WorldWideScience

Sample records for based waste materials

  1. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  2. Modification of clay-based waste containment materials

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K. [DuPont Central Research and Development, Newark, DE (United States); Whang, J.M. [DuPont Specialty Chemicals, Deepwater, NJ (United States); McDevitt, M.F. [DuPont Central Research and Development, Wilmington, DE (United States)

    1997-12-31

    Bentonite clays are used extensively for waste containment barriers to help impede the flow of water in the subsurface because of their low permeability characteristics. However, they do little to prevent diffusion of contaminants, which is the major transport mechanism at low water flows. A more effective way of minimizing contaminant migration in the subsurface is to modify the bentonite clay with highly sorptive materials. Batch sorption studies were conducted to evaluate the sorptive capabilities of organo-clays and humic- and iron-based materials. These materials proved to be effective sorbents for the organic contaminants 1,2,4-trichlorobenzene, nitrobenzene, and aniline in water, humic acid, and methanol solution media. The sorption capacities were several orders of magnitude greater than that of unmodified bentonite clay. Modeling results indicate that with small amounts of these materials used as additives in clay barriers, contaminant flux through walls could be kept very small for 100 years or more. The cost of such levels of additives can be small compared to overall construction costs.

  3. Environmental Management of Waste Based on Road Construction Materials

    Directory of Open Access Journals (Sweden)

    Damijan Koletnik

    2012-03-01

    Full Text Available In 2008 the European Council adopted a revised framework for waste management in the EU, with an objective to encourage recycling and reuse of waste, in order to reduce landfills and potential environmental emissions. This framework also sets new recycling targets for construction and demolition waste by 2020, suggesting that at least 70 % of the waste should be recycled. Nigrad d.d. is a utility company providing services to several municipalities in North-East Slovenia. These services include repairs to public roads and pavements. This paper examines the origin, amount and fraction of construction waste produced, identifying current waste management practices. Based on the state-of-the art study new approaches are to be proposed, which will make it possible to decrease environmental impacts and costs, when providing public services and establishing sustainable service systems. To reach this objective a life-cycle analysis of the existing service has been carried out, which will help identify the system parts that have the most significant impact on the environment.DOI: http://dx.doi.org/10.5755/j01.erem.59.1.681

  4. Composite materials based on wastes of flat glass processing.

    Science.gov (United States)

    Gorokhovsky, A V; Escalante-Garcia, J I; Gashnikova, G Yu; Nikulina, L P; Artemenko, S E

    2005-01-01

    Glass mirrors scrap and poly (vinyl) butiral waste (PVB) obtained from flat glass processing plants were investigated as raw materials to produce composites. The emphasis was on studying the influence of milled glass mirror waste contents on properties of composites produced with PVB. The characterization involved: elongation under rupture, water absorption, tensile strength and elastic modulus tests. The results showed that the composite containing 10 wt% of filler powder had the best properties among the compositions studied. The influence of the time of exposure in humid atmosphere on the composite properties was investigated. It was found that the admixture of PVB iso-propanol solution to the scrap of glass mirrors during milling provided stabilization of the properties of the composites produced.

  5. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    Science.gov (United States)

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-01-23

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed.

  6. Development of a methodology for electronic waste estimation: A material flow analysis-based SYE-Waste Model.

    Science.gov (United States)

    Yedla, Sudhakar

    2016-01-01

    Improved living standards and the share of services sector to the economy in Asia, and the use of electronic equipment is on the rise and results in increased electronic waste generation. A peculiarity of electronic waste is that it has a 'significant' value even after its life time, and to add complication, even after its extended life in its 'dump' stage. Thus, in Indian situations, after its life time is over, the e-material changes hands more than once and finally ends up either in the hands of informal recyclers or in the store rooms of urban dwellings. This character makes it extremely difficult to estimate electronic waste generation. The present study attempts to develop a functional model based on a material flow analysis approach by considering all possible end uses of the material, its transformed goods finally arriving at disposal. It considers various degrees of uses derived of the e-goods regarding their primary use (life time), secondary use (first degree extension of life), third-hand use (second degree extension of life), donation, retention at the respective places (without discarding), fraction shifted to scrap vendor, and the components reaching the final dump site from various end points of use. This 'generic functional model' named SYE-Waste Model, developed based on a material flow analysis approach, can be used to derive 'obsolescence factors' for various degrees of usage of e-goods and also to make a comprehensive estimation of electronic waste in any city/country.

  7. Impedance spectroscopy of composites based on waste polymeric materials for electrical engineering purposes

    Science.gov (United States)

    Zubko, V. I.; Zubko, D. V.

    2012-07-01

    We have developed a high-sensitivity capacitance transducer and a method for measuring the complex of electrical indices of composites based on waste polymeric materials in the frequency range from 100 Hz to 1 MHz. The electrical properties of composites depending on the electric field frequency and the content and type of the filler have been investigated.

  8. Physical and mechanical properties of composite materials of different compositions based on waste products

    Directory of Open Access Journals (Sweden)

    A.E. Burdonov

    2012-12-01

    Full Text Available This paper presents a study on the effect of mineral filler on the polymer composite material based on waste products of heat and power engineering - fly ash. This type of waste products has never been used for the production of polymer-mineral composites. Depending on the type of ash, its chemical composition and its quantity in the material, we can adjust the properties of the resulting composites. The use of fly ash as a filler will not only make a product less expensive, but it also will reduce development pressure on the environment and improve the physical and mechanical properties of the material. The article shows research results of the ash chemical composition as well as the properties of the resulting materials on its basis. According to the research conclusions there is a prospect for using this material in the construction industry.

  9. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова

    2016-02-01

    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  10. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Nukleare Entsorgung (INE)

    2015-07-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH){sub 2}. Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  11. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2016-01-01

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid...... waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different...... particulate waste materials, were fired and material properties and heavy metal leaching tests were conducted before and after firing. Remediation techniques (washing in distilled water and electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and bottom ash...

  12. Characterization of Waste Material Derived Willemite-Based Glass-Ceramics Doped with Erbium

    Directory of Open Access Journals (Sweden)

    G. V. Sarrigani

    2015-01-01

    Full Text Available We reported, for the first time, to the best of our knowledge, the production of erbium doped willemite-based glass-ceramic using waste material. In this work, a willemite-based glass-ceramic was prepared from waste material to obtain excellent crystallinity and then doped with trivalent erbium (Er3+ to yield ([(ZnO0.5(SLS0.5]1−x[Er2O3]x final composition where x=3 wt%. The samples were sintered at various temperatures (500–1100°C to study the effects of sintering temperatures on microstructure and physical properties of the samples. X-ray diffraction (XRD and Fourier transform infrared (FTIR were used to determine structural changes and functional groups in the samples, respectively. Field-emission scanning electron microscopy (FE-SEM equipped with energy dispersive X-ray was used to observe surface morphology and to detect presence of elements in the samples. Findings showed that average grain size of the Er3+ doped glass-ceramic sample increased as a function of the sintering temperature and the optimum temperature was 900°C.

  13. Production of Biofuel from Waste Lignocellulosic Biomass Materials Based on Energy Saving Viewpoint

    Science.gov (United States)

    Takano, Maki; Hoshino, Kazuhiro

    To develop biofuel production from waste lignocellulosic biomass materials the rice straw was selected one of renewable material and the degradation condition about pretreatment and enzymatic hydrolysis to obtain effectively fermentable sugars was investigated. Rice straw was pretreated by five kinds of methods and then the components ratio of rice straw was examined. First, the steam explosion was selected based on the degradability and the requirement energy. In addition, the best suitable combination of two cellulases to effective and economical hydrolyze was determined from the degradability of these pretreated rice straws. In the simultaneous saccharification and fermentation of the steam explosion rice straw by combining cellulase cocktail and a novel fermenting fungus, 13.2 g/L ethanol was able to product for 96 h.

  14. Iron-based materials as tar cracking catalyst in waste gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nordgreen, Thomas

    2011-07-01

    The treatment of municipal solid waste (MSW) in Sweden has changed during the past decades due to national legislation and European Union directives. The former landfills have more or less been abandoned in favour of material recycling and waste incineration. On a yearly basis approximately 2.2 million tonnes waste are incinerated in Sweden with heat recovery and to some extent also with electricity generation, though at a low efficiency. It is desirable to alter this utilisation and instead employ MSW as fuel in a fluid bed gasification process. Then electrical energy may be produced at a much higher efficiency. However, MSW contain about 1 % chlorine in the form of ordinary table salt (NaCl) from food scraps. This implies that the tar cracking catalyst, dolomite, which is normally employed in gasification, will suffer from poisoning if applied under such conditions. Then the tar cracking capacity will be reduced or vanish completely with time. Consequently, an alternative catalyst, more resistant to chlorine, is needed. Preliminary research at KTH has indicated that iron in its metallic state may possess tar cracking ability. With this information at hand and participating in the project 'Energy from Waste' an experimental campaign was launched. Numerous experiments were conducted using iron as tar cracking catalyst. First iron sinter pellets from LKAB were employed. They were reduced in situ with a stream of hydrogen before they were applied. Later iron-based granules from Hoeganaes AB were tested. These materials were delivered in the metallic state. In all tests the KTH atmospheric fluidised bed gasifier with a secondary catalytic reactor housing the catalytic material was deployed. Mostly, the applied fuel was birch. The results show that metallic iron possesses an intrinsic ability, almost in the range of dolomite, to crack tars. Calculations indicate that iron may be more resistant to chlorine than dolomite. The exploration of metallic iron

  15. RECYCLED WASTE-BASED CEMENT COMPOSITE PATCH MATERIALS FOR RAPID/PERMANENT ROAD RESTORATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2001-07-31

    Over the past year, KeySpan Energy sponsored a research program at Brookhaven National Laboratory (BNL) aimed at recycling boiler ash (BA) and waste water treatment sludge (WWTS) byproducts generated from Keyspan's power stations into potentially useful materials, and at reducing concurrent costs for their disposal. Also, KeySpan has an interest in developing strategies to explicitly integrate industrial ecology and green chemistry. From our collaborative efforts with Keyspan (Diane Blankenhom Project Manager, and Kenneth Yager), we succeeded in recycling them into two viable products; Pb-exchange adsorbents (PEAs), and high-performance cements (HpCs). These products were made from chemically bonded cement and ceramic (CBC) materials that were synthesized through two-step chemical reaction pathways, acid-base and hydration. Using this synthesis technology, both the WWTS and BA served in acting as solid base reactants, and sodium polyphosphate, [-(-NaPO{sub 3}-)-{sub n}], known as an intermediator of fertilizer, was employed as the acid solution reactant. In addition, two commercial cement additives, Secar No. 51 calcium aluminate cement (CAC) and Type I calcium silicate cement (CSC), were used to improve mechanical behavior and to promote the rate of acid-base reaction of the CBC materials.

  16. Waste-based materials; capability, application and impact on indoor environment – literature review

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Rode, Carsten; Kolarik, Jakub;

    2014-01-01

    This paper reviews and discusses various sustainable materials utilizing waste products with the focus on their properties having an impact on the indoor environmental conditions and indoor air quality (IAQ). Materials included in the review are selected considering the following aspects: sustain......: sustainability, cradle to cradle perspective, application, their impact on indoor environment and human well-being. The attempt of the paper is to cover a wide spectrum of information so to provide better understanding of waste utilization in construction industry.......This paper reviews and discusses various sustainable materials utilizing waste products with the focus on their properties having an impact on the indoor environmental conditions and indoor air quality (IAQ). Materials included in the review are selected considering the following aspects...

  17. PAHs in leachates from thermal power plant wastes and ash-based construction materials.

    Science.gov (United States)

    Irha, Natalya; Reinik, Janek; Jefimova, Jekaterina; Koroljova, Arina; Raado, Lembi-Merike; Hain, Tiina; Uibu, Mai; Kuusik, Rein

    2015-08-01

    The focus of the current study is to characterise the leaching behaviour of polycyclic aromatic hydrocarbons (PAHs) from oil shale ashes (OSAs) of pulverised firing (PF) and circulating fluidised-bed (CFB) boilers from Estonian Thermal Power Plant (Estonia) as well as from mortars and concrete based on OSAs. The target substances were 16 PAHs from the EPA priority pollutant list. OSA samples and OSA-based mortars were tested for leaching, according to European standard EN 12457-2 (2002). European standard CEN/TC 15862(2012) for monolithic matter was used for OSA-based concrete. Water extracts were analysed by GC-MS for the concentration of PAHs. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. Still, the release of PAHs was below the threshold limit value for inert waste. The amount of the finest fraction (particle size <0.045 mm), the content of the Al-Si glass phase and the surface characteristics were the main factors, which could affect the accessibility of PAHs for leaching. The mobility of PAHs from OSA of CFB and PF boilers was 20.2 and 9.9%, respectively. Hardening of OSA-based materials did not lead to the immobilisation of soluble PAHs. Release of PAHs from the monolith samples did not exceed 0.5 μg/m(2). In terms of leaching of PAHs, OSA is safe to be used for construction purposes.

  18. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment.

    Science.gov (United States)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  19. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    decisions in waste planning thus require a holistic and systematic assessment of environmental impacts of different waste management options. Such assessment requires reliable information on the physical and chemical waste properties to model the flows of waste materials and substances throughout the entire...... the selection of appropriate acid digestion method for future waste characterization studies and the comparison of data across existing studies. A consistent dataset for 73 physico-chemical parameters in 49 residual and 24 source-segregated Danish household waste fractions was obtained and is now available...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions...

  20. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  1. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    OpenAIRE

    Тахира Далиевна Сидикова

    2016-01-01

    We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR) may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ce...

  2. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  3. Correlation between microstructure, phase composition and mechanical properties of thermo-insulation bonding agents based on waste material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available Building composites - thermo-insulating and/or high-temperature resistant bonding agents in which fly ash, as potentially environmentally harmful waste material, is combined with ordinary and refractory cement is new option for reapplication of this waste material. In this study, investigated bonding agents were based on two types of fly ashes from coal combustion process and cements - ordinary Portland cement and highaluminate cement. Change of mineral phase composition of the composites with increasing temperature was analyzed by means of XRD method. Microstructural changes within investigated composites were investigated by means of scanning electron microscopy (SEM. Macro-performance - mechanical properties of the investigated bonding agents was finally correlated with its microstructure. The investigated bonding agents showed excellent compressive strength, while SEM and XRD analysis indicated its valuable refractory and thermo-insulation properties. [Projekat Ministarstva nauke Republike Srbije, br. 172057 i br. 45008

  4. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  5. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2015-02-01

    Full Text Available This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  6. FY 1985 status report on feasibility assessment of copper-base waste package container materials in a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    McCright, R.D.

    1985-09-30

    This report discusses progress made during the first year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. The expected corrosion and oxidation performances of oxygen-free copper, aluminum bronze, and 70% copper-30% nickel are presented; a test plan for determining whether copper or one of the alloys can meet the containment requirements is outlined. Some preliminary corrosion test data are presented and discussed. Fabrication and joining techniques for forming waste package containers are descibed. Preliminary test data and analyses indicate that copper and copper-base alloys have several attractive features as waste package container materials, but additional work is needed before definitive conclusions can be made on the feasibility of using copper or a copper-base alloy for containers. Plans for work to be undertaken in the second year are indicated.

  7. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  8. Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material

    NARCIS (Netherlands)

    Lin, Y. M.; Nierop, K.G.J.; Girbal-Neuhauser, E.; Adriaanse, M.; van Loosdrecht, M. C M

    2015-01-01

    To evaluate the possibility of utilizing polysaccharide-based biomaterial recovered from aerobic granular sludge as a coating material, the morphology, molecular weight distribution and chemical composition of the recovered biomaterial were investigated by atomic force microscopy, size exclusion chr

  9. Improvement, characterization and use of waste corn cob ash in cement-based materials

    Science.gov (United States)

    Suwanmaneechot, P.; Nochaiya, T.; Julphunthong, P.

    2015-12-01

    This work investigates the development of waste corn cob ash as supplementary cement replacement materials. The study focused on the effects of heat treatment on chemical composition, physical properties and engineering properties of corn cob ash. The results suggest corn cob ash that was heat treated at 600°C for 4 h shows percentage of SiO2 + Al2O3 + Fe2O3 around 72%, which can be classified as Class N calcined natural pozzolan, as prescribed by ASTM C618. The X-ray diffraction patterns indicated that the amorphous silica phase increased with increasing calcining temperatures. The water requirement, initial setting time and final setting time of specimens increased with increasing replacement percentage of raw or treated corn cob ash. The morta cubes which used 20% of treated corn cob ash replaced cement showed 103% of the 28 days compressive strength as compared to reference samples. The corn cob ash that was treated at 600°C for 4 h samples shows slightly higher effectiveness for improving the splitting tensile strength and compressive strength of concrete when compared to the untreated corn cob ash.

  10. Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials.

    Science.gov (United States)

    Cyr, M; Idir, R; Escadeillas, G

    2012-12-01

    The landfilling of municipal incineration residues is an expensive option for municipalities. This work evaluates an alternative way to render waste inert in cement-based materials by combining the reduction of waste content with the immobilization properties of metakaolin (MK). The functional and environmental properties of ternary and quaternary binders using cement, metakaolin, and two industrial by-products from combustion processes (MSWIFA - Municipal Solid Waste Incineration Fly Ash and SSA - Sewage Sludge Ash) were evaluated. The binders were composed of 75% cement, 22.5% metakaolin and 2.5% residue. Results on the impact of residues on the functional and environmental behavior of mortars showed that the mechanical, dimensional and leaching properties were not affected by the residues. In particular, the use of metakaolin led to a significant decrease in soluble fractions and heavy metals released from the binder matrix. The results are discussed in terms of classification of the leaching behavior, efficiency and role of metakaolin in the immobilization of heavy metals in of MSWIFA and SSA, and the pertinence of the dilution process.

  11. Certification of biofuels based on waste materials and residual materials. Adaptation of the 36. BImSchV; Zertifizierung von abfall- und reststoffbasierten Biokraftstoffen. Anpassung des 36. BImSchV

    Energy Technology Data Exchange (ETDEWEB)

    Kindt, Wolf-Dietrich [Verband der Deutschen Biokraftstoffindustrie e.V. (VDB), Berlin (Germany)

    2013-10-01

    Wastes and Residues are increasingly used for biofuel production. Since 2011 waste based biofuels are promoted in Germany through double counting towards the national biofuel quota. This makes the use of waste and residue-based biofuels attractive for mineral oil companies which are obliged to satisfy the quota. As of January 1{sup st} 2013 the legal framework for the production of waste based biofuels was revised. The amended 36th Regulation for the Implementation of the Federal Immissions Control Act aims to reduce existing legal uncertainties and mitigate fraud potentials up to the processing stage by introducing a proof of double counting (Doppelgewichtungsnachweis). Certification is now necessary across the entire value chain - analogous to the sustainability certification of agricultural commodity based biofuels. However there is need for further regulation with regard to traceability of biofuels after the processing stage and legal binding restriction of raw materials used on actual waste materials. (orig.)

  12. Ethanol production from waste materials

    Directory of Open Access Journals (Sweden)

    Muhammad Shahid Iqbal

    2012-08-01

    Full Text Available Experiment was designed for ethanol production using corn andother organic waste material containing starch contents andcellulosic material while barely used for diastase and acidicdigestion methods. The effect of temperature, yeast, barely diastaseand various dilutions of acid (sulfuric acids were investigated onethanol production. The result showed that corn yielded highamount of ethanol (445ml as compared to cellulosic material whichproduced 132ml of ethanol from one kg of weight. It was also notedthat with the increase of barely and yeast amount in a proper mannercan increase ethanol production from different starch sources. It wasalso noted that acid dilutions affected cellulose digestion where highyield of reducing sugar was noted at 0.75% of sulfuric acid dilution.It was concluded from the present experiment that economicalsources of starch and various dilutions of acids should be tried oncellulose digestion for bio-fuel production to withstand in thisenergy crisis time.

  13. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  14. Leaching of the potentially toxic pollutants from composites based on waste raw material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available The disposal of the fly ash generated in coal based power-plants may pose a significant risk to the environment due to the possible leaching of hazardous pollutants, such as toxic metals. Also, there is a risk of leaching even when fly ash is built-in the construction composites. Fly ashes from various landfills were applied in several composite samples (mortar, concrete and brick without any physical or thermal pre-treatment. The leachability of the potentially toxic pollutants from the fly ash based products was investigated. The leaching behavior and potential environmental impact of the 11 potentially hazardous elements was tracked: Pb, Cd, Zn, Cu, Ni, Cr, Hg, As, Ba, Sb and Se. A detailed study of physico-chemical characteristics of the fly ash, with accent on trace elements and the chemical composition investigation is included. Physico/chemical properties of fly ash were investigated by means of X-ray fluorescence, differential thermal analysis and X-ray diffraction methods. Scanning electron microscope was used in microstructural analysis. The results show that most of the elements are more easily leachable from the fly ash in comparison with the fly ash based composites. The leaching of investigated pollutants is within allowed range thus investigated fly ashes can be reused in construction materials production.

  15. Biodegradable containers from green waste materials

    Science.gov (United States)

    Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto

    2016-05-01

    Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.

  16. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  17. Material selection for Multi-Function Waste Tank Facility tanks

    Energy Technology Data Exchange (ETDEWEB)

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States); Foster, G.M. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  18. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  19. Absorption properties of waste matrix materials

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  20. Materials in Nuclear Waste Disposition

    Science.gov (United States)

    Rebak, Raul B.

    2014-03-01

    Commercial nuclear energy has been used for over 6 decades; however, to date, none of the 30+ countries with nuclear power has opened a repository for high-level waste (HLW). All countries with nuclear waste plan to dispose of it in metallic containers located in underground geologically stable repositories. Some countries also have liquid nuclear waste that needs to be reduced and vitrified before disposition. The five articles included in this topic offer a cross section of the importance of alloy selection to handle nuclear waste at the different stages of waste processing and disposal.

  1. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA); Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S. [CDA/INCRA Joint Advisory Group, Greenwich, CT (USA)

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  2. BioWaste-to-Liquid. An ecologic-economic consideration of pyrolysis oil based on biogenic residual materials and wastes; BioWaste-to-Liquid. Oekologisch-oekonomische Betrachtung von Pyrolyseoel auf Basis biogener Rest- und Abfallstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Liemen, Franziska; Zech, Konstantin; Kroeger, Michael [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany)

    2012-07-01

    The joint research project BioWaste-to-Liquid, which is carried out by Deutsches BiomasseForschungsZentrum (DBFZ) and Karlsruhe Institute of Technology (KIT), focuses on the provision of alternative fuels by means of fast pyrolysis. Alongside the various tests and technical analyses, an ecologic and economic assessment was carried out, that examines the performance of different raw materials in terms of GHG-emissions and production costs. The herein examined raw materials were Rape straw, Sunflower straw, residues of corn harvesting, hay, waste wood, bark and driftwood from river Rhine. The results show a good performance of waste wood and draft wood both in ecologic and economic terms, whilst especially Sunflower straw can be considered rather unsuitable since it is particularly affected by the negative effects of the compensatory fertilization. The other raw materials perform varyingly in the ecologic and economic assessments. (orig.)

  3. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  4. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  5. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.

    1997-12-01

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

  6. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  7. Recycle of silicate waste into mesoporous materials.

    Science.gov (United States)

    Kim, Jung Ho; Kim, Minwoo; Yu, Jong-Sung

    2011-04-15

    Template synthesis of porous carbon materials usually requires selective removal of template silica from the carbon/silica composites. It not only involves waste of valuable chemicals, but also poses significant environmental concerns including high waste treatment cost. Recycling of silicates released from such nanocasting methods is successfully performed for the first time to regenerate valuable mesoporous MCM and SBA type silica materials, which will not only help in saving valuable chemicals, but also in decreasing chemical waste, contributing in improvement of our environmental standards. This approach can thus improve cost effectiveness for the mass production of nanostructured carbon and others utilizing silica directed nanocasting method by recycling otherwise silicate waste into highly desirable valuable mesoporous silica.

  8. Buried waste containment system materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  9. Method for recovering materials from waste

    Science.gov (United States)

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  10. Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

    Directory of Open Access Journals (Sweden)

    Petrović Marija S.

    2015-01-01

    Full Text Available The purpose of this study was to investigate the adsorption properties of locally available lignocelluloses biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones and from the corn milling process (corn cob. Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II ions concentration (Ci, amount of biomass (m and volume of metal solution (V, on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on a highest sorption capability of biosorbent, in removal of Cu(II. Experimental data were compared with second order polynomial regression models (SOPs and artificial neural networks (ANNs. SOPs showed acceptable coefficients of determination (0.842 - 0.997, while ANNs performed high prediction accuracy (0.980-0.986 in comparison to experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR 31003, TR 31055

  11. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  12. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-08-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  13. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    Science.gov (United States)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  14. Construction Material Waste: Recognition and Analysis

    Directory of Open Access Journals (Sweden)

    Ibrahim Mahamid

    2014-09-01

    Full Text Available This study was motivated by long term observations of the construction industry in the Northern region of the Kingdom of Saudi Arabia (KSA. The observations showed that the construction waste is becoming a serious environmental, economical and safety issue that affects the suburbs of the KSA. The study utilizes Likert scaled responses through a two-part questionnaire distributed to 42 contractors located in the Northern region of KSA. The first part of the questionnaire aims at identifying causes of material waste in building construction projects from the contractors’ viewpoint. The second part seeks to rank the considered materials according to their level of importance from the contractors’ viewpoint. The collected data was analyzed through Minitab statistical software. It was found that the most significant factors causing construction waste are: (1 inaccuracy in quantity surveys leading to over-ordering or under-ordering; (2 the selection of low quality products; (3 detail errors in design and construction; (4 the order of supplies in loose form; (5 and the inefficiency in resource management. The results of this study show that construction material handling and managerial decisions have a critical impact on the cause and effect of the level of construction waste. The study findings demonstrate that the most important benefits for considering construction waste are to know the exact required quantities for a construction project and to plan and prepare an accurate schedule for material arriving supply. The study recommends employing Lean Manufacturing principles to eliminate the construction waste and to enhance the decision making process in construction management in the northern part of KSA.

  15. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    William j. Weber; Lumin Wang; Jonathan Icenhower

    2004-07-09

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

  16. Potential applications of nanostructured materials in nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  17. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  18. The useful application of sulphur-bound waste materials

    NARCIS (Netherlands)

    Alkemade, M.M.C.; Koene, J.I.A.

    1996-01-01

    An immobilization process is described which is based on sulphur (instead of cement) as a binding agent for the treatment of hazardous waste materials. Elemental sulphur is able to bind chemically metals such as mercury and, to a lesser extent, lead as metal sulphides. Furthermore, sulphur forms a c

  19. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    OpenAIRE

    Johnny Bolden; Taher Abu-Lebdeh; Ellie Fini

    2013-01-01

    More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nationâs landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take a...

  20. Synthesis and Characterization of Bio-based Nanomaterials from Jabon (Anthocephalus cadamba (Roxb. Miq Wood Bark: an Organic Waste Material from Community Forest

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2015-06-01

    Full Text Available The application of nanotechnology to produce nanomaterials from renewable bio-based materials, like wood bark, has great potential to benefit the wood processing industry. To support this issue, we investigated the production of bio-based nanomaterials using conventional balls milling. Jabon (Anthocephalus cadamba(Roxb. Miq wood bark (JWB, an organic waste material from a community forest was subjected to conventional balls milling for 96 h and was converted into bio-based nanomaterial. The morphology and particle size, chemical components, functional groups and crystallinity of the bio-based nanomaterial were evaluated using scanning electron microscopy (SEM, scanning electron microscopy extended with energy dispersive X-ray spectroscopy (SEM-EDS, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The particle-sizes obtained for the JWB bio-based nanomaterial were between 43 nm to 469 nm and the functional groups were detected as cellulose. The chemical components found were carbon, oxygen, chloride, potassium and calcium, except for the sample produced from sieve type T14, which did not contain chloride. The crystalline structure was calcium oxalate hydrate (C2CaO4.H2O with crystalline sizes 21 nm and 15 nm, produced from sieve types T14 and T200 respectively.

  1. Radiation effects in nuclear waste materials. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J.; Corrales, L.R. [Pacific Northwest National Lab., Richland, WA (US); Birtcher, R.C. [Argonne National Lab., IL (US); Nastasi, M. [Los Alamos National Lab., NM (US)

    1998-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels. The goal is to provide the underpinning science and models necessary to assess the performance of glasses and ceramics designed for the immobilization and disposal of high-level tank waste, plutonium residues, excess weapons plutonium, and other highly radioactive waste streams. A variety of experimental and computer simulation methods are employed in this effort. In general, research on glasses focuses on the electronic excitations due to ionizing radiation emitted from beta decay, since this is currently thought to be the principal mechanism for deleterious radiation effects in nuclear waste glasses. Research on ceramics focuses on defects and structural changes induced by the elastic interactions between alpha-decay particles and the atoms in the structure. Radiation effects can lead to changes in physical and chemical properties that may significantly impact long-term performance of nuclear waste materials. The current lack of fundamental understanding of radiation effects in nuclear waste materials makes it impossible to extrapolate the limited existing data bases to larger doses, lower dose rates, different temperature regimes, and different glass compositions or ceramic structures. This report summarizes work after almost 2 years of a 3-year project. Work to date has resulted in 9 publications. Highlights of the research over the past year are presented.'

  2. Material Recovery and Waste Form Development FY 2014 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  3. Test Standards for Contingency Base Waste-to-Energy Technologies

    Science.gov (United States)

    2015-08-01

    the recommended materials and the proportion of those materials that can be used to simulate contingency base waste and identify universal criteria...recipes. The specific approach includes the following: 1) Develop a universal test concept that can be applied to waste destruction and/or WTE... Food waste 32% 640 162$ Item 1 21% 133 Gravy Train® Beef Dry Dog Food (~four 35-lb bags) 120$ Item 2 6% 40 Crisco Pure

  4. Vertical Flume Testing of WIPP Surrogate Waste Materials

    Science.gov (United States)

    Herrick, C. G.; Schuhen, M.; Kicker, D.

    2013-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste

  5. Graphite matrix materials for nuclear waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  6. Environmental Assessment of the Demolition of Building 78 and Construction of New Hazardous Materials and Hazardous Waste Storage Buildings, Los Angeles Air Force Base

    Science.gov (United States)

    2016-06-07

    storage of hazardous wastes and materials? 3. Convenient location and access? 4. Aesthetically pleasing (visually)? 5. Location will not interfere...strip commercial businesses, auto repair, and restaurants . In the vicinity of Fort MacArthur, parallel/metered parking is provided along the curb lanes

  7. Leaching characteristics of construction materials and stabilization products containing waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; De Groot, G.J.; Wijkstra, J.

    1987-06-01

    Construction materials prepared with an admixture of waste material(s) and various stabilized waste products have been subjected to leaching studies. Static and dynamic leach tests are applied, in which the specimen to be studied is fully submerged in demineralized water or in seawater. At increasing time intervals the contact solution is renewed and the flux of elements into solution is measured. By studying a wide range of products containing waste materials attempts have been made to find common leaching characteristics. Materials studied to date comprise mortar specimen with a 20% cement replacement by pulverized coal ash, phosphate slag, light weight concrete with 50% of pulverized coal ash, stabilized phosphogypsum and stabilized products prepared from combinations of pulverized coal ash, phosphogypsum, incinerator ash, blast furnace slag, lime or cement. The alkalinity of the material, the open porosity of the product and the surface to volume ratio prove to be important factors in controlling the release of potential hazardous elements from materials containing waste products. In these studies leach parameters on (trace) elements are related to those of sodium. Since the interaction of sodium with the solid phase is usually small, sodium can be used as an indicator for the tortuosity of the product. Elements leached from cement-based waste products are mainly anionic species, like Mo, B, V, F and SO/sub 4/-ions, whereas leaching of metals, like Cu, Cd, Zn and Pb, is limited due to the high pH in the pore solution. The leaching experiments have been verified by scanning electron microscopy for major components on field samples and by measuring depth profiles in waste products for trace constituents using apparatus developed for this purpose.

  8. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water.

    Science.gov (United States)

    Zhang, Yao Jun; Liu, Li Cai; Xu, Yong; Wang, Ya Chao; Xu, De Long

    2012-03-30

    A new type of Ni,Ca-cementitious material was firstly synthesized via a two-step reaction of alkali-activated steel slag polymerization and ion exchange. The XRF results showed that almost all the Na(+) ions in the matrix of Na,Ca-cementitious material were replaced by Ni(2+) ions at room temperature. The new hydrated products of metahalloysite (Si(2)Al(2)O(5)(OH)(4)) and calcium silicate hydrate (CSH) were formed in the Na,Ca-cementitious material. The diffuse reflectance UV-vis near infrared ray spectrum was blue-shifted due to the strong interaction between Ni(2+) and negative charge of [AlO(4)](5-) tetrahedron in the framework of cementitious material. The Ni,Ca-cementitious material was used as a catalyst for the photocatalytic degradation of methylene blue dye and showed a degradation rate of 94.39% under UV irradiation. The high photocatalytic degradation activity was suggested to be the synergistic effect of the cementitious matrix, Ni(2+) ions and the iron oxides of wustite (FeO) and calcium iron oxide (Ca(2)Fe(2)O(5)) from the steel slag. A probable mechanism of photocatalytic oxidative degradation was proposed.

  9. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  10. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao Jun, E-mail: yaojzhang@yahoo.com.cn [College of Material Science and Engineering, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Liu, Li Cai; Xu, Yong; Wang, Ya Chao; Xu, De Long [College of Material Science and Engineering, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer A novel Ni,Ca-cementitious material is synthesized by a two-step reaction. Black-Right-Pointing-Pointer Ni,Ca-geopolymer is firstly used for the photocatalytic degradation of MB. Black-Right-Pointing-Pointer Absorption bands in the UV and NIR regions are reported for the first time. Black-Right-Pointing-Pointer A reaction mechanism of photocatalytic degradation was proposed. - Abstract: A new type of Ni,Ca-cementitious material was firstly synthesized via a two-step reaction of alkali-activated steel slag polymerization and ion exchange. The XRF results showed that almost all the Na{sup +} ions in the matrix of Na,Ca-cementitious material were replaced by Ni{sup 2+} ions at room temperature. The new hydrated products of metahalloysite (Si{sub 2}Al{sub 2}O{sub 5}(OH){sub 4}) and calcium silicate hydrate (CSH) were formed in the Na,Ca-cementitious material. The diffuse reflectance UV-vis near infrared ray spectrum was blue-shifted due to the strong interaction between Ni{sup 2+} and negative charge of [AlO{sub 4}]{sup 5-} tetrahedron in the framework of cementitious material. The Ni,Ca-cementitious material was used as a catalyst for the photocatalytic degradation of methylene blue dye and showed a degradation rate of 94.39% under UV irradiation. The high photocatalytic degradation activity was suggested to be the synergistic effect of the cementitious matrix, Ni{sup 2+} ions and the iron oxides of wustite (FeO) and calcium iron oxide (Ca{sub 2}Fe{sub 2}O{sub 5}) from the steel slag. A probable mechanism of photocatalytic oxidative degradation was proposed.

  11. Use of waste materials for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, R.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Napoli Univ. (Italy). Dipt. di Scienze Chimiche; Buonerba, A.; Grassi, A. [Salerno Univ. (Italy). Dipt. di Chimica e Biologia

    2012-07-01

    Waste raw materials obtained by several sources of both food and agro industries could be considered for biofuel production. In the last years, this topic has growing in interest. At this purpose, our research, has been focused on the development of new technologies to obtain biodiesel from the mentioned wastes feedstock. In particular from oleins, that are mixtures of free fatty acids (FFAs) and triglycerides. Therefore, we are studying the way to produce biodiesel in two steps: an esterification reaction of FFAs with glycerol and a transesterification with methanol of the whole mixture. The esterification of FFAs with glycerol has the advantage of using a relatively high temperature favouring the stripping of water formed during the esterification. In this way esterification equilibrium is shifted to the right. Then, the mixture of mono-, di- and triglycerides, obtained by esterification with glycerol, can be submitted to transesterification with methanol, in the usual way, to produce biodiesel Catalysts promoting esterification, normally, are mineral acids or heterogeneous Bronsted acid catalysts. At this purpose, the classical sulphonated polystyrene acid resins cannot be used at temperature greater than 120 C. Therefore, a new class of sulfonated polymers, with enhanced temperature resistance, has been developed by selective and quantitative sulfonation of olefinic butadiene units in multiblock copolymers syndiotactic polystyrene-co-1,4-cis-polybutadiene. This catalytic system has been successfully tested in the above mentioned esterification reaction and compared to classic commercial strong acid catalysts like Amberlyst {sup registered}, Nafion {sup registered} and sulfuric acid. (orig.)

