xie

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by am...

  10. The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids.

    Science.gov (United States)

    Altan, Cem L; Bucak, Seyda

    2011-07-15

    Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe(3)O(4) nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature. PMID:21659690

  11. The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids

    Science.gov (United States)

    Altan, Cem L.; Bucak, Seyda

    2011-07-01

    Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe3O4 nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature.

  12. Analysis on optimal working fluid flowrate and unstable power generation for miniaturized ORC systems

    Institute of Scientific and Technical Information of China (English)

    刘克涛; 朱家玲; 胡开永; 吴秀杰

    2016-01-01

    For efficient utilization of a limited geothermal resource in practical projects, the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger, with a variation of flowrate of R245fa. The influence of working fluid flowrate on a 500W ORC system was investigated. Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined. Therefore, for the ORC systems, optimal working fluid flowrate should be controlled. Using different temperature hot water as the heat source, it is found that the optimal flowrate increases by 6−10 L/h with 5 ℃ increment of hot water inlet temperature. During experiment, lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation. It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation. To avoid this phenomenon, the flow area of plate heat exchanger should be larger than the designed one. Alternatively, installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.

  13. Experimental Study of Two-Phase Thermosyphon using R-22 as a Working Fluid

    Directory of Open Access Journals (Sweden)

    Theeb Maathe. А.

    2016-01-01

    Full Text Available The two-phase closed thermosyphon (TPCT is an effective heat transfer device decreasing the ground temperature around it in cold season. In this paper an experimental study has been done by using R-22 as a working fluids, the temperature and the pressure of the TPCT where measured with time (Transient study.

  14. Agarwood Waste as A New Fluid Loss Control Agent in Water-based Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Azlinda Azizi

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Agarwood has been used widely in various ways, including traditional medicine and art. The usage of agarwood has grown broader in modern times include in therapeutic medicines and perfumery. In this paper the agarwood waste has been explored to be used as a fluid loss control agent to control fluid loss without affecting the drilling fluid rheological properties which are density, pH, viscosity, yield point and gel strength. Agarwood waste was used as an additive in the drilling fluid system due to its unique characteristic. Rheological and filtration measurements were performed on the formulated water-based drilling fluid. Formulations of a base solution of fresh water, sodium hydroxide, bentonite, barite, and xanthan gum were presented. The performance of the agarwood waste as the fluid loss control agent was compared with based fluid formulation and water-based drilling fluid with treating with conventional fluid loss control agent (starch. The filtrate volume of drilling fluid with agarwood waste was about 13 ml while for drilling fluid with conventional fluid loss control agent, starch gave 12 ml of filtrate volume after undergoing filtration test by using LPLT filter press. The performance of drilling fluid with agarwood was efficient as drilling fluid with starch. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso

  15. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  16. The fluid dynamics of work transfer in the non-uniform viscous rotating flow within a Tesla disc turbomachine

    Science.gov (United States)

    Guha, Abhijit; Sengupta, Sayantan

    2014-03-01

    In this article, the fluid dynamics of work transfer within the narrow spacing (usually of the order of 100 μm) of multiple concentric discs of a Tesla disc turbomachine (turbine or compressor) has been analysed theoretically and computationally. Both the overall work transfer and its spatial development have been considered. It has been established that the work transfer mechanism in a Tesla disc turbomachine is very different from that in a conventional turbomachine, and the formulation of the Euler's work equation for the disc turbomachine contains several conceptual subtleties because of the existence of complex, three dimensional, non-uniform, viscous flow features. A work equivalence principle has been enunciated, which establishes the equality between the magnitudes of work transfer determined rigorously from two different approaches—one based on the shear stress acting on the disc surfaces and the other based on the change in angular momentum of the fluid. Care is needed in identifying the shear stress components that are responsible for the generation or absorption of useful power. It is shown from the Reynolds transport theorem that mass-flow-averaged tangential velocities (as opposed to the normally used area-averaged values) must be used in determining the change in angular momentum; the calculation has to be carefully formulated since both radial velocity (that determines throughput) and tangential velocity (that generates torque) depend strongly on the coordinate perpendicular to the disc surfaces. The principle of work transfer has been examined both in the absolute and relative frames of reference, revealing the subtle role played by Coriolis force. The concept of a new non-dimensional quantity called the torque potential fraction (Δ tilde H) is introduced. The value of Δ tilde H at any radial position increases with a decrease in inter-disc spacing. The computational fluid dynamic analysis shows that, for small value of inter-disc spacing and

  17. CAD/CAE OF THE WORKING CHARACTERISTICS OF A NEW TYPE OF FLUID COUPLING SHOCK ABSORBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For purpose of simulation of the working characteristics of a new type of fluid coupling shock absorber for vibration protection of sensitive equipment, a physical model is presented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shock absorber and implemented in MATLAB software package. Using the model it is possible to evaluate the importance of different factors for design of the shock absorber. In the meantime, the key-model machine is designed for coupling dynamic test. Comparisons with experimental results confirm the validity of the model. So the CAD/CAE software has been developed in MATLAB for design and experimental test of the new coupling shock absorber.

  18. Influence of Heat Input, Working Fluid and Evacuation Level on the Performance of Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    K. Rama Narasimha

    2012-01-01

    Full Text Available An experimental study on pulsating heat pipe (PHP is presented in this work. A closed loop PHP with a single U turn is fabricated and tested. The transient and steady state experiments are conducted and operating temperatures are measured. The experiments are carried out for different working fluids, heat input and for different evacuation levels. The derived parameters include thermal resistance and heat transfer coefficient of PHP. The results of these experiments show an intermittent motion of the working fluid at lower heat input. The temperature difference between evaporator and condenser at steady state is found lower for acetone compared to water, ethanol and methanol. Lower value of thermal resistance and higher value of heat transfer coefficient are observed in case of acetone compared to water, ethanol and methanol. Lower values of temperature difference between evaporator and condenser and thermal resistance and higher value of heat transfer coefficient are observed at atmospheric conditions of operation of PHP compared to evacuation conditions. The Power Spectral Density Analysis is also carried out on the results of these experiments using FFT technique to analyse the pulsating motion of the fluid in a PHP. In the Power Spectral Density analysis, the frequency distribution of temperature variation in PHP was observed over a wider range, signifying the periodic motion in the fluid flow of the liquid slug and vapour plug. This characteristic frequency corresponded to the characteristic time for a couple of adjacent vapour plug and liquid slug passing through a specific local wall surface in a PHP.

  19. Dielectric breakdown in mineral oil ITO 100 based magnetic fluid

    Science.gov (United States)

    Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M.

    The development of dielectric breakdown and the DC dielectric breakdown voltage of magnetic fluids based on inhibited transformer oil ITO 100 were investigated in parallel orientations of external magnetic field. It was shown that the breakdown voltage is strongly influenced by the magnetic nanoparticles. The magnetic fluids with the volume concentration 1and 0.2% had better dielectric properties than pure transformer oil. The increase of breakdown voltage was interpreted on the base of the bubble theory of breakdown.

  20. Evaluation of behavior of biodegradable lubricants in the differential sticking coefficient of water based drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, L.V. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais], E-mail: luciana@dem.ufcg.edu.br; Nascimento, R.C.A.M. [Universidade Federal de Campina Grande (PPGCEMat/UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Lira, D.S. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica; Magalhaes, J. [System Mud Fluidos de Perfuracao, Itajai, SC (Brazil). Dept. de Quimica

    2011-10-15

    This work aims to evaluate the behavior of four samples of biodegradable lubricants in the differential sticking coefficient of aqueous drilling fluids. Eighteen formulations of fluids containing bentonite clay, lubricants and biodegradable polymers in different concentrations were studied. The experiment focused on observing the samples' rheological properties, its filtration, the cake thickness, the lubricity coefficient, and, finally, the coefficient of the differential sticking. The results showed that the polymer additives improved rheological and filtration properties significantly. Also, the findings confirmed the idea that the presence of a lubricant leads to a reduction in lubricity, LC, and affects the differential sticking coefficient, DSC, of the fluids. However, the experiment observed a small variation on the LC as a result of an increase in the lubricant content. Overall, the results of the LC and the DSC of the fluids containing biodegradable lubricant additives were outstanding, being similar to the ones observed for oil-based fluids. (author)

  1. Magnetic wire-based sensors for the microrheology of complex fluids.

    Science.gov (United States)

    Chevry, L; Sampathkumar, N K; Cebers, A; Berret, J-F

    2013-12-01

    We propose a simple microrheology technique to evaluate the viscoelastic properties of complex fluids. The method is based on the use of magnetic wires of a few microns in length submitted to a rotational magnetic field. In this work, the method is implemented on a surfactant wormlike micellar solution that behaves as an ideal Maxwell fluid. With increasing frequency, the wires undergo a transition between a steady and a hindered rotation regime. The study shows that the average rotational velocity and the amplitudes of the oscillations obey scaling laws with well-defined exponents. From a comparison between model predictions and experiments, the rheological parameters of the fluid are determined. PMID:24483443

  2. Implementing Evidence-Based Social Work Practice

    Science.gov (United States)

    Mullen, Edward J.; Bledsoe, Sarah E.; Bellamy, Jennifer L.

    2008-01-01

    Recently, social work has been influenced by new forms of practice that hold promise for bringing practice and research together to strengthen the scientific knowledge base supporting social work intervention. The most recent new practice framework is evidence-based practice. However, although evidence-based practice has many qualities that might…

  3. A field application of nanoparticle-based invert emulsion drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alexey S.; Husein, Maen, E-mail: mhusein@ucalgary.ca [University of Calgary, Department of Chemical & Petroleum Engineering (Canada); Hareland, Geir [Oklahoma State University, Department of Chemical Engineering (United States)

    2015-08-15

    Application of nanotechnology in drilling fluids for the oil and gas industry has been a focus of several recent studies. A process for the in situ synthesis of nanoparticles (NPs) into drilling fluids has been developed previously in our group and showed that calcium-based NPs (CNPs) and iron-based NPs (INPs), respectively, with concentrations of 0.5–2.0 wt% can dramatically improve filtration properties of commercial drilling fluids in a laboratory environment. In this work, a modified process for the emulsion-based synthesis of NPs on a 20 m{sup 3} volume and its subsequent full-scale field testing are presented. Comparison between NP carrier fluids prepared under controlled environment in the laboratory and those prepared on a large scale in a mixing facility revealed very little variation in the main characteristics of the drilling fluid; including the size of the solid constituents. Transmission electron microscopy photographs suggest an average CNP particle size in the carrier fluid of 51 ± 11 nm. Results from the full-scale field test showed that total mud losses while drilling with CNP-based invert emulsion were on average 27 % lower than in the case of conventional fluids. This loss prevention falls within the range observed in the laboratory.

  4. Working memory and fluid intelligence are both identical to g?! Reanalyses and critical evaluation

    Directory of Open Access Journals (Sweden)

    GILLES E. GIGNAC

    2007-09-01

    Full Text Available In this investigation, two previously published confirmatory factor analytic studies that separately reported working memory and fluid intelligence higher-order loadings so large as to suggest isomor-phism with g were evaluated critically within the context of internal consistency reliability. Specifi-cally, based on two data analytic approaches, the previously reported higher-order loadings which suggested isomorphism with g were demonstrated to have been achieved via the substantial disattenua-tion effects observed within structural equation modeling, when the latent variable corresponding composite scores are associated with low levels of reliability. The two approaches were: (1 the obverse of the disattenuation procedure for imperfect reliability, and (2 the implied correlation between a corresponding phantom composite variable and a higher-order g factor. The results derived from the two approaches were found to correspond very closely. To allow for a more informative evaluation, researchers are encouraged to report the internal consistency reliabilities associated with the composite scores which correspond to their latent variables, as well as to report both the disattenuated and attenu-ated higher-order loadings within their multi-factor models.

  5. Thermodynamic properties of a geothermal working fluid; 90% isobutane-10% isopentane: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, J.S.; Linsky, D.; Morrison, G.; Levelt Sengers, J.M.H.

    1987-04-01

    We present tables of thermodynamic properties, and dew and bubble properties, of a mixture of 90 mol % isobutane and 10 mol % isopentane, a working fluid in a binary geothermal power cycle. The tables are generated by a formulation of the Helmholtz free energy, in which the mixture properties are mapped onto the known properties of pure isobutane by means of the principle of generalized corresponding states. The data base for the Helmholtz free energy formulation is new. We report data obtained in three different apparatus: critical-line and isopentane vapor pressure data obtained in a visual cell; vapor-liquid equilibria data obtained in a mercury-operated variable-volume cell; and pressure-volume-temperature data for the 90 mol %-10 mol % mixture obtained in a semi-automated Burnett-isochoric apparatus. The principles of the methods, and estimates of the reliability, are discussed and all experimental data are compared with the surface. The results are tables of specific volume, enthalpy, entropy, specific heat and density and temperature derivatives of the pressure at 10 K temperature increments from 240 to 600 K along isobars from 0.01 to 20 MPa. Separate tables are prepared from the dew and bubble properties of the 90-10 mixture. Estimates of the effects of isomeric impurity of isobutane are given in graphical form.

  6. Flow properties of water-based drilling fluids

    OpenAIRE

    Kristensen, Aleksander

    2013-01-01

    The objective of this master thesis was to investigate the flow properties of water based drilling fluids, utilizing measurements in both the micro and macro scale. The research was performed on two realistic drilling fluids by the use of a viscometer, a rheometer and a realistic flow loop, where the latter represents the macro scale. The research outcome could possibly improve the understanding of flow behavior in wellbores, and remove uncertainties associated with annular friction. The two...

  7. Training working memory and fluid intelligence in older adults: developing measures and exploring outcomes

    OpenAIRE

    Hynes, Sin?ad

    2013-01-01

    This thesis investigates computerised cognitive training in older adults, with a focus on training working memory and fluid intelligence. A series of studies is reported, with two broad aims. The first was to develop and validate outcome measures appropriate for use in this population, and the second was to examine whether established gains in cognitive functioning generalised to everyday life. In relation to the first aim, two studies were conducted which concerned the development of a se...

  8. Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

    Science.gov (United States)

    Harikrishnan, S. S.; Kotebavi, Vinod

    2016-09-01

    This paper elaborates on the testing of solar heat pipes using different working fluids, fill ratios and tilt angles. Methanol, Acetone and water are used as working fluids, with fill ratios 25%, 50%, 75% and 100%. Experiments were carried out at 600 and 350 inclinations. Heat pipe condenser section is placed inside a water basin containing 200ml of water. The evaporator section is exposed to sunlight where the working fluid gets heated and it becomes vapour and moves towards the condenser section. In the condenser section the heat is given to the water in the basin and the vapour becomes liquid and comes back to the evaporator section due to gravitational force. Two modes of experiments are carried out: 1) using a parabolic collector and 2) using heat pipe with evacuated tubes. On comparative study, optimum fill ratio is been found to be 25% in every case and acetone exhibited slightly more efficiency than methanol and water. As far as the heat pipe orientation is concerned, 600 inclination of the heat pipe showed better performance than 350

  9. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    Science.gov (United States)

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  10. A Quality Function Deployment-Based Model for Cutting Fluid Selection

    Directory of Open Access Journals (Sweden)

    Kanika Prasad

    2016-01-01

    Full Text Available Cutting fluid is applied for numerous reasons while machining a workpiece, like increasing tool life, minimizing workpiece thermal deformation, enhancing surface finish, flushing away chips from cutting surface, and so on. Hence, choosing a proper cutting fluid for a specific machining application becomes important for enhanced efficiency and effectiveness of a manufacturing process. Cutting fluid selection is a complex procedure as the decision depends on many complicated interactions, including work material’s machinability, rigorousness of operation, cutting tool material, metallurgical, chemical, and human compatibility, reliability and stability of fluid, and cost. In this paper, a decision making model is developed based on quality function deployment technique with a view to respond to the complex character of cutting fluid selection problem and facilitate judicious selection of cutting fluid from a comprehensive list of available alternatives. In the first example, HD-CUTSOL is recognized as the most suitable cutting fluid for drilling holes in titanium alloy with tungsten carbide tool and in the second example, for performing honing operation on stainless steel alloy with cubic boron nitride tool, CF5 emerges out as the best honing fluid. Implementation of this model would result in cost reduction through decreased manpower requirement, enhanced workforce efficiency, and efficient information exploitation.

  11. A magnetorheological fluid based orthopedic active knee brace

    Science.gov (United States)

    Zite, Jamaal L.; Ahmadkhanlou, Farzad; Neelakantan, Vijay A.; Washington, Gregory N.

    2006-03-01

    The disadvantage of current knee braces ranges from high cost for customization to a loss in physical mobility and limited rehabilitative value. One approach to solving this problem is to use a Magnetorheological (MR) device to make the knee brace have a controllable resistance. Our design solution is to replace the manufacturer's joint with an rotary MR fluid based shear damper. The device is designed based on a maximum yield stress, a corresponding magnetic field, a torque and the MR fluid viscosity. The analytical and experimental results show the advantages and the feasibility of using the proposed MR based controllable knee braces.

  12. Multiscale Turbulence Models Based on Convected Fluid Microstructure

    CERN Document Server

    Holm, Darryl D

    2012-01-01

    The Euler-Poincar\\'e approach to complex fluids is used to derive multiscale equations for computationally modelling Euler flows as a basis for modelling turbulence. The model is based on a \\emph{kinematic sweeping ansatz} (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest 2-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modelling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.

  13. High-water-base hydraulic fluid-irradiation experiments

    International Nuclear Information System (INIS)

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 106 Gy (108 rad) are expected

  14. Lemna minor tolerance to metal-working fluid residues: implications for rhizoremediation.

    Science.gov (United States)

    Grijalbo, L; Becerril, J M; Barrutia, O; Gutierrez-Mañero, J; Lucas Garcia, J A

    2016-07-01

    For the first time in the literature, duckweed (Lemna minor) tolerance (alone or in combination with a consortium of bacteria) to spent metal-working fluid (MWF) was assessed, together with its capacity to reduce the chemical oxygen demand (COD) of this residue. In a preliminary study, L. minor response to pre-treated MWF residue (ptMWF) and vacuum-distilled MWF water (MWFw) was tested. Plants were able to grow in both residues at different COD levels tested (up to 2300 mg·l(-1) ), showing few toxicity symptoms (mainly growth inhibition). Plant response to MWFw was more regular and dose responsive than when exposed to ptMWF. Moreover, COD reduction was less significant in ptMWF. Thus, based on these preliminary results, a second study was conducted using MWFw to test the effectiveness of inoculation with a bacterial consortium isolated from a membrane bioreactor fed with the same residue. After 5 days of exposure, COD in solutions containing inoculated plants was significantly lower than in non-inoculated ones. Moreover, inoculation reduced β+γ-tocopherol levels in MWFw-exposed plants, suggesting pollutant imposed stress was reduced. We therefore conclude from that L. minor is highly tolerant to spent MWF residues and that this species can be very useful, together with the appropriate bacterial consortium, in reducing COD of this residue under local legislation limits and thus minimise its potential environmental impact. Interestingly, the lipophilic antioxidant tocopherol (especially the sum of β+γ isomers) proved to be an effective plant biomarker of pollution. PMID:27007194

  15. Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant

    Science.gov (United States)

    Ryzhkov, A. F.; Gordeev, S. I.; Bogatova, T. F.

    2015-11-01

    Introduction of a combined-cycle technology based on fuel gasification integrated in the process cycle (commonly known as integrated gasification combined cycle technology) is among avenues of development activities aimed at achieving more efficient operation of coal-fired power units at thermal power plants. The introduction of this technology is presently facing the following difficulties: IGCC installations are characterized by high capital intensity, low energy efficiency, and insufficient reliability and availability indicators. It was revealed from an analysis of literature sources that these drawbacks are typical for the gas turbine working fluid preparation system, the main component of which is a gasification plant. Different methods for improving the gasification plant chemical efficiency were compared, including blast air high-temperature heating, use of industrial oxygen, and a combination of these two methods implying limited use of oxygen and moderate heating of blast air. Calculated investigations aimed at estimating the influence of methods for achieving more efficient air gasification are carried out taking as an example the gasifier produced by the Mitsubishi Heavy Industries (MHI) with a thermal capacity of 500 MW. The investigation procedure was verified against the known experimental data. Modes have been determined in which the use of high-temperature heating of blast air for gasification and cycle air upstream of the gas turbine combustion chamber makes it possible to increase the working fluid preparation system efficiency to a level exceeding the efficiency of the oxygen process performed according to the Shell technology. For the gasification plant's configuration and the GTU working fluid preparation system be selected on a well-grounded basis, this work should be supplemented with technical-economic calculations.

  16. FLUOROETHERS AS A WORKING FLUIDS FOR LOW TEMPERATURE ORGANIC RANKINE CYCLE

    Directory of Open Access Journals (Sweden)

    Artemenko S.V

    2014-12-01

    Full Text Available Hydrofluoroethers as a new class of working fluids for the organic Rankine cycle have been considered to utilize the low-potential waste heat. Temperature range 300…400 K was chosen to provide energy conversion of waste heat from fuel cells. The direct assessment of the efficiency criteria for the Rankine cycle via artificial neural networks (ANN was used. To create ANN the critical parameters of substance and normal boiling temperature as input were chosen. The forecast of efficiency criteria for the Rankine cycle as output parameter which reproduces the coefficient of performance with high accuracy and without thermodynamic property calculations was presented.

  17. Experimental Comparison Of Working Fluids For Organic Rankine Cycle With Single-Screw Expander

    OpenAIRE

    Gusev, Sergei; Ziviani, Davide; Bell, Ian; De Paepe, Michel; Van Den Broek, Martijn

    2014-01-01

    This paper describes the behavior of an Organic Rankine Cycle (ORC) fed by a heat source with adaptable temperature and mass flow. For a suitable choice of working fluid, the setting of its evaporation pressure is crucial for the performance of an ORC installation. The higher the evaporation pressure, the higher the cycle efficiency on the one hand, but the lower the energy recovered from the heat source due to a higher outlet temperature on the other hand. An optimum has to be found to achie...

  18. Numerical Comparison of NASA's Dual Brayton Power Generation System Performance Using CO2 or N2 as the Working Fluid

    Science.gov (United States)

    Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.

    2010-01-01

    A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).

  19. Performances of cutting fluids in turning. Vegetable based oil - RV

    DEFF Research Database (Denmark)

    Axinte, Dragos Aurelian; Belluco, Walter

    1999-01-01

    Scope of the present measurement campaign is the evaluation of the cutting fluid performance. The report presents the standard routine and the results obtained when turning stainless steel and brass with a commercial vegetable based oil called RV. The methods were developed to be applicable...

  20. Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, Ulrik; Knudsen, Thomas;

    2014-01-01

    We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120°C and 90°C. P...

  1. Working Memory, Inhibition, and Fluid Intelligence as Predictors of Performance on Tower of Hanoi and London Tasks

    Science.gov (United States)

    Zook, N.A.; Davalos, D.B.; DeLosh, E.L.; Davis, H.P.

    2004-01-01

    The contributions of working memory, inhibition, and fluid intelligence to performance on the Tower of Hanoi (TOH) and Tower of London (TOL) were examined in 85 undergraduate participants. All three factors accounted for significant variance on the TOH, but only fluid intelligence accounted for significant variance on the TOL. When the…

  2. Optimization-based Fluid Simulation on Unstructured Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Bridson, Robert; Erleben, Kenny;

    We present a novel approach to fluid simulation, allowing us to take into account the surface energy in a pre- cise manner. This new approach combines a novel, topology-adaptive approach to deformable interface track- ing, called the deformable simplicial complexes method (DSC) with an optimization......-based, linear finite element method for solving the incompressible Euler equations. The deformable simplicial complexes track the surface of the fluid: the fluid-air interface is represented explicitly as a piecewise linear surface which is a subset of tetra- hedralization of the space, such that the interface...... can be also represented implicitly as a set of faces separating tetrahedra marked as inside from the ones marked as outside. This representation introduces insignificant and con- trollable numerical diffusion, allows robust topological adaptivity and provides both a volumetric finite element mesh...

  3. Characteristic analysis of magnetorheological fluid based on different carriers

    Institute of Scientific and Technical Information of China (English)

    张建; 张进秋; 贾进峰

    2008-01-01

    In order to prepare special MRFs to satisfy the demands of tracked vehicle,two different carrier fluids were used to prepare MRFs.Preparation of MRF,which are based on carrier of special shock absorption fluid and 45# transformer oil,was finished.And characteristics of these samples were tested and analyzed.The results show that Tween-80 and Span-80 can improve the sedimentary stability,and the larger mass fraction can also increase the sedimentary stability.Using 45# transformer oil instead of special shock absorption fluid as a carrier of MRF,the shear yield stress remains nearly constant but the viscosity and the sedimentary stability are reduced.The MRF with diameter of 2.73 μm shows better sedimentary stability than that of the MRF with diameter of 2.30 μm,or 4.02 μm.Stearic acid obviously improves sedimentary stability and off-state viscosity,but has no function on the shear yield stress.In magnetic field of 237 kA/m,the shear yield stress of MRF based on special shock absorption fluid is 18.34 kPa and the shear yield stress of MRF based on 45# transformer oil is 14.26 kPa.

  4. [Determination of body fluid based on analysis of nucleic acids].

    Science.gov (United States)

    Korabečná, Marie

    2015-01-01

    Recent methodological approaches of molecular genetics allow isolation of nucleic acids (DNA and RNA) from negligible forensic samples. Analysis of these molecules may be used not only for individual identification based on DNA profiling but also for the detection of origin of the body fluid which (alone or in mixture with other body fluids) forms the examined biological trace. Such an examination can contribute to the evaluation of procedural, technical and tactical value of the trace. Molecular genetic approaches discussed in the review offer new possibilities in comparison with traditional spectrum of chemical, immunological and spectroscopic tests especially with regard to the interpretation of mixtures of biological fluids and to the confirmatory character of the tests. Approaches based on reverse transcription of tissue specific mRNA and their subsequent polymerase chain reaction (PCR) and fragmentation analysis are applicable on samples containing minimal amounts of biological material. Methods for body fluid discrimination based on examination of microRNA in samples provided so far confusing results therefore further development in this field is needed. The examination of tissue specific methylation of nucleotides in selected gene sequences seems to represent a promising enrichment of the methodological spectrum. The detection of DNA sequences of tissue related bacteria has been established and it provides satisfactory results mainly in combination with above mentioned methodological approaches. PMID:26419517

  5. Evidence-Based Clearinghouses in Social Work

    Science.gov (United States)

    Soydan, Haluk; Mullen, Edward J.; Alexandra, Laine; Rehnman, Jenny; Li, You-Ping

    2010-01-01

    Objectives: The purpose of this article is to describe several evidence-based clearinghouses focused on social work and related intervention outcomes, placing them in the context of how such clearinghouses can contribute to research dissemination to foster effective, evidence-based practice. Method: The study employed an analysis of data provided…

  6. Performance study of solar power plants with CO2 as working fluid. A promising design window

    International Nuclear Information System (INIS)

    Highlights: • High efficiency regenerative Brayton cycle with carbon dioxide working close to its critical point. • Efficient coupling between multi-tube solar receivers and close-to-critical carbon dioxide Brayton cycle. • Concentrated radiation intensity showing a threshold at 25 kW/m2 for achieving high efficiency in multi-tube solar receivers. - Abstract: In this paper a systematic analysis is reported on the use of CO2 as heat carrier fluid in solar thermal receivers and as thermodynamic working fluid. It includes the performance of close-to-critical regenerative Brayton cycles, which opens a broad field of cycle possibilities with low pressure ratios (very simple turbines) complemented with large but standard heat exchangers as regenerators. Radiation intensities needed to reach relevant efficiencies are in the range above 25 kW/m2, but receiver efficiencies do not increase significantly beyond that value, featured as a threshold. Receivers are made of multi-tube bundles enclosed in glass-windowed collectors with compensated pressure and dilatation, which eliminates the problem of gas leakage through rotating joints and other non-hermetic fits. This leads to needing concentrators compatible with those collectors, which can be either finely optimized Linear Fresnel Reflectors or central minitowers. CO2 was chosen for this study because its critical temperature (31 °C) is very close to environmental temperature, which conveys very positive features for the efficiency of the cycle. The overall result of the theoretical study is the identification of a set of different types of efficient, flexible and robust CSP plants with CO2 as the only fluid which deserves further research at experimental level and in the design and construction of new plant components

  7. The simulation of organic rankine cycle power plant with n-pentane working fluid

    Science.gov (United States)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  8. Binary blend of carbon dioxide and fluoro ethane as working fluid in transcritical heat pump systems

    Directory of Open Access Journals (Sweden)

    Zhang Xian-Ping

    2015-01-01

    Full Text Available As an eco-friendly working fluid, carbon dioxide or R744 is expected to substitute for the existing working fluids used in heat pump systems. It is, however, challenged by the much higher heat rejection pressure in transcritical cycle compared with the traditional subcritical cycle using freons. There exists a worldwide tendency to utilize blend refrigerants as alternatives. Therefore, a new binary blend R744/R161 in this research is proposed in order to decrease the heat rejection pressure. Meanwhile, on mixing R744 with R161, the flammability and explosivity of R161 can be suppressed because of the extinguishing effect of R744. A transcritical thermodynamic model is developed, and then the system performances of heat pump using R744/R161 blend are investigated and compared with those of pure R744 system under the same operation conditions. The variations of heat rejection pressure, heating coefficient of performance, unit volumetric heating capacity, discharge temperature of compressor and the mass fraction of R744/R161 are researched. The results show that R744/R161 mixture can reduce the heat rejection pressure of transcritical heat pump system.

  9. THERMODYNAMIC ANALYSIS OF DIFFERENT WORKING FLUIDS USED IN ORGANIC RANKINE CYCLE FOR RECOVERING WASTE HEAT FROM GT-MHR

    Directory of Open Access Journals (Sweden)

    AMIN HABIBZADEH

    2016-01-01

    Full Text Available In this paper, the performance of 13 working fluids in two Organic Rankine Cycles, which operate as the bottoming cycles for recovering waste heat from gas turbine modular helium reactor (GT-MHR, is investigated. Working fluids are classified in three dry, isentropic and wet fluids. The effect of varying pump temperature and evaporator pressure on the thermal efficiency, total exergy loss of the combined cycle is studied for each category, and the results are compared. The results are calculated for an optimum pressure ratio in which thermal efficiency is maximum. According to the results, dry fluids show a higher thermal efficiency while wet fluids have the lowest values. However, the highest value for thermal efficiency is for R141b, which is an isentropic fluid. Furthermore, the results indicate that pump temperature increase, reduces the total thermal efficiency and increases the total exergy loss of the combined cycle. Increasing evaporator pressure leads to an optimum pressure that maximizes total thermal efficiency. According to the optimized pressure ratio and evaporator pressure, R141b in isentropic fluids, R123 in dry fluids and R717 in wet fluids have the highest thermal efficiency values.

  10. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory. PMID:18075217

  11. On Rayleigh-Plesset based cavitation modelling of fluid film bearings using the Reynolds equation

    Science.gov (United States)

    Snyder, Troy A.; Braun, Minel J.; Pierson, Kristopher

    2015-12-01

    In the ‘universe’ of the general cavitation phenomena the issue of cavitation in bearings, due to its particular application and the mostly non-homogeneous working fluids associated with it, has presented a rather specialized challenge. The present paper models the phenomenon of pseudo-cavitation in fluid film bearings and offers a physics-based approach that conserves mass while solving the Reynolds (RE) and Rayleigh-Plesset (RP) equations in a coupled, fully transient environment. The RP solution calculates a time dependent void fraction synchronized with the RE transient solution, where density and viscosity are (re)calculated at every grid point of this homogeneous two-phase fluid. The growth and evolution of the cavitation zone expanse is physics-based and thus can accommodate evaporation, diffusion, or pseudocavitation as separate processes. This is a step beyond the present available cavitation models both for the RE and the Navier-Stokes equations.

  12. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  13. Numerical simulation of fluid bed drying based on two-fluid model and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Assari, M.R. [Jundi-shapur University, Dezful (Iran); Basirat Tabrizi, H.; Saffar-Avval, M. [Amirkabir University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2007-02-15

    A mathematical model for batch drying based on the Eulerian 'two-fluid models' was developed. The two-dimensional, axis-symmetrical cylindrical equations for both phases were solved numerically. The governing equations were discretized using a finite volume method with local grid refinement near the wall and inlet port. The effects of parameters such as inlet gas velocity and inlet gas temperature on the moisture content, temperature of solid and gas at the outlet are shown. This data from the model was compared with that obtained from experiments with a fluidized bed and found to be in reasonably good agreement. (author)

  14. Tactile refreshable screen based on magneto-rheological fluids for map exploration and navigation tasks

    Science.gov (United States)

    Bolzmacher, C.; Changeon, G.; Plaud, V.; Roselier, S.; Lozada, J.; Hafez, M.

    2011-06-01

    Human-machine interfaces can convey information via visual, audio and/or haptic cues during a navigation task. The visual and audio technologies are mature, whereas research has to be focused on haptic technologies for mobile devices. In this work, a tactile refreshable screen is proposed which allows its user the exploration of maps and navigational tasks in an egocentric perspective. The proposed device consists of an array of actuators which can display various patterns. The actuation technology is based on a magneto-rheological fluid which is injected in a chamber with an elastomeric membrane using a micro pump. The fluid pressure deforms the membrane in order to display a pattern. The fluid properties are used to form a valve in each cell. A permanent magnet, a ferromagnetic core, and a coil form a closed magnetic circuit with a gap where the magneto-rheological fluid can flow; the magnetic field interacts with the fluid and prevents the filling or draining of the chamber. Applying a current to the coil counteracts the magnetic field generated by the magnet and the fluid can circulate freely in order to inflate or deflate the membrane. The design, fabrication and integration of the device in addition to the results of finite element simulations and experimental measurements are reported.

  15. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources

    International Nuclear Information System (INIS)

    Highlights: • General guidelines are proposed to select ORC working fluid and cycle layout. • Distance between critical and heat source temperature for optimal fluid selection. • Separate contributions of cycle efficiency and heat recovery factor. - Abstract: The selection of the most suitable working fluid and cycle configuration for a given heat source is a fundamental step in the search for the optimum design of Organic Rankine Cycles. In this phase cycle efficiency and heat source recovery factor lead to opposite design choices in the achievement of maximum system efficiency and, in turn, maximum power output. In this work, both separate and combined effects of these two performance factors are considered to supply a thorough understanding of the compromise resulting in maximum performance. This goal is pursued by carrying out design optimizations of four different ORC configurations operating with twenty-seven working fluids and recovering heat from sensible heat sources in the temperature range 120–180 °C. Optimum working fluids and thermodynamic parameters are those which simultaneously allow high cycle efficiency and high heat recovery from the heat source to be obtained. General guidelines are suggested to reach this target for any system configuration. The distance between fluid critical temperature and inlet temperature of the heat source is found to play a key role in predicting the optimum performance of all system configurations regardless of the inlet temperature of the heat source

  16. Light-responsive viscoelastic fluids based on anionic wormlike micelles.

    Science.gov (United States)

    Lu, Yechang; Zhou, Tengfei; Fan, Qing; Dong, Jinfeng; Li, Xuefeng

    2013-12-15

    A new class of light-responsive viscoelastic fluids based on anionic wormlike micelles is reported. The key components are sodium oleate (NaOA) and a cationic azobenzene dye, 1-[2-(4-phenylazo-phenoxy)-ethyl]-3-methylimidazolium bromide (C0AZOC2IMB). These binary systems are gel-like fluids at certain concentration ratios of [C0AZOC2IMB]/[NaOA], e.g. 35/100, owing to the formation of long, entangled wormlike micelles. The viscosity of these fluids can be controlled reversibly by light due to photo isomerization between trans-C0AZOC2IMB and cis-C0AZOC2IMB. For example, the zero-shear viscosity (η0) of an originally gel-like sample is high up to ~1300 Pa s when C0AZOC2IMB is in its trans from, whereas the mixture becomes a Newtonian fluid with η0 about 0.01 Pa s after UV light irradiation. For the post-irradiated cis-C0AZOC2IMB, short cylindrical micelles form, hence accounting for the lower viscosity. Evidence for the structural transition is provided by UV-vis spectra, rheology, (1)H NMR and cryo-transmission electronic microscopy measurements. PMID:24144381

  17. A magnetorheological fluid-based controllable active knee brace

    Science.gov (United States)

    Ahmadkhanlou, Farzad; Zite, Jamaal L.; Washington, Gregory N.

    2007-04-01

    High customization costs and reduction of natural mobility put current rehabilitative knee braces at a disadvantage. A resolution to this problem is to integrate a Magnetorheological (MR) fluid-based joint into the system. A MR joint will allow patients to apply and control a resistive torque to knee flexion and extension. The resistance torque can also be continuously adjusted as a function of extension angle and patient strength (or as a function of time), which is currently impossible with state of the art rehabilitative knee braces. A novel MR fluid-based controllable knee brace is designed and prototyped in this research. The device exhibits large resistive torque in the on-state and low resistance in the offstate. The controllable variable stiffness, compactness, and portability of the system make it a proper alternative to current rehabilitative knee braces.

  18. AMNIOTIC FLUID EMBOLISM: AN EVIDENCE-BASED REVIEW

    OpenAIRE

    Conde-Agudelo, Agustin; Romero, Roberto

    2009-01-01

    We conducted an evidence-based review of information bout amniotic fluid embolism (AFE). The estimated incidence of AFE is 1:15,200 and 1:53,800 deliveries in North America and Europe, respectively. The case fatality rate and perinatal mortality associated with AFE are 13–30% and 9–44%, respectively. Risk factors associated with an increased risk of AFE include advanced maternal age, placental abnormalities, operative deliveries, eclampsia, polyhydramnios, cervical lacerations, and uterine ru...

  19. Organic rankine cycle coupled to a solar pond by direct-contact heat exchange - selection of a working fluid

    Science.gov (United States)

    Wright, J. D.

    1982-06-01

    Heat from a solar pond may be used to drive an organic Rankine cycle and produce electricity. Due to the inherent low efficiency of low temperature cycles, large amounts of heat must be transferred, and heat exchangers may account for up to 50% of the plant cost. Use of a direct contact boiler, in which the organic fluid is bubbled through a stream of pond brine, may reduce the plant cost by about 25%. The choice of a working fluid affects plant efficiency, turbine cost, and the loss rate of the organic fluid. Low vapor pressure fluids maximize cycle efficiency by minimizing pumping requirements, but require a larger turbine. Efficiency affects the size and cost of the entire plant and low pressure fluids are preferred. The saturated and halogenated hydrocarbons were evaluated for use as working fluids. It is found that the working fluid is best suited to this application, because of high efficiency, low solubility in the pond, and a reasonable turbine cost.

  20. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  1. Work-Based Learning Symposium Proceedings 2009

    OpenAIRE

    Sheridan, Irene; Linehan, Margaret

    2009-01-01

    Prof. Michael Ward Head, Department of Food Business and Development, University College Cork I am honoured to have been invited to chair this morning’s session. My day job is here in UCC where I’m the Professor and Head of the Department of Food Business and Development and the Director of the Centre for Cooperative Studies. I’ve a particular interest in this work-based learning symposium because I, with my colleagues in both the department and the centre, have been involved in Work...

  2. Fluid-based radon mitigation technology development for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.V.; Gabor, J.D.; Holtz, R.E.; Gross, K.C.

    1996-06-01

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne`s radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results.

  3. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Science.gov (United States)

    Smitka, Martin; Kolková, Z.; Nemec, Patrik; Malcho, M.

    2014-03-01

    One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP) is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980's. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT).

  4. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  5. Sensitivity analysis of Computer-aided molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    In recent years there is a large availability of low-temperature heat sources in different applications such as waste heat in chemical industries and refrigeration plants as well as renewable energy sources suchas biomass combustion, geothermal and solar heat sources. Power cycles are an important...... technical tool to convert this waste heat into usable energy. So far the low-temperature heat cannot be utilized efficiently for electricity generation.In order to optimize the heat transfer process and the power generation, the influence of the working fluid, the cycledesigns and the operating conditions...... problem. It integrates both a system model for the ORC and property models,such as GC+-based models for estimation of pure component properties, Peng-Robinson equation of state for estimationof enthalpy, entropy, etc.. The system consists of coupled mass and energy balances for a pump, a condenser...

  6. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF4] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF4] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  7. High viscosity fluid simulation using particle-based method

    KAUST Repository

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  8. A Comparison of Laboratory and Clinical Working Memory Tests and Their Prediction of Fluid Intelligence

    Science.gov (United States)

    Shelton, Jill T.; Elliott, Emily M.; Hill, B. D.; Calamia, Matthew R.; Gouvier, Drew

    2009-01-01

    The working memory (WM) construct is conceptualized similarly across domains of psychology, yet the methods used to measure WM function vary widely. The present study examined the relationship between WM measures used in the laboratory and those used in applied settings. A large sample of undergraduates completed three laboratory-based WM measures…

  9. Current development of saliva/oral fluid-based diagnostics.

    Science.gov (United States)

    Yeh, Chih-Ko; Christodoulides, Nicolaos J; Floriano, Pierre N; Miller, Craig S; Ebersole, Jeffrey L; Weigum, Shannon E; McDevitt, John; Redding, Spencer W

    2010-07-01

    Saliva can be easily obtained in medical and non-medical settings, and contains numerous bio-molecules, including those typically found in serum for disease detection and monitoring. In the past two decades, the achievements of high-throughput approaches afforded by biotechnology and nanotechnology allow for disease-specific salivary biomarker discovery and establishment of rapid, multiplex, and miniaturized analytical assays. These developments have dramatically advanced saliva-based diagnostics. In this review, we discuss the current consensus on development of saliva/oral fluid-based diagnostics and provide a summary of recent research advancements of the Texas-Kentucky Saliva Diagnostics Consortium. In the foreseeable future, current research on saliva based diagnostic methods could revolutionize health care.

