WorldWideScience

Sample records for based vaccine vector

  1. Improved NYVAC-based vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Karen V Kibler

    Full Text Available While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144 have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.

  2. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    Science.gov (United States)

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  3. Permissive growth of human adenovirus type 4 vaccine strain-based vector in porcine cell lines.

    Science.gov (United States)

    Gao, Dong-Sheng; Li, Xiao-Jing; Wan, Wen-Yan; Li, Hong-Jie; Wang, Xiao-Xue; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-02-01

    In recent years, there has been considerable interest in using adenoviruses as live vectors to develop recombinant vaccines. Previous studies have demonstrated the safety and effectiveness of HIV/SIV and influenza vaccine candidates based on human adenovirus type 4 (Ad4) replication-competent vectors in rhesus macaque and human model. To explore the possibility of human Ad4 vaccine strain used as a vector in developing porcine vaccines, the growth properties of replication-competent human Ad4 vaccine strain recombinant encoding EGFP in different porcine cell lines were investigated. All tested cell lines are permissive for Ad4 vaccine strain vector with varied replication efficiency. Thus, human Ad4 based vectors would be promising supplement to adenovirus vectors as a delivery vehicle for recombinant vaccines in swine industry. PMID:26850542

  4. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Science.gov (United States)

    Rady, Hamada F; Dai, Guixiang; Huang, Weitao; Shellito, Judd E; Ramsay, Alistair J

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route. PMID:26844553

  5. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Directory of Open Access Journals (Sweden)

    Hamada F Rady

    Full Text Available Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC. DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  6. Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system

    OpenAIRE

    Luke, Jeremy; Carnes, Aaron E; Hodgson, Clague P.; Williams, James A.

    2009-01-01

    To ensure safety, regulatory agencies recommend elimination of antibiotic resistance markers from therapeutic and vaccine plasmid DNA vectors. Here, we describe the development and application of a novel antibiotic-free selection system. Vectors incorporate and express a 150 bp RNA-OUT antisense RNA. RNA-OUT represses expression of a chromosomally integrated constitutively expressed counter-selectable marker (sacB), allowing plasmid selection on sucrose. Sucrose selectable DNA vaccine vectors...

  7. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria.

    Directory of Open Access Journals (Sweden)

    Frédéric Coutant

    Full Text Available Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5 of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice. The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042. Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia. However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.

  8. Vaccine Design: Replication-Defective Adenovirus Vectors.

    Science.gov (United States)

    Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J

    2016-01-01

    Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies. PMID:27076309

  9. Adenoviral vector expressing murine β-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice.

    Science.gov (United States)

    Vemula, Sai V; Pandey, Aseem; Singh, Neetu; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-10-01

    The ability to resist infections and respond to vaccinations is greatly reduced in the older adult population owing to a general decline in innate and adaptive immune functions with aging. Over the years several strategies such as increasing the vaccine dose, number of immunizations and using adjuvants have been evaluated to improve the immunogenicity and efficacy of vaccines in the older adult population. Murine β-defensin 2 (Mbd2) has been shown to function as a molecular adjuvant by recruiting and activating immature dendritic cells (DCs), professional antigen-presenting cells (APC), to the site of the immunization. In this study, we evaluated the potential utility of Mbd2 to enhance the efficacy of an adenoviral vector-based H5N1 influenza vaccine expressing hemagglutinin (HA) and nucleoprotein (NP) (HAd-HA-NP) in an aged mouse model. Our results indicated that immunostimulation with an adenoviral vector expressing Mbd2 (HAd-Mbd2) activated DCs and significantly enhanced the humoral and cellular immune responses induced by HAd-HA-NP. Furthermore, immunostimulation with HAd-Mbd2 followed by immunization with HAd-HA-NP resulted in significantly lower virus titers in the lungs following challenge with a H5N1 influenza virus compared to the group immunized with HAd-HA-NP without immunostimulation. Overall, our results highlight the potential utility of Mbd2 as a molecular adjuvant to enhance the immunogenicity and protective efficacy of vaccines for the elderly. PMID:23892144

  10. A Novel Immunogenic Spore Coat-Associated Protein in Bacillus Anthracis: Characterization via Proteomics Approaches and a Vector-Based Vaccine System

    OpenAIRE

    Liu, Yu-Tsueng; Lin, Shwu-Bin; Huang, Cheng-Po; Huang, Chun-Ming

    2007-01-01

    New generation anthrax vaccines have been actively explored with the aim of enhancing efficacies and decreasing undesirable side effects that could be caused by licensed vaccines. Targeting novel antigens and/or eliminating the requirements for multiple needle injections and adjuvants are major objectives in the development of new anthrax vaccines. Using proteomics approaches, we identified a spore coat-associated protein (SCAP) in Bacillus anthracis. An E. coli vector-based vaccine system wa...