  12. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V.

    2013-06-03

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national

  13. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Johnny Bolden

    2013-01-01

    Full Text Available More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nation’s landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take advantage of the benefits of using waste and recycled materials. Studies have investigated the use of acceptable waste, recycled and reusable materials and methods. The use of swine manure, animal fat, silica fume, roofing shingles, empty palm fruit bunch, citrus peels, cement kiln dust, fly ash, foundry sand, slag, glass, plastic, carpet, tire scraps, asphalt pavement and concrete aggregate in construction is becoming increasingly popular due to the shortage and increasing cost of raw materials. In this study a questionnaire survey targeting experts from construction industry was conducted in order to investigate the current practices of the uses of waste and recycled materials in the construction industry. This study presents an initial understanding of the current strengths and weaknesses of the practice intended to support construction industry in developing effective policies regarding uses of waste and recycled materials as construction materials.

  14. Glass matrix composite material prepared with waste foundry sand

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-shu; XIA Ju-pei; ZHU Xiao-qin; LIU Fan; HE Mao-yun

    2006-01-01

    The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  15. Microbial Effects on Nuclear Waste Packaging Materials

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J; Martin, S; Carrillo, C; Lian, T

    2005-07-22

    Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM

  16. Olive oil waste waters: Controlled fermentation and materials recovery

    Energy Technology Data Exchange (ETDEWEB)

    Federici, F.; Montedoro, G.F.; Pozzi, V. (Tuscia Univ., Viterbo (Italy). Detp. di Agrobiologia e Agrochimica Perugia Univ. (Italy). Ist. di Industrie Agrarie UNIECO s.c.r.l., Reggio Emilia (Italy))

    Land and water pollution due to waste water and oils deriving from the processing of olives to produce oil represents a serious environmental problem for Spain, Italy and Greece. This paper reports and discusses the results (time dependent enzyme activity) of performance tests on an innovative fermentation process to be used in olive oil waste water anaerobic digestion. An outline is then given of a demonstration depolymerization/materials recovery (including polyphenols, enzymes, etc.) process scheme based on the the tested fermentation method. The fermentation process tests involved the use of an albidus yeast in an Applikon bench scale experimental device. Process parameters were varied to determine optimum fermentation conditions. The European Communities sponsored one cubic meter/day demonstration plant utilizes a preliminary treatment process based on the use of gelatin, bentonite and polyclar.

  17. Youth Solid Waste Educational Materials List, November 1991.

    Science.gov (United States)

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…

  18. Chemical composition of material fractions in Danish household waste

    DEFF Research Database (Denmark)

    Riber, Christian; Petersen, Claus; Christensen, Thomas Højlund

    2009-01-01

    method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions. The majority of the energy content of the waste originates from organic waste......The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where...... batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e,g., batteries) than the direct...

  19. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  20. Radioactive materials and waste. Planning act of 28 jun 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The English translation contained in this booklet is based on Planning Act No. 2006-739 of 28 June 2006 and on articles L. 542-1 and following of the Environmental Code (as modified). It gathers all articles of the French law dealing with the activities of the ANDRA, the French national agency of radioactive wastes, and with the sustainable management of radioactive materials and waste. It is provided for convenience purposes only. The French version remains the only valid and legally binding version. In order to enhance readability, all articles relating to ANDRA's activities are consolidated in this self-supporting document. The original French version of the new Act and of the Environmental Code, already published in the 'Journal officiel', are the only authentic biding texts.

  1. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  2. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  3. Reuse of Woody Biomass Ash Waste in Cementitious Materials

    OpenAIRE

    Ukrainczyk, N.; Vrbos, N.; Koenders, E.A.B.

    2016-01-01

    There is an increased interest in the reuse of ash waste from biomass combustion, being a sustainable source of energy. This paper investigates the partial replacement of cement and sand in building materials with fly ash waste generated from combustion of woody biomass waste. The results show that the ash widens the particle size distribution of cement and has minerals complementary to portland cement, thus justifying its application as cement replacement, but with a relatively high amoun...

  4. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    CO2-loads from combustible waste are important inputs for national CO2 inventories and life-cycle assessments (LCA). CO2 emissions from waste incinerators are often expressed by emission factors in kg fossil CO2 emitted per GJ energy content of the waste. Various studies have shown considerable...... variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... of this study was to quantify the importance of source separation for determination of emission factors for incineration of residual household waste. This was done by mimicking various source separation scenarios and based on waste composition data calculating resulting emission factors for residual waste...

  5. Physico-chemical characterisation of material fractions in household waste

    DEFF Research Database (Denmark)

    Götze, Ramona; Boldrin, Alessio; Scheutz, Charlotte

    2016-01-01

    State-of-the-art environmental assessment of waste management systems rely on data for the physico-chemical composition of individual material fractions comprising the waste in question. To derive the necessary inventory data for different scopes and systems, literature data from different sources...... and backgrounds are consulted and combined. This study provides an overview of physico-chemical waste characterisation data for individual waste material fractions available in literature and thereby aims to support the selection of data fitting to a specific scope and the selection of uncertainty ranges related...... to the data selection from literature. Overall, 97 publications were reviewed with respect to employed characterisation method, regional origin of the waste, number of investigated parameters and material fractions and other qualitative aspects. Descriptive statistical analysis of the reported physico...

  6. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  7. Screening tests for hazard classification of complex waste materials - Selection of methods

    Energy Technology Data Exchange (ETDEWEB)

    Weltens, R., E-mail: reinhilde.weltens@vito.be [VITO Flemish Institute for Technological Research, Boeretang 200, B 2400 Mol (Belgium); Vanermen, G.; Tirez, K. [VITO Flemish Institute for Technological Research, Boeretang 200, B 2400 Mol (Belgium); Robbens, J. [University of Antwerp - Laboratory for Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, B2020 Antwerp (Belgium); Deprez, K.; Michiels, L. [University of Hasselt - Biomedical Research Institute, University Hasselt, Campus Diepenbeek, Agoralaan A, B3590 Diepenbeek (Belgium)

    2012-12-15

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of

  8. Products Made from Nonmetallic Materials Reclaimed from Waste Printed Circuit Boards

    Institute of Scientific and Technical Information of China (English)

    MOU Peng; XIANG Dong; DUAN Guanghong

    2007-01-01

    Printed circuit boards (PCBs) are in all electronic equipment, so with the sharp increase of electronic waste, the recovery of PCB components has become a critical research field. This paper presents a study of the reclaimation and reuse of nonmetallic materials recovered from waste PCBs. Mechanical processes, such as crushing, milling, and separation, were used to process waste PCBs. Nonmetallic materials in the PCBs were separated using density-based separation with separation rates in excess of 95%. The recovered nonmetals were used to make models, construction materials, composite boards, sewer grates,and amusement park boats. The PCB nonmetal products have better mechanical characteristics and durability than traditional materials and fillers. The flexural strength of the PCB nonmetallic material composite boards is 30% greater than that of standard products. Products derived from PCB waste processing have been brought into industrial production. The study shows that PCB nonmetals can be reused in profitable and environmentally friendly ways.

  9. Enhanced Materials from Nature: Nanocellulose from Citrus Waste

    Directory of Open Access Journals (Sweden)

    Mayra Mariño

    2015-04-01

    Full Text Available Nanocellulose is a relatively inexpensive, highly versatile bio-based renewable material with advantageous properties, including biodegradability and nontoxicity. Numerous potential applications of nanocellulose, such as its use for the preparation of high-performance composites, have attracted much attention from industry. Owing to the low energy consumption and the addition of significant value, nanocellulose extraction from agricultural waste is one of the best alternatives for waste treatment. Different techniques for the isolation and purification of nanocellulose have been reported, and combining these techniques influences the morphology of the resultant fibers. Herein, some of the extraction routes for obtaining nanocellulose from citrus waste are addressed. The morphology of nanocellulose was determined by Scanning Electron Microscopy (SEM and Field Emission Scanning Electron Microscopy (FESEM, while cellulose crystallinity indexes (CI from lyophilized samples were determined using solid-state Nuclear Magnetic Resonance (NMR and X-Ray Diffraction (XRD measurements. The resultant nanofibers had 55% crystallinity, an average diameter of 10 nm and a length of 458 nm.

  10. Transuranic contaminated waste container characterization and data base. Revision I

    Energy Technology Data Exchange (ETDEWEB)

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

  11. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  12. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  13. Ultraviolet reflector materials for solar detoxification of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Govindarajan, R.

    1991-07-01

    Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

  14. Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria.

    Science.gov (United States)

    Allesch, Astrid; Brunner, Paul H

    2017-01-03

    This paper demonstrates the power of material flow analysis (MFA) for designing waste management (WM) systems and for supporting decisions with regards to given environmental and resource goals. Based on a comprehensive case study of a nationwide WM-system, advantages and drawbacks of a mass balance approach are discussed. Using the software STAN, a material flow system comprising all relevant inputs, stocks and outputs of wastes, products, residues, and emissions is established and quantified. Material balances on the level of goods and selected substances (C, Cd, Cr, Cu, Fe, Hg, N, Ni, P, Pb, Zn) are developed to characterize this WM-system. The MFA results serve well as a base for further assessments. Based on given goals, stakeholders engaged in this study selected the following seven criteria for evaluating their WM-system: (i) waste input into the system, (ii) export of waste (iii) gaseous emissions from waste treatment plants, (iv) long-term gaseous and liquid emissions from landfills, (v) waste being recycled, (vi) waste for energy recovery, (vii) total waste landfilled. By scenario analysis, strengths and weaknesses of different measures were identified. The results reveal the benefits of a mass balance approach due to redundancy, data consistency, and transparency for optimization, design, and decision making in WM.

  15. 屋顶绿化植物对废弃物转化基质的适应性研究%Study on the Adaptability of Plants for Roof Greening to Base Materials Transferred from Waste

    Institute of Scientific and Technical Information of China (English)

    周媛; 陈法志; 谭庆; 许林; 郭彩霞; 童俊; 戢小梅; 董艳芳

    2011-01-01

    [目的]研究屋顶绿化植物对废弃物转化基质的适应性.[方法]采用正交试验法,进行4因素3水平正交试验,以4种工农业废弃物粉煤灰、煤渣、秸秆和园林废弃物为基质,试验8种景天属植物的适应性情况.[结果]适宜屋顶绿化的废弃物转化基质配方为粉煤灰、煤渣、秸秆、园林废弃物,比例分别为1:1:1:1、1:2:2:2:2:1:2:1;8种景天属植物中佛甲草、垂盆草、宽叶佛甲草、德景天、费菜与八宝景天对废弃物转化基质适应性较强.[结论]废弃物转化基质应用于屋顶绿化中具有广阔的市场前景.%[ Objective ] To study the adaptability of roof greening plants in base materials transferred from waste. [ Method ] By applying the orthogonal test of 4 factors and 3 levels, 4 kinds of industrial and agricultural waste ( fly ash, slag, straw and waste of garden plants) are used to study the adaptability of 8 species of Sedum. [ Result] The proper volume ratio of fly ash, slag, straw and waste of garden plants for making suitable base materials were 1∶1∶ 1∶ 1, 1∶2∶ 2∶2 and 2∶ 1∶2∶ 1. Among the 8 test species, S. lineare, S. sarmentosum Bunge, S. hybridum Immergrunchett, S. aizoon and S. spectable Boreau are of higher adaptability to the base materials transferred from waste. [ Conclusion] The application of waste-transferred base materials enjoys a promising marketing future in roof greening.

  16. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process

    DEFF Research Database (Denmark)

    Tonini, Davide; Dorini, Gianluca Fabio; Astrup, Thomas Fruergaard

    2014-01-01

    Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and recyclable materials......, phosphorous, potassium, and biogenic carbon recovery was estimated to be between 81% and 89% of the input. Biogenic and fossil carbon in the mixed household waste input was determined to 63% and 37% of total carbon based on 14C analyses. Additional recovery of metals and plastic was possible based on further...

  17. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  18. Contingency Base Camp Solid Waste Generation

    Science.gov (United States)

    2013-09-01

    wastes gener- ated at Army base camps. The data in this report were obtained from solid waste characterization surveys of base camps in Bosnia, Kosovo ...ER D C/ CE RL T R- 13 -1 7 Contingency Base Camp Solid Waste Generation Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to...Contingency Base Camp Solid Waste Generation Stephen D. Cosper, H. Garth Anderson, Kurt Kinnevan, and Byung J. Kim Construction Engineering Research

  19. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  20. Use of ceramic materials in waste-package systems for geologic disposal of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Fullam, H.T.

    1980-12-01

    A study to investigate the potential use of ceramic materials as components in the waste package systems was conducted. The initial objective of the study was to screen and compare a large number of ceramic materials and identify the best materials for the proposed application. The principal method used to screen the candidates was to subject samples of each material to a series of leaching tests and to determine their relative resistance to attack by the leach solutions. A total of 14 ceramic materials, plus graphite and basalt were evaluated using three different leach solutions: demineralized water, a synthetic Hanford ground water, and a synthetic WIPP brine solution. The ceramic materials screened were Al/sub 2/O/sub 3/ (99%), Al/sub 2/O/sub 3/ (99.8%), mullite (2Al/sub 2/O/sub 3/.SiO/sub 2/), vitreous silica (SiO/sub 2/), BaTiO/sub 3/, CaTiO/sub 3/, CaTiSiO/sub 5/, TiO/sub 2/, ZrO/sub 2/, ZrSiO/sub 4/, Pyroceram 9617, and Marcor Code 9658 machinable glass-ceramic. Average leach rates for the materials tested were determined from analyses of the leach solutions and/or sample weight loss measurements. Because of the limited scope of the present study, evaluation of the specimens was limited to ceramographic examination. Based on an overall evaluation of the leach rate data, five of the materials tested, namely graphite, TiO/sub 2/, ZrO/sub 2/, and the two grades of alumina, exhibited much greater resistance to leaching than did the other materials tested. Based on all the experimental data obtained, and considering other factors such as cost, availability, fabrication technology, and mechanical and physical properties, graphite and alumina are the preferred candidates for the barrier application. The secondary choices are TiO/sub 2/ and ZrO/sub 2/.

  1. Protein-based green resins and nanocomposites from waste residues

    Science.gov (United States)

    Rahman, Muhammad Maksudur

    The main goal of the present research is to design and fabricate 'green' nanocomposites using eco-friendly and biodegradable polymers, an effort driven towards an alternative of conventional petroleum-derived polymers in structural applications considering environmental and economic concerns. The behavior of structure, composition and property relationships between the novel combinations of these materials has been analyzed and discussed. The materials used in this study, many of them from non-edible sources, are obtained, derived and/or synthesized using various wastes from agricultural and food industries, as much as possible, so as to utilize wastes that are discarded at present. At the same time, the use of waste sources reduces the dependency of edible source-based biopolymers in various structural applications and thus, reduces the cost of materials significantly. Overall, this study opens up new avenues in the fabrication of low-cost 'green' nanocomposite with facile and 'green' methodology using various agricultural and food wastes.

  2. Surface analysis of carbon black waste materials from tire residues

    Science.gov (United States)

    Lee, W. H.; Kim, J. Y.; Ko, Y. K.; Reucroft, P. J.; Zondlo, J. W.

    1999-03-01

    X-ray photoelectron spectroscopy (XPS) has been used to obtain surface chemical state information on two carbon black waste materials in terms of the surface element distribution/concentration and chemical structure. Small amounts of sulfur in the form of CS 2 were detected on the surface (less than 1.7 mass %). C-H/C-C was the major carbon functional component on the surface of carbon black samples but other functional forms of carbon were also present such as CO and C-O. The surface of the carbon black obtained from a hydropyrolysis process was highly oxidized primarily in the form of carbon based oxygen groups. On the other hand, surface oxygen atoms on the surface of the carbon black obtained from a pyrolysis process in the absence of H 2 were in the form of both metal oxides and carbon based oxygen groups.

  3. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  4. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  5. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  6. Materials characterization of radioactive waste forms using a multi-element detection method based on the instrumental neutron activation analysis. MEDINA; Stoffliche Charakterisierung radioaktiver Abfallprodukte durch ein Multi-Element-Analyseverfahren basierend auf der instrumentellen Neutronen-Aktivierungs-Analyse. MEDINA

    Energy Technology Data Exchange (ETDEWEB)

    Havenith, Andreas Wilhelm

    2015-07-01

    the identification and quantification of toxic elements in radioactive waste forms. The physical basis of MEDINA is the Prompt- and Delayed-Gamma-Neutron-Activation-Analysis (P and DGNAA). The neutron activation analysis of material samples in the gram range is state-of-the-art of science and technology under use of thermal or cold neutrons at research reactors. The thereof retrieved nuclear data and the results of the feasibility study for the characterization of large-volume samples up to a volume of 50 l /1-5/ are the scientific basis of the present dissertation. With a newly developed test facility and an innovative algorithms for a rotationally dependent analysis the element quantification of larger inhomogeneous samples can be performed by taking into account the gamma and neutron self-shielding for the first time. A test facility for the chemical characterisation of 200-l-drums was built and several homogeneous and inhomogeneous samples with a waste matrix of concrete were analysed to validate the measurement technique. The conceptual design of the MEDINA test facility is based on stochastic simulations studies with the computer code MCNP. For a measurement the drum of interest is positioned on a turntable inside an irradiation chamber made exclusively of graphite, acting as neutron moderator and reflector. The drum is irradiated with 14 MeV neutrons produced by a deuterium-tritium (D-T) neutron-generator operating in pulse mode. The prompt and delayed gamma rays, induced by neutron reactions occurring at different times after the neutron pulses, are measured with a high-purity germanium (HPGe) detector placed in a wall of the irradiation chamber perpendicular to the neutron generator. The HPGe detector signals are processed through an appropriate nuclear electronics. The gamma rays spectra are recorded for each discrete drum rotation, which allows to investigate the sample homogeneity. The developed algorithm for the element quantification is based on the

  7. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  8. Assessing computer waste generation in Chile using material flow analysis.

    Science.gov (United States)

    Steubing, Bernhard; Böni, Heinz; Schluep, Mathias; Silva, Uca; Ludwig, Christian

    2010-03-01

    The quantities of e-waste are expected to increase sharply in Chile. The purpose of this paper is to provide a quantitative data basis on generated e-waste quantities. A material flow analysis was carried out assessing the generation of e-waste from computer equipment (desktop and laptop PCs as well as CRT and LCD-monitors). Import and sales data were collected from the Chilean Customs database as well as from publications by the International Data Corporation. A survey was conducted to determine consumers' choices with respect to storage, re-use and disposal of computer equipment. The generation of e-waste was assessed in a baseline as well as upper and lower scenarios until 2020. The results for the baseline scenario show that about 10,000 and 20,000 tons of computer waste may be generated in the years 2010 and 2020, respectively. The cumulative e-waste generation will be four to five times higher in the upcoming decade (2010-2019) than during the current decade (2000-2009). By 2020, the shares of LCD-monitors and laptops will increase more rapidly replacing other e-waste including the CRT-monitors. The model also shows the principal flows of computer equipment from production and sale to recycling and disposal. The re-use of computer equipment plays an important role in Chile. An appropriate recycling scheme will have to be introduced to provide adequate solutions for the growing rate of e-waste generation.

  9. Material Waste Minimisation Strategies among Construction Firms in South-South, Nigeria

    Directory of Open Access Journals (Sweden)

    Timothy Olubanwo Adewuyi

    2016-02-01

    Full Text Available This study examined material waste minimisation strategies practiced by construction firms in the study area, the amount of waste generated and the relationship between them. The data collected were analysed using mean score, Spearman Rank Correlation, Kruskal-Wallis H and Mann-Whitney U tests. It is revealed that the most commonly employed strategies are “ensuring that storage facilities are properly secured before staff leave on a daily basis”; “checking of deliveries for any shortages and/or damages”; and “using materials before expiry date” with mean scores of 4.46, 4.22, 4.20 respectively. A significant variation in the level of material waste generated by different category of firms was confirmed. There is also a significant relationship between the level of minimisation strategies adopted and the waste generated. Based on the R2 values, 18.8% to 49.4% of the material waste generated for all the material types studied could be explained by the material minimisation strategies adopted on site except for stone base with 9.4%. %. The study recommends that the players in the industry should step up efforts towards introducing incentives to motivate labour to minimise material wastage on site and the use of modular design system.

  10. Materials And Carbon Flow In A Waste Refinery Process Using Enzymes

    DEFF Research Database (Denmark)

    Tonini, Davide; Woods, M.; Astrup, Thomas

    2011-01-01

    Recovery of resources from mixed Municipal Solid Waste (MSW) is a crucial aspect of waste management practices. In this paper the materials and carbon flows of an innovative waste refinery process using enzymes are presented. Through enzymatic treatment the process produces two main streams from...... the initial mixed MSW: a bioslurry (liquefied paper and organics) and a solid fraction (non-degradable materials). The discussion is based on the performance of the process in separating recyclables and recovery Cbiogenic as well as nutrients from the input MSW. The results of MFA and SFA illustrate...... that the waste refinery has great potential for resource recovery: about 100% of the Cbiogenic and up to 90% of N and P can potentially be recovered in the bioslurry and returned to land after anaerobic digestion. Recovery of ferrous and non-ferrous material is estimated double compared to recovering the same...

  11. Quality Improvement of Granular Wastes-The Effective Way to Recycle Secondary Raw Building Materials

    Institute of Scientific and Technical Information of China (English)

    XING Wei-hong; Charles Hendriks; Alex Fraaij; Peter Rem

    2004-01-01

    Granular wastes have negative effects on the environment due to contamination. On the other hand, stony components in granular wastes have a potential good perspectives for utilization in civil engineering works as secondary raw building materials. To reuse such materials without environmental risks, all contaminants must be removed or reduced to an acceptable level. Therefore liberation of materials is an important step in waste treatment. For this purpose, separation and cleansing techniques are suitable. Based on the analysis of contaminants in wastes, it is discussed how to select suitable techniques. The rules for technique selection and processes for quality improvement are set up. To evaluate the environmental quality and technical quality of output products, it is necessary to check leaching behaviours and physical properties.

  12. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  13. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry Allen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.

  14. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  15. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    Science.gov (United States)

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  16. Steel wastes as versatile materials for treatment of biorefractory wastewaters.

    Science.gov (United States)

    Dos Santos, Sara V; Amorim, Camila C; Andrade, Luiza N; Calixto, Natália C Z; Henriques, Andréia B; Ardisson, José D; Leão, Mônica M D

    2015-01-01

    Recent research on novel cost-effective adsorbent materials suggests potential use of industrial wastes for effluent treatment, with the added benefit of reuse of the wastes. Waste steel materials, including blast oxygen furnace sludge (BOFS), blast furnace sludge (BFS), and blast furnace dust (BFD), were investigated as low-cost adsorbents for removal of an oil emulsion and RR195 dye. The residues were characterized by X-ray diffraction, Brunauer-Emmett-Teller area, volume and distribution of pore diameters, Mössbauer spectroscopy, X-ray fluorescence, granulometry, scanning electron microscopy/energy dispersive spectroscopy, and pHpzc. Adsorption kinetics data were obtained by UV-vis spectrophotometry at the maximum absorption wavelength of the dye solution and crude oil emulsion. The use of waste as an adsorbent was more efficient for treatment of the oil emulsion than the dye solution. BOFS had higher total organic carbon (TOC) removal efficiency than the other waste materials. For the RR195 dye, good color removal was observed for all adsorbents, >90 % within 24 h. TOC removal was poor, <10 % for BFD and BFS and a maximum of 37 % for BOFS. For the oil emulsion, 97 % TOC removal was obtained by adsorption onto BOFS and 87 % onto BFS.

  17. Considerations on the performance and fabrication of candidate materials for the Yucca Mountain repository waste packages highly corrosion resistant nickel-base and titanium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E; Goldberg, A

    1995-11-30

    Among the metallurgical factors that affect the performance of a material in a given environment are alloy composition, alloy segregation, depletion of alloying elements, non-uniform microstructures, precipitation leading to an increase in susceptibility to corrosion as well as decreases in ductility, residual plastic deformation, and residual stresses. Precipitation often occurs preferentially at grain boundaries, causing depletion of critical elements in regions adjacent to these boundaries. Continuous grain-boundary precipitates can lead to drops in ductility and toughness. The presence of non-metallic inclusions, if excessive and/or segregated, can also cause embrittlement. Segregation of alloying elements can result in localized galvanic action. Depletion of alloying elements as well as segregation can result in reductions in the concentrations of critical elements below those necessary to resist localized corrosion. Segregation and alloy depletion can also facilitate precipitation that could lead to embrittlement.

  18. Material flow analysis and market survey for securing the disposal of waste oils; Stoffstrom- und Marktanalyse zur Sicherung der Altoelentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Knut; Jepsen, Dirk; Zangl, Stephanie; Schilling, Stephanie [Institut fuer Oekologie und Politik GmbH (OEKOPOL), Hamburg (Germany)

    2006-05-15

    This research project had two main topics: 1. A material flow analysis of the German waste oil flow adapted to the current situation 2. An analysis of the German waste oil recovery market, possible recent market changes and the potential influences of different factors. In order to determine the German waste oil mass flows the German Ministry of Environment applies a calculation model which is based on a backwards calculation approach (Rueckrechnungsmodell, backward calculation model). The performed analysis of this model revealed that it is suitable for the calculation of the German waste oil material flows. Aiming at a further qualification some elements of the model have been updated respectively adapted to new developments. In the course of the market analysis the basic economic parameter like supply, demand, prices resp. price differences of the German waste oil management market were considered. It was analysed how the changing market conditions affect the waste oil material flows and the waste oil recovery. Furthermore it was examined whether the given circumstances are sufficient to maintain a secure and sustainable waste oil disposal. The research results showed that the German waste oil market performs well and is reacting flexible on price signals of the respective (primary) reference products. During the timeframe investigated (2000-2004) an increasing majority of the available waste oil was used for the production of secondary mineral oil products. 30% of the available waste oil has been submitted to energy recovery operations. During these years the waste oil ordinance (Altoelverordnung) and the directive to promote processing of waste oil into base oil (Foerderrichtlinie) entered into force and relevant investments in waste oil treatment facilities were executed. The reliability of the future waste oil management is therefore approved and sufficient capacity reserves are available in all waste oil related management areas. (orig.)

  19. LDEF materials data bases

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  20. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  1. POLYMER COMPOSITES MODIFIED BY WASTE MATERIALS CONTAINING WOOD FIBRES

    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska

    2016-11-01

    Full Text Available In recent years, the idea of sustainable development has become one of the most important require-ments of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.

  2. Application of organic waste composts when producing forest planting material

    Directory of Open Access Journals (Sweden)

    Romanov Evgeny M.

    2016-01-01

    Full Text Available Most seedlings and saplings of woody plants in the Russian Federation are produced in the open ground in forest nurseries. In order to produce high quality planting material it is necessary to support and preserve soil fertility, which can be obtained by using organic wastes and organic-based fertilizers. Our research is aimed at the assessment of the influence of non-conventional organic fertilizers on fertility of podzols and on the growth rate of seedlings and saplings of woody plants in forest nurseries. Our research shows, that the application of non-conventional organic fertilizers does not result in any accumulation of heavy metal salts in podzols, but optimizes hydro physical and agrochemical properties of the ploughed horizon. The efficiency of non-conventional organic fertilizers depends on their composition, physical and chemical characteristics of the original components, their doses applied and original fertility of soils. A combined application of non-conventional organic fertilizers and sand results in the optimization of practically all soil fertility parameters in middle clay-loam soils, while application of non-conventional organic fertilizers and clay is optimal for application on light soils. The optimal application dose of non-conventional fertilizers depends on soil texture, woody species and the fertilizer composition. An optimal application dose for Norway spruce on a light clay-loam soil is 50-80 tons/ha, and on a middle clay-loam soil is 149-182 tons/ha. It is 50 tons/ha for Scots pine growing on a sandy loam soil, and 100 tons/ha for the same species growing on a sandy soil or a light clay-loam. For Siberian larch growing on a light clay-loam soil the dose of fertilizer applied should be 150 tons/ha. It is recommended to apply composts containing over 50% (by weight of Category II wastes (substrate for the amelioration of light soils, and composts containing over 40% (by weight of Category I wastes (filler for the

  3. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW)...

  4. Desulphurization of hot metal and nickel pig iron using waste materials from the aluminum industry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.D.; McLean, A. [Toronto Univ., ON (Canada). Dept. of Materials Science and Engineering; Hasegawa, M.; Iwase, M. [Kyoto Univ., Kyoto (Japan). Dept. of Energy Science and Technology, Ferrous Metallurgy Research Group; Ren, M.L.; Zhang, D.F. [China Aluminum Co. Ltd., Shandong (China)

    2009-07-01

    The aluminium and steel industries are both energy-intensive and have significant impacts on the environment. The desulphurization of hot metal and nickel pig iron using waste materials from the aluminium industry was evaluated in this study. A simple processing technique using dross and white mud was developed to desulphurize hot metals. Waste materials with a high oxide content were combined with an aluminium instant reduction method and then used for hot metal desulphurization. The presence of nickel in the hot metals showed a negative effect on the desulphurization process as the nickel reduced carbon solubility in an iron-based metal solution. It was concluded that the use of waste slags and solids residuals from the aluminium industry within the steel industry will reduce the disposal of waste and provide significant economic benefits to both industries. 6 refs., 2 tabs., 12 figs.

  5. The Development Materials from Substances Waste for Some Topics in Science and Technology Textbook for Primary

    Directory of Open Access Journals (Sweden)

    Abdullah Aydın

    2011-06-01

    Full Text Available The aim of study is to develop instructional materials from substances waste in which students teachers have problems to learn, taught in Instructional Technology and Materials Course at the third year of primary science teacher education program. The study was carried out with 54 primary science student teachers attending primary science teacher education program in Ahi Evran University Faculty of Education, in the fall term of the 2009-2010 academic year. Material design or development of prospective teachers' views were taken before and after. The findings from the material prepared were supported by the data obtained from the interviews conducted with 16 head student teachers. It was concluded that, based on the findings obtained from the material design the environmental pollution by waste products are designed for visual teaching materials. Can be taken into account the materials designed or developed by nominated teacher, during revised to be name of last books.

  6. Compression device for feeding a waste material to a reactor

    Science.gov (United States)

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  7. Characteristics of and sorption to biochars derived from waste material

    Science.gov (United States)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 < Log Kd < 6.5 L/kg). Sorption generally increased with increasing pyrolysis temperature but there was no effect of particle size on sorption affinity. For mineral phase rich biochars, sorption generally increased after acid demineralization. When considering all materials together, the sorbent aromaticity (hydrogen-carbon ratio) was

  8. Community-Based Solid Waste Management: A Training Facilitator's Guide.

    Science.gov (United States)

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Urban environmental management and environmental health issues are of increasing concern worldwide. The need for urban environmental management work at the local level where the Peace Corps works most effectively is significant, but training materials dedicated specifically to community-based solid waste management work in urban areas are lacking.…

  9. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  10. Waste glass from end-of-life fluorescent lamps as raw material in geopolymers.

    Science.gov (United States)

    Novais, Rui M; Ascensão, G; Seabra, M P; Labrincha, J A

    2016-06-01

    Nowadays the stunning volume of generated wastes, the exhaustion of raw materials, and the disturbing greenhouse gases emission levels show that a paradigm shift is mandatory. In this context, the possibility of using wastes instead of virgin raw materials can mitigate the environmental problems related to wastes, while reducing the consumption of the Earth's natural resources. This innovative work reports the incorporation of unexplored waste glass coming from end-of-life fluorescent lamps into geopolymers. The influence of the waste glass incorporation level, NaOH molarity and curing conditions on the microstructure, physical and mechanical properties of the geopolymers was evaluated. Results demonstrate that curing conditions are the most influential factor on the geopolymer characteristics, while the NaOH molarity is less important. Geopolymers containing 37.5% (wt) waste glass were successfully produced, showing compressive strength of 14MPa (after 28days of curing), suggesting the possibility of their use in non-structural applications. Porous waste-based geopolymers for novel applications were also fabricated.

  11. Application of solid waste containing lead for gamma ray shielding material

    OpenAIRE

    SARAEE, Rezaee Ebrahim; POURAJAM BAFERANI, S.; TAHMASEBI, O.

    2015-01-01

    Abstract. The basic strategies to decrease solid waste disposal problems have focused on the reduction of waste production and recovery of usable materials using waste and making raw materials. Generally, various materials have been used for radiation shielding in different areas and situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead has been analyzed in order to make a shielding material against gamma radiation. The photon total mass...

  12. Preparation of sustainable photocatalytic materials through the valorization of industrial wastes.

    Science.gov (United States)

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Morales, Julián; Sánchez, Luis

    2013-12-01

    A new value-added material was developed from wastes to aim for appropriate waste management and sustainable development. This paper reports the valorization of industrial sandblasting operation wastes (SOWs) as new photocatalytic materials. This waste is composed of Fe2 O3 (60.7 %), SiO2 (29.1 %), and Al2 O3 (3.9 %) as the main components. The high presence of iron oxides was used to develop photocatalytic properties through their thermal transformation into α-Fe2 O3 . The new product, SOW-T, exhibited a good behavior towards the photochemical degradation of organic dyes. The preparation of advanced photocatalytic materials that exhibit self-cleaning and depolluting properties was possible by the inclusion of SOW-T and TiO2 in a cement-based mortar. The synergy observed between both materials enhanced their photocatalytic action. To the best of our knowledge, this is the first report that describes the use of transformed wastes based on iron oxide for the photochemical oxidation of NOx gases.

  13. ZeroWaste BYG: Redesigning construction materials towards zero waste society

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Schmidt, Jacob Wittrup; Ottosen, Lisbeth M.

    2014-01-01

    to change the status of different ashes from waste to raw material and that export for disposal will be no longer be allowed. We wish to influence the consequences from this new situation. In principle some of the ashes can be used already, but the huge variation in ash characteristics and lack of knowledge...

  14. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B. [Gas Processing Research Group, Gas Technology Institute, 1700 S. Mount Prospect Road, 60018-1804 Des Plaines, IL (United States); Abbasian, J. [Department of Chemical and Environmental Engineering, Illinois Institute of Technology, 10 West, 33rd Street, 60616 Chicago, IL (United States)

    2001-05-01

    Four metal oxide waste materials from metal processing operations and one coal bottom ash sample were procured and their reactivities toward hydrogen sulfide (H{sub 2}S) were evaluated in the temperature range of 400C to 600C. A low-cost sorbent pelletization/granulation technique was applied to produce preliminary sorbent formulations in the form of attrition-resistant granules that were also evaluated. The results indicate that sorbents based on an iron oxide waste material, in the as-received as well as processed form, were the most reactive and exhibited the highest effective capacities for sulfur. The regeneration of these sorbents could be carried out over a relatively moderate temperature range, suggesting that the iron oxide waste material might be a viable candidate for the development of low-cost regenerable sorbents for H{sub 2}S removal from hot coal gases under conditions of current practical interest.

  15. Combination of material flow analysis and substance flow analysis: a powerful approach for decision support in waste management.