  10. Preliminary Experimental Investigation on MHD Power Generation Using Seeded Supersonic Argon Flow as Working Fluid

    Institute of Scientific and Technical Information of China (English)

    LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu

    2011-01-01

    This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.

  11. Influence of thermophysical properties of working fluid on the design of cryogenic turboexpanders using nsds diagram

    Science.gov (United States)

    Sam, Ashish A.; Ghosh, Parthasarathi

    2015-12-01

    Cryogenic turboexpanders are an essential part of liquefaction and refrigeration plants. The thermodynamic efficiency of these plants depends upon the efficiency of the turboexpander, which is the main cold generating component of these plants, and therefore, they should be designed for high thermodynamic efficiencies. Balje's [1] nsdschart, which is a contour of isentropic efficiencies plotted against specific speed and specific diameter, is commonly used for the preliminary design of cryogenic turboexpanders. But, these charts were developed based on calculations for a specific heat ratio (γ) of 1.4, and studies show that care should be taken while implementing the same for gases which have a higher γ of 1.67. Hence there is a need to investigate the extent of applicability of nsds diagram in designing expansion turbines for higher specific heat ratios. In this paper, Computational Fluid Dynamics (CFD) analysis of cryogenic turboexpanders was carried out using Ansys CFX®. The turboexpanders were designed based on the methodologies prescribed by Kun and Sentz [2] following the nsds diagram of Balje and Hasselgruber's technique for generating blade profile. The computational results of the two cases were analysed to investigate the applicability of Balje's nsds diagram for the design of turboexpanders for refrigeration and liquefaction cycles.

  12. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    Science.gov (United States)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  13. Offshore disposal of oil-based drilling fluid waste

    International Nuclear Information System (INIS)

    Offshore drilling operations in the Gulf of Mexico may use oil-based drilling fluids to mitigate drilling problems. The result is the generation of a significant quantity of oily cuttings and mud. The transportation of this waste for onshore disposal is a concern from a standpoint of both personnel safety and potential environmental impact. A process for preparing a slurry of this waste and the subsequent disposal of the slurry through annular pumping has been put into use by ARCO Oil and Gas Company. The disposal technique has been approved by the Minerals Management Service (MMS). The slurried waste is displaced down a casing annulus into a permeable zone at a depth below the surface casing setting depth. The annular disposal includes all cuttings and waste oil mud generated during drilling with oil-based fluids. This disposal technique negates the need for cuttings storage on the platform, transportation to shore, and the environmental effects of onshore surface disposal. The paper describes the environmental and safety concerns with onshore disposal, the benefits of annular disposal, and the equipment and process used for the preparation and pumping of the slurry

  14. Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review

    Directory of Open Access Journals (Sweden)

    Patrick Linke

    2015-05-01

    Full Text Available Efficient power generation from low to medium grade heat is an important challenge to be addressed to ensure a sustainable energy future. Organic Rankine Cycles (ORCs constitute an important enabling technology and their research and development has emerged as a very active research field over the past decade. Particular focus areas include working fluid selection and cycle design to achieve efficient heat to power conversions for diverse hot fluid streams associated with geothermal, solar or waste heat sources. Recently, a number of approaches have been developed that address the systematic selection of efficient working fluids as well as the design, integration and control of ORCs. This paper presents a review of emerging approaches with a particular emphasis on computer-aided design methods.

  15. A portable electronic system for in-situ measurements of oil concentration in MetalWorking fluids

    CERN Document Server

    Grossi, M

    2016-01-01

    MetalWorking Fluids (MWFs) are widely used to cool and lubricate machines and tools. By far, the most common MWFs are oil-in-water emulsions with oil concentration (C oil) in the range from 1% to 10%, depending on type of oil, material to be worked, etc. In order to optimize emulsion and machine performance, as well as for good waste policy, the right value of C oil should be kept (approximately) constant during the MWF's lifecycle to compensate inevitable changes due to water evaporation, bacterial attack, oil adhesion to metal parts, etc.. This, however, requires periodic measurements, often skipped because they require unhandy operations and produce inaccurate results. In this context, a new system is presented that is based on the falling ball principle, normally used for viscosity measurements, shown to be suitable also for accurate C oil measurements. In our system, the transit time of the sphere within the instrument is determined by means of inductive proximity sensors, a PT100 sensor is used for temp...

  16. Estimation and Uncertainty Analysis of Flammability Properties for Computer-aided molecular design of working fluids for thermodynamic cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    Computer Aided Molecular Design (CAMD) is an important tool to generate, test and evaluate promising chemical products. CAMD can be used in thermodynamic cycle for the design of pure component or mixture working fluids in order to improve the heat transfer capacity of the system. The safety...

  17. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo;

    2016-01-01

    engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...

  18. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  19. Regional Multi-Fluid-Based Geophysical Excitation of Polar Motion

    Science.gov (United States)

    Nastula, Jolanta; Salstein, David A.; Gross, Richard

    2011-01-01

    By analyzing geophysical fluids geographic distribution, we can isolate the regional provenance for some of the important signals in polar motion. An understanding of such will enable us to determine whether certain climate signals can have an impact on polar motion. Here we have compared regional patterns of three surficial fluids: the atmosphere, ocean and land-based hydrosphere. The oceanic excitation function of polar motion was estimated with the ECCO/JPL data - assimilating model, and the atmospheric excitation function was determined from NCEP/NCAR reanalyses. The excitation function due to land hydrology was estimated from the Gravity Recovery and Climate Experiment (GRACE) data by an indirect approach that determines water thickness. Our attention focuses on the regional distribution of atmospheric and oceanic excitation of the annual and Chandler wobbles during 1993-2010, and on hydrologic excitation of these wobbles during 2002.9-2011.5. It is found that the regions of maximum fractional covariance (those exceeding a value of 3 .10 -3) for the annual band are over south Asia, southeast Asia and south central Indian ocean, for hydrology, atmosphere and ocean respectively; and for the Chandler period, areas over North America, Asia, and South America; and scattered across the southern oceans for the atmosphere and oceans respectively

  20. Two-Phase Working Fluids for the Temperature Range 50 to 350 C

    Science.gov (United States)

    Saaski, E. W.; Owzarski, P. C.

    1977-01-01

    The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.

  1. Information Work Support Based on Activity Data

    OpenAIRE

    Schmidt, Benedikt

    2013-01-01

    In industrial and post industrial nations like Germany and the USA more than a quarter of the workforce mainly works with information. Most of the work done by these information workers is the production, supervision and dissemination of information at computer workplaces. Information workers frequently works on multiple tasks in parallel. Few guidelines regulate and structure the work process. Therefore, the successful execution of the work requires a high degree of individual planning. ...

  2. Effects of Working Fluid,Tubeside Enhancement and Bundle Depth on the Optimized Fin Geometry of a Horizontal Condenser Tube

    Institute of Scientific and Technical Information of China (English)

    H.Honda; T.Fukuda

    1992-01-01

    A theoretical study has been made to optimize the fin geometry of a horizontal finned tube which is to be used for condensers that handle the vapor load of a liquid phase change cooling module,Systematic numerical calculations of the vapor to coolant heat transfer coefficinet.Three dielctric fluids(R-113,FC-72,and FC-87) at atmospheric pressure were selected as the working fluids.For a single tube with optimized fin geometry,the average heat flux increased in the order of FC-87,R-113 and FC-72.Both the optimum fin height and optimum fin spacing incresaed with increasing vertical bundle depth.

  3. Propositions for a PDF model based on fluid particle acceleration

    International Nuclear Information System (INIS)

    This paper describes theoretical propositions to model the acceleration of a fluid particle in a turbulent flow. Such a model is useful for the PDF approach to turbulent reactive flows as well as for the Lagrangian modelling of two-phase flows. The model developed here draws from ideas already put forward by Sawford but which are generalized to the case of non-homogeneous flows. The model is built so as to revert continuously to Pope's model, which uses a Langevin equation for particle velocities, when the Reynolds number becomes very high. The derivation is based on the technique of fast variable elimination. This technique allow a careful analysis of the relations between different levels of modelling. It also allows to address certain problems in a more rigorous way. In particular, application of this technique shows that models presently used can in principle simulate bubbly flows including the pressure-gradient and added-mass forces. (author)

  4. A three-stage Stirling pulse tube cryocooler reached 4.26 K with He-4 working fluid

    Science.gov (United States)

    Zhi, X. Q.; Han, L.; Dietrich, M.; Gan, Z. H.; Qiu, L. M.; Thummes, G.

    2013-12-01

    Multi-stage Stirling pulse tube cryocoolers (SPTCs) working at liquid helium temperatures are attractive because of their promising potential in tactical and space applications. However, it is still a challenge for a SPTC to operate below 5 K with He-4 as working fluid instead of the rare He-3. In this study, the operating characteristics of an in-house made three-stage SPTC were experimentally investigated. The mutual influence of precooling temperature, operating frequency, input power, and charge pressure on the cooling performance of the third stage was studied. A no-load temperature of 4.26 K was achieved by the three-stage SPTC, which is the lowest temperature ever obtained by a multi-stage SPTC operating with He-4 as working fluid.

  5. Emulsifiers performance on the stability of the drilling fluid base biodiesel; Desempenho de emulsificantes sobre a estabilidade de fluido de perfuracao a base de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Giselle P.; Costa, Marta [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    This work was prepared six (6) formulations of biodiesel based drilling fluids. Three formulations in the proportion oil-water 70/30 and other three in 60/40, just varying the employed surfactants: new product derived the citric acid (developed at our laboratory) and two other commercial surfactants. After production the fluids, It was analyzed them performance of the products through rheological properties to 135 deg F , filtrate volume in HPHT to 500 psi and to 200 deg F, electric stability to 135 deg F and phase separation during seven days of rest. The rheological analyses allowed to determine the behavior every fluids, though flow curves. Those fluids presented same behavior of the fluids used in oil field (Binghamianos). The laboratory tests demonstrated that new surfactant reduced the filtrated volume and provided mechanics and thermic stability. (author)

  6. Fluid structure interaction modelling for the vibration of tube bundles, part II: homogenization method based on the Navier Stokes equations

    International Nuclear Information System (INIS)

    It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid at rest, fluid flow, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. The paper deals with the vibration of tube bundles in a fluid, under a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influenced by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Many works has been made in the last years to develop homogenization methods for the dynamic behaviour of tube bundles. The size of the problem is reduced, and it is possible to make numerical simulations on wide tubes bundles with reasonable computer times. These homogenization methods are valid for 'little displacements' of the structure (the tubes), in a fluid at rest. The fluid movement is governed by the linear Euler equations (without the convective term). In this case, only 'inertial effects' will take place, with globally lower frequencies. It is well known that dissipative effects due to the fluid may take place, even if the displacements of the tube are no so high, or if the fluid is not still. Such effects may be described in the homogenized models by using a Rayleigh damping, but the basic assumption of the model remains the 'perfect fluid' hypothesis. It seem necessary, in order to get a best description of the physical phenomena, to build a more general model, based on the general Navier Stokes equation for the fluid. The homogenization of such system will be much more complex than for the Euler equations. The paper presents the first step in the building of a

  7. Excess-entropy-based anomalies for a waterlike fluid.

    Science.gov (United States)

    Errington, Jeffrey R; Truskett, Thomas M; Mittal, Jeetain

    2006-12-28

    Many thermodynamic and dynamic properties of water display unusual behavior at low enough temperatures. In a recent study, Yan et al. [Phys. Rev. Lett. 95, 130604 (2005)] identified a spherically symmetric two-scale potential that displays many of the same anomalous properties as water. More specifically, for select parametrizations of the potential, one finds that the regions where isothermal compression anomalously (i) decreases the fluid's structural order, (ii) increases its translational self-diffusivity, and (iii) increases its entropy form nested domes in the temperature-density plane. These property relationships are similar to those found for more realistic models of water. In this work, the authors provide evidence that suggests that the anomalous regions specified above can all be linked through knowledge of the excess entropy. Specifically, the authors show how entropy scaling relationships developed by Rosenfeld [Phys. Rev. A 15, 2545 (1977)] can be used to describe the region of diffusivity anomalies and to predict the state conditions for which anomalous viscosity and thermal conductivity behavior might be found. PMID:17199350

  8. Work-based resources as moderators of the relationship between work hours and satisfaction with work-family balance.

    Science.gov (United States)

    Valcour, Monique

    2007-11-01

    This study reports an investigation of the relationships of work hours, job complexity, and control over work time to satisfaction with work-family balance. Based on data from a sample of 570 telephone call center representatives, a moderated hierarchical regression analysis revealed that work hours were negatively related to satisfaction with work-family balance, consistent with the resource drain perspective. Job complexity and control over work time were positively associated with satisfaction with work-family balance. Control over work time moderated the relationship such that as work hours rose, workers with low control experienced a decline in work-family balance satisfaction, while workers with high control did not. Results encourage greater research attention to work characteristics, such as job complexity and control over work time, and skills that represent resources useful to the successful integration of work and family demands.

  9. Fluid-structural dynamics of ground-based and microgravity caloric tests

    Science.gov (United States)

    Kassemi, M.; Oas, J. G.; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  10. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.;

    2015-01-01

    field made of parabolic trough collectors and a recuperative organic Rankine cycle. Pressurized water is selected as heat transfer fluid and its maximum temperature is fixed to 150°C. The target power output for the plant is 100 kWel. A part load analysis is carried out in order to define the most...

  11. Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant

    OpenAIRE

    Stachel Aleksander A.; Wiśniewski Sławomir

    2015-01-01

    In the paper presented have been the results of the analysis of effectiveness of operation of binary power plant consisting of combined two Clausius-Rankine cycles, namely the binary cycle with water as a working fluid in the upper cycle and organic substance as a working fluid in the lower cycle, as well as a single fluid component power plant operating also in line with the C-R cycle for superheated steam, with water as a working fluid. The influence of the parameters of superheated steam i...

  12. Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.

    Science.gov (United States)

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option. PMID:15160901

  13. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    OpenAIRE

    Oyeniyi A. Oyewunmi; Markides, Christos N.

    2016-01-01

    In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC) systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperat...

  14. Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle

    International Nuclear Information System (INIS)

    Highlights: • Among all examined working fluids, toluene possesses the maximum Wnet, highest ηe and ηec. • The increase of T3 worsens system performance, decreasing Wnet, ηe and ηec. • Condenser CLT and turbine TLT possesses the least system irreversibility. • Turbines and exhaust evaporators are optimization components. - Abstract: In this paper, a regenerative transcritical dual-loop organic Rankine cycle is proposed to recover the waste heat of the exhaust, engine coolant and all the residual heat of the HT loop. Double regenerators are adopted in this system. Transcritical cycles are used in both loops. Hexamethyldisiloxane (MM), octamethyl cyclotetrasiloxane (D4), octamethyltrisiloxane (MDM), cyclohexane, toluene and n-decane are chosen as the candidate working fluids of the HT loop and R143a is chosen as the working fluid of the LT loop. Influences of inlet temperature of turbine THT (T3) on mass flow rates (mf,HT and mf,LT), net output power (Wnet), energy conversion efficiency (ηec), volumetric expansion ratio (VER), ratio of power consumed to power output (COR) and component irreversibility are analyzed and performance comparison of these working fluids is also evaluated. Results show that toluene possesses the maximum Wnet (42.46 kW), highest ηe (51.92%) and ηec (12.77%). The increase of T3 worsens system performance, decreasing Wnet, ηe and ηec. Condenser CLT and turbine TLT possess the least system irreversibility. In addition, turbines and exhaust evaporators are optimized components

  15. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  16. Applications of laser based measurements to combustion related fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klingmann, J.

    1998-12-01

    This thesis is concerned with laser based techniques for the measurement of fluid dynamical properties and their application to combusting flow fields or flow fields related to combustion. As an introduction, the theory of turbulent flow and combustion is shortly presented. An overview of laser based measuring techniques is given. Next, seven papers are included. The main topic of papers 1 and 2 is the measurements of swirling pipe flows with sudden axi-symmetric expansions. These flow fields are related to the flow fields of gas turbine combustors. Measurements and computations using commercial software are compared. Papers 3 and 7 deal with a laser Doppler anemometry based method for the measurement of the turbulent dissipation rate and its application to an axi-symmetric free jet, respectively. The measurements rely on two-point measurements with high spatial resolution. Also three-component one-point measurements are used to obtain the triple velocity correlations. Together these measurements are sufficient to present the energy balance, if pressure effects are neglected. Papers 4, 5 and 6 are concerned with the turbulent flame speed under premixed conditions. Papers 4 and 5 present flame speed measurements from a stationary burner using methane and Danish natural gas. Particle image velocimetry and one- and two-point Laser Doppler anemometry is used to measure flame speed and turbulent quantities, including integral length scales. Paper 7 presents measurements of flame speed and turbulence parameters in a spark ignition engine. Here heat release analyses from pressure measurements are combined with one- and two-point laser Doppler anemometry to analyze influence of turbulence on flame propagation 50 refs, 25 figs

  17. The neural bases of orthographic working memory

    Directory of Open Access Journals (Sweden)

    Jeremy Purcell

    2014-04-01

    First, these results reveal a neurotopography of OWM lesion sites that is well-aligned with results from neuroimaging of orthographic working memory in neurally intact participants (Rapp & Dufor, 2011. Second, the dorsal neurotopography of the OWM lesion overlap is clearly distinct from what has been reported for lesions associated with either lexical or sublexical deficits (e.g., Henry, Beeson, Stark, & Rapcsak, 2007; Rapcsak & Beeson, 2004; these have, respectively, been identified with the inferior occipital/temporal and superior temporal/inferior parietal regions. These neurotopographic distinctions support the claims of the computational distinctiveness of long-term vs. working memory operations. The specific lesion loci raise a number of questions to be discussed regarding: (a the selectivity of these regions and associated deficits to orthographic working memory vs. working memory more generally (b the possibility that different lesion sub-regions may correspond to different components of the OWM system.

  18. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    Science.gov (United States)

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  19. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Pingting Liu

    2014-01-01

    Full Text Available Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA, as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  20. Deforming fluid domains within the finite element method: Five mesh-based tracking methods in comparison

    CERN Document Server

    Elgeti, Stefanie

    2015-01-01

    Fluid flow applications can involve a number of coupled problems. One is the simulation of free-surface flows, which require the solution of a free-boundary problem. Within this problem, the governing equations of fluid flow are coupled with a domain deformation approach. This work reviews five of those approaches: interface tracking using a boundary-conforming mesh and, in the interface capturing context, the level-set method, the volume-of-fluid method, particle methods, as well as the phase-field method. The history of each method is presented in combination with the most recent developments in the field. Particularly, the topics of extended finite elements (XFEM) and NURBS-based methods, such as Isogeometric Analysis (IGA), are addressed. For illustration purposes, two applications have been chosen: two-phase flow involving drops or bubbles and sloshing tanks. The challenges of these applications, such as the geometrically correct representation of the free surface or the incorporation of surface tension ...

  1. Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids.

    Science.gov (United States)

    Kosynkin, Dmitry V; Ceriotti, Gabriel; Wilson, Kurt C; Lomeda, Jay R; Scorsone, Jason T; Patel, Arvind D; Friedheim, James E; Tour, James M

    2012-01-01

    Graphene oxide (GO) performs well as a filtration additive in water-based drilling fluids at concentrations as low as 0.2 % (w/w) by carbon content. Standard American Petroleum Institute (API) filtration tests were conducted on pH-adjusted, aqueous dispersions of GO and xanthan gum. It was found that a combination of large-flake GO and powdered GO in a 3:1 ratio performed best in the API tests, allowing an average fluid loss of 6.1 mL over 30 min and leaving a filter cake ~20 μm thick. In comparison, a standard suspension (~12 g/L) of clays and polymers used in the oil industry gave an average fluid loss of 7.2 mL and a filter cake ~280 μm thick. Scanning electron microscopy imaging revealed the extreme pliability of well-exfoliated GO, as the pressure due to filtration crumpled single GO sheets, forcing them to slide through pores with diameters much smaller than the flake's flattened size. GO solutions also exhibited greater shear thinning and higher temperature stability compared to clay-based fluid-loss additives, demonstrating potential for high-temperature well applications. PMID:22136134

  2. Teaching Standards-Based Group Work Competencies to Social Work Students: An Empirical Examination

    Science.gov (United States)

    Macgowan, Mark J.; Vakharia, Sheila P.

    2012-01-01

    Objectives: Accreditation standards and challenges in group work education require competency-based approaches in teaching social work with groups. The Association for the Advancement of Social Work with Groups developed Standards for Social Work Practice with Groups, which serve as foundation competencies for professional practice. However, there…

  3. Tunable magneto-optic modulation based on magnetically responsive nanostructured magnetic fluid

    Institute of Scientific and Technical Information of China (English)

    Bai Xue-Kun; Pu Sheng-Li; Wang Lun-Wei; Wang Xiang; Yu Guo-Jun; Ji Hong-Zhu

    2011-01-01

    Magnetic fluid is a kind of functional composite material with nanosized structure and unique optical properties.The tunable magneto-optic modulation of magnetic fluid under external magnetic field,achieved by adjusting the polarization direction of incident light,is investigated theoretically and experimentally in this work.The corresponding modulation depth and response time are obtained.The accompanying mechanisms are clarified by using the theory of dichroism of magnetic fluid and the aggregation/disintegration processes of magnetic particles within magnetic fluid when the external magnetic field turns on/off.

  4. Writing Assignments Based on Literary Works.

    Science.gov (United States)

    Matthews, Dorothy, Ed.

    1985-01-01

    The literature selections serving as the basis for writing assignments in the articles in this journal issue range from time-honored English classics ("Beowulf,""Sir Gawain and the Green Knight") and American standards ("A Farewell to Arms,""The Scarlet Letter") to contemporary fiction. The articles deal with works by women writers (Shirley…

  5. Capacity, Control, or Both – Which Aspects of Working Memory Contribute to Children’s General Fluid Intelligence?

    Directory of Open Access Journals (Sweden)

    Nęcka Edward

    2016-04-01

    Full Text Available Starting from the assumption that working memory capacity is an important predictor of general fluid intelligence, we asked which aspects of working memory account for this relationship. Two theoretical stances are discussed. The first one posits that the important explanatory factor is storage capacity, roughly defined as the number of chunks possible to hold in the focus of attention. The second one claims that intelligence is explained by the efficiency of executive control, for instance, by prepotent response inhibition. We investigated 96 children at the age between 10 and 13. They completed a version of the n-back task that allows assessment of both storage capacity and inhibitory control. They also completed Raven’s Progressive Matrices as the fluid intelligence test and the Test for Creative Thinking - Drawing Production, for control purposes. We found that Raven’s scores correlated negatively with the number of unnecessary responses to irrelevant stimuli but they did not correlate with the number of signal detections. We conclude that children’s fluid intelligence depends on inhibitory control, with no relationship with storage capacity.

  6. Ubbelohde viscometer measurement of water-based Fe3O4 magnetic fluid prepared by coprecipitation

    Science.gov (United States)

    Gu, H.; Tang, X.; Hong, R. Y.; Feng, W. G.; Xie, H. D.; Chen, D. X.; Badami, D.

    2013-12-01

    Fe3O4 nanoparticles were prepared by co-precipitation and coated by sodium dodecyl benzene sulfonate (SDBS) to obtain water-based magnetic fluid. The viscosity of the magnetic fluid was measured using an Ubbelohde viscometer. The effects of magnetic particles volume fraction, surfactant mass fraction and temperature on the viscosity were studied. Experimental results showed that the magnetic fluid with low magnetic particle volume fraction behaved as a Newtonian fluid and the viscosity of the magnetic fluid increased with an increase of the suspended magnetic particles volume fraction. The experimental data was compared with the results of a theoretically derived equation. The viscosity of the magnetic fluid also increased with an increase in surfactant mass portion, while it decreased with increasing temperature. Moreover, the viscosity increased with increasing the magnetic field intensity. Increasing the temperature and the surfactant mass fraction weakened the influence of the magnetic field on the viscosity of the magnetic fluid.

  7. Work, Train, Win: Work-Based Learning Design and Management for Productivity Gains. OECD Education Working Papers, No. 135

    Science.gov (United States)

    Kis, Viktoria

    2016-01-01

    Realising the potential of work-based learning schemes as a driver of productivity requires careful design and support. The length of work-based learning schemes should be adapted to the profile of productivity gains. A scheme that is too long for a given skill set might be unattractive for learners and waste public resources, but a scheme that is…

  8. Metal-Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids.

    Science.gov (United States)

    de Lange, Martijn F; van Velzen, Benjamin L; Ottevanger, Coen P; Verouden, Karlijn J F M; Lin, Li-Chiang; Vlugt, Thijs J H; Gascon, Jorge; Kapteijn, Freek

    2015-11-24

    A large fraction of global energy is consumed for heating and cooling. Adsorption-driven heat pumps and chillers could be employed to reduce this consumption. MOFs are often considered to be ideal adsorbents for heat pumps and chillers. While most published works to date on this topic have focused on the use of water as a working fluid, the instability of many MOFs to water and the fact that water cannot be used at subzero temperatures pose certain drawbacks. The potential of using alcohol-MOF pairs in adsorption-driven heat pumps and chillers is investigated. To this end, 18 different selected MOF structures in combination with either methanol or ethanol as a working fluid are considered, and their potential is assessed on the basis of adsorption measurements and thermodynamic efficiencies. If alcohols are used instead of water, then (1) adsorption occurs at lower relative pressures for methanol and even lower pressure for ethanol, (2) larger pores can be utilized efficiently, as hysteresis is absent for pores smaller than 3.4 nm (2 nm for water), (3) larger pore sizes need to be employed to ensure the desired stepwise adsorption, (4) the effect of (polar/apolar) functional groups in the MOF is far less pronounced, (5) the energy released or taken up per cycle is lower, but heat and mass transfer may be enhanced, (6) stability of MOFs seems to be less of an issue, and (7) cryogenic applications (e.g., ice making) become feasible. From a thermodynamic perspective, UiO-67, CAU-3, and ZIF-8 seem to be the most promising MOFs for both methanol and ethanol as working fluids. Although UiO-67 might not be completely stable, both CAU-3 and ZIF-8 have the potential to be applied, especially in subzero-temperature adsorption chillers (AC).

  9. Synthesis and Characterisation of Nano Silver Particle-based Magnetorheological Fluids for Brakes

    Directory of Open Access Journals (Sweden)

    Chiranjit Sarkar

    2015-05-01

    Full Text Available Magnetorheological (MR fluids can be used as brake friction materials subject to heat transfer properties of the fluids to dissipate the heat generated during braking action. The aim of this manuscript is to synthesise MR fluids having higher heat transfer properties than that of the conventional MR fluid. The coating of nano-silver-particles, having thermal conductivity more than five-times than that of iron particles used in the MR fluids, has been tried to enhance the heat dissipation rate of MR fluids. To perform feasibility study on usage of silver particles, three composition of MR fluids (without any silver particles, with 0.25 per cent weight and 0.50 per cent weight silver particles were synthesised. The scanning electron microscopic photographs and EDX analysis of the iron particles have been presented. Shear strengths of all three different compositions of MR fluids were measured using magnetorheometer and the results have been plotted. The effect of silver particles on shear stress of MR fluids has been described. A flywheel-based MR brake experimental setup was developed to analyse the performance of synthesised MR fluids. ‘T’ type thermocouples were used to avail the temperature distribution of the fabricated MR brake. The results of temperature distribution of brakes containing three different compositions of MR fluids have been presented and compared.Defence Science Journal, Vol. 65, No. 3, May 2015, pp.252-258, DOI: http://dx.doi.org/10.14429/dsj.65.7879

  10. Why activity-based costing works.

    Science.gov (United States)

    Gabram, S G; Mendola, R A; Rozenfeld, J; Gamelli, R L

    1997-01-01

    With advancing technology and the quest for delineating the true cost of a procedure or diagnostic test, cost accounting techniques are being re-explored in the health care setting. Activity-based costing (ABC), adopted from other businesses, is one such example that has applications in the health industry. The purpose of this paper is to enhance the understanding of health care costs among physician providers, emphasizing a new approach--activity-based costing. PMID:10169347

  11. Why activity-based costing works.

    Science.gov (United States)

    Gabram, S G; Mendola, R A; Rozenfeld, J; Gamelli, R L

    1997-01-01

    With advancing technology and the quest for delineating the true cost of a procedure or diagnostic test, cost accounting techniques are being re-explored in the health care setting. Activity-based costing (ABC), adopted from other businesses, is one such example that has applications in the health industry. The purpose of this paper is to enhance the understanding of health care costs among physician providers, emphasizing a new approach--activity-based costing.

  12. Three Nodes Acoustic Element for Fluid-Structure Interaction Based on a Parameterized Variational Principle

    Directory of Open Access Journals (Sweden)

    Correa S.

    2011-10-01

    Full Text Available This article presents a finite element formulation based on a parameterized variational principle for solving plane problems of fluid-structure interaction using the displacements as state variable for both solid and fluid media. The circular spurious modes, typical of displacement formulations are avoided. The penalty parameter is not random because it is selected according to energy criterion. Finally the formulation is not sensible to the definition of the normal direction in the fluid-structure interface.

  13. Tunable left-handed metamaterial based on electrorheological fluids

    Institute of Scientific and Technical Information of China (English)

    Yong Huang; Xiaopeng Zhao; Liansheng Wang; Chunrong Luo

    2008-01-01

    A tunable left-handed metamaterial consisting of a periodic array of the left-handed dendritic structure units infiltrated with electro-rheological fluids is demonstrated. Experimental results show that the passband can move from the original 8.50-10.60 GHz to 7.16-8.39 GHz after electrorheological fluids are infused. When adc (direct current) electric field of 666 V/mm is applied, the passband moves toward lower frequency of within 7.08-8.30 GHz. This method provides one convenient way to design adaptive metamaterials.

  14. Performance-Based Rewards and Work Stress

    Science.gov (United States)

    Ganster, Daniel C.; Kiersch, Christa E.; Marsh, Rachel E.; Bowen, Angela

    2011-01-01

    Even though reward systems play a central role in the management of organizations, their impact on stress and the well-being of workers is not well understood. We review the literature linking performance-based reward systems to various indicators of employee stress and well-being. Well-controlled experiments in field settings suggest that certain…

  15. Graph based model to support nurses' work.

    Science.gov (United States)

    Benedik, Peter; Rajkovič, Uroš; Sušteršič, Olga; Prijatelj, Vesna; Rajkovič, Vladislav

    2014-01-01

    Health care is a knowledge-based community that critically depends on knowledge management activities in order to ensure quality. Nurses are primary stakeholders and need to ensure that their information and knowledge needs are being met in such ways that enable them, to improve the quality and efficiency of health care service delivery for all subjects of health care. This paper describes a system to help nurses to create nursing care plan. It supports focusing nurse's attention on those resources/solutions that are likely to be most relevant to their particular situation/problem in nursing domain. System is based on multi-relational property graph representing a flexible modeling construct. Graph allows modeling a nursing domain (ontology) and the indices that partition domain into an efficient, searchable space where the solution to a problem is seen as abstractly defined traversals through its vertices and edges. PMID:24943559

  16. Mathematical foundation of the optimization-based fluid animation method

    DEFF Research Database (Denmark)

    Erleben, Kenny; Misztal, Marek Krzysztof; Bærentzen, Jakob Andreas

    2011-01-01

    We present the mathematical foundation of a fluid animation method for unstructured meshes. Key contributions not previously treated are the extension to include diffusion forces and higher order terms of non-linear force approximations. In our discretization we apply a fractional step method...

  17. Work-Based Learning, Identity and Organisational Culture

    Science.gov (United States)

    Ahlgren, Linda; Tett, Lyn

    2010-01-01

    This paper discusses the ways in which employers view the contribution of work-based learning, how participating learners' experience the provision offered to them and how far work-based programmes can contribute to changing the discourse about learning from one of deficit to one of strengths. It draws on two complementary studies of work based…

  18. Molecular group dynamics study on slip flow of thin fluid film based on the Hamaker hypotheses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The thin fluid film was assumed to consist of a number of spherical fluid molecular groups and the attractive forces of molecular group pairs were calculated by the derived equation according to the three Hamaker homogeneous material hypotheses. Regarding each molecular group as a dynamics individual, the simulation method for the shearing motion of multilayer fluid molecular groups, which was initiated by two moving walls, was proposed based on the Verlet velocity iterative algorithm. The simulations reveal that the velocities of fluid molecular groups change about their respective mean velocities within a narrow range in steady state. It is also found that the velocity slips occur at the wall boundary and in a certain number of fluid film layers close to the wall. Because the dimension of molecular group and the number of group layers are not restricted, the hypothetical thickness of fluid film model can be enlarged from nanometer to micron by using the proposed simulation method.

  19. Protein pathways working in human follicular fluid: the future for tailored IVF?

    Science.gov (United States)

    Bianchi, Laura; Gagliardi, Assunta; Landi, Claudia; Focarelli, Riccardo; De Leo, Vincenzo; Luddi, Alice; Bini, Luca; Piomboni, Paola

    2016-01-01

    The human follicular fluid (HFF) contains molecules and proteins that may affect follicle growth, oocyte maturation and competence acquiring. Despite the numerous studies, an integrated broad overview on biomolecular and patho/physiological processes that are proved or supposed to take place in HFF during folliculogenesis and oocyte development is still missing. In this review we report, for the first time, all the proteins unambiguously detected in HFF and, applying DAVID (Database for Annotation, Visualization and Integrated Discovery) and MetaCore bioinformatic resources, we shed new lights on their functional correlation, delineating protein patterns and pathways with reasonable potentialities for oocyte quality estimation in in vitro fertilisation (IVF) programs. Performing a rigorous PubMed search, we redacted a list of 617 unique proteins unambiguously-annotated as HFF components. Their functional processing suggested the occurrence in HFF of a tight and highly dynamic functional-network, which is balanced by specific effectors, primarily involved in extracellular matrix degradation and remodelling, inflammation and coagulation. Metalloproteinases, thrombin and vitamin-D-receptor/retinoid-X-receptor-alpha resulted as the main key factors in the nets and their differential activity may be indicative of ovarian health and oocyte quality. Despite future accurate clinical investigations are absolutely needed, the present analysis may provide a starting point for more accurate oocyte quality estimation and for defining personalised therapies in reproductive medicine. PMID:27149979

  20. Interim LCA comparison of metal working fluids with and without Chlorinated paraffins

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Christensen, Frans Møller

    2002-01-01

    The present report constitutes deliverable D 19 and D 23 of the OMNIITOX project and is the life cycle assessment part of the ECB case study (work package 5). The objectives of the case study have been to deliver empirical knowledge for the feasibility study carried out as part of WP5...... and to deliver data and inspiration to other work packages (WP 7, 8 and 9). Specifically for this part of the case study (life cycle assessment part), the aims have been to apply LCA for comparing the use of different alternative substances in a specific application and to make a basis for comparison with the EU...... risk assessment approach for assessing the same substances. In the other part of the case study (Deliverable 9; Christensen & Olsen, 2002), the results of the Risk Assessments are summarised. In the original problem definition focus were on the use of SCCP and as an alternative MCCP in metal working...

  1. Effects of working memory and attentional control training and their transfer onto fluid intelligence in early and late adulthood

    Directory of Open Access Journals (Sweden)

    Ludmiła Zając-Lamparska

    2016-01-01

    Full Text Available Background The interest in the possibility of improving cognitive functioning through training of basic cognitive processes is growing. This possibility is of particular importance for older adults, whose cognitive functions are weakened, and who may need cognitive rehabilitation. However, improvement of the performance in the tasks being trained is not the only goal of basic cognitive processes training. Far transfer, onto tasks different to the ones trained, and engaging other (usually complex processes, including fluid intelligence, is an important goal of such training. Yet, meta-analyses suggest that results of studies on the far transfer phenomenon vary, and are not conclusive. Participants and procedure One hundred and eighty healthy volunteers took part in this study. They were divided into groups: Experimental 1 (working memory training, Experimental 2 (attentional control training and Control (non-contact. Each of these groups included participants from the two age subgroups: early and late adulthood. Training involved 7 appointments and lasted for about 4 weeks. Additional measurements, including an assessment of fluid intelligence, were performed on each group at baseline, and at the end of training. Results Our results suggest that (a the training of basic cognitive processes in adults leads to an improvement in the correctness, but not the speed, at which tasks are performed, (b there is a transfer effect onto fluid intelligence, but this effect is weak, and (c the effects of basic cognitive process training depend on the kind of trained tasks, age of participants and the interactions between these two factors: working memory training is equally as effective in both age groups, whereas training of attentional control is particularly effective among older individuals, and has limited efficacy for young adults. Conclusions Finally, one can conclude that the effectiveness of basic cognitive function training is limited. However, it

  2. Underground fluid composition analysis based on the near infrared spectrum

    Science.gov (United States)

    Li, Wenxi; Liao, Yanbiao; Zhang, Min

    2011-11-01

    The near-infrared spectrum is very practical for real-time analyzing in the field of industry. This paper describes the structure of optical system, which is a part of the well logging instruments. The optical system is designed to analyze the composition of underground fluid, using the differences between oil and water in near-infrared absorption. Using Beer- Lambert law, the article analyzes the light intensity when broad-spectrum light passes through the liquid. According to the results of analysis, a group of wavelength including center wavelength and bandwidth can be selected. With each selected wavelength, light intensity changes significantly as the concentration of liquid changes. By measuring the light intensity, the system can analyse the composition of underground fluid.

  3. Aeroelasticity-based fluid agitation for lab-on-chips.

    Science.gov (United States)

    Xia, H M; Wang, Z P; Wang, W; Fan, W; Wijaya, A; Wang, Z F

    2013-04-21

    In this study, we report a robust agitation method for small-volume liquids. It utilizes an elastic diaphragm as the bottom of a liquid chamber, upon which an initial tension is also applied to enhance the aeroelasticity effects at small/micro scales. As a result, spontaneous vibration of the diaphragm can be induced by an external air flow, which further provides fluid agitations. The device structure is simple and can be easily fabricated at low cost. More importantly, the vibration amplitude is controllable and varies widely from several tens to several hundred micrometers depending on the applied air pressure. The resulting agitation is effective and applicable at high viscosities of up to 900 cSt. The influences of air pressure and liquid viscosity on the vibration frequency are discussed. Potential applications of this technique for solid particle agitation, focusing and fluid mixing are also demonstrated. PMID:23455690

  4. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

    Science.gov (United States)

    Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad

    2016-07-01

    Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2mm,outer diameter is 2.5mm and 250mm long. The CLPHP has 8 loops where the evaporation section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

  5. Numerical analysis of splashing fluid using hybrid method of mesh-based and particle-based modelings

    International Nuclear Information System (INIS)

    In order to simulate splashing and scattering fluid behaviors, we developed a hybrid method of mesh-based model for large-scale continuum fluid and particle-based model for small-scale discrete fluid particles. As for the solver of the continuum fluid, we adopt the CIVA RefIned Multiphase SimulatiON (CRIMSON) code to evaluate two phase flow behaviors based on the recent computational fluid dynamics (CFD) techniques. The phase field model has been introduced to the CRIMSON in order to solve the problem of loosing phase interface sharpness in long-term calculation. As for the solver of the discrete fluid droplets, we applied the idea of Smoothed Particle Hydrodynamics (SPH) method. Both continuum fluid and discrete fluid interact each other through drag interaction force. We verified our method by applying it to a popular benchmark problem of collapse of water column problems, especially focusing on the splashing and scattering fluid behaviors after the column collided against the wall. We confirmed that the gross splashing and scattering behaviors were well reproduced by the introduction of particle model while the detailed behaviors of the particles were slightly different from the experimental results. (author)

  6. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    Science.gov (United States)

    Woodland, Brandon Jay

    performance to cost ratio of this machine lends significant credence to the economic viability of small-scale, low-temperature ORCs. The experimental campaign covered two heat source temperatures, the full range of pump and expander speeds, a full range of heat source and heat sink fluid flow rates, and various charge levels for the three working fluids. This resulted in 366 steady-state measurements. The steady state measurements are used to develop a detailed ORC model. The model is based on multi-fluid performance maps for the pump and expander and a robust moving-boundary heat exchanger model. It is validated against the measured data and predicts the net power output of the tested ORC with a mean absolute percent error of 7.16%. Comparisons made with the detailed model confirm the predictions of the design-stage model. Using a conservative estimate of the condenser fan power, 19.1% improvement of the ZRC over the baseline ORC is indicated for a source temperature of 80 °C. For a 100 °C source temperature, 13.8% improvement is indicated. A key feature of the detailed ORC model is that it calculates the charge inventory of the working fluid in each heat exchanger and line set. Total system charge can also be specified as a model input. The model can represent the total charge well for R134a at low measured charge levels. As the measured charge level increases, the model becomes less accurate. Reasons for the deviation of the model at higher charge are investigated. It is expected that a charge tuning scheme could be employed to improve the accuracy of model-predicted charge.