  11. A virus vector based on Canine Herpesvirus for vaccine applications in canids.

    Science.gov (United States)

    Strive, T; Hardy, C M; Wright, J; Reubel, G H

    2007-01-31

    Canine Herpesvirus (CHV) is being developed as a virus vector for the vaccination of European red foxes. However, initial studies using recombinant CHV vaccines in foxes revealed viral attenuation and lack of antibody response to inserted foreign antigens. These findings were attributed both to inactivation of the thymidine kinase (TK) gene and excess foreign genetic material in the recombinant viral genome. In this study, we report an improved CHV-bacterial artificial chromosome (BAC) vector system designed to overcome attenuation in foxes. A non-essential region was identified in the CHV genome as an alternative insertion site for foreign genes. Replacement of a guanine/cytosine (GC)-rich intergenic region between UL21 and UL22 of CHV with a marker gene did not change growth behaviour in vitro, showing that this region is not essential for virus growth in cell culture. We subsequently produced a CHV-BAC vector with an intact TK gene in which the bacterial genes and the antigen expression cassette were inserted into this GC-rich locus. Unlike earlier constructs, the new CHV-BAC allowed self-excision of the bacterial genes via homologous recombination after transfection of BACs into cell culture. The BAC-CHV system was used to produce a recombinant virus that constitutively expressed porcine zona pellucida subunit C protein between the UL21 and UL22 genes of CHV. Complete self-excision of the bacterial genes from CHV was achieved within one round of replication whilst retaining antigen gene expression. PMID:17079096

  12. Alphavirus-Based Vaccines.

    Science.gov (United States)

    Lundstrom, Kenneth

    2016-01-01

    Alphavirus vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been widely applied for vaccine development. Naked RNA replicons, recombinant viral particles, and layered DNA vectors have been subjected to immunization in preclinical animal models with antigens for viral targets and tumor antigens. Moreover, a limited number of clinical trials have been conducted in humans. Vaccination with alphavirus vectors has demonstrated efficient immune responses and has showed protection against challenges with lethal doses of virus and tumor cells, respectively. Moreover, vaccines have been developed against alphaviruses causing epidemics such as Chikungunya virus. PMID:27076308

  13. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    Science.gov (United States)

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. PMID:24773322

  14. Development of Streptococcus pneumoniae Vaccines Using Live Vectors

    Directory of Open Access Journals (Sweden)

    Shifeng Wang

    2014-01-01

    Full Text Available Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines.

  15. Alphavirus-Based Vaccines

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2014-06-01

    Full Text Available Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.

  16. Impact of preexisting adenovirus vector immunity on immunogenicity and protection conferred with an adenovirus-based H5N1 influenza vaccine.

    Science.gov (United States)

    Pandey, Aseem; Singh, Neetu; Vemula, Sai V; Couëtil, Laurent; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2012-01-01

    The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (mice with up to 10(7) plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 10(8) p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 10(9) p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines. PMID:22432020

  17. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants

    OpenAIRE

    Chen, Qiang; He, Junyun; Phoolcharoen, Waranyoo; Mason, Hugh S.

    2011-01-01

    Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome...

  18. Virus-Like Vesicle-Based Therapeutic Vaccine Vectors for Chronic Hepatitis B Virus Infection

    OpenAIRE

    Tracy D Reynolds; Buonocore, Linda; Rose, Nina F.; Rose, John K.; Robek, Michael D.

    2015-01-01

    More than 500,000 people die each year from the liver diseases that result from chronic hepatitis B virus (HBV) infection. Therapeutic vaccines, which aim to elicit an immune response capable of controlling the virus, offer a potential new treatment strategy for chronic hepatitis B. Recently, an evolved, high-titer vaccine platform consisting of Semliki Forest virus RNA replicons that express the vesicular stomatitis virus glycoprotein (VSV G) has been described. This platform generates virus...

  19. Low seroprevalent species D adenovirus vectors as influenza vaccines.

    Science.gov (United States)

    Weaver, Eric A; Barry, Michael A

    2013-01-01

    Seasonal and pandemic influenza remains a constant threat. While standard influenza vaccines have great utility, the need for improved vaccine technologies have been brought to light by the 2009 swine flu pandemic, highly pathogenic avian influenza infections, and the most recent early and widespread influenza activity. Species C adenoviruses based on serotype 5 (AD5) are potent vehicles for gene-based vaccination. While potent, most humans are already immune to this virus. In this study, low seroprevalent species D adenoviruses Ad26, 28, and 48 were cloned and modified to express the influenza virus A/PR/8/34 hemagglutinin gene for vaccine studies. When studied in vivo, these species D Ad vectors performed quite differently as compared to species C Ad vectors depending on the route of immunization. By intramuscular injection, species D vaccines were markedly weaker than species C vaccines. In contrast, the species D vaccines were equally efficient as species C when delivered mucosally by the intranasal route. Intranasal adenovirus vaccine doses as low as 10(8) virus particles per mouse induced complete protection against a stringent lethal challenge dose of influenza. These data support translation of species D adenoviruses as mucosal vaccines and highlight the fundamental effects of differences in virus tropism on vaccine applications. PMID:23991187