    Science.gov (United States)

    Stanisavljevic, Nemanja; Brunner, Paul H

    2014-08-01

    The novelty of this paper is the demonstration of the effectiveness of combining material flow analysis (MFA) with substance flow analysis (SFA) for decision making in waste management. Both MFA and SFA are based on the mass balance principle. While MFA alone has been applied often for analysing material flows quantitatively and hence to determine the capacities of waste treatment processes, SFA is more demanding but instrumental in evaluating the performance of a waste management system regarding the goals "resource conservation" and "environmental protection". SFA focuses on the transformations of wastes during waste treatment: valuable as well as hazardous substances and their transformations are followed through the entire waste management system. A substance-based approach is required because the economic and environmental properties of the products of waste management - recycling goods, residues and emissions - are primarily determined by the content of specific precious or harmful substances. To support the case that MFA and SFA should be combined, a case study of waste management scenarios is presented. For three scenarios, total material flows are quantified by MFA, and the mass flows of six indicator substances (C, N, Cl, Cd, Pb, Hg) are determined by SFA. The combined results are compared to the status quo in view of fulfilling the goals of waste management. They clearly point out specific differences between the chosen scenarios, demonstrating potentials for improvement and the value of the combination of MFA/SFA for decision making in waste management.

  16. Use of industrial waste for the manufacturing of sustainable building materials.

    Science.gov (United States)

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Martín, Francisco; Morales, Julián; Sánchez, Luis

    2012-04-01

    Presently, appropriate waste management is one of the main requisites for sustainable development; this task is tackled by the material construction industry. The work described herein is focused on the valorization of granite waste through incorporation, as a filler-functional admixture, into cement-based mortar formulations. The main components of the waste are SiO(2) (62.1 %), Al(2)O(3) (13.2 %), Fe(2)O(3) (10.1 %), and CaO (4.6 %). The presence of iron oxides is used to develop the photocatalytic properties of the waste. Following heating at 700 °C, α-Fe(2)O(3) forms in the waste. The inclusion of the heated sample as a filler admixture in a cement-based mortar is possible. Moreover, this sample exhibits a moderate ability in the photodegradation of organic dye solutions. Also, the plastering mortars, in which the heated samples have been used, show self-cleaning properties. The preparation of sustainable building materials is demonstrated through the adequate reuse of the granite waste.

  17. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  18. 工业废渣路面基层材料试验研究%An Experimental Study on Pavement Base Materials with Industrial Wastes

    Institute of Scientific and Technical Information of China (English)

    高伏良; 黄永强; 李飞; 孙超林; 黄大成; 马韧

    2012-01-01

    Portland cement, cement-fly ash, and lime-fly ash stabilized pavement base materials using steel slag and crushed stone as aggregate was prepared. Experiments on unconfined compressive strength, splitting strength, compressive resilient modulus, and scour-resistance were conducted. Steel slag shows superior performance as aggregate than macadam. Materials using steel slag show superior strength than materials using crushed stone. While cement stabilized steel slag shows the highest unconfined compressive strength, lime-fly ash stabled steel slag shows the highest splitting strength. Resilient modulus of base materials with cement-fly ash keeps rising in 180d curing age, while resilient modulus of base materials with cement only exhibits little change. Resilient modulus of lime-fly ash stabilized steel slag is significantly higher than other materials. Scour-resistance of cement stabled steel slag is better than that of cement stabled crushed stone. However, influence of aggregate type-on scour-resistance is insignificant for both cement-fly ash~and lime-fly ash stabilized base materials.%以钢渣、碎石为集料,通过实验室试验研究了水泥、水泥粉煤灰、石灰粉煤灰稳定路面基层材料的无侧限抗压强度、劈裂强度、抗压回弹模量和抗冲刷性能.结果表明,钢渣作为公路基层集料具有较碎石更为良好的性能.钢渣作为集料的基层材料强度高于碎石作为集料的基层材料;用水泥稳定钢渣可获得相对高的无侧限抗压强度,用石灰粉煤灰稳定钢渣获得相对高的劈裂强度.掺加粉煤灰的基层材料在180 d龄期间抗压回弹模量保持增长,水泥稳定基层材料90 d以后抗压回弹模量无明显增长.石灰粉煤灰稳定钢渣的回弹模量显著高于其他基层材料.水泥稳定钢渣抗冲刷性较水泥稳定碎石好,水泥粉煤灰与石灰粉煤灰稳定类用钢渣代替碎石作为集料对冲刷性能影响不明显.

  19. Properties of lightweight cement-based composites containing waste polypropylene

    Science.gov (United States)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  20. Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106

    Energy Technology Data Exchange (ETDEWEB)

    Esch, R.A.

    1997-04-14

    This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

  1. Storage study with waste fuels based on municipal solid wastes; Lagringsfoersoek med avfallsbraenslen baserade paa hushaallsavfall

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, M.; Bramryd, T.; Hogland, W. [Lund Univ. (Sweden). Waste Management and Recovery

    1991-12-31

    A storage study with waste fuels based on Municipal Solid Waste (MSW) has been carried out. Four different types of waste fuels have been examined; pelletized RDF (BRINI), reject RDF from a separation/composting plant, the dry fraction of the source separation trials with `Wet and Dry`, and household waste from a row house area where a source separation program with kitchen garbage grinder is in progress. Three different types of storage have been tested, well ventilated wood boxes with approx. size of 20 m{sup 3} which were covered with plastic coated paper, compartments in a tent with approx. size of 50 m{sup 3} and finally 100 m{sup 3} piles covered with wood chips. Continuous monitoring of the biological activities including temperatures and concentrations of the gas components O{sub 2}, CO{sub 2} and CH{sub 4} has been carried out. The material analyses consist of moisture and ash content, substance losses, material compositions, heating values and fungi spore concentration. An investigation concerning how the heating value on a dry and ash free basis of a waste fuel is changed during a microbiological degradation has been carried out. A water balance over the pile of pelletized RDF has been formulated. The results of our study show that the materials can be placed in order of rank from the most to the least biological active in the following way: RDF, pelletized RDF, household waste, and dry fraction. This shows that the substance losses is considerable in the two mechanically separated materials (RDFs), while losses in the other two source separated materials are not detectable. Heat generation in the two most biologically active waste fuels seems to be considerable that a pronounced drying effect takes place. This leads to the fact that the heating value on a as-received-basis is increasing. This phenomena does not occur in the other two biologically more stable waste fuels. Any concentrations that show a risk of allergic alveolitis has not been observed.

  2. RECOVERY OF LITHIUM FROM WASTE MATERIALS

    Directory of Open Access Journals (Sweden)

    JITKA JANDOVÁ

    2012-03-01

    Full Text Available In this study, processes based on roasting-leaching-crystallization steps and condensation-precipitation steps for Li2CO3 separation from spent Li/MnO2 batteries and lithium-containing wastewaters were developed and verified on a laboratory scale. Spent Li/MnO2 batteries were roasted under reduced pressure at 650°C, which split the castings and deactivated the batteries by reduction of LiMnO2 and MnO2 with residual lithium metal and graphite to form MnO and Li2CO3. The resultant lithium carbonate was selectively solubilised in water with manganese remaining in the leach residue. Li2CO3 of 99.5 % purity was obtained after evaporation of 95 % water. Processing of lithium-containing alkaline wastewaters from the production of liquid rubber comprises condensation up to lithium concentration of 12-13 g/l Li and a two-step precipitation of lithium carbonate using CO2 as a precipitation agent. Sparingly soluble Li2CO3 was produced in the second step at 95°C, whilst most impurities remain in the solution. Obtained lithium carbonate products contained on average more than 99.5 % Li2CO3. The lithium precipitation efficiency was about 90 %.

  3. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA)); Weiss, H. (Lawrence Livermore National Lab., CA (USA))

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni), are being considered along with three austenitic candidates as possible materials for fabrication of containers for disposal of high-level radioactive waste. The waste will include spent fuel assemblies from reactors as well as high-level reprocessing wastes in borosilicate glass and will be sent to the prospective repository at Yucca Mountain, Nevada, for disposal. The containers must maintain mechanical integrity for 50 yr after emplacement to allow for retrieval of waste during the preclosure phase of repository operation. Containment is required to be substantially complete for up to 300 to 1000 yr. During the early period, the containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. The final closure joint will be critical to the integrity of the containers. This volume surveys the available data on the metallurgy of the copper-based candidate alloys and the welding techniques employed to join these materials. The focus of this volume is on the methods applicable to remote-handling procedures in a hot-cell environment with limited possibility of postweld heat treatment. The three copper-based candidates are ranked on the basis of the various closure techniques. On the basis of considerations regarding welding, the following ranking is proposed for the copper-based alloys: CDA 715 (best) > CDA 102 > CDA 613 (worst). 49 refs., 15 figs., 1 tab.

  4. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    Science.gov (United States)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-02-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper.

  5. Biomass from Paddy Waste Fibers as Sustainable Acoustic Material

    Directory of Open Access Journals (Sweden)

    A. Putra

    2013-01-01

    Full Text Available Utilization of biomass for green products is still progressing in the effort to provide alternative clean technology. This paper presents the utilization of natural waste fibers from paddy as acoustic material. Samples of sound absorbing material from paddy waste fibers were fabricated. The effect of the fiber density, that is, the fiber weight and the sample thickness, and also the air gap on the sound absorption coefficient is investigated through experiment. The paddy fibers are found to have good acoustic performance with normal incidence absorption coefficient greater than 0.5 from 1 kHz and can reach the average value of 0.8 above 2.5 kHz. This result is comparable against that of the commercial synthetic glass wool. Attachment of a single layer of polyester fabric is shown to further increase the absorption coefficient.

  6. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    Science.gov (United States)

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment.

  7. Building Blocks Incorporating Waste Materials Bound with Bitumen

    Directory of Open Access Journals (Sweden)

    Thanaya I.N.A.

    2010-01-01

    Full Text Available This paper described an investigation and evaluation which was carried out in the United Kingdom-UK, on the properties of masonry building block materials that incorporate waste materials, namely: steel slag, crushed glass, coal fly ash, rice husk ash (RHA, incinerator sewage sludge ash (ISSA, municipal solid waste incinerator bottom ash (MSWIBA or shortened as IBA, bound with bitumen or asphalt, named as Bitublock. The binder used was 50 pen bitumen. The properties of the blocks evaluated were: compressive strength, density, porosity, initial rate of suction (IRS, creep, and volume stability. It was found that the Bitublock performance can be improved by optimizing porosity and curing regime. Compaction level of 2 MPa and curing regime of 200°C for 24 hours gave satisfactory bitublock performances that at least comparable to concrete block found in the United Kingdom (UK. The Volume stability (expansion of the unit is affected by environment relative humidity.

  8. Waste to Want: Polymer nanocomposites using nanoclays extracted from Oil based drilling mud waste

    Science.gov (United States)

    Adegbotolu, Urenna V.; Njuguna, James; Pollard, Pat; Yates, Kyari

    2014-08-01

    Due to the European Union (EU) waste frame work directive (WFD), legislations have been endorsed in EU member states such as UK for the Recycling of wastes with a vision to prevent and reduce landfilling of waste. Spent oil based drilling mud (drilling fluid) is a waste from the Oil and Gas industry with great potentials for recycling after appropriate clean-up and treatment processes. This research is the novel application of nanoclays extracted from spent oil based drilling mud (drilling fluid) clean-up as nanofiller in the manufacture of nanocomposite materials. Research and initial experiments have been undertaken which investigate the suitability of Polyamide 6 (PA6) as potential polymer of interest. SEM and EDAX were used to ascertain morphological and elemental characteristics of the nanofiller. ICPOES has been used to ascertain the metal concentration of the untreated nanofiller to be treated (by oil and heavy metal extraction) before the production of nanocomposite materials. The challenges faced and future works are also discussed.

  9. Construction materials as a waste management solution for cellulose sludge.

    Science.gov (United States)

    Modolo, R; Ferreira, V M; Machado, L M; Rodrigues, M; Coelho, I

    2011-02-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  10. Beyond waste: new sustainable fillers from fly ashes stabilization, obtained by low cost raw materials

    Directory of Open Access Journals (Sweden)

    N. Rodella

    2016-09-01

    Full Text Available A sustainable economy can be achieved only by assessing processes finalized to optimize the use of resources. Waste can be a relevant source of energy thanks to energy-from-waste processes. Concerns regarding the toxic fly ashes can be solved by transforming them into resource as recycled materials. The commitment to recycle is driven by the need to conserve natural resources, reduce imports of raw materials, save landfill space and reduce pollution. A new method to stabilize fly ash from Municipal Solid Waste Incinerator (MSWI at room temperature has been developed thanks to COSMOS-RICE LIFE+ project (www.cosmos-rice.csmt.eu. This process is based on a chemical reaction that occurs properly mixing three waste fly ashes with rice husk ash, an agricultural by-product. COSMOS inert can replace critical raw materials (i.e. silica, fluorspar, clays, bentonite, antimony and alumina as filler. Moreover the materials employed in the stabilization procedure may be not available in all areas. This paper investigates the possibility of substituting silica fume with corresponding condensed silica fume and to substitute flue-gas desulfurization (FGD residues with low-cost calcium hydroxide powder. The removal of coal fly ash was also considered. The results will be presented and a possible substitution of the materials to stabilize fly ash will be discussed.

  11. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated...... and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties...... in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability...

  12. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... recycling has been recognised as a backbone of circular economy, with constant measures and initiatives being proposed in order to increase the recycling rates of materials being consumed. Material cycles are complex and dynamic systems where chemicals are added and removed in production, manufacturing...

  13. Recycling Of Concrete Waste Material from Construction Demolition

    Directory of Open Access Journals (Sweden)

    Aiyewalehinmi E.O1 and Adeoye T.E2

    2016-04-01

    Full Text Available This study investigates the engineering properties of demolished concrete aggregates wastes along Arakale Road, Akure. The purpose is to recycle and reduce the amount of construction wastes materials going into landfills and dumping pits. The study identifies about 15% to 20% of construction waste materials go into landfill and dumping pits in Akure. Four different mixes at 0.5, 0.55, 0.60 and 0.65 water/cement ratios were performed and a total of 96 (48 each concrete cube samples were cast, cured and crushed. The results showed that at lower percentage water/cement ratios, the compressive strength of used aggregates at day 28 were much lower than virgin aggregates (16.89N/mm2 , 19.93N/mm2 while at higher percentage water/cement ratios, the compressive strength of used aggregates at day 28 was almost the same as Virgin aggregates (18.07, 18.37. It shows that the used aggregates can attain the same compressive strength as virgin aggregates at higher water/cement ratios

  14. Utilization of Industrial Waste Material in GSB Layer

    Directory of Open Access Journals (Sweden)

    U Arun Kumar

    2014-08-01

    Full Text Available India has series of steel plant clusters located along its length and breadth of the territory. Several million metric tons of iron and steel are produced in these plants annually. Along with the production of iron and steel, huge quantities of solid wastes like blast furnace slag and steel slag as well as other wastes such as flue dust, blast furnace sludge, and refractories are also being produced in these plants. These solid wastes can be used as non-traditional/non-conventional aggregates in pavement construction due to acute scarcity of traditional/conventional road construction materials. A study was conducted to investigate the possibility of using Granulated Blast Furnace Slag (GBFS with various blended mixes of traditional/conventional aggregates in subbase layer with different percentages. This study also presents the result of experimental investigation on the influence of Rice husk ash (RHA on the index properties of Red soil which is used as filler material in subbase layer.

  15. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

  16. Implementation of Control Measures for Radioactive Waste Packages with Respect to the Materials Composition - 12365

    Energy Technology Data Exchange (ETDEWEB)

    Steyer, S.; Kugel, K. [Federal Office for Radiation Protection (BfS), Salzgitter (Germany); Brennecke, P. [Braunschweig (Germany); Boetsch, W.; Gruendler, D.; Haider, C. [ISTec, Cologne (Germany)

    2012-07-01

    In addition to the radiological characterization and control measures the materials composition has to be described and respective control measures need to be implemented. The approach to verify the materials composition depends on the status of the waste: - During conditioning of raw waste the control of the materials composition has to be taken into account. - For already conditioned waste a retrospective qualification of the process might be possible. - If retrospective process qualification is not possible, legacy waste can be qualified by spot checking according to the materials composition requirements The integration of the control of the material composition in the quality control system for radioactive waste is discussed and examples of control measures are given. With the materials-list and the packaging-list the Federal Office for Radiation Protection (BfS) provides an appropriate tool to describe the materials composition of radioactive waste packages. The control measures with respect to the materials composition integrate well in the established quality control framework for radioactive waste. The system is flexible enough to deal with waste products of different qualities: raw waste, qualified conditioned waste or legacy waste. Control measures to verify the materials composition can be accomplished with minimal radiation exposure and without undue burden on the waste producers and conditioners. (authors)

  17. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  18. Electronic waste (e-waste): material flows and management practices in Nigeria.

    Science.gov (United States)

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    2008-01-01

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT) in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue.

  19. Effect of preparation methods on the adsorption property of municipal solid waste-based carbon materials%制备方法对城市固体废弃物基炭材料吸附性能的影响

    Institute of Scientific and Technical Information of China (English)

    宋敏; 唐心红; 唐美; 卫月星

    2016-01-01

    采用水蒸气物理活化法、催化炭化法和KOH活化法制备了城市固体废弃物基炭材料。利用亚甲基蓝吸附值来评价制备碳材料的吸附特性,研究了不同制备方法对碳材料得率和吸附容量的影响。其中催化炭化法制备的碳材料的得率最高;KOH活化法次之。就吸附性能而言,KOH活化法是一种更好的活化方法。在不同组分固体废弃物基碳材料中,单组分的纸板,双组分的轮胎和纸板,三组分的轮胎、纸板。 PVC及多组分混合物混合制备的碳材料的吸附特性要分别优于其他单组分、双组分、三组分及多组分混合物。%Three different preparation methods including steam physical activation, catalytic carbonation and KOH chemical activation methods were used to prepare municipal solid waste-based carbon materials. The methylene blue ( MB) adsorption value was applied to evaluate the adsorption capabilities of the prepared carbon materials. The effects of preparation methods on adsorption capability and yield of products were investigated. The yield of carbon materials with the catalytic carbonation method is the highest, and the KOH activation method is the second level. Considering the adsorption performance, the KOH activation method is much more favorable. Among the different components of municipal solid waste-based carbon materials, the adsorption properties of the single component of paperboard, the double components of tire and paperboard, the triple components of tire, paperboard and polyvinyl chloride ( PVC ) , and the multi-component mixtures are better than those of other single-, double-, triple-and multi-component mixtures, respectively.

  20. Management of hazardous waste or materials. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The bibliography contains citations concerning the management of hazardous waste and materials. Citations discuss the assessments and findings at hazardous waste sites as well as the prevention of pollution. Also included are guidelines and methods for controlling and managing hazardous waste and materials.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Sustainable Materials Management (SMM) WasteWise Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA’s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA’s...

  2. Hazardous Material Storage Facilities and Sites - Commercial Hazardous Waste Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Commercial Hazardous Waste Operation is a DEP primary facility type related to the Waste Management Hazardous Waste Program. The sub-facility types related to...

  3. Sound Absorbing Property of Porous Material by Using Polyester Fiber Waste

    Science.gov (United States)

    Kurahashi, Naoya; Kimura, Teruo

    Polyester waste generated from a water jet loom in the weaving process is one of the typical industrial fiber wastes. The development of a recycling system for such fiber wastes has been strongly expected so far. In this study, the recyclability of polyester wastes as a sound absorption material was discussed. As a result, it was cleared that the sound absorption material can be obtained by heated compression molding combined with a PLA binder and fiber wastes, and higher sound absorption properties are obtainable if the defiberization of the waste is increased.

  4. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (EUROPEAN OFFICE), Am Seestern 8, 40547 Dusseldorf (Germany); Ishida, Yoshihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2015-03-15

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  5. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream.

  6. Low Carbon Footprint Mortar from Pozzolanic Waste Material

    Directory of Open Access Journals (Sweden)

    Taha Mehmannavaz

    2014-04-01

    Full Text Available Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA and Pulverized Fuel Ash (PFA as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  7. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  8. Utilization of sludge waste from natural rubber manufacturing process as a raw material for clay-ceramic production.

    Science.gov (United States)

    Vichaphund, S; Intiya, W; Kongkaew, A; Loykulnant, S; Thavorniti, P

    2012-12-01

    The possibility of utilization of the sludge waste obtained from the natural rubber manufacturing process as a raw material for producing clay ceramics was investigated. To prepared clay-based ceramic, the mixtures of traditional clay and sludge waste (10-30 wt%) were milled, uniaxilly pressed and sintered at a temperature between 1000 and 1200 degrees C. The effect of sludge waste on the properties of clay-based ceramic products was examined. The results showed that the amount of sludge waste addition had an effect on both sinterability and properties of the clay ceramics. Up to 30 wt% of sludge waste can be added into the clay ceramics, and the sintered samples showed good properties.

  9. Raw-materials mixtures from waste of the coal industry for production of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Galpern, E.I. [Scientific-Manufacturing Enterprise ``Ceramics``, Donetsk (Ukraine); Pashchenko, L.V. [Inst. of Physical, Organic and Coal Chemistry of NASU, Donetsk (Ukraine)

    1998-09-01

    The liquidation of waste dumps on the surface of mining enterprises and realization of measures by environment protection of air and aquatic basins are connected to the complex processing of mining mass. The main directions of utilization of mining rocks and coal wastes realized in Ukraine industry are: - filling of mines worked-out area by grouting solutions; - ceramic brick, porous filling materials and binding materials production; - road-making, construction of hydrostructures and industrial objects; - output of concrete items predominantly for using in mining conditions. The peculiarity of wastes using in above-mentioned fields is the possibility of their mass application in quantities commensurable with valumes of their yields. The experience of enterprises work which process mining rocks into building materials by burning method (ceramic brick, porous aggregates of concretes as aggloporite, expanded clay aggregate) has shown that unconstant and, as the rule, exceeding norms content of carbon and sulphur in the rock results to deterioration of products quality and technological factors of production. Unstability of carbon content in raw material makes the burning process hardly operated. Obtained products having residual carbon in the view of coke residue are often characterized by lower physical-mechanical characteristics. (orig./SR)

  10. STUDIES ON STRENGTH CHARACTERISTICS ON UTILIZATION OF WASTE MATERIALS AS COARSE AGGREGATE IN CONCRETE

    Directory of Open Access Journals (Sweden)

    DR. T. SEKAR

    2011-07-01

    Full Text Available Depletion of natural resources is a common phenomenon in developing countries like India due to rapid urbanization and Industrialization involving construction of Infrastructure and other amenities. In view of this, people have started searching for suitable other viable alternative materials for concrete so that the existing natural resources could be preserved to the possible extent, for the future generation. In this process, different industrial waste materials such as fly ash, blast furnace slag, quarry dust, tile waste, brick bats, broken glass waste, waste aggregate from demolition of structures, ceramic insulator waste, etc. have been tried as a viablesubstitute material to the conventional materials in concrete and has also been succeeded. This paper describes the studies conducted on strength characteristics of concrete made with utilizing waste materials viz: ceramic tiles, ceramic insulator waste, and broken glass pieces. A total number of 24cubes, 24 cylinders and 24 beamswere cast and tested for compressive strength, splitting tensile strength and flexural strength using industrial wastes and the results presented. It was found that, the concrete made of waste ceramic tile aggregate produced more strength in compression, split tensile and flexure than ceramic insulator scrap and broken glass material. This paper recommends that waste ceramic tiles can be used as an alternate construction material to coarse aggregate in concrete.

  11. Material characterization in cemented radioactive waste with the associated particle technique

    Science.gov (United States)

    Carasco, C.; Perot, B.; Mariani, A.; El Kanawati, W.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2010-07-01

    The elemental characterization of materials constituting radioactive waste is of great importance for the management of storage and repository facilities. To complement the information brought by gamma or X-ray imaging, the performance of a fast neutron interrogation system based on the associated particle technique (APT) has been investigated by using MCNP simulations and by performing proof-of-principle experiments. APT provides a 3D localisation of the emission of fast neutron induced gamma rays, whose spectroscopic analysis allows to identify the elements present in specific volumes of interest in the waste package. Monte Carlo calculations show that it is possible to identify materials enclosed behind the thick outer envelop of a ≈1 m 3 cemented waste drum, provided the excited nuclei emit gamma rays with a sufficient energy to limit photon attenuation. Neutron attenuation and scattering are also predominant effects that reduce the sensitivity and spatial selectivity of APT, but it is still possible to localise items in the waste by neutron time-of-flight and gamma-ray spectroscopy. Experimental tests confirm that the elemental characterization is possible across thick mortar slabs.

  12. Management for Construction Materials and Control of Construction Waste in Construction Industry: A Review

    Directory of Open Access Journals (Sweden)

    A. A. Gulghane

    2015-04-01

    Full Text Available In recent treads a wide range of building materials is available for the construction of civil engineering structures. The total cost of materials may be up to 60% or more of the total cost incurred in construction project dependent upon the type of project. Effective construction materials management is a key to success for a construction project. Construction waste is another serious problem in construction industry. A large and various types of construction waste with different characteristics are created at all the stages of construction. Construction industries have a larger part in contributing environmental problems. The economic and environmental benefits must be gained from construction waste minimization. This paper presents a review on systematically investigation of the management of construction materials and construction waste, material management techniques, control of construction waste and existing situation of construction management and construction waste in the industry.

  13. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Rebak

    2006-08-28

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  14. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-06-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  15. Optimizing resource and energy recovery for materials and waste management

    Science.gov (United States)

    Decisions affecting materials management today are generally based on cost and a presumption of favorable outcomes without an understanding of the environmental tradeoffs. However, there is a growing demand to better understand and quantify the net environmental and energy trade-...

  16. Pyrolysis of municipal plastic wastes: Influence of raw material composition.

    Science.gov (United States)

    López, A; de Marco, I; Caballero, B M; Laresgoiti, M F; Adrados, A

    2010-04-01

    The objective of this work is the study of pyrolysis as a feedstock recycling process, for valorizing the rejected streams that come from industrial plants, where packing and packaging wastes are classified and separated for their subsequent mechanical recycling. Four real samples collected from an industrial plant at four different times of the year, have been pyrolysed under nitrogen in a 3.5dm(3) autoclave at 500 degrees C for 30min. Pyrolysis liquids are a complex mixture of organic compounds containing valuable chemicals as styrene, ethyl-benzene, toluene, etc. Pyrolysis solids are composed of the inorganic material contained in the raw materials, as well as of some char formed in the pyrolysis process, and pyrolysis gases are mainly composed of hydrocarbons together with some CO and CO(2), and have very high gross calorific values (GCV). It has been proved by the authors that the composition of the raw material (paper, film, and metals contents) plays a significant role in the characteristics of pyrolysis products. High paper content yields water in the pyrolysis liquids, and CO and CO(2) in the gases, high PE film content gives rise to high viscosity liquids, and high metals content yields more aromatics in the liquid products, which may be attributed to the metals catalytic effect.

  17. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  18. Materials engineering data base

    Science.gov (United States)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  19. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-04-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger.

  20. Screening of waste for use in clay-based bricks in the Arctic

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2014-01-01

    of hazardous waste, municipal solid waste incineration (MSWI) ashes and minetailings from Greenland, were investigated in order to determine their potential suitability for incorporationin the production of clay-based bricks. Furthermore, the MSWI fly ash was subjected to two remediation techniques...... and several studies have demonstrated that clay-based bricks and tiles can successfully accommodate waste types,such as incineration ashes, mine tailings and dredged harbour sediments (Zhang et al., 2011; Roy et al.,2007; Mezencevova et al., 2012). In the vulnerable Arctic environment, the impact......Clay-based ceramics, such as bricks, are heterogeneous materials, which can incorporate raw materials ofwide ranging compositions, without impairing their technical properties (Dondi et al., 1997a,b). Due to thisability, bricks have become a popular material in waste management research worldwide...

  1. Plant waste materials from restaurants as the adsorbents for dyes

    OpenAIRE

    Pavlović Marija D.; Nikolić Ivan R.; Milutinović Milica D.; Dimitrijević-Branković Suzana I.; Šiler-Marinković Slavica S.; Antonović Dušan G.

    2015-01-01

    This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was mo...

  2. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  3. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-02-27

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

  4. Some aspects of the analysis of raw material losses and use of the woodworking industries waste

    Directory of Open Access Journals (Sweden)

    Stetsyuk, Nadiуa Yevhenivna

    2012-11-01

    Full Text Available This paper focuses on the problem of the elimination of losses and the mostefficient use of wood waste. In particular, the author pays special attention to the issues of reducingcosts of raw wood materials and more efficient use of secondary materials. The influence ofmethods of waste while wood processing on increasing the use of forestry return waste is described.A sample of classification factors affecting the losses of wood and waste use is set. The scheme ofmovement of raw-material resources and companies’ wood waste is described within the effectivewaste control in the industry under consideration. The distribution of wood industry wastesaccording to the economic content is proposed. The system of synthetic and analytical accountingof production waste within the general plan of accounts and itemization of the production wastecost used as secondary raw material in the reports is proposed for their proper accountingtreatment.

  5. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  6. Hazardous materials and waste management a guide for the professional hazards manager

    CERN Document Server

    Cheremisinoff, Nicholas P

    1995-01-01

    The management of hazardous materials and industrial wastes is complex, requiring a high degree of knowledge over very broad technical and legal subject areas. Hazardous wastes and materials are diverse, with compositions and properties that not only vary significantly between industries, but within industries, and indeed within the complexity of single facilities. Proper management not only requires an understanding of the numerous and complex regulations governing hazardous materials and waste streams, but an understanding and knowledge of the treatment, post-treatment, and waste minimizatio

  7. Secondary Zinc Waste Sludge: Resource Material with Potential Application.

    Science.gov (United States)

    Khan, Mohd Akram; Shrivastava, Rajnish

    2014-01-01

    The waste sludge generated during secondary zinc extraction process of an industry was studied for the recovery of electrolytic grade zinc and copper. The physical, chemical and mineralogical properties of the secondary zinc waste were studied in detail. Toxicity Characteristic Leaching Procedure (TCLP) test was carried out for the sample and concentrations of heavy metals present in the waste were estimated. The engineering properties of the samples prepared through high temperature fired route provided important information on the characteristics and composition of the waste. Different binders like fly ash and yellow clay were used in different formulations using Indian Standard sand to prepare the samples and to study the Solidification-Stabilisation (S/S) mechanism of the encapsulated waste mass. The leachability studies and engineering properties of the samples were evaluated to study the abatement of hazardous potential of waste and to explore better utilisation options for the secondary zinc waste sludge.

  8. Investigations on cementitious composites based on rubber particle waste additions

    Directory of Open Access Journals (Sweden)

    Glaucio Laun Nacif

    2013-04-01

    Full Text Available The amount of waste rubber has gradually increased over recent years because of over-growing use of rubber products. The disposal of waste rubber has caused serious environmental problems. The incorporation of recycled materials into cementitious composites is a feasible alternative that has gained ground in civil construction. The performance of such materials is much affected not only by the rubber addition, but also the particle size which has been controversially reported in the literature. In order to investigate the single effect of rubber particles into cement based materials, rubber cementitious composites were prepared with no silica particle additions. A full factorial design has been conducted to assess the influence of the rubber particle size (0.84/0.58 mm and 0.28/0.18 mm; mass fraction used (5, 15 and 30%; and water/cement ratio (0.35 and 0.50 on the physic-mechanical properties of the composites. The materials were characterized through apparent density, porosity, compressive strength, flexural strength, modulus of elasticity and microstructural analysis. The interactions of rubber particle size, rubber fraction and water/cement ratio affected significantly the density and compressive strength of the composites. The apparent porosity was influenced mainly by the rubber particle size. The flexural strength was affected by the main factors and the modulus of elasticity was affected by the interaction factors rubber particle size and fraction, and rubber fraction and w/c ratio.

  9. Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection.

    Science.gov (United States)

    Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik

    2015-07-01

    Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system

  10. Reliable classification of moving waste materials with LIBS in concrete recycling.

    Science.gov (United States)

    Xia, Han; Bakker, M C M

    2014-03-01

    Effective discrimination between different waste materials is of paramount importance for inline quality inspection of recycle concrete aggregates from demolished buildings. The moving targeted materials in the concrete waste stream are wood, PVC, gypsum block, glass, brick, steel rebar, aggregate and cement paste. For each material, up to three different types were considered, while thirty particles of each material were selected. Proposed is a reliable classification methodology based on integration of the LIBS spectral emissions in a fixed time window, starting from the deployment of the laser shot. PLS-DA (multi class) and the hybrid combination PCA-Adaboost (binary class) were investigated as efficient classifiers. In addition, mean centre and auto scaling approaches were compared for both classifiers. Using 72 training spectra and 18 test spectra per material, each averaged by ten shots, only PLS-DA achieved full discrimination, and the mean centre approach made it slightly more robust. Continuing with PLS-DA, the relation between data averaging and convergence to 0.3% average error was investigated using 9-fold cross-validations. Single-shot PLS-DA presented the highest challenge and most desirable methodology, which converged with 59 PC. The degree of success in practical testing will depend on the quality of the training set and the implications of the possibly remaining false positives.

  11. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    DEFF Research Database (Denmark)

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-01-01

    of a Danish waste refinery solution against state-of-the-art waste technology alternatives (incineration, mechanical-biological treatment (MBT), and landfilling). In total, 252 scenarios were evaluated, including effects from source-segregation, waste composition, and energy conversion pathway efficiencies...

  12. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  13. Lignin-Based Thermoplastic Materials.

    Science.gov (United States)

    Wang, Chao; Kelley, Stephen S; Venditti, Richard A

    2016-04-21

    Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors.

  14. ROCK FALL CALCULATIONS FOR SINGLE CORROSION RESISTANT MATERIAL WASTE PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Z. Ceylan

    1999-03-23

    The purpose of this activity is to determine the structural performance of waste packages (WP) subject to rock fall design basis event (DBE) dynamic loads and document the calculation results that describe the threshold rock sizes for crack-initiation and through cracks in waste package shells. This activity is associated with the waste package design. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to develop the calculation.

  15. ROCK FALL CALCULATIONS FOR SINGLE CORROSION RESISTANT MATERIAL WASTE PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    S. Bader

    1999-09-20

    The purpose of this activity is to determine the structural performance of waste packages (WP) subject to rock fall design basis event (DBE) dynamic loads and document the calculation results that describe the threshold rock sizes for crack-initiation and through-cracks in waste package shells. This activity is associated with the waste package design. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to develop the calculation.

  16. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D F; Ondrejcin, R S; Salley, L

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.

  17. Recovery of valuable materials from waste liquid crystal display panel.

    Science.gov (United States)

    Li, Jinhui; Gao, Song; Duan, Huabo; Liu, Lili

    2009-07-01

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 degrees C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO(3):H(2)O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 degrees C.

  18. A BIM-based system for demolition and renovation waste estimation and planning

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jack C.P., E-mail: cejcheng@ust.hk [Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology (Hong Kong); Ma, Lauren Y.H., E-mail: yingzi@ust.hk [Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology (Hong Kong)

    2013-06-15

    Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results

  19. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  20. Stress corrosion cracking in canistered waste package containers: Welds and base metals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.

    1998-03-01

    The current design of waste package containers include outer barrier using corrosion allowable material (CAM) such as A516 carbon steel and inner barrier of corrosion resistant material (CRM) such as alloy 625 and C22. There is concern whether stress corrosion cracking would occur at welds or base metals. The current memo documents the results of our analysis on this topic.

  1. Management for Construction Materials and Control of Construction Waste in Construction Industry: A Review

    OpenAIRE

    A. A. Gulghane; Prof P. V. Khandve

    2015-01-01

    In recent treads a wide range of building materials is available for the construction of civil engineering structures. The total cost of materials may be up to 60% or more of the total cost incurred in construction project dependent upon the type of project. Effective construction materials management is a key to success for a construction project. Construction waste is another serious problem in construction industry. A large and various types of construction waste with different...

  2. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste.

  3. Polyphosphazine-based polymer materials

    Science.gov (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  4. From waste to sustainable materials management: Three case studies of the transition journey.

    Science.gov (United States)

    Silva, Angie; Rosano, Michele; Stocker, Laura; Gorissen, Leen

    2017-03-01

    Waste policy is increasingly moving on from the 'prevention of waste' to a 'sustainable materials policy' focused agenda recognising individual wastes as a resource. In order to comparatively analyse policy developments in enhanced waste management, three case studies were selected; San Francisco's Zero Waste Program, Flanders's Sustainable Materials Management Initiative and Japan's Sound Material-Cycle Society Plan. These case studies were chosen as an opportunity to investigate the variety of leading approaches, governance structures, and enhanced waste policy outcomes, emerging globally. This paper concludes that the current transitional state of waste management across the world, is only in the first leg of the journey towards Circular Economy closed loop production models of waste as a resource material. It is suggested that further development in government policy, planning and behaviour change is required. A focus on material policy and incorporating multiple front runners across industry and knowledge institutions are offered as potential directions in the movement away from end-pipe land-fill solutions.