  7. Introduction of an innovative water based photoresist stripping process using intelligent fluids

    Science.gov (United States)

    Rudolph, Matthias; Thrun, Xaver; Schumann, Dirk; Hoehne, Anita; Esche, Silvio; Hohle, Christoph

    2014-03-01

    The usage of phasefluid based stripping agents to remove photoresists from silicon substrates was studied. Due to their highly dynamic inner structure phasefluids offer a new working principle, they are penetrating layers through smallest openings and lift off the material from the surface. These non-aggressive stripping fluids were investigated regarding their cleaning efficiency as well as contamination behavior to enable usage in semiconductor and MEMS manufacturing. A general proof of concept for the usage of phasefluids in resist stripping processes is shown on silicon coupons and BKM's are given for different resist types. In addition a baseline process on 12inch wafers has been developed and characterized in terms of metallic and ionic impurities and defect level.

  8. CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoonhan; Lee, Jekyoung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Addad, Yacine [Khalifa Univ. of Science Technology and Research, Abu Dhabi (United Arab Emirates)

    2013-05-15

    The research team is conducting a S-CO{sub 2} pump experiment to obtain fundamental data for the advanced pump design and measure the overall performance of the pump near the critical point. The S-CO{sub 2} pump testing loop configuration is similar to SNL and JAEA testing loop while the operating conditions and focus of experiment are different from other test facilities. This paper presents the methodology of a 3-dimensional flow analysis for the S-CO{sub 2} pump by using the commercial CFD code. In Figure 2, the results at the 1.5kg/s mass flow rate seems to be close agreement between the CFD efficiency and S-CO{sub 2} test results. In the low mass flow rate of 1.0kg/s, CFD predicted 17∼25% higher efficiency than the test result. In the real test facility, the steel structure of pump is not an adiabatic wall and also the mechanical losses such as suction, blade loading and leakage exist in the pump. The reason why CFD analysis showed higher pump efficiency at the low mass flow is the above mentioned losses were excluded from the model. However, as the mass flow rate increases these have less effect on the efficiency. If the heat transfer through the structure and pump losses are applied in the analysis, other losses can be estimated. From the S-CO{sub 2} pump experiment, more data will be obtained and compared to the CFD analyses under the methodology presented in this paper. After the fluid behavior in the pump are well understood, these analysis results will be used for optimizing impeller for advanced S-CO{sub 2} compressor design in the future. However, it is very encouraging that even at very small mass flow rate the efficiency of S-CO{sub 2} pump near the critical point operation is very high compared to the manufacturer water test. The reason behind such phenomenon will be more carefully studied in the future.

  9. Fluorescent sensing of pyrophosphate anion in synovial fluid based on DNA-attached magnetic nanoparticles.

    Science.gov (United States)

    Tong, Li-Li; Chen, Zhen-zhen; Jiang, Zhong-yao; Sun, Miao-miao; Li, Lu; Liu, Ju; Tang, Bo

    2015-10-15

    In this work, a new fluorescent method for sensitive detection of pyrophosphate anion (P2O7(4-), PPi) in the synovial fluid was developed using fluorophore labeled single-stranded DNA-attached Fe3O4 NPs. The sensing approach is based on the strong affinity of PPi to Fe3O4 NPs and highly efficient fluorescent quenching ability of Fe3O4 NPs for fluorophore labeled single-stranded DNA. In the presence of PPi, the fluorescence would enhance dramatically due to desorption of fluorophore labeled single-stranded DNA from the surface of Fe3O4 NPs, which allowed the analysis of PPi in a very simple manner. The proposed sensing system allows for the sensitive determination of PPi in the range of 2.0 × 10(-7)-4 × 10(-6)M with a detection limit of 76 nM. Importantly, the protocol exhibits excellent selectivity for the determination of PPi over other phosphate-containing compounds. The method was successfully applied to the determination of PPi in the synovial fluid, which suggests our proposed method has great potential for diagnostic purposes. PMID:25957830

  10. Hybrid propulsion based on fluid-controlled solid gas generators

    Science.gov (United States)

    Cohen, Norman S.; Strand, Leon D.

    1993-01-01

    The use of fuel-rich solid (gas generator-type) propellants for hybrid propulsion affords some design and utilization efficiency advantages. Both forward and aft liquid injection control concepts are evaluated from the operational standpoints of ballistics, throttling, stability and extinguishment. Steady-state and non-steady ballistics analyses are employed for this evaluation. Stability of solid motor operation is enhanced by fluid injection with adequate injector pressure drop. Efficient throttling and reliable extinguishment are attained through a combination of solid propellant combustion tailoring, grain design, control valves and sensors. Initial results from a laboratory-scale slab combustor, combining a gas generator propellant with gaseous oxygen injection, are also presented.

  11. The fluid dynamics of a downer fluidised bed using a cluster-based approach (CBA

    Directory of Open Access Journals (Sweden)

    Germán González Silva

    2010-05-01

    Full Text Available The fluid dynamics of a downer reactor were numerically resolved by adapting a mathematical conservation model. The mathematical model was based on the solid and fluid properties and physical characteristics using a cluster-based approach (CBA. Comparing the numerical results to the experimental data found in the literature indicated that the mathematical model could satisfactorily predict the experimental data. The mathematical simulation determined that there were three fluid dynamic areas in the downer reactor which were characterized by accelerated, slowed-down and fully-developed flow. The fully developed flow area in the downer decreased with increased gas surface speed keeping solid flux constant.

  12. Study on a pulse tube cryocooler using gas mixture as its working fluid

    Science.gov (United States)

    Gao, C. M.; He, Y. L.; Chen, Z. Q.

    2000-01-01

    In order to improve the performance of a one-stage pulse tube cryocooler, gas mixtures are used for comparison, which have been used in other cryocoolers. A mixture of hydrogen and helium was investigated in this study. When the structure of the pulse tube is the same as mentioned in [C. Wang, P.Y. Wu, Zh.Q. Chen, Numerical modeling of an orifice pulse tube cryocooler, Cryogenics 32 (1992) 785] and the working conditions are: frequency 15 Hz, average pressure 1.1 MPa, hot end temperature 300 K and cold end temperature 80 K, it has been found that there are optimal molar percentage for the maximal cooling power and the maximal-coefficient of performance (COP) of this cryocooler.

  13. Evaluation of regional work from ECG-gated SPECT images through solution of equations of continuity for fluids-mechanical cardiac work calculated using thin wall model.

    Science.gov (United States)

    Maeda, Hisatoshi

    2012-03-01

    Regional contraction work (RCW) of left ventricle (LV) was evaluated from cardiac perfusion images of ECG-gated single photon emission computed tomography (ECG-SPECT). The mechanical work was computed as a product of force and displaced distance. Force was determined from Laplace's law under a rectangle pressure. Deformation of wireframe representing LV was calculated from equations of continuity for two-dimensional fluids. Experiments were performed with homemade life-sized cardiac models. Total contraction work (TCW) and stroke work (SW) were 524.0 ± 166.1 mJ/beat and 709.8 ± 169.5 mJ/beat, respectively, in normal subjects (n = 23). Moderate correlation was seen between TCW and SW (y = -43.4 + 0.779 x, r = 0.815). The regional contraction amplitude (RCA), synchronous contraction index and RCW were 35.4 ± 3.5%, 95.4 ± 3.1% and 5.58 ± 0.97 mJ cm(-2)/beat in normal subjects, whereas those in patients with decreased ejection raction (EF) ≤ 30% (n = 6) were 19.6 ± 7.7%, 64.4 ± 32.2% and 2.58 ± 0.82 mJ cm(-2)/beat (p < 0.0001, Student's t-test). There was a poor correlation between RCW and RCA (y = 1.648 ± 0.116 x, r = 0.501) in normal subjects, suggesting that it might not be suitable to use RCA as an alternative to evaluate RCW.

  14. Oil base fluids without tensoactive additives; Fluidos a base de oleo sem tensoativos

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Jose Carlos V.; Aragao, Atila Fernando L. [PETROBRAS, XX (Brazil). Centro de Desenvolvimento de Recursos Humanos Norte e Nordeste

    1989-12-31

    The goal of this paper is to define an ideal oil base fluid composition without tensoactive additives, since these may cause damage to producing formation during drilling or well completion. We investigated the rheological, filtrating and phase separation properties of the systems composed of diesel oil, organophilic clay and a polar agent (water or ethyl alcohol). In order to to that, we used the 286 Baroid digital rotating viscometer, filtrating cells standardized according to the American Petroleum Institute (AP) for temperatures of 25 deg C to 149 deg C and pressures of 6,89 x 10{sup 5} Pa (100 psig) to 3,44 x 10{sup 6} (500 psig), and the setting method, according to the determinations of respectively rheological, filtrating and phase separation parameters. Results proved that the composition: diesel oil-94% v/v, Na Cl saturated solution - 6% v/v and bentone - 17,1 to 22,8 kg/m{sup 3} (6 to 8 lb/bbl), is ideal to meet the properties required for drilling and well completion operations for low densities, that is 0,84% to 1,02 (6,9 to 8,5 ib/gal). In order to obtain densities in the interval of 1,02 to 1,14 (8,5 to 9,5 ib/gal) the system should be condensed with calcite (Ca CO{sub 3}) and the base fluid composition should be : diesel oil-94 to 98% v/v, Na Cl saturated solution - 2 to 6% v/v and bentone 17,1 to 22,8 kg/m{sup 3} (6 to 8 ib/bbl). The average cost per barrel for the systems studied here is of the same order of conventional oil base fluids (with tensoactive additives). (author) 13 refs., 7 figs., 3 tabs.

  15. Facilitating Chemistry Teachers to Implement Inquiry-Based Laboratory Work

    Science.gov (United States)

    Cheung, Derek

    2008-01-01

    Science teachers generally find inquiry-based laboratory work very difficult to manage. This research project aimed at facilitating chemistry teachers to implement inquiry-based laboratory work in Hong Kong secondary schools. The major concerns of seven chemistry teachers were identified. They were most concerned about the lack of class time,…

  16. WORK BASED HIGHER LEARNING FOR THE DANISH TOURISM SECTOR

    DEFF Research Database (Denmark)

    Lindegaard, Klaus; Voergård-Olesen, Rikke Karen

    2012-01-01

    The paper reports on an investigation of the business needs for work based higher learning in the Danish tourism sector and the match with the supply of higher education, emphasizing opportunities and barriers for work based learning (WBL) in the Danish University System. The Danish tourism secto...

  17. AN EXPERIMENTAL STUDY ON HEAT TRANSPORT CAPABILITY OF A TWO PHASE THERMOSYPHON CHARGED WITH DIFFERENT WORKING FLUIDS

    Directory of Open Access Journals (Sweden)

    M. Kannan

    2014-01-01

    Full Text Available In the present investigation a two phase thermosyphon has been fabricated to investigate the effect of operating parameters on the heat transport capability. The system consists of evaporator section, adiabatic section and condenser section with thermocouples located on the wall of thermosyphon. Electric heater was fixed on the bottom of the evaporator section and water jacket for cooling the condenser was placed on the top of the condenser section of the thermosyphon. The experiments were conducted with three different thermosyphons with inner diameters of 6.7, 9.5 and 12 mm. The variation of heat transport capability of the thermosyphon was studied for the input heat transfer rate ranging from 0 to 1200 W for various filling ratios and with operating temperature from 30 to 70°C. Water, methanol, ethanol and acetone were used as working fluids. The maximum heat transport capability was found to be high for water compared to other fluids such as ethanol, methanol and acetone at the operating temperatures higher than 40°C.

  18. Development of new heat pump cloth drum dryer with CO2 as working fluid

    OpenAIRE

    Elnan, Åsmund

    2011-01-01

    Since early the early 20th century the electrical tumble dryer became an appliance to dry clothes. During many years of improvements different configurations to solve issues on decreased drying time and more energy efficient solutions has been performed. Several different configurations have been developed; air vented dryers, condensing dryers and the most recent heat pump dryers. The heat pumps in drying technology became the next solution based on improved drying time and decreased energy c...

  19. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    OpenAIRE

    Baldasso, E.; Andreasen, J. G.; Modi, A.; Haglind, F.; Stoppato, A.

    2015-01-01

    Among the different renewable sources of energy, solar power could play a primary role in the development of a more sustainable electricity generation system. While large scale concentrated solar power plants based on the steam Rankine cycle have already been proved to be cost effective, research is still under progress for small scale low temperature solar-driven power plants. The steam Rankine cycle is suitable for high temperature applications, but its efficiency drastically decreases as t...

  20. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    OpenAIRE

    Duong (fourth author),; Gerardo Diaz

    2014-01-01

    This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC) combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrat...

  1. Development of bearings and a damper based on magnetically controllable fluids

    Science.gov (United States)

    Guldbakke, J. M.; Hesselbach, J.

    2006-09-01

    This paper presents two different kinds of magnetically controllable fluid bearings and a new magnetorheological fluid damper based upon open porous metallic foams. For the bearings, it will distinguish between a magnetohydrostatic bearing and a hydrostatic bearing with a magnetically controllable fluid. The magnetohydrostatic bearings get their load bearing capacity from the magnetohydrostatic pressure that is generated by the gradient of the magnetic field along a fluid surface. With such magnetohydrostatic bearings a specific load up to 1.6 N cm2 can be reached. To support heavier loads hydrostatic bearings with magnetically controllable fluids can be used. This bearing concept makes it possible to achieve a constant bearing gap even if the load of the bearing changes. For this purpose the fluids are used as a hydraulic medium. Due to the magnetically controlled rheological behaviour of the fluid the bearing gap remains constant. The great advantage of this closed loop system compared to that of common hydrostatic bearings using valves is the quicker response to payload changes. The reason for that is that the active element (i.e. the fluid) acts directly inside the bearing gap and not outside like in the case of valves. The foam damper developed uses the fluid to produce controllable damping forces. The open porous foam is directly placed in the active volume of the damper. By moving the foam piston the magnetically controllable fluid is pressed through the pores. The flow in the pores can be controlled by changing the fluid viscosity by applying a magnetic field. With this damper structure it is possible to reach higher damping forces whilst featuring a small design space.

  2. Reducing formation damage with microbubble based drilling fluid : understanding the blocking ability

    Energy Technology Data Exchange (ETDEWEB)

    Bjorndalen, N.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada). School of Mining and Petroleum Engineering; Jossy, E.; Alvarez, J.M. [Alberta Research Council, Devon, AB (Canada)

    2007-07-01

    Micro-bubble based drilling fluids use gas bubbles to bridge pores in porous media. The microbubbles can be removed during the initial stages of production to reduce costs associated with stimulation processes. This paper provided details of experiments conducted to investigate pore blocking mechanisms. Micromodel cells were used with different pressure rates and fluid compositions. A xanthan gum-water mixture was used as a base drilling fluid. An anionic surfactant was added to the base fluid for aphronization. The resulting stable foam was injected into the micromodel, where it blocked porous media. The analysis demonstrated that an aphron of 60 {mu}m bubble will invade porous media with a pore diameter of 50 {mu} at approximately 10 kPa. The foam was effectively removed by water injection, which indicated that the effects of the foam were irreversible. Less fluid and surfactant was needed to achieve desired flow rates when the foam was used. It was concluded that drilling with aphronized fluid will reduce formation damage. Further research is required to determine maximum flow pressure of the aphronized fluid in porous media. 24 refs., 1 tab., 17 figs.

  3. Comparison of CFD results for a supercritical CO{sub 2} compressor with compressible and incompressible working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Baik, Seungjoon; Cho, Seong Kuk; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Kwon, Jinsu [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    enhance understand how S-CO{sub 2} can behave from conventional working fluid.

  4. Numerical simulation on fault water-inrush based on fluid-solid coupling theory

    Institute of Scientific and Technical Information of China (English)

    HUANG Han-fu; MAO Xian-biao; YAO Bang-hua; PU Hai

    2012-01-01

    About 75% water-inrush accidents in China are caused by geological structure such as faults,therefore,it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity above confined water.In this paper,based on the fluid-solid coupling theory,we built the stress-seepage coupling model for rock,then we combined with an example of water-inrush caused by fault,studied the water-inrush mechanism by using the numerical software COMSOL Mutiphysics,analyzed the change rule of shear stress,vertical stress,plastic area and water pressure for stope with a fault,and estimated the water-inrush risk at the different distances between working faces and the fault.The numerical simulation results indicate that:(1) the water-inrush risk will grow as the decrease of the distance between working face and the fault;(2) the failure mode of the rock in floor with fault is shear failure; (3) the rock between water-containing fault and working face failure is the reason for water-inrush.

  5. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

    Directory of Open Access Journals (Sweden)

    Thoranis Deethayat

    2015-09-01

    Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

  6. Calculation of working fluid parameters in refrigeration engineering. Potentials and methods

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, H.

    1985-01-01

    The author gives a survey on calculation principles for the design of refrigeration technology processes and on available pertinent information. Based on the experimental determination of caloric properties, an enthalpy-temperature or enthalpy-pressure diagram is generated directly. The calculation and correlation of the caloric properties are discussed, the demonstration of thermodynamic information is outlined. In addition, the author demonstrates the structure of a programme package to be used for the thermodynamic, process-technological calculation of a refrigeration circuit and concludes with examples for calculations and further calculation models.

  7. Analysis of characteristics of different working fluids for gas turbine cycle with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Gas turbine cycle with high temperature gas-cooled reactor is the main direction of nuclear energy generation, which is with the advantages in terms of the safety and economy. The thermal and physical properties of helium, nitrogen, carbon dioxide and the mixtures were compared and analyzed in this paper. Further more, the heat transfer coefficient, pressure loss and the stage number of turbo-machines have been also compared. Results indicate that taking the mixture of helium and carbon dioxide as the working fluid of gas turbine cycle with high temperature gas-cooled reactor can not only improve the heat transfer coefficient and decrease the stage number of turbo-machinery, but also can limit the pressure loss to a certain level. (authors)

  8. An Eulerian-based Bubble Dynamics Model for Computational Fluid Dynamics

    Science.gov (United States)

    Balu, Asish; Kinzel, Michael

    2015-11-01

    Cavitation dynamics of nuclei are largely governed by the Rayleigh-Plesset Equation (RPE). This research explores the implementation of a one-way coupling to the solution of the RPE to a computational fluid dynamics (CFD) simulation in an Eulerian-framework. In this work, we used transport equations (i.e., advection) of the bubble radius and bubble growth rate, both of which are governed by advection mechanisms and coupling to the RPE through the CFD pressure field. The method is validated in the context of hypothetical pressure fields by prescribing a temporally varying pressure. Then, it is extended to one-way coupling with cavitation development in three different flow situations: (1) flow over a cylinder, (2) bubble formation during a bottle collapse event, and (3) cavitation in a tip vortex. In the context of these flows, the CFD simulations replicate an equivalent MATLAB-based solution to the RPE, thus validating the model. Additionally, an analytical formulation for appropriate upper and lower bounds for the bubble's physical properties is presented. These boundary values allow the CFD solver to run at larger time steps, therefore increasing the rate of convergence as well as maintaining solution accuracy. The results from this work suggest that Eulerian-based RPE cavitation models are practical and have the potential to simulate large numbers of bubbles that challenge Lagrangian methods.

  9. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bica, Doina [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Division, Bd. Mihai Viteazul 24, 300223 Timisoara (Romania); Vekas, Ladislau [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Division, Bd. Mihai Viteazul 24, 300223 Timisoara (Romania) and National Centre for Engineering of Systems with Complex Fluids, University Politehnica Timisoara, Bd. Mihai Viteazul 1, 300222 Timisoara (Romania)]. E-mail: vekas@acad-tim.tm.edu.ro; Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Marinica, Oana [National Centre for Engineering of Systems with Complex Fluids, University Politehnica Timisoara, Bd. Mihai Viteazul 1, 300222 Timisoara (Romania); Socoliuc, Vlad [National Institute R and D for Electrochemistry and Condensed Matter, Str. Diaconu Coressi 144, 300588 Timisoara (Romania); Balasoiu, Maria [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Garamus, Vasil M. [GKSS Research Centre, Geesthacht (Germany)

    2007-04-15

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications.

  10. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    Science.gov (United States)

    Bica, Doina; Vékás, Ladislau; Avdeev, Mikhail V.; Marinică, Oana; Socoliuc, Vlad; Bălăsoiu, Maria; Garamus, Vasil M.

    2007-04-01

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications.

  11. Microdroplet-based universal logic gates by electrorheological fluid

    KAUST Repository

    Zhang, Mengying

    2011-01-01

    We demonstrate a uniquely designed microfluid logic gate with universal functionality, which is capable of conducting all 16 logic operations in one chip, with different input voltage combinations. A kind of smart colloid, giant electrorheological (GER) fluid, functions as the translation media among fluidic, electronic and mechanic information, providing us with the capability of performing large integrations either on-chip or off-chip, while the on-chip hybrid circuit is formed by the interconnection of the electric components and fluidic channels, where the individual microdroplets travelling in a channel represents a bit. The universal logic gate reveals the possibilities of achieving a large-scale microfluidic processor with more complexity for on-chip processing for biological, chemical as well as computational experiments. © 2011 The Royal Society of Chemistry.

  12. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    International Nuclear Information System (INIS)

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications

  13. Numerical analysis of an air condenser working with the refrigerant fluid R407C

    International Nuclear Information System (INIS)

    As CFC (clorofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants which have been used as refrigerants in a vapour compression refrigeration system were know to provide a principal cause to ozone depletion and global warming, production and use of these refrigerants have been restricted. Therefore, new alternative refrigerants should be searched for, which fit to the requirements in an air conditioner or a heat pump, and refrigerant mixtures which are composed of HFC (hydrofluorocarbon) refrigerants having zero ODP (ozone depletion potential) are now being suggested as drop-in or mid-term replacement. However also these refrigerants, as the CFC and HCFC refrigerants, present a greenhouse effect. The zeotropic mixture designated as R407C (R32/R125/R134a 23/25/52% in mass) represents a substitute of the HCFC22 for high evaporation temperature applications as the air-conditioning. Aim of the paper is a numerical-experimental analysis for an air condenser working with the non azeotropic mixture R407C in steady-state conditions. A homogeneous model for the condensing refrigerant is considered to forecast the performances of the condenser; this model is capable of predicting the distributions of the refrigerant temperature, the velocity, the void fraction, the tube wall temperature and the air temperature along the test condenser. Obviously in the refrigerant de-superheating phase the numerical analysis becomes very simple. A comparison with the measurements on an air condenser mounted in an air channel linked to a vapour compression plant is discussed. The results show that the simplified model provides a reasonable estimation of the steady-state response and that this model is useful to design purposes

  14. Vegetable-oil based metalworking fluids research developments for machining processes: survey, applications and challenges

    Directory of Open Access Journals (Sweden)

    Lawal Sunday Albert

    2014-01-01

    Full Text Available Research developments in the application of vegetable-oil based metalworking fluids (MWFs in machining processes have witnessed a great attention in recent years, this being due to the environmental friendliness and performances recorded while machining. In the work reported in this paper, the authors surveyed relevant literatures, identified gaps in the application of vegetable-oil based MWFs, and proposed challenges and needs to fill the gaps created as a result of new development in engineering material applications. The engineering materials for the machining processes addressed were classified into three categories: ferrous materials, non-ferrous materials and super alloys materials. This survey is both timeline and process defined. It identified gaps in the research developments at various periods of time with respect to applications to various processes. It concluded by making a case for application of vegetable-oil based MWFs for milling and grinding processes and super alloy materials as a way of addressing environmental impact that is always associated with application of mineral-oil based MWFs.

  15. Study of smectite clays of the city Pedra Lavrada - PB for use in water-based drilling fluids

    International Nuclear Information System (INIS)

    Paraiba has large reserves of bentonite clays, with the largest deposits in Boa Vista, PB. Recently new deposits were discovered in the cities of Cubati and Pedra Lavrada-PB, creating great expectations for further expansion of reserves for industrial production. The aim of this work is the study of smectite clays from the city of Pedra Lavrada, PB for use in drilling fluids water based. The characterization was made by the diffraction of laser (AG), thermogravimetric and differential thermal analysis (TGA and DTA), chemical composition by X-ray fluorescence (EDX), X-ray diffraction (XRD), exchange capacity of cations (ECC) and surface area (SA). The results obtained so far showed that the samples presented at its mineral composition smectite, kaolinite and quartz. In relation to rheological properties showed that the bentonite clay sample Dark presents promising features for use in water based drilling fluids. (author)

  16. Helping fluid teams work: A research agenda for effective team adaptation in healthcare.

    Science.gov (United States)

    Bedwell, Wendy L; Ramsay, P Scott; Salas, Eduardo

    2012-12-01

    Although membership changes within teams are a common practice, research into this phenomenon is relatively nascent (Summers et al.; Acad Manag J 55:314-338, 2012). The small literature base, however, does provide insight into skills required for effective adaptation. The purpose of this effort is to provide a brief research synopsis, leading to research hypotheses about medical team training. By generalizing previous scientific findings regarding skills required for effective membership adaptation in different kinds of teams, we posit mechanisms whereby teamwork training might also support adaptation among medical teams (Burke et al.; Qual & Saf Health Care 13:i96-i104, 2004 and Salas et al.; Theor Issues Ergon Sci 8:381-394, 2007). We provide an overview of the membership change literature. Drawing upon literature from both within and outside of the medical domain, we suggest a framework and research propositions to aid in research efforts designed to determine the best content for helping to create adaptable medical teams through team training efforts. For effective adaptation, we suggest ad hoc teams should be trained on generalizable teamwork skills, to share just "enough" and the "right" information, to engage in shared leadership, and to shift from explicit to implicit coordination. Our overarching goal was to present what is known from the general research literature on successful team adaptation to membership changes, and to propose a research agenda to evaluate whether findings generalize to member changes in medical teams.

  17. Computational fluid dynamics simulation of a single cylinder research engine working with biodiesel

    Directory of Open Access Journals (Sweden)

    Moldovanu Dan

    2013-01-01

    Full Text Available The main objective of the paper is to present the results of the CFD simulation of a DI single cylinder engine using diesel, biodiesel, or different mixture proportions of diesel and biodiesel and compare the results to a test bed measurement in the same functioning point. The engine used for verifying the results of the simulation is a single cylinder research engine from AVL with an open ECU, so that the injection timings and quantities can be controlled and analyzed. In Romania, until the year 2020 all the fuel stations are obliged to have mixtures of at least 10% biodiesel in diesel [14]. The main advantages using mixtures of biofuels in diesel are: the fact that biodiesel is not harmful to the environment; in order to use biodiesel in your engine no modifications are required; the price of biodiesel is smaller than diesel and also if we compare biodiesel production to the classic petroleum based diesel production, it is more energy efficient; biodiesel assures more lubrication to the engine so the life of the engine is increased; biodiesel is a sustainable fuel; using biodiesel helps maintain the environment and it keeps the people more healthy [1-3].

  18. A Framework for Interactive Work Design based on Digital Work Analysis and Simulation

    CERN Document Server

    Ma, Liang; Fu, Huanzhang; Guo, Yang; Chablat, Damien; Bennis, Fouad; 10.1002/hfm.20178

    2010-01-01

    Due to the flexibility and adaptability of human, manual handling work is still very important in industry, especially for assembly and maintenance work. Well-designed work operation can improve work efficiency and quality; enhance safety, and lower cost. Most traditional methods for work system analysis need physical mock-up and are time consuming. Digital mockup (DMU) and digital human modeling (DHM) techniques have been developed to assist ergonomic design and evaluation for a specific worker population (e.g. 95 percentile); however, the operation adaptability and adjustability for a specific individual are not considered enough. In this study, a new framework based on motion tracking technique and digital human simulation technique is proposed for motion-time analysis of manual operations. A motion tracking system is used to track a worker's operation while he/she is conducting a manual handling work. The motion data is transferred to a simulation computer for real time digital human simulation. The data ...

  19. Simulation of Magnetorheological Fluids Based on Lattice Boltzmann Method with Double Meshes

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2012-01-01

    Full Text Available In order to study the rheological characteristics of magnetorheological fluids, a novel approach based on the two-component Lattice Boltzmann method with double meshes was proposed, and the micro-scale structures of magnetorheological fluids in different strength magnetic fields were simulated. The framework composed of three steps for the simulation of magnetorheological fluids was addressed, and the double meshes method was elaborated. Moreover, the various internal and external forces acting on the magnetic particles were analyzed and calculated. The two-component Lattice Boltzmann model was set up, and the flowchart for the simulation of magnetorheological fluids based on the two-component Lattice Boltzmann method with double meshes was designed. Finally, a physics experiment was carried out, and the simulation examples were provided. The comparison results indicated that the proposed approach was feasible, efficient, and outperforming others.

  20. Textured fluids

    OpenAIRE

    Guenther, Gerhard K.

    1995-01-01

    The rheology and development morphology of textured fluids have been investigated. The first fluid considered in this work was a liquid crystalline polymer consisting of isotropic and anisotropic solutions of poly-p-phenyleneterephthalamide (PPT) in sulfuric acid. The second textured fluid considered in this work was an immiscible polymer blend consisting of poly(ethylene terephthalate) (PET) and nylon 6,6. The role played by liquid crystalline order (LCO) and a polydomain ...

  1. Fluid transport due to nonlinear fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard Jensen, J.

    1996-08-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating uni-directional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness of the pipe. The behavior of the system in response to lateral resonant base excitation is analyzed numerically mode of vibration seems to be most effective for high mean fluid speed, whereas higher modes of vibration can be used to transport fluid with the same fluid speed but with smaller magnitude of pipe vibrations. The effect of the nonlinear geometrical terms is analyzed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement with theoretical predictions. (au) 16 refs.

  2. Study of methane solubility in oil base used in oil base drilling fluid; Estudo da solubilidade de metano em base oleo utilizada em fluido de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carolina Teixeira da; Mariolani, Jose Ricardo Lenzi [Universidade Estadual de Campinas, SP (Brazil); Ribeiro, Paulo Roberto; Lomba, Rosana Fatima Teixeira; Bonet, Euclides Jose

    2004-07-01

    During drilling a well, it is necessary to prevent and control high pressurized zones because while drilling on those zones, could occur a kick if the formation pressure were higher then downhole pressure, allowing the entering of undesirables fluids from the formation to the wellbore. If the well is not controlled this kick could became a blowout, generating damages to the environment, to the equipment and the human life. When drilling using oil-based mud, the concern related to the well control would be higher due the gas solubility in the mud, which could make it hard to detect the kick, especially in deep and ultra deep waters. In this work we have studied the interaction between methane and organic liquids used in drilling fluids, and the measurement and analysis of the thermodynamic properties of those gas liquid mixtures. There have been measured parameters like the oil formation volume factor (FVF{sub o}), bubble pressure, solubility (Rs) and the density of the saturated liquid in function of methane mole fraction and temperature. The results have shown that the gas solubility, at downhole conditions and during kick circulation, is a factor very important to the safety during well drilling in deep and ultra deep waters. (author)

  3. An Image-Based Model of Fluid Flow Through Lymph Nodes.

    Science.gov (United States)

    Cooper, Laura J; Heppell, James P; Clough, Geraldine F; Ganapathisubramani, Bharathram; Roose, Tiina

    2016-01-01

    The lymphatic system returns fluid to the bloodstream from the tissues to maintain tissue fluid homeostasis. Lymph nodes distributed throughout the system filter the lymphatic fluid. The afferent and efferent lymph flow conditions of lymph nodes can be measured in experiments; however, it is difficult to measure the flow within the nodes. In this paper, we present an image-based modelling approach to investigating how the internal structure of the node affects the fluid flow pathways within the node. Selective plane illumination microscopy images of murine lymph nodes are used to identify the geometry and structure of the tissue within the node and to determine the permeability of the lymph node interstitium to lymphatic fluid. Experimental data are used to determine boundary conditions and optimise the parameters for the model. The numerical simulations conducted within the model are implemented in COMSOL Multiphysics, a commercial finite element analysis software. The parameter fitting resulted in the estimate that the average permeability for lymph node tissue is of the order of magnitude of [Formula: see text]. Our modelling shows that the flow predominantly takes a direct path between the afferent and efferent lymphatics and that fluid is both filtered and absorbed across the blood vessel boundaries. The amount that is absorbed or extravasated in the model is dependent on the efferent lymphatic lumen fluid pressure. PMID:26690921

  4. Organizational and Employee Interests in Programs of Work Based Learning.

    Science.gov (United States)

    Costley, Carol

    2001-01-01

    A study of two university centers that operate in-house work-based learning programs for employers showed that employees gained considerable benefits, although there were tensions between their self-development needs and organizational needs. Organizations increased the intellectual capital of the work force but needed better ways to manage…

  5. Design-based practice: a new perspective for social work.

    Science.gov (United States)

    Cohen, Burton J

    2011-10-01

    Evidence-based practice (EBP) has emerged as an alternative to traditional social work practice and has ignited a new round in the decades-old debate about the relationship between knowledge and practice in the field. This article identifies several limitations inherent in the EBP perspective and argues that it would be unfortunate if EBP were to become the new paradigm for social work practice and education. It also presents a new perspective for social work called design-based practice (DBP), which is based on the work of Herbert Simon and Mary Parker Follett, and compares this perspective with EBP and authority-based practice. DBP rests on the belief that knowledge is derived from experience and interactions between practitioners and clients and that professional practice should be primarily concerned with "how things ought to be."

  6. Teaching statics of fluids in bioengineering: a multidisciplinary proposal based on competences

    Science.gov (United States)

    Alborch, A.; Puzzella, A.; Lopez, N.; Cabrera, L.; Zabala, A.; Demartini, H.

    2007-11-01

    The aim of this work is to share the findings of an educational experience undertaken by first-year university students of bioengineering, oriented towards the model of Competence-based Education. Different aspects on integrative education pursued in the subject goals are explicitly focused here by designing a strategy within a contextualized and multidisciplinary approach that combines knowledge from Physics, Chemistry and Biology. The topic chosen for the work is Static of Fluids, because it allows relating pressure to its biological effects on human beings. After evaluating a pre-test, new interrelated strategies are implemented. Due to the motivation audiovisuals generate in adolescents, we start showing an argumentative film entitled 'The Big Blue', and continue with different individual and/or group activities, finishing with a post-test to assess the development of the competences proposed. Results are encouraging as regards the level of specific competences acquired and, complementarily, basic and professional competences in general. Besides, the experience met expectations as regards student motivation, interest and commitment to learning, which ensured the path taken by the academicians by means of implementing innovative strategies.

  7. Teaching statics of fluids in bioengineering: a multidisciplinary proposal based on competences

    International Nuclear Information System (INIS)

    The aim of this work is to share the findings of an educational experience undertaken by first-year university students of bioengineering, oriented towards the model of Competence-based Education. Different aspects on integrative education pursued in the subject goals are explicitly focused here by designing a strategy within a contextualized and multidisciplinary approach that combines knowledge from Physics, Chemistry and Biology. The topic chosen for the work is Static of Fluids, because it allows relating pressure to its biological effects on human beings. After evaluating a pre-test, new interrelated strategies are implemented. Due to the motivation audiovisuals generate in adolescents, we start showing an argumentative film entitled 'The Big Blue', and continue with different individual and/or group activities, finishing with a post-test to assess the development of the competences proposed. Results are encouraging as regards the level of specific competences acquired and, complementarily, basic and professional competences in general. Besides, the experience met expectations as regards student motivation, interest and commitment to learning, which ensured the path taken by the academicians by means of implementing innovative strategies

  8. Teaching statics of fluids in bioengineering: a multidisciplinary proposal based on competences

    Energy Technology Data Exchange (ETDEWEB)

    Alborch, A [School of Philosophy, Humanities and Arts. National University of San Juan. I de la Roza 230 (Oeste). CP 5400. San Juan (Argentina); Puzzella, A [School of Philosophy, Humanities and Arts. National University of San Juan. I de la Roza 230 (Oeste). CP 5400. San Juan (Argentina); Lopez, N [School of Engineering. National University of San Juan. Av. San MartIn 1109 (Oeste). CP 5400. San Juan (Argentina); Cabrera, L [' Col. Central Universitario Dr. M. Moreno' Secondary School. National University of San Juan. I de la Roza 230 (Oeste). CP 5400. San Juan (Argentina); Zabala, A [School of Engineering. National University of San Juan. Av. San MartIn 1109 (Oeste). CP 5400. San Juan (Argentina); Demartini, H [School of Engineering. National University of San Juan. Av. San MartIn 1109 (Oeste). CP 5400. San Juan (Argentina)

    2007-11-15

    The aim of this work is to share the findings of an educational experience undertaken by first-year university students of bioengineering, oriented towards the model of Competence-based Education. Different aspects on integrative education pursued in the subject goals are explicitly focused here by designing a strategy within a contextualized and multidisciplinary approach that combines knowledge from Physics, Chemistry and Biology. The topic chosen for the work is Static of Fluids, because it allows relating pressure to its biological effects on human beings. After evaluating a pre-test, new interrelated strategies are implemented. Due to the motivation audiovisuals generate in adolescents, we start showing an argumentative film entitled 'The Big Blue', and continue with different individual and/or group activities, finishing with a post-test to assess the development of the competences proposed. Results are encouraging as regards the level of specific competences acquired and, complementarily, basic and professional competences in general. Besides, the experience met expectations as regards student motivation, interest and commitment to learning, which ensured the path taken by the academicians by means of implementing innovative strategies.

  9. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  10. Computations of two-fluid models based on a simple and robust hybrid primitive variable Riemann solver with AUSMD

    Science.gov (United States)

    Niu, Yang-Yao

    2016-03-01

    This paper is to continue our previous work in 2008 on solving a two-fluid model for compressible liquid-gas flows. We proposed a pressure-velocity based diffusion term original derived from AUSMD scheme of Wada and Liou in 1997 to enhance its robustness. The proposed AUSMD schemes have been applied to gas and liquid fluids universally to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately for the Ransom's faucet problem, air-water shock tube problems and 2D shock-water liquid interaction problems. However, the proposed scheme failed at computing liquid-gas interfaces in problems under large ratios of pressure, density and volume of fraction. The numerical instability has been remedied by Chang and Liou in 2007 using the exact Riemann solver to enhance the accuracy and stability of numerical flux across the liquid-gas interface. Here, instead of the exact Riemann solver, we propose a simple AUSMD type primitive variable Riemann solver (PVRS) which can successfully solve 1D stiffened water-air shock tube and 2D shock-gas interaction problems under large ratios of pressure, density and volume of fraction without the expensive cost of tedious computer time. In addition, the proposed approach is shown to deliver a good resolution of the shock-front, rarefaction and cavitation inside the evolution of high-speed droplet impact on the wall.

  11. Waste Contaminants at Military Bases Working Group report

    International Nuclear Information System (INIS)

    The Waste Contaminants at Military Bases Working Group has screened six prospective demonstration projects for consideration by the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT). These projects include the Kirtland Air Force Base Demonstration Project, the March Air Force Base Demonstration Project, the McClellan Air Force Base Demonstration Project, the Williams Air Force Base Demonstration Project, and two demonstration projects under the Air Force Center for Environmental Excellence. A seventh project (Port Hueneme Naval Construction Battalion Center) was added to list of prospective demonstrations after the September 1993 Working Group Meeting. This demonstration project has not been screened by the working group. Two additional Air Force remediation programs are also under consideration and are described in Section 6 of this document. The following information on prospective demonstrations was collected by the Waste Contaminants at Military Bases Working Group to assist the DOIT Committee in making Phase 1 Demonstration Project recommendations. The remainder of this report is organized into seven sections: Work Group Charter's mission and vision; contamination problems, current technology limitations, and institutional and regulatory barriers to technology development and commercialization, and work force issues; screening process for initial Phase 1 demonstration technologies and sites; demonstration descriptions -- good matches;demonstration descriptions -- close matches; additional candidate demonstration projects; and next steps

  12. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

    Science.gov (United States)

    Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul

    2016-09-01

    This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.

  13. Work.

    Science.gov (United States)

    Haines, Annette M.

    2003-01-01

    Draws upon Maria Montessori's writings to examine work as a universal human tendency throughout life. Discusses the work of adaptation of the infant, work of "psycho-muscular organism" for the preschooler, work of the imagination for the elementary child, community work of the adolescent, and work of the adult. Asserts that Montessorians' role is…

  14. Intelligent predicting approach of peritoneal fluid absorption rate based-on neural network

    Institute of Scientific and Technical Information of China (English)

    Mei ZHANG; Yueming HU; Tao WANG

    2003-01-01

    This paper addresses the important intelligent predicting problem of peritoneal absorption rate in the peritoneal dialysis treament process of renal failure. As the index of dialysis adequacy, KT/V and Ccr are widely used and accepted. However,growing evidence suggests that the fluid balance may play a critical role in dialysis adequacy and patient outcome. Peritoneal fluid absorption decreases the peritoneal fluid removal. Understanding the peritoneal fluid absorption rate will help clinicians to opthnize the dialysis dwell time. The neural network approach is applied to the prediction of peritoneal absorption rate. Compared with multivariable regression method, the experimental results showed that neural network method has an advantage over multivariable regression. The application of this predicting method based-on neural network in clinic is instructive.

  15. Peritoneal transport characteristics with glucose polymer-based dialysis fluid in children.

    NARCIS (Netherlands)

    Rusthoven, E.; Krediet, R.T.; Willems, J.L.; Monnens, L.A.H.; Schröder, C.H.