  5. Dealing with emerging waste streams: used tyre assessment in Thailand using material flow analysis.

    Science.gov (United States)

    Jacob, Paul; Kashyap, Prakriti; Suparat, Tasawan; Visvanathan, Chettiyappan

    2014-09-01

    Increasing urbanisation and automobile use have given rise to an increase in global tyre waste generation. A tyre becomes waste once it wears out and is no longer fit for its original purpose, and is thus in its end-of-life state. Unlike in developed countries, where waste tyre management has already become a significant issue, it is rarely a priority waste stream in developing countries. Hence, a large quantity of waste tyres ends up either in the open environment or in landfill. In Thailand, waste tyre management is in its infancy, with increased tyre production and wider use of vehicles, but low levels of recycling, leaving scope for more appropriate policies, plans and strategies to increase waste tyre recycling. This article describes the journey of waste tyres in Thailand in terms of recycling and recovery, and disposal. Material flow analysis was used as a tool to quantify the flows and accumulation of waste tyres in Thailand in 2012. The study revealed that, in Thailand in 2012, waste tyre management was still biased towards destructive technologies (48.9%), rather than material recovery involving rubber reclamation, retreading tyres and whole and shredded tyre applications (6.7%). Despite having both economic and environmental benefits, 44.4% of used tyres in 2012 were dumped in the open environment, and the remaining 0.05% in landfills.

  6. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households.

    Science.gov (United States)

    Lau, Winifred Ka-Yan; Chung, Shan-Shan; Zhang, Chan

    2013-03-01

    A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.

  7. Decomposition of paper wastes in presence of ceramics and cement raw material.

    Science.gov (United States)

    Conesa, Juan A; Gálvez, Araceli; Fullana, Andrés

    2008-05-01

    Paper recycling is an environmental important activity that is carried out in all the countries, but during the recycling process a paper waste is produced. Generally these wastes are placed in landfill sites but it is possible to profit it as secondary fuel and raw material in manufacture furnaces. In this work the combustion of the waste papers with cement and ceramic raw material has been studied with the objective to analyse the interaction of these substances with the emitted pollutants like PAHs and PCDD/Fs. The results of the study show that the presence of inorganic material produces an increment in the lighter PAH emission but chlorinated compounds are not affected. The PCDD/F emission level found in the combustion of this waste is quite low compared with other wastes subjected to similar conditions.

  8. Evaluation of municipal solid waste management performance by material flow analysis: Theoretical approach and case study.

    Science.gov (United States)

    Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura

    2015-10-01

    The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%.

  9. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. Thermoelectric power generators that convert heat directly into electricity can offer a very promising way for waste heat recovery. However, the requirements for this task place in the materials...

  10. Optimizing Urban Material Flows and Waste Streams in Urban Development through Principles of Zero Waste and Sustainable Consumption

    Directory of Open Access Journals (Sweden)

    Steffen Lehmann

    2011-01-01

    Full Text Available Beyond energy efficiency, there are now urgent challenges around the supply of resources, materials, energy, food and water. After debating energy efficiency for the last decade, the focus has shifted to include further resources and material efficiency. In this context, urban farming has emerged as a valid urban design strategy, where food is produced and consumed locally within city boundaries, turning disused sites and underutilized public space into productive urban landscapes and community gardens. Furthermore, such agricultural activities allow for effective composting of organic waste, returning nutrients to the soil and improving biodiversity in the urban environment. Urban farming and resource recovery will help to feed the 9 billion by 2050 (predicted population growth, UN-Habitat forecast 2009. This paper reports on best practice of urban design principles in regard to materials flow, material recovery, adaptive re-use of entire building elements and components (‘design for disassembly’; prefabrication of modular building components, and other relevant strategies to implement zero waste by avoiding waste creation, reducing wasteful consumption and changing behaviour in the design and construction sectors. The paper touches on two important issues in regard to the rapid depletion of the world’s natural resources: the built environment and the education of architects and designers (both topics of further research. The construction and demolition (C&D sector: Prefabricated multi-story buildings for inner-city living can set new benchmarks for minimizing construction wastage and for modular on-site assembly. Today, the C&D sector is one of the main producers of waste; it does not engage enough with waste minimization, waste avoidance and recycling. Education and research: It’s still unclear how best to introduce a holistic understanding of these challenges and to better teach practical and affordable solutions to architects, urban

  11. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  12. Toward zero waste: composting and recycling for sustainable venue based events.

    Science.gov (United States)

    Hottle, Troy A; Bilec, Melissa M; Brown, Nicholas R; Landis, Amy E

    2015-04-01

    This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO2 equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO2 eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO2 eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game.

  13. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Science.gov (United States)

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed.

  14. Transuranic contaminated waste form characterization and data base

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report.

  15. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  16. A web-based Decision Support System for the optimal management of construction and demolition waste.

    Science.gov (United States)

    Banias, G; Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, N; Papaioannou, I

    2011-12-01

    Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece.

  17. Radiolytically-induced novel materials and their application to waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Massimo Bertino, Akira Tokuhiro, Tadashi Tokuhiro

    2007-12-05

    In the present NEER project we investigated two different types of gel materials with respect to potential applications in environmental remediation, including mixed waste generated from the nuclear fuel cycles. The materials under study were: (1) silica-polymer based aerogel composites into which specific metallic cations diffuse into and remain, and (2) polymer gels made of thermo-sensitive polymer networks, whose functional groups can be ''tailored'' to have a preferred affinity for specific cations, again diffusing into and remaining in the network under a volumetrically, contractive phase-transition. The molecular, diffusion of specific cations, including those of concern in low-level waste streams, into the gel materials studied here indicates that a scaled, engineered system can be designed so that it is passive; that is, minimal (human) intervention and risk would be involved in encapsulating LLW species. In addition, the gel materials hold potential significance in environmental remediation of and recovery of metallic cations identified in respective domains and physico-chemical processes. In brief, silica gels start as aqueous/liquid solutions of base catalyzed silica hydrogels and metal ions (targeted species), such as silver. The metal ions are reduced radiolytically and migrate through the solution to form clusters. Upon post-irradiation processing, aerogel monoliths, extremely lightweight but mechanically strong, that encapsulate the metals are produced. Interestingly the radiolytic or photonic source can be gamma-rays and/or other rays from ''artificial sources'', such as reactors, or ''inherent sources'' like those characterizing mixed waste. Polymer gels, in contrast exhibit thermally-induced volumetric contraction at 20-50 C by expelling water from the gels physical state. Further, some functional groups that capture di- or tri-valent cations from aqueous solutions can be incorporated

  18. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  19. An incentive-based source separation model for sustainable municipal solid waste management in China.

    Science.gov (United States)

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study.

  20. A BIM-based system for demolition and renovation waste estimation and planning.

    Science.gov (United States)

    Cheng, Jack C P; Ma, Lauren Y H

    2013-06-01

    Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry

  1. Leaching tests as a tool in waste management to evaluate the potential for utilization of waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Sloot, H.A. van der [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kosson, D.S. [Rutgers Univ., Piscataway, NJ (United States)

    1995-12-01

    Several waste materials from large scale industrial processes possess technical properties that would allow their use in certain construction applications, e.g. coal fly ash, slags from large scale industrial melting and ore processing, and incinerator residues. The disposal of such materials requires space and controlled landfills to minimize long term environmental risks. The beneficial use of such bulk materials is an attractive alternative, if it can be shown that such applications are environmentally acceptable. For this management of wastes and the decision to either dispose or use, information on the environmental properties of materials is needed. Leaching tests have been developed to assess such properties. These have been designed typically in relation to regulatory tools, not as instruments to guide the management of wastes and the possibilities to improve material properties. New methods have been designed to address this aspect, in which maximum benefit can be derived from knowledge of the systematic behaviour of materials and the already existing knowledge in other countries producing similar residues. After initial detailed characterization, concise procedures can be used for control purposes focused on the typical aspects of a certain residue stream. Examples of existing knowledge in this field will be presented.

  2. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-02

    ... AGENCY EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source... personal information provided, unless the comment includes information claimed to be Confidential Business... INFORMATION: Background For decades, EPA has been providing information on the recycling, reuse and...

  3. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-30

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source... management, recycling, measurement, data, data collection, construction and demolition (C&D)...

  4. Toward zero waste: Composting and recycling for sustainable venue based events

    Energy Technology Data Exchange (ETDEWEB)

    Hottle, Troy A., E-mail: troy.hottle@asu.edu [Arizona State University, School of Sustainable Engineering and the Built Environment, 370 Interdisciplinary Science and Technology Building 4 (ISTB4), 781 East Terrace Road, Tempe, AZ 85287-6004 (United States); Bilec, Melissa M., E-mail: mbilec@pitt.edu [University of Pittsburgh, Civil and Environmental Engineering, 153 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15261-3949 (United States); Brown, Nicholas R., E-mail: nick.brown@asu.edu [Arizona State University, University Sustainability Practices, 1130 East University Drive, Suite 206, Tempe, AZ 85287 (United States); Landis, Amy E., E-mail: amy.landis@asu.edu [Arizona State University, School of Sustainable Engineering and the Built Environment, 375 Interdisciplinary Science and Technology Building 4 (ISTB4), 781 East Terrace Road, Tempe, AZ 85287-6004 (United States)

    2015-04-15

    Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO{sub 2} equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO{sub 2} eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO{sub 2} eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night

  5. Empirical Evaluation of Construction Material Waste Generated on Sites in Nigeria

    Directory of Open Access Journals (Sweden)

    Adewuyi, T.O.

    2014-01-01

    Full Text Available The study investigates the level of construction material waste generated on building sites in South-South, Nigeria. The objective is to empirically establish the level of waste generated on building sites and compare such with the allowable value in estimates. Data were collected from 30 on-going public building projects for six months. The level of material waste was calculated in percentages while one way ANOVA was employed to compare the waste values among the States in the zone. The significant difference between actual and allowable values of waste was tested using paired t-test. The level of material waste was found to be 11.69, 12.10, 10.45, 14.54, and 12.07 for concrete blocks, steel reinforcement, timber, and tiles respectively. It was concluded that these values are significantly different, with p-values < 0.05, from the allowable waste. The study recommends that the values of waste derived by this study be adopted in estimates

  6. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. (Lawrence Livermore National Lab., CA (USA)); Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion; sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.

  7. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1997-07-31

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.

  8. Review: Agricultural Wastes as a Source of Silica Material

    Directory of Open Access Journals (Sweden)

    Novie Permatasari

    2016-05-01

    Full Text Available Silica is the most abundant components in the earth's crust and is made by way of synthesis for use in the application of technology. Silica are generally found commercially as alkoxysilane compounds (i.e such as tetraethylorthosilicate (TEOS, sodium silicate, and tetramethylorthosilicat. However, these compounds can have a negative impact on health. Thus, further approaches to find the source of silica that is safer, cheaper, and more environmentally friendly is inevitable. However, not all summary journals are thoroughly discussed the silica sources. Further, method of isolation and application of the silica from agricultural waste is limited. This paper reported studied several sources of silica derived from agricultural waste, such as rice husk, rice straw, corn cobs, and bagasse. In addition, this paper discussed also about the method of isolation of silica from agricultural waste, and its application as a catalyst.

  9. The Future Resources for Eco-building Materials: II.Fly Ash and Coal Waste

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XU Delong

    2009-01-01

    To use fly ash and coal waste effectively,the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed,such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation,removal of carbon remains and fine comminution,calcining coal waste into kaolin and meta-kaolin with suspension technology,and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.

  10. Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-03-01

    Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10(3) tonnes in 2007 to 437×10(3) tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10(3) and 7×10(3) tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10(3) to 253×10(6) tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10(3) to 158×10(3) tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.

  11. The cost of waste of consumable materials in a surgical center

    Directory of Open Access Journals (Sweden)

    Liliana Cristina de Castro

    2013-12-01

    Full Text Available OBJECTIVES: to identify the types, quantities and cost of the consumable materials sent, used, returned unopened and wasted in surgical operations; to classify the incidences of waste as avoidable or unavoidable losses, and to calculate the rate of waste of the consumable materials in the peri-operative period in the Surgical Center of a São Paulo university hospital. METHOD: a descriptive-exploratory case study with a quantitative approach. The convenience sample corresponded to 105 types of consumable materials sent for the 275 operations observed between February and May 2011. RESULTS: the items wasted most were surgical sutures, surgical cotton sutures, and gauze compresses. The total cost of the waste was R$ 709.84. The mean percentage of waste in the sample was 9.34%, of which 1.23% was avoidable and 8.14% unavoidable. CONCLUSION: the study evidenced that the effective management of material resources reduces the costs of the processes, and reduces waste.

  12. Remediation of AMD using natural and waste material

    Energy Technology Data Exchange (ETDEWEB)

    Basir, Nur Athirah Mohamad; Yaacob, Wan Zuhairi Wan [Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan (Malaysia)

    2014-09-03

    Acid Mine Drainage (AMD) is highly acidic, sulphate rich and frequently carries a high transition metal and heavy metal burden. These AMD's eventually migrate into streams and rivers and impact negatively on the quality of these water bodies. So it is dire necessary to treat this AMD. Various materials such as ladle furnace slag (LFS), bentonite, zeolite, active carbon and kaolinite are currently available to remove heavy metals from contaminated water. All these materials are capable to rise up the pH value and adsorb heavy metals. The process is divided into two stages; screening test and tank experiment. Screening test is conduct by using Batch Equilibrium Test (BET), X-Ray Fluorescene (XRF) identification also Scanning Electron Microscopic (SEM) characteristic. The results showed that all the concentration of heavy metal are decreasing extremely and pH value rise up except for kaolinite. From screening test only ladle furnace slag, bentonite, zeolite and active carbon are chosen for the tank experiment. Tank experiment design with 18cm (H) X 15cm (L) X 15cm (H) was made by silica glass. All these treatment materials were stirred in the tank for 30 days. Initial pH for all tanks is 2.4 and after 30 days is changing into 6.11, 3.91, 2.98 and 2.71 for LFS, bentonite, active carbon as well as zeolite respectively. LFS is the best material for absorption of Zn, Mn and Cu in the synthetic solution. Meanwhile, bentonite is the best absorbent for Ni, Fe and Cd. The conclusion shows that LFS might have big potentials to control AMD pollution base on neutralize pH resulting in a great improvement in the quality of the water.

  13. The Evaluation of Material Properties of Low-pH Cement Grout for the Application of Cementitious Materials to Deep Radioactive Waste Repository Tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Seop; Kwon, S. K.; Cho, W. J.; Kim, G. W

    2009-12-15

    Considering the current construction technology and research status of deep repository tunnels for radioactive waste disposal, it is inevitable to use cementitious materials in spite of serious concern about their long-term environmental stability. Thus, it is an emerging task to develop low pH cementitious materials. This study reviews the state of the technology on low pH cements developed in Sweden, Switzerland, France, and Japan as well as in Finland which is constructing a real deep repository site for high-level radioactive waste disposal. Considering the physical and chemical stability of bentonite which acts as a buffer material, a low pH cement limits to pH {<=}11 and pozzolan-type admixtures are used to lower the pH of cement. To attain this pH requirement, silica fume, which is one of the most promising admixtures, should occupy at least 40 wt% of total dry materials in cement and the Ca/Si ratio should be maintained below 0.8 in cement. Additionally, selective super-plasticizer needs to be used because a high amount of water is demanded from the use of a large amount of silica fume. In this report, the state of the technology on application of cementitious materials to deep repository tunnels for radioactive waste disposal was analysed. And the material properties of low-pH and high-pH cement grouts were evaluated base on the grout recipes of ONKALO in Finlan.

  14. Synthesis and characterization of hybrid silicon based complexing materials: extraction of transuranic elements from high level liquid waste; Synthese et caracterisation de gels hybrides de silice a proprietes complexantes: applications a l'extraction des transuraniens des effluents aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Conocar, O

    1999-07-01

    Hybrid organic/inorganic silica compounds with extractive properties have been developed under an enhanced decontamination program for radioactive aqueous nitric acid waste in nuclear facilities. The materials were obtained by the sol-gel process through hydrolysis and poly-condensation of complexing organo-tri-alkoxy-silanes with the corresponding tetra-alkoxy-silane. Hybrid silica compounds were initially synthesized and characterized from mono- and bis-silyl precursors with malonamide or ethylenediamine patterns. Solids with different specific areas and pore diameters were obtained depending on the nature of the precursor, its functionality and its concentration in the tetra-alkoxy-silane. These compounds were then considered and assessed for use in plutonium and americium extraction. Excellent results-partitioning coefficients and capacities have been obtained with malonamide hybrid silica. The comparison with silica compounds impregnated or grafted with the same type of organic group is significant in this respect. Much of the improved performance obtained with hybrid silica may be attributed to the large quantity of complexing groups that can be incorporated in these materials. The effect of the solid texture on the extraction performance was also studied. Although the capacity increased with the specific area, little effect was observed on the distribution coefficients -notably for americium- indicating that the most favorable complexation sites are found on the outer surface. Macroporous malonamide hybrid silica compounds were synthesized to study the effects of the pore diameter, but the results have been inconclusive to date because of the unexpected molecular composition of the materials. (author)

  15. WOOD - PLASTIC COMPOSITES FROM WASTE MATERIALS RESULTED IN THE FURNITURE MANUFACTURING PROCESS

    Directory of Open Access Journals (Sweden)

    Camelia COŞEREANU

    2014-06-01

    Full Text Available The paper presents the application of waste materials resulted in the furniture manufacturing process as components for wood-plastic composites. The composites are produced from industrial byproducts, such as shavings and ABS (acrylonitrile butadiene styrene, without coupling agent. The two components are derived from industrial processes of furniture manufacturing: the first one consists of wood residues resulted from planing machine as planer shavings, and the second one from ABS edge banding operation. A wide array of mixtures varying from 100% ABS to 50% ABS: 50% shavings were used to produce eight variants of boards. Density was determined for each board and the method for the determination of ABS particle size distribution by oscillating screen method using sieve apertures up to 4mm was also applied, in order to establish the particle fractions and the distribution of their sizes. Based on ABS properties, several technologies of manufacturing wood-plastic composites from the waste materials were tested and one of them was selected. The results of the first stage analysis, when the physical integrity and the compactness of the panels’ structures were tested, have shown that a maximum proportion of 30% of wood shavings is accepted in the mixture. On the other hand, the low density of the boards and their porous structure recommend further investigations for thermal and sound insulation applications

  16. Practice of the utilization of biomass from waste materials; Praxis der Verwertung von Biomasse aus Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, Klaus; Kern, Michael; Raussen, Thomas (eds.)

    2010-07-01

    (Martin Wellacher); (17) The Bio-QZ - an innovative process step for the increase of efficiency of biogas facilities (Karsten Mennerich); (18) Processing of biological wastes for the production of biogas (Thomas Authmann); (19) An example of a optimization measure in the area of processing biological wastes in the fermentation plant Leonberg (Rudi Sendersky); (20) The concept of materials management for municipal biological wastes and green waste in the administrative district Emsland (Heinz Boekers); (21) Cultivation of green waste places between material and energetic utilization (Leonhard Unterberg); (22) Construction and startup of a municipal thermal power station for fuels from green wastes (Guenter Hacklaender); (23) Biogas in Energy Verbund - Chances for municipal power suppliers (Thorsten Ebert); (24) New developments and perspectives in the hydrothermal carbonization (HTC) of biomass (Fritz Richarts).

  17. Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

  18. Rheological behavior of composites based on carbon fibers recycled from aircraft waste

    OpenAIRE

    Marcaníková, Lucie; Hausnerová, Berenika; KITANO, Takeshi

    2009-01-01

    Rheological investigation of composite materials prepared from the recycled aircraft waste materials based on thermoset (epoxy/resin) matrix and long carbon fibers (CF) is presented with the aim of their utilization in consumer industry applications. The carbon fibers recovered via thermal process of pyrolysis were cut into about 150 pm length and melt mixed with thermoplastic matrices based on polypropylene (PP) and polyamide 6 (PA) and various modifiers - ethylene-ethyl acrylate-maleic anhy...

  19. Determination of renewable energy yield from mixed waste material from the use of novel image analysis methods.

    Science.gov (United States)

    Wagland, S T; Dudley, R; Naftaly, M; Longhurst, P J

    2013-11-01

    Two novel techniques are presented in this study which together aim to provide a system able to determine the renewable energy potential of mixed waste materials. An image analysis tool was applied to two waste samples prepared using known quantities of source-segregated recyclable materials. The technique was used to determine the composition of the wastes, where through the use of waste component properties the biogenic content of the samples was calculated. The percentage renewable energy determined by image analysis for each sample was accurate to within 5% of the actual values calculated. Microwave-based multiple-point imaging (AutoHarvest) was used to demonstrate the ability of such a technique to determine the moisture content of mixed samples. This proof-of-concept experiment was shown to produce moisture measurement accurate to within 10%. Overall, the image analysis tool was able to determine the renewable energy potential of the mixed samples, and the AutoHarvest should enable the net calorific value calculations through the provision of moisture content measurements. The proposed system is suitable for combustion facilities, and enables the operator to understand the renewable energy potential of the waste prior to combustion.

  20. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  1. Aspects regarding the use of the industrial wastes as raw materials for the manufacture of building materials

    Directory of Open Access Journals (Sweden)

    R. G. Popa

    2015-01-01

    Full Text Available In this article are present the results of physical and chemical characterisation activities, of industrial wastes: ash and slag, drilling sludge, metallurgical slag. Also, were established the conditions in which these industrial waste types could be used as raw materials for manufacture some building materials. The ash can be assimilated with a lightweight aggregate similar to the natural sands, the oil-well drilling sludge presents an advanced similarity with the suspensions of fine particles of sand clays, the steel melting slag in electric furnace has the characteristics of a dense granular aggregate and the secondary treatment steel slag is characterized by the high content of calcium oxide.

  2. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.W.; Nutt, W.M.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

    1995-06-01

    Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

  3. The municipal solid waste and the quality of life of collectors of recyclable materials in Juiz de Fora, Minas Gerais.

    Science.gov (United States)

    de Barros Pimenta, Aline; Santos, Sueli Maria dos Reis; de Jesus, Maria Cristina Pinto; Borges, Marcos Mantins; de Oliveira Marques, Geraldo Luciano; Abdalla, E José Gustavo Francis

    2012-01-01

    The generation growing and diversified of Municipal Solid Waste is configured as an environmental problem, economic and social deterioration, especially, by application of inappropriate management of them. Faced with this urban context, the research in development presents as specific objective assessment of the quality of life of the gatherers of recyclable materials were active in the city of Juiz de Fora, in the brazilian state of Minas Gerais. In addition, the objective is, still, the recognition of the activity of sorting performed by "scavengers" in order to maximize the reduction, reuse and recycling energy and material waste daily. The proposed methodology is based on the application of the questionnaire Word Health Organization Quality of Life (WHOQOL-100), prepared by the World Health Organization, in order to value the quality of life of the gatherers of recyclable materials, involved, even in educational workshops in order to discuss and organize strategies of health care and scouting to the basement to public policies.

  4. Protein-based composite materials

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    2012-05-01

    Full Text Available Protein-based composite biomaterials have been actively pursued as they can encompass a range of physical properties to accommodate a broader spectrum of functional requirements, such as elasticity to support diverse tissues. By optimizing molecular interfaces between structural proteins, useful composite materials can be fabricated as films, gels, particles, and fibers, as well as for electrical and optical devices. Such systems provide analogies to more traditional synthetic polymers yet with expanded utility due to the material's tunability, mechanical properties, degradability, biocompatibility, and functionalization, such as for drug delivery, biosensors, and tissue regeneration.

  5. Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level

    Directory of Open Access Journals (Sweden)

    Niklas Andersen

    2016-11-01

    Full Text Available Globally, wind power is growing fast and in Sweden alone more than 3000 turbines have been installed since the mid-1990s. Although the number of decommissioned turbines so far is few, the high installation rate suggests that a similarly high decommissioning rate can be expected at some point in the future. If the waste material from these turbines is not handled sustainably the whole concept of wind power as a clean energy alternative is challenged. This study presents a generally applicable method and quantification based on statistics of the waste amounts from wind turbines in Sweden. The expected annual mean growth is 12% until 2026, followed by a mean increase of 41% until 2034. By then, annual waste amounts are estimated to 240,000 tonnes steel and iron (16% of currently recycled materials, 2300 tonnes aluminium (4%, 3300 tonnes copper (5%, 340 tonnes electronics (<1% and 28,000 tonnes blade materials (barely recycled today. Three studied scenarios suggest that a well-functioning market for re-use may postpone the effects of these waste amounts until improved recycling systems are in place.

  6. Conductive polymer-based material

    Science.gov (United States)

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  7. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  8. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis.

    Science.gov (United States)

    Zhu, H M; Yan, J H; Jiang, X G; Lai, Y E; Cen, K F

    2008-05-01

    Pyrolysis of certain medical waste materials was studied using thermogravimetric analyzer coupled with Fourier transform infrared spectroscopy (TG-FTIR). Pyrolysis characteristics of three common materials were discussed. The pyrolysis of absorbent cotton turned out to be the most concentrative, followed by medical respirator and bamboo stick. From TG and DTG curves, pyrolysis of these three materials occurred in single, two and three stages respectively. Evolved volatile products from all these three materials included 2-butanone, benzaldehyde, formic acid, acetic acid, hydrocarbon, carbon dioxide, carbon monoxide, and water; whereas no sulphur dioxide, ammonia and hydrogen cyanide was detected. There are several differences in yield among them. However, the study in this paper is essential for medical waste pyrolysis model, the TG-FTIR approach is potential to provide valuable inputs for predictive modeling of medical waste pyrolysis. More studied are needed to get the kinetic parameters and pyrolysis models that can predict yields and evolution patterns of selected volatile products for CFD applications.

  9. High Temperature Thermoelectric Materials for Waste Heat Regeneration

    Science.gov (United States)

    2013-01-01

    Thermoelectric Oxide Materials. Science of Advanced Materials 2011, 321 (1457), 682–686. 2. International World Energy, Wold Energy Outlook 2006 Edition...power is clearly limited to the inefficiencies of the TE material and is currently a major road block to wide TEG acceptance. A TE material can be...International World Energy, 2001. 3. Board, D. S. Report of the Defense Science Board Task Force on DoD Energy Strategy, More Fight-Less Fuel, Office

  10. A novel shielding material prepared from solid waste containing lead for gamma ray

    Science.gov (United States)

    Erdem, Mehmet; Baykara, Oktay; Doğru, Mahmut; Kuluöztürk, Fatih

    2010-09-01

    Human beings are continuously exposed to cosmogenic radiation and its products in the atmosphere from naturally occurring radioactive materials (NORM) within Earth, their bodies, houses and foods. Especially, for the radiation protection environments where high ionizing radiation levels appear should be shielded. Generally, different materials are used for the radiation shielding in different areas and for different situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead was analyzed as shielding material for gamma radiation. The photon total mass attenuation coefficients ( μ/ ρ) were measured and calculated using WinXCom computer code for the novel shielding material, concrete and lead. Theoretical and experimental values of total mass attenuation coefficient of the each studied sample were compared. Consequently, a new shielding material prepared from the solid waste containing lead could be preferred for buildings as shielding materials against gamma radiation.

  11. Recycling waste brick from construction and demolition of buildings as pozzolanic materials.

    Science.gov (United States)

    Lin, Kae-Long; Wu, Hsiu-Hsien; Shie, Je-Lueng; Hwang, Chao-Lung; An Cheng

    2010-07-01

    This investigation elucidates the pozzolic characteristics of pastes that contain waste brick from building construction and demolition wastes. The TCLP leaching concentrations of waste brick for the target cations or heavy metals were all lower than the current regulatory thresholds of the Taiwan EPA. Waste brick had a pozzolanic strength activity index of 107% after 28 days. It can be regarded as a strong pozzolanic material. The compressive strengths of waste brick blended cement (WBBC) that contain 10% waste brick increased from 71.2 MPa at 28 days to 75.1 MPa at 60 days, an increase of approximately 5% over that period. At 28 days, the pozzolanic reaction began, reducing the amount of Ca(OH)(2) and increasing the densification. The intensity of the peak at 3640 cm(- 1) associated with Ca(OH)(2) is approximately the same for ordinary Portland cement (OPC) pastes. The hydration products of all the samples yield characteristics peaks at 978 cm(-1) associated with C-S-H, and at ~3011 cm(-1) and 1640 cm(-1) associated with water. The samples yield peaks at 1112 cm(-1), revealing the formation of ettringite. In WBBC pastes, the ratio Q(2)/Q(1) increases with curing time. These results demonstrate that increasing the curing time increases the number of linear polysilicate anions in C-S-H. Experimental results reveal that waste brick has potential as a pozzolanic material in the partial replacement of cement.

  12. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  13. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments

    Science.gov (United States)

    Landa, E.R.

    2003-01-01

    Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.

  14. Bibliographic data base for low activation materials

    Energy Technology Data Exchange (ETDEWEB)

    Alenina, M.V.; Kolotov, V.P. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation); Ivanov, L.I. [A.A. Baikov Institute of Metallurgy and Science of Materials, Russian Academy of Sciences, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: The analysis of the publications dealing with development of low-activation materials for fusion technology demonstrates that the period of information doubling is about 5-6 years. Such high rate usually is characteristic of the actively developing field of science. To develop an useful instrument for analysis and systematization of the available data a computer based bibliographic system has been developed some time ago. Recently the engine of the system has been significantly modernized. The bibliographic system is based on using of MS SQL server data base which includes main bibliographic information including abstracts. The most important feature of the system is that full-text abstracts searching capabilities are appended with indexing of information by experts to increase its definition. The experts indexes cover the following topics: - Main problems; - Software and methods for calculation; - Libraries of nuclear data; - Spectrum of neutrons for different construction parts of fusion reactor; - Low activation materials; - Technology of production; - Radiation effects; - Utilization of radiation waste; - Estimation of risks; - Designs of fusion reactor; - Nuclear transmutations; - Equipment used for investigations. The primary data base is filling/appending by periodical queries to different bibliographic data bases (INIS, COMPEMDEX and others) via suitable Internet providers including strict analysis of the income information to remove a possible 'information noise' and following data indexing by experts. The data base contains references since 1976 year (when first works in this area have been fulfilled) and until now. The bibliographic system is accessible by means of Internet using different forms developed for queries (http://www.geokhi.ru/{approx}lam{sub d}b). (authors)

  15. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

  16. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Directory of Open Access Journals (Sweden)

    Jairo F. Pereira

    2010-07-01

    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  17. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  18. Application of agro-wastes for bio-composite materials

    Science.gov (United States)

    Askanian, Haroutioun; Novello, Ottavio; Coelho, Christian; Commereuc, Sophie; Verney, Vincent

    2015-12-01

    This work was devoted to study the potential of different agro-wastes as reinforcements for thermoplastics as an alternative to wood fibers. Olive pits flour, walnut nutshells flour and cherry pits flour was used as filler for polylactic acid. Thermal behaviour of the composites was studied to investigate the nucleation effect of the lignocellulosic flour. The effects of filler loading on the mechanical properties, as well as viscoelastic behavior were also studied. The results indicates that these agricultural by-products can be used as filler in production of bio-composites without any further treatment, especially in the case of walnut nutshells flour and cherry pits flour.

  19. Cement-based grouts in geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Onofrei, M. [AECL Research, Pinnawa, Manitoba (Canada)

    1996-04-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from <10{sup -7} m s{sup -1} to 10{sup -9} m s{sup -1} and to penetrate fissures in the rock with apertures as small as 10 {mu}m. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment.

  20. Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks.

    Science.gov (United States)

    Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini

    2006-11-01

    Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.

  1. New Porous Material Made from Industrial and Municipal Waste for Building Application

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2014-09-01

    Full Text Available The aim of this study was to find a new method for usage of the hazardous waste coming from recycling industry. Two hazardous wastes – aluminium recycling final dross or non-metallic product (NMP and lead – silica glass (LSG were investigated. It is generally considered that NMP is a process waste and subject to disposal after residual metal has been recovered from primary dross. NMP is impurities which are removed from the molten metal in dross recycling process and it could be defined as a hazardous waste product in aluminium recycling industry. LSG comes from fluorescence lamp recycling plant and could be classified as hazardous waste due to high amount of lead in the composition and re-melting problems. The new alkali activated material, which can be defined as porous building material, was created. Composition of this material consisted of aluminium recycling waste, recycled fluorescent lamp LSG, sintered kaolin clay as well as commercially available alkali flakes (NaOH and liquid glass (Na2SiO3 + nH2O. Physical and mechanical properties of the obtained material were tested. Density of the obtained material was from (460 – 550 kg/m3 and the total porosity was from 82 % – 83 %. The compressive strength of the material was in range from 1.1 MPa to 2.3 MPa. The thermal conductivity was determined. The pore microstructure was investigated and the mineralogical composition of porous material was determined. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4330

  2. Characterization of urban waste management practices in developing Asian countries: A new analytical framework based on waste characteristics and urban dimension.

    Science.gov (United States)

    Aleluia, João; Ferrão, Paulo

    2016-12-01

    This paper characterizes municipal solid waste (MSW) management practices in developing Asia, with a focus on low and middle-income countries. The analysis that is conducted supports a proposed framework that maps out the trends observed in the region in relation to two parameters, waste compositions and urban dimension, which was prepared based on a set of national and urban case studies. The management of MSW in developing Asian countries is driven, first and foremost, by a public health imperative: the collection and disposal of waste in order to avoid the spread of disease vectors from uncollected waste. This comes, however, at a high cost, with local government authorities in these countries spending up to 50% of their budgets in the provision of these services. Little or no value is derived from waste, which is typically seen as a liability and not as a resource that can be harnessed. On the other hand, in many cities in developing Asia there is an informal sector that ekes out a living from the recovery of recyclable materials found in waste. Members of this "informal waste sector" are especially active in areas that are not served by formal waste collection systems, such as slums or squatter areas. A distinctive element shared among many cities in developing Asian countries concerns the composition of the municipal solid waste. MSW in those countries tends to be richer in biodegradable organic matter, which usually accounts for more than 50% of the total waste composition, suggesting that biological methods are more appropriate for treating this organic fraction. Conversely, thermal combustion technologies, which are extensively applied in high-income countries, are technically and economically challenging to deploy in light of the lower calorific value of waste streams which are rich in organics and moisture. Specific approaches and methods are therefore required for designing adequate waste management systems in developing Asian countries. In addition

  3. PSO 5806 Material development for waste-to-energy plants

    DEFF Research Database (Denmark)

    Beck, Jørgen; Frederiksen, Jens; Larsen, Ole Hede;

    2010-01-01

    The vision of this project (PSO 5806) is to throw light and focus on some of the refractory material characteristics of major importance to predictable service.......The vision of this project (PSO 5806) is to throw light and focus on some of the refractory material characteristics of major importance to predictable service....

  4. Molecular environmental science using synchrotron radiation:Chemistry and physics of waste form materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.; Shuh, David K.

    2005-02-28

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements.

  5. GIS based solid waste management information system for Nagpur, India.

    Science.gov (United States)

    Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A

    2013-01-01

    Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.

  6. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    Science.gov (United States)

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes.

  7. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark.

    Science.gov (United States)

    Götze, R; Pivnenko, K; Boldrin, A; Scheutz, C; Astrup, T Fruergaard

    2016-08-01

    Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste.

  8. Development of a testing method for asbestos fibers in treated materials of asbestos containing wastes by transmission electron microscopy.

    Science.gov (United States)

    Yamamoto, Takashi; Kida, Akiko; Noma, Yukio; Terazono, Atsushi; Sakai, Shin-ichi

    2014-02-01

    Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approved by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47-170×10(-6) f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.