    2004-01-01

    Scarce data are available on the use of glucose polymer-based dialysate in children. The effects of glucose polymer-based dialysate on peritoneal fluid kinetics and solute transport were studied in pediatric patients who were on chronic peritoneal dialysis, and a comparison was made with previously

  16. Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids

    International Nuclear Information System (INIS)

    This paper presents the system efficiency optimization scenarios of basic and regenerative supercritical ORCs (organic Rankine cycles) using low-GWP (global warming potential) organic compounds as working fluid. A more common refrigerant, i.e. R134a, was also employed to make the comparison. A 150-°C, 5-bar-pressurized hot water is used to simulate the heat source medium. Power optimization was equally performed for the basic configuration of supercritical ORC. Thermodynamic performance comparison of supercritical ORCs using different working fluids was achieved by ranking method and exergy analysis method. The highest optimal efficiency of the system (ηsys) is always obtained with R152a in both basic (11.6%) and regenerative (13.1%) configurations. The highest value of optimum electrical power output (4.1 kW) is found with R1234ze. By using ranking method and considering low-GWP criterion, the best working fluids for system efficiency optimization of basic and regenerative cycles are R32 and R152a, respectively. The best working fluid for net electrical power optimization of basic cycle is R1234ze. Although CO2 has many desirable environmental and safety properties (e.g. zero ODP (Ozone Depletion Potential), ultra low-GWP, non toxicity, non flammability, etc.), the worst thermodynamic performance is always found with the cycle using this compound as working fluid. - Highlights: • Performance optimizations were carried out for the supercritical ORCs using low-GWP working fluids. • Heat regeneration was used to improve the system efficiency of the supercritical ORC. • Thermodynamic performances of supercritical ORCs at the optima were evaluated by ranking method and exergy analysis

  17. A magnetorheological fluid-based multifunctional haptic device for vehicular instrument controls

    International Nuclear Information System (INIS)

    This paper presents control performances of a magnetorheological (MR) fluid-based multifunctional haptic device which is applicable to vehicular instrument controls. By combining in-vehicle functions into a single device, the proposed haptic device can transmit various reflection forces for each comfort function to a driver without requiring the driver's visual attention. As a multifunctional haptic device, a MR knob is proposed in this work and then devised to be capable of both rotary and push motions with a single knob. Under consideration of the spatial limitations of vehicle dashboards, design parameters are optimally determined by finite element analysis, and the objective function is to maximize a relative control torque. The proposed haptic device is then manufactured, and in-vehicle comfort functions are constructed in a virtual environment which makes the functions to communicate with the haptic device. Subsequently, a feed-forward controller using torque/force maps is formulated for the force tracking control. Control performances such as reflection force of the haptic device are experimentally evaluated via the torque/force map-based feed-forward controller

  18. Viscous fluid damping in a laterally oscillating finger of a comb-drive micro-resonator based on micro-polar fluid theory

    Institute of Scientific and Technical Information of China (English)

    Sahra Azma; Ghader Rezazadeh; Rasoul Shabani; Elnaz Alizadeh-Haghighi

    2016-01-01

    Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In micro-resonators in which the characteristic dimensions are compa-rable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been trans-formed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillat-ing structure on the damping ratio of the system have been investigated.

  19. Fluid identification in tight sandstone reservoirs based on a new rock physics model

    Science.gov (United States)

    Sun, Jianmeng; Wei, Xiaohan; Chen, Xuelian

    2016-08-01

    To identify pore fluids, we establish a new rock physics model named the tight sandstone dual-porosity model based on the Voigt-Reuss-Hill model, approximation for the Xu-White model and Gassmann’s equation to predict elastic wave velocities. The modeling test shows that predicted sonic velocities derived from this rock physics model match well with measured ones from logging data. In this context, elastic moduli can be derived from the model. By numerical study and characteristic analyzation of different elastic properties, a qualitative fluid identification method based on Poisson’s ratio and the S-L dual-factor method based on synthetic moduli is proposed. Case studies of these two new methods show the applicability in distinguishing among different fluids and different layers in tight sandstone reservoirs.

  20. Water drilling fluids: evaluation of lubricity and clay swelling control; Fluidos de perfuracao a base de agua: avaliacao de lubricidade e controle de inchamento de argilas

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Thiago de Freitas; Arruda, Jefferson Teixeira; Medeiros, Ana Catarina; Garcia, Rosangela Balaban [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    During the oil well drilling, drilling fluids are used in order to transport the cuttings until the surface. This fluid is also responsible for the mechanical sustentation of the well walls, the control of undesirable production of fluids in the formation, the lubricity and the cooling of the bit. The drilling fluids based on water are extensively applied due to their lower cost, thermal stability, biodegradability, easiness of pumping and treatment, resulting in smaller environmental impacts. However, some situations, such as hydrophilic shale drilling, request the use of additives to avoid the hydration of them and, consequently, the tool imprisonment or migration (filtration) of the drilling fluids into the rock. The goal of this work was to develop and test formulations of water-base drilling fluids with high capacity of inhibition of clay swelling and lubricity, obtaining drillings with larger penetration rate and calipers without enlargements. The results showed that the appropriate combination of commonly used commercial products can promote the obtaining of fluids with equal or better performance than those used by world companies. (author)

  1. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    Science.gov (United States)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  2. Teaching about Faith-Based Organizations in the Social Work Curriculum: Perspectives of Social Work Educators

    Science.gov (United States)

    Pandya, Samta P.

    2016-01-01

    Faith-based organizations (FBOs) have an important presence in contemporary civil society and have gained further prominence through their repertoire of social welfare and services. This study engaged social work educators (n = 316) across nine countries to examine their perceptions of including discourses on faith and FBOs in the social work…

  3. Work-Based Learning and Academic Skills. IEE Working Paper No. 15.

    Science.gov (United States)

    Hughes, Katherine L.; Moore, David Thornton; Bailey, Thomas R.

    The claim that work-based experience improves students' academic performance was examined through a study of the academic progress of 25 high school and community college student interns employed in various health care workplaces. Data were collected from the following activities: (1) review of the literature on academic reinforcement and academic…

  4. What is the future of work based learning in VET?

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    Dual systems of vocational education and training that build on the tradition of apprenticeship have many attractive qualities, seen from a political perspective. VET systems that comprise a significant amount of work-based training, provide a valuable alternative for young people who chose...... not to pursue an academic career. Countries with strong apprenticeship systems tend to have less youth unemployment and a smoother transition to the labour market than others. Furthermore, from a learning perspective, the outcomes of work-based training and informal learning are enhanced when they are combined...... with formal education in a dual system. But historically in many countries, apprenticeship has given way to school-based forms of VET and dual systems are only dominant in a limited number of countries. Furthermore, the integration of work-based training in an educational programme involves many challenges...

  5. Modeling Mental Speed: Decomposing Response Time Distributions in Elementary Cognitive Tasks and Correlations with Working Memory Capacity and Fluid Intelligence

    Directory of Open Access Journals (Sweden)

    Florian Schmitz

    2016-10-01

    Full Text Available Previous research has shown an inverse relation between response times in elementary cognitive tasks and intelligence, but findings are inconsistent as to which is the most informative score. We conducted a study (N = 200 using a battery of elementary cognitive tasks, working memory capacity (WMC paradigms, and a test of fluid intelligence (gf. Frequently used candidate scores and model parameters derived from the response time (RT distribution were tested. Results confirmed a clear correlation of mean RT with WMC and to a lesser degree with gf. Highly comparable correlations were obtained for alternative location measures with or without extreme value treatment. Moderate correlations were found as well for scores of RT variability, but they were not as strong as for mean RT. Additionally, there was a trend towards higher correlations for slow RT bands, as compared to faster RT bands. Clearer evidence was obtained in an ex-Gaussian decomposition of the response times: the exponential component was selectively related to WMC and gf in easy tasks, while mean response time was additionally predictive in the most complex tasks. The diffusion model parsimoniously accounted for these effects in terms of individual differences in drift rate. Finally, correlations of model parameters as trait-like dispositions were investigated across different tasks, by correlating parameters of the diffusion and the ex-Gaussian model with conventional RT and accuracy scores.

  6. The Hybrid Sterling Engine: boosting photovoltaic efficiency and deriving mechanical work from fluid expansion and heat capture

    Science.gov (United States)

    Beets, Nathan; Wake Forest CenterNanotechnology; Molecular Materials Team; Fraunhofer Institute Collaboration

    2015-11-01

    Two major problems with many third generation photovoltaics is their complex structure and greater expense for increased efficiency. Spectral splitting devices have been used by many with varying degrees of success to collect more and more of the spectrum, but simple, efficient, and cost-effective setups that employ spectral splitting remain elusive. This study explores this problem, presenting a solar engine that employs stokes shifting via laser dyes to convert incident light to the wavelength bandgap of the solar cell and collects the resultant infrared radiation unused by the photovoltaic cell as heat in ethylene glycol or glycerin. When used in conjunction with micro turbines, fluid expansion creates mechanical work, and the temperature difference between the cell and the environment is made available for use. The effect of focusing is also observed as a means to boost efficiency via concentration. Experimental results from spectral scans, vibrational voltage analysis of the PV itself and temperature measurements from a thermocouple are all compared to theoretical results using a program in Mathematica written to model refraction and lensing in the devices used, a quantum efficiency test of the cells, the absorption and emission curves of the dues used to determine the spectrum shift, and the various equations for fill factor, efficiency, and current in different setups. An efficiency increase well over 50% from the control devices is observed, and a new solar engine proposed.

  7. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    Science.gov (United States)

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  8. Performance and energy saving analysis of a refrigerator using hydrocarbon mixture (HC-R134a) as working fluid

    Science.gov (United States)

    Mohtar, M. N.; Nasution, H.; Aziz, A. A.

    2015-12-01

    The use of hydrocarbon mixture as a working fluid in a refrigerator system is rarely explored. Almost all domestic refrigerators use hydroflourocarbon R134a (HFC-R134a) as refrigerants. In this study, hydrocarbon gas (HC-R134a) is used as the alternative refrigerant to replace HFC-R134a. It has a composition of R290 (56%), R600a (54.39%) and additive (0.1%wt) blended for the trials. The experiments were conducted with 105 g and 52.5 g refrigerant mass charge, subjected to internal heat load of 0, 1, 2, 3 and 4 kg respectively. The study investigates the coefficient of performance of the refrigerator (COPR) and energy consumption. The results show that the use of HC-R134a as the replaceable refrigerant can save energy ranging from 2.04% to 7.09%, as compared to the conventional HFC-R134a refrigerant. Naturally, the COPR improvement and temperature distribution using HC-R134a are much better than HFC-R134a

  9. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Kúdelčík, Jozef, E-mail: kudelcik@fyzika.uniza.sk [Department of Physics, University of Žilina, Univerzitná 1, 010 01 Žilina (Slovakia); Bury, Peter [Department of Physics, University of Žilina, Univerzitná 1, 010 01 Žilina (Slovakia); Kopčanský, Peter; Timko, Milan [Department of Magnetism, IEP SAS, Watsonova 47, 040 01 Košice (Slovakia)

    2015-08-15

    The anisotropy of acoustic attenuation in transformer oil-based magnetic fluids upon the external magnetic field was studied to discover the structure of nanoparticles. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles leads to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids and the concentration of nanoparticles also have very important influence on the structural changes. The measurement of the dependence of the acoustic attenuation on the angle between the magnetic field direction and acoustic wave vector (anisotropy) can give the useful information about the structure of magnetic nanoparticles formations. In the present, the results of anisotropy measurements of the transformer oil-based magnetic fluids are described and using appropriate theory the basic parameters of clusters are calculated. On the basis of the performed calculations, the proportion of the acoustic wave energy used for excitation of the translational and rotational degrees of freedom was also established. - Highlights: • Nanoparticles formation in transformer oil-based magnetic fluids was investigated. • The anisotropy acoustic spectroscopy as the method of investigation was used. • The external conditions on the structure of magnetic fluids were studied. • The structure parameters using suitable theoretical model were determined.

  10. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation

    International Nuclear Information System (INIS)

    The anisotropy of acoustic attenuation in transformer oil-based magnetic fluids upon the external magnetic field was studied to discover the structure of nanoparticles. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles leads to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids and the concentration of nanoparticles also have very important influence on the structural changes. The measurement of the dependence of the acoustic attenuation on the angle between the magnetic field direction and acoustic wave vector (anisotropy) can give the useful information about the structure of magnetic nanoparticles formations. In the present, the results of anisotropy measurements of the transformer oil-based magnetic fluids are described and using appropriate theory the basic parameters of clusters are calculated. On the basis of the performed calculations, the proportion of the acoustic wave energy used for excitation of the translational and rotational degrees of freedom was also established. - Highlights: • Nanoparticles formation in transformer oil-based magnetic fluids was investigated. • The anisotropy acoustic spectroscopy as the method of investigation was used. • The external conditions on the structure of magnetic fluids were studied. • The structure parameters using suitable theoretical model were determined

  11. Queue-based random-access algorithms: Fluid limits and stability issues

    Directory of Open Access Journals (Sweden)

    Javad Ghaderi

    2014-09-01

    Full Text Available We use fluid limits to explore the (instability properties of wireless networks with queue-based random-access algorithms. Queue-based random-access schemes are simple and inherently distributed in nature, yet provide the capability to match the optimal throughput performance of centralized scheduling mechanisms in a wide range of scenarios. Unfortunately, the type of activation rules for which throughput optimality has been established, may result in excessive queue lengths and delays. The use of more aggressive/persistent access schemes can improve the delay performance, but does not offer any universal maximum-stability guarantees. In order to gain qualitative insight and investigate the (instability properties of more aggressive/persistent activation rules, we examine fluid limits where the dynamics are scaled in space and time. In some situations, the fluid limits have smooth deterministic features and maximum stability is maintained, while in other scenarios they exihibit random oscillatory characteristics, giving rise to major technical challenges. In the latter regime, more aggressive access schemes continue to provide maximum stability in some networks, but may cause instability in others. In order to prove that, we focus on a particular network example and conduct a detailed analysis of the fluid limit process for the associated Markov chain. Specifically, we develop a novel approach based on stopping time sequences to deal with the switching probabilities governing the sample paths of the fluid limit process. Simulation experiments are conducted to illustrate and validate the analytical results.

  12. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  13. Seismic Analysis of Deep Water Pile Foundation Based on Three-Dimensional Potential-Based Fluid Elements

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2013-01-01

    Full Text Available This paper investigates the use of three-dimensional (3D ϕ-u potential-based fluid elements for seismic analyses of deep water pile foundation. The mathematical derivations of the potential-based formulations are presented for reference. The potential-based modeling technique is studied and validated through experimental data and analytical solutions. Earthquake time history analyses for a 9-pile foundation in dry and different water environments are conducted, respectively. The seismic responses are discussed to investigate the complex effect of earthquake-induced fluid-structure interaction. Through the analyses, the potential-based fluid and interface elements are shown to perform adequately for the seismic analyses of pile foundation-water systems, and some interesting conclusions and recommendations are drawn.

  14. Effect of working fluids and internal diameters on thermal performance of vertical and horizontal closed-loop pulsating heat pipes with multiple heat sources

    Directory of Open Access Journals (Sweden)

    Kammuang-Lue Niti

    2016-01-01

    Full Text Available Some electrical applications have a number of heat sources. The closed-loop pulsating heat pipe (CLPHP is applied to transfer heat from these devices. Since the CLPHP primarily transfers heat by means of the working fluid’s phase change in a capillary tube, the thermal performance of the CLPHP significantly depends on the working fluid type and the tube’s internal diameter. In order to provide the fundamental information for manufacturers of heat exchangers, this study on the effect of working fluids and internal diameters has been conducted. Three electrical plate heaters were installed on the CLPHP as the heat sources. The experiments were conducted by varying the working fluid to be R123, ethanol, and water, and the internal diameter to be 1.0 mm, 1.5 mm, and 2.0 mm. For each set of the same working fluid and internal diameter, the input heat fluxes of the heat sources were also made to vary within six different patterns. It can be concluded that when the latent heat of evaporation increases - in the case of vertical CLPHP - and when the dynamic viscosity of the liquid increases - in the case of horizontal CLPHP - the thermal performance decreases. Moreover, when the internal diameter increases, the thermal performance increases for both of vertical and horizontal CLPHPs.

  15. Decent work on industrial enterprise based the approach competentive

    OpenAIRE

    Humeniuk, Nataliia

    2013-01-01

    The article proves that achieving decent work possible under the coordination purposes of the enterprise with the goals of employees on the basis of explicit requirements as to such employees to the production process. In connection with the proposed use of the competency approach to create such a system of priorities, and the control scheme of responsibility includes managing staff, working conditions and social processes. Based on the generalization of human resource management processes pr...

  16. Chemical-potential-based Lattice Boltzmann Method for Nonideal Fluids

    CERN Document Server

    Wen, Binghai; He, Bing; Zhang, Chaoying; Fang, Haiping

    2016-01-01

    Chemical potential is an effective way to drive phase transition or express wettability. In this letter, we present a chemical-potential-based lattice Boltzmann model to simulate multiphase flows. The nonideal force is directly evaluated by a chemical potential. The model theoretically satisfies thermodynamics and Galilean invariance. The computational efficiency is improved owing to avoiding the calculation of pressure tensor. We have derived several chemical potentials of the popular equations of state from the free-energy density function. An effective chemical-potential boundary condition is implemented to investigate the wettability of a solid surface. Remarkably, the numerical results show that the contact angle can be linearly tuned by the surface chemical potential.

  17. Positive and negative effects of dielectric breakdown in transformer oil based magnetic fluids

    International Nuclear Information System (INIS)

    The transformer oil based magnetic fluids can be considered as the next-generation insulation fluids because they offer exciting new possibilities to enhance dielectric breakdown voltage as well as heat transfer performance compared to pure transformer oils. In this study, we have investigated the dielectric breakdown strength of the fluids with the various volume concentrations of nanoparticles in accordance with IEC 156 standard and have tried to find the reason for changing the dielectric breakdown voltage of the fluids from the magnetic field analysis. It was found that the dielectric breakdown voltage of pure transformer oil is around 12 kV with the gap distance of 1.5 mm. In the case of our transformer oil-based magnetic fluids with 0.08% < Φ < 0.6% (Φ means the volume concentration of magnetic nanoparticles), the dielectric breakdown voltage shows above 40 kV, which is 3.3 times higher positively than that of pure transformer oil. Negatively in the case when the volume concentration of magnetic nanoparticles is above 0.65%, the dielectric breakdown voltage decreases reversely. From the magnetic field analysis, the reason might be considered as two situations: the positive is for the conductive nanoparticles dispersed well near the electrodes, which play an important role in converting fast electrons to slow negatively charged particles, and the negative is for the agglomeration of the particles near the electrodes, which leads to the breakdown initiation.

  18. Low-energy degassing mechanisms for a fluid-based radioxenon detection system

    Energy Technology Data Exchange (ETDEWEB)

    Russ, W.R.; Stuenkel, D.O.; Valentine, J.D. [Univ. of Cincinnati, OH (United States). Dept. of Mechanical, Industrial and Nuclear Engineering; Gross, K.C. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1998-09-01

    A method to concentrate heavy noble gases from the atmosphere using certain organic fluids is being developed. To use this technique in a system to monitor the atmosphere for important noble gas fission products (Xe-131, Xe-131m, Xe-133, Xe-133m, and Xe-135) generated by nuclear testing, the radionuclides captured in the fluid must either be detected in the fluid or degassed. This study presents experimental results for a number of possible degassing methods, including heating bubbling with a purge gas, ultrasonic agitation, vacuum, and combinations thereof. Methods were evaluated for energy and time requirements and dilution of the degas product. Initial experiments indicate that in addition to overcoming the standard desorption process dictated by partial pressures per Henry`s Law, a capture mechanism must also be overcome to degas. Some type of agitation, thermal or mechanical, can be used to release weakly trapped gas atoms from the fluid, while diffusional mass transfer can be enhanced through entrainment with a purge gas or use of a vacuum. Ultrasonic agitation of a thin film in a strong vacuum has been shown to be the most effective method of those tested. Implementation of an efficient degas system, along with an absorption system and radioxenon detector could result in an ultrasensitive fluid-based radioxenon measurement system that is more portable, less expensive, and simpler than charcoal-based systems which use cryogenic techniques.

  19. Collaborative work model based on peer-to-peer network

    Institute of Scientific and Technical Information of China (English)

    JIANG Jian-zhong; FU Li; ZHANG Xuan-peng; XU Chuan-yun

    2007-01-01

    In this paper, we incorporated peer-to-peer (P2P) concept with agent technology and put forward a collaborative work model based on peer-to-peer network (P2PCWM) after investigating into business demands of modern enterprises and problems prevailing in mainstream collaborative work systems based on central server. Theoretically, the P2PCWM can effectively overcome the problems in a conventional system with a central server and meet the practical demands of modern businesses. It is distinguished from other systems by its features of equality, openness, promptness, fairness, expandability and convenience.

  20. Optimization of organo clay production for applications in based oil drilling fluid; Otimizacao do processo de organofilizacao para aplicacoes em fluidos de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Heber S.; Martins, Alice B.; Costa, Danubia L. da; Ferreira, Heber C.; Neves, Gelmires de A.; Melo, Tomas J.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Teixeira Neto, Erico [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2008-07-01

    The organophilic clays are widely used as an agent dispersed in the composition of oil based drilling fluids. The organophilic clays are gotten from bentonite clays treated, in watery way, with ionic surfactants, that are adsorbed in the surface of interlayer of the clays, re-covered them with a organic layer. A fundamental stage of production of the organophilic clays is the dispersion of bentonite clays, in way that variables like: speed of agitation, temperature and time of cure, influences directly in plastic and apparent viscosities of these dispersions, together with other variables of organophilization process, like, temperature and time of cure of organophilization, has direct influence in efficiency of the organophilization process. This work considers a study of these variable, using bentonite clays: Brasgel PA{sup R} and Cloisite Na{sup +R}, treated with the ionic surfactant Praepagem WB{sup R}. The organophilic clays gotten had been characterized by rays X diffraction, Foster's swelling, and the results were compared with the commercial organophilic clay VG-69{sup R}, industrially treated with ionic surfactant. Viscosities plastic and apparent of the dispersions had been measured in the midst of organic dispersant diesel oil used to obtain the oil based drilling fluids. Preliminary results of Foster's swelling and preparation of fluids show that the clays have affinity with the means liquid organic dispersants, and the fluids meet specifications of PETROBRAS (N-22581-1997 and N-2259 to 1997) for use in the of diesel oil based drilling fluids. (author)

  1. A Working Memory Test Battery: Java-Based Collection of Seven Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    James M Stone

    2015-06-01

    Full Text Available Working memory is a key construct within cognitive science. It is an important theory in its own right, but the influence of working memory is enriched due to the widespread evidence that measures of its capacity are linked to a variety of functions in wider cognition. To facilitate the active research environment into this topic, we describe seven computer-based tasks that provide estimates of short-term and working memory incorporating both visuospatial and verbal material. The memory span tasks provided are; digit span, matrix span, arrow span, reading span, operation span, rotation span, and symmetry span. These tasks are built to be simple to use, flexible to adapt to the specific needs of the research design, and are open source. All files can be downloaded from the project website http://www.cognitivetools.uk and the source code is available via Github.

  2. Effect of Evaporator Section Lengths and Working Fluids on Operational Limit of Closed Loop Oscillating Heat Pipes with Check Valves (CLOHP/CV

    Directory of Open Access Journals (Sweden)

    P. Meena

    2009-01-01

    Full Text Available This research aims to the effect of evaporator section lengths and working fluids on operational limit of closed loop oscillating heat pipes with check valves (CLOHP/CV with R123 Ethanol and Water were used as the working fluids. A set of CLOHP/CV was made of copper tubes in combination of following dimension: 1.77 mm inside diameter: 10 turns: 5, 10 and 15 cm equal lengths for evaporator, adiabatic and condenser sections. The working fluid was filled in the tube at the filling ratio of 50%. The evaporator section was given heat by heater while the condenser section was cooled by volume water in a cold bath. The adiabatic section was properly insulated. In the test operation. Which the temperature at the adiabatic section was controlled at 60°C in steady-state condition. From The obtained results obtained, it could be concluded as follows. When the evaporator lengths increased from 5 cm to 10 and 15 cm the critical heat transfer flux decreased. There was working fluids change from R123 to Ethanol and water the critical heat flux decreased.

  3. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    International Nuclear Information System (INIS)

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner

  4. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Garcia, Monica [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Miranda Parca, Renata [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Braun Chaves, Sacha [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Paulino Silva, Luciano [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Djalma Santos, Antonio [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Guerrero Marques Lacava, Zulmira [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Cesar Morais, Paulo [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada, 70919-970 Brasilia-DF (Brazil); Azevedo, Ricardo Bentes [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil)]. E-mail: razevedo@unb.br

    2005-05-15

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner.

  5. Nanoplugging Performance of Hyperbranched Polyamine as Nanoplugging Agent in Oil-Based Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Gang Xie

    2015-01-01

    Full Text Available A hyperbranched polyamine was synthesized by self-condensing vinyl polymerization with divinyl sulfone, N-phenyl-p-phenylenediamine, by A2 + BB2' approach. The hyperbranched polyamine was characterized by FT-IR, TGA, and phase analysis light scanning. Average grain diameter of hyperbranched polyamine was 36.7 nm. Hyperbranched polyamine has good thermal stability. Hyperbranched polyamine (HBPA was employed successfully as nanoplugging agent in oil-based drilling fluid system, which could plug nanopore formation in shale formation. HBPA has a little effect on rheological properties of oil-based drilling fluid and the FLAPI and FLHTHP decreased dramatically with an increase of hyperbranched polyamine. Emulsion-breaking voltage has a slight increase, which is beneficial to maintain stability of oil-based drilling fluid. When the HBPA concentration is greater than 1 wt%, plugging rate of oil-based drilling fluid for artificial core is close to 100% and the permeability recovery value can reach 99.7% after adding 1 wt% HBPA, which prove that HBPA has an excellent plugging performance.

  6. Effect of working fluids and internal diameters on thermal performance of vertical and horizontal closed-loop pulsating heat pipes with multiple heat sources

    OpenAIRE

    Kammuang-Lue Niti; Sakulchangsatjatai Phrut; Terdtoon Pradit

    2016-01-01

    Some electrical applications have a number of heat sources. The closed-loop pulsating heat pipe (CLPHP) is applied to transfer heat from these devices. Since the CLPHP primarily transfers heat by means of the working fluid’s phase change in a capillary tube, the thermal performance of the CLPHP significantly depends on the working fluid type and the tube’s internal diameter. In order to provide the fundamental information for manufacturers of heat exchanger...

  7. Large capacity, multi-fuel, and high temperature working fluid heaters to optimize CSP plant cost, complexity and annual generation

    Science.gov (United States)

    Peterseim, J. H.; Viscuso, L.; Hellwig, U.; McIntyre, P.

    2016-05-01

    This paper analyses the potential to optimize high temperature fluid back-up systems for concentrating solar power (CSP) plants by investigating the cost impact of component capacity and the impact of using multiple fuels on annual generation. Until now back-up heaters have been limited to 20MWth capacity but larger units have been realised in other industries. Installing larger units yields economy-of-scale benefits through improved manufacturing, optimised transport, and minimized on-site installation work. Halving the number of back-up boilers can yield cost reduction of 23% while minimizing plant complexity and on-site construction risk. However, to achieve these benefits it is important to adapt the back-up heaters to the plant's requirements (load change, capacity, minimum load, etc.) and design for manufacture, transport and assembly. Despite the fact that biomass availability is decreasing with increasing direct normal irradiance (DNI), some biomass is available in areas suitable for CSP plants. The use of these biomass resources is beneficial to maximise annual renewable energy generation, substitute natural gas, and use locally/seasonally available biomass resources that may not be used otherwise. Even small biomass quantities of only 50,000 t/a can increase the capacity factor of a 50MWe parabolic trough plant with 7h thermal energy storage from 40 to 49%. This is a valuable increase and such a concept is suitable for new plants and retrofit applications. However, similar to the capacity optimisation of back-up heaters, various design criteria have to be considered to ensure a successful project.

  8. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber

    Science.gov (United States)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2016-02-01

    We reported the modeling result of selectively magnetic fluid infiltrated dual-core photonic crystal fiber based magnetic field sensor. Inside the cross-section of the designed photonic crystal fiber, the two fiber cores filled with magnetic fluid (Fe3O4) form two independent waveguides with mode coupling. The mode coupling under different magnetic field strengths is investigated theoretically. The sensitivity of the sensor as a function of the structural parameters of the photonic crystal fiber is calculated. The result shows that the proposed sensing device with 1 cm photonic crystal fiber length has a large sensitivity of 305.8 pm/Oe.

  9. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity......). A number of different work materials were considered, with emphasis on austenitic stainless steel. Cutting fluids from two main groups were investigated, water miscible (reviewed from previous work) and straight oils. Results show that correlation of cutting fluid performance in different operations exists...

  10. Fluid flow estimation with multiscale ensemble filters based on motion measurements under location uncertainty

    OpenAIRE

    Beyou, Sébastien; Corpetti, Thomas; Gorthi, Sai; Mémin, Etienne

    2013-01-01

    International audience This paper proposes a novel multi-scale fluid flow data assimilation approach, which integrates and complements the advantages of a Bayesian sequential assimilation technique, the Weighted Ensemble Kalman filter (WEnKF). The data assimilation proposed in this work incorporates measurement brought by an efficient multiscale stochastic formulation of the well-known Lucas-Kanade (LK) estimator. This estimator has the great advantage to provide uncertainties associated t...

  11. Social Work Students' Perceptions of Team-Based Learning

    Science.gov (United States)

    Macke, Caroline; Taylor, Jessica Averitt; Taylor, James E.; Tapp, Karen; Canfield, James

    2015-01-01

    This study sought to examine social work students' perceptions of Team-Based Learning (N = 154). Aside from looking at overall student perceptions, comparative analyses examined differences in perceptions between BSW and MSW students, and between Caucasian students and students of color. Findings for the overall sample revealed favorable…

  12. Enhancing Social Work Education through Team-Based Learning

    Science.gov (United States)

    Gillespie, Judy

    2012-01-01

    Group learning strategies are used extensively in social work education, despite the challenges and negative outcomes regularly experienced by students and faculty. Building on principles of cooperative learning, team-based learning offers a more structured approach that maximizes the benefits of cooperative learning while also offering…

  13. WWW-based environments for collaborative group work

    NARCIS (Netherlands)

    Collis, Betty

    1998-01-01

    Since 1994, we have been involved in the design and use of a series of WWW-based environments to support collaborative group work for students in a technical university in The Netherlands. These environments, and the course re-design that accompanies each new environment, began in April 1994 and con

  14. Work-based Learning as Critical Social Pedagogy.

    Science.gov (United States)

    Wagner, Regine; Childs, Merilyn; Houlbrook, Mick

    2001-01-01

    Presents economic responsiveness and critical social pedagogy as the main forces in work-based learning. Describes research of Australia's Research Centre for Learning and Social Transformation, which is guided by principles of accessibility, shared knowledge production, and multidisciplinary learning. (Contains 41 references.) (SK)

  15. Mobile Communication and Work Practices in Knowledge-based Organizations

    Directory of Open Access Journals (Sweden)

    Pertti Hurme

    2005-01-01

    Full Text Available This paper examines the role of mobile communication, mobile tools and work practices in the context of organizations, especially knowledge-based organizations. Today, organizations are highly complex and diverse. Not surprisingly, various solutions to incorporating mobile tools and mobile communication in organizations have been devised. Challenges to technological development and research on mobile communication are presented.

  16. A Society Based on Work. Information Series No. 270.

    Science.gov (United States)

    Carnevale, Anthony Patrick

    American society is based on work. The industrial revolution exposed a growing proportion of the population to unemployment, underemployment, and dislocation. Early theoreticians believed that unemployment was a temporary labor market imbalance that would correct itself with downward wage adjustments. John Maynard Keynes, on the other hand, argued…

  17. Two-phase working fluids for the temperature range 100-350 C. [in heat pipes for solar applications

    Science.gov (United States)

    Saaski, E. W.; Tower, L.

    1977-01-01

    The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular, bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 to 350 C have been identified, and reflux heat pipe tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.

  18. Yield shear stress model of magnetorheological fluids based on exponential distribution

    Science.gov (United States)

    Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin

    2014-06-01

    The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe3O4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors.

  19. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    Science.gov (United States)

    Timko, M.; Kopčanský, P.; Marton, K.; Tomčo, L.; Koneracká, M.

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 106 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  20. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Timko, M; Marton, K [Faculty of Electrical Engineering and Informatics, Technical University, Kotice (Slovakia); Tomco, L [Faculty of Areonautics, Technical University, Kotice (Slovakia); Kopcansky, P; Koneracka, M, E-mail: timko@saske.s

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 10{sup 6} V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  1. Ground-based activities in preparation of SELENE ISS experiment on self-rewetting fluids

    Science.gov (United States)

    Savino, R.; Abe, Y.; Castagnolo, D.; Celata, G. P.; Kabov, O.; Kawaji, M.; Sato, M.; Tanaka, K.; Thome, J. R.; Van Vaerenbergh, S.

    2011-12-01

    SELENE (SELf rewetting fluids for thermal ENErgy management) is a microgravity experiment proposed to the European Space Agency (ESA) in response to the Announcement of Opportunities for Physical Sciences. Main objectives of the microgravity research onboard ISS include the quantitative investigation of heat transfer performances of "self-rewetting fluids" and "nano self-rewetting fluids" in model heat pipes and validation of adequate theoretical and numerical modelling able to predict their behaviour in microgravity conditions. This article summarizes the results of ground-based research activities in preparation of the microgravity experiments. They include: 1) thermophysical properties measurements; 2) study of thermo-soluto-capillary effects in micro-channels; 3) numerical modelling; 4) thermal and concentration distribution measurements with optical (e.g. interferometric) and intrusive techniques; 5) surface tension-driven effects and thermal performances test on different capillary structures and heat pipes; 6) breadboards development and support to definition of scientific requirements.

  2. An EQT-based cDFT approach for a confined Lennard-Jones fluid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-09-28

    Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.

  3. Electrorheological Fluids Based on Titania Particles Coated with Silica and Their Application in Smart Windows

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The electrorheological (ER) fluids are colloidal suspension of highly polarizable particles in a non-conducting solvent. Chains ofsubmicron-sized particles formed along an applied DC electric field by the so-called electrorheological effect. According to theobvious change of transmittance of the ER fluids in a DC electric field when the polarized particles arranged along the field,the model of smart window was proposed by sandwiching the ER fluids based on titania particles coated with silica between apair of In-Sn oxide (ITO) coated glasses. The solar transmittance change as much as 48.0% was obtained with the wavelengthof 500 nm at the maximum on applying and removing the electric field of 500 V/mm.

  4. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles. PMID:24205624

  5. Calculation of Steady-State Core Thermal-Fluid Parameters Based on CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun Kyu; Cho, Bong Hyun; Tak, Nam-il; Jeong, Chang Joon; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    CFD analysis has been successfully implemented to obtain the parameter of thermal-fluid in prismatic fuel block reactor. However it requires considerable computational power to analyze whole prismatic block core. Therefore steady-state thermal-fluid analysis code, named CORONA, has been under development in KAERI. This study aims for obtaining the thermal-fluid parameters of prismatic fuel block reactor using CORONA code and analyzing the data based on the reactor operating condition(BOC, EOC) using the core pin power obtained from DeCART code. In this paper, thermal-fluid parameters were analyzed in reactor operating condition (BOC, EOC) with CORONA code. The three representative thermal-fluid data of fuel maximum temperature, pressure drop and bypass flow rate, were calculated depending on core inlet temperature and mass flow rate. The pressure drop and bypass flow rate were increased due to rising of inlet temperature and mass flow rate. However, the maximum fuel temperature was decreased between case-1 to 5 and only the maximum fuel temperature was reacted sensitively to changing of reactor operating condition (BOC, EOC)

  6. Well successfully drilled with high performance water-based fluid: Santos Basins, offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fornasier, Frank C.; Luzardo, Juan P. [Halliburton Company, Houston, TX (United States); Bishnoi, M.L. [Oil and Natural Gas Corporation Ltda. (ONGC), Dehradun (India)

    2012-07-01

    Santos Basin is a 352,260 square kilometers (136,010 sq mi) offshore pre-salt basin. It is located in the South Atlantic Ocean, some 300 kilometers (190 mi) South East of Sao Paulo, Brazil. One of the largest Brazilian sedimentary basins, it is the site of several recent significant oil fields, including Tupi and Jupiter. The criteria for drilling fluid selection is based upon the following factors: maximum cost efficiency, environmental friendliness, optimum borehole stability, and ease of use. The recommended drilling fluid formulation takes into consideration the experience gained during the drilling of wells in the Santos Basin area. The operator wanted to use a high-performance water-based fluid (HPWBF) that could provide shale inhibition, wellbore stability, lubricity and improved rate of penetration (ROP) as an alternative to synthetic-based drilling fluids to present value in terms of economics and environmental friendliness. The HPWBF consists of three synergistic products: a hydration suppressant, a dispersion suppressant, and an accretion suppressant. The system is formulated based on customized solutions for managing the clay reactivity. High logistics costs require drilling fluids that can be prepared with sea water and discharged to the sea without environmental impact. The HPWBF is a clay-free system designed for maximum shale inhibition in highly reactive formations. The system can provide wellbore stability, high rates of penetration, and acceptable rheological properties over a wide range of temperatures, with the added benefit of allowing cuttings discharge based upon water base environmental restrictions. Since no oil is used in the formulation, the HPWBF eliminates the need for cuttings processing and monitoring equipment, and exceeds the environmental requirements by achieving an LC50 value of 345,478.22 ppm in comparison with the minimum requirement (LC50 > 30,000 ppm in 96 hr), permitting use and discharge to the sea. The HPWBF selected

  7. Beyond fluid intelligence and personality traits in social support: the role of ability based emotional intelligence.

    Science.gov (United States)

    Fabio, Annamaria Di

    2015-01-01

    Social support represents an important individual resource that has been associated with multiple indices of adaptive functioning and resiliency. Existing research has also identified an association between emotional intelligence (EI) and social support. The present study builds on prior research by investigating the contributions of ability based EI to social support, beyond the effects of fluid intelligence and personality traits. The Advanced Progressive Matrices, the Big Five Questionnaire, the Mayer Salovey Caruso EI test (MSCEIT), and the Multidimensional Scale of Perceived Social Support were administered to 149 Italian high school students. The results showed that ability based EI added significant incremental variance in explaining perceived social support, beyond the variance due to fluid intelligence and personality traits. The results underline the role of ability based EI in relation to perceived social support. Since ability based EI can be increased through specific training, the results of the present study highlight new possibilities for research and intervention in a preventive framework. PMID:25904886

  8. Activity-based computing for medical work in hospitals

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind

    2009-01-01

    . In a hospital, the challenges arising from the management of parallel activities and interruptions are amplified because multitasking is now combined with a high degree of mobility, collaboration, and urgency. The article presents the empirical and theoretical background for activity-based computing, its......Studies have revealed that people organize and think of their work in terms of activities that are carried out in pursuit of some overall objective, often in collaboration with others. Nevertheless, modern computer systems are typically single-user oriented, that is, designed to support individual...... tasks such as word processing while sitting at a desk. This article presents the concept of Activity-Based Computing (ABC), which seeks to create computational support for human activities. The ABC approach has been designed to address activity-based computing support for clinical work in hospitals...

  9. Women working at university restaurants: life and work conditions and gender-based violence

    Directory of Open Access Journals (Sweden)

    Kelly Cristina Maxima Pereira Venancio

    2013-10-01

    Full Text Available This is an exploratory and descriptive study with a quantitative approach that aimed to understand the social production and reproduction processes of women working at university restaurants and the occurrence and the magnitude of gender-based violence committed against them by their intimate partners. The data were collected through semi-structured interviews. The analysis categories used were social production and reproduction, gender and gender-based violence. The interviewees held a subordinate social position during the productive and reproductive periods of their lives. Approximately 70% reported having experienced gender-based violence from an intimate partner (66% psychological violence, 36.3% physical violence and 28.6% sexual violence. Most of the health problems resulting from violence were related to mental health. The results indicate that the situation requires immediate interventions, mostly guided by the instrumentalization of these women and the support by the state and the university as appropriate to address violence.

  10. Modelling of robotic work cells using agent based-approach

    Science.gov (United States)

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  11. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Sun Qi; Groth, Alexandra; Bertram, Matthias; Waechter, Irina; Bruijns, Tom; Hermans, Roel; Aach, Til [Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany) and Institute of Imaging and Computer Vision, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen (Germany); Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany); Philips Healthcare, X-Ray Pre-Development, Veenpluis 4-6, 5684PC Best (Netherlands); Institute of Imaging and Computer Vision, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen (Germany)

    2010-09-15

    Purpose: Recently, image-based computational fluid dynamics (CFD) simulation has been applied to investigate the hemodynamics inside human cerebral aneurysms. The knowledge of the computed three-dimensional flow fields is used for clinical risk assessment and treatment decision making. However, the reliability of the application specific CFD results has not been thoroughly validated yet. Methods: In this work, by exploiting a phantom aneurysm model, the authors therefore aim to prove the reliability of the CFD results obtained from simulations with sufficiently accurate input boundary conditions. To confirm the correlation between the CFD results and the reality, virtual angiograms are generated by the simulation pipeline and are quantitatively compared to the experimentally acquired angiograms. In addition, a parametric study has been carried out to systematically investigate the influence of the input parameters associated with the current measuring techniques on the flow patterns. Results: Qualitative and quantitative evaluations demonstrate good agreement between the simulated and the real flow dynamics. Discrepancies of less than 15% are found for the relative root mean square errors of time intensity curve comparisons from each selected characteristic position. The investigated input parameters show different influences on the simulation results, indicating the desired accuracy in the measurements. Conclusions: This study provides a comprehensive validation method of CFD simulation for reproducing the real flow field in the cerebral aneurysm phantom under well controlled conditions. The reliability of the CFD is well confirmed. Through the parametric study, it is possible to assess the degree of validity of the associated CFD model based on the parameter values and their estimated accuracy range.