  9. Selection and Basic Properties of the Buffer Material for High-Level Radioactive Waste Repository in China

    Institute of Scientific and Technical Information of China (English)

    WEN Zhijian

    2008-01-01

    Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common features are the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposing high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. It is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation properties, thermal conductivity, chemical buffering property,canister supporting property, and stress buffering property over a long period of time. Bentonite is selected as the main content of buffer material that can satisfy the above requirements. The Gaomiaozi deposit is selected as the candidate supplier for China's buffer material of high level radioactive waste repository. This paper presents the geological features of the GMZ deposit and basic properties of the GMZ Na-bentonite. It is a super-large deposit with a high content of montmorillonite (about 75%), and GMZ-1, which is Na-bentonite produced from GMZ deposit is selected as the reference material for China's buffer material study.

  10. Catalytic pyrolysis of waste mandarin over nanoporous materials.

    Science.gov (United States)

    Park, Young-Kwon; Kim, Jeong Wook; Park, Sung Hoon; Kim, Seong-Soo; Jeon, Jong-Ki; Lee, See Hoon

    2013-01-01

    Catalytic pyrolysis of waste mandarin was performed using nanoporous catalysts. AI-MCM-41 and Meso-MFI, which had different acid characteristics, were used. In addition, the characteristics of Pt/Meso-MFI were compared with those of Meso-MFI. To analyze the characteristics of the catalyst samples, Brunauer-Emmett-Teller surface area, temperature programmed desorption of NH3, and N2 adsorption-desorption analyses were performed. In addition, pyrolysis gas chromatography/mass spectrometry was used to facilitate the direct analysis of the pyrolytic products. The products obtained from catalytic pyrolysis contained a greater amount of valuable components than did those obtained from non-catalytic pyrolysis, indicating that catalytic pyrolysis improved the quality of the bio-oil. Additionally, valuable products such as furan and aromatic compounds were produced in greater quantities when Meso-MFI was used. When Pt/Meso-MFI was used, the amounts of furan and aromatic compounds produced increased even further.

  11. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    L. Reijnders [University of Amsterdam, Amsterdam (Netherlands)

    2007-02-15

    Application of phosphogypsum, coal combustion ashes and waste incineration ashes in building materials has been limited by the presence of minor components that are hazardous, such as radioactive substances, chlorinated dioxins and heavy metals, or have a negative impact on product quality or production economics, such as phosphate, fluoride, carbon and chloride. Source reduction, destruction of persistent organics and separation techniques may reduce the concentrations of such components. With a few exceptions, separation techniques currently lead to significantly higher (private) costs. Higher waste disposal costs, tighter regulations and higher prices for competing virgin minerals could make the use of the purified phosphogypsum and ashes in building materials more attractive.

  12. Measurements and modeling of gas fluxes in unsaturated mine waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Kabwe, L.K.

    2008-07-01

    A technique known as dynamic closed chamber (DDC) was recently developed to measure carbon dioxide (CO{sub 2}) fluxes from the soil surface to the atmosphere. The field application of the DCC was investigated in this thesis with a particular focus on quantifying reaction rates in 2 waste-rock piles at the Key Lake uranium mine in northern Saskatchewan. The dominant geochemical reactions in both waste-rock piles were not typical of acid rock drainage (ARD) waste-rock piles. The CO{sub 2} fluxes measured in this study occur in the organic material underlying the waste rocks. The study provided a complete suite of measurements needed to characterize spatial distribution of CO{sub 2} fluxes on larger-scale studies of waste-rock piles. In comparison to other CO{sub 2} flux measuring techniques, the DCC method accurately quantified field soil respiration and had an added advantage in terms of speed and repeatability. The DCC was also used to investigate CO{sub 2} fluxes under the climatic variables that affect soil water content in waste-rock piles. A simple model for predicting the effects of soil water content on CO{sub 2} diffusion coefficient and concentration profiles was developed and verified. It was concluded that the DCC method is suitable for field applications to quantify CO{sub 2} fluxes and to characterize the spatial and temporal dynamics of CO{sub 2} fluxes from unsaturated C-horizon soils and waste-rock piles.

  13. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk; Vongvoradit, Pimdao; Jenjirapanya, Supichart

    2012-09-01

    The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110°C and calcined at 400 to 1000°C. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000°C resulted in the phase transformation. The more active alumina phase of active γ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000°C possessed the 7-d compressive strength of 34.2 MPa.

  14. Development of a testing method for asbestos fibers in treated materials of asbestos containing wastes by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takashi, E-mail: tyama@nies.go.jp [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Kida, Akiko [Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 (Japan); Noma, Yukio [Department of Environmental Science, Fukuoka Womens University, 1-1-1 Kasumigaoka, Higashiku, Fukuoka 813-8529 (Japan); Terazono, Atsushi [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Sakai, Shin-ichi [Environmental Preservation Research Center, Kyoto University, Yoshidahonmachi, Sakyoku, Kyoto 606-8501 (Japan)

    2014-02-15

    Highlights: • A high sensitive and selective testing method for asbestos in treated materials of asbestos containing wastes was developed. • Asbestos can be determined at a limits are a few million fibers per gram and a few μg g{sup −1}. • High temperature melting treatment samples were determined by this method. Asbestos fiber concentration were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup 6} g{sup −1}. - Abstract: Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approved by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50 mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup −6} f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.

  15. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    Science.gov (United States)

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass.

  16. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Liberman, M.S.; Morrison, G.W.

    1982-01-01

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

  17. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  18. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  19. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    Science.gov (United States)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  20. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials

    Directory of Open Access Journals (Sweden)

    Rean Maharaj

    2015-01-01

    Full Text Available The influence of waste cooking oil (WCO on the performance characteristics of asphaltic materials indigenous to Trinidad, namely, Trinidad Lake Asphalt (TLA, Trinidad Petroleum Bitumen (TPB, and TLA : TPB (50 : 50 blend, was investigated to deduce the applicability of the WCO as a performance enhancer for the base asphalt. The rheological properties of complex modulus (G∗ and phase angle (δ were measured for modified base asphalt blends containing up to 10% WCO. The results of rheology studies demonstrated that the incremental addition of WCO to the three parent binders resulted in incremental decreases in the rutting resistance (decrease in G∗/sinδ values and increases in the fatigue cracking resistance (decrease in G∗sinδ value. The fatigue cracking resistance and rutting resistance for the TLA : TPB (50 : 50 blends were between those of the blends containing pure TLA and TPB. As operating temperature increased, an increase in the resistance to fatigue cracking and a decrease in the rutting resistance were observed for all of the WCO modified asphaltic blends. This study demonstrated the capability to create customized asphalt-WCO blends to suit special applications and highlights the potential for WCO to be used as an environmentally attractive option for improving the use of Trinidad asphaltic materials.

  1. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thekdi, Arvind [E3M, Inc. North Potomac, MD (United States); Rogers, Benjamin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kafka, Orion L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  2. Catalytic pyrolysis of waste rice husk over mesoporous materials

    Science.gov (United States)

    Jeon, Mi-Jin; Kim, Seung-Soo; Jeon, Jong-Ki; Park, Sung Hoon; Kim, Ji Man; Sohn, Jung Min; Lee, See-Hoon; Park, Young-Kwon

    2012-01-01

    Catalytic fast pyrolysis of waste rice husk was carried out using pyrolysis-gas chromatography/mass spectrometry [Py-GC/MS]. Meso-MFI zeolite [Meso-MFI] was used as the catalyst. In addition, a 0.5-wt.% platinum [Pt] was ion-exchanged into Meso-MFI to examine the effect of Pt addition. Using a catalytic upgrading method, the activities of the catalysts were evaluated in terms of product composition and deoxygenation. The structure and acid site characteristics of the catalysts were analyzed by Brunauer-Emmett-Teller surface area measurement and NH3 temperature-programmed desorption analysis. Catalytic upgrading reduced the amount of oxygenates in the product vapor due to the cracking reaction of the catalysts. Levoglucosan, a polymeric oxygenate species, was completely decomposed without being detected. While the amount of heavy phenols was reduced by catalytic upgrading, the amount of light phenols was increased because of the catalytic cracking of heavy phenols into light phenols and aromatics. The amount of aromatics increased remarkably as a result of catalytic upgrading, which is attributed to the strong Brönsted acid sites and the shape selectivity of the Meso-MFI catalyst. The addition of Pt made the Meso-MFI catalyst even more active in deoxygenation and in the production of aromatics.

  3. New Method of Online Measurement of Oil and Suspended Material Concentration In Flowing Waste Water

    Science.gov (United States)

    Liao, Hongwei; Xu, Guobing; Xu, Xinqiang; Zhou, Fangde

    2007-06-01

    At present, the most of the measurements of oil and suspended material concentration in waste water measuring are not online surveys. A new method of online measurement of oil and suspended material concentration in flowing waste water is presented. The room experiments and field tests showed that it is suitable to waste water treatment on line. After sampling, It needed to measure immediately the concentration in first time. Then let sample to be in still in 10 - 20 seconds. After that the bulk concentration was measured in second time. Because of the suspended solids having heavy density, they would be dropped from waster water. During ultrasonic operation, emulsify the oil in waster water, the oil and suspended solid would be depart. After that the third time measurement was done. In thus way the concentrations of oil and suspended solids can be measured. At present there are two on-site equipments operating in the Changqing oilfield, and the results are pretty well.

  4. Material Characteristic of Lightweight Concretes With Waste PVC Additive and Their Possible Utilization in Agricultural Structures

    Directory of Open Access Journals (Sweden)

    I. Orung

    2007-05-01

    Full Text Available In this study, characteristics of lightweight concretes prepared adding waste PVC materials at different rates into natural lightweight aggregates of Van Ercis region were investigated. The aims of the study were to propose and produce a construction material with low unit weight, sufficient pressure resistance and low water absorption capacity. The unit weight of leight weight material produced was ranged from 760 to 883 kg/m3, compressive strenght was ranged from 21.4 to 37.7 kgf/cm2, and water absorption values were changed between 23.4 % and 32.3 %. The bulk density and compressive strength of samples were increasing with increasing waste PVC mixture, whereas, water absorbtion was decreased with the same amount of additions. The results of the study indicated that produced lightweight material could safely be used in agricultural structures, especially in animal housing facilities with sensitive environmental conditions, in storage facilities and houses as wall block materials. Introducing a material produced with waste PVC material into the construction market will provide several benefits to economy, and environment.

  5. Composting on Mars or the Moon: II. Temperature feedback control with top-wise introduction of waste material and air

    Science.gov (United States)

    Finstein, M. S.; Hogan, J. A.; Sager, J. C.; Cowan, R. M.; Strom, P. F.; Janes, H. W. (Principal Investigator)

    1999-01-01

    Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.

  6. Incorporation of sugarcane bagasse ash waste as an alternative raw material for red ceramic

    Directory of Open Access Journals (Sweden)

    K. C. P. Faria

    2013-09-01

    Full Text Available The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA. This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.

  7. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    Directory of Open Access Journals (Sweden)

    Anca Farcas

    2013-11-01

    Full Text Available Brewer’s spent grain (BGS is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  8. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    OpenAIRE

    Anca Farcas; Maria Tofana; Sonia Socaci; Stancuta Scrob; Liana Salanta; Doinita Bors

    2013-01-01

    Brewer’s spent grain (BGS) is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  9. 30 CFR 715.18 - Dams constructed of or impounding waste material.

    Science.gov (United States)

    2010-07-01

    ... loading) 1.0 (iv) The dam, foundation, and abutments shall be stable under all conditions of construction...) of this section and for all increments of construction. (v) Seepage through the dam, foundation, and...) constructed of waste materials, in accordance with the requirements of this section. (b) Construction of...

  10. Study of the biodisintegration of a bioplastic material waste.

    Science.gov (United States)

    Sarasa, Judith; Gracia, Jose M; Javierre, Carlos

    2009-08-01

    The aim of this work was to study the biodisintegration degree of different pieces made of a biodegradable thermoplastic material, the polylactic acid (PLA) with and without corn in its composition, is studied. The pieces of different shapes and thicknesses were obtained by both injection and extrusion processes, where also a specific foaming additive of polystyrene was added. The PLA and PLA-corn manufactured pieces were subjected to aerobic degradation at a constant temperature of 58+/-2 degrees C for 90 days, following EN 14806 and ISO 20200:2004 Norms. It was found that the pieces made of PLA and PLA with foaming agent had an average biodisintegration degree of 63.6%. With regard to the pieces made of PLA-corn, an average biodisintegration degree of 79.7% was obtained. In this case, the percentage of non degraded material was independent of the size, shape and thickness of the original pieces.

  11. Waste processing: new near infrared technologies for material identification and selection

    Science.gov (United States)

    Cesetti, M.; Nicolosi, P.

    2016-09-01

    The awareness of environmental issues on a global scale increases the opportunities for waste handling companies. Recovery is set to become all the more important in areas such as waste selection, minerals processing, electronic scrap, metal and plastic recycling, refuse and the food industry. Effective recycling relies on effective sorting. Sorting is a fundamental step of the waste disposal/recovery process. The big players in the sorting market are pushing for the development of new technologies to cope with literally any type of waste. The purpose of this tutorial is to gain an understanding of waste management, frameworks, strategies, and components that are current and emerging in the field. A particular focus is given to spectroscopic techniques that pertains the material selection process with a greater emphasis placed on the NIR technology for material identification. Three different studies that make use of NIR technology are shown, they are an example of some of the possible applications and the excellent results that can be achieved with this technique.

  12. Modelling origin and transport fate of waste materials on the south-eastern Adriatic coast (Croatia

    Directory of Open Access Journals (Sweden)

    M. Tudor

    2014-12-01

    Full Text Available The south-eastern parts of the Adriatic Sea coastline were severely polluted by large amounts of accumulated waste material in the second half of November 2010. The waste, reported by major news agencies, accumulated dominantly during 21 November 2010 by favourable wind – ocean current transport system. In the study we analysed meteorological and oceanographic conditions that lead to the waste deposition using available in situ measurements, remote sensing data as well numerical models of the ocean and the atmosphere. The measured data reveal that an intensive rainfall event from 7 till 10 November 2010, over the parts of Montenegro and Albania, was followed by a substantial increase of the river water levels indicating flash floods that possibly splashed the waste material into a river and after to the Adriatic Sea. In order to test our hypothesis we set a number of numerical drifter experiments with trajectories initiated off the coast of Albania during the intensive rainfall events following their faith in space and time. One of the numerical drifter trajectory experiment resulted with drifters reached right position (south-eastern Adriatic coast and time (exactly by the time the waste was observed when initiated on 00:00 and 12:00 UTC of 10 November 2010 during the mentioned flash flood event.

  13. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  14. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    Science.gov (United States)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  15. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 2, Additional appendices

    Energy Technology Data Exchange (ETDEWEB)

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. The status of the CDB is summarized in Volume I of this report. Volume II contains appendices that present data from the data base and an evaluation of glass durability models applied to the data base.

  16. Magnetic mesoporous materials for removal of environmental wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chan; Lee, Jinwoo; Um, Wooyong; Kim, Jaeyun; Joo, Jin; Lee, Jin Hyung; Kwak, Ja Hun; Kim, Jae Hyun; Lee, Changha; Lee, Hongshin; Addleman, Raymond S.; Hyeon, Taeghwan; Gu, Man Bock; Kim, Jungbae

    2011-09-15

    We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7 hours. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Tyrosinase aggregates in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, could be used repeatedly for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic, organic and biochemical contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.

  17. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  18. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  19. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    Science.gov (United States)

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  20. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 3A, ORIGEN2 decay tables for immobilized high-level waste, Appendix 3B, Interim high-level waste forms, Appendix 3C, User's guide to the high-level waste PC data base

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in he mined geologic disposal system. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document. This document is backed up by five PC-compatible data bases, written in a user-oriented, menu-driven format, which were developed for this purpose. The data bases are the LWR Assemblies Data Base; the LWR Radiological Data Base; the LWR Quantities Data Base; the LWR NFA Hardware Data Base; and the High-Level Waste Data Base. The above data bases may be ordered using the included form. Volume 6 contains decay tables for immobilized high-level waste, information on interim high-level waste forms, and a user's guide to the high-level waste PC data base.

  1. Second version of France's National Radioactive Materials and Waste Management Plan: an ambitious road-map for progress on sustainable radioactive materials and waste management; Seconde edition du Plan national de gestion des matieres et des dechets radioactifs: ue feuille de route ambitieuse pour progresser dans la gestion durable des matieres et des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, C. [Autorite de Surete Nucleaire, adjointe au directeur du transport et des sources, 75 - Paris (France)

    2011-02-15

    France's National Radioactive Materials and Waste Management Plan (PNGMDR) aims at drawing up regular reviews of application of the management policy regarding radioactive substances, according to a framework defined by Law. It is drawn up by a multidisciplinary work-group, chaired by the Directorate-General for Energy and Climate (DGEC) and the French Nuclear Safety Authority (ASN). The Plan is updated every three years and the second version was finalized at the end of 2009. The PNGMDR Plan is intended to be exhaustive. It embraces radioactive waste, reusable radioactive materials, sealed sources, technologically-enhanced naturally-occurring radioactive waste, as well as mining residue and spoil. It presents existing storage and disposal solutions and identifies needs for storage or disposal based on the national inventory of radioactive materials and waste, together with the facilities that need to be developed. The studies carried out under the PNGMDR must also ensure that waste management within each of these channels is optimised. Lastly, the Plan sets research and studies objectives, especially as related to waste for which there is as yet no disposal channel. The main recommendations contained in the Plan, together with milestones and deadlines related to radioactive materials and waste management are taken up in French regulations via provisions set out in a decree and an order stipulating the applicable requirements. (author)

  2. Energy and raw material saving through recycling of plastics materials extracted from urban waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Michaux, J.

    The study is divided into 3 parts: Technical feasibility study, economic feasibility study, study of a factory handling 2,400 tons/year of plastics waste, and technico-economic feasibility study and market research, with an analysis of energy savings.

  3. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    Science.gov (United States)

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-03-14

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of

  4. Potential use of densified polymer-pastefill mixture as waste containment barrier materials.

    Science.gov (United States)

    Fall, M; Célestin, J; Sen, H F

    2010-12-01

    Mining activities generate a large amount of solid waste, such as waste rock and tailings. The surface disposal of such waste can create several environmental and geotechnical problems. Public perception and strict government regulations with regards to the disposal of such waste compel the mining industry to develop new strategies which are environmentally sound and cost effective. In this scenario, recycling of such waste into mining or civil engineering construction materials have become a great challenge for the mining and civil engineering community. Hence, in this study, taking advantage of the inherent low hydraulic conductivity of paste tailings (pastefill), small amounts (0.05, 0.1, 0.2, 0.5%) of a super absorbent polymer (SAP) are added to the latter after moisturizing the tailings. The resulting densified polymer-pastefill (PP) materials are compacted and submitted to permeability tests at room temperature and performance tests under cyclic freeze-thaw and wet-dry conditions to evaluate their suitability as a barrier for waste containment facilities. Valuable results are obtained. It is found that the hydraulic conductivity of the proposed barrier material (PP) decreases as the amount of SAP increases. Hydraulic conductivity values as low as 1 × 10(-7) and 6 × 10(-9)cm/s are obtained for PPs which contain 0.1-0.5% SAP, respectively. The PP material also shows relatively good resistance to cyclic freeze-thaw and wet-dry stresses. The results show that negligible to acceptable changes in hydraulic conductivity occur after five freeze-thaw and six wet-dry cycles. None of the changes reach one order of magnitude. As a final step, a cost analysis is undertaken to evaluate the economical benefits that could be drawn from such a proposed barrier material. When compared to a conventional compacted sand-bentonite barrier with 12% bentonite concentration, it is found that the benefit realized could be estimated to 98, 96 and 90% when using PP material that

  5. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  6. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  7. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  8. Combustion of animal or vegetable based liquid waste products; Foerbraenning av flytande animaliska/vegetabiliska restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energikonsult AB, Stockholm (Sweden)

    2002-04-01

    In this project experiences from combustion of animal and vegetable based liquid waste products have been compiled. Legal aspects have also been taken into consideration and the potential for this type of fuel on the Swedish energy market has been evaluated. Today the supply of animal and vegetable based liquid waste products for energy production in Sweden is limited. The total production of animal based liquid fat is about 10,000 tonnes annually. The animal based liquid waste products origin mainly from the manufacturing of meat and bone meal. Since meat and bone meal has been banned from use in animal feeds it is possible that the amount of animal based liquid fat will decrease. The vegetable based liquid waste products that are produced in the processing of vegetable fats are today used mainly for internal energy production. This result in limited availability on the commercial market. The potential for import of animal and vegetable based liquid waste products is estimated to be relatively large since the production of this type of waste products is larger in many other countries compared to Sweden. Vegetable oils that are used as food or raw material in industries could also be imported for combustion, but this is not reasonable today since the energy prices are relatively low. Restrictions allow import of SRM exclusively from Denmark. This is today the only limit for increased imports of animal based liquid fat. The restrictions for handle and combustion of animal and vegetable based liquid waste products are partly unclear since this is covered in several regulations that are not easy to interpret. The new directive for combustion of waste (2000/76/EG) is valid for animal based waste products but not for cadaver or vegetable based waste products from provisions industries. This study has shown that more than 27,400 tonnes of animal based liquid waste products and about 6,000 tonnes of vegetable based liquid waste products were used for combustion in Sweden

  9. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A.; Knox, L. [Argonne National Lab., Argonne, IL (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the {open_quotes}problem{close_quotes} DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization.

  10. Networks of recyclable material waste-picker’s cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Soto, Magda Martina, E-mail: magda@pep.ufrj.br [Program of Production Engineering, School and Research in Engineering, Federal University of Rio de Janeiro (Brazil); Zamberlan, Fabio Luiz, E-mail: fabio@pep.ufrj.br [Program of Production Engineering, School and Research in Engineering, Federal University of Rio de Janeiro (Brazil)

    2013-04-15

    Highlights: ► In the marketing of recyclable materials, the waste-pickers are the least wins. ► It is proposed creating a network of recycling cooperatives to achieve viability. ► The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city’s main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers’ cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.

  11. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  12. Techniques of material-flow-specific residual waste treatment; Techniken der stoffstromspezifischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Maak, D.; Collins, H.J. [Technische Univ. Braunschweig, Leichtweiss - Inst. fuer Wasserbau (Germany)

    1998-09-01

    The success achieved with large-scale plants for mechanical-biological residual waste treatment has led to a change of course in waste pretreatment. In view of the low emissions via the water and gas routes from landfilled wastes and the low costs of waste treatment some authorising authorities have meanwhile issued special licences pursuant to clause no. 2.4 of the Technical Code on Household Waste, thus enabling mechanical-biological residual waste treatment plants to continue operations beyond the year 2005. Beside offering a means of treatment and disposal, cost-effective mechanical-biological pretreatment also provides an opportunity for going over to material-flow-specific residual waste treatment. These process stages permit recirculating valuable materials and using other materials for energy production. They can be retrofitted on a modular basis in existing plants. If these advantages of the present innovative pretreatment methods are not used, then mechanical-biological pretreatment can still serve as a preparatory stage for thermal treatment. To date there has been no practical experience with this innovative method of residual waste treatment. However, industrial-scale trials have shown that each individual treatment stage is capable of being carried out successfully. [Deutsch] Die guten Erfolge im grosstechnischen Betrieb von Anlagen zur mechanisch-biologischen Restabfallbehandlung haben zu einer Kursaenderung bei der Vorbehandlung von Abfaellen gefuehrt. Geringe Emissionen der deponierten Abfaelle auf dem Gas- und Wasserpfad sowie geringe Kosten fuer die Behandlung der Abfaelle haben dazu gefuehrt, dass inzwischen bereits einige Genehmigungsbehoerden eine Ausnahmegenehmigung nach Nr. 2.4 der TA Siedlungsabfall erteilt haben und damit der Betrieb von mechanisch-biologischen Restabfallbehandlungsanlagen auch nach 2005 ermoeglicht wird. Neben der alleinigen Behandlung und Deponierung bietet die kostenguenstige Vorbehandlung mit mechanisch

  13. A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members

    Directory of Open Access Journals (Sweden)

    Kim Hung Mo

    2014-01-01

    Full Text Available The agriculture industry is one of the main industries in the Southeast Asia region due to its favourable conditions for plantations. In fact, Southeast Asia region is the world’s largest producer of palm oil and coconut. Nevertheless, vast plantation of these agriculture products leads to equally large amount of waste materials emanating from these industries. Previously, researchers have attempted to utilize the resulting waste materials such as oil palm shell, palm oil clinker, and coconut shell from these industries as lightweight aggregate to produce structural grade lightweight aggregate concrete. In order to promote the concept of using such concrete for actual structural applications, this paper reviews the use of such agriculture-based lightweight aggregate concrete in reinforced concrete structural members such as beam and slab, which were carried out by researchers in the past. The behaviour of the structural members under flexural, shear, and torsional load was also summarized. It is hoped that the knowledge attained from the paper will provide design engineers with better idea and proper application of design criteria for structural members using such agriculture waste as lightweight aggregate.

  14. Smart Waste Collection System Based on Location Intelligence

    DEFF Research Database (Denmark)

    Lopez, Jose Manuel Guterrez Lopez; Jensen, Michael; Andreasen, Morten Henius

    2015-01-01

    (IoT) integration with data access networks, Geographic Information Systems (GIS), combinatorial optimization, and electronic engineering can contribute to improve cities’ management systems. We present a waste collection solution based on providing intelligence to trashcans, by using an IoT prototype...

  15. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DEFF Research Database (Denmark)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further......Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery...... rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed...

  16. Transportable Waste-to-Energy System (TWES) Energy Recovery From Bare Base Waste

    Science.gov (United States)

    2008-02-01

    removed and/or partially burned. Instead the furnace, coupled with a shredder , will completely burn the waste and provide heat for water or other...Photos from Ali Al Salem, AF bare base Nov 1998, FOUO-for official use only 8 8 TWES Fuel Processing Bulk Trash Shredder Shredded Fuel TWES Furnace...Program (FEMP) to initiate the conversion. • Will install and test electricity production at Tyndall AFB 15 15 TWES Process Diagram Shredders Useful

  17. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  18. Staphylococcus xylosus fermentation of pork fatty waste: raw material for biodiesel production

    Directory of Open Access Journals (Sweden)

    Roger Vasques Marques

    Full Text Available ABSTRACT The need for cleaner sources of energy has stirred research into utilising alternate fuel sources with favourable emission and sustainability such as biodiesel. However, there are technical constraints that hinder the widespread use of some of the low cost raw materials such as pork fatty wastes. Currently available technology permits the use of lipolytic microorganisms to sustainably produce energy from fat sources; and several microorganisms and their metabolites are being investigated as potential energy sources. Thus, the aim of this study was to characterise the process of Staphylococcus xylosus mediated fermentation of pork fatty waste. We also wanted to explore the possibility of fermentation effecting a modification in the lipid carbon chain to reduce its melting point and thereby act directly on one of the main technical barriers to obtaining biodiesel from this abundant source of lipids. Pork fatty waste was obtained from slaughterhouses in southern Brazil during evisceration of the carcasses and the kidney casing of slaughtered animals was used as feedstock. Fermentation was performed in BHI broth with different concentrations of fatty waste and for different time periods which enabled evaluation of the effect of fermentation time on the melting point of swine fat. The lowest melting point was observed around 46 °C, indicating that these chemical and biological reactions can occur under milder conditions, and that such pre-treatment may further facilitate production of biodiesel from fatty animal waste.

  19. Epoxy composites based on inexpensive tire waste filler

    Science.gov (United States)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  20. The usage of plastic waste as a secondary raw material for the modification of sandcrete properties

    Science.gov (United States)

    Klovas, A.; Daukšys, M.; Venčkauskas, L.

    2015-03-01

    Recently the usage of various industry wastes as a secondary raw material tends to increase its relevancy. One of possible options to decrease the amount of waste is to use them to produce new products or materials. The operation of various secondary raw materials (tire rubber, tire cord, ground glass shards, ground ceramic waste products) during the concrete mixture preparation allows to change its as well as cured concrete properties. Recently polymer and steel fibers are used for concrete reinforcement. This study analyses the usage possibility of plastic shavings for the reinforcement of concrete. The technological properties of cement slurry (sand, fraction of 0/4 and 10 kg/m3, 15 kg/m3 and 20 kg/m3 of plastic shavings) as well as mechanical, physical and porosity properties of cured sandcrete were established during the experimental research. The geometric characteristics of mill-shredded plastic shavings were established. Experimental results revealed that the usage of plastic shavings decreased slurry slump and density. The minor decrease of cured sandcrete density (~2200 kg/m3) was noticed with the addition of plastic shavings within the limits of 10 - 20 kg/m3. The flexural strength of cured sandcrete increased from 36 % to 57 % compared with reference specimen (without plastic shavings). The dependence of flexural force and deflection was obtained. Study revealed that the residual strength after crack opening is bigger with the usage of plastic shavings as a secondary raw material compared with reference specimen.

  1. Organic Contaminant Content and Physico-Chemical Characteristics of Waste Materials Recycled in Agriculture

    Directory of Open Access Journals (Sweden)

    Hannah Rigby

    2015-12-01

    Full Text Available A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, for biosolids and compost-like-output (CLO, concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs and polychlorinated biphenyls (PCBs were approximately 1−10 and 5–50 times lower, respectively, than various proposed or implemented European limit values for these contaminants in biosolids or composts applied to agricultural land. However, the technical basis for these limits may require re-evaluation in some cases. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected at relatively high concentrations compared with PCDD/Fs in the biosolids and CLOs and their potential contribution to the overall toxic equivalency is assessed. Other ‘emerging’ contaminants, such as organophosphate flame retardants, were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence that is expected to improve confidence in the use of waste-derived materials in agriculture and to establish guidelines to protect the food chain where necessary.

  2. Anaerobic Digestion Assessment for Contingency Base Waste

    Science.gov (United States)

    2014-05-01

    plastics and biobased products. Journal of Environmental Science and Engineering 1:108-114. Energy Working Group (EWG). 2012. Energy working group...large plastic bag (Lansing and Moss 2010). ............. 58 Tables Table 1. Fuel and energy requirements for three sizes of DOBs...management model developed for FOBs (Medina et al. 2013). Energy from dry organic materials (paper, plastics , etc.) can be recovered using

  3. A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses.

    Science.gov (United States)

    López-Delgado, Aurora; Tayibi, Hanan; Pérez, Carlos; Alguacil, Francisco José; López, Félix Antonio

    2009-06-15

    A solid waste coming from the secondary aluminium industry was successfully vitrified in the ternary CaO-Al(2)O(3)-SiO(2) system at 1500 degrees C. This waste is a complex material which is considered hazardous because of its behaviour in the presence of water or moisture. In these conditions, the dust can generate gases such as H(2), NH(3), CH(4), H(2)S, along with heat and potential aluminothermy. Only silica sand and calcium carbonate were added as external raw materials to complete the glasses formula. Different nominal compositions of glasses, with Al(2)O(3) ranging between 20% and 54%, were studied to determine the glass forming area. The glasses obtained allow the immobilisation of up to 75% of waste in a multicomponent oxide system in which all the components of the waste are incorporated. The microhardness Hv values varied between 6.05 and 6.62GPa and the linear thermal expansion coefficient, alpha, varied between (62 and 139)x10(-7)K(-1). Several glasses showed a high hydrolytic resistance in deionised water at 98 degrees C.

  4. Compression Molding of Chemical/Thermal Resistant Composite Materials Using Wastes of Glass Fiber Reinforced PTFE and Carbon Fiber

    OpenAIRE

    Kimura, Teruo

    2013-01-01

    This report proposed the compression molding method of chemical/thermal resistant composite materials reinforced by the carbon fiber extracted from CFRP waste and the waste of glass fiber coated by PTFE. The FEP resin was used for the matrix material. The contents of carbon fiber and FEP resin were varied in the experiments, and the machanical properties of composite materials were discussed in detail. As a result, the bending strength and modulus increased with increasing the content of carb...

  5. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.

    Science.gov (United States)

    Han, Shenjie; Sun, Qingfeng; Zheng, Huanhuan; Li, Jingpeng; Jin, Chunde

    2016-01-20

    Carbon-based aerogel fabricated from waste biomass is a potential absorbent material for solving organic pollution. Herein, the lightweight, hydrophobic and porous carbon aerogels (CAs) have been synthesized through freezing-drying and post-pyrolysis by using waste newspaper as the only raw materials. The as-prepared CAs exhibited a low density of 18.5 mg cm(-3) and excellent hydrophobicity with a water contact angle of 132° and selective absorption for organic reagents. The absorption capacity of CA for organic compounds can be 29-51 times its own weight. Moreover, three methods (e.g., squeezing, combustion, and distillation) can be employed to recycle CA and harvest organic pollutants. Combined with waste biomass as raw materials, green and facile fabrication process, excellent hydrophobicity and oleophilicity, CA used as an absorbent material has great potential in application of organic pollutant solvents absorption and environmental protection.

  6. Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Miron, Y. [Bureau of Mines (United States)

    1994-01-01

    To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

  7. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    Science.gov (United States)

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed.

  8. Development programs in the United States of America for the application of cement-based grouts in radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Dole, L.R.; Row, T.H.

    1984-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25 mm (1 in.) diameter pellets in a glove box to producing 240 m (800 ft.) diameter grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of materials. This paper also discusses the major issues regarding the application of cement-based waste forms to radioactive waste management problems. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is given This paper also discusses future trends in cement-based waste form development and applications. 31 references, 11 figures.

  9. CERAMIC WASTES AS RAW MATERIALS IN PORTLAND CEMENT CLINKER FABRICATION.· CHARACTERIZATION AND ALKALINE ACTIVATION

    OpenAIRE

    2006-01-01

    [EN] The world-wide cementindustry is seeking experimentalavenues that wi// lead to cementproduction that is less energy-intensive/ less damaging to the surrounding environment and less prolific in GHGemissions. In Spain andEurope in general, this approach is who//y consistent with the concept of sustainability and compliance with the Kyoto Protocol. The use ofdifferent kinds of industrial waste and by-products as alternative materials in cement manufacture has proved to ...

  10. WATER RESISTANCE OF WOOD - PLASTIC COMPOSITES MADE FROM WASTE MATERIALS RESULTED IN THE FURNITURE MANUFACTURING PROCESS

    OpenAIRE

    Camelia COŞEREANU; Dumitru LICA; Ioan CURTU; Mariana-Domnica STANCIU

    2014-01-01

    The purpose of this paper is to present innovative wood-plastic composites made from waste materials such as ABS (acrylonitrile butadiene styrene) and wood shavings resulted in the furniture manufacturing process. From previous investigations (with regard to physical integrity and compactness of the panels), only mixtures ranging from a ratio of 100% ABS: 0% shavings to 80% ABS: 20% shavings were selected for water resistance testing. Swelling in thickness and water absorption for...

  11. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water.

    Science.gov (United States)

    Méndez, A; Barriga, S; Fidalgo, J M; Gascó, G

    2009-06-15

    This paper deals with the removal of Cu(2+) from water using adsorbent materials prepared from paper industry waste materials (one de-inking paper sludge and other sludge from virgin pulp mill). Experimental results showed that de-inking paper sludge leads to mesoporous materials (V(mic)/V(T)=0.13 and 0.14), whereas the sludge from virgin pulp mill produces high microporous adsorbents (V(mic)/V(T)=0.39 and 0.41). Adsorbent materials were then used for Cu(2+) removal from water at acid pH. During water treatment, heavy metals lixiviation from adsorbent materials was not produced. However, important Ca and Mg leaching was observed. Final pH significantly increases after treatment of water with adsorbent materials probably due to their elevated CaCO(3) content. In general, highest Cu(2+) removal was obtained using adsorbent materials from de-inking paper sludge. This result could be due to their higher content in oxygenated surface groups, high average pore diameter, elevated superficial charge density, high CaCO(3) amount and high Ca and Mg exchange content.

  12. Biocompatibility of Resin-based Dental Materials

    OpenAIRE

    Keyvan Moharamzadeh; Ian M. Brook; Richard van Noort

    2009-01-01

    Oral and mucosal adverse reactions to resin-based dental materials have been reported. Numerous studies have examined thebiocompatibility of restorative dental materials and their components, and a wide range of test systems for the evaluation of the biological effects of these materials have been developed. This article reviews the biological aspects of resin-based dental materials and discusses the conventional as well as the new techniques used for biocompatibility assessment of dental mat...

  13. Research about the pozzolanic activity of waste materials from calcined clay

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-03-01

    Full Text Available To recycle and reutilise waste materials and find definite applications for their use, it is necessary to have a deep knowledge of them. The aim of this study is to study the possibility of using waste materials from calcined clay, actually ceramic tile, once crushed and grounded, as pozzolanic material. For this purpose, different tests are carried out in order to establish the pozzolanic activity of this material. At the same time, these results are compared to those of other industrial by-products, fly ash and silica fume, which are pozzolanic materials usually employed to elaborate mortars and concretes.

    Para llevar a cabo labores encaminadas al reciclado y revalorización de residuos es necesario un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. El objetivo de este estudio es investigar la posibilidad de utilizar materiales de desecho procedentes de arcilla cocida, concretamente teja cerámica, una vez triturada y molida, como puzolana. Para ello, se efectúan diferentes ensayos dirigidos a establecer la actividad puzolanica del material. A su vez, estos resultados son comparados con otros residuos industriales, ceniza volante y humo de sílice, habituales en la elaboración de morteros y hormigones.

  14. Networks of recyclable material waste-picker's cooperatives: an alternative for the solid waste management in the city of Rio de Janeiro.

    Science.gov (United States)

    Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz

    2013-04-01

    The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city's main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers' cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.

  15. Scale-dependent dispersivity for buffer material of nuclear waste depository

    Science.gov (United States)

    Hsu, K. C.

    2015-12-01

    Nuclear waste deposit is commonly isolated by buffer material, such as bentonite, to prevent its leak from deposit cane. Therefore, the hydrogeological property of buffer material is the key issue for the success of nuclear waste deposition. Lee et al. (2013) performed an experimental work to explore the diffusion coefficient of Bentonite (MX-80) which is used as the buffer material of nuclear waste deposits. Scale effect was found in the diffusion coefficient. The result contradicts to the stochastic theory which states that the scale effect appears for the dispersion coefficient but not the diffusion coefficient. We reexamine the experimental data to explore the issue. Both analytical solutions of diffusion and advection-dispersion equations (ADE) were applied to estimate the parameters. Considering the micro-heterogeneity of bentonite, Markov chain Monte Carlo (MCMC) method is used to analyze the velocity, dispersion and diffusion coefficients of the breakthrough data from column tests. The results show that the experiment is influenced by the velocity. Diffusion model generates significant error in matching the breakthrough data. ADE model which considers velocity and dispersion performs better than the diffusion model. Scale effect is found in dispersion coefficient even in the small scale below the Gelha's (1993) data. Dispersion coefficient increases linearly with experimental lengths.

  16. Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance

    Directory of Open Access Journals (Sweden)

    Steven L. McGeehan

    2012-01-01

    Full Text Available Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment.

  17. Wood plastic composites from agro-waste materials: Analysis of mechanical properties.

    Science.gov (United States)

    Nourbakhsh, Amir; Ashori, Alireza

    2010-04-01

    This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties.

  18. Washery wastes as a source of raw materials for ceramic products

    Energy Technology Data Exchange (ETDEWEB)

    Burmistrov, V.N.; Tambovtseva, N.A.

    1981-01-01

    The rapid expansion of the output of walling products and the exhaustion of raw material sources for brickmaking have brought to the fore the urgency of devising methods of utilizing coal-mining wastes in the production of rough ceramics, i.e., ceramic walling products, and sewage pipes. The method developed in the VNIIstrom Institute for the production of walling products from washery wastes has now been approved by the Joint Authorities Commission and recommended for commercial exploitation. However, these wastes can only be used (like the traditional clay materials) provided they are uniform in composition and properties. Significant variations lead to a lower product quality and reduced cost effectiveness. The composition and properties of washery wastes vary to an extent which depends on the composition variations in the rock over- and under-lying the coal seam, the proportions of rock included in the mined product, the production rhythm in the washery and the labor organizations at the mining, transportation, and cleaning stages. A survey of the variations in composition of the rocks over- and under-lying coal seams in the Donbas has shown that the average ashes are 88% above and 83% below the seam; the variability coefficients are comparatively low (13 and 16.3%, respectively). Correspondingly, the long-term average variability of the ash of the tailings from half the washeries is below 15%. The construction of modern washeries attached to the large pits will further reduce the variability in the ash of the washery wastes. We took samples from No. 1 and No. 2 washeries at the Cherevopets I and SW to investigate the variability of the tailings composition and properties.

  19. Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material.

    Science.gov (United States)

    Shen, Weiguo; Zhou, Mingkai; Ma, Wei; Hu, Jinqiang; Cai, Zhi

    2009-05-15

    The aim of the present work is to prepare a new type of steel slag-fly ash-phosphogypsum solidified material totally composed with solid wastes to be utilized as road base material. The mix formula of this material was optimized, the solidified material with optimal mix formula (fly ash/steel slag=1:1, phosphogypsum dosage=2.5%) results in highest strength. The strength development, resilience modulus and splitting strength of this material were studied comparing with some typical road base materials, the 28- and 360-day strength of this material can reach 8MPa and 12MPa, respectively, its resilience modulus reaches 1987MPa and splitting strength reaches 0.82MPa, it has higher early strength than lime-fly ash and lime-soil road base material, its long-term strength is much higher than cement stabilized granular materials, the solidified material has best water stability among those road base materials, it can be engineered as road base material with competitive properties. The strength formation mechanism of this solidified material is discussed also.

  20. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  1. Hydrothermal Synthesis of Xonotlite-type Calcium Silicate Insulation Material Using Industrial Zirconium Waste Residue

    Institute of Scientific and Technical Information of China (English)

    JIANG Jinguo; CUI Chong; LIU Jinqiang; LIAO Wenli

    2011-01-01

    Xonotlite-type insulation material was prepared by hydrothermal synthesis technology using industrial zirconium waste residue in this paper, and the phase analysis together with the observation of micro-morphology were also carried out by XRD, SEM and TEM. The density and thermal conductivity were measured finally. The results indicate, chlorine ion impurity contained in zirconium waste residue can be removed effectively via water washed process, and the reactive activity of silicon dioxide is almost not affected,which make it be a good substitution of silicon material for the preparation of calcium silicate insulation material by hydrothermal synthesis technique. The density and thermal conductivity of xonotlite-type calcium silicate insulation material obtained by hydrothermal synthesis technique can reach 159 kg/m3, 0.049 W/(m·°C), respectively, meeting with National Standard well, when synthesis conditions are selected as follows: Ca/Si molar ratio equal to 1, synthesis temperature at 210 ℃ and kept for 8 hrs. It provides a new approach to realize lightweight and low thermal conductivity of calcium silicate insulation material.

  2. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Energy Technology Data Exchange (ETDEWEB)

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  3. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  4. Study on Modes of Landscape Design with Waste Materials%废弃材料景观化模式探究

    Institute of Scientific and Technical Information of China (English)

    李同予; 邹广天

    2011-01-01

    In this paper, based on the application analysis of landscape design cases with waste materials and the summarization of material characteristics, the ecological approaches and technical means for reusing the waste materials in landscape building were reviewed. Furthermore,different eco-modes of landscape design were compared and design strategies and methods according to the characteristics of waste materials were proposed. As a result, theoretical supports and practical reference for ecological landscape design using waste materials were provided.%本文通过对废弃材料在景观设计案例中的应用分析和特性整理,综述了基于废弃材料再利用的景观生态化途径和技术手段.在此基础上,对不同生态化模式进行了比较分析,并提出了发挥废弃材料特性的设计策略和方法,以期为废弃材料生态化景观设计的实现提供模式借鉴和理论参照.

  5. Investigation of the use of coal waste as raw material for the production of aluminum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, L.; Schieder, T.; Belsky, M.

    1980-11-01

    Coal wastes, containing on the average 25% Al/sub 2/O/sub 3/, represent an important domestic raw material potential for the aluminium industry. Reliable data on the occurrence and composition of wastes from major coal mining areas in the Federal Republic of Germany were collected. The behavior of wastes during extraction with acids was investigated. Possible uses of residual silica are outlined. There exist basic process concepts for the extraction of alumina from the wastes, using experience in the processing of kaolinite. However, transfer to a technical scale requires several years of further development. (ESA)

  6. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  7. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current applicability of these materials is limited due to their poor moisture tolerance and mechanical properties. Starch is therefore frequently blended with other polymers to make the material more suitable for sp

  8. Utilization of washery waste as secondary raw materials in civil engineering and other industries

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, J.; Schieder, T.

    1990-02-01

    Specific demands are put on waste from hardcoal production when used as a substitute for scarcening conventional construction materials such as sand, gravel and road stone. Untreated washery refuse is not useful, in general, except as bulk material for subsoil improvement as well as for the construction of embankments and dikes. By subjecting minestone to appropriate mechanical or thermal treatment aggregates it to serve as construction materials in civil engineering and in other industries can be obtained. Face bricks, compact and perforated blocks as well as large hollow blocks either with a calcareous or a cement binder were manufactured for civil engineering. Crushed coarse minestone proved its usefulness as a concrete aggregate. Utilization of ashes from fluidized bed firing systems yielded construction materials whose low density made them particularly fit for thermal insulation pruposes.

  9. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  10. Lignocellulose: A sustainable material to produce value-added products with a zero waste approach-A review.

    Science.gov (United States)

    Arevalo-Gallegos, Alejandra; Ahmad, Zanib; Asgher, Muhammad; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-02-27

    A novel facility from the green technologies to integrate biomass-based carbohydrates, lignin, oils and other materials extraction and transformation into a wider spectrum of marketable and value-added products with a zero waste approach is reviewed. With ever-increasing scientific knowledge, worldwide economic and environmental consciousness, demands of legislative authorities and the manufacture, use, and removal of petrochemical-based by-products, from the last decade, there has been increasing research interests in the value or revalue of lignocellulose-based materials. The potential characteristics like natural abundance, renewability, recyclability, and ease of accessibility all around the year, around the globe, all makes residual biomass as an eco-attractive and petro-alternative candidate. In this context, many significant research efforts have been taken into account to change/replace petroleum-based economy into a bio-based economy, with an aim to develop a comprehensively sustainable, socially acceptable, and eco-friendly society. The present review work mainly focuses on various aspects of bio-refinery as a sustainable technology to process lignocellulose 'materials' into value-added products. Innovations in the bio-refinery world are providing, a portfolio of sustainable and eco-efficient products to compete in the market presently dominated by the petroleum-based products, and therefore, it is currently a subject of intensive research.

  11. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.

    Science.gov (United States)

    Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang

    2010-11-01

    In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining.

  12. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  13. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.

    Science.gov (United States)

    Savvilotidou, Vasiliki; Hahladakis, John N; Gidarakos, Evangelos

    2015-11-01

    The purpose of Directive 2012/19/EU which is related to WEEE (Waste Electrical and Electronic Equipment), also known as "e-waste", is to contribute to their sustainable production and consumption that would most possibly be achieved by their recovery, recycling and reuse. Under this perspective, the present study focused on the recovery of valuable materials, metals and metalloids from LCDs (Liquid Crystal Displays). Indium (In), arsenic (As) and stibium (Sb) were selected to be examined for their Leaching Capacity (R) from waste LCDs. Indium was selected mainly due to its rarity and preciousness, As due to its high toxicity and wide use in LCDs and Sb due to its recent application as arsenic's replacement to improve the optimal clarity of a LCD screen. The experimental procedure included disassembly of screens along with removal and recovery of polarizers via thermal shock, cutting, pulverization and digestion of the shredded material and finally leaching evaluation of the aforementioned elements. Leaching tests were conducted under various temperatures, using various solid:liquid (S/L) ratios and solvents (acid mixtures), to determine the optimal conditions for obtaining the maximum leaching capacities. The examined elements exhibited different leaching behaviors, mainly due to the considerable diversity in their inherent characteristic properties. Indium demonstrated the highest recovery percentages (approximately 60%), while the recovery of As and Sb was unsuccessful, obtaining poor leaching percentages (0.16% and 0.5%, respectively).

  14. Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material.

    Science.gov (United States)

    Sapiña, M; Jimenez-Relinque, E; Castellote, M

    2014-10-01

    This paper explores the potential of a hazardous waste of difficult management, electric arc furnace dust (EAFD), as photocatalytic material. Starting from a real waste coming from a Spanish steel factory, chemical, mineralogical, and optical characterizations have been carried out. Direct trials on EAFD and mortar containing this waste have been performed to evaluate its potential as photocatalyst itself and within a cementitious material. The analysis of photocatalytic properties has been done by two different methods: degradation of NO x and degradation of rhodamine (RhB). As a result, it can be said that EAFD exhibited photocatalytic activity for both configurations with UV and visible light, having the mortar enhanced photocatalytic activity for NO x with respect to the EAFD itself. Additionally, in direct trials on the EAFD, it has been able to degrade RhB even in the dark, which has been attributed to transfer of electrons between the adsorbed RhB and the conduction band of some oxides in the dust.

  15. Management of waste from the use of radioactive material in medicine, industry, agriculture, research and education safety guide

    CERN Document Server

    2005-01-01

    This Safety Guide provides recommendations and guidance on the > fulfilment of the safety requirements established in Safety Standards > Series No. WS-R-2, Predisposal Management of Radioactive Waste, > Including Decommissioning. It covers the roles and responsibilities of > different bodies involved in the predisposal management of radioactive > waste and in the handling and processing of radioactive material. It > is intended for organizations generating and handling radioactive > waste or handling such waste on a centralized basis for and the > regulatory body responsible for regulating such activities.  > Contents: 1. Introduction; 2. Protection of human health and the > environment; 3. Roles and responsibilities; 4. General safety > considerations; 5. Predisposal management of radioactive waste; 6. > Acceptance of radioactive waste in disposal facilities; 7. Record > keeping and reporting; 8. Management systems; Appendix I: Fault > schedule for safety assessment and environmental impact assessment; > Ap...

  16. Long-term modeling of glass waste in portland cement- and clay-based matrices

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, H.W.; Nagy, K.L. [Sandia National Labs., Albuquerque, NM (United States); Morris, C.E. [Wollongong Univ., NSW (Australia). Dept. of Civil and Mining Engineering

    1995-12-01

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  17. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  18. Physical-chemical bases of the recovery of surface active materials from aqueous solutions and waste water. Fiziko-Khimicheskie osnovy izvlecheniya poverkhnostno-aktivnykh veshchestv izvodnykh rastvorov i stochnykh vod

    Energy Technology Data Exchange (ETDEWEB)

    Koganovskii, A.M.; Klimenko, N.A.

    1978-01-01

    Contemporary data are given on the adsorption of surfactants on adsorbents of various chemical makeup, on the effect of the structure of their solutions, and the presence of strong electrolytes. An examination is made of the connection between the chemical structure of surfactants, their state in solution, and the structure of the adsorption layers. Data are presented for the first time on the joint adsorption of components from solubilized systems and the products resulting from the interaction between surfactants and dissolved dyes. Physico-chemical substantiation is offered for the absorption technology of removing surfactants and concomitant organic matter from industrial waste. Fundamental technological systems are presented for the sorption purification of sewage polluted by surfactants, and the conditions for their most effective utilization are substantiated. The book is intended for specialists engaged in the physical chemistry of surface phenomena as well as for investigators and planning personnel who are developing the technology of purifying industrial sewage. 81 figures, 53 tables.

  19. Nanoporous Silicon Based Energetic Materials

    Science.gov (United States)

    2008-12-01

    performed at SINTEF , Norway as shown in Figure 4 (line a). 3 Annealing PSi in air at different temperatures can be used to change the surface...3h (c)PSi annealed at 500C for 0.5 h (courtesy SINTEF ) e is C d magnification bright field TEM image of PSi-Fe2O3. The inset electron...Dr. Knut Thorshaug and Dr Diplos Spyros of SINTEF Norway for DRIFTS and XPS data. REFERENCES dvanced Energetics Materials, 2004; report byA ring

  20. Valorisation of food waste to produce new raw materials for animal feed.

    Science.gov (United States)

    San Martin, D; Ramos, S; Zufía, J

    2016-05-01

    This study assesses the suitability of vegetable waste produced by food industry for use as a raw material for animal feed. It includes safety and nutritional viability, technical feasibility and environmental evaluation. Vegetable by-products were found to be nutritionally and sanitarily appropriate for use in animal feed. The drying technologies tested for making vegetable waste suitable for use in the animal feed market were pulse combustion drying, oven and microwave. The different meal prototypes obtained were found to comply with all the requirements of the animal feed market. An action plan that takes into account all the stages of the valorisation process was subsequently defined in agreement with local stakeholders. This plan was validated in a pilot-scale demonstration trial. Finally, the technical feasibility was studied and environmental improvement was performed. This project was funded by the European LIFE+ program (LIFE09 ENV/ES/000473).

  1. Laser Raman spectrometric determination of oxy-anions in nuclear waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.G.

    1977-03-01

    Oxy-anions in complex nuclear process-waste materials are being determined by laser Raman spectrometry (LRS). The double internal-standard technique developed by Marston is applied to the simultaneous determination of up to x anions in alkaline solutions. The method of Marston has been extended to solutions prepared from the solids formed in nuclear waste storage tanks. As many as six anions, aluminate, chromate, nitrate, nitrite, phosphate, and sulfate, are simultaneously determined in about one hour. Carbonate may also be determined, but in the presence of the prevalent nitrate, a chemical separation is required. Individual methods have been relegated to a secondary status due to the many advantages of LRS. Advantages such as small sample size, speed of analysis, accuracy, and specificity will be discussed. The typical precision obtained for analyses in high concentration is around five percent relative standard deviation.

  2. Microbial corrosion of metallic materials in a deep nuclear-waste repository

    Directory of Open Access Journals (Sweden)

    Stoulil J.

    2016-06-01

    Full Text Available The study summarises current knowledge on microbial corrosion in a deep nuclear-waste repository. The first part evaluates the general impact of microbial activity on corrosion mechanisms. Especially, the impact of microbial metabolism on the environment and the impact of biofilms on the surface of structure materials were evaluated. The next part focuses on microbial corrosion in a deep nuclear-waste repository. The study aims to suggest the development of the repository environment and in that respect the viability of bacteria, depending on the probable conditions of the environment, such as humidity of bentonite, pressure in compact bentonite, the impact of ionizing radiation, etc. The last part is aimed at possible techniques for microbial corrosion mechanism monitoring in the conditions of a deep repository. Namely, electrochemical and microscopic techniques were discussed.

  3. Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions.

    Science.gov (United States)

    López, A; de Marco, I; Caballero, B M; Laresgoiti, M F; Adrados, A; Torres, A

    2011-01-01

    In this work, the results obtained in catalytic pyrolysis of three plastic waste streams which are the rejects of an industrial packing wastes sorting plant are presented. The samples have been pyrolysed in a 3.5 dm(3) reactor under semi-batch conditions at 440 °C for 30 min in nitrogen atmosphere. Commercial ZSM-5 zeolite has been used as catalyst in liquid phase contact. In every case, high HHV gases and liquids which can be useful as fuels or source of chemicals are obtained. A solid fraction composed of the inorganic material contained in the raw materials and some char formed in the pyrolysis process is also obtained. The zeolite has shown to be very effective to produce liquids with great aromatics content and C3-C4 fraction rich gases, even though the raw material was mainly composed of polyolefins. The characteristics of the pyrolysis products as well as the effect of the catalyst vary depending on the composition of the raw material. When paper rich samples are pyrolysed, ZSM-5 zeolite increases water production and reduces CO and CO(2) generation. If stepwise pyrolysis is applied to such sample, the aqueous liquid phase can be separated from the organic liquid fraction in a first low temperature step.

  4. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    Energy Technology Data Exchange (ETDEWEB)

    West, K.A.

    1988-11-01

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

  5. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives.

  6. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  7. Municipal household waste used as complement material for composting chicken manure and crop residues

    Directory of Open Access Journals (Sweden)

    Guillaume L. Amadji

    2013-06-01

    Full Text Available There are few organic materials available as agricultural soil amendment because their low chemical content means that large quantities are required. In order to improve the availability of raw materials for composting, as well as the quality of the compost produced, municipal solid waste (MW was added to cotton-seed residue (CSR and to the association of CSR with chicken manure (M in different weight/weight (MW/added materials ratios of 5:1 and 2:1. Aerobic composting was processed and compost yield was determined, as well as compost particle size and pH. Also, the compost bulk density and its water holding capacity were determined as well as contents of total nitrogen, carbon, phosphorus, calcium (Ca, magnesium and heavy metals. According to its pH and carbon/nitrogen ratio values, the municipal waste of Cotonou was judged to be a good raw material for composting in order to improve availability of the organic source of nutrients. The composts produced with MW+M+CSR had the highest potential for amending Ferralsols, especially with a mixture of 2:1 (200 kg MW+100 kg M+100 kg CSR that could be applied at 10 t ha–1. However, further improvement in composting methods was suggested to increase Ca++ and reduce mercury contents, respectively. Moreover, potassium balance should be improved in the produced compost.

  8. Viability of utilization of waste materials from ceramic products in precast concretes

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-12-01

    Full Text Available The recycled and re-valuation process of waste materials involves studies lead to a deep acknowledges of them, finding applications for their intended use. The waste materials from ceramic products can be recycled into the construction sector, as arid or pozzolanic materials. The current work deals with the incorporation of ceramic materials in these two different ways, checking the behaviour of the elaborated mortar by mean of laboratory tests. Also, tests are developed in factory, using these as components for precast concrete tiles.

    Todo proceso de reciclado y revalorización de residuos implica estudios encaminados a un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. Los materiales de desecho procedentes de productos cerámicos pueden ser reciclados dentro del sector de la construcción, ya sea como áridos o como materiales puzolánicos. El presente trabajo aborda la incorporación de materiales cerámicos desde estas dos vertientes, comprobando, en cada caso, el comportamiento de los morteros elaborados mediante ensayos de laboratorio. También se llevan a cabo pruebas en fábrica, siendo utilizados como componentes en prefabricados de hormigón.

  9. National inventory of the radioactive wastes and the recycling materials; Inventaire national des dechets radioactifs et des matieres valorisables

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M.C

    2006-07-01

    This synthesis report presents the 2006 inventory of the radioactive wastes and recycling materials, in France. It contains 9 chapters: a general introduction, the radioactive wastes (definition, classification, origins and management), the inventory methodology (organization, accounting and prospecting, exhaustiveness and control tools), main results (stocks, prevision for the period 2005-2020, perspectives after 2020), the inventory for producers or owners (front end fuel cycle, electric power plants, back end fuel cycle, wastes processing and maintenance facilities, researches centers, medical activities, industrial activities, non nuclear industries using nuclear materials, defense center, storage and disposal), the polluted sites, examples of foreign inventories, conclusion and annexes. (A.L.B.)

  10. Effective utilization of incinerated municipal solid waste incineration ash: zeolitic material synthesis and silica extraction.

    Science.gov (United States)

    Bac, Bui Hoang; Song, Yungoo; Moon, Yonghee; Kim, Myung Hun; Kang, Il Mo

    2010-08-01

    In this study the effective utilization of two types of municipal solid waste incinerator (MSWI) ashes, namely air-cooled ash (ACS) and water-cooled ash (WCS) samples obtained from a municipal solid waste incineration plant, was examined by applying zeolitic material synthesis and silica extraction. The influence of the experimental conditions including the ratio of sample : NaOH solution, the reaction temperature and time, and the concentration of NaOH solution were investigated. The results for the 25 experimental trials can be summarized as: (1) the formation of tobermorite and/or pectolite-1A as a major component in most conditions; (2) the synthesis of hydroxycancrinite as a major phase at 200 degrees C; (3) a dramatic increase in the extracted SiO(2) yield at 1 : 30 value of sample : NaOH ratio and 200 degrees C, even at short reaction times; and (4) relatively high SiO(2) yields for WCS ashes rather than ACS ashes. An increase in the reaction time improved the quantity of synthesized zeolitic materials. The reaction temperature determined the type of zeolite. An increase in the NaOH concentration can be an essential factor to improve zeolitic material synthesis, but it significantly reduced the yield of SiO(2) extraction. In conclusion, suitable conditions for obtaining both SiO(2) extraction and synthesized zeolites from the ashes of the incinerated solid waste materials should be: 200 degrees C reaction temperature; a 1 : 30 (g : mL) value for the sample : NaOH ratio; 2 mol L(-1) NaOH concentration; and a reaction time of more than 24 h.

  11. Utilization of sepiolite materials as a bottom liner material in solid waste landfills.

    Science.gov (United States)

    Guney, Yucel; Cetin, Bora; Aydilek, Ahmet H; Tanyu, Burak F; Koparal, Savas

    2014-01-01

    Landfill bottom liners are generally constructed with natural clay soils due to their high strength and low hydraulic conductivity characteristics. However, in recent years it is increasingly difficult to find locally available clay soils that satisfy the required engineering properties. Fine grained soils such as sepiolite and zeolite may be used as alternative materials in the constructions of landfill bottom liners. A study was conducted to investigate the feasibility of using natural clay rich in kaolinite, sepiolite, zeolite, and their mixtures as a bottom liner material. Unconfined compression tests, swell tests, hydraulic conductivity tests, batch and column adsorption tests were performed on each type of soil and sepiolite-zeolite mixtures. The results of the current study indicate that sepiolite is the dominant material that affects both the geomechanical and geoenvironmental properties of these alternative liners. An increase in sepiolite content in the sepiolite-zeolite mixtures increased the strength, swelling potential and metal adsorption capacities of the soil mixtures. Moreover, hydraulic conductivity of the mixtures decreased significantly with the addition of sepiolite. The utilization of sepiolite-zeolite materials as a bottom liner material allowed for thinner liners with some reduction in construction costs compared to use of a kaolinite-rich clay.

  12. Research on Health Risk-Based Radioactive Acceptance Criteria of Municipal Solid Waste Landfill

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The article focuses on the topics of Health Risk-Based Radioactive Acceptance Criteria of Municipal Solid Waste Landfill (MSWL, including municipal refuse landfills or industrial solid waste landfills, MSWL). At first, health risk assessment

  13. Investigation of Cotton Component Destruction in Cotton/Polyester Blended Textile Waste Materials

    Directory of Open Access Journals (Sweden)

    Audronė SANKAUSKAITĖ

    2014-06-01

    Full Text Available The recycling technologies of textile industry waste usually are adjusted for materials manufactured of uniform fibers. Unfortunately, usually materials are manufactured of blended chemical and natural fibers to achieve better wearing properties, i. e. abrasion resistance, durability and etc. This paper presents investigation about the destruction of cotton component and easy separation from non-biodegradable polyester. The pre-treatment (soaking in aqueous solutions of reagents was carried out at different temperatures for blended knitting yarn (50 % cotton / 50 % polyester waste. The waste was pre-treated by aqueous solutions of reagents: MgCl2; Al2(SO43, MgCl2 and Al2(SO43 mixture, MgCl2 and citric acid mixture at 20, 50, 90 and 130 °C. After the pre-treatment all samples were dried at 102 °C and heat-treated at different temperatures: 150, 160 and 180 °C. The investigation results showed that the highest degradation rate (95.47 % of cotton component from 50 % cotton / 50 % polyester blended knitting yarn waste  was achieved by using the pre-treatment at 20 °C temperature by aqueous solution of 20 g/l MgCl2 and 4 g/l Al2(SO43 mixture and heat-treatment of dry samples at 180 °C temperature. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.3115

  14. Screening for halogenated flame retardants in European consumer products, building materials and wastes.

    Science.gov (United States)

    Vojta, Šimon; Bečanová, Jitka; Melymuk, Lisa; Komprdová, Klára; Kohoutek, Jiří; Kukučka, Petr; Klánová, Jana

    2017-02-01

    To fulfill national and international fire safety standards, flame retardants (FRs) are being added to a wide range of consumer products and building materials consisting of flammable materials like plastic, wood and textiles. While the FR composition of some products and materials has been identified in recent years, the limited global coverage of the data and the large diversity in consumer products necessitates more information for an overall picture of the FR composition in common products/materials. To address this issue, 137 individual samples of various consumer products, building materials and wastes were collected. To identify and characterize potential sources of FRs in indoor environment, all samples were analyzed for content of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and novel flame retardants (NFRs). The most frequently detected were HBCDDs (85%), with the highest median concentration of Σ4HBCDDs of 300 mg kg(-1) in polystyrenes. The highest median concentration of Σ10PBDEs was found in recycled plastic materials, reaching 4 mg kg(-1). The lowest concentrations were observed for NFRs, where the median of Σ12NFRs reached 0.4 mg kg(-1) in the group of electrical & electronic equipment wastes. This suggests that for consumer products and building materials that are currently in-use, legacy compounds still contribute to the overall burden of FRs. Additionally, contrasting patterns of FR composition in recycled and virgin plastics, revealed using principle component analysis (PCA), suggest that legacy flame retardants are reentering the market through recycled products, perpetuating the potential for emissions to indoor environments and thus for human exposure.

  15. LDEF materials special investigation group's data bases

    Science.gov (United States)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  16. Material stream management of biomass wastes for the optimization of organic wastes utilization; Stoffstrommanagement von Biomasseabfaellen mit dem Ziel der Optimierung der Verwertung organischer Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, Florian; Boess, Andreas; Fehrenbach, Horst; Giegrich, Juergen; Vogt, Regine [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany); Dehoust, Guenter; Schueler, Doris; Wiegmann, Kirsten; Fritsche, Uwe [Oeko-Institut, Inst. fuer Angewandte Oekologie, Darmstadt (Germany)

    2007-02-15

    The effective use of the valuable substances found in waste materials can make an important contribution to climate protection and the conservation of fossil and mineral resources. In order to harness the potential contribution of biomass waste streams, it is necessary to consider the potential of the waste in connection with that of the total biomass. In this project, relevant biogenous material streams in the forestry, the agriculture as well as in several industries are studied, and their optimization potentials are illustrated. Scenarios are then developed, while taking various other environmental impacts into considerations, to explore possible optimized utilization of biomass streams and biomass waste substances for the future. Straw that is not needed for humus production and currently left on the field can be used for its energy content. The realisation of this potential would be significant contribution towards climate protection. The energetic use of liquid manure without negatively influencing its application as commercial fertilizer can also be similarly successful because of its large volume. The results of our study also support an increased energetic use of saw residues as fuel (in form of pellets) in small furnaces. For household organic wastes, the report suggests the fermentation with optimized energy use and intensified marketing of the aerobically treated compost as peat substitution. While for waste cooking fat that is currently disposed in the residual waste, a separate collection and direct use in motors that are used as combined heat and power generation are recommended. For meat and bone meal and communal sludge that are not being used substantial currently or in the future, phosphorus can be recovered with promising success from the ash produced when the waste is burnt in mono incinerators. These technical options should however be tested against disposal standard. (orig.)

  17. PDMAEMA based gene delivery materials

    Directory of Open Access Journals (Sweden)

    Seema Agarwal

    2012-09-01

    Full Text Available Gene transfection is the transfer of genetic material like DNA into cells. Cationic polymers which form nanocomplexes with DNA, so-called non-viral gene vectors, are a highly promising platform for efficient gene transfection. Despite intensive research efforts and some of the on-going clinical trials on gene transfection, none of the existing cationic polymer systems are generally acceptable for human gene therapy. Since the process of gene transfection is complex and puts different challenges and demands on the delivery system, there is a strong requirement for the design and development of a multifunctional system in a simple way. This review will discuss recent efforts in design, synthesis, and performance of poly(2-dimethylaminoethyl methacrylate (PDMAEMA nanocomplexes with DNA.

  18. Materiality in a practice-based approach

    DEFF Research Database (Denmark)

    Svabo, Connie

    2009-01-01

    The paper provides an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Common terms for materiality are 'artifact' and 'object'. The interaction between social and material realities is grasped as several processes: object-oriented a......The paper provides an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Common terms for materiality are 'artifact' and 'object'. The interaction between social and material realities is grasped as several processes: object......-oriented activity, symbolization, embodiment, performance, alignment and mediation. Material artifacts both stabilize and destabilize organizational action. They may ensure coordination, communication, and control, but they may also create disturbance and conflict....

  19. Epoxy composites based on inexpensive tire waste filler

    Energy Technology Data Exchange (ETDEWEB)

    Ahmetli, Gulnare, E-mail: ahmetli@selcuk.edu.tr; Gungor, Ahmet, E-mail: ahmetli@selcuk.edu.tr; Kocaman, Suheyla, E-mail: ahmetli@selcuk.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Selcuk University, 42031 Konya (Turkey)

    2014-05-15

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  20. New Cork-Based Materials and Applications

    Directory of Open Access Journals (Sweden)

    Luís Gil

    2015-02-01

    Full Text Available This review work is an update of a previous work reporting the new cork based materials and new applications of cork based materials. Cork is a material which has been used for multiple applications. The most known uses of cork are in stoppers (natural and agglomerated cork for alcoholic beverages, classic floor covering with composite cork tiles (made by the binding of cork particles with different binders, and thermal/acoustic/vibration insulation with expanded corkboard in buildings and some other industrial fields. Many recent developments have been made leading to new cork based materials. Most of these newly developed cork materials are not yet on the market, but they represent new possibilities for engineers, architects, designers and other professionals which must be known and considered, potentially leading to their industrialization. This paper is a review covering the last five years of innovative cork materials and applications also mentioning previous work not reported before.

  1. Whole Language-Based English Reading Materials

    Directory of Open Access Journals (Sweden)

    Dian Erlina

    2016-05-01

    Full Text Available This Research and Development (R&D aims at developing English reading materials for undergraduate EFL students of Universitas Islam Negeri (UIN Raden Fatah Palembang, Indonesia. Research data were obtained through questionnaires, tests, and documents. The results of the research show that the existing materials are not relevant to the students’ need, so there is a need for developing new materials based on whole language principles. In general, the new developed materials are considered reliable by the experts, students, and lecturers. The materials are also effective in improving students’ reading achievement. The final product of the materials consists of a course book entitled Whole Language Reading (WLR and a teacher’s manual. WLR provides rich input of reading strategies, variety of topics, concepts, texts, activities, tasks, and evaluations. Using this book makes reading more holistic and meaningful as it provides integration across language skills and subject areas. Keywords: materials development, reading materials, whole language

  2. Recycling of iron foundry sand and glass waste as raw material for production of whiteware.

    Science.gov (United States)

    Bragança, Saulo R; Vicenzi, Juliane; Guerino, Kareline; Bergmann, Carlos P

    2006-02-01

    The purpose of this study was to evaluate the production feasibility of triaxial whiteware using sand from cast iron moulds as a raw material instead of silica, and recycled glass in place of feldspar. Formulations were prepared using sand, glass waste, and white-firing clay such that only 50% of the composition was virgin material (clay). The ceramic bodies were formed by pressing and fired at different temperatures (between 1100 and 1300 degrees C). Specimens were characterized in terms of green density prior to firing; and their flexural strength, linear shrinkage, and water absorption were measured after firing. The microstructure was determined by scanning electron microscopy. Possible environmental impacts of this recycling process were also evaluated, through solubility and leaching tests, according to Brazilian standards. Gaseous emissions during the firing process were also analysed. The results showed that it is possible to produce triaxial ceramics by using such alternative raw materials.

  3. Development of a Lightweight Low-Carbon Footprint Concrete Containing Recycled Waste Materials

    Directory of Open Access Journals (Sweden)

    S. Talukdar

    2011-01-01

    This study examined the use of waste materials such as crushed glass, ground tire rubber, and recycled aggregate in concrete. Compressive strength and elastic modulus were the primary parameters of interest. Results demonstrated that ground tire rubber introduced significant amounts of air into the mix and adversely affected the strength. The introduction of a defoamer was able to successfully remove part of the excess air from the mix, but the proportional strength improvements were not noted implying that air left in the defoamed mixture had undesirable characteristics. Freeze-thaw tests were next performed to understand the nature of air in the defoamed mixtures, and results demonstrated that this air is not helpful in resisting freeze-thaw resistance either. Overall, while lightweight, low-carbon footprint concrete materials seem possible from recycled materials, significant further optimization remains possible.