  12. Mobile work platform for initial lunar base construction

    Science.gov (United States)

    Brazell, James W.; Maclaren, Brice K.; Mcmurray, Gary V.; Williams, Wendell M.

    1992-01-01

    Described is a system of equipment intended for site preparation and construction of a lunar base. The proximate era of lunar exploration and the initial phase of outpost habitation are addressed. Drilling, leveling, trenching, and cargo handling are within the scope of the system's capabilities. The centerpiece is a three-legged mobile work platform, named SKITTER. Using standard interfaces, the system is modular in nature and analogous to the farmer's tractor and implement set. Conceptually somewhat different from their Earthbound counterparts, the implements are designed to take advantage of the lunar environment as well as the capabilities of the work platform. The proposed system is mechanically simple and weight efficient.

  13. Strengthening health workforce capacity through work-based training

    Directory of Open Access Journals (Sweden)

    Matovu Joseph KB

    2013-01-01

    Full Text Available Abstract Background Although much attention has been given to increasing the number of health workers, less focus has been directed at developing models of training that address real-life workplace needs. Makerere University School of Public Health (MakSPH with funding support from the Centers for Disease Control and Prevention (CDC developed an eight-month modular, in-service work-based training program aimed at strengthening the capacity for monitoring and evaluation (M&E and continuous quality improvement (CQI in health service delivery. Methods This capacity building program, initiated in 2008, is offered to in-service health professionals working in Uganda. The purpose of the training is to strengthen the capacity to provide quality health services through hands-on training that allows for skills building with minimum work disruptions while encouraging greater involvement of other institutional staff to enhance continuity and sustainability. The hands-on training uses practical gaps and challenges at the workplace through a highly participatory process. Trainees work with other staff to design and implement ‘projects’ meant to address work-related priority problems, working closely with mentors. Trainees’ knowledge and skills are enhanced through short courses offered at specific intervals throughout the course. Results Overall, 143 trainees were admitted between 2008 and 2011. Of these, 120 (84% from 66 institutions completed the training successfully. Of the trainees, 37% were Social Scientists, 34% were Medical/Nursing/Clinical Officers, 5.8% were Statisticians, while 23% belonged to other professions. Majority of the trainees (80% were employed by Non-Government Organizations while 20% worked with the public health sector. Trainees implemented 66 projects which addressed issues such as improving access to health care services; reducing waiting time for patients; strengthening M&E systems; and improving data collection and

  14. Evaluating Work-Based Learning: Insights from an Illuminative Evaluation Study of Work-Based Learning in a Vocational Qualification

    Science.gov (United States)

    van Rensburg, Estelle

    2008-01-01

    This article outlines an illuminative evaluation study of the work-based module in a vocational qualification in Animal Health offered for the paraveterinary industry by a distance education institution in South Africa. In illuminative evaluation, a programme is studied by qualitative methods to gain an in-depth understanding of its "instructional…

  15. Reliably measuring the condition of mineral-based transfer fluids using a permittivity sensor – practical application to thermal fluid heat transfer

    Directory of Open Access Journals (Sweden)

    Christopher Ian Wright

    2015-09-01

    Full Text Available This article describes a series of experiments to assess the performance and suitability of a permittivity sensor in the area of heat transfer. The permittivity sensor measures condition index and temperature of a fluid. A series of 5 experiments was conducted. They assessed the reproducibility of the sensor using both clean and dirty fluid samples, and showed the sensor had good reproducibility based on calculations of coefficients of variation. The sensor also detected water contamination, assessed from construction of a stimulus-response curve to step-wise increases in water and from real-life samples where water content was reported to be out of specification. Further experiments tested the association between condition index and both water content and fluid cleanliness in a real-life setting. Results demonstrated the sensor that condition index reflected changes in fluid water and cleanliness and was therefore a measure of fluid condition. The implication of these findings is that the sensor can be used to make rapid and reliable assessments of fluid condition using only small samples (i.e., <50 ml. The sensor may be of benefit to customers that need to make a lot of regular samples over a large processing site, such as concentrated solar power plants.

  16. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-09-01

    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  17. A new miniaturized engine based on thermomagnetic effect of magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    Lujun ZHOU; Yimin XUAN; Qiang LI; Wenlei LIAN

    2009-01-01

    A new engine system, essentially consisting of a permanent NdFeB magnet, a kerosene-based magnetic fluid and a rotor, is proposed based on the thermomagnetic effect of a temperature-sensitive magnetic fluid. The rotor was driven by the thermal convection of the magnetic fluid in the presence of a homogeneous external magnetic field. A digital camera was used to record the rotation speed of the rotor to investigate the performance of the engine system under varying conditions such as heat load, heat sink temperature, and magnetic field distribution. The peak angle velocity obtained for the rotor was about 2.1 rad/min. The results illustrate that the rotation speed of the rotor increases as the input heat load increases, or as the heat sink temperature decreases. The performance of the motor is considerably influenced by the magnetic field imposed. Therefore, the performance of such an engine can be controlled conveniently by changing the external magnetic field and/or the temperature distribution in the fluid.

  18. Comparison of Theories of Anisotropy in Transformer Oil-Based Magnetic Fluids

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2013-01-01

    Full Text Available The external magnetic field in transformer oil-based magnetic fluids leads to the aggregation of magnetic nanoparticles and formation of clusters. These aggregations are the result of the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs. However, the temperature of magnetic fluids has also very important influence on the structural changes because the mechanism of thermal motion acts against the cluster creation. The acoustic spectroscopy was used to study the anisotropy of transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature. In present the anisotropy of the magnetic fluids can be described by two theories. Taketomi theory assumes the existence of spherical clusters. These clusters form long chains, aligned in a magnetic field direction. Shliomis in his theory supposed that only nanoparticles formed chains. A comparison of the experimental results with the predictions of the Taketomi theory allowed a determination of the cluster radius and the number density of the colloidal particles. The proportions of the acoustic wave energy used for excitation of the translational and rotational motion were determined.

  19. Device modeling of superconductor transition edge sensors based on the two-fluid theory

    CERN Document Server

    Wang, Tian-Shun; Zhu, Qing-Feng; Wang, Jun-Xian; Li, Tie-Fu; Liu, Jian-She; Chen, Wei; Zhou, Xingxiang

    2012-01-01

    In order to support the design and study of sophisticated large scale transition edge sensor (TES) circuits, we use basic SPICE elements to develop device models for TESs based on the superfluid-normal fluid theory. In contrast to previous studies, our device model is not limited to small signal simulation, and it relies only on device parameters that have clear physical meaning and can be easily measured. We integrate the device models in design kits based on powerful EDA tools such as CADENCE and OrCAD, and use them for versatile simulations of TES circuits. Comparing our simulation results with published experimental data, we find good agreement which suggests that device models based on the two-fluid theory can be used to predict the behavior of TES circuits reliably and hence they are valuable for assisting the design of sophisticated TES circuits.

  20. Magneto-optical and rheological behaviors of oil-based ferrofluids and magnetorheological fluids

    Science.gov (United States)

    Getzie, Travis

    The magneto-optical and rheological behaviors of magnetic fluids and magnetorheological (MR) fluids have been investigated. A magneto-optical apparatus was constructed which enabled us to investigate the birefringence and dichroism of ferrofluids at various levels of applied magnetic field. Specifically, the effects of the film thickness of oil-based ferrofluids and the concentration of surfactant in the oil-based ferrofluids on their magneto-optical behavior were investigated. A commercial magneto-rheological instrument (Physica MCR 301, Anton Paar) equipped with a cone-and-plate fixture was employed to investigate the transient and steady-state shear flow of both ferrofluids and MR fluids as a function of shear rate at various levels of applied magnetic fields. The rheological investigation has enabled us to determine the effect of applied magnetic field on the shear viscosity and yield stress of ferrofluids and MR fluids. A special ferrofluid was prepared by filtering out nearly all of the surfactant and small particles in an oil-based ferrofluid. We then compared its magneto-optical and rheological behaviors with those of an unfiltered ferrofluid. Further, we have found that the ferrofluid with a lower concentration of surfactant gave rise to larger birefringence and yield stress, and stronger shear thinning behavior than the ferrofluid containing a higher concentration of surfactant. This observation has lead us to conclude that an increase in unbound surfactant in a ferrofluid hindered chain formation of magnetic particles, leading to a decrease in the optical and rheological behaviors of the ferrofluid. Optical microscopy confirmed no visible chain formation of magnetic particles in the ferrofluid having a high concentration of surfactant owing to weak yield stress, birefringence, and shear thinning. On the other hand, we observed from optical microscopy that the filtered ferrofluid gave rise to larger yield stress, birefringence, and stronger shear thinning

  1. Work-based learning in health care environments.

    Science.gov (United States)

    Spouse, J

    2001-03-01

    In reviewing contemporary literature and theories about work-based learning, this paper explores recent trends promoting life-long learning. In the process the paper reviews and discusses some implications of implementing recent policies and fostering le arning in health care practice settings. Recent Government policies designed to provide quality health care services and to improve staffing levels in the nursing workforce, have emphasized the importance of life-long learning whilst learning-on-the-job and the need to recognize and credit experiential learning. Such calls include negotiation of personal development plans tailored to individual educational need and context-sensitive learning activities. To be implemented effectively, this policy cann ot be seen as a cheap option but requires considerable financial resourcing for preparation of staff and the conduct of such activities. Successful work-based learning requires investment in staff at all levels as well as changes to staffing structures in organizations and trusts; changes designed to free people up to work and learn collaboratively. Creating an organizational environment where learning is prized depends upon a climate of trust; a climate where investigation and speculation are fostered and where time is protected for engaging in discussions about practice. Such a change may be radical for many health care organizations and may require a review of current policies and practices ensuring that they include education at all levels. The nature of such education also requires reconceptualizing. In the past, learning in practice settings was seen as formal lecturing or demonstration, and relied upon behaviourist principles of learning. Contemporary thinking suggests effective learning in work-settings is multi-faceted and draws on previously acquired formal knowledge, contextualizes it and moulds it according to situations at hand. Thinking about work-based learning in this way raises questions about how such

  2. Performance of Organic Rankine Cycle Using Zeotropic Working Fluids for Geothermal Utilization%地热源非共沸工质有机朗肯循环发电性能分析

    Institute of Scientific and Technical Information of China (English)

    郭丛; 杜小泽; 杨立军; 杨勇平

    2014-01-01

    建立有机朗肯循环热力学模型和蒸发器传热模型;基于工质的实验经验状态方程,利用REFPROP 8.0软件获得非共沸工质物性;以获得最佳的凝汽器温度匹配为原则选择工质。采用种温度的地热能,在给定的蒸发器和凝汽器夹点温差下,分析了采用组分比例为0.64:0.36的R600a/R601非共沸工质的有机朗肯循环发电系统的特性,并与R601纯工质发电循环进行了比较。结果表明:以对外输出功为目标函数的利用地热的中低温有机朗肯循环发电系统中不宜加入回热器;对于蒸发器热源进出口温差较小的工况,如热源来自水蒸气凝结放热,采用混合工质的循环的性能不如纯工质的;有机朗肯循环采用混合工质时其最大对外输出功要高于纯工质的,且热源温度越低时,这种优势越明显。%Thermodynamic model of organic Rankine cycle (ORC) and heat transfer model for evaporator were developed, and thermal properties for mixture working fluid were obtained by REFPROP 8.0 on the basis of the empirical equations of state. The selection principle for working fluids was based on the matching between working fluid and cooling water in the condenser. Geothermal energy in three heat source temperatures was simulated, and a zeotropic mixture, R600a/R601 with mole fraction 0.64/0.36, was used as the working fluid of ORC for power generation with the given pinch temperature for the evaporator and condenser. Its performance was analyzed and compared with that of pure working fluid, R601. The analytical results show that it is not suitable to introduce the internal heat exchanger (IHX) to the ORC system using medium or low temperature geothermal energy as heat source with work output as objective function. ORC system with pure working fluid has a better performance than that with mixture under the condition that temperature difference between inlet and outlet of heat source is small (i

  3. Students’ Self-Assessment in Project-Based Work

    Directory of Open Access Journals (Sweden)

    Alvyda Liuolienė

    2014-12-01

    Full Text Available The article aims at exploring the benefits of self-assessment as it is an important skill for lifelong learning and for critical reflection on one’s own performance. The authors of the article focus on students’ self-assessment of their language proficiency skills and achievements in working on projects. Students’ reflection on their learning has numerous benefits, such as motivation, self-direction, greater responsibility, decreased intimidation and fear of the audience, development of critical thinking, etc. The paper presents the analysis of a questionnaire based on the research of respondents’ self-evaluation of working on the project. The study has aimed at finding out the students’ attitude towards project-based learning and their assessment of their personal progress in respect of the development of their language proficiency skills.

  4. Novel work-based learning courses in analytical sciences

    OpenAIRE

    Williams, Ruth; Velasco, Maria

    2010-01-01

    The Open University (OU) is well known for the delivery of world class distance education. From 2010, the OU offers a new Foundation Degree in Analytical Sciences, developed to enhance the skills base of the workforce in analytical laboratories. It allows students to earn and learn simultaneously without taking time off. Students are sponsored by their employer and supported by an OU tutor throughout the four years of part-time study. 25 per cent of the degree comprises two work-based learni...

  5. Dynamic characteristics of Semi-active Hydraulic Engine Mount Based on Fluid-Structure Interaction FEA

    Directory of Open Access Journals (Sweden)

    Tian Jiande

    2015-01-01

    Full Text Available A kind of semi-active hydraulic engine mount is studied in this paper. After careful analysis of its structure and working principle, the FEA simulation of it was divided into two cases. One is the solenoid valve is open, so the air chamber connects to the atmosphere, and Fluid-Structure Interaction was used. Another is the solenoid valve is closed, and the air chamber has pressure, so Fluid-Structure-Gas Interaction was used. The test of this semi-active hydraulic engine mount was carried out to compare with the simulation results, and verify the accuracy of the model. Then the dynamic characteristics-dynamic stiffness and damping angle were analysed by simulation and test. This paper provides theoretical support for the development and optimization of the semi-active hydraulic engine mount.

  6. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    Science.gov (United States)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  7. The influence of particle size on the rheological properties of plate-like iron particle based magnetorheological fluids

    Science.gov (United States)

    Shah, Kruti; Choi, Seung-Bok

    2015-01-01

    This work is devoted to the dependence of particle size on magnetorheological properties of magnetorheological fluid (MRF) consisting of plate-like iron particles suspended in a carrier liquid with two aspects. One aspect is to study the influence of the particle size on the rheological properties of the MRF, and the other is to investigate the influence of small-sized particles on the large-sized MRF. In order to achieve this goal, firstly, two different types of MR suspensions have been constituted by a plate-like iron particle; one is small with an average particle size of 2 μm in diameter, and the other is large with an average particle size of 19 μm in diameter. In this work, these are denoted as S-MRF and L-MRF, respectively. Secondly, in order to check the influence of the small particle size of the large-sized MR fluid, three different weight fractions of bidisperse MRF samples are prepared. The structural and morphology of plate-like iron particles are described in detail. The magnetic properties of these MR fluids are carried out at room temperature using the magnetometer, followed by the investigation on the field-dependent rheological properties of these MR fluids. It is observed that in both the S-MRF and L-MRF, the yield stress and viscosity is increased by the increasing particle size, which directly shows a correlation with the fluid magnetization. It is also identified from the test of the bidisperse MRF samples that the yield and viscosity depend on the weight fraction due to the magnetostatic interaction between the two different sizes of particles. Based on the rheological properties, some figures of merit are derived for the proposed MRF samples, which are important in the design of the application device. The sedimentation experiments for MRF samples are performed to check the stability of the MRF each day. With the basic rheological properties and sedimentation experiments, it is clearly demonstrated that the bidisperse MR suspension with a

  8. Ubbelohde viscometer measurement of water-based Fe{sub 3}O{sub 4} magnetic fluid prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, H. [School of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Tang, X. [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Feng, W.G. [Suzhou Nanocomp Inc., Suzhou New District, Suzhou 215011 (China); Xie, H.D.; Chen, D.X. [Suzhou YouNuo Plastic Industry Co., Ltd., Suzhou 215021 (China); Badami, D. [Department of Chemical Engineering, University of Waterloo, Waterloo, Canada ON N2L 3G1 (Canada)

    2013-12-15

    Fe{sub 3}O{sub 4} nanoparticles were prepared by co-precipitation and coated by sodium dodecyl benzene sulfonate (SDBS) to obtain water-based magnetic fluid. The viscosity of the magnetic fluid was measured using an Ubbelohde viscometer. The effects of magnetic particles volume fraction, surfactant mass fraction and temperature on the viscosity were studied. Experimental results showed that the magnetic fluid with low magnetic particle volume fraction behaved as a Newtonian fluid and the viscosity of the magnetic fluid increased with an increase of the suspended magnetic particles volume fraction. The experimental data was compared with the results of a theoretically derived equation. The viscosity of the magnetic fluid also increased with an increase in surfactant mass portion, while it decreased with increasing temperature. Moreover, the viscosity increased with increasing the magnetic field intensity. Increasing the temperature and the surfactant mass fraction weakened the influence of the magnetic field on the viscosity of the magnetic fluid. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles were prepared using co-precipitation and coated by sodium dodecyl benzene sulfonate to obtain water-based magnetic fluid. • The viscosity of different magnetic fluids was measured using an Ubbelohde viscometer. • The effects of magnetic particles volume fraction, surfactant mass fraction and temperature on the viscosity of magnetic fluids were studied.

  9. [Identification of transmission fluid based on NIR spectroscopy by combining sparse representation method with manifold learning].

    Science.gov (United States)

    Jiang, Lu-Lu; Luo, Mei-Fu; Zhang, Yu; Yu, Xin-Jie; Kong, Wen-Wen; Liu, Fei

    2014-01-01

    An identification method based on sparse representation (SR) combined with autoencoder network (AN) manifold learning was proposed for discriminating the varieties of transmission fluid by using near infrared (NIR) spectroscopy technology. NIR transmittance spectra from 600 to 1 800 nm were collected from 300 transmission fluid samples of five varieties (each variety consists of 60 samples). For each variety, 30 samples were randomly selected as training set (totally 150 samples), and the rest 30 ones as testing set (totally 150 samples). Autoencoder network manifold learning was applied to obtain the characteristic information in the 600-1800 nm spectra and the number of characteristics was reduced to 10. Principal component analysis (PCA) was applied to extract several relevant variables to represent the useful information of spectral variables. All of the training samples made up a data dictionary of the sparse representation (SR). Then the transmission fluid variety identification problem was reduced to the problem as how to represent the testing samples from the data dictionary (training samples data). The identification result thus could be achieved by solving the L-1 norm-based optimization problem. We compared the effectiveness of the proposed method with that of linear discriminant analysis (LDA), least squares support vector machine (LS-SVM) and sparse representation (SR) using the relevant variables selected by principal component analysis (PCA) and AN. Experimental results demonstrated that the overall identification accuracy of the proposed method for the five transmission fluid varieties was 97.33% by AN-SR, which was significantly higher than that of LDA or LS-SVM. Therefore, the proposed method can provide a new effective method for identification of transmission fluid variety. PMID:24783534

  10. Rheological investigations of water based drilling fluid system developed using synthesized nanocomposite

    Science.gov (United States)

    Jain, Rajat; Mahto, Triveni K.; Mahto, Vikas

    2016-02-01

    In the present study, polyacrylamide grafted xanthan gum/multiwalled carbon nanotubes (PA-g-XG/MWCNT) nanocomposite was synthesized by free radical polymerization technique using potassium persulfate as an initiator. The polyacrylamide was grafted on xanthan gum backbone in the presence of MWCNT. The synthesized nanocomposite was characterized by X-ray diffraction technique (XRD), and Fourier transform infrared spectroscopy analysis (FT-IR). The morphological characteristics of the nanocomposite were analyzed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) analyses. Also, its temperature resistance property was observed with Thermogravimetric analysis (TGA). The effect of nanocomposite on the rheological properties of the developed drilling fluid system was analyzed with a strain controlled rheometer and Fann viscometer. Flow curves were drawn for the developed water based drilling fluid system at elevated temperatures. The experimental data were fitted to Bingham, power-law, and Herschel Bulkley flow models. It was observed that the Herschel Bulkley flow model predict the flow behavior of the developed system more accurately. Further, nanocomposite exhibited non-Newtonian shear thinning flow behavior in the developed drilling fluid system. Nanocomposite showed high temperature stability and had a significant effect on the rheological properties of the developed drilling fluid system as compared to conventionally used partially hydrolyzed polyacrylamide (PHPA) polymer.

  11. Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers

    Science.gov (United States)

    Li, Jianhua; Wang, Rong; Wang, Jingyuan; Zhang, Baofu; Xu, Zhiyong; Wang, Huali

    2014-03-01

    Novel magnetic field sensor based on magnetic fluids infiltrated dual-core Photonic Crystal Fibers (PCFs) is proposed in this paper. Inside the cross-section of the designed PCFs, the two fiber cores filled with magnetic fluids (Fe3O4) are separated by an air hole, and then form two independent waveguides with mode coupling. The mode coupling under different magnetic field strength is investigated theoretically. A novel and simple magnetic field sensing system is proposed and its sensing performances have been studied numerically. The results show that the magnetic field sensor with 15-cm PCFs has a large sensing range and high sensitivity of 4.80 pm/Oe. It provides a new feasible method to design PCF-based magnetic field sensor.

  12. Fluid experimental flow estimation based on an optical-flow scheme

    Energy Technology Data Exchange (ETDEWEB)

    Corpetti, T. [Cemagref 17, Rennes (France); Maison de la Recherche, Laboratoire COSTEL UMR 6554 LETG, Rennes Cedex (France); Heitz, D.; Arroyo, G.; Santa-Cruz, A. [Cemagref 17, Rennes (France); Memin, E. [Universitaire de Beaulieu, IRISA/INRIA Campus, Rennes Cedex (France)

    2006-01-01

    We present in this paper a novel approach dedicated to the measurement of velocity in fluid experimental flows through image sequences. Unlike most of the methods based on particle image velocimetry (PIV) approaches used in that context, the proposed technique is an extension of ''optical-flow'' schemes used in the computer vision community, which includes a specific enhancement for fluid mechanics applications. The method we propose enables to provide accurate dense motion fields. It includes an image based integrated version of the continuity equation. This model is associated to a regularization functional, which preserve divergence and vorticity blobs of the motion field. The method was applied on synthetic images and on real experiments carried out to allow a thorough comparison with a state-of-the-art PIV method in conditions of strong local free shear. (orig.)

  13. FLUID-BASED SIMULATION APPROACH FOR HIGH VOLUME CONVEYOR TRANSPORTATION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Chen ZHOU

    2004-01-01

    High volume conveyor systems in distribution centers have very large footprint and can handle large volumes and hold thousands of items. Traditional discrete-event cell-based approach to simulate such networks becomes computationally challenging. An alternative approach, in which the traffic is represented by segments of fluid flow of different density instead of individual packages, is presented in this paper to address this challenge. The proposed fluid-based simulation approach is developed using a Hybrid Petri Nets framework. The underlying model is a combination of an extension of a Batches Petri Nets (BPN) and a Stochastic Petri Nets (SPN). The extensions are in the inclusion of random elements and relaxation of certain structural constraints. Some adaptations are also made to fit the target system modeling. The approach is presented with an example.

  14. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.

    Science.gov (United States)

    Yu, Hai; Janiga, Gábor; Thévenin, Dominique

    2016-04-01

    An optimization method suitable for improving the performance of Archimedes screw axial rotary blood pumps is described in the present article. In order to achieve a more robust design and to save computational resources, this method combines the advantages of the established pump design theory with modern computer-aided, computational fluid dynamics (CFD)-based design optimization (CFD-O) relying on evolutionary algorithms and computational fluid dynamics. The main purposes of this project are to: (i) integrate pump design theory within the already existing CFD-based optimization; (ii) demonstrate that the resulting procedure is suitable for optimizing an Archimedes screw blood pump in terms of efficiency. Results obtained in this study demonstrate that the developed tool is able to meet both objectives. Finally, the resulting level of hemolysis can be numerically assessed for the optimal design, as hemolysis is an issue of overwhelming importance for blood pumps.

  15. Universal hydrofracturing algorithm for shear-thinning fluids: particle velocity based simulation

    CERN Document Server

    Perkowska, Monika; Mishuris, Gennady

    2015-01-01

    A universal particle velocity based algorithm for simulating hydraulic fractures, previously proposed for Newtonian fluids, is extended to the class of shear-thinning fluids. The scheme is not limited to any particular elasticity operator or crack propagation regime. The computations are based on two dependent variables: the crack opening and the reduced particle velocity. The application of the latter facilitates utilization of the local condition of Stefan type (speed equation) to trace the fracture front. The condition is given in a general explicit form which relates the crack propagation speed (and the crack length) to the solution tip asymptotics. The utilization of a modular structure, and the adaptive character of its basic blocks, result in a flexible numerical scheme. The computational accuracy of the proposed algorithm is validated against a number of analytical benchmark solutions.

  16. Fluid Sensor Based on Transmission Dip Caused by Mini Stop-Band in Photonic Crystal Slab

    Institute of Scientific and Technical Information of China (English)

    CAO Lei; HUANG Yi-Dong; MAO Xiao-Yu; LI Fei; ZHANG Wei; PENG Jiang-De

    2008-01-01

    We propose a fluid sensor based on transmission dip caused by mini stop-band in photonic crystal slabs. Simulation results show that this novel type of sensors has large detective range (more than 1.5) and relative high sensitivity (4.3×10-5 in certain conditions). The central frequency and bandwidth of the mini stop-bands depend on the structure parameters of PC waveguides, which makes it possible to optimize the detective range and detective sensitivity.

  17. Rheological properties of oil-based drilling fluids at high temperature and high pressure

    Institute of Scientific and Technical Information of China (English)

    赵胜英; 鄢捷年; 舒勇; 张洪霞

    2008-01-01

    The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.

  18. UAV feasible path planning based on disturbed fluid and trajectory propagation

    Directory of Open Access Journals (Sweden)

    Yao Peng

    2015-08-01

    Full Text Available In this paper, a novel algorithm based on disturbed fluid and trajectory propagation is developed to solve the three-dimensional (3-D path planning problem of unmanned aerial vehicle (UAV in static environment. Firstly, inspired by the phenomenon of streamlines avoiding obstacles, the algorithm based on disturbed fluid is developed and broadened. The effect of obstacles on original fluid field is quantified by the perturbation matrix, where the tangential matrix is first introduced. By modifying the original flow field, the modified one is then obtained, where the streamlines can be regarded as planned paths. And the path proves to avoid all obstacles smoothly and swiftly, follow the shape of obstacles effectively and reach the destination eventually. Then, by considering the kinematics and dynamics equations of UAV, the method called trajectory propagation is adopted to judge the feasibility of the path. If the planned path is unfeasible, repulsive and tangential parameters in the perturbation matrix will be adjusted adaptively based on the resolved state variables of UAV. In most cases, a flyable path can be obtained eventually. Simulation results demonstrate the effectiveness of this method.

  19. Preparation of water-soluble nanographite and its application in water-based cutting fluid

    Science.gov (United States)

    Chen, Qiang; Wang, Xue; Wang, Zongting; Liu, Yu; You, Tingzheng

    2013-01-01

    Water-soluble nanographite was prepared by in situ emulsion polymerization using methacrylate as polymeric monomer. The dispersion stability and dispersion state of graphite particles were evaluated by UV-visible spectrophotometry and scanning electron microscopy, respectively. The water-soluble nanographite was then added into the water-based cutting fluid as lubricant additive. The lubrication performance of water-based cutting fluid with the nanographite additive was studied on four-ball friction tester and surface tensiometer. Results indicate that the modification method of in situ emulsion polymerization realizes the uniform and stabilized dispersion of nanographite in aqueous environment. The optimal polymerization condition is 70°C (polymerization temperature) and 5 h (polymerization time). The addition of nanographite decreases the friction coefficient and wear scar diameter by 44% and 49%. Meanwhile, the maximum non-seizure load ( P B ) increases from 784 to 883 N, and the value of surface tension (32.76 × 10-3 N/m) is at low level. Nanographite additive improves apparently the lubrication performance of water-based cutting fluid.

  20. Effect of working-fluid filling ratio and cooling-water flow rate on the performance of solar collector with closed-loop oscillating heat pipe

    International Nuclear Information System (INIS)

    This study experimentally investigated the effect of the working-fluid filling ratio (FR) and the cooling-water flow rate (CWFR) on the top heat loss and the performance of a solar collector equipped with a closed-loop oscillating heat pipe (CLOHP). The CLOHP was composed of a heating section, a cooling section, and an adiabatic section; it had a 0.002-m internal diameter and eight turns. The heating section was attached to a copper plate coated with black chrome, which absorbed energy from a solar simulator that had 12 halogen lamps and was controlled by a voltage regulator. The cooling section was inserted into the collector's cooling box, which was made of a transparent acrylic plate. The FR of the working fluid ranged from 30% to 80% with a 10% interval, and the CWFRs were 0.15 l/min, 0.30 l/min, and 0.45 l/min. The experimental results show that the solar collector equipped with the CLOHP has good performance at working-fluid FRs of 60% and 70% with low flow rates of 0.15 l/min and 0.30 l/min

  1. Working cycles of devices based on bistable carbon nanotubes

    Science.gov (United States)

    Shklyaev, Oleg; Mockensturm, Eric; Crespi, Vincent; Carbon Nanotubes Collaboration

    2013-03-01

    Shape-changing nanotubes are an example of variable-shape sp2 carbon-based systems where the competition between strain and surface energies can be moderated by an externally controllable stimuli such as applied voltage, temperature, or pressure of gas encapsulated inside the tube. Using any of these stimuli one can transition a bistable carbon nanotube between the collapsed and inflated states and thus perform mechanical work. During the working cycle of such a device, energy from an electric or heat source is transferred to mechanical energy. Combinations of these stimuli allow the system to convert energy between different sources using the bistable shape-changing tube as a mediator. For example, coupling a bistable carbon nanotube to the heat and charge reservoirs can enable energy transfer between heat and electric forms. The developed theory can be extended to other nano-systems which change configurations in response to external stimuli.

  2. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database "REFPROP"

    Science.gov (United States)

    Galashov, Nikolay; Tsibulskiy, Svyatoslav; Serova, Tatiana

    2016-02-01

    The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the

  3. Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system

    Institute of Scientific and Technical Information of China (English)

    Wang Honglun; Lyu Wentao; Yao Peng; Liang Xiao; Liu Chang

    2015-01-01

    This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle (UAV) in complex terrain based on interfered fluid dynamical system (IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles’ overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm (GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles.

  4. Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator

    Directory of Open Access Journals (Sweden)

    Vishwa Deepak Dwivedi

    2015-01-01

    Full Text Available In continuous technological development, an automotive industry has increased the demand for high efficiency engines. A high efficiency engines in not only based on its performance but also for better fuel economy and less emission rate. Radiator is one of the important parts of the internal combustion engine cooling system. The manufacturing cost of the radiator is 20 percent of the whole cost of the engine. So improving the performance and reducing cost of radiators are necessary research. For higher cooling capacity of radiator, addition of fins is one of the approaches to increase the cooling rate of the radiator. In addition, heat transfer fluids at air and fluid side such as water and ethylene glycol exhibit very low thermal conductivity. As a result there is a need for new and innovative heat transfer fluids, known as “Nano fluid” for improving heat transfer rate in an automotive radiator. Recently there have been considerable research findings highlighting superior heat transfer performances of nanofluids about 15-25% of heat transfer enhancement can be achieved by using types of nanofluids. With these specific characteristics, the size and weight of an automotive car radiator can be reduced without affecting its heat transfer performance. An automotive radiator (Wavy fin type model is modeled on modeling software CATIA V5 and performance evaluation is done on pre-processing software ANSYS 14.0. The temperature and velocity distribution of coolant and air are analyzed by using Computational fluid dynamics environment software CFX. Results have shown that the rate of heat transfer is better when nano fluid (Si C + water is used as coolant, than the conventional coolant.

  5. Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system

    Directory of Open Access Journals (Sweden)

    Wang Honglun

    2015-02-01

    Full Text Available This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle (UAV in complex terrain based on interfered fluid dynamical system (IFDS and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles’ overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm (GA is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles.

  6. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD

  7. Fluid dynamics of heart valves during atrial fibrillation: a lumped parameter-based approach.

    Science.gov (United States)

    Scarsoglio, S; Camporeale, C; Guala, A; Ridolfi, L

    2016-08-01

    Atrial fibrillation (AF) consequences on the heart valve dynamics are usually studied along with a valvular disfunction or disease, since in medical monitoring, the two pathologies are often concomitant. Aim of the present work is to study, through a stochastic lumped-parameter approach, the basic fluid dynamics variations of heart valves, when only paroxysmal AF is present with respect to the normal sinus rhythm in absence of any valvular pathology. Among the most common parameters interpreting the valvular function, the most useful turns out to be the regurgitant volume. During AF, both atrial valves do not seem to worsen their performance, while the ventricular efficiency is remarkably reduced. PMID:26460925

  8. Fluid dynamics of heart valves during atrial fibrillation: a lumped parameter-based approach

    CERN Document Server

    Scarsoglio, Stefania; Guala, Andrea; Ridolfi, Luca

    2015-01-01

    Atrial fibrillation (AF) consequences on the heart valve dynamics are usually studied along with a valvular disfunction or disease, since in medical monitoring the two pathologies are often concomitant. Aim of the present work is to study, through a stochastic lumped-parameter approach, the basic fluid dynamics variations of heart valves, when only paroxysmal AF is present with respect to the normal sinus rhythm (NSR) in absence of any valvular pathology. Among the most common parameters interpreting the valvular function, the most useful turns out to be the regurgitant volume. During AF both atrial valves do not seem to worsen their performance, while the ventricular efficiency is remarkably reduced.

  9. Trajectory Prediction of Rotating Objects in Viscous Fluid: Based on Kinematic Investigation of Magnus Glider

    CERN Document Server

    Wei, Zhiyuan; Wei, Kai; Wang, Ziwei; Dai, Rucheng

    2016-01-01

    The case of a rotating object traveling through viscous fluid appears in many phenomena like the banana ball and missile movement. In this work, we build a model to predict the trajectory of such rotating objects with near-cylinder geometry. The analytical expression of Magnus force is given and a wind tunnel experiment is carried out, which shows the Magnus force is well proportional to the product of angular velocity and centroid velocity. The trajectory prediction is consistent with the trajectory record experiment of Magnus glider, which implies the validity and robustness of this model.

  10. Can we recognize magmatic fluid inclusions in fossil sytems based on room-temperature phase relations and microthermometric bahavior

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, R. (Virginia Polytechnic Institute and State University, VA (USA))

    1992-08-31

    If the density and composition of magmatic fluid and how these properties vary as the system evolves are known, the room temperature phase relations and microthermometric behavior of fluid inclusions which have trapped these magmatic fluids are considered to be predictable. Using available experimental and theoretical data for the model system albite-H2O-NaCl, the salinity of the aqueous phase exsolving from melts crystallizing at various depths (pressures) in the crust were calculated. Consequently, the results of the analysis of the characteristics of fluid inclusions trapped during crystallization of a silicic melt indicated that great care should be exercised in the selection of fluid inclusions to investigate magmatic fluids. Furthermore, late hydrothermal inclusions and similar magmatic inclusions are considered to be distinguishable from one another based on mode of occurrence, presence of tiny opaque daughter phases in magmatic inclusions, and relative ages. 5 figs.

  11. Is flexible work precarious? A study based on the 4th European survey of working conditions 2005

    OpenAIRE

    Tangian, Andranik S.

    2007-01-01

    The analysis of interaction of flexibility and precariousness of work shows that the more flexible employment, the more it is precarious. For this purpose, two families of indices, of flexible work and of precarious work, are defined basing on the Fourth European Survey of Working Conditions 2005 by the European Foundation for the Improvement of Living and Working Conditions (2007a). Two methodologies of constructing composite indicators are applied, of the Hans Böckler Foundation, and of the...

  12. Work-based identity and work engagement as potential antecedents of task performance and turnover intention: Unravelling a complex relationship

    Directory of Open Access Journals (Sweden)

    F. Chris Bothma

    2012-01-01

    Full Text Available Orientation: Work-based identity, used as a reference to the self, is the answer to the question ’Who am I at work?’ Work-related identities, derived from different social foci through identity formation processes, have as behavioural guides a significant influence on employee behaviour, which, in turn has an impact on work outcomes. Engagement, presented in different conceptualisations, is viewed by practitioners and academic researchers as an important antecedent of employee behaviour.Research purpose: The main purpose of the study was to investigate whether work-based identity and work engagement differed (in combination with personal alienation, helping behaviour and burnout as potential antecedents (amongst numerous others of task performance and turnover intention.Research design: A census-based sampling approach amongst 23 134 employees in the employment of an ICT company yielded a sample of 2429 usable questionnaires. Scales used in the study were the Maslach Burnout Inventory (MBI-HSS-20, Utrecht Work Engagement Scale (UWES, Work-based Identity, Personal Alienation, Helping Behaviour, Turnover Intention and Task Performance Scales.Main findings: The findings indicate that work-based identity and work engagement give similar appearing results as potential predictors of turnover intention and task performance. Practical/managerial implications: Reducing withdrawal behaviours and enhancing work performance are everyday challenges for organisations. Interventions focused on enhancing work-based identity and work engagement in the work environment should have a meaningful impact when these behaviours need to be addressed.Contribution/value-add: Work-based identity as a multidimensional construct has the potential, with further refinement, to become a valuable construct that can play a leading role in future work engagement research.

  13. Fabrication and hyperthermia effect of magnetic functional fluids based on amorphous particles

    Science.gov (United States)

    Yang, Chuncheng; Bian, Xiufang; Qin, Jingyu; Guo, Tongxiao; Zhao, Shuchun

    2015-03-01

    An experimental study conducted on the preparation and hyperthermia effect of magnetic functional fluids based on Fe73.5Nb3Cu1Si13.5B9 amorphous particles, CoFe2O4 nanoparticles and Fe3O4 nanoparticles dispersed in water is presented. Scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and vibrating sample magnetometer methods have been used to characterize the morphology, structure and magnetic property of the amorphous particles. It is disclosed that the Fe73.5Nb3Cu1Si13.5B9 particles are still amorphous after being milled for 48 h. Moreover, the saturation magnetization of metallic glass particles is approximately 75% and 50% larger than that of CoFe2O4 nanoparticles and Fe3O4 nanoparticles, respectively. The hyperthermia experiment results show that when alternating electrical current is 150 A, the temperature of the functional fluids based on amorphous particles could rise to 33 °C in 1500 s. When the current is 300 A, the final stable temperature could reach to 60 °C. This study demonstrates that the Fe73.5Nb3Cu1Si13.5B9 magnetic functional fluids may have potential on biomedical applications.

  14. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation

    Science.gov (United States)

    Kúdelčík, Jozef; Bury, Peter; Kopčanský, Peter; Timko, Milan

    2015-08-01

    The anisotropy of acoustic attenuation in transformer oil-based magnetic fluids upon the external magnetic field was studied to discover the structure of nanoparticles. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles leads to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids and the concentration of nanoparticles also have very important influence on the structural changes. The measurement of the dependence of the acoustic attenuation on the angle between the magnetic field direction and acoustic wave vector (anisotropy) can give the useful information about the structure of magnetic nanoparticles formations. In the present, the results of anisotropy measurements of the transformer oil-based magnetic fluids are described and using appropriate theory the basic parameters of clusters are calculated. On the basis of the performed calculations, the proportion of the acoustic wave energy used for excitation of the translational and rotational degrees of freedom was also established.

  15. Thermodynamic Properties of Hard-Sphere Fluid under Confined Condition Based on Bridge Density Function

    Institute of Scientific and Technical Information of China (English)

    周世琦

    2003-01-01

    Based on the functional integral procedure, a recently proposed bridge density function [J. Chem. Phys. 112 (2000) 8079] is developed to calculate global thermodynamic properties of non-uniform fluids. The resulting surface tension of a hard wall-hard sphere interface as a function of the bulk hard sphere fluid density is in good agreement with the available simulation data. The proposed numerical procedure from the approximation of non-uniform first=order direct correlation function to a non=uniform system with excess Helmholtz free energy is of fundamental importance for phase behaviour under the confined condition due to the fact that many available simple approximations in classical density functional theory are for non=uniform first=order direct correlation function.

  16. Ionic magnetic fluid based on cobalt ferrite nanoparticles: Influence of hydrothermal treatment on the nanoparticle size

    Energy Technology Data Exchange (ETDEWEB)

    Cabuil, Valerie; Dupuis, Vincent; Talbot, Delphine [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France); CNRS, UMR 7195, PECSA, F-75005, Paris (France); Neveu, Sophie, E-mail: sophie.neveu@upmc.f [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France); CNRS, UMR 7195, PECSA, F-75005, Paris (France)

    2011-05-15

    Magnetic fluid based on cobalt ferrite nanoparticles was obtained using a hydrothermal treatment added to the Massart procedure. This treatment increases the average size of the nanoparticles from 11.9 to 18.7 nm and also improves the dispersity and crystallinity of the cobalt ferrite particles. The nanoparticles obtained after the hydrothermal treatment were dispersed in aqueous solvent by the classical procedure for ionic magnetic fluids. The ferrofluid thus obtained is stable at pH 7 and may be useful for hyperthermia applications. - Research Highlights: Hydrothermal synthesis of cobalt ferrite ferrofluid (mean particle size of 12-19 nm). Good control of size, dispersity and crystallinity of the cobalt ferrite particles. Ferrofluid stable at pH 7 and useful for hyperthermia applications.