  4. Carbonised red mud--a new water treatment product made from a waste material.

    Science.gov (United States)

    Pulford, I D; Hargreaves, J S J; Ďurišová, J; Kramulova, B; Girard, C; Balakrishnan, M; Batra, V S; Rico, J L

    2012-06-15

    Proposals to use red mud, the waste produced by the extraction of alumina from bauxite ore in the Bayer process, as a material for treatment of heavy metal-contaminated water are limited by its inherent alkalinity and variability. Attempts to lower its pH have been largely unreliable. However, an alternative strategy is carbonisation of red mud by catalytic hydrocarbon cracking, which results in a magnetic material of greater surface area. The efficacy of this material has been compared with that of the untreated parent red mud and acidified red mud for the sorption of CrO(4)(2-), Cu(2+) and Pb(2+). Carbonised red mud does not remove CrO(4)(2-) from solution, but shows enhancement of Cu(2+) and Pb(2+) removal. There is an approximate ten-fold increase in removal of Cu(2+) and Pb(2+) by carbonised red mud compared with acidified red mud.

  5. Waste Contaminants at Military Bases Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-04

    The Waste Contaminants at Military Bases Working Group has screened six prospective demonstration projects for consideration by the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT). These projects include the Kirtland Air Force Base Demonstration Project, the March Air Force Base Demonstration Project, the McClellan Air Force Base Demonstration Project, the Williams Air Force Base Demonstration Project, and two demonstration projects under the Air Force Center for Environmental Excellence. A seventh project (Port Hueneme Naval Construction Battalion Center) was added to list of prospective demonstrations after the September 1993 Working Group Meeting. This demonstration project has not been screened by the working group. Two additional Air Force remediation programs are also under consideration and are described in Section 6 of this document. The following information on prospective demonstrations was collected by the Waste Contaminants at Military Bases Working Group to assist the DOIT Committee in making Phase 1 Demonstration Project recommendations. The remainder of this report is organized into seven sections: Work Group Charter`s mission and vision; contamination problems, current technology limitations, and institutional and regulatory barriers to technology development and commercialization, and work force issues; screening process for initial Phase 1 demonstration technologies and sites; demonstration descriptions -- good matches;demonstration descriptions -- close matches; additional candidate demonstration projects; and next steps.

  6. LEATHER WASTE VALORISATION THROUGH MATERIAL INNOVATION: SOME PROPERTIES OF LEATHER WOOD FIBREBOARD

    Directory of Open Access Journals (Sweden)

    Axel M. RINDLER

    2015-12-01

    Full Text Available Due to the ever-increasing scarcity of resources and raw materials in the wood panels industry, it is imperative to look for suitable alternatives to the established resources. Therefore a combination of the traditionally used and newly explored sources may reveal highly innovative ways. The objective of this study is to provide an insight into the behavior of the material and possible new applications of those fiber/particle wood and waste leather composites. For this reason exclusively fibers of spruce were used for the trials. Wet white (WW leather particles and wet blue (WB leather particles were mixed with the wooden materials for the production of high density fibreboards. Besides the mechanical properties such as the internal bond (IB the bending strength (MOR and modulus of elasticity (MOE was analyzed. Further physical property as thickness swelling after 24h watering was investigated. To analyze how the density influences the behavior under thermal conditions, fiberboards with the densities 500, 700 and 900 kg/m³ were tested. The results of the material properties were influenced by the leather content of the panels. The results for the UF-bonded HDF boards show enhancement of the transverse IB with increasing wet blue leather content, whereas the other mechanical properties decline meanwhile. The thickness swelling showed higher values compared to the wood fibreboard. The results of this study underline the usefulness of integrating leather shavings to HDF and give an overview of their influence in wood fiber materials. The combination of the natural resource wood fiber and the leather waste products (Wet Blue and Wet White gives a very interesting new material, its mechanical properties allow a variety of possible application in future applications.

  7. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    Science.gov (United States)

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material

  8. Development of a pyrolysis waste recovery model with designs, test plans, and applications for space-based habitats

    Science.gov (United States)

    Roberson, Bobby J.

    1992-01-01

    Extensive literature searches revealed the numerous advantages of using pyrolysis as a means of recovering usable resources from inedible plant biomass, paper, plastics, other polymers, and human waste. A possible design of a pyrolysis reactor with test plans and applications for use on a space-based habitat are proposed. The proposed system will accommodate the wastes generated by a four-person crew while requiring solar energy as the only power source. Waste materials will be collected and stored during the 15-day lunar darkness periods. Resource recovery will occur during the daylight periods. Usable gases such as methane and hydrogen and a solid char will be produced while reducing the mass and volume of the waste to almost infinitely small levels. The system will be operated economically, safely, and in a non-polluting manner.

  9. Bases for solid waste volume estimates for tank waste remediation system

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, G.W., Westinghouse Hanford

    1996-08-01

    This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

  10. Information base for waste repository design. Volume 3. Waste/rock interactions

    Energy Technology Data Exchange (ETDEWEB)

    Koplick, C.M.; Pentz, D.L.; Oston, S.G.; Talbot, R.

    1979-01-01

    This report describes the important effects resulting from interaction between radioactive waste and the rock in a nuclear waste repository. The state of the art in predicting waste/rock interactions is summarized. Where possible, independent numerical calculations have been performed. Recommendations are made pointing out areas which require additional research.

  11. Mg2(Si,Sn)-based thermoelectric materials and devices

    Science.gov (United States)

    Gao, Peng

    Thermoelectric effects are phenomena found in materials that can achieve direct conversion between heat flow and electricity. One important application of thermoelectric effects is thermoelectric generators, which can generate electricity when a temperature gradient is applied. Thermoelectric generators make use of various sources of heat and it is considered a promising solution for waste heat recovery. The conversion efficiency of thermoelectric generators depends on the materials used in the devices. Significant improvement in the performance of thermoelectric materials has been made in the past few decades. However, most of the good thermoelectric materials being investigated have limitations, such as the high materials cost, high materials density and toxicity of the constituent elements. The Mg2(Si,Sn)-based materials studied in this work are promising candidates for thermoelectric generators in the mid-temperature range and have drawn increasing research interest in recent years because these materials are high performance thermoelectrics that are low cost, low-density and non-toxic. In this work, systematic studies were performed on the Mg2(Si,Sn) thermoelectric materials. Thermal phase stability was studied for different compositions of Mg2Si1-xSnx and Mg2Si0.4Sn 0.6 was used as base material for further optimization. Both n-type and p-type samples were obtained by doping the materials with different elements. Peak ZT ˜ 1.5 for the n-type and ZT ˜ 0.7 for the p-type materials were obtained, both of which are among the best reported results so far. Experimental work was also done to study the techniques to develop the Mg2Si 0.4Sn0.6 materials into working devices. Different electrode materials were tested in bonding experiment for this compound, and copper was found to be the best electrode material for Mg2Si 0.4Sn0.6. Preliminary work was done to demonstrate the possibility of fabricating a Mg2Si0.4Sn0.6-based thermoelectric generator and the result is

  12. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    Science.gov (United States)

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  13. [Experimental study on methane potentials of source-separated BMW and individual waste materials].

    Science.gov (United States)

    Feng, Lei; Li, Run-dong; Li, Yan-ji; Ke, Xin; Wei, Li-hong; Luo, Xiao-song

    2008-08-01

    A laboratory procedure is described for measuring methane potentials of source-separated bio-organic municipal waste (BMW). Triplicate reactors with about 20 grams fresh material were incubated at 37 degrees C with 300 mL inoculum from Shenyang wastewater treatment plant and the methane production was followed over a 50 d period by regular measurement of methane on a gas chromatograph. At 37 degrees C, the methane production efficiency of source-separated BMW and individual waste materials was: starch > BMW > protein > food oil > fat > paper. For the source-separated BMW,starch,protein,food oil,fat and paper, the methane potential (CH4/VS) of 218.15, 209.11, 194.20, 238.86, 257.82 and 131.41 mL/g were found,and ultimate biodegradability of 6 difference materials were 67.73%, 72.88%, 65.84%, 78.38%, 74.11% and 47.98%, respectively.

  14. Quantitative assessment of microbiological contributions to corrosion of candidate nuclear waste-package materials

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.; Jones, D.; Lian, T.; Martin, S.

    1998-10-30

    The U.S. Department of Energy is contributing to the design of a potential nuclear-waste repository at Yucca Mountain, Nevada. A system to predict the contribution of Yucca Mountain (YM) bacteria to overall corrosion rates of candidate waste-package (WP) materials was designed and implemented. DC linear polarization resistance techniques were applied to candidate material coupons that had been inoculated with a mixture of YM-derived bacteria with potentially corrosive activities or left sterile. Inoculated bacteria caused a 5- to 6-fold increase in corrosion rate of carbon steel C1020 (to approximately 7Ð8mm/yr) and an almost 100-fold increase in corrosion rate of Alloy 400 (to approximately 1mm/yr). Microbiologically influenced corrosion (MIC) rates on more resistant materials (CRMs: Alloy 625, Type 304 Stainless Steel, and Alloy C22) were on the order of hundredths of micrometers per year (mm/yr). Bulk chemical and surfacial end-point analyses of spent media and coupon surfaces showed preferential dissolution of nickel from Alloy 400 coupons and depletion of chromium from CRMs after incubation with YM bacteria. Scanning electron microscopy (SEM) also showed greater damage to the Alloy 400 surface than that indicated by electrochemical detection methods.

  15. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    Science.gov (United States)

    Calvo-Muñoz, Elisa; García-Mateos, Francisco José; Rosas, Juana; Rodríguez-Mirasol, José; Cordero, Tomás

    2016-05-01

    A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2). In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt). Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  16. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    Directory of Open Access Journals (Sweden)

    Elisa M Calvo-Muñoz

    2016-05-01

    Full Text Available A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2. In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt. Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  17. New Materials for Chalcogenide Based Solar Cells

    Science.gov (United States)

    Tosun, Banu Selin

    Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 °C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to

  18. Physical chemical studies of dispersed aluminosilicate wastes for obtaining the burned building materials

    Science.gov (United States)

    Iuriev, I. Y.; Skripnikova, N. K.; Volokitin, G. G.; Volokitin, O. G.; Lutsenko, A. V.; Kosmachev, P. V.

    2015-01-01

    This paper presents results of the studies that determined that grinding can be one of the ways to modify aluminosilicate wastes. The optimal grinding modes were defined in laboratory conditions. Physical and chemical studies of modified ashes were carried out by means of X-ray phase analysis, differential thermal analysis and microscopy. The results have shown that modified ashes of thermal power stations when being applied in production of ceramic brick influence positively the processing properties of raw materials and the ready products.

  19. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    OpenAIRE

    2012-01-01

    Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the co...

  20. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material.

    Science.gov (United States)

    Razak, Hashim Abdul; Naganathan, Sivakumar; Hamid, Siti Nadzriah Abdul

    2009-12-30

    Controlled low-strength material (CLSM) is slurry made by mixing sand, cement, ash, and water. It is primarily used as a replacement for soil and structural fillings. This paper presents the findings of a preliminary investigation carried out on the performance of industrial waste incineration bottom ash as CLSM. CLSM mixes were designed using industrial waste incineration bottom ash, and cement. Tests for density, setting time, bleed, and compressive strength on cubes under various curing conditions, corrosivity, and leaching of heavy metals and salts were carried out on the CLSM mixtures, and the results discussed. Compressive strength for the designed CLSM mixtures ranged from 0.1 to 1.7 MPa. It is shown that the variations in curing conditions have less influence on the compressive strength of CLSM at high values of water to cement ratio (w/c), but low values of w/c influences the strength of CLSM. The CLSM produced does not exhibit corrosive characters as evidenced by pH. Leaching of heavy metals and salts is higher in bleed than in leachate collected from hardened CLSM. Cement reduces the leaching of Boron in bleed. It is concluded that there is good potential for the use of industrial waste incineration bottom ash in CLSM.

  1. A mechanism of basal spacing reduction in sodium smectitic clay materials in contact with DNAPL wastes.

    Science.gov (United States)

    Ayral-Cinar, Derya; Otero-Diaz, Margarita; Demond, Avery H

    2016-09-01

    There has been concern regarding the possible attack of clays in aquitards, slurry walls and landfill liners by dense nonaqueous phase liquid (DNAPL) wastes, resulting in cracking. Despite the fact that a reduction in basal spacing in sodium smectitic clay materials has been linked to cracking, no plausible mechanism by which this reduction occurs in contact with waste DNAPLs has been formulated. To elucidate a mechanism, screening studies were conducted that showed that the combination of an anionic surfactant (AOT), a nonionic surfactant (TritonX-100) and a chlorinated solvent, tetrachloroethylene (PCE), could replicate the basal spacing reduction and cracking behavior of water-saturated bentonite caused by two waste DNAPLs obtained from the field. FTIR measurements of this system showed a displacement of the HOH bending band of water symptomatic of desiccation. Sorption measurements showed that the uptake of AOT by bentonite increased eight fold in the presence of TritonX-100 and PCE. The evidence presented here supports a mechanism of syneresis, involving the extraction of water from the interlayer space of the clay through the synergistic sorption of a nonionic and anionic surfactant mixture. It is speculated that the solvation of water in reverse micellar aggregates is the process driving the syneresis.

  2. Survival of bacteria in nuclear waste buffer materials. The influence of nutrients, temperature and water activity

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K.; Motamedi, M. [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology; Karnland, O. [Clay Technology AB, Lund (Sweden)

    1995-12-01

    The concept of deep geological disposal of spent fuel is common to many national nuclear waste programs. Long-lived radioactive waste will be encapsulated in canisters made of corrosion resistant materials e.g. copper and buried several hundred meters below ground in a geological formation. Different types of compacted bentonite clay, or mixtures with sand, will be placed as a buffer around the waste canisters. A major concern for the performance of the canisters is that sulphate-reducing bacteria (SRB) may be present in the clay and induce corrosion by production of hydrogen sulphide. This report presents data on viable counts of SRB in the bedrock of Aespoe hard rock laboratory. A theoretical background on the concept water activity is given, together with basic information about SRB. Some results on microbial populations from a full scale buffer test in Canada is presented. These results suggested water activity to be a strong limiting factor for survival of bacteria in compacted bentonite. As a consequence, experiments were set up to investigate the effect from water activity on survival of SRB in bentonite. Here we show that survival of SRB in bentonite depends on the availability of water and that compacting a high quality bentonite to a density of 2.0 g/cm{sup 3}, corresponding to a water activity (a{sub w}) of 0.96, prevented SRB from surviving in the clay. 24 refs.

  3. Heavy Metals in Water Percolating Through Soil Fertilized with Biodegradable Waste Materials.

    Science.gov (United States)

    Wierzbowska, Jadwiga; Sienkiewicz, Stanisław; Krzebietke, Sławomir; Bowszys, Teresa

    2016-01-01

    The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), "Dano" compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm(3)) of heavy metals in the leachate were as follows: Cd (3.6-11.5) manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.

  4. Development of foamed Inorganic Polymeric Materials based on Perlite

    Science.gov (United States)

    Tsaousi, G.-M.; Douni, I.; Taxiarchou, M.; Panias, D.; Paspaliaris, I.

    2016-04-01

    This work deals with the development of lightweight geopolymeric boards for use in construction sector utilizing a solid perlitic waste as the main raw material. Hydrogen peroxide (H2O2) was used for the foaming of geopolymeric pastes and the production of porous and lightweight inorganic polymeric materials. The effect of geopolymeric synthesis parameters, such as the composition of activator and the curing conditions, on paste's properties that affect the foaming process, such as setting time and viscosity, were studied in detailed. Finally, the effects of H2O2 concentration on the properties (apparent density and % cell volume) and the microstructure of foamed boards were also studied. The produced porous boards have effective densities in-between 540 - 900 Kg/m3 and the thermal conductivity of the optimum product is 0.08 W/mK. Based on their properties, the developed lightweight geopolymeric boards have high potential to be used as building elements in construction industry.

  5. Leaching from denture base materials in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lygre, H.; Solheim, E.; Gjerdet, N.R. [School of Medicine, Univ. of Bergen (Norway)

    1995-04-01

    Specimens made from denture base materials were leached in Ringer Solution and in ethanol. The specimens comprised a heat-cured product processed in two different ways and two cold-cured materials. The organic compounds leaching from the specimens to the solutions were separated, identified, and quantified by a combined gas-chromatography and gas-chromatography/mass-spectrometry technique. Additives and degradation products, possibly made by free radical reactions, were released from the denture base materials. In Ringer solution only phthalates could be quantified. In ethanol solvent, biphenyl, dibutyl phthalate, dicyclohexyl phthalate, phenyl benzoate, and phenyl salicylate were quantified. In addition, copper was found in the ethanol solvent from one of the denture base materials. The amount of leachable organic compounds varies among different materials. Processing temperature influences the initial amount of leachable compounds. 36 refs., 7 figs., 1 tab.

  6. Material of Burned Coal Wastes Spoil Heaps As Source of Mullite for Ceramic Industry

    Directory of Open Access Journals (Sweden)

    Daněk Tomáš

    2015-01-01

    Full Text Available Burning or burnt out mine spoil heaps may be potential sources of materials not only for building purposes, but they may also be used in the ceramic industry. Decay of the coal mass contained in the mine spoil heaps often leads to self-ignition. As a consequence of spontaneous mine fire, which may approach 1600 °C, the surrounding waste rock undergoes thermal conversion. The temperature conditions inside the burning spoil heaps are analogous to the production conditions of refractory opening materials and fillers in rotary furnaces. The article deals with an analysis of anthropogenic porcelanites in terms of their phase composition and their possible application in the ceramic industry. The material under analysis underwent X-ray diffraction, electron microscopy and X-ray fluorescence to identify its chemistry and mineralogy. The article also proposes an enrichment method for the given material, through which a higher proportion of its useful component, mullite, may be obtained. Applying this method, approximately 60 % relatively pure separated raw material suitable for the ceramic industry may be obtained from the original material.

  7. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...

  8. Recycling systems and material flows from the viewpoint of thermal waste treatment; Kreislaufwirtschaft- und Stoffstrombetrachtungen aus Sicht der thermischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Johnke, B. [Umweltbundesamt, Berlin (Germany); Mast, P.G. [Tauw Umwelt GmbH, Berlin (Germany)

    1998-09-01

    Material stream analysis can serve as a basis for decisions on which materials should be kept in circulation, and in what quantity, and which materials it is better to remove from the recycling system and dispose of as waste. Wastes destined for disposal are mostly transferred to waste treatment plants and landfills. The role of thermal treatment as part of the disposal system is to destroy or decompose organic pollutants contained in the waste, concentrate and remove inorganic pollutants, make the heat arising during the treatment process available for use as energy, and make the greatest possible physical use of the treatment residues. The present paper reviews the current regulations for the promotion of recycling and investigates selected material streams and the fate of these materials. In connection with the residue quality of household waste incineration slag as a thermal waste treatment product it also considers the influence of waste management measures on wastes destined for disposal. [Deutsch] Stoffstrombetrachtungen koennen als Grundlage fuer Entscheidungen dienen, welche Stoffe in welchem Umfang im Kreislauf verbleiben oder wieder integriert werden sollten und welche besser als Abfall zur Beseitigung aus dem Kreislaufsystem auszuschleusen sind. Fuer Abfaelle zur Beseitigung wird diese Aufgabe i.d.R. von thermischen Abfallbehandlungsanlagen und Deponien uebernommen. Im Rahmen der Entsorgung kommt der thermischen Behandlung dabei die Aufgabe zu, die im Abfall zur Beseitigung enthaltenen organischen Schadstoffe zu zerstoeren oder abzubauen, anorganische Schadstoffe aufzukonzentrieren und auszuschleusen, die bei dem Behandlungsprozess entstehende Waerme einer weitgehenden Energienutzung zuzufuehren und die Rueckstaende aus der Behandlung so weit wie moeglich stofflich zu verwerten. Nachfolgend sollen insbesondere die Regelungen zur Unterstuetzung der Kreislaufwirtschaft, ausgewaehlte Stofffluesse und der Verbleib dieser Stoffe und Materialien und der

  9. A Model of Solid Waste Management Based Multilateral Co-Operation in Semi-Urban Community

    Science.gov (United States)

    Kanchanabhandhu, Chanchai; Woraphong, Seree

    2016-01-01

    The purpose of this research was to construct a model of solid waste management based on multilateral cooperation in semi-urban community. Its specific objectives were to 1) study the solid waste situation and involvement of community in the solid waste management in Wangtaku Sub-district, Muang District, Nakhon Pathom Province; 2) construct a…

  10. Perspectives of the waste management and raw materials industry in Germany; Perspektiven der Entsorgungs- und Rohstoffwirtschaft in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Peter [Bundesverband der Deutschen Entsorgungs-, Wasser- und Rohstoffwirtschaft e.V. (BDE), Berlin (Germany)

    2012-11-01

    In order to provide the industrial structures that are necessary for ecologically and economically effective waste management and recycling - from the collecting of valuable waste materials to the marketing of the secondary raw materials obtained -, the BDE (Bundesverband der Deutschen Entsorgungswirtschaft e.V., Federal Association of the German Waste Management Industry) considers that free movement of goods must be ensured in the whole European Union. This means Europe-wide prohibition of dumping of untreated waste, common European environmental standards and their enforcement. If the potential of waste materials is to be developed in Europe, politicians must develop consequent understanding of waste as a raw material and commodity. Europe needs open frontiers and free trade in this important sector. (orig.) [German] Um die fuer eine oekologisch und oekonomisch effektive Kreislaufwirtschaft zwingend erforderlichen industriellen Strukturen - von der Sammlung werthaltiger Abfaelle bis hin zur Vermarktung der gewonnenen Sekundaerrohstoffe - zu schaffen, muss aus Sicht des BDE fuer alle Abfallstroeme der Grundsatz der Warenverkehrsfreiheit im gesamten Bereich der Europaeischen Union gelten. Voraussetzungen dafuer sind ein europaweites Deponieverbot fuer unbehandelte Abfaelle, europaweit einheitliche Umweltstandards und ein einheitlicher Vollzug. Wenn wir tatsaechlich das Potenzial, das im europaeischen Abfallberg steckt, heben wollen, muss auch die Politik ein konsequentes Verstaendnis fuer die Ressource Abfall als Ware entwickeln. Wir brauchen in Europa fuer diesen wichtigen Stoffstrom offene Grenzen und freien Handel. (orig.)

  11. Material Recognition for Content Based Image Retrieval

    NARCIS (Netherlands)

    Geusebroek, J.M.

    2002-01-01

    One of the open problems in content-based Image Retrieval is the recognition of material present in an image. Knowledge about the set of materials present gives important semantic information about the scene under consideration. For example, detecting sand, sky, and water certainly classifies the im

  12. Materiality in a Practice-Based Approach

    Science.gov (United States)

    Svabo, Connie

    2009-01-01

    Purpose: The paper aims to provide an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Design/methodology/approach: The overview is theoretically generated and is based on the anthology Knowing in Organizations: A Practice-based Approach edited by Nicolini, Gherardi and Yanow. The…

  13. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    Science.gov (United States)

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results.

  14. Production of Controlled Low Strength Material Utilizing Waste Paper Sludge Ash and Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Azmi A. N.

    2016-01-01

    Full Text Available Recently, the best method to make the concrete industry more sustainable was using the waste materials to replace the natural resources. Currently waste paper sludge is a major economic and environmental problem in this country. In this research, the alternative method is to dwindle the usage of natural resources and the usage of cement in the construction. This method is to replace the usage of cement with the waste paper sludge ash (WPSA and to use the recycle aggregate collected from the construction is used. The WPSA has ingredient likely cement such as self-cementation but for a low strength. The research was conducted at heavy laboratory UITM Pulau Pinang. Meanwhile, the WPSA is collected at MNI Industries at Mentakab, Pahang. The recycle aggregate is a separated half, which were fine aggregate and the coarse aggregate with the specific size. In this research, the ratio is divided into two (2 which is 1:1 and 1:2 for the aggregate and difference percentage levels of WPSA. The percentage levels of WPSA that use in this research are 10%, 20%, 30%, 40%, 50%, and 60%. A total of 36 cubes were prepared. Aim of this research is to develop a simple design approach for the mixture proportioning of WPSA and recycle concrete aggregate (RCA within the concrete and to assess the effect of concrete mix with different percentage of WPSA and RCA ratio on the properties. It is found that the best design mix that achieves control low strength material (CLSM is on 30% of WPSA with the ratio 1:2 on day 28 of compression test.

  15. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials.

    Science.gov (United States)

    Johnson, D Barrie

    2014-12-01

    The abilities of acidophilic chemolithotrophic bacteria and archaea to accelerate the oxidative dissolution of sulfide minerals have been harnessed in the development and application of a biotechnology for extracting metals from sulfidic ores and concentrates. Biomining is currently used primarily to leach copper sulfides and as an oxidative pretreatment for refractory gold ores, though it is also used to recover other base metals, such as cobalt, nickel and zinc. Recent developments have included using acidophiles to process electronic wastes, to extract metals from oxidized ores, and to selectively recover metals from process waters and waste streams. This review describes the microorganisms and mechanisms involved in commercial biomining operations, how the technology has developed over the past 50 years, and discusses the challenges and opportunities for mineral biotechnologies in the 21st century.

  16. Chromium speciation in hazardous, cement-based waste forms

    Science.gov (United States)

    Lee, J. F.; Bajt, S.; Clark, S. B.; Lamble, G. M.; Langton, C. A.; Oji, L.

    1995-02-01

    XANES and EXAFS techniques were used to determine the oxidation states and local structural environment of Cr in cement-based waste forms. Results show that Cr in untreated Portland cement formulations remains as toxic Cr 6+, while slag additives to the cement reduce Cr 6+ to the less toxic, less mobile Cr 3+ species. EXAFS analysis suggests that the Cr 6+ species is surrounded by four nearest oxygen atoms, while the reduced Cr 3+ sp ecies is surrounded by six oxygen atoms. The fitted CrO bond lengths for Cr 6+ and Cr 3+ species are around 1.66 and 1.98 Å, respectively.

  17. Waste Materials from Tetra Pak Packages as Reinforcement of Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Miguel Martínez-López

    2015-01-01

    Full Text Available Different concentrations (from 1 to 6 wt% and sizes (0.85, 1.40, and 2.36 mm of waste Tetra Pak particles replaced partially silica sand in polymer concrete. As is well known, Tetra Pak packages are made up of three raw materials: cellulose (75%, low density polyethylene (20%, and aluminum (5%. The polymer concrete specimens were elaborated with unsaturated polyester resin (20% and silica sand (80% and irradiated by using gamma rays at 100 and 200 kGy. The obtained results have shown that compressive and flexural strength and modulus of elasticity decrease gradually, when either Tetra Pak particle concentration or particle size is increased, as regularly occurs in composite materials. Nevertheless, improvements of 14% on both compressive strength and flexural strength as well as 5% for modulus of elasticity were obtained when polymer concrete is irradiated.

  18. The effects of gamma radiation on the corrosion of candidate materials for the fabrication of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada); King, F

    1999-07-01

    The influence of gamma radiation on the corrosion of candidate materials for the fabrication of nuclear waste packages has been comprehensively reviewed. The comparison of corrosion of the various materials was compared in three distinct environments: Environment A; Mg{sup 2+}-enriched brines in which hydrolysis of the cation produces acidic environments and the Mg{sup 2+} interferes with the formation of protective films; Environment B; saline environments with a low Mg{sup 2+} content which remain neutral; Environment C; moist aerated conditions.The reference design of nuclear waste package for emplacement in the proposed waste repository in Yucca Mountain, Nevada, employs a dual wall arrangement, in which a 2 cm thick nickel alloy inner barrier is encapsulated within a 10 cm thick mild steel outer barrier. It is felt that this arrangement will give considerable containment lifetimes, since no common mode failure exists for the two barriers. The corrosion performance of this waste package will be determined by the exposure environment established within the emplacement drifts. Key features of the Yucca Mountain repository in controlling waste package degradation are expected to be the permanent availability of oxygen and the limited presence of water. When water contacts the surface of the waste package, its gamma radiolysis could produce an additional supply of corrosive agents. the gamma field will be produced by the radioactive decay of radionuclides within the waste form, and its magnitude will depend on the nature and age of the waste form as well as the material and wall thickness of the waste package.

  19. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  20. Value-added materials from the hydrometallurgical processing of jarosite waste

    Directory of Open Access Journals (Sweden)

    Wilson Benjamin P.

    2016-01-01

    Full Text Available Jarosite is a leach residue that can be produced by industrial bulk metal treatment processes and typically has the chemical formula MxFe3(SO42(OH6, where M normally represents a metal cation. The largest source of jarosite is electrolytic zinc processing [1], which worldwide has an annual production of 11-12 Mt and an associated jarosite waste of 5-6 Mt that can cause important challenges due to its classification as a problem waste. Moreover, as zinc ore typically contains many other commercial/critical metals, the content of valuable materials in this material is significant. An analysis of jarosite from Kokkola, Finland shows that it contained as much metal as many present day commercial ores: ~15% iron, 2% zinc, 3 % lead, 150 g/t silver, 0.5 g/t gold, 100 g/t indium and 40 g/t gallium. Until now, jarosite related research has concentrated on its use in landfill and construction purposes [2], though there is increasing interest in finding methods to efficiently reprocess/recycle jarosite into valuable products [3, 4]. The hydrometallurgical process currently under development by VTT and Aalto University exploits jarosite powdery nature to undertake wet chemical processing. This low cost and energy efficient operation is targeted at the recovery of concentrates which contain the major value-added metals.

  1. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    Science.gov (United States)

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders.

  2. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Lauren; Islam, Rumana; Levin, David; Cicek, Nazim [Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB (Canada); Sparling, Richard [Department of Microbiology, University of Manitoba, Winnipeg, MB (Canada)

    2008-10-15

    Biohydrogen production from cellulosic waste materials using dark fermentation is a promising technology for producing renewable energy. The purpose of this study was to evaluate residual cellulosic materials generated from local sources for their H{sub 2} production potential without any pretreatment. Clostridium thermocellum ATCC 27405, a cellulolytic, thermophilic bacterium that has been shown to be capable of H{sub 2} production on both cellobiose and {alpha}-cellulose substrates, was used in simultaneous batch fermentation experiments with dried distillers grain (DDGs), barley hulls (BH) and fusarium head blight contaminated barley hulls (CBH) as the carbon source. Overall, the dried distillers grain produced the highest concentration of hydrogen gas at 1.27 mmol H{sub 2}/glucose equivalent utilized. CBH and BH produced 1.18 and 1.24 mmol H{sub 2}/glucose equivalent utilized, respectively. Overall, this study indicates that hydrogen derived from a variety of cellulosic waste biomass sources is a possible candidate for the development of sustainable energy. (author)

  3. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials.

    Science.gov (United States)

    Ziganshin, Ayrat M; Liebetrau, Jan; Pröter, Jürgen; Kleinsteuber, Sabine

    2013-06-01

    The influence of the feedstock type on the microbial communities involved in anaerobic digestion was investigated in laboratory-scale biogas reactors fed with different agricultural waste materials. Community composition and dynamics over 2 months of reactors' operation were investigated by amplicon sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Major bacterial taxa belonged to the Clostridia and Bacteroidetes, whereas the archaeal community was dominated by methanogenic archaea of the orders Methanomicrobiales and Methanosarcinales. Correlation analysis revealed that the community composition was mainly influenced by the feedstock type with the exception of a temperature shift from 38 to 55 °C which caused the most pronounced community shifts. Bacterial communities involved in the anaerobic digestion of conventional substrates such as maize silage combined with cattle manure were relatively stable and similar to each other. In contrast, special waste materials such as chicken manure or Jatropha press cake were digested by very distinct and less diverse communities, indicating partial ammonia inhibition or the influence of other inhibiting factors. Anaerobic digestion of chicken manure relied on syntrophic acetate oxidation as the dominant acetate-consuming process due to the inhibition of aceticlastic methanogenesis. Jatropha as substrate led to the enrichment of fiber-degrading specialists belonging to the genera Actinomyces and Fibrobacter.

  4. Analysis of human factors effects on the safety of transporting radioactive waste materials: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Abkowitz, M.D.; Abkowitz, S.B.; Lepofsky, M.

    1989-04-01

    This report examines the extent of human factors effects on the safety of transporting radioactive waste materials. It is seen principally as a scoping effort, to establish whether there is a need for DOE to undertake a more formal approach to studying human factors in radioactive waste transport, and if so, logical directions for that program to follow. Human factors effects are evaluated on driving and loading/transfer operations only. Particular emphasis is placed on the driving function, examining the relationship between human error and safety as it relates to the impairment of driver performance. Although multi-modal in focus, the widespread availability of data and previous literature on truck operations resulted in a primary study focus on the trucking mode from the standpoint of policy development. In addition to the analysis of human factors accident statistics, the report provides relevant background material on several policies that have been instituted or are under consideration, directed at improving human reliability in the transport sector. On the basis of reported findings, preliminary policy areas are identified. 71 refs., 26 figs., 5 tabs.

  5. THE UTILIZATION OF Fe(III WASTE OF ETCHING INDUSTRY AS QUALITY ENHANCHEMENT MATERIAL IN CERAMIC ROOFTILE SYNTHESIS

    Directory of Open Access Journals (Sweden)

    Eva Vaulina Yulistia Delsy

    2015-11-01

    Full Text Available Waste is produced from various industrial activities. FeCl3 used in this study as an addition to the material quality in synthesis of ceramic rooftile from Kalijaran village clay, Purbalingga. Etching industrial waste FeCl3 contacted with clay. Waste being varied waste as diluted and undiluted while clay grain size varied as 60, 80, 100, 140, and 230 mesh. Both clay and waste are contacted at 30-100 minutes. The results showed that the optimum of time and grain size variation is clay with 80 mesh grain size within 70 minutes. While physical properties of the rooftile contained Fe meet all ISO standards and are known to tile, the best quality is to use clay that has been in contact with the waste that is created 1000 times dilution. The stripping test of Fe (III by rain water and sea water showed that the average rate of Fe-striped of the tile body that is made with soaked with diluted waste are 0.068 ppm/day and 0.055 ppm/day while for tile bodies soaked with waste is not diluted are 0.0722 ppm/day and 0.0560 ppm/day.

  6. Modification of waste carpet with hydrated ferric oxide for recycling as an adsorbent material to recover phosphate from wastewater

    OpenAIRE

    Collinson, Simon R.; Duplá García, Oscar

    2013-01-01

    The surface of waste wool rich carpet was modified to enable recycling as an adsorbent material to remove pollutants from water and to avoid bulky carpets contributing to landfill. The proteins of the wool fibres in waste carpets adsorbed either copper(II) nitrate or iron(II) ions to form nanoparticles of Hydrated Ferric Oxide (HFO). The copper(II) ions reversibly bound to the wool carpet. The strongest binding of the nanoparticles of HFO occurred after first oxidizing the surface epicuticle ...

  7. Device for measuring thermal conductivity of composites based on biomass waste

    Directory of Open Access Journals (Sweden)

    Luis Velasco Roldán

    2016-06-01

    Full Text Available A standardized test bench has been designed, built and calibrated to determine the thermal conductivity of insulating building materials. The device, simple in design and economical, aims to become a replicable and useful tool for the development of multiple research on innovative materials based on waste or unvalued resources for the production of non-industrial and locally produced cheap thermal insulating materials which lead to the improvement of buildings energy efficiency. The main contribution of the test bench is the possibility of analyzing insulation compounds with more thickness and different formats thanks to the press design, which allows the setting and the pressure of the plates on the samples, holding these in the air and preventing any transmission by unwanted conduction.

  8. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  9. Ethanol production from cotton-based waste textiles.