  17. Methods for simulation-based analysis of fluid-structure interaction.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.

  18. Analogy between gambling and measurement-based work extraction

    Science.gov (United States)

    Vinkler, Dror A.; Permuter, Haim H.; Merhav, Neri

    2016-04-01

    In information theory, one area of interest is gambling, where mutual information characterizes the maximal gain in wealth growth rate due to knowledge of side information; the betting strategy that achieves this maximum is named the Kelly strategy. In the field of physics, it was recently shown that mutual information can characterize the maximal amount of work that can be extracted from a single heat bath using measurement-based control protocols, i.e. using ‘information engines’. However, to the best of our knowledge, no relation between gambling and information engines has been presented before. In this paper, we briefly review the two concepts and then demonstrate an analogy between gambling, where bits are converted into wealth, and information engines, where bits representing measurements are converted into energy. From this analogy follows an extension of gambling to the continuous-valued case, which is shown to be useful for investments in currency exchange rates or in the stock market using options. Moreover, the analogy enables us to use well-known methods and results from one field to solve problems in the other. We present three such cases: maximum work extraction when the probability distributions governing the system and measurements are unknown, work extraction when some energy is lost in each cycle, e.g. due to friction, and an analysis of systems with memory. In all three cases, the analogy enables us to use known results in order to obtain new ones.

  19. Testing of Vegetable-Based dutting Fluid by Hole Making Operation

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    2000-01-01

    The results of cutting fluid testing through subsequent hole making operations are presented. AISI 316L stainless steel specimens were machined with drilling, core drilling, reaming and tapping using HSS-E tools. The effect of different lubricants on cutting forces and power was investigated...... in connection with the development of vegetable based cutting oils. Results show that drilling and tapping qualify as operations in which cutting forces can be resolved within one test when they differ by less than 1 percent by taking 6 repetitions, and measurements could be repeated with relative standard...... development and testing of vegetable based oils of equal or better performance than a reference commercial mineral oil....

  20. Physics-based Probabilistic Seismic Hazard Analysis for Seismicity Induced by Fluid Injection

    Science.gov (United States)

    Foxall, W.; Hutchings, L. J.; Johnson, S.; Savy, J. B.

    2011-12-01

    Risk associated with induced seismicity (IS) is a significant factor in the design, permitting and operation of enhanced geothermal, geological CO2 sequestration and other fluid injection projects. Whereas conventional probabilistic seismic hazard and risk analysis (PSHA, PSRA) methods provide an overall framework, they require adaptation to address specific characteristics of induced earthquake occurrence and ground motion estimation, and the nature of the resulting risk. The first problem is to predict the earthquake frequency-magnitude distribution of induced events for PSHA required at the design and permitting stage before the start of injection, when an appropriate earthquake catalog clearly does not exist. Furthermore, observations and theory show that the occurrence of earthquakes induced by an evolving pore-pressure field is time-dependent, and hence does not conform to the assumption of Poissonian behavior in conventional PSHA. We present an approach to this problem based on generation of an induced seismicity catalog using numerical simulation of pressure-induced shear failure in a model of the geologic structure and stress regime in and surrounding the reservoir. The model is based on available measurements of site-specific in-situ properties as well as generic earthquake source parameters. We also discuss semi-empirical analysis to sequentially update hazard and risk estimates for input to management and mitigation strategies using earthquake data recorded during and after injection. The second important difference from conventional PSRA is that in addition to potentially damaging ground motions a significant risk associated with induce seismicity in general is the perceived nuisance caused in nearby communities by small, local felt earthquakes, which in general occur relatively frequently. Including these small, usually shallow earthquakes in the hazard analysis requires extending the ground motion frequency band considered to include the high

  1. An energy-based approach to estimate seismic attenuation due to wave-induced fluid flow in heterogeneous poroelastic media

    Science.gov (United States)

    Solazzi, Santiago G.; Rubino, J. Germán; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus

    2016-11-01

    Wave-induced fluid flow (WIFF) due to the presence of mesoscopic heterogeneities is considered as one of the main seismic attenuation mechanisms in the shallower parts of the Earth's crust. For this reason, several models have been developed to quantify seismic attenuation in the presence of heterogeneities of varying complexity, ranging from periodically layered media to rocks containing fractures and highly irregular distributions of fluid patches. Most of these models are based on Biot's theory of poroelasticity and make use of the assumption that the upscaled counterpart of a heterogeneous poroelastic medium can be represented by a homogeneous viscoelastic solid. Under this dynamic-equivalent viscoelastic medium (DEVM) assumption, attenuation is quantified in terms of the ratio of the imaginary and real parts of a frequency-dependent, complex-valued viscoelastic modulus. Laboratory measurements on fluid-saturated rock samples also rely on this DEVM assumption when inferring attenuation from the phase shift between the applied stress and the resulting strain. However, whether it is correct to use an effective viscoelastic medium to represent the attenuation arising from WIFF at mesoscopic scales in heterogeneous poroelastic media remains largely unexplored. In this work, we present an alternative approach to estimate seismic attenuation due to WIFF. It is fully rooted in the framework of poroelasticity and is based on the quantification of the dissipated power and stored strain energy resulting from numerical oscillatory relaxation tests. We employ this methodology to compare different definitions of the inverse quality factor for a set of pertinent scenarios, including patchy saturation and fractured rocks. This numerical analysis allows us to verify the correctness of the DEVM assumption in the presence of different kinds of heterogeneities. The proposed methodology has the key advantage of providing the local contributions of energy dissipation to the overall

  2. Cerebrospinal Fluid Diversion in Endoscopic Skull Base Reconstruction: An Evidence-Based Approach to the Use of Lumbar Drains.

    Science.gov (United States)

    Tien, Duc A; Stokken, Janalee K; Recinos, Pablo F; Woodard, Troy D; Sindwani, Raj

    2016-02-01

    Before the vascularized pedicled nasoseptal flap was popularized, lumbar drains (LDs) were routinely used for cerebral spinal fluid (CSF) diversion in endoscopic skull base reconstruction. LDs are not necessary in most CSF leaks encountered during skull base surgery. In this article, the use is considered of an LD in select high-risk settings in which a high-flow leak is anticipated and the patient has significant risk factors that make closure of the leak more challenging. Evidence for the use of LDs in preventing postoperative after endoscopic skull base reconstruction is reviewed and a rational framework for their use is proposed. PMID:26614832

  3. Academic Success in Context-Based Chemistry: Demonstrating fluid transitions between concepts and context

    Science.gov (United States)

    King, Donna Therese; Ritchie, Stephen M.

    2013-05-01

    Curriculum developers and researchers have promoted context-based programmes to arrest waning student interest and participation in the enabling sciences at high school and university. Context-based programmes aim for student connections between scientific discourse and real-world contexts to elevate curricular relevance without diminishing conceptual understanding. This interpretive study explored the learning transactions in one 11th grade context-based chemistry classroom where the context was the local creek. The dialectic of agency/structure was used as a lens to examine how the practices in classroom interactions afforded students the agency for learning. The results suggest that first, fluid transitions were evident in the student-student interactions involving successful students; and second, fluid transitions linking concepts to context were evident in the students' successful reports. The study reveals that the structures of writing and collaborating in groups enabled students' agential and fluent movement between the field of the real-world creek and the field of the formal chemistry classroom. Furthermore, characteristics of academically successful students in context-based chemistry are highlighted. Research, teaching, and future directions for context-based science teaching are discussed.

  4. Spike-based population coding and working memory.

    Directory of Open Access Journals (Sweden)

    Martin Boerlin

    2011-02-01

    Full Text Available Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.

  5. Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid.

    Science.gov (United States)

    Mahmood, Aseel; Kavungal, Vishnu; Ahmed, Sudad S; Farrell, Gerald; Semenova, Yuliya

    2015-11-01

    In this work, a magnetic-field sensor was designed to take advantage of the tunability of the resonance wavelengths of a cylindrical whispering-gallery-mode microresonator. The microresonator is based on a 1.3 cm length of photonic crystal fiber infiltrated with a magnetic fluid containing nanoparticles with diameters of either 5 or 10 nm. The Q-factor achieved for the microresonators was 4.24×10(3) or higher. When a magnetic field is applied, the whispering-gallery-mode resonances shift toward longer wavelengths. The experimentally demonstrated sensitivity of the proposed sensor was as high as 110 pm/mT in the magnetic field range from 0 to 38.7 mT. PMID:26512499

  6. Evaluation of source model coupled computational fluid dynamics (CFD) simulation of the dispersion of airborne contaminants in a work environment.

    Science.gov (United States)

    Salim, S M; Viswanathan, Shekar; Ray, Madhumita Bhowmick

    2006-12-01

    Dispersion of airborne contaminants in indoor air was evaluated employing physical measurement, empirical models, and computer simulation methods. Field data collected from a tray of evaporating solvent in the laboratory were compared with computational fluid dynamics (CFD) simulations coupled with evaporation models. The results indicated that mathematical models of evaporation can be coupled with CFD simulations to produce reasonable qualitative predictions of airborne contaminant levels. The airflow pattern within a room is primarily determined by the room layout and the position of the air supply diffusers. Variations in ventilation rate did not alter the airflow pattern, thus generating a characteristic concentration profile of the airborne contaminants. PMID:17050350

  7. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    Science.gov (United States)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  8. Simple, stable and reliable modeling of gas properties of organic working fluids in aerodynamic designs of turbomachinery for ORC and VCC

    Science.gov (United States)

    Kawakubo, T.

    2016-05-01

    A simple, stable and reliable modeling of the real gas nature of the working fluid is required for the aerodesigns of the turbine in the Organic Rankine Cycle and of the compressor in the Vapor Compression Cycle. Although many modern Computational Fluid Dynamics tools are capable of incorporating real gas models, simulations with such a gas model tend to be more time-consuming than those with a perfect gas model and even can be unstable due to the simulation near the saturation boundary. Thus a perfect gas approximation is still an attractive option to stably and swiftly conduct a design simulation. In this paper, an effective method of the CFD simulation with a perfect gas approximation is discussed. A method of representing the performance of the centrifugal compressor or the radial-inflow turbine by means of each set of non-dimensional performance parameters and translating the fictitious perfect gas result to the actual real gas performance is presented.

  9. Structure of transformer oil-based magnetic fluids studied using acoustic spectroscopy

    Science.gov (United States)

    Kúdelčík, Jozef; Bury, Peter; Drga, Jozef; Kopčanský, Peter; Závišová, Vlasta; Timko, Milan

    2013-01-01

    The structural changes in transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature were studied by acoustic spectroscopy. The attenuation of acoustic wave was measured as a function of the magnetic field in the range of 0-300 mT and in the temperature range of 15-35 °C for various magnetic nanoparticles concentrations. The effect of anisotropy of the acoustic attenuation was determined, too. The both strong influence of the magnetic field on the acoustic attenuation and its hysteresis were observed. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs, leading to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids also has very important influence on the structural changes because of the mechanism of thermal motion that acts against the cluster creation. The observed influences of both magnetic field and temperature on the investigated magnetic fluid structure are discussed.

  10. Experimental study of the characteristics of pool boiling CHF enhancement using water-based magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2011-05-15

    Nucleate boiling is a very effective heat transfer mechanism. However, there exists a critical value of heat flux at which nucleate boiling transitions to film boiling shows very poor heat transfer behavior. Critical heat flux(CHF) is a main constraint to the design process because it can generate damages or deformations of material. There have been many efforts to improve the CHF by using nanofluids by researchers. This paper will describe the effects of magnetic fluid on CHF enhancement of pool boiling. We compared the CHF values of pool boiling experiment between magnetic fluid and other nanofluids with several volume concentrations to evaluate the degree of CHF enhancement. SEM(Scanning Electron Microscope) images were obtained to explain CHF enhancement through the effect of the deposited nanoparticles, which can change the surface wettability, during the pool boiling experiment. Lastly, Finally, in order to investigate the effect of magnetic field in the water-based magnetic fluid, magnetic field was analytically calculated by using Biot-Savart law. Using these results, we discussed the CHF enhancement of magnetite-water nanofluids in detailed

  11. Thermo-adjustable mechanical properties of polymer, lipid-based complex fluids

    Science.gov (United States)

    Firestone, Millicent; Lee, Sungwon

    2012-02-01

    Combined rheology (oscillatory and steady shear) and SAXS studies reveal details on the temperature-dependent, reversible mechanical properties of nonionic polymer, lipid-based complex fluids. Compositions prepared by introduction of the polymer as either a lipid conjugate or a triblock copolymer form an elastic gel as the temperature is increased to 18 C. The network is produced from PEO chain entanglement and physical crosslinks confined within the intervening aqueous layers of a multilamellar structured lyotropic mesophase. Although the complex fluids are weak gels, tuning of the gel strength can be achieved by temperature adjustment. The sol state formed at reduced temperature arises as a consequence of the well-solvated PEO chains adopting a non-interacting, conformational state. Complex fluids prepared with the triblock copolymers exhibit greater tunability in viscoelasticity than those containing the PEGylated-lipid conjugate because of the temperature-dependent water solubility of the central PPO block. The water solubility of PPO at reduced temperatures results in the polymer being expelled from the self-assembled amphiphilic bilayer, causing collapse of the swollen lamellar structure and loss of the PEO network. At elevated temperatures, the triblock reinserts into the bilayer producing an elastic gel. These studies identify macromolecular architectures for the facile preparation of dynamic soft materials possessing a range of mechanical properties that can be tuned by modest temperature control.

  12. From Opinion-Based to Evidence-Based Social Work: The Swedish Case

    Science.gov (United States)

    Sundell, Knut; Soydan, Haluk; Tengvald, Karin; Anttila, Sten

    2010-01-01

    This article presents an account of Sweden's Institute for Evidence-Based Social Work Practice (IMS), located in Stockholm, Sweden. The article places IMS in the context of making Swedish social care services less opinion-based and more evidence-based. The institute is an example of how policy-driven processes promote the use of evidence-based…

  13. Beyond fluid intelligence and personality traits in social support: The role of ability based emotional intelligence

    Directory of Open Access Journals (Sweden)

    Annamaria eDi Fabio

    2015-04-01

    Full Text Available Social support represents an important individual resource that has been associated with multiple indices of adaptive functioning and resiliency. Existing research has also identified an association between emotional intelligence (EI and social support. The present study builds on prior research by investigating the contributions of ability based emotional intelligence to social support, beyond the effects of fluid intelligence and personality traits. The Advanced Progressive Matrices (APM, the Big Five Questionnaire (BFQ, the Mayer Salovey Caruso Emotional Intelligence test (MSCEIT, and the Multidimensional scale of Perceived Social Support (MSPSS were administered to 149 Italian high school students. The results showed that ability based EI added significant incremental variance in explaining perceived social support, beyond the variance due to fluid intelligence and personality traits. The results underline the role of ability based emotional intelligence in relation to perceived social support. Since ability based emotional intelligence can be increased through specific training, the results of the present study highlight new possibilities for research and intervention in a preventive framework.

  14. Self-reconfigurable ship fluid-network modeling for simulation-based design

    Science.gov (United States)

    Moon, Kyungjin

    Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models

  15. Plastic variational principle based on the least work consumption principle

    Institute of Scientific and Technical Information of China (English)

    唐松花; 罗迎社; 周筑宝; 王智超

    2008-01-01

    Plastic variational principles are foundation to solve the boundary-value problems of plastic mechanics with the variational method(or energy method) and finite element method.The most convenient way of establishing different kinds of variational principles is to set up the extreme principle related to the studied problem.Based on a general new extreme principle-the Least work consumption principle,the variational principles of the rigid-plastic and rigid-viscoplastic material were derived.In comparison with existing methods,the method in this paper is more clear and direct,and the physical meaning is clear-cut.This method can offer a new way for establishing other kinds of variational principles.

  16. Facilitated Work Based Learning - analyseret i et pragmatisk perspektiv

    DEFF Research Database (Denmark)

    Thomassen, Anja Overgaard

    Ph.d.-afhandlingen behandler, med afsæt i John Deweys (1859-1952) pragmatisme, Facilitated Work Based Learning (FWBL) der er en tilgang til efter/videreuddannelse. På baggrund af konkrete uddannelsesforløb gennemført ud fra FWBL analyseres de udfordringer der opstår omkring gennemførelse af...... samarbejde mellem virksomhed og universitet. Især rettes blikket mod den udfordring, at uddannelsesforløbet gennemføres i en virksomhedskontekst og ikke på en uddannelsesinstitution. Ligeledes behandles det, hvilke udfordringer der kan opstå, når personer med forskellige erfaring og erhvervsmæssig baggrund...

  17. A study of the variation of physical conditions in the cometary coma based on a 3D multi-fluid model

    Science.gov (United States)

    Shou, Y.; Combi, M. R.; Fougere, N.; Tenishev, V.; Toth, G.; Gombosi, T. I.; Huang, Z.; Jia, X.; Bieler, A. M.; Hansen, K. C.

    2015-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. One example is Direct Simulation Monte Carlo (DSMC) method, which has been successfully adopted to simulate the coma under various complex conditions. However, for bright comets with large production rates, the time step in DSMC model has to be tiny to accommodate the small mean free path and the high collision frequency. In addition a truly time-variable 3D DSMC model would still be computationally difficult or even impossible under most circumstances. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which can serve as a useful alternative to DSMC methods to compute both the inner and the outer coma and to treat time-variable phenomena. This model treats H2O, OH, H2, O, H and CO2 as separate fluids and each fluid has its own velocity and temperature. But collisional interactions can also couple all fluids together. Collisional interactions tend to decrease the velocity differences and are also able to re-distribute the excess energy deposited by chemical reactions among all species. To compute the momentum and energy transfer caused by such interactions self-consistently, collisions between fluids, whose efficiency is proportional to the densities, are included as well as heating from various chemical reactions. By applying the model to comets with different production rates (i.e. 67P/Churyumov-Gerasimenko, 1P/Halley, etc.), we are able to study how the heating efficiency varies with cometocentric distances and production rates. The preliminary results and comparison are presented and discussed. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  18. Computation of stress distribution in a mixed flow pump based on fluid-structure interaction analysis

    Science.gov (United States)

    Hu, F. F.; Chen, T.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    The internal flow evolution of the pump was induced with impeller movement. In various conditions, the peak load on centrifugal blade under the change of rotational speed or flow rate was also changed. It would cause an error when inertia load with a safety coefficient (that was difficult to ascertain) was applied in structure design. In order to accurately analyze the impeller stress under various conditions and improve the reliability of pump, based on a mixed flow pump model, the stress distribution characteristic was analyzed under different flow rates and rotational speeds. Based on a three-dimensional calculation model including impeller, guide blade, inlet and outlet, the three-dimension incompressible turbulence flow in the centrifugal pump was simulated by using the standard k-epsilon turbulence model. Based on the sequentially coupled simulation approach, a three-dimensional finite element model of impeller was established, and the fluid-structure interaction method of the blade load transfer was discussed. The blades pressure from flow simulation, together with inertia force acting on the blade, was used as the blade loading on solid surface. The Finite Element Method (FEM) was used to calculate the stress distribution of the blade respectively under inertia load, or fluid load, or combined load. The results showed that the blade stress changed with flow rate and rotational speed. In all cases, the maximum stress on the blade appeared on the pressure side near the hub, and the maximum static stress increased with the decreasing of the flow rate and the increasing of rotational speed. There was a big difference on the static stress when inertia load, fluid load and combined loads was applied respectively. In order to more accurately calculate the stress distribution, the structure analysis should be conducted due to combined loads. The results could provide basis for the stress analysis and structure optimization of pump.

  19. Numerical analysis of splashing fluid with hybrid approach of mesh-based and particle-based algorithms

    International Nuclear Information System (INIS)

    This study is concerned with extension of numerical code called CRIMSON (Civa RefIned Multiphase SimulatiON), which has been developed to evaluate multi-phase flow behaviors based on the recent CFD (computational fluid dynamics) techniques. The CRIMSON employs a finite-volume method combined with the high order interpolation scheme, CIVA (cubic-interpolation with area/volume coordinates). The CRIMSON solves gas-liquid two phases by a unified scheme of CUP (combined unified procedure). The conventional CIVA method has a problem of loosing interface sharpness in long-term calculation. In this study, the problem was solved by introducing the idea of the phase field method. For numerical analyzing splashing fluid, we also introduced the SPH particle method to the CRIMSON. (author)

  20. Quality of Work and Team- and Project Based Work Practices in Engineering

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2015-01-01

    It is the aim of this paper to investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals and eventually their quality of work. The paper investigates how professional engineering...... ractices are enacted in two engineering consultancy companies in Denmark where ‘teamwork’ has been or is an ideal for organizing work....

  1. Fluid-structure interaction-based biomechanical perception model for tactile sensing.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the object's material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid-structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures.

  2. [Separation of enantiomers by supercritical fluid chromatography on polysaccharide derivative-based chiral stationary phases].

    Science.gov (United States)

    Li, Dongyan; Wu, Xi; Hao, Fangli; Yang, Yang; Chen, Xiaoming

    2016-01-01

    Eleven kinds of chiral compounds have been well separated within 10 min on polysaccharide derivative-based chiral stationary phases named Chiralpak IA, IB, IC, ID, IE and IF by supercritical fluid chromatography (SFC). The chiral recognition of these chiral compounds has demonstrated good complementary enantioselectivities of the six chiral columns, which were proved to be useful for chiral SFC. Both the elution time and enantioselectivies could be significantly affected by the modifier types and their concentrations, such as methanol, ethanol and isopropanol, which should be optimized during the experiments. In addition, the solvent versatility of the immobilized chiral stationary phase on the optimization of the chiral separation was helpful. PMID:27319169

  3. Double-negative acoustic metamaterials based on quasi-two-dimensional fluid-like shells

    International Nuclear Information System (INIS)

    A structured cylindrical scatterer with low-frequency resonances in both the effective bulk modulus and the dynamical mass density is designed and characterized. The proposed scattering unit is made of a rigid cylinder surrounded by a fluid-like shell embedded in a two-dimensional waveguide of height less than the length of the cylindrical scatterer. It is demonstrated that the acoustic metamaterials based on this building unit have negative acoustic parameters in a broad range of frequencies. It is also shown that double-negative behavior can be tailored by adjusting the dimensions and properties of the materials forming the structured scattering unit. (paper)

  4. Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid

    OpenAIRE

    Öztürk, Hande; Acar, Funda Havva Yağcı; Şeşen, Muhsincan; Tekşen, Yiğit; Mengüç, M. Pınar; Koşar, Ali

    2012-01-01

    Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid Muhsincan een, Yiit Teken, Kürat endur, M. Pnar Mengüç, Hande Öztürk, H. F. Yac Acar, and Ali Koar Citation: Journal of Applied Physics 112, 064320 (2012); doi: 10.1063/1.4752729 View online: http://dx.doi.org/10.1063/1.4752729 View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/112/6?ver=pdfcov Published by the AIP Publishing Articles you may be interested in...

  5. Computational Fluid Dynamics Based Bulbous Bow Optimization Using a Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Shahid Mahmood; Debo Huang

    2012-01-01

    Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship.With the development of fast computers and robust CFD software,CFD has become an important tool for designers and engineers in the ship industry.In this paper,the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool.CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters,automatic generation of mesh,automatic analysis of fluid flow to calculate the required objective/cost function,and finally an optimization tool to evaluate the cost for optimization.In this paper,integration of a genetic algorithm program,written in MATLAB,was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT.Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters.These design variables were optimized to achieve a minimum cost function of “total resistance”.Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.

  6. Idiopathic cerebrospinal fluid overproduction: case-based review of the pathophysiological mechanism implied in the cerebrospinal fluid production.

    Science.gov (United States)

    Trevisi, Gianluca; Frassanito, Paolo; Di Rocco, Concezio

    2014-08-28

    Cerebrospinal fluid (CSF) overproduction results from either CSF infection or choroid plexus hypertrophy or tumor, with only a single idiopathic case described so far. We report a unique case of a male infant with Crouzon syndrome who presented with intracranial hypertension, caused by up to 4-fold increase in CSF daily production. Conditions related to CSF overproduction, namely central nervous system infections and choroid plexus hypertrophy or tumor, were ruled out by repeated magnetic resonance imaging and CSF samples. Medical therapy failed to reduce CSF production and the patient underwent several shunting procedures, cranial expansion, and endoscopic coagulation of the choroid plexus. This article thoroughly reviews pertinent literature on CSF production mechanisms and possible therapeutic implications. PMID:25165051

  7. In situ Raman-based detections of the hydrothermal vent and cold seep fluids

    Science.gov (United States)

    Zhang, Xin; Du, Zengfeng; Zheng, Ronger; Luan, Zhendong; Qi, Fujun; Cheng, Kai; Wang, Bing; Ye, Wangquan; Liu, Xiaorui; Chen, Changan; Guo, Jinjia; Li, Ying; Yan, Jun

    2016-04-01

    Hydrothermal vents and cold seeps, and their associated biological communities play an important role in global carbon and sulphur biogeochemical cycles. Most of the studies of fluid composition geochemistry are based on recovered samples, both with gas-tight samplers and as open specimens, but the in situ conditions are difficult to maintain in recovered samples. Determination in situ of the chemical signals of the emerging fluids are challenging due to the high pressure, often strongly acidic and temperature in which few sensors can survive. Most of those sensors used so far are based on electrochemistry, and can typically detect only a few chemical species. Here we show that direct measurement of critical chemical species of hydrothermal vents and cold seeps can be made rapidly and in situ by means of a new hybrid version of earlier deep-sea pore water Raman probe carried on the ROV (Remote Operated Vehicle) Faxian. The fluid was drawn through the probe by actuating a hydraulic pump on the ROV, and measured at the probe optical cell through a sapphire window. We have observed the concentrations of H2S, HS-, SO42-, HSO4-, CO2, and H2 in hydrothermal vent fluids from the Pacmanus and Desmos vent systems in the Manus back-arc basin, Papua New Guinea. Two black smokers (279° C and 186° C) at the Pacmanus site showed the characteristic loss of SO42-, and the increase of CO2 and well resolved H2S and HS- peaks. At the white smoker of Onsen site the strong HSO4-peak observed at high temperature quickly dropped with strong accompanying increase of SO42-and H2 peaks when the sample contained in the Raman sensing cell was removed from the hot fluid due to rapid thermal deprotonation. We report here also the finding of a new lower temperature (88° C) white smoker "Kexue" field at the Desmos site with strong H2S, HS- and CO2 signals. We also have detected the concentrations of CH4,H2S, HS-, SO42-, and S8 in cold seep fluids and the surrounding sediment pore water from

  8. BDFGEOTHERM - A Swiss geothermal fluids database; BDFGEOTHERM - Base de donnees des fluides geothermiques de la Suisse - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Sonney, R.; Vuataz, F.-D.

    2007-07-01

    The motivation to build up the database BDFGeotherm was to put at the disposal of the geothermal community a comprehensive set of data on the deep fluids of Switzerland and of some neighbouring areas. Researchers, engineers and all persons wanting to know the type and properties of geothermal fluids existing in a given area or underground system can find in BDFGeotherm a wealth of information which are generally widely dispersed and often difficult to reach. The BDFGeotherm database has been built under Microsoft ACCESS code and consists of nine tables connected with a primary key: the field 'Code'. A selection of parameters has been chosen from the following fields: general and geographical description, geology, hydrogeology, hydraulics, hydrochemistry and isotopes and finally geothermal parameters. Data implemented in BDFGeotherm are in numerical or in text format. Moreover, in the field 'Lithological log', one can visualize and save bitmap images containing lithological logs of boreholes. A total of 203 thermal springs or deep boreholes from 82 geothermal sites are implemented in BDFGeotherm. Among the 68 Swiss sites, a large majority of them are located in the northern part of the Jura range and in the upper Rhone valley (Wallis). Some sites, in Germany (5), France (3) and Italy (6), were selected for the following reasons: located near Swiss hot springs or deep boreholes, having similar geological features or representing a significant geothermal potential. Many types of queries could be realised, using any fields of the database and the results can be put into tables and printed or exported and saved in other files. (author)

  9. Correlation of cutting fluid performance in different machining operations

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Belluco, Walter

    2001-01-01

    An analysis of cutting fluid performance in different metal cutting operations is presented, based on experimental investigations in which type of operation, performance criteria, work material, and fluid type are considered. Cutting fluid performance was evaluated in turning, drilling, reaming a...

  10. FAT3D- An OECD/NEA benchmark on thermal fatigue in fluid mixing areas - CSNI integrity and ageing working group

    International Nuclear Information System (INIS)

    Thermal cycling is a widespread and recurring problem in nuclear power plants worldwide. Several incidents with leakage of primary water inside the containment challenged the integrity of nuclear power plants although no release outside of containment occurred. Thermal cycling was not taken into account at the design stage. Regulatory bodies, utilities and researchers have to address it for their operating plants. Thermal fatigue in a fluid mixing area is a well-known phenomenon that has already been studied in the past. Generally, this phenomenon is linked to turbulent mixing of two fluids at two different temperatures and creates 'elephant skin' type damage at the inner surface of the component and some cracks, which remain relatively small, compared to the thickness of the structure. However, this kind of fatigue damage can create cracks that propagate through the entire wall thickness. Some experts consider that 3D thermo-mechanical loading is a major factor influencing crack propagation through the thickness. This factor is linked to the complex thermal hydraulic loading and has an impact on the stress distribution in the structure and the damage or crack propagation estimates. For this reason an R and D program, based on a test and numerical interpretations, was launched by IRSN and conducted by CEA to quantify experimentally the influence of the 3D aspects on crack initiation and propagation. The main objective was to work on a configuration with a 3D thermal load easy enough to reproduce using numerical simulations, so that accurate mechanical studies could be carried out and assessment methodologies be validated or modified. Under the auspices of the OECD/NEA Committee for the Safety of Nuclear Installations (CSNI) and its Working Group on Integrity of Components and Structures (IAGE), a benchmark was launched in 2002. Seven organisations from four countries contributed to this effort aiming at comparing different approaches used for mechanical assessment

  11. A Longitudinal Study of Higher-Order Thinking Skills: Working Memory and Fluid Reasoning in Childhood Enhance Complex Problem Solving in Adolescence

    Directory of Open Access Journals (Sweden)

    Samuel eGreiff

    2015-07-01

    Full Text Available Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving. Importantly, few studies have employed higher-order thinking skills such as Complex Problem Solving (CPS as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex. We assessed working memory and fluid reasoning at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students’ CPS performance 3 years later as a developmental outcome (N= 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male. Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that fluid reasoning was a strong predictor of both CPS dimensions, whereas working memory exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves fluid reasoning and, to a lesser extent, working memory in childhood, and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence.

  12. Research on Working Process Characteristic of Claw Type Fluid Machinery%爪式流体机械工作过程特性研究

    Institute of Scientific and Technical Information of China (English)

    王君; 刘凯; 姜希彤; 由兆举

    2012-01-01

    A special working process of claw type fluid machinery suction was defined as mixture process, and its working processes, including suction, compression, discharge and mixed process, were analyzed. The changing relation of volume, pressure and temperature varied with shaft rotation angle were investigated, and the rule of resistance moment of claw type rotor in working process was obtained. The study content will help to improve the design and the performance of the claw type fluid machinery.%将爪式流体机械所特有的一个工作过程定义为混合过程,分析了爪式流体机械工作全过程包括吸气、压缩、排气和混合过程的工作特性,讨论了工作过程中容积、压力和温度等状态参数随主轴转角间的变化关系;并得到了爪式转子在工作过程中的所受的阻力矩的变化规律.研究内容有助于爪式转子的型线设计和性能提高.

  13. Maximum power output of a class of irreversible non-regeneration heat engines with a non-uniform working fluid and linear phenomenological heat transfer law

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Maximum power output of a class of irreversible non-regeneration heat engines with non-uniform working fluid,in which heat transfers between the working fluid and the heat reservoirs obey the linear phenomenological heat transfer law [q ∝Δ(T-1)],are studied in this paper. Optimal control theory is used to determine the upper bounds of power of the heat engine for the lumped-parameter model and the distributed-parameter model,respectively. The results show that the maximum power output of the heat engine in the distributed-parameter model is less than or equal to that in the lumped-parameter model,which could provide more realistic guidelines for real heat engines. Analytical solutions of the maximum power output are obtained for the irreversible heat engines working between constant temperature reservoirs. For the irreversible heat engine operating between variable temperature reservoirs,a numerical example for the lumped-parameter model is provided by numerical calculation. The effects of changes of reservoir’s temperature on the maximum power of the heat engine are analyzed. The obtained results are,in addition,compared with those obtained with Newtonian heat transfer law [q ∝Δ(T)].

  14. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy.

    Science.gov (United States)

    Saleh, B

    2016-09-01

    The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters. PMID:27489732

  15. Rule-Based Multidisciplinary Tool for Unsteady Reacting Real-Fluid Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loci-STREAM is a CFD-based, multidisciplinary, high-fidelity design and analysis tool resulting from Phase I work whose objectives were: (a) to demonstrate the...

  16. Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location, Location, Location

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Paul [Gas Equipment Engineering Corp., Milford, CT (United States); Selman, Nancy [Gas Equipment Engineering Corp., Milford, CT (United States); Volpe, Anthony Della [Gas Equipment Engineering Corp., Milford, CT (United States); Moss, Deborah [Gas Equipment Engineering Corp., Milford, CT (United States); Mobley, Rick [Plasma Energy Services, LLC, Putnam, CT (United States); Dickey, Halley [Turbine Air Systems, Houston, TX (United States); Unruh, Jeffery [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Hitchcock, Chris [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Tanguay, Jasmine [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Larsen, Walker [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Sanyal, Sabir [GeothermEx, Inc., San Pablo, CA (United States); Butler, Steven [GeothermEx, Inc., San Pablo, CA (United States); Stacey, Robert [GeothermEx, Inc., San Pablo, CA (United States); Robertson-Tait, Ann [GeothermEx, Inc., San Pablo, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gutoski, Greg [Fairbanks Morse Engines (FME), Beloit, WI (United States); Fay, Jamie M. [Fort Point Associates, Boston, MA (United States); Stitzer, John T. [Fort Point Associates, Boston, MA (United States); Oglesby, Ken [Impact Technologies LLC, Tulsa, OK (United States)

    2012-04-30

    Substantial unexploited opportunity exists for the US, and the world, in Enhanced Geothermal Systems (EGS). As a result of US DOE investment, new drilling technology, new power generation equipment and cycles enable meaningful power production, in a compact and modular fashion; at lower and lower top side EGS working fluid temperatures and in a broader range of geologies and geographies. This cost analysis effort supports the expansion of Enhanced Geothermal Systems (EGS), furthering DOE strategic themes of energy security and sub goal of energy diversity; reducing the Nation's dependence on foreign oil while improving the environment.

  17. Experimental test of MR fluid based tactile device for minimally invasive surgery

    Science.gov (United States)

    Oh, Jong-Seok; Kim, Jin-Kyu; Choi, Seung-Bok

    2013-04-01

    Recently, it is very popular in modern medical industry to adopt robotic technology such as robotic minimally invasive surgery (RMIS). Compared with open surgery, the RMIS needs the robot to perform surgery through the usage of long surgical instruments that are inserted through incision points. This causes the surgeon not to feel viscosity and stiffness of the tissue or organ. So, for the tactile recognition of human organ in RMIS, this work proposes a novel tactile device that incorporates with magnetorheological (MR) fluid. The MR fluid is fully contained by diaphragm and several pins. By applying different magnetic field, the operator can feel different force from the proposed tactile device. In order to generate required force from the device, the repulsive force of human body is firstly measured as reference data and an appropriate size of tactile device is designed. Pins attached with the diaphragm are controlled by shape-memory-alloy (SMA). Thus, the proposed tactile device can realize repulsive force and shape of organ. It has been demonstrated via experiment whether the measured force can be achieved by applying proper control input current. In addition, psychophysical experiments are conducted to evaluate performance on the tactile rendering of the proposed tactile device. From these results, the practical feasibility of the tactile device is verified.

  18. Performance Comparison and Selection of Transformer Fluid

    OpenAIRE

    Lu Yang; Liu Shi Jia

    2016-01-01

    Transformer fluid directly affects the working state of the components and the cooling efficiency of transformer. There are three kinds of transformer fluid used for electric locomotive, EMU and suburban rail vehicles: mineral oil, silicone liquid and synthetic ester based insulating oil. In this paper, the three kinds of oil are compared from the fire safety, environmental protection, reliability and low maintenance. It provides a strong basis for the selection of transformer fluid. By compr...

  19. All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding

    International Nuclear Information System (INIS)

    An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of single-mode fibers and uses magnetic fluid (MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator’s temporal response on the working wavelength, the magnetic field strength (H), and the MF’s concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator. (paper)

  20. Reflexive Professionalism as a Second Generation of Evidence-Based Practice: Some Considerations on the Special Issue "What Works? Modernizing the Knowledge-Base of Social Work"

    Science.gov (United States)

    Otto, Hans-Uwe; Polutta, Andreas; Ziegler, Holger

    2009-01-01

    This article refers sympathetically to the thoughtful debates and positions in the "Research on Social Work Practice" ("RSWP"; Special Issue, July, 2008 issue) on "What Works? Modernizing the Knowledge-Base of Social Work." It highlights the need for empirical efficacy and effectiveness research in social work and appreciates empirical rigor…

  1. Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory.

    Science.gov (United States)

    Fakhrabadi, Mir Masoud Seyyed; Rastgoo, Abbas; Ahmadian, Mohammad Taghi

    2013-01-01

    The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes.

  2. Evolutionary Prisoner's Dilemma Game Based on Division of Work

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Hua; WANG Bing-Hong; LIU Run-Ran; YANG Han-Xin

    2009-01-01

    We propose a new two-type-player prisoner's dilemma game based on the division of work on a square lattice, in which a fraction of the population μ are assigned type A and the rest B.In a one-shot two-player game, we let both of their original payoffs be scaled by a same multiplicative factor α > 1, if two neighboring players are of different types; however we leave the payoffs unchanged if they are of the same type.Then we show that combined with the two-type setup, the square lattice can assist to induce different social ranks according to players' abilities to collect payoffs.Simulation results show that the density of cooperation is significantly promoted for a wide range of the temptation to defection parameters and that there are optimal values for both α and μ leading to the maximal cooperation level.We reach these results by analyzing the distribution of the players in the social ranks and we also show some typical snapshots of the system.

  3. Magnetorheological fluid based on submicrometric silica-coated magnetite particles under an oscillatory magnetic field

    Science.gov (United States)

    Agustín-Serrano, R.; Donado, F.; Rubio-Rosas, E.

    2013-06-01

    An experimental study conducted on the rheological properties of a magnetorheological fluid based on submicrometric silica-coated magnetite particles dispersed in silicone oil is presented. We investigated the rheological behaviour when the system is simultaneously exposed to a static field and a sinusoidal field used as a perturbation. The results show that the perturbation modifies the rheological behaviour of the system and can be used to control its physical properties; however, the changes that are induced are smaller than expected from previous results for the aggregation of particles under magnetic perturbations. We discussed this difference in terms of the ratio between the magnetic energy and the thermal energy. We observed that a threshold magnetic field exists; below it, the yield stress is practically zero, whereas above it, the yield stress grows quickly. We discuss this result in terms of a model based on chain length distribution.

  4. Magnetic-field sensor based on core-offset tapered optical fiber and magnetic fluid

    International Nuclear Information System (INIS)

    A magnetic field sensor based on an asymmetrical fiber modal Mach–Zehnder interferometer (MMZI) is achieved by cascading tapered fiber with the core-offset structure. The MMZI is sealed by the magnetic fluid and its spectral dependence on magnetic field has been investigated. The results show that the transmission variations of the two dips are about 8 dB and 10 dB for a magnetic intensity range from 0 Oe to 400 Oe, respectively. The highest magnetic sensitivity reaches 0.03407 dB Oe−1. The proposed sensor based on the intensity demodulation is cost-effective and robust; therefore, the device is beneficial to the magnetic field sensing applications and other magneto-optical tunable photonics devices. (paper)

  5. Halide based shock-wave treatment of fluid-rich natural phases

    Science.gov (United States)

    Schlothauer, T.; Schimpf, C.; Brendler, E.; Keller, K.; Kroke, E.; Heide, G.

    2015-11-01

    For the synthesis of high pressure phases from natural minerals and the shock wave treatment of fluid bearing phases a halide based method was developed. The experiments were performed in the pressure range between 25 and 162 GPa with a success rate for the new method of 100% for the new method. Based on the Impedance Corrected Sample Recovery Capsule under avoiding the adiabatic decompression a direct comparison between different loading paths and sample holder geometries is possible. The recovered samples show neither indications of melting in the case of kaolinite and very limited degassing in the case of carbonates. The recovery of amorphous water bearing Al-Si-phases with Aluminum in four-, five- and six-fold coordination was possible. The samples were analyzed with scanning electron microscopy, x-ray diffraction, nuclear-magnetic-resonance- and infra-red-spectroscopy and the results were directly compared.