    Science.gov (United States)

    Jeihanipour, Azam; Taherzadeh, Mohammad J

    2009-01-01

    Ethanol production from cotton linter and waste of blue jeans textiles was investigated. In the best case, alkali pretreatment followed by enzymatic hydrolysis resulted in almost complete conversion of the cotton and jeans to glucose, which was then fermented by Saccharomyces cerevisiae to ethanol. If no pretreatment applied, hydrolyses of the textiles by cellulase and beta-glucosidase for 24 h followed by simultaneous saccharification and fermentation (SSF) in 4 days, resulted in 0.140-0.145 g ethanol/g textiles, which was 25-26% of the corresponding theoretical yield. A pretreatment with concentrated phosphoric acid prior to the hydrolysis improved ethanol production from the textiles up to 66% of the theoretical yield. However, the best results obtained from alkali pretreatment of the materials by NaOH. The alkaline pretreatment of cotton fibers were carried out with 0-20% NaOH at 0 degrees C, 23 degrees C and 100 degrees C, followed by enzymatic hydrolysis up to 4 days. In general, higher concentration of NaOH resulted in a better yield of the hydrolysis, whereas temperature had a reverse effect and better results were obtained at lower temperature. The best conditions for the alkali pretreatment of the cotton were obtained in this study at 12% NaOH and 0 degrees C and 3 h. In this condition, the materials with 3% solid content were enzymatically hydrolyzed at 85.1% of the theoretical yield in 24 h and 99.1% in 4 days. The alkali pretreatment of the waste textiles at these conditions and subsequent SSF resulted in 0.48 g ethanol/g pretreated textiles used.

  10. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  11. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  12. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  13. Synthesis of Petroleum-Based Fuel from Waste Plastics and Performance Analysis in a CI Engine

    Directory of Open Access Journals (Sweden)

    Christine Cleetus

    2013-01-01

    Full Text Available The present work involves the synthesis of a petroleum-based fuel by the catalytic pyrolysis of waste plastics. Catalytic pyrolysis involves the degradation of the polymeric materials by heating them in the absence of oxygen and in the presence of a catalyst. In the present study different oil samples are produced using different catalysts under different reaction conditions from waste plastics. The synthesized oil samples are subjected to a parametric study based on the oil yield, selectivity of the oil, fuel properties, and reaction temperature. Depending on the results from the above study, an optimization of the catalyst and reaction conditions was done. Gas chromatography-mass spectrometry of the selected optimized sample was done to find out its chemical composition. Finally, performance analysis of the selected oil sample was carried out on a compression ignition (CI engine. Polythene bags are selected as the source of waste plastics. The catalysts used for the study include silica, alumina, Y zeolite, barium carbonate, zeolite, and their combinations. The pyrolysis reaction was carried at polymer to catalyst ratio of 10 : 1. The reaction temperature ranges between 400°C and 550°C. The inert atmosphere for the pyrolysis was provided by using nitrogen as a carrier gas.

  14. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Science.gov (United States)

    2010-10-01

    ... by the shipper and unloaded by the consignee, unless the motor carrier is a private or contract...) Household waste. Household waste, as defined in § 171.8 of this subchapter, is not subject to the... requirements. (f) Household waste. Household waste, as defined in § 171.8 of this subchapter, is not subject...

  15. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    Energy Technology Data Exchange (ETDEWEB)

    Quercia, G., E-mail: g.quercia@tue.nl [Materials innovation institute (M2i), Mekelweg 2, P.O. Box 5008, 2600 GA Delft (Netherlands); Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Putten, J.J.G. van der [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Hüsken, G. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Brouwers, H.J.H. [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-12-15

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 μm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO{sub 2}, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO{sub 2} footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. •Dispersability studies demonstrated that nSS agglomerates are broken to nano

  16. Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G G

    2001-03-28

    Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to

  17. Quality restoration of waste polyolefin plastic material through the dissolution-reprecipitation technique

    Directory of Open Access Journals (Sweden)

    Hadi Jasim Arkan

    2014-01-01

    Full Text Available This study examines the restoration of waste plastic polymers based on LDPE, HDPE or PP through dissolution/reprecipitation. Experimental conditions of the recycling process, including type of solvent/non-solvent, original polymer concentration and dissolution temperature were optimized. Results revealed that by using the different prepared solvents/non-solvents at various ratios and temperatures, the polymer recovery was always greater than 94%. The FTIR spectra and the thermal properties (melting point and crystallinity of the polymers before and after recycling were measured using Differential Scanning Calorimetry (DSC. Mechanical properties of the waste polymer before and after recycling were also measured. Besides small occasional deviations, the properties did not change. The tensile strength at maximum load was 7.1, 18.8, and 7.4 MPa for the recycled LDPE, HDPE and PP, respectively and 7.78, 18.54 and 7.86 MPa for the virgin polymer. For the waste, the strength was 6.2, 15.58 and 6.76 MPa.

  18. Waste Socio-technological Transitions

    DEFF Research Database (Denmark)

    Zapata Campos, Maria José; Zapata, Patrik; Eriksson-Zetterquist, Ulla

    2014-01-01

    ) of making waste simply unbecome. This chapter explores the challenges faced by waste regime transitions based on the case of the historical evolution of household waste management in Sweden. The chapter first introduces transition studies’ multi-level framework in combination with the notion of lock......The transformation of packaging waste from a problem into a resource has had significant consequences for a more sustainable use of natural resources and even the reduction of potential C02 emissions and its contribution to the climate change. Material recycling leads to separated material being...... able to replace other production or construction materials. It also means that the consumption of the amount of virgin material decreases and saves energy. Despite the growing material recycling rates, the amount of waste per person, and packaging waste among others, continues to increase. High...

  19. Environmental performance of an innovative waste refinery based on enzymatic treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2011-01-01

    ) from the waste. The waste refinery was compared to alternative treatments such as incineration, bioreactor landfill and mechanical-biological treatment followed by utilization of the RDF (refuse-derived fuel) for energy. The performance of the waste refinery turned out to be comparable...... for virgin material and saving fossil resources. In this paper a life-cycle assessment of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials...... with incineration for most environmental categories. Landfilling turned out to be the worst option with respect to most categories (especially energy-related such as GW). The refinery treatment has large margins of improvement with respect to the environmental performance. These are mainly associated...

  20. Screening for perfluoroalkyl acids in consumer products, building materials and wastes.

    Science.gov (United States)

    Bečanová, Jitka; Melymuk, Lisa; Vojta, Šimon; Komprdová, Klára; Klánová, Jana

    2016-12-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a large group of important chemical compounds with unique and useful physico-chemical properties, widely produced and used in many applications. However, due to the toxicity, bioaccumulation and long-range transport potential of certain PFASs, they are of significant concern to scientists and policy makers. To assess human exposure to PFASs, it is necessary to understand the concentrations of these emerging contaminants in our environment, and particularly environments where urban population spend most of their time, i.e. buildings and vehicles. A total of 126 samples of building materials, consumer products, car interior materials and wastes were therefore analyzed for their content of key PFASs - 15 perfluoroalkyl acids (PFAAs). At least one of the target PFAAs was detected in 88% of all samples. The highest concentration of Σ15PFAAs was found in textile materials (77.61 μg kg(-1)), as expected, since specific PFAAs are known to be used for textile treatment during processing. Surprisingly, PFAAs were also detected in all analyzed composite wood building materials, which were dominated by perfluoroalkyl carboxylic acids with 5-8 carbons in the chain (Σ4PFCAs up to 32.9 μg kg(-1)). These materials are currently widely used for building refurbishment, and this is the first study to find evidence of the presence of specific PFASs in composite wood materials. Thus, in addition to consumer products treated with PFASs, materials used in the construction of houses, schools and office buildings may also play an important role in human exposure to PFASs.

  1. Hazardous Material Storage Facilities and Sites - WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN: Waste Site Locations for Disposal, Storage and Handling of Solid Waste and Hazardous Waste in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN is a point shapefile that contains waste site locations for the disposal, storage, and handling of solid and hazardous waste...

  2. The use of coal mining wastes for manufacturing paving materials; Los Esteriles del Carbon como Materia Prima para la Fabricacion de Materiales para Pavimentacion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This project was aimed at proving the technical feasibility of the use of coal mining wastes in the manufacturing of paving materials: floor-tiles, flags, paving-stones, grit stones, etc. The study proved that coal mining wastes in a mixture with other raw materials can be used in the manufacturing of paving materials: floor-tiles, paving-stones, grit stones.

  3. A new technology for recycling materials from waste printed circuit boards.

    Science.gov (United States)

    Zhou, Yihui; Qiu, Keqiang

    2010-03-15

    Waste printed circuit boards (WPCBs) contain lots of valuable resources together with plenty of hazardous materials, which are considered both an attractive secondary resource and an environmental contaminant. In this research, a new process of "centrifugal separation+vacuum pyrolysis" for the combined recovery of solder and organic materials from WPCBs was investigated. The results of centrifugal separation indicated that the separation of solder from WPCBs was complete when WPCBs were heated at 240 degrees C, and the rotating drum was rotated at 1400 rpm for 6 min intermittently. The results of vacuum pyrolysis showed that the type-A of WPCBs without solder pyrolysed to form an average of 69.5 wt% residue, 27.8 wt% oil, and 2.7 wt% gas; and pyrolysis of the type-B of WPCBs without solder led to an average mass balance of 75.7 wt% residue, 20.0 wt% oil, and 4.3 wt% gas. The pyrolysis residues contain various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The pyrolysis oils can be used for fuel or chemical feedstock and the pyrolysis gases can be collected and combusted for the pyrolysis self-sustain. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent the environmental pollution of WPCBs effectively.

  4. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  5. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  6. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    Science.gov (United States)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  7. Supporting Indicators for the Successful Solid Waste Management Based on Community at Rawajati, South Jakarta

    OpenAIRE

    Muhammad Furqan

    2013-01-01

    Community-based waste management is one of the strategies that can be used to overcome the problems of garbage that exist today. However, community-based waste management system could not be implemented as a whole in Indonesia and sometimes some areas are trying to do community-based waste management do not work well and is not sustainable. The purpose of this study was to determine the indicators of success in supporting community-based waste management in Urban Rawajati RW III, South Jakart...

  8. The influence of amendment material on biosolid composting of sludge from a waste-water treatment plant

    Directory of Open Access Journals (Sweden)

    Patricia Torres Lozada

    2010-06-01

    Full Text Available Aerobic composting employing manual turning was evaluated by using the sludge produced by EMCALI EICE ESP's Cañaverlejo wastewater treatment plant (PTAR-C. Compost (in 1,0 ton piles consisted of sludge, a fixed proportion of bulking agent (10% and amendment material. Sugarcane waste and solid organic (marketplace waste were evaluated as amendment material using 20/80 and 40/60 weight/weight (amendment/sludge ratios. Incorporating the amendment material improved the compost, being reflected in a faster start for the thermophilic phase, higher temperatures beign maintained (>55°C and better C/N ratio obtained in the compost in all treatments compared to the pile which had no amendment added to it. Incorporating the bulking agent improved sludge manageability during composting; the best combination was 54% sludge + 10% sugacane bagasse + 36% liquid sugarcane waste.

  9. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  10. FY 1999 report on the development of technology to recycle architectural waste materials, glass, etc. Development of technology to recycle architectural waste materials; 1999 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kenchiku haizai recycle gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Waste wood materials in the materials discharged from architectural disassembly were regarded as a potential wood resource, and the R and D of the technology to recycle these were conducted. Studies were made on the technology to finely grind waste wood materials, technology to compress/form waste wood materials and ground wood powder, verification of strength characteristics/dimension stability of the formed wood materials, etc. As to the wood materials which were badly degraded under ultra violet rays, they were coloring-processed by the steam treatment, and a possibility of coating substitution was confirmed. In relation to the technology to produce compressed wood materials, the optimization of heat treatment conditions was experimentally conducted. About the technology to give dimensional stability, dimensional stability was improved as a result of the improvement of chemicals feeding and the development of chemically processed drugs. In the development of light formed products, the board was successfully formed which is light in weight using lignocelluloses/inorganic hydrates and has the bending strength higher than that of the plaster board. In the development of interior materials, the technology was developed in which ground wood powder and thermo-plastic resin are mixed for die molding, and the OA floor using this was commercialized. (NEDO)

  11. USE OF CONSTRUCTION AND DEMOLITION WASTES AS RAW MATERIALS IN CEMENT CLINKER PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    Christos-Triantafyllos Galbenis; Stamatis Tsimas

    2006-01-01

    The aim of the present paper was to investigate the possibility of utilizing Construction and Demolition(C&D) wastes as substitutes of Portland cement raw meal. The C&D wastes that were so used, were the Recycled Concrete Aggregates (RCA) and the Recycled Masonry Aggregates (RMA) derived from demolished buildings in Attica region, Greece. RCA and RMA samples were selected because of their calcareous and siliceous origin respectively,which conformed the composition of the ordinary Portland cement raw meal. For that reason, six samples of cement raw meals were prepared: one with ordinary raw materials, as a reference sample, and five by mixing the reference sample with RCA and RMA in appropriate proportions. The effect on the reactivity of the generated mixtures, was evaluated on the basis of the free lime content (fCaO) in the mixtures sintered at 1350℃, 1400℃ and 1450℃. Test showed that the added recycled aggregates improved the burnability of the cement raw meal without affecting negatively the cement clinker properties. Moreover, the formation of the major components (C3S, C2S, C3A and C4AF) of the produced clinkers(sintered at 1450℃) was corroborated by X-Ray Diffraction (XRD).

  12. Fabrication of porous carbon composite material from leaves waste as lightweight expanded carbon aggregate (LECA)

    Science.gov (United States)

    Sulhadi, Rosita, N.; Susanto, Nisa', K.; Wiguna, P. A.; Marwoto, P.; Aji, M. P.

    2016-04-01

    Leaves waste has been used as Lightweight Expanded Carbon Aggregates (LECA) because of its high carbon material. LECA can be used as a water storage media. LECA is low in density so thatits massis very light. Due to its use as a water storage medium, it is important to find out the absorption which occurs in LECA.The LECA's absorption and evaporation rate is affected by the pores. The pores serves to increase water storage ability from LECA. LECA with PEG (pore-forming agent) mass percent variation of 5%, 10%, 15%, 20% and 25% is the focus of this study. LECA fabrication was conducted by mixing the carbon resulting from leaves waste pyrolysis and PEG and PVAc. The characterization of LECA was found out by calculating the porosity, the pore size distribution, absorption rate and evaporation rate. The result of the calculation shows that the higher PEG mass percentage, the higher LECA's porosity, the pore size distribution, absorption rate and evaporation rate. However, the porosity, the pore size distributionand absorption rate will be saturated by 25% PEG mass percent addition.

  13. CATALYTIC CONVERSION OF MUNICIPAL WASTE PLASTIC INTO GASOLINE-RANGE PRODUCTS OVER MESOPOROUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Jorge Norberto Beltramini

    2006-01-01

    In the last 20 years, it has become apparent that waste produced from plastics was becoming an environmental problem because of their low biodegradability. Though several methods have been proposed for recycling waste plastics, it is generally accepted that material recovery is not a long-term solution to the present problem, and that energy or chemical recovery is a more attractive alternative, including cracking into the monomer constituents, combustion to produce energy, and thermal or catalytic conversion to produce useful intermediate chemicals.This paper is a contribution in the area of the last option for energy recovery. There have been a number of publications reporting the use of molecular sieves and amorphous silica-alumina catalysts for the cracking of polymers into a range of hydrocarbons. The research work reported here demonstrates the ability of mesoporous catalysts in cracking polyethylene into gasoline range products.It was found that for mesoporous MCM-41 catalysts, its cracking activity increases with its crystallinity, displaying higher activity with smaller pore diameters. The hydrocarbon product distribution strongly indicates a carbenium ion cracking mechanism. The product distribution was also compared with those obtained from thermal cracking tests.

  14. Polymer Waste Material as Partial Replacement of Fine Aggregate in Concrete Production

    Directory of Open Access Journals (Sweden)

    D. Dahiru

    2014-05-01

    Full Text Available The aim of the study is to assess the quality of concrete produced with polymer waste as partial replacement of fine aggregate with a view to establishing areas where such concrete can be used. It is an experimental research that entails the following steps: First, the polymer waste material, PWM, was collected from dumps and processed; then its melting point determined. A varying proportion of PWM was used as partial replacement of fine aggregate A nominal mix of 1:3:6 was used to prepare 150×150×150 mm concrete cubes specimens with different proportion of 0, 10, 20 and 30%, respectively PWM partial substitution of fine aggregate. Samples were subjected to workability, compressive and tensile strength tests. Results show that PWM content has inverse relationship with the workability, compressive and tensile strengths. For example, an increase of 30% PWM results to about 53 and 73.3% decrease in compressive and tensile strengths, respectively. The compressive strength of the samples is in the range of 22.8-12.3 N/mm2 while the tensile strength ranges from 1.10-0.56 N/mm2. It is recommended that the concrete should not be used for structural work but such concrete has high water retention capacity. As such, the possibility of using it as a nuclear radiation shield should be investigated.

  15. Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes

    Science.gov (United States)

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie

    2016-05-01

    Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.

  16. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants.

    Science.gov (United States)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m(-1) at a low dosage as 0.100 g L(-1) of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  17. Radioactive wastes and valorizable materials in France: summary of the 2004 national inventory; Dechets radioactifs et matieres valorisables en France: resume de l'inventaire national 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The French national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. This summary document contains: 1 - general introduction; 2 - classification of radioactive wastes: the 5 main categories; 3 - origin of the wastes; 4 - processing and conditioning; 5 - inventory of existing wastes: geographical inventory, inventory per category; 6 - prospective inventory: prospective scenarios, forecasting of waste production; 7 - valorizable radioactive materials; 8 - synthesis and perspective; 9 - glossary. (J.S.)

  18. Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.T.; Haas, P.A.; Rudolph, J.C.

    1993-12-01

    The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies.

  19. Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers

    Science.gov (United States)

    Kawahara, Yuuzou

    2007-06-01

    Corrosion-resistant materials (CRMs) and coatings are key technologies to increase power generation efficiency and reduce maintenance in waste-to-energy (WTE) plants. Corrosion environment became severe as steam temperatures have increased. The steam condition of more than 400 °C/3.9 MPa became possible in WTE boilers by using highly durable corrosion-resistant coatings, such as thermal spray of Al/80Ni20Cr alloy, HVOF-sprayed NiCrSiB alloy, Alloy 625 weld overlay for waterwall tubes and also superheater tubes. Also, the use of 310S type stainless steels and high Cr-high Mo-Ni base and high Si-Cr-Ni-Fe alloys have progressed because of a better understanding of corrosion mechanisms. Furthermore, high durability coatings using cermet and ceramic materials were applied to high temperature superheaters. This paper describes the major developments and the application of CRMs and coating technologies in the last 30 years in WTE plants, the corrosion mechanisms of alloys, the deterioration mechanisms of spray coating layers, and future subjects for the development of corrosion-resistant materials and coatings.

  20. Environmental guide for mechanical engineering industry. Information about companies' materials and waste issues; Kone- ja metallituoteteollisuuden ympaeristoeopas. Tietoa yrityksen materiaali- ja jaeteasioista

    Energy Technology Data Exchange (ETDEWEB)

    Forsell, P.

    2000-02-01

    The guide has been planned for SME's in mechanical engineering industry, authorities, waste advisors, instructors and students as well as others interested in environmental and waste matters. The publication contains practical information about waste management, prevention, recovery and safe final storage. Waste issues are handled in great detail in the publication, taking into account all stages in the product's life cycle, from product design to production processes and from sale to final storage. In addition to general environmental information, the guidebook includes a structural plan for environmental management system and instructions on how to implement it. The plan is more compact than general environmental management systems and therefore easier to carry out by SME's. The publication contains also practical examples, instructions and contact information. Mechanical engineering, waste, waste management, material efficiency, waste prevention, materials, waste recovery, small and medium size enterprises, guidebooks. (orig.)

  1. Steel slag: a waste industrial by-product as an alternative sustainable green building material in construction applications--an attempt for solid waste management.

    Science.gov (United States)

    Pofale, Arun D; Nadeem, Mohammed

    2012-01-01

    This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.

  2. Development of new peat based growing media by addition of pruning waste and biochars

    Science.gov (United States)

    Nieto, Aurora; Gascó, Gabriel; Paz-Ferreiro, Jorge; Plaza, César; Fernández, José Manuel; Méndez, Ana

    2015-04-01

    In the last years, several researches have been performed to find high quality and low cost substrates from different organic wastes in order to decrease peat consumption since the indiscriminate exploitation of peat lands is exhausting this non-renewable useful resource and destroying endangered wetland ecosystems worldwide. The use of organic wastes as soil amendments or possible peat substitute could be improved by pyrolysis treatment, leading to biochar, a carbon-rich material that has attached important attention. Our research group has been worked in the formulation of new based-growing media by peat substitution in 50 and 75 vol% of pruning waste (PW), commercial charcoal (CC), biochar from PW at 300°C (B300) and 500°C (B500). Growing media show adequate physicochemical and hydrophysical properties. Experiments performed with lettuce germination show that PW addition in a 75vol% reduces germination index probably due to their high content on phenolic compounds. Lettuce growing experiments were performed during 5 weeks and show that addition of PW and CC to peat decreases biomass production whereas; B300 and specially, B500 addition significantly increases the lettuce biomass.

  3. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.

    Science.gov (United States)

    Luna Galiano, Y; Fernández Pereira, C; Vale, J

    2011-01-15

    The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished.

  4. Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste.

    Science.gov (United States)

    Lunge, Sneha; Thakre, Dilip; Kamble, Sanjay; Labhsetwar, Nitin; Rayalu, Sadhana

    2012-10-30

    A new alumina supported carbon composite material called "Eggshell Composite" (EC) was synthesized from eggshell waste as calcium source for selective fluoride adsorption from water. The effect of various synthesis parameters like eggshell (ES): Eggshell membrane (ESM) ratio, aluminium loading, mixing time and calcinations temperature to optimize the synthesis conditions for selective fluoride removal has been studied. It was observed that the synthesis parameters have significant influence on development of EC and in turn on fluoride removal capacity. EC synthesized was characterized for elemental composition, morphology, functionality and textural properties. Results showed that EC obtained from eggshell modified with alumina precursor is more selective and efficient for fluoride removal. Langmuir and Freundlich isotherm were used to obtain ultimate fluoride removal capacity. The calcium and alumina species in EC shows synergistic effect in fluoride adsorption process. Fluoride sorption studies were carried out in synthetic, groundwater and wastewater. EC proved to be a potential, indigenous and economic adsorbent for fluoride removal.

  5. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    Science.gov (United States)

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  6. WATER RESISTANCE OF WOOD - PLASTIC COMPOSITES MADE FROM WASTE MATERIALS RESULTED IN THE FURNITURE MANUFACTURING PROCESS

    Directory of Open Access Journals (Sweden)

    Camelia COŞEREANU

    2014-12-01

    Full Text Available The purpose of this paper is to present innovative wood-plastic composites made from waste materials such as ABS (acrylonitrile butadiene styrene and wood shavings resulted in the furniture manufacturing process. From previous investigations (with regard to physical integrity and compactness of the panels, only mixtures ranging from a ratio of 100% ABS: 0% shavings to 80% ABS: 20% shavings were selected for water resistance testing. Swelling in thickness and water absorption for 2h and 24h were determined for the proposed wood-plastic composites. The results have shown that only a participation of up to 10% of wood shavings in the tested panels conducted to a good performance

  7. Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    S.M. Mousa

    2016-05-01

    Full Text Available Nano-material of calcium hydroxyapatite (n-CaHAP, with particle size ranging from 50 to 57 nm which was prepared from phosphogypsum waste (PG, was used for the removal of lead ions (Pb (II from aqueous solutions. It was investigated in a batch reactor under different experimental conditions. Effects of process parameters such as pH, initial Pb ion concentration and adsorbent dose were studied. Also, various types of kinetic modeling have been studied where the lead uptake was quantitatively evaluated using the Langmuir, Freundlich and Dubinin–Kaganer–Radushkevich (DKR model. The Pb ions adsorption onto n-CaHAP could best fit the Langmuir isotherm model. The maximum adsorption capacity (qmax for Pb ions was 769.23 mg/g onto n-CaHAP particles.

  8. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D., E-mail: david.lambertin@cea.fr; Poulesquen, A.; Frizon, F.

    2015-09-15

    Highlights: • Formulation with 20 vol.% of oil in a geopolymer have been successful tested. • Oil waste is encapsulated as oil droplets in metakaolin-based geopolymer. • Oil/geopolymer composite present good mechanical performance. • Carbon lixiviation of oil/geopolymer composite is very low. - Abstract: The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH{sup −}) are involved into diffusion process.

  9. Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: Kh_rezk966@yahoo.com [Biomaterials Department, National Research Centre, Dokki, Cairo (Egypt); Mousa, Sahar M. [Chemistry Department, Science and Art College, King Abdulaziz University, Rabigh Campus, P.O. Box 344, 21911 Rabigh (Saudi Arabia); Inorganic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, 11787 Cairo (Egypt); El Bassyouni, Gehan T. [Biomaterials Department, National Research Centre, Dokki, Cairo (Egypt); Medical Physics Department, College of Medicine, Taif University (Saudi Arabia)

    2014-02-01

    Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could be obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.

  10. Integration of Agricultural Waste in Local Building Materials for their Exploitation: Application with Rice Straw

    Directory of Open Access Journals (Sweden)

    D. Sow

    2014-04-01

    Full Text Available Through experiments, we have determined the mechanical and thermal properties of samples. This allowed us to determine the most optimal formulations. Therefore, we have prepared samples constituted by two basic materials, clay and laterite, mixed with rice straw. Thus, agriculture is among the economic sectors that produce more waste. The latter are mainly the straw of the three most-produced cereals in the world: wheat, corn and rice. Concerning rice straw, its high content of cellulose makes it difficult to digest. So, few animals are able to use it as food. Most of the straws are lost, buried, burned or used as litter. Moreover, clay and laterite formations represent the most abundant materials resources in Africa. So, this study has allowed us to show that the integration of rice straw in lateritic and clay soils for its use as building materials will allow, in addition to its recycling, to greatly reduce the social habitat cost and to improve the thermal comfort.

  11. Binding Materials of Dehydrated Phases of Waste Hardened Cement Paste and Pozzolanic Admixture

    Institute of Scientific and Technical Information of China (English)

    LU Linnu; HE Yongjia; HU Shuguang

    2009-01-01

    Fly ash (FA) and ground granulated blast-furnace slag (GGBFS) were added to improve the performances of regenerated binding materials (RBM) which refer to dehydrated phases with rebinding ability of waste hardened cement paste. Flowability tests, compressive strength tests,SEM, TG-DSC, and non-evaporable water content tests were employed to study the performances of the combined binding materials and the interactions between RBM, FA, and GGBFS. Results show that adding FA or GGBFS can improve the workability of RBM paste, and GGBFS has positive effects on strength of RBM. Pozzolanic reactions happen between RBM, FA, and GGBFS. And the activation effect of RBM to FA and GGBFS is superior to that of P.O grade-32.5 cement, especially at earlier ages, because of the high reactive f-CaO existing in RBM. On the advantages of the synergetic effects of RBM and pozzolanic admixtures such as FA and GGBFS, new combined binding materials can be prepared by blending them together.

  12. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura; Recknagle, Kurtis P.; Wood, Marcus I.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of

  13. Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building

    Directory of Open Access Journals (Sweden)

    Murat Kucukvar

    2016-01-01

    Full Text Available The current waste management literature lacks a comprehensive LCA of the recycling of construction materials that considers both process and supply chain-related impacts as a whole. Furthermore, an optimization-based decision support framework has not been also addressed in any work, which provides a quantifiable understanding about the potential savings and implications associated with recycling of construction materials from a life cycle perspective. The aim of this research is to present a multi-criteria optimization model, which is developed to propose economically-sound and environmentally-benign construction waste management strategies for a LEED-certified university building. First, an economic input-output-based hybrid life cycle assessment model is built to quantify the total environmental impacts of various waste management options: recycling, conventional landfilling and incineration. After quantifying the net environmental pressures associated with these waste treatment alternatives, a compromise programming model is utilized to determine the optimal recycling strategy considering environmental and economic impacts, simultaneously. The analysis results show that recycling of ferrous and non-ferrous metals significantly contributed to reductions in the total carbon footprint of waste management. On the other hand, recycling of asphalt and concrete increased the overall carbon footprint due to high fuel consumption and emissions during the crushing process. Based on the multi-criteria optimization results, 100% recycling of ferrous and non-ferrous metals, cardboard, plastic and glass is suggested to maximize the environmental and economic savings, simultaneously. We believe that the results of this research will facilitate better decision making in treating construction and debris waste for LEED-certified green buildings by combining the results of environmental LCA with multi-objective optimization modeling.

  14. Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material.

    Science.gov (United States)

    Hait, Subrata; Tare, Vinod

    2011-03-01

    An integrated composting-vermicomposting system has been developed for stabilization of waste activated sludge (WAS) using matured vermicompost as bulking material and Eisenia fetida as earthworm species. Composting was considered as the main processing unit and vermicomposting as polishing unit. The integrated system was optimized by successive recycling and mixing of bulking material with WAS during composting and examining the effects of environmental condition (i.e. temperature: 10-30°C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m(2)) on vermicomposting. The composting stage resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with WAS and produced materials acceptable for vermicomposting. Vermicomposting of composted material caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total carbon (TC), total organic carbon (TOC), C/N ratio and pathogens and a substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP). The environmental conditions (i.e. temperature: 10-30°C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m(2)) have profound effects on vermicomposting. Temperature of 20°C with high humidity is the best suited environmental condition for vermicomposting employing E. fetida. The favorable stocking density range for vermiculture is 0.5-2.0 kg/m(2) (optimum: 0.5 kg/m(2)) and for vermicomposting is 2.0-4.0 kg/m(2) (optimum: 3.0 kg/m(2)), respectively. The integrated composting-vermicomposting system potentially stabilizes and converts the hazardous WAS into quality organic manure for agronomic applications without any adverse effects.

  15. Use of ferrous industrial wastes as binding materials for construction; Empleo de residuos industriales siderurgicos como materiales aglomerantes en construccion

    Energy Technology Data Exchange (ETDEWEB)

    Mymrin, V.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-12-01

    Several ferrous and non ferrous metallurgical wastes, slag, powdered wastes, alkaline liquors, etc., can be used as binding materials to produce new building materials. These materials can be used in place of concretes made of cement, crushed stones, sand and gravel mixtures in several applications, road, industrial and airport foundations, etc. They are leaching resistant, so heavy metals do not migrate to the environment. These new materials, with a new structure, are obtained by mixing in right proportion of two or three industrial wastes or with mixtures of two of them and natural soils without any addition of traditional binders like and without heating. The main advantages are the solution of the problem of disposal of industrial wastes and the lower cost of the new materials, 5 to 6 times cheaper than traditional. Several examples of roads existing in Russia, even in Siberia and other northern regions, demonstrate the benefit of this process because after 20 years they still offer a good performance. (Author) 8 refs.

  16. A Scrutiny of Feasibility of Recycling Materials from Municipal Solid Waste: A Case Study of Hamedan City, Iran

    Directory of Open Access Journals (Sweden)

    Jahangir Jafari

    2010-07-01

    Full Text Available This study presents the amount of daily production of waste material, its physical analysis in four divided districts of Hamedan city by municipality along the four seasons of the year as well as contribution of citizens in recycling programs. For the purpose of determining the daily average amount of waste material, a weight-volume method was carried out as well as randomized quota method to determine physical analysis. During the four seasons of the year and one week a season, 5 samples, totally 20 samples of 0.5 m3 volume, were chosen. Besides, density and humidity weight percentage were calculated to be prepared for analyzing by SAS software. In order to determine contribution of citizens in recycling programs, 500 questionnaires were distributed in the four districts and were completed using personal interview. Results showed an average production of 482.93 tons/day waste material having a density of 268.96 kg/m3, a density of 46.76% and 0.96 kg per capita of w aste material in Hamedan city. The results of municipal waste physical analysis also revealed that approximately 72.76 tons/year (15.07% of total daily production of waste material included recyclable materials like plastic, metal, glass, paper and etc., while 379.93 tons/year (78.97% were compostable organic materials. Results of the carried out survey also show ed that 84% of Hamedan citizens had acquaintance with the issue of recycling, 89% tended the program to operate and 90% were ready to cooperate with the recycling program.

  17. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    Science.gov (United States)

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Pierce, Eric M.; Brown, Christopher F.; Qafoku, Nikolla P.

    2016-05-01

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.

  18. Advanced Design of Separated Household Waste Collection Systems on the Base of GIS Modelling

    Directory of Open Access Journals (Sweden)

    Richard Ladanyi

    2014-01-01

    Full Text Available The Hungarian waste management sector is under transformation now. The new (2012/CLXXXV Law on the Waste applies requirements on the players of the waste market that will result in the reorganization of the whole waste management industrial sector. The aim of the system transformation is enhancing the proportion of separately treated waste in accordance with the EU directives. Emerging waste quantities to be separately treated means challenge for the existing logistic capacities (e.g., collector vehicles; thus evaluation of their actual efficiency and utilization seems to be useful in the course of the transformation. With this object in view, a new separated waste collection system planning approach and a software module were developed on the base of a geographic information system (GIS platform. The software module was designed to help choose and localize the appropriate collection methods and define the logistically effective collector vehicle routes according to the settlement structures of urban environments.

  19. Carbohydrate based materials for gamma radiation shielding

    Science.gov (United States)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  20. Function-based Biosensor for Hazardous Waste Toxin Detection

    Energy Technology Data Exchange (ETDEWEB)

    James J Hickman

    2008-07-09

    There is a need for new types of toxicity sensors in the DOE and other agencies that are based on biological function as the toxins encountered during decontamination or waste remediation may be previously unknown or their effects subtle. Many times the contents of the environmental waste, especially the minor components, have not been fully identified and characterized. New sensors of this type could target unknown toxins that cause death as well as intermediate levels of toxicity that impair function or cause long term impairment that may eventually lead to death. The primary question posed in this grant was to create an electronically coupled neuronal cellular circuit to be used as sensor elements for a hybrid non-biological/biological toxin sensor system. A sensor based on the electrical signals transmitted between two mammalian neurons would allow the marriage of advances in solid state electronics with a functioning biological system to develop a new type of biosensor. Sensors of this type would be a unique addition to the field of sensor technology but would also be complementary to existing sensor technology that depends on knowledge of what is to be detected beforehand. We integrated physics, electronics, surface chemistry, biotechnology, and fundamental neuroscience in the development of this biosensor. Methods were developed to create artificial surfaces that enabled the patterning of discrete cells, and networks of cells, in culture; the networks were then aligned with transducers. The transducers were designed to measure electromagnetic fields (EMF) at low field strength. We have achieved all of the primary goals of the project. We can now pattern neurons routinely in our labs as well as align them with transducers. We have also shown the signals between neurons can be modulated by different biochemicals. In addition, we have made another significant advance where we have repeated the patterning results with adult hippocampal cells. Finally, we

  1. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    Science.gov (United States)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D.; Poulesquen, A.; Frizon, F.

    2015-09-01

    The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH-) are involved into diffusion process.

  2. Microemulsion-based synthesis of nanocrystalline materials.

    Science.gov (United States)

    Ganguli, Ashok K; Ganguly, Aparna; Vaidya, Sonalika

    2010-02-01

    Microemulsion-based synthesis is found to be a versatile route to synthesize a variety of nanomaterials. The manipulation of various components involved in the formation of a microemulsion enables one to synthesize nanomaterials with varied size and shape. In this tutorial review several aspects of microemulsion based synthesis of nanocrystalline materials have been discussed which would be of interest to a cross-section of researchers working on colloids, physical chemistry, nanoscience and materials chemistry. The review focuses on the recent developments in the above area with current understanding on the various factors that control the structure and dynamics of microemulsions which can be effectively used to manipulate the size and shape of nanocrystalline materials.

  3. Ecotoxicological effects of graphene-based materials

    Science.gov (United States)

    Montagner, A.; Bosi, S.; Tenori, E.; Bidussi, M.; Alshatwi, A. A.; Tretiach, M.; Prato, M.; Syrgiannis, Z.

    2017-03-01

    Graphene-based materials (GBMs) are currently under careful examination due to their potential impact on health and environment. Over the last few years, ecotoxicology has started to analyze all the potential issues related to GBMs and their possible consequences on living organisms. These topics are critically considered in this comprehensive review along with some considerations about future perspectives.

  4. Morphology of polyethylene ski base materials.

    Science.gov (United States)

    Fischer, Jörg; Wallner, Gernot M; Pieber, Alois

    2010-03-01

    We used high-resolution Raman spectroscopy and d