  6. Heat, work and subtle fluids: a commentary on Joule (1850) ‘On the mechanical equivalent of heat’

    Science.gov (United States)

    Young, John

    2015-01-01

    James Joule played the major role in establishing the conservation of energy, or the first law of thermodynamics, as a universal, all-pervasive principle of physics. He was an experimentalist par excellence and his place in the development of thermodynamics is unarguable. This article discusses Joule's life and scientific work culminating in the 1850 paper, where he presented his detailed measurements of the mechanical equivalent of heat using his famous paddle-wheel apparatus. Joule's long series of experiments in the 1840s leading to his realisation that the conservation of energy was probably of universal validity is discussed in context with the work of other pioneers, notably Sadi Carnot, who effectively formulated the principle of the second law of thermodynamics a quarter of a century before the first law was accepted. The story of Joule's work is a story of an uphill struggle against a critical scientific establishment unwilling to accept the mounting evidence until it was impossible to ignore. His difficulties in attracting funding and publishing in reputable journals despite the quality of his work will resonate with many young scientists and engineers of the present day. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750152

  7. Modeling of Artificial Neural Network for Predicting Specific Heat capacity of working fluid LiBr-H2O used in Vapor Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Dheerendra Vikram Singh

    2011-05-01

    Full Text Available The objective of this work is to model an artificial neural network (ANN to predict the value of specific heat capacity of working fluid LiBr-H2O used in vapour absorption refrigeration systems. A feed forward back propagation algorithm is used for the network, which is most popular for ANN. The consistence between experimental and ANN’s approach result was achieved by a mean relative error -0.00573, sum of the squares due to error0.00321, coefficient of multiple determination R-square 0.99961and root mean square error 0.01573 for test data. These results had been achieved in Matlab environment and the use of derived equations in any programmable language for deriving the specific heat capacity of LiBr-H2O solution.

  8. Out of the Comfort Zone: Enhancing Work-Based Learning about Employability through Student Reflection on Work Placements

    Science.gov (United States)

    Eden, Sally

    2014-01-01

    This paper examines the work-based learning about employability reported by 26 undergraduate Geography and Environmental Management students on part-time, unpaid work placements. The students' "reflective essays" emphasized their learning more in terms of emotional challenges than in terms of skills, as being pushed out of their…

  9. Mixing and turbulent mixing in fluids, plasma and materials: summary of works presented at the 3rd International Conference on Turbulent Mixing and Beyond

    Science.gov (United States)

    Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.

    2013-07-01

    was held in the summer of 2011 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. The papers are arranged by TMB themes, and within each theme they are ordered alphabetically by the last name of the first author. The collection includes regular research papers, a few research briefs and review papers. The review papers are published as 'Comments' articles in Physica Scripta . Canonical turbulence and turbulent mixing. Six papers are devoted to canonical turbulence and turbulent mixing. Baumert presents a theory of shear-generated turbulence, which is based on a two-fluid concept. Gampert et al investigate the problem of adequate representation of turbulent structures by applying a decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain. Paul and Narashima consider the dynamics of a temporal mixing layer using a vortex sheet model. Schaefer et al analyse the joint statistics and conditional mean strain rates of streamline segments in turbulent flows. Sirota and Zybin deepen their discussion of the connection between Lagrangian and Eulerian velocity structure functions in hydrodynamic turbulence. Talbot et al investigate the heterogeneous mixing by considering gases of very nearly equal densities and very different viscosities. Wall-bounded flows. Three papers are dedicated to wall-bounded flows. Mok et al use the Bayesian spectral density approach to identify the dominant free surface fluctuation frequency downstream of an oscillating hydraulic jump. Tejada-Martinez et al employ large eddy numerical simulations to study wind-driven shallow water flows with and without full-depth Langmuir circulation (parallel counter rotating vortices). Wu et al re-evaluate the Karman constant based on a multi-layer analytical theory of Prandtl's mixing length function. Non-equilibrium processes. This theme is represented by two papers. Chasheckhin and Zagumennyi consider non-equilibrium processes

  10. Iron and Cobalt-based magnetic fluids produced by inert gas condensation

    International Nuclear Information System (INIS)

    Iron and cobalt nanoparticle fluids have been prepared by inert-gas condensation into an oil/surfactant mixture. Superparamagnetic iron fluids (mean particle size=11.6±0.4 nm) and ferromagnetic cobalt fluids (mean particle size=51.6±3.4 nm) produced by this technique are promising candidates for magnetic targeting and hyperthermia applications

  11. A process using gellane as a filtrate reducer for water-based drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Dreveton, E.; Lecourtier, J.; Ballerini, D.; Choplin, L.

    1995-06-30

    In order to reduce the filtrate quantity (i.e. drilling fluid filtration losses in porous or cleaved rocks), a certain quantity of gellane is added to the fluid (preferentially native gellane) to control the permeability of the well walls. Viscosity of the fluid is controlled mainly by the addition of polymers such as xanthane, scleroglucane or wellane.

  12. Electricity from MHD, 1968. Vol. II. Closed-Cycle MHD with Gaseous Working Fluids. Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation

    International Nuclear Information System (INIS)

    Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation held by the IAEA at Warsaw, 24-30 July 1968. The meeting was attended by some 300 participants from 21 countries and three international organizations. In contrast to the Symposium held two years ago, much more emphasis was placed on the economic aspects of using MHD generators in large-scale power generation. Among closed- cycle systems, the prospects of linking an ultra-high-temperature reactor with an MHD generator were explored, and the advantages gained by having a liquid-metal generator as a 'topper' in a conventional steam generating plant were presented. Comments were made about the disproportionate effect of end and boundary conditions in experimental MHD generators on the main plasma parameters, and estimates were made of the interrelationship to be expected in real generators. The estimates will have to await confirmation until results are obtained on large-scale prototype MHD systems. Progress in materials research, in design and construction of auxiliary equipment such as heat exchangers, supercooled magnets (which are- now commercially available), etc., is accompanied by sophisticated ideas of plant design. The Proceedings are complemented by three Round Table Discussions in which chosen experts from various countries discuss the outlook for closed-cycle gas, closed-cycle liquid-metal and open-cycle MHD, and give their views as to the most fruitful course to follow to achieve economic full-scale power generation. Contents: (Vol. I) 1. Closed-Cycle MHD with Gaseous Working Fluids: (a) Diagnostics (3 papers); (b) Steady-state non-equilibrium ionization (8 papers); (c) Transient non-equilibrium ionization (7 papers); (d) Pre-ionization and gas discharge (4 papers); (e) Fields and flow in MHD channels (10 papers); (0 Instabilities (8 papers); (g) Generator design and performance studies (6 papers); (Vol. II) (h) Shock waves (6 papers); (i) Power generation experiments (13 papers

  13. Computational evaluation of intraventricular pressure gradients based on a fluid-structure approach.

    Science.gov (United States)

    Redaelli, A; Montevecchi, F M

    1996-11-01

    The dynamics of intraventricular blood flow, i.e. its rapid evolution, implies the rise of intraventricular pressure gradients (IPGs) characteristic of the inertia-driven events as experimentally observed by Pasipoularides (1987, 1990) and by Falsetti et al. (1986). The IPG time course is determined by the wall contraction which, in turn, depends on the load applied, namely the intraventricular pressure which is the sum of the aortic pressure (i.e., the systemic net response) and the IPG. Hence the IPGs account, at least in part, for the wall movement. These considerations suggest the necessity of a comprehensive analysis of the ventricular mechanics involving both ventricular wall mechanics and intraventricular fluid dynamics as each domain determines the boundary conditions of the other. This paper presents a computational approach to ventricular ejection mechanics based on a fluid-structure interaction calculation for the evaluation of the IPG time course. An axisymmetric model of the left ventricle is utilized. The intraventricular fluid is assumed to be Newtonian. The ventricle wall is thin and is composed of two sets of counter-rotating fibres which behave according to the modified version of Wong's sarcomere model proposed by Montevecchi and Pietrabissa and Pietrabissa et al. (1987, 1991). The full Navier-Stokes equations describing the fluid domain are solved using Galerkin's weighted residual approach in conjunction with finite element approximation (FIDAP). The wall displacement is solved using the multiplane quasi-Newton method proposed by Buzzi Ferraris and Tronconi (1985). The interaction procedure is performed by means of an external macro which compares the flow fields and the wall displacement and appropriately modifies the boundary conditions to reach the simultaneous and congruous convergence of the two problems. The results refer to a simulation of the ventricular ejection with a heart rate of 72 bpm. In this phase the ventricle ejects 61 cm3

  14. Investigations of microscale fluid-thermal phenomena based on the deterministic Boltzmann-ESBGK model

    Science.gov (United States)

    Guo, Xiaohui

    physical space is discretized in Cartesian coordinate, while the velocity space is discretized in polar coordinate. The Gaussian-Hermite quadrature is applied to the velocity magnitude. Boundary conditions including temperature, pressure, symmetry as well as far-field are implemented. The interfacial gas-phonon coupling is solved based on conservations of mass, momentum and energy. Good agreements have been obtained from comparisons of current simulations with other numerical models, analytical solutions and experimental data for benchmark cases. The work on temperature-driven microflows includes two major parts: contact thermal resistance over constrictions and thermal transpiration flows in a closed system. The verification of heat transfer at gas-solid surfaces is conducted by comparison with theoretical solutions, where the infinite thin constrictions are considered. For finite constrictions, the heat flux through the interface can be much less than analytical predictions. The coupling effects in thermal transpiration flows can not be ignored when gas flows are in transitional and free-molecular regimes. The effective temperature gradient should be calculated using the wall temperatures at the entrance and exit of the channel, which are different from the temperatures at the inlet and outlet chamber. In addition, when the phonon mean-free-path becomes comparable to the membrane thickness, the assumption for linear wall temperature distribution becomes invalid. The deterministic Boltzmann solver has been also applied to micro-scale aerodynamic damping problems. Based on fifty simulations over a broad range of Knudsen number and geometry, a compact model in the form of a rational function is generated. The fitting is examined by various statistical criteria. The developed compact model is accurate for cantilever/squeeze-film damping problems with small amplitude vibrations by comparison with experimental measurements with various geometries and flow conditions. The

  15. Torsional Vibration Semiactive Control of Drivetrain Based on Magnetorheological Fluid Dual Mass Flywheel

    Directory of Open Access Journals (Sweden)

    Qing-hua Zu

    2015-01-01

    Full Text Available The damping characteristics of the traditional dual mass flywheel (DMF cannot be changed and can only meet one of the damping requirements. Given that the traditional DMF cannot avoid the resonance interval in start/stop conditions, it tends to generate high-resonance amplitude, which reduces the lifetime of a vehicle’s parts and leads to vehicle vibration and noise. The problems associated with the traditional DMF can be solved through the magnetorheological fluid dual mass flywheel (MRF-DMF, which was designed in this study with adjustable damping performance under different conditions. The MRF-DMF is designed based on the rheological behavior of the magnetorheological fluid (MRF, which can be changed by magnetic field strength. The damping torque of the MRF-DMF, which is generated by the MRF effect, is derived in detail. Thus, the cosimulation between the drivetrain model built in AMESim and the control system model developed in Simulink is conducted. The controller of MRF-DMF is developed, after which the torsional vibration control test of drivetrain is carried out. The cosimulation and test results indicate that MRF-DMF with the controller effectively isolates torque fluctuation of the engine in the driving condition and exhibits high performance in suppressing the resonance amplitude in the start/stop conditions.

  16. NUMERICAL METHOD FOR MULTI-BODY FLUID INTERACTION BASED ON IMMERSED BOUNDARY METHOD

    Institute of Scientific and Technical Information of China (English)

    MING Ping-jian; ZHANG Wen-ping

    2011-01-01

    A Cartesian grid based on Immersed Boundary Method(IBM),proposed by the present authors,is extended to unstructured grids.The advantages of IBM and Body Fitted Grid(BFG)are taken to enhance the computation efficiency of the fluid structure interaction in a complex domain.There are many methods to generate the BFG,among which the unstructured grid method is the most popular.The concept of Volume Of Solid(VOS)is used to deal with the multi rigid body and fluid interaction.Each body surface is represented by a set of points which can be traced in an anti-clockwise order with the solid area on the left side of surface.An efficient Lagrange point tracking algorithm on the fixed grid is applied to search the moving boundary grid points.This method is verified by low Reynolds number flows in the range from Re =100 to 1 000 in the cavity with a moving lid.The results are in a good agreement with experimental data in literature.Finally,the flow past two moving cylinders is simulated to test the capability of the method.

  17. PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    J. RUBIN; L. SIVILS; A. BUSNAINA

    1999-07-01

    The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

  18. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure

    Directory of Open Access Journals (Sweden)

    Ji Xia

    2016-04-01

    Full Text Available Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas.

  19. Work Based Learning in Intercultural Settings: A Model in Practice

    Science.gov (United States)

    Leeming, David Elvis; Mora, Maria Dolores Iglesias

    2016-01-01

    The Intercultural Business Communication at the University of Central Lancashire offers a taught module with a work placement that exists within a multicultural context as part of an MA in Intercultural Business Communication. As part of this process, students must work towards completing two practical assessments, a project presented in a report…

  20. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  1. Performance Comparison of Single-Stage and Cascade Refrigeration Systems Using R134a as the Working Fluid

    OpenAIRE

    HOŞÖZ, Murat

    2005-01-01

    This study presents an experimental comparison of single-stage and cascade vapour-compression refrigeration systems using R134a as the refrigerant. The experimental plants employ a vapour-compression refrigeration cycle serving as a base unit, a cooling tower and another vapour-compression refrigeration cycle serving as a higher-temperature unit in the cascade operation. In the single-stage operation the condenser of the base unit was connected to the cooling tower, whereas in the ca...

  2. Performance Investigation of Automobile Radiator Operated with ZnFe2O4 Nano Fluid based Coolant

    Directory of Open Access Journals (Sweden)

    Tripathi Ajay

    2015-01-01

    Full Text Available The cooling system of an Automobile plays an important role in its performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. Water and ethylene glycol as conventional coolants have been widely used in radiators of an automotive industry for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, “nanofluids” have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the preparation of Zinc based nanofluids (ZnFe2O4 using chemical co-precipitation method and its application in an automotive cooling system along with mixture of ethylene glycol and water (50:50. Relevant input data, nanofluids properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nano fluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the base-fluid compared to ethylene glycol (i.e. base-fluid alone. It is observed that, about 78% of heat transfer enhancement could be achieved with the addition of 1% ZnFe2O4 particles in a base fluid at the Reynolds number of 84.4x103 and 39.5x103 for air and coolant respectively

  3. Water-based inhibitive drilling fluids for oil wells: preliminary study; Fluidos aquosos inibidos para perfuracao de pocos de petroleo: estudo preliminar

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Kassie V.; Amorim, Luciana V.; Silva, Aline R.V.; Ferreira, Heber C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    The aim of this work is to do formulations of water-based inhibitive drilling fluids and to evaluate their rheologic, filtration and lubrication properties and the degree of swell of clays. It was studied eight formulations containing the following additives: viscosity, filtered reducer, controlling of pH, hydratable clays inhibitors, anti-foamy, bactericide, lubricant and sealant. The fluids were prepared according to the field practice that consists of adding to water the additives under constant agitation. After 24 h resting, it was carried out a study of the rheologic behavior, in a Fann 35 A viscosimeter, and of the filtration properties in a Fann press-filter and of lubricity in a Ofite Lubricity tester through the determination of the flow curves, apparent and plastic viscosities, yield limit, gel force, filtered volume, filter-cake thickness and lubricity coefficient. It was also been essays to evaluate the capacity of inhibition of clay with the chemical inhibitors isolated and in set. The results had proven that the presence of inhibitor of clay in drilling fluids has great importance and promotes the inhibition of the swell of clay in all concentrations studied and amongst the formulations developed, six had presented performance next to the fluid Standard. (author)

  4. Age-related changes in electrophysiological and neuropsychological indices of working memory, attention control, and fluid intelligence

    Directory of Open Access Journals (Sweden)

    Carrie Brumback Peltz

    2011-08-01

    Full Text Available Older adults exhibit great variability in their cognitive abilities, with some maintaining high levels of performance on executive control tasks and others showing significant deficits. Previous event-related potential (ERP work has shown that some of these performance differences are correlated with persistence of the novelty/frontal P3 in older adults elicited by task-relevant events, presumably reflecting variability in the capacity to suppress orienting to unexpected but no longer novel events. In recent ERP work in young adults, we showed that the operation-span task (OSPAN, a measure of attention control is predictive of the ability of individuals to keep track of stimulus sequencing and to maintain running mental representations of task stimuli, as indexed by the parietally-distributed P300 (or P3b. Both of these phenomena reflect aspects of frontal function (cognitive flexibility and attention control, respectively. To investigate these phenomena we sorted both younger and older adults into low- and high-working memory spans and low- and high-cognitive flexibility subgroups, and examined ERPs during an equal-probability choice reaction-time task. For both age groups (a participants with high OSPAN scores were better able to keep track of stimulus sequencing, as indicated by their smaller P3b to sequential changes; and (b participants with lower cognitive flexibility had larger P3a than their high-scoring counterparts. However, these two phenomena did not interact suggesting that they manifest dissociable control mechanisms. Further, the fact that both effects are already visible in younger adults suggests that at least some of the brain mechanisms underlying individual differences in cognitive aging may already operate early in life.

  5. Numerical simulations of the discontinuous progression of cerebral aneurysms based on fluid-structure interactions study

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Investigations into the characteristics of hemodynamics will provide a better understanding of the pathology of cerebral aneurysms for clinicians.In this work,a steady state discontinuous-growth model of the cerebral aneurysms was proposed.With the assumption of the fluid-structure interaction between the wall of blood vessel and blood,a fluid-structure coupling numerical simulation for this model was built using software ANSYS and CFX.The simulation results showed that as the aneurysm volume increased,a blood flow vortex came forth,the vortex region became asymptotically larger,and eddy density became gradually stronger in it.After the emergence of the vortex region,the blood flow in the vicinity of the downstream in the aneurysms volume turned into bifurcated flow,and the location of the flow bifurcated point was shifted with the aneurysm volume growing while directions of the shear stress applied to two sides of the bifurcated point were opposite.The Von Mises stress distribution along the wall of aneurysm volume decreased in the prior period and increased gradually in the later period.The maximum stress was in the neck of the volume and the minimum was on the distal end in the whole process of growth.It was shown that as the aneurysm increased the maximum deformation location of the aneurysm,vertical to the streamline,was transferred from the distal end of the aneurysm to its neck,then back to its distal end of the aneurysm again.

  6. Assessment of smoking status based on cotinine levels in nasal lavage fluid

    Directory of Open Access Journals (Sweden)

    Cowart Beverly J

    2009-07-01

    Full Text Available Abstract Cotinine is a principal metabolite of nicotine with a substantially longer half-life, and cotinine levels in saliva, urine or serum are widely used to validate self-reported smoking status. The nasal cavity and olfactory system are directly exposed to tobacco smoke in smokers and in non-smokers who live with or work around smokers. However, despite the potential for a direct impact of tobacco smoke on the nasal epithelium and olfactory neurons, no prior studies have assessed cotinine levels in nasal mucus. We sought to determine whether cotinine levels in nasal lavage fluid (NLF would provide a reasonable estimate of smoke exposure. We assayed cotinine using a competitive immunoassay in NLF from 23 smokers, 10 non-smokers exposed to tobacco smoke (ETS and 60 non-smokers who did not report smoke exposure. NLF cotinine levels were significantly higher in smokers than in non-smokers, regardless of their exposure to ambient tobacco smoke. Cotinine levels in this small group of exposed non-smokers were not significantly different than those of non-exposed non-smokers. A cutoff of 1 ng/ml provided a sensitivity of 91% and a specificity of 99% for smoking status in this sample. Data were consistent with self-reported smoking status, and a cutoff of 1.0 ng/ml NLF cotinine may be used to classify smoking status. While saliva is the most easily obtained body fluid, NLF can be used to provide an objective and precise indication of smoking status and more directly reflects smoke exposure in the nasal and olfactory mucosa.

  7. Knowledge-base for interpretation of cerebrospinal fluid data patterns. Essentials in neurology and psychiatry.

    Science.gov (United States)

    Reiber, Hansotto

    2016-06-01

    The physiological and biophysical knowledge base for interpretations of cerebrospinal fluid (CSF) data and reference ranges are essential for the clinical pathologist and neurochemist. With the popular description of the CSF flow dependent barrier function, the dynamics and concentration gradients of blood-derived, brain-derived and leptomeningeal proteins in CSF or the specificity-independent functions of B-lymphocytes in brain also the neurologist, psychiatrist, neurosurgeon as well as the neuropharmacologist may find essentials for diagnosis, research or development of therapies. This review may help to replace the outdated ideas like "leakage" models of the barriers, linear immunoglobulin Index Interpretations or CSF electrophoresis. Calculations, Interpretations and analytical pitfalls are described for albumin quotients, quantitation of immunoglobulin synthesis in Reibergrams, oligoclonal IgG, IgM analysis, the polyspecific ( MRZ- ) antibody reaction, the statistical treatment of CSF data and general quality assessment in the CSF laboratory. The diagnostic relevance is documented in an accompaning review. PMID:27332077

  8. Heating Characteristics of Transformer Oil-Based Magnetic Fluids of Different Magnetic Particle Concentrations

    Science.gov (United States)

    Skumiel, A.; Hornowski, T.; Józefczak, A.

    2011-04-01

    The heating ability of mineral oil-based magnetic fluids with different magnetic particle concentrations is studied. The calorimetric measurements were carried out in an alternating magnetic field of 500 A · m-1 to 2500 A · m-1 amplitude and of 1500 kHz frequency. The revealed H n law-type dependence of the temperature increase rate, (d T/d t) t=0, on the amplitude of the magnetic field indicates the presence of superparamagnetic and partially ferromagnetic particles in the tested samples since n > 2. The specific absorption rate (SAR) defined as the rate of energy absorption per unit mass increases with a decrease of the volume fraction of the dispersed phase. This can be explained by the formation of aggregates in the samples with a higher concentration of magnetic particles.

  9. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Workington, GB); Phelps, Cindy (Moscow, ID)

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  10. A phase-field-based quasi-incompressible lattice Boltzmann method for binary fluids

    CERN Document Server

    Yang, Kang

    2015-01-01

    In this paper, a phase-field-based quasi-incompressible lattice Boltzmann method (LBM) has been proposed for binary fluids. Compared with the generalized incompressible LBM, the quasi-incompressible model can conserve mass locally and globally. A series of numerical simulations, including one-dimensional flat interface, the stationary droplet, the bubble rising under buoyancy and phase separation have been performed to validate the proposed model and compare it with the incompressible model. By the one-dimensional flat interface and stationary droplet tests, the proposed model can track the interface with high accuracy and is well consistent with the Laplace law. Moreover, the simulations of bubble rising and phase separation demonstrate that the predictions by the quasi-incompressible and incompressible models agree qualitatively when the interfacial mixing layer is small; while the predictions differ significantly when the interfacial mixing layer is large.

  11. ARTICLES: Shear Thickening Fluids Based on Additives with Different Concentrations and Molecular Chain Lengths

    Science.gov (United States)

    Xu, Yu-lei; Gong, Xing-long; Peng, Chao; Sun, Ying-qiang; Jiang, Wan-quan; Zhang, Zhong

    2010-06-01

    Shear thickening fluids (STFs) based on additives with different concentrations and molecular chain lengths were investigated. STF samples were prepared with silica and additive dispersed in polyethylene glycol (PEG) 400, where three types of additives with different molecular chain lengths of PEG4000, PEG6000, and PEG10000 were used. For PEG10000, different concentrations, including 0, 1%, 3%, and 5%, were selected to study the influences of additive concentrations. Rheological properties of the samples were measured with a rheometer. The results show that the shear thickening effect was significantly enhanced with the increase of the concentration and the molecular chain length of additives. The mechanism of enhancement was quantitatively explained with the formation of large particles clusters.

  12. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    International Nuclear Information System (INIS)

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations

  13. Derivation of the Newton's Law of Gravitation Based on a Fluid Mechanical Singularity Model of Particles

    Directory of Open Access Journals (Sweden)

    Xiao-Song Wang

    2008-08-01

    Full Text Available The main purpose of this paper is to seek a mechanical interpretation of gravitational phenomena. We suppose that the universe may be filled with a kind of fluid which may be called the (0 substratum. Thus, the inverse-square law of gravitation is derived by methods of hydrodynamics based on a sink flow model of particles. The first feature of this theory of gravitation is that the gravitational interactions are transmitted by a kind of fluidic medium. The second feature is the time dependence of gravitational constant G and gravitational mass. The Newton’s law of gravitation is arrived if we introduce an assumption that G and the masses of particles are changing so slowly that they can be treated as constants.

  14. Three-fluid hydrodynamics based event simulation for collisions at NICA and FAIR energies

    CERN Document Server

    Batyuk, P; Bleicher, M; Ivanov, Yu B; Karpenko, Iu; Merts, S; Nahrgang, M; Petersen, H; Rogachevsky, O

    2016-01-01

    We present a new event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, UrQMD, to account for hadronic final state interactions. We present first results for nuclear collisions of the FAIR/NICA energy scan program (Au+Au collisions, $\\sqrt{s_{NN}}=4-11$ GeV). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model EoS, one with a first order phase transition the other with a crossover type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.

  15. Tunable Effect of Double-Connective Dendritic Left-Handed Metamaterials Based on Electrorheological Fluids

    Institute of Scientific and Technical Information of China (English)

    GUO Ji-Quan; LUO Chun-Rong; ZHAO Xiao-Peng

    2009-01-01

    @@ We present double-connective dendritic unit pairs which exhibit the left-handed property for electromagnetic wave normal incidence. Based on the tunable characteristics of electrorheological fluids (ERF) as the electric field, we experimentally study the influence of the distance of electrodes, the number of stacked layers, and the intensity of the external electric field upon the ERF to the left-handed transmission peak of the double-connective dendritic structure. The results show that the transmission could be enhanced with the increase of distance or the number of layers. Furthermore, by changing the intensity of the electric fields, the left-handed transmission peak can be modulated actively, and the maximum shift is up to 160 MHz.

  16. Community-based rehabilitation: working in partnership with eye care

    Directory of Open Access Journals (Sweden)

    Joerg Weber

    2013-05-01

    Full Text Available Any response to the needs of people with visual impairment and their families will be more effective if eye care workers and CBR programme staff can work together at the community level.

  17. Selection of working fluid and parameters optimization for cryogenic power generation of LNG%LNG冷能发电工质选择与参数优化

    Institute of Scientific and Technical Information of China (English)

    张超; 金海刚; 邵国芬; 卜晓玲; 张琪林; 范海英

    2015-01-01

    以某公司LNG冷能发电项目为优化对象,采用 HYSYS 流程模拟软件对循环工质及参数进行模拟计算。模拟结果表明,甲烷、乙烷和丙烷混合工质的最大发电量高于各单质工质,混合工质配比不同,净发电量不同,混合工质配比存在一个最佳值。在混合工质中,增加丙烷含量或甲烷/乙烷比例,发电量均呈现先增加后降低的趋势。运行参数影响发电量,膨胀机入口压力的变化对系统净发电量的影响程度小于膨胀机出口压力,随膨胀机出口压力的增加,发电量呈先增加后降低的趋势,而且同一工质的最大净发电量所对应的膨胀机出口压力相同。%Taken a company’s LNG (liquefied natural gas) cryogenic power generation project as an optimized object ,the selection of working fluid and optimization of parameters were simulated by Aspen HYSYS .The simulation results demonstrated that the mixture of methane ,ethane and pro‐pane as working fluid has more power generation than single substance ,different proportions of the mixture generate different net power ,and there is an optimal proportion .In the mixed substance ,in‐creasing the proportions of the propane or methane/ethane ,electricity production presents a tendency of lower after the first increase .Furthermore ,operation parameters have a great influence on the power generation .In comparison with inlet pressure of expander ,the outlet pressure has more influ‐ence on power generation .While the outlet pressure of expander increases ,the power generation first increases and then decreases .Meanwhile ,the maximum net power generation for the same working fluid appears under the same outlet pressure condition with the different inlet pressures .

  18. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow

  19. Improvements in Children’s Fluid Intelligence with Working Memory Training%工作记忆训练提升幼儿流体智力表现

    Institute of Scientific and Technical Information of China (English)

    彭君; 莫雷; 黄平; 周莹; 王靖; 昂晨

    2014-01-01

    Fluid intelligence is one of the general intelligence types originally proposed by Cattell (1963), which refers to the innate ability of analytically solving novel problems and logically identifying new patterns and relationships. Increasing evidence has shown that cognitive training, especially those aiming at enhancing working memory, can significantly improve fluid intelligence. Moreover, central executive functions, especially working memory updating, were reported to positively correlate with individual intelligence. Thus, it is of great theoretical and practical significance to investigate whether working memory training can improve fluid intelligence. Recent studies have shown that, after short-term working memory training, performance in fluid intelligence tests, including running memory task and n-back paradigm, was improved both in adults and school-aged children. It is therefore suggested that the transfer of an improved working memory updating ability contributed to the reported training effects. However, there remain 2 major unsolved problems. On the one hand, although training has been reported effective for adults and school-aged children, few studies have focused on pre-school children. On the other hand, the demonstration of long-term effects was unreliable, because the reported studies either failed to examine lasting effects or lacked time for confirmation.%目前已有许多研究证据表明,工作记忆训练能提高成人、儿童的流体智力成绩,然而这种训练是否能够提高幼儿的流体智力表现,更为重要的是,如果训练确有成效,那么这种训练效果能否长期保持?为此,本研究选择了幼儿园4~5岁幼儿进行工作记忆训练任务,考察工作记忆训练对流体智力的提升及保持效应。实验中设立3个组:实验组、控制1组和控制2组。实验组采用单个空间n-back的工作记忆游戏程序进行训练,控制1组采用“水果忍者”的游戏程序

  20. Incorporation of lithium lead eutectic as a working fluid in RELAP5 and preliminary safety assessment of LLCS

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A.K., E-mail: trivedi@iitk.ac.in [Nuclear Engineering and Technology Programme, Indian Institute of Technology, Kanpur 208016 (India); Sandeep, K.T. [Institute for Plasma Research, Gandhinagar 382428 (India); Allison, C. [Innovative Systems Software, Idaho Falls, ID 83406 (United States); Khanna, A., E-mail: akhanna@iitk.ac.in [Nuclear Engineering and Technology Programme, Indian Institute of Technology, Kanpur 208016 (India); Chaudhari, V.; Kumar, E.R. [Institute for Plasma Research, Gandhinagar 382428 (India); Munshi, P. [Nuclear Engineering and Technology Programme, Indian Institute of Technology, Kanpur 208016 (India)

    2014-12-15

    Highlights: • The current work involves thermal hydraulic calculation of Lithium Lead Cooling System (LLCS) for the Indian test blanket module (TBM) for testing in ITER. • It uses the RELAP portion of RELAP/SCDAPSIM/MOD4.0. • RELAP steady state results closely match with the operating conditions of LLCS. • Results from transient calculations show that a maximum temperature of 875 K is attained 300 s after the loss of LLE flow. - Abstract: The current work involves thermal hydraulic calculation of Lithium Lead Cooling System (LLCS) for the Indian test blanket module (TBM) for testing in International Thermonuclear Experimental reactor (ITER). It uses the RELAP portion of RELAP/SCDAPSIM/MOD4.0. Lithium-lead eutectic (LLE) has been used as multiplier, breeder and coolant in TBM. Thermodynamic and transport properties of the LLE have been incorporated into the code. The main focus of this study is to check the heat transfer capability of LLE as coolant for TBM system for steady state and the considered anticipated operational occurrences (AOO's), namely, loss of heat source, loss of primary flow and loss of secondary flow. The six heat transfer correlation (reported for liquid metals in the literature) has been tested for steady state analysis of LLCS loop and results are roughly same for all of them. A good agreement has been observed between the operating conditions of LLCS with those of RELAP5 calculations. Results from transient calculations show that a maximum temperature of 875 K is attained during a 300 s loss of primary flow (LLE)

  1. Operationalizing Evidence-Based Practice: The Development of an Institute for Evidence-Based Social Work

    Science.gov (United States)

    Regehr, Cheryl; Stern, Susan; Shlonsky, Aron

    2007-01-01

    Although evidence-based practice (EBP) has received increasing attention in social work in the past few years, there has been limited success in moving from academic discussion to engaging social workers in the process of implementing EBP in practice. This article describes the challenges, successes, and future aims in the process of developing a…

  2. Measurement of the Density of Base Fluids at Pressures 0.422 to 2.20 Gpa

    Science.gov (United States)

    Hamrock, B. J.; Jacobson, B. O.; Bergstroem, S. I.

    1985-01-01

    The influence of pressure on the density of six base fluids is experimentally studied for a range of pressures from 0.422 to 2.20 GPa. An important parameter used to describe the results is the change in relative volume with change in pressure dv sub r/dp. For pressures less than the solidification pressure (p ps) a small change in pressure results in a large change in dv sub r/ps. For pressures greater than the solidification pressure (p ps) there is no change in dv sub r/dp with changing pressure. The solidification pressures of the base fluids varies considerably, as do the slopes that the experimental data assumes for p ps. A new formula is developed that describes the effect of pressure on density in terms of four constants. These constants vary for the different base fluids tested.

  3. A Fluid Membrane-Based Soluble Ligand Display System for Live CellAssays

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jwa-Min; Nair, Pradeep N.; Neve, Richard M.; Gray, Joe W.; Groves, Jay T.

    2005-10-14

    Cell communication modulates numerous biological processes including proliferation, apoptosis, motility, invasion and differentiation. Correspondingly, there has been significant interest in the development of surface display strategies for the presentation of signaling molecules to living cells. This effort has primarily focused on naturally surface-bound ligands, such as extracellular matrix components and cell membranes. Soluble ligands (e.g. growth factors and cytokines) play an important role in intercellular communications, and their display in a surface-bound format would be of great utility in the design of array-based live cell assays. Recently, several cell microarray systems that display cDNA, RNAi, or small molecules in a surface array format were proven to be useful in accelerating high-throughput functional genetic studies and screening therapeutic agents. These surface display methods provide a flexible platform for the systematic, combinatorial investigation of genes and small molecules affecting cellular processes and phenotypes of interest. In an analogous sense, it would be an important advance if one could display soluble signaling ligands in a surface assay format that allows for systematic, patterned presentation of soluble ligands to live cells. Such a technique would make it possible to examine cellular phenotypes of interest in a parallel format with soluble signaling ligands as one of the display parameters. Herein we report a ligand-modified fluid supported lipid bilayer (SLB) assay system that can be used to functionally display soluble ligands to cells in situ (Figure 1A). By displaying soluble ligands on a SLB surface, both solution behavior (the ability to become locally enriched by reaction-diffusion processes) and solid behavior (the ability to control the spatial location of the ligands in an open system) could be combined. The method reported herein benefits from the naturally fluid state of the supported membrane, which allows

  4. Rheological Properties of a Honge Oil-based Magnetorheological Fluid used as Carrier Liquid (Review Paper)

    OpenAIRE

    Gangadhara Shetty B; PSS Prasad

    2011-01-01

    Developing a sudden damping and its control which is demanded in many engineering applications with the existing conventional methods are difficult and critical too. A magnetorheological (MR) fluid with good rheological properties can exhibit very fast damping characteristics and can be controlled just by varying the applied magnetic field to that fluid. Thus in this paper, a MR fluid is proposed with a non-edible vegetable oil such as Honge oil as a carrier liquid. Three samples of such MR f...

  5. Field—Based Supercritical Fluid Extraction of Hydrocarbons at Industrially Contaminated Sites

    Directory of Open Access Journals (Sweden)

    Peggy Rigou

    2002-01-01

    Full Text Available Examination of organic pollutants in groundwaters should also consider the source of the pollution, which is often a solid matrix such as soil, landfill waste, or sediment. This premise should be viewed alongside the growing trend towards field-based characterisation of contaminated sites for reasons of speed and cost. Field-based methods for the extraction of organic compounds from solid samples are generally cumbersome, time consuming, or inefficient. This paper describes the development of a field-based supercritical fluid extraction (SFE system for the recovery of organic contaminants (benzene, toluene, ethylbenzene, and xylene and polynuclear aromatic hydrocarbons from soils. A simple, compact, and robust SFE system has been constructed and was found to offer the same extraction efficiency as a well-established laboratory SFE system. Extraction optimisation was statistically evaluated using a factorial analysis procedure. Under optimised conditions, the device yielded recovery efficiencies of >70% with RSD values of 4% against the standard EPA Soxhlet method, compared with a mean recovery efficiency of 48% for a commercially available field-extraction kit. The device will next be evaluated with real samples prior to field deployment.

  6. Pharmaceutical-enantiomers resolution using immobilized polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    De Klerck, Katrijn; Vander Heyden, Yvan; Mangelings, Debby

    2014-02-01

    Since their introduction on the market the applicability of immobilized polysaccharide-based chiral stationary phases in high-performance liquid chromatography has been thoroughly investigated. These immobilized phases have the benefit to be applicable with a wide range of modifiers, potentially extending the application range of the polysaccharide-based stationary phases. Because an increasing number of stationary phases are being introduced in the field of chiral chromatography it is important to evaluate their enantioselectivity in different techniques in order to get an idea about their applicability. In this study, three immobilized chiral polysaccharide-based stationary phases (Chiralpak IA, IB, and IC) are evaluated in supercritical fluid chromatography (SFC) with a test set of pharmaceutical racemates. This is done in a three-fold manner: their performance is evaluated (1) using traditional modifiers, (2) using mixtures of atypical modifiers, and (3) the results were compared to those on coated stationary phases with an equivalent chiral selector. To get a visual overview of the enantioselective patterns of the different chromatographic systems (mobile and stationary phase combinations), a Principal Component Analysis is performed, which allows determining the (dis)similarity between individual systems. To assess the complementarity cumulative success rates are determined. The immobilized chiral stationary phases prove to yield high cumulative success rates. PMID:24438871

  7. Control of electro-rheological fluid based resistive torque elements for use in active rehabilitation devices

    Science.gov (United States)

    Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos

    2007-04-01

    In this paper we present control algorithms for novel electro-rheological fluid based resistive torque generation elements that will be used to drive the joint of a new type of portable and controllable active knee rehabilitation orthotic device (AKROD) for iso-inertial, isokinetic, and isometric exercising as well as gait retraining. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on-board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques are developed. In this project, a prototype for the AKROD has been developed and tested. The AKROD's ERF resistive actuator was tested in laboratory experiments using a custom-made ERF testing apparatus (ETA). ETA provides a computer-controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and the AKROD's ERF actuators/brakes. The AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) proportional-integral (PI) torque controller was implemented to achieve this goal.

  8. Work based learning partnerships and structural capital: the case of Middlesex University.

    OpenAIRE

    Garnett, Jonathan

    2002-01-01

    The aim of the project is to enhance the value of work based learning to Middlesex University through the development of a critical understanding of the relationship between the Middlesex approach to work based learning and the concept of structural capital. The project considers the Middlesex approach to work based learning and identifies the salient features of the approach. Key to the distinctive nature of the Middlesex approach is the recognition by the University of Work Based Learnin...

  9. Modeling and analysis of controllable output property of cantilever-beam inertial sensors based on magnetic fluid

    Institute of Scientific and Technical Information of China (English)

    Guixiong LIU; Peiqiang ZHANG; Chen XU

    2009-01-01

    Magnetic fluid is first introduced into thetraditional cantileverbeam senor. Based on the property of the cantilever-beam and the novel controllable mag-viscosity of magnetic fluid, the output of cantilever-beam sensors is under control so that the controllable output of the sensors can be realized. The mathematical model of the sensors is established and analyzed. The dynamic control function and the following educational results, which include the two curves of the displacement ratio and phase function with the different damping ratio and frequency ratio, are obtained based on the model. The result shows that it is valid to realize the controllable output of the sensors by controlling the viscosity of the magnetic fluid,and finally the expanded measurement range can be realized.

  10. Magnetically modulated refractive index of a magnetic fluid film based on cigar-shaped ferrite submicron particles

    Science.gov (United States)

    Mormile, P.; Petti, L.; Rippa, M.; Guo, J.; Song, W.; Zhou, J.

    2010-10-01

    Light beam propagation at a prism-magnetic fluid film interface is experimentally studied. The magnetic fluid is made through dispersion of synthesized cigar-shaped sub-micron particles of Fe2O3 in an oil solution. This was injected into a glass cell with an active area of 10mm2 and a depth ranging from 10 microns to 30 microns whose base is a glass microscope slide and on the top it was covered with a glass prism. The set up was developed by one of the authors to measure light switching at a prism-liquid crystal interface in a previous publication.1 Polarized Light (TE or TM) from a He-Ne laser impinges at the prism-magnetic film interface. The external reflected light is detected by a photodiode connected to a data acquisition system. Since the properties of the magnetic fluid can be modulated by external magnetic fields, we investigated the effects of the magnetic field on the refractive index of the magnetic fluid. For our magnetic fluid, the reflection of light has been investigated as a function of particles concentration and thickness of the films with a wavelength of 633nm and both TE and TM polarization, and applied magnetic fields up to 25 Oe. It was found that the intensity of reflected light increases with increasing magnetic field up to 4 times the initial value, and saturates at 20 Oe for TE light, while decreases with increasing magnetic field up to 4 times less for TM light with the same saturation value. Moreover, under a given magnetic field, the output light increases with the increasing film thickness in TE polarization, and decreases with the increasing film thickness in TM case. The refractive index of the magnetic fluid depends on the concentration of the dilute oil-based magnetic fluid under zero field. These behaviors are explained in terms of the organization of the submicron particles when the magnetic field is applied.2 The cigar-shaped sub-micron particles are oriented along their long axis to form an organized mesostructure. The

  11. Visual Working Efficiency Analysis Method of Cockpit Based On ANN

    Directory of Open Access Journals (Sweden)

    Yingchun CHEN

    2012-09-01

    Full Text Available The Artificial Neural Networks method is applied on visual working efficiency of cockpit. A Self-Organizing Map (SOM network is demonstrated selecting material with near properties. Then a Back-Propagation (BP network automatically learns the relationship between input and output. After a set of training, the BP network is able to estimate material characteristics using knowledge and criteria learned before. Results indicate that trained network can give effective prediction for material.

  12. Hierarchical Calibration and Validation of Computational Fluid Dynamics Models for Solid Sorbent-based Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao; Sun, Xin; Storlie, Curtis; Marcy, Peter; Dietiker, Jeff; Li, Tingwen; Spenik, James

    2016-02-22

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesian calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.

  13. Design of a Sensor Based on Plastic Optical Fibre (POF) to Measure Fluid Flow and Turbidity.

    Science.gov (United States)

    Aiestaran, Pedro; Arrue, Jon; Zubia, Joseba

    2009-01-01

    Although many optical fibre applications are based on their capacity to transmit optical signals with low losses, it can also be desirable for the optical fibre to be strongly affected by a certain physical parameter in the environment. In this way, it can be used as a sensor for this parameter. There are many strong arguments for the use of POFs as sensors. In addition to being easy to handle and low cost, they demonstrate advantages common to all multimode optical fibres. These specifically include flexibility, small size, good electromagnetic compatibility behaviour, and in general, the possibility of measuring any phenomenon without physically interacting with it. In this paper, a sensor based on POF is designed and analysed with the aim of measuring the volume and turbidity of a low viscosity fluid, in this case water, as it passes through a pipe. A comparative study with a commercial sensor is provided to validate the proven flow measurement. Likewise, turbidity is measured using different colour dyes. Finally, this paper will present the most significant results and conclusions from all the tests which are carried out.

  14. Design of a Sensor Based on Plastic Optical Fibre (POF to Measure Fluid Flow and Turbidity

    Directory of Open Access Journals (Sweden)

    Joseba Zubia

    2009-05-01

    Full Text Available Although many optical fibre applications are based on their capacity to transmit optical signals with low losses, it can also be desirable for the optical fibre to be strongly affected by a certain physical parameter in the environment. In this way, it can be used as a sensor for this parameter. There are many strong arguments for the use of POFs as sensors. In addition to being easy to handle and low cost, they demonstrate advantages common to all multimode optical fibres. These specifically include flexibility, small size, good electromagnetic compatibility behaviour, and in general, the possibility of measuring any phenomenon without physically interacting with it. In this paper, a sensor based on POF is designed and analysed with the aim of measuring the volume and turbidity of a low viscosity fluid, in this case water, as it passes through a pipe. A comparative study with a commercial sensor is provided to validate the proven flow measurement. Likewise, turbidity is measured using different colour dyes. Finally, this paper will present the most significant results and conclusions from all the tests which are carried out.

  15. 斯特林制冷机采用不同工质应用于冰箱温区的性能研究%Research on performance of Stirling refrigerator for different working fluids used in refrigerator

    Institute of Scientific and Technical Information of China (English)

    李慧; 祁影霞; 闫辉

    2013-01-01

    基于斯特林冷循环应用于冰箱制冷的优点,对应用于冰箱领域的斯特林制冷机采用氦气、氢气、空气三种不同工质在相应工况下的性能进行了理论分析和实验研究.研究结果表明,斯特林制冷机实际运行过程中要比理想模型复杂得多,且在冰箱制冷温区(-80℃以上),氢气是最佳的选用工质,其次是氦气,空气性能较差.%Based on the advantages of Stifling refrigeration cycle applied to refrigerator,in this paper,theoretical analysis and experimental research on the performance of Stirling refrigerator for different working fluids in corresponding working conditions used in refrigerator were carried on.The results show that the actual operation process of Stirling refrigerator is much more complicated than the ideal model.In the refrigerator working temperature area (above-80℃),hydrogen is the best choice to be the working medium,followed by helium,and air has poor performance.

  16. Theoretical models for fluid thermodynamics based on the quasi-Gaussian entropy theory

    NARCIS (Netherlands)

    Amadei, Andrea

    1998-01-01

    Summary The theoretical modeling of fluid thermodynamics is one of the most challenging fields in physical chemistry. In fact the fluid behavior, except at very low density conditions, is still extremely difficult to be modeled from a statistical mechanical point of view, as for any realistic model

  17. Performance Comparison and Selection of Transformer Fluid

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2016-01-01

    Full Text Available Transformer fluid directly affects the working state of the components and the cooling efficiency of transformer. There are three kinds of transformer fluid used for electric locomotive, EMU and suburban rail vehicles: mineral oil, silicone liquid and synthetic ester based insulating oil. In this paper, the three kinds of oil are compared from the fire safety, environmental protection, reliability and low maintenance. It provides a strong basis for the selection of transformer fluid. By comprehensive analysis, synthetic ester based insulating oil can completely replace mineral oil and silicone liquid. With rail transport safety and environmental protection standards improving, synthetic ester based insulating oil will be the best choice for transformer.

  18. Helping the Working Poor: Employer- vs. Employee-Based Subsidies

    OpenAIRE

    Stacy Dickert-Conlin; Douglas Holtz-Eakin

    1999-01-01

    In the United States and Europe there has been renewed interest in subsidizing firms that employ disadvantaged workers as a means of addressing poverty and other social problems. In contrast, the prevailing practice is largely to provide social welfare benefits directly to individuals. Which approach is better? We re-examine the relative merits of employee- versus employer-based labor market subsidies and conclude there are good reasons to continue to rely on the direct, employee-based approa...

  19. Infrared thermography based magnetic hyperthermia study in Fe3O4 based magnetic fluids

    Science.gov (United States)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2016-09-01

    Owing to the immense clinical benefits, magnetic hyperthermia is likely to emerge as an alternate cancer therapeutic procedure in the near future. Presently, radio frequency immune fiber optic based sensors are being used to monitor temperature changes during magnetic hyperthermia measurements, which have inherent limitations due to the requirement of physical contact of the sensor with the sample, contamination and temperature monitoring at a single point. Here, we investigate the field induced heating of oil based oleic acid coated Fe3O4 nanofluid, synthesized using co-precipitation method, using infrared thermal imaging (IRT) camera and compare the results with those of fiber optic temperature sensor. Experiments were performed on nanofluid samples of four different concentrations and under five different external field amplitudes. The specific absorption rate (SAR) of the samples were determined from the initial rate of temperature rise measured using both the techniques. The SAR values determined from both the techniques were in very good agreement with each other, with in an accuracy of 5%, after incorporating convection loss correction on the infrared thermal imaging data. The consecutive thermal cycling on the samples showed good thermal stability and thermal recovery. The maximum SAR obtained was 95.9 W/gFe for a sample concentration and field amplitude of 23 wt.% and 57.3 kA m-1, respectively. This study showed the efficacy and accuracy of temperature measurement using IRT during field induced heating of magnetic nanofluid and its advantages over conventional point measurements techniques for real-time, non-contact and wide area temperature mapping without sample contamination.

  20. Miniaturized ionophore-based potentiometric sensors for the flow-injection determination of metformin in pharmaceutical formulations and biological fluids.

    Science.gov (United States)

    Khaled, Elmorsy; Kamel, Manal S; Hassan, Hassan N; Abd El-Alim, Sameh H; Aboul-Enein, Hassan Y

    2012-12-01

    Miniaturized potentiometric sensors based on β-cyclodextrins (β-CDs) are described for determination of metformin (Mf) in pharmaceutical preparations and biological fluids. Electrode matrix compositions are optimized on the basis of the nature and content of sensing ionophore, ionic sites and plasticizers. Coated wire electrodes (CWEs) modified with heptakis(2,3,6-tri-O-methyl)-β-CD, sodium tetrakis(4-fluorophenyl)borate (NaTFPB) and 2-fluorophenyl 2-nitrophenyl ether (f-NPE), work satisfactorily in the concentration range from 10(-6) to 10(-1) mol L(-1) with Nernstian compliance (55.7 ± 0.4 mV per decade activity) and a detection limit of 8 × 10(-7) mol L(-1). Incorporation of β-CD as a molecular recognition element improved the electrode sensitivity and selectivity due to encapsulation of Mf into the β-CD cavity (host-guest interaction). The developed electrodes have been successfully applied for the potentiometric determination of Mf under batch and flow injection analysis (FIA). FIA allows analysis of 90 samples per h offering the advantages of simplicity, accuracy and automation feasibility. The dissolution profile for metformin pharmaceutical samples (Cidophage®) was monitored using the proposed electrode in comparison with the official spectrophotometric methods. Characterization of the formed Mf-β-CD inclusion complexes is discussed in detail.

  1. Computational fluid dynamics based aerodynamic optimization of the wind tunnel primary nozzle

    Science.gov (United States)

    Jan, Kolář; Václav, Dvořák

    2012-06-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in Computational Fluid Dynamics (CFD) is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  2. A tomographic study of the skull base in primary spontaneous cerebrospinal fluid leaks

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Alexandre Varella [Hospital das Clinicas, Service of Neurosurgery, Belo Horizonte (Brazil); Federal University of Minas Gerais, Department of Surgery, School of Medicine, Belo Horizonte (Brazil); Guimaraes, Roberto Eustaquio S. [Hospital das Clinicas, Services Otorhinolaryngology, Belo Horizonte (Brazil); Federal University of Minas Gerais, Department of Ophthalmology and Otorhinolaryngology, School of Medicine, Belo Horizonte (Brazil); Santiago, Ana Paula M.S. [Hospital das Clinicas, Services Radiology, Belo Horizonte (Brazil); Perpetuo, Francisco Otaviano L.; Machado, Marco Antonio O. [Computed Tomography Center of Minas Gerais, Belo Horizonte (Brazil)

    2012-05-15

    This study aims to evaluate the existence of anatomic abnormalities in the skull base that could contribute to the origin of primary spontaneous cerebrospinal fluid leaks (PSL). Twenty PSL patients were compared with 20 healthy individuals. The following features were measured through an analysis of computed tomography scans: the angles of the petrosal bones and skull base in both the sagittal and coronal planes; the anteroposterior and mediolateral diameters of the anterior skull base, sella, and sphenoid sinus; the depth of the olfactory fossa; the pneumatization of the sphenoid sinus; the position of the crista galli; and the state of the dorsum sellae. Body mass index (BMI) was compared. There were no differences between the two groups with respect to the angles and diameters of the anterior cranial fossa and the sphenoid sinus or the depth of the olfactory fossa. Pneumatization of the lateral recess of the sphenoid sinus was more frequent in the PSL group (55%) than in the control group (25%, p = 0.053). The dorsum sellae were eroded in 30% of the PSL patients but intact in all healthy subjects. PSL subjects showed higher sellae (1.0 versus 0.8 cm, p = 0.002). The average BMI of PSL patients was higher than that of the control group. Global alterations in the skull base of PSL patients were not found. The increase in the height of sellae and the erosion of its dorsum suggest intracranial hypertension. The higher BMI in the case group confirms the relation between obesity and PSL. (orig.)

  3. Making a Virtue out of a Necessity: Part Time Work as a Site for Undergraduate Work-Based Learning

    Science.gov (United States)

    Shaw, Sue; Ogilvie, Chrissy

    2010-01-01

    Purpose: This paper seeks to challenge the view that student part time employment detracts from academic attainment and presents evidence that when linked to formal undergraduate study provides rich learning experiences. It also explores the extent to which formerly accepted pre-requisites for work based learning (WBL) apply in this model and how…

  4. "Working." A Teacher's Guide to a Vocational Reading Program Based on Selected Interviews Contained in "Working" by Studs Terkel.

    Science.gov (United States)

    Eakin, David; And Others

    This teacher's guide is intended to help vocational English teachers implement a program based on Studs Terkel's book "Working," a collection of more than 100 interviews with people about their jobs. The 30 interviews selected for inclusion in the curriculum either illustrate occupations taught in the schools or deal with occupations related to…

  5. Problem based Learning versus Design Thinking in Team based Project work

    DEFF Research Database (Denmark)

    Denise J. Stokholm, Marianne

    2014-01-01

    project based learning issues, which has caused a need to describe and compare the two models; in specific the understandings, approaches and organization of learning in project work. The PBL model viewing the process as 3 separate project stages including; problem analysis, problem solving and project...... report, with focus on problem solving through analysis. Design Based Learning viewing the process as series of integrated design spaces including; alignment, research, mission, vision, concept, product and process report, with focus on innovative ideation though integration. There is a need of renewing......All educations at Aalborg University has since 1974 been rooted in Problem Based Learning (PBL). In 1999 a new education in Industrial design was set up, introducing Design Based Learning (DBL). Even though the two approaches have a lot in common they also hold different understandings of core...

  6. Heating production fluids in a wellbore

    Science.gov (United States)

    Orrego, Yamila; Jankowski, Todd A.

    2016-07-12

    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  7. Strategic development of the Greek centre for work based learning partnerships (GCWBLP)

    OpenAIRE

    Thomas, Panagiotis

    2003-01-01

    Work based learning (WBL) is the term being used to describe a class of university programmes that bring together universities and work organisations to create new learning opportunities in workplaces. Middlesex University was a pioneer in the institutional development of work based learning through its National Centre of Work Based Learning Partnerships (NCWBLP) established in 1993. The Greek Centre (GCWBLP) was established in Athens and began operations in 1997 to promote WBL programm...

  8. Meningitis caused by Enterococcus casseliflavus with refractory cerebrospinai fluid leakage following endoscopic endonasal removal of skull base chondrosarcoma

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    To the Editor:Meningitis caused by Enterococcus casseliflavus (E.casseliflavus) is extremely rare.Here we report an unusual case of meningitis caused by E.casseliflavus coexisting with refractory cerebrospinal fluid (CSF) leakage following endoscopic endonasal resection of skull base chondrosarcoma.

  9. Dual-based a-posteriori error estimation for fluid-structure interaction by the embedded-domain method

    NARCIS (Netherlands)

    Van der Zee, K.G.; Van Brummelen, E.H.; De Borst, R.

    2006-01-01

    Numerical simulations of fluid-structure interaction typically require vast computational resources. Finite-element techniques employing goal-oriented hp-adaptation strategies could offer a substantial improvement in the efficiency of such simulations. These strategies rely on dual-based a-posterior

  10. Effect of Nitric Acid on the Low Fluorescing Performance of Drilling Fluid Lubricant Based Animal and Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2013-01-01

    Full Text Available After synthesis of mixed fatty acid triethanolamine ester surfactant based on animal and vegetable mixed oils, the reaction solution was added into 4% (wt/wt liquid nitric acid or 9% (wt/wt solid nitric acid as eliminating fluorescent agent continuing to react from 1 to 2 hours. The low fluorescence lubricant named E167 for drilling fluid was prepared, in which maximum fluorescence intensity (Fmax was less than 10 in three-dimensional fluorescence spectra of excitation wavelength range. When the E167 was added into fresh water based drilling fluid at the dosage of 0.5% (wt/wt, the sticking coefficient reduced rate (ΔKf is 78% and the extreme pressure (E-P friction coefficient reduced rate (Δf is 79%. In the case of 4% brine mud with 0.5% (wt/wt E167 in it, the ΔKf and Δf are 75% and 62%, respectively. After the hot rolling ageing test 180°C × 16 h with the E167 was added into fresh water based drilling fluid at the dosage of 1% (wt/wt, the ΔKf and Δf are greater than 70%, which shows a much better lubrication properties of strong resistance to high temperature. The fresh water based drilling fluid which contains 1% (wt/wt E167 is almost nonfoaming even after hot rolling ageing 120°C × 16 h.

  11. Peritoneal fluid culture

    Science.gov (United States)

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... based on more than just the peritoneal fluid culture (which may be negative even if you have ...

  12. Study of smectite clays of the city Pedra Lavrada - PB for use in water-based drilling fluids; Estudo das argilas esmectiticas do municipio de Pedra Lavrada-PB para uso em fluidos de perfuracao base agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, I.A. da; Costa, J.M.R.; Cardoso, M.A.F.; Neves, G.A.; Ferreira, H.C., E-mail: isabelle_albuquerquecg@hotmail.com [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Ferreira, H.S. [Universidade Federal da Paraiba (DEMAT/CT/UFPB), Joao Pessoa, PB (Brazil)

    2011-07-01

    Paraiba has large reserves of bentonite clays, with the largest deposits in Boa Vista, PB. Recently new deposits were discovered in the cities of Cubati and Pedra Lavrada-PB, creating great expectations for further expansion of reserves for industrial production. The aim of this work is the study of smectite clays from the city of Pedra Lavrada, PB for use in drilling fluids water based. The characterization was made by the diffraction of laser (AG), thermogravimetric and differential thermal analysis (TGA and DTA), chemical composition by X-ray fluorescence (EDX), X-ray diffraction (XRD), exchange capacity of cations (ECC) and surface area (SA). The results obtained so far showed that the samples presented at its mineral composition smectite, kaolinite and quartz. In relation to rheological properties showed that the bentonite clay sample Dark presents promising features for use in water based drilling fluids. (author)

  13. Irrelevant features of a stimulus can either facilitate or disrupt performance in a working memory task: the role of fluid intelligence.

    Directory of Open Access Journals (Sweden)

    Bernardo Perfetti

    Full Text Available It has been shown that fluid intelligence (gf is fundamental to overcome interference due to information of a previously encoded item along a task-relevant domain. However, the biasing effect of task-irrelevant dimensions is still unclear as well as its relation with gf. The present study aimed at clarifying these issues. Gf was assessed in 60 healthy subjects. In a different session, the same subjects performed two versions (letter-detection and spatial of a three-back working memory task with a set of physically identical stimuli (letters presented at different locations on the screen. In the letter-detection task, volunteers were asked to match stimuli on the basis of their identity whereas, in the spatial task, they were required to match items on their locations. Cross-domain bias was manipulated by pseudorandomly inserting a match between the current and the three back items on the irrelevant domain. Our findings showed that a task-irrelevant feature of a salient stimulus can actually bias the ongoing performance. We revealed that, at trials in which the current and the three-back items matched on the irrelevant domain, group accuracy was lower (interference. On the other hand, at trials in which the two items matched on both the relevant and irrelevant domains, the group showed an enhancement of the performance (facilitation. Furthermore, we demonstrated that individual differences in fluid intelligence covaries with the ability to override cross-domain interference in that higher gf subjects showed better performance at interference trials than low gf subjects. Altogether, our findings suggest that stimulus features irrelevant to the task can affect cognitive performance along the relevant domain and that gf plays an important role in protecting relevant memory contents from the hampering effect of such a bias.

  14. Making Digital Game-Based Learning Work: Domain Knowledge Transparency

    Science.gov (United States)

    Wang, Feihong; Burton, John K.

    2010-01-01

    During the past two decades, the popularity of computer and video games has prompted games to be a source of study for educational applications (Dickey, 2007). The most distinguishing characteristic of games is their capability to engage and motivate their players (Kiili, 2005). Educators started to explore game-based learning by testing…

  15. Why Problem-Based Learning Works: Theoretical Foundations

    Science.gov (United States)

    Marra, Rose M.; Jonassen, David H.; Palmer, Betsy; Luft, Steve

    2014-01-01

    Problem-based learning (PBL) is an instructional method where student learning occurs in the context of solving an authentic problem. PBL was initially developed out of an instructional need to help medical school students learn their basic sciences knowledge in a way that would be more lasting while helping to develop clinical skills…

  16. Brain-Based Learning and Educational Neuroscience: Boundary Work

    Science.gov (United States)

    Edelenbosch, Rosanne; Kupper, Frank; Krabbendam, Lydia; Broerse, Jacqueline E. W.

    2015-01-01

    Much attention has been given to "bridging the gap" between neuroscience and educational practice. In order to gain better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on…

  17. Enhanced active swimming in viscoelastic fluids

    CERN Document Server

    Riley, Emily E

    2014-01-01

    Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the shape of an active swimmer as a balance between the external fluid stresses, the internal driving moments, and the passive elastic resistance. We show that this dynamic balance leads to a generic transition from hindered rigid swimming to enhanced flexible locomotion. The results are physically interpreted as due to a viscoelastic suction increasing the swimming amplitude in a non-Newtonian fluid and overcoming viscoelastic damping.

  18. Wrinkly fingers: the interaction between fluid- and solid-based instabilities in elastic-walled Hele-Shaw cells

    CERN Document Server

    Pihler-Puzović, Draga; Heil, Matthias

    2013-01-01

    In this fluid dynamics video, we study a two-phase flow in an elastic Hele-Shaw cell that involves two distinct fluid- and solid-based instabilities: viscous fingering and sheet buckling. We show that the relative importance of the two instabilities is controlled by a single non-dimensional parameter, which provides a measure of the elasticity of the flexible wall. We employ numerical simulations to show that for relatively stiff [soft] walls, the system's behaviour is dominated by viscous fingering [sheet buckling]. Strong interactions between the two instabilities arise in an intermediate regime and lead to the development of extremely complex fingering and buckling patterns.

  19. Evaluation of low toxicity mineral oil base drilling fluids; Avaliacao de fluidos de perfuracao a base de oleo mineral de baixa toxidez

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Ielton Frederico da [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1989-12-31

    In order to introduce low toxicity mineral oil base drilling fluids in Brazil, we carried out a series with a low aromatic content basic oil for lubricants, produced by PETROBRAS: the Lubrax Industrial OB-9 (Lubind OB-9). This oil, as well as its mixture with aviation kerosene to reduce viscosity, was found adequate for use in drilling fluids together with other national products developed by companies that supply additives for drilling fluids in Brazil. We present the results of laboratory tests with systems of four different manufacturers, one of which was chosen for initial field tests. These tests, which were carried out at the Miranga and Bu River Fields, in the Drilling District of Bahia, produced satisfactory results. We anticipate the use of these fluids in other areas where the company operates. (author) 2 refs., 3 tabs.

  20. Initial susceptibility and viscosity properties of low concentration ε-Fe3N based magnetic fluid

    OpenAIRE

    Huang Wei; Wu Jianmin; Guo Wei; Li Rong; Cui Liya

    2007-01-01

    AbstractIn this paper, the initial susceptibility of ε-Fe3N magnetic fluid at volume concentrations in the range Φ = 0.0 ∼ 0.0446 are measured. Compared with the experimental initial susceptibility, the Langevin, Weiss and Onsager susceptibility were calculated using the data obtained from the low concentration ε-Fe3N magnetic fluid samples. The viscosity of the ε-Fe3N magnetic fluid at the same concentrations is measured. The result shows that, the initial susceptib...

  1. Predicting fluid responsiveness with transthoracic echocardiography is not yet evidence based

    DEFF Research Database (Denmark)

    Wetterslev, M; Haase, N; Johansen, R R;

    2013-01-01

    an integrated tool in the intensive care unit, this systematic review examined studies evaluating the predictive value of TTE for fluid responsiveness. In October 2012, we searched Pubmed, EMBASE and Web of Science for studies evaluating the predictive value of TTE-derived variables for fluid responsiveness...... responsiveness. Of the 4294 evaluated citations, only one study fully met our inclusion criteria. In this study, the predictive value of variations in inferior vena cava diameter (> 16%) for fluid responsiveness was moderate with sensitivity of 71% [95% confidence interval (CI) 44-90], specificity of 100% (95...

  2. Shear time dependent viscosity of polystyrene-ethylacrylate based shear thickening fluid

    Science.gov (United States)

    Chen, Qian; Xuan, Shouhu; Jiang, Wanquan; Cao, Saisai; Gong, Xinglong

    2016-04-01

    In this study, the influence of the shear rate and shear time on the transient viscosity of polystyrene-ethylacrylate based shear thickening fluid (STF) is investigated. If the shear rate is stepwise changed, it is found that both the viscosity and critical shear rate are affected by the shear time. Above the critical shear rate, the viscosity of the STF with larger power law exponent (n) increases faster. However, the viscosity tends to decrease when the shear time is long enough. This phenomenon can be responsible for the reversible structure buildup and the break-down process. An effective volume fraction (EVF) mechanism is proposed to analyze the shear time dependent viscosity and it is found that viscosity changes in proportion to EVF. To further clarify the structure evolution, a structural kinetic model is studied because the structural kinetic parameter (λ) could describe the variation in the effective volume fraction. The theoretical results of the structural kinetic model agree well with the experimental results. With this model, the change in viscosity and EVF can be speculated from the variation of λ and then the structure evolution can be better illustrated.

  3. Magnetorheological fluids based on a hyperbranched polycarbosilane matrix and iron microparticles

    Science.gov (United States)

    Vasiliev, V. G.; Sheremetyeva, N. A.; Buzin, M. I.; Turenko, D. V.; Papkov, V. S.; Klepikov, I. A.; Razumovskaya, I. V.; Muzafarov, A. M.; Kramarenko, E. Yu

    2016-05-01

    Magnetorheological fluids (MFs) based on hyperbranched polycarbosilanes as a carrier medium and micron-sized carbonyl iron particles as filler have been synthesized for the first time. Their magnetorheological (MR) behavior has been studied in steady-state flow regime and under dynamic torsion oscillations on a commercial rheometer. At zero magnetic field, in spite of a rather high molecular mass, the hyperbranched polymers as well as their magnetic compositions with up to 72 mass% of magnetic filler demonstrate Newtonian behavior, and their viscosity considerably increases with magnetic filler content. In magnetic fields MFs show a huge MR response. Namely, in steady-state flow experiments a five orders of magnitude increase in viscosity was observed accompanied by magnetic-field-induced well-pronounced non-Newtonian behavior and a non-zero yield stress. Dynamic experiments demonstrate the transition from liquid-like to solid-like behavior of MFs with a large increase in both the storage and loss moduli under application of a magnetic field. In magnetic fields, the rheological behavior of the obtained MF resembles that of soft MR elastomers being mainly determined by the magnetic particle network formed due to magnetic interactions. In particular, like MR elastomers the MFs exhibit the Payne effect, i.e. dependence of the dynamic modulus on the strain amplitude.

  4. Trajectory-based modeling of fluid transport in a medium with smoothly varying heterogeneity

    Science.gov (United States)

    Vasco, D. W.; Pride, Steven R.; Commer, Michael

    2016-04-01

    Using an asymptotic methodology, valid in the presence of smoothly varying heterogeneity and prescribed boundaries, we derive a trajectory-based solution for tracer transport. The analysis produces a Hamilton-Jacobi partial differential equation for the phase of the propagating tracer front. The trajectories follow from the characteristic equations that are equivalent to the Hamilton-Jacobi equation. The paths are determined by the fluid velocity field, the total porosity, and the dispersion tensor. Due to their dependence upon the local hydrodynamic dispersion, they differ from conventional streamlines. This difference is borne out in numerical calculations for both uniform and dipole flow fields. In an application to the computational X-ray imaging of a saline tracer test, we illustrate that the trajectories may serve as the basis for a form of tracer tomography. In particular, we use the onset time of a change in attenuation for each volume element of the X-ray image as a measure of the arrival time of the saline tracer. The arrival times are used to image the spatial variation of the effective hydraulic conductivity within the laboratory sample.

  5. Kidney injury, fluid, electrolyte and acid-base abnormalities in alcoholics

    Directory of Open Access Journals (Sweden)

    Adebayo Adewale

    2014-01-01

    Full Text Available In the 21 st century, alcoholism and the consequences of ethyl alcohol abuse are major public health concerns in the United States, affecting approximately 14 million people. Pertinent to the global impact of alcoholism is the World Health Organisation estimate that 140 million people worldwide suffer from alcohol dependence. Alcoholism and alcohol abuse are the third leading causes of preventable death in the United States. Alcohol dependence and alcohol abuse cost the United State an estimated US$220 billion in 2005, eclipsing the expense associated with cancer (US$196 billion or obesity (US$133 billion. Orally ingested ethyl alcohol is absorbed rapidly without chemical change from the stomach and intestine, reaching maximum blood concentration in about an hour. Alcohol crosses capillary membranes by simple diffusion, affecting almost every organ system in the body by impacting a wide range of cellular functions. Alcohol causes metabolic derangements either directly, via its chemical by-product or secondarily through alcohol-induced disorders. Many of these alcohol-related metabolic disturbances are increased in severity by the malnutrition that is common in those with chronic alcoholism. This review focuses on the acute and chronic injurious consequences of alcohol ingestion on the kidney, as well as the fluid, electrolyte and acid-base abnormalities associated with acute and chronic ingestion of alcohol.

  6. Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Gaiping Zhao; Jie Wu; Shixiong Xu; M. W. Collins; Quan Long; Carola S. K(o)nig; Yuping Jiang; Jian Wang; A. R. Padhani

    2007-01-01

    A coupled intravascular-transvascular-interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network.This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels.Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille's law and Darcy's law, respectively, transvascular flow is described by Starling's law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convectionon the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.

  7. Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis

    Science.gov (United States)

    Zhao, Gaiping; Wu, Jie; Xu, Shixiong; Collins, M. W.; Long, Quan; König, Carola S.; Jiang, Yuping; Wang, Jian; Padhani, A. R.

    2007-10-01

    A coupled intravascular transvascular interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille’s law and Darcy’s law, respectively, transvascular flow is described by Starling’s law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.

  8. Development and Verification of a Pilot Code based on Two-fluid Three-field Model

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Jeong, J. J.; Ha, K. S.; Kang, D. H

    2006-09-15

    In this study, a semi-implicit pilot code is developed for a one-dimensional channel flow as three-fields. The three fields are comprised of a gas, continuous liquid and entrained liquid fields. All the three fields are allowed to have their own velocities. The temperatures of the continuous liquid and the entrained liquid are, however, assumed to be equilibrium. The interphase phenomena include heat and mass transfer, as well as momentum transfer. The fluid/structure interaction, generally, include both heat and momentum transfer. Assuming adiabatic system, only momentum transfer is considered in this study, leaving the wall heat transfer for the future study. Using 10 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. It was confirmed that the inlet pressure and velocity boundary conditions work properly. It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. Complete phase depletion which might occur during a phase change was found to adversely affect the code stability. A further study would be required to enhance code capability in this regard.

  9. Correlation of Critical Loci for Water-Hydrocarbon Binary Systems by EOS Based on the Multi-Fluid Nonrandom Lattice Theory

    Institute of Scientific and Technical Information of China (English)

    Hun; Yong; SHIN; Hwayong; KIM; 等

    2002-01-01

    Quantitative representation of complicated behavior of fluid mixtures in the critical region by any of equation-of-state theories remains as a difficults thermodynamic topics to date.In the present work,a computational efforts were made for representing various types of critical loci of binary water with hydrocarbon systems showing Type Ⅱ and Type Ⅲ phase behavior by an elementary equation of state[called multi-fluid nonrandom lattice fluid EOS(MF-NLF EOS)]based on the lattice statistical mechanical theory.The model EOS requires two molecular parameters which representing molecular size and interaction energy for a pure component and single adjustable interaction energy parameter for binary mixtures.Critical temperature and pressure data were used to obtain molecular size parameter and vapor pressure data were used to obtain interaction energy parameter.The MF-NLF EOS model adapted in the present study correlated quantitatively well the critical loci of various binary water with hydrocarbon systems.

  10. Initial susceptibility and viscosity properties of low concentration ε-Fe3N based magnetic fluid

    Directory of Open Access Journals (Sweden)

    Huang Wei

    2007-01-01

    Full Text Available AbstractIn this paper, the initial susceptibility of ε-Fe3N magnetic fluid at volume concentrations in the range Φ = 0.0 ∼ 0.0446 are measured. Compared with the experimental initial susceptibility, the Langevin, Weiss and Onsager susceptibility were calculated using the data obtained from the low concentration ε-Fe3N magnetic fluid samples. The viscosity of the ε-Fe3N magnetic fluid at the same concentrations is measured. The result shows that, the initial susceptibility of the low concentration ε-Fe3N magnetic fluid is proportional to the concentration. A linear relationship between relative viscosity and the volume fraction is observed when the concentration Φ < 0.02.

  11. Magnetic fluid based squeeze film between porous circular disks with sealed boundary

    Institute of Scientific and Technical Information of China (English)

    R.M.PATEL; G.M.DEHERI

    2001-01-01

    Efforts have been made to study the effect of the magnetic fluid lubricant and the seal-ing of the boundary for the squeeze film between two circular disks when the upper disk having aporous facing with its boundary sealed, approaches the non-porous lower disk normally. The modi-fied Reynolds equations for the fluid region and the governing Laplacian equation for the pressurein porous region are solved with appropriate boundary conditions. Expressions are obtained forpressure, load carrying capacity and the response time. The results are presented graphically. Thecombined effect of the magnetic fluid lubricant and sealing of the boundary increases the load car-rying capacity significantly and hence the performance of the bearing can be enhanced considera-bly by sealing the boundary and taking a magnetic fluid as lubricant.

  12. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model

    International Nuclear Information System (INIS)

    Highlights: • A novel control method for the heating greenhouse with SWSHPS is proposed. • CFD is employed to predict the priorities of FCU loops for thermal performance. • EPM is act as an on-line tool to predict the total energy demand of greenhouse. • The CFD–EPM-based method can save energy and improve control accuracy. • The energy savings potential is between 8.7% and 15.1%. - Abstract: As energy heating is one of the main production costs, many efforts have been made to reduce the energy consumption of agricultural greenhouses. Herein, a novel control method of greenhouse heating using computational fluid dynamics (CFD) and energy prediction model (EPM) is proposed for energy savings and system performance. Based on the low-Reynolds number k–ε turbulence principle, a CFD model of heating greenhouse is developed, applying the discrete ordinates model for the radiative heat transfers and porous medium approach for plants considering plants sensible and latent heat exchanges. The CFD simulations have been validated, and used to analyze the greenhouse thermal performance and the priority of fan coil units (FCU) loops under the various heating conditions. According to the heating efficiency and temperature uniformity, the priorities of each FCU loop can be predicted to generate a database with priorities for control system. EPM is built up based on the thermal balance, and used to predict and optimize the energy demand of the greenhouse online. Combined with the priorities of FCU loops from CFD simulations offline, we have developed the CFD–EPM-based heating control system of greenhouse with surface water source heat pumps system (SWSHPS). Compared with conventional multi-zone independent control (CMIC) method, the energy savings potential is between 8.7% and 15.1%, and the control temperature deviation is decreased to between 0.1 °C and 0.6 °C in the investigated greenhouse. These results show the CFD–EPM-based method can improve system

  13. Dependence of particle size on the effective thermal diffusivity and conductivity of nanofluids: role of base fluid properties

    Science.gov (United States)

    Nisha, M. R.; Philip, J.

    2012-10-01

    Effect of nanoparticle size on effective thermal diffusivity and conductivity of polymeric and water based nanofluids are investigated following thermal wave interference technique. Two sets of nanofluids, prepared by dispersing TiO2 nanoparticles, with average sizes in the range 5-100 nm, in polyvinyl alcohol and water show opposing particle size dependences. Variations are explained invoking effective medium theory, including size of nanoparticles, molecular weight of base fluid and effects associated with it.

  14. Preparation of Chitosan-Based Hemostatic Sponges by Supercritical Fluid Technology

    Directory of Open Access Journals (Sweden)

    Hu-Fan Song

    2014-03-01

    Full Text Available Using ammonium bicarbonate (AB particles as a porogen, chitosan (CS-based hemostatic porous sponges were prepared in supercritical carbon dioxide due to its low viscosity, small surface tension, and good compatibility with organic solvent. Fourier transform infrared spectroscopy (FTIR spectra demonstrated that the chemical compositions of CS and poly-(methyl vinyl ether-co-maleic anhydride (PVM/MA were not altered during the phase inversion process. The morphology and structure of the sponge after the supercritical fluid (SCF process were observed by scanning electron microscopy (SEM. The resulting hemostatic sponges showed a relatively high porosity (about 80% with a controllable pore size ranging from 0.1 to 200 µm. The concentration of PVM/MA had no significant influence on the porosity of the sponges. Comparative experiments on biological assessment and hemostatic effect between the resulting sponges and Avitene® were also carried out. With the incorporation of PVM/MA into the CS-based sponges, the water absorption rate of the sponges increased significantly, and the CS-PVM/MA sponges showed a similar water absorption rate (about 90% to that of Avitene®. The results of the whole blood clotting experiment and animal experiment also demonstrated that the clotting ability of the CS-PVM/MA sponges was similar to that of Avitene®. All these results elementarily verified that the sponges prepared in this study were suitable for hemostasis and demonstrated the feasibility of using SCF-assisted phase inversion technology to produce hemostatic porous sponges.

  15. Theoretical models for fluid thermodynamics based on the quasi-Gaussian entropy theory

    OpenAIRE

    Amadei, Andrea

    1998-01-01

    Summary The theoretical modeling of fluid thermodynamics is one of the most challenging fields in physical chemistry. In fact the fluid behavior, except at very low density conditions, is still extremely difficult to be modeled from a statistical mechanical point of view, as for any realistic model Hamiltonian the configurational part of the partition function cannot be evaluated, i.e., the corresponding high dimensional integral is far too complex to be solved. Hence once a molecular Hamilto...

  16. Fully Coupled Fluid-Structure Interaction Model Based on Distributed Lagrange Multiplier/Fictitious Domain Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure's rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity.

  17. Working Toward a Competency-Based Preceptor Development Program.

    Science.gov (United States)

    Gueorguieva, Vera; Chang, Ann; Fleming-Carroll, Bonnie; Breen-Reid, Karen M; Douglas, Mary; Parekh, Sandhaya

    2016-09-01

    Preceptorship programs are widely used in nursing education and transition to practice. This article describes a variety of improvements implemented in an academic health sciences center on the basis of findings from a study previously conducted with preceptors in the same institution. A long-standing preceptor preparation program was redesigned and expanded into two levels-an introductory workshop directed toward meeting the needs of new preceptors, and an advanced workshop for experienced preceptors. Organization-specific preceptor competencies were developed as a foundation for preceptor practice. The competencies also informed the revised preceptor development program that included selection, ongoing development, and evaluation. A more structured support system, a standardized performance feedback process, and additional recognition strategies were incorporated in the new competency-based preceptor program. J Contin Educ Nurs. 2016;47(9):427-432. PMID:27580510

  18. Water and clay based drilling fluids: rheologic, filtration and lubricity behavior; Fluidos hidroargilosos: comportamento reologico, de filtracao e lubricidade

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Luciana V.; Pereira, Melquesedek S.; Ferreira, Heber C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    The aim of this work is to provide continuity for UFCG studies presenting results of rheological, filtration and the lubricity behaviors obtained with fluids prepared with bentonite clays from Paraiba, in binary compositions, after treatment with lubricants agents. It was selected two samples of bentonite clays and four lubricants (Lub 1, Lub 2, Lub 3 and Lub 4). The results showed that: depending on the composition, the drilling fluids presented bingham and pseudo plastic rheological behaviors, and with the additives bingham behavior; among the rheological and filtration properties evaluated, the apparent viscosity, yield limiting and the water loss are the have changes with the addition of lubricants; the values of the lubricity coefficient (LC) of fluids without additives were next of 0.50, independent of the composition of the bentonite clay mixture; after addition of the lubricants, the LC of fluids reduced for values next to 0,11, independent of its concentration and lubricants the best-performing are the Lub 2 and Lub 4. (author)

  19. The Impact of a Pulmonary-Artery-Catheter-Based Protocol on Fluid and Catecholamine Administration in Early Sepsis

    Directory of Open Access Journals (Sweden)

    Carina Bethlehem

    2012-01-01

    Full Text Available Objective. The pulmonary artery catheter (PAC remains topic of debate. Despite abundant data, it is of note that many trials did not incorporate a treatment protocol. Methods. We retrospectively evaluated fluid balances and catecholamine doses in septic patients after the introduction of a PAC-based treatment protocol in comparison to historic controls. Results. 2×70 patients were included. The first day the PAC group had a significantly higher positive fluid balance in comparison to controls (6.1±2.6 versus 3.8±2.4 litre, <0.001. After 7 days the cumulative fluid balance in the PAC group was significantly lower than in controls (9.4±7.4 versus 13±7.6 litre, =0.001. Maximum dose of norepinephrine was significantly higher in the PAC group. Compared to controls this was associated with a significant reduction in ventilator and ICU days. Conclusions. Introduction of a PAC-based treatment protocol in sepsis changed the administration of fluid and vasopressors significantly.

  20. Novel hydrophobic associated polymer based nano-silica composite with core–shell structure for intelligent drilling fluid under ultra-high temperature and ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Hui Mao

    2015-02-01

    Full Text Available Micro-nano-based drilling fluid has attracted a strong interest due to its attractive properties, and micro-nano composite materials have great potential for developing intelligent drilling fluid. In this study a novel hydrophobic associated polymer based nano-silica composite with core–shell structure was prepared and characterized by PSD, SEM, TEM and ESEM. The results showed that the composite, as a micro-nano drilling fluid additive, possessed excellent properties such as thermal stability, rheology, fluid loss and lubricity. Especially, it could plug the formation effectively and improve the pressure bearing capability of formation significantly.