  20. Progress on adenovirus-vectored universal influenza vaccines.

    Science.gov (United States)

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches. PMID:25876176

  1. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  2. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  3. Characterization of the immune responses elicited by baculovirus-based vector vaccines against influenza virus hemagglutinin

    Institute of Scientific and Technical Information of China (English)

    Zhi-peng HU; Juan YIN; Yuan-yuan ZHANG; Shu-ya JIA; Zuo-jia CHEN; Jiang ZHONG

    2012-01-01

    Aim:To compare the specific immune responses elicited by different baculovirus vectors in immunized mice.Methods:We constructed and characterized two recombinant baculoviruses carrying the expression cassette for the H5N1 influenza virus hemagglutinin (HA) gene driven by either an insect cell promoter (vAc-HA) or a dual-promoter active both in insect and mammalian cells (vAc-HA-DUAL).Virus without the HA gene (vAc-EGFP) was used as a control.These viruses were used to immunize mice subcutaneously and intraperitoneally.The production of total and specific antibodies was determined by ELISA and competitive ELISA.Cytokine production by the spleen cells of immunized mice was studied using the ELISPOT assay.Results:Both the vAc-HA and vAc-HA-DUAL vectors expressed HA proteins in insect Sf9 cells,and HA antigen was present in progeny virions.The vAc-HA-DUAL vector also mediated HA expression in virus-transduced mammalian cell lines (BHK and A547).Both vAo-HA and vAc-HA-DUAL exhibited higher transduction efficiencies than vAc-EGFP in mammalian cells,as shown by the expression of the reporter gene egfp.Additionally,both vAc-HA and vAc-HA-DUAL induced high levels of HA-specific antibody production in immunized mice; vAc-HA-DUAL was more efficient in inducing IFN-Y and IL-2 upon stimulation with specific antigen,whereas vAc-HA was more efficient in inducing IL-4 and IL-6.Conclusion:Baculovirus vectors elicited efficient,specific immune responses in immunized mice.The vector displaying the HA antigen on the virion surface (vAc-HA) elicited a Th2-biased immune response,whereas the vector displaying HA and mediating HA expression in the cell (vAc-HA-DUAL) elicited a Th1-biased immune response.

  4. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    OpenAIRE

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vac...

  5. Optimal vaccination scenarios against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene;

    Using a process oriented semi-agent based model we simulated the spread of Bluetongue virus in Denmark. We evaluated the efficiency and minimum vaccination cover for eight different preventive vaccination strategies in Denmark. The simulation model replicates both passive and active flight....... Results in this presentation were obtained building upon the model presented in: Simulating spread of Bluetongue Virus by flying vectors between hosts on pasture. Kaare Græsbøll et al. Scientific Reports. 2:863 (2012)....... of Culicoides between hosts on pasture and stables in Denmark. Seasonal abundance of midges and temperature dependence on biological processes were included in the model. The eight vaccination scenarios comprised of: All holdings vaccinated to a given percentage, random holdings selected for vaccination, two...

  6. Detection of infectious laryngotracheitis virus antibodies by glycoprotein-specific ELISAs in chickens vaccinated with viral vector vaccines.

    Science.gov (United States)

    Godoy, Alecia; Icard, Alan; Martinez, Mellisa; Mashchenko, Anna; García, Maricarmen; El-Attrachea, John

    2013-06-01

    Two glycoproteins of infectious laryngotracheitis virus (ILTV), gI and gB, were expressed in baculovirus and purified for the development of ILTV recombinant protein-based ELISAs. The ability of gB and gI ELISAs to detect ILTV antibodies in chickens vaccinated with viral vector vaccines carrying the ILTV gB gene, Vectormune FP-LT (the commercial fowlpox vector laryngotracheitis vaccine) and Vectormune HVT-LT (commercial turkey herpesvirus vector laryngotracheitis vaccine), was evaluated using serum samples from experimentally vaccinated and challenge chickens. The detection of gB antibodies in the absence of gI antibodies in serum from chickens vaccinated with FP-LT indicated that the gB ELISA was specific for the detection of antibodies elicited by vaccination with this viral vector vaccine. The gB ELISA was more sensitive than the commercial ILTV ELISA to detect seroconversion after vaccination with the FP-LT vaccine. Both gI and gB antibodies were detected in the serum samples collected from chickens at different times postchallenge, indicating that the combination of these ELISAs was suitable to screen serum samples from chickens vaccinated with either recombinant viral vector FP-LT or HVT-LT vaccines. The agreement between the gI ELISA and the commercial ELISA to detect antibodies in serum samples collected after challenge was robust. However, further validation of these ELISAs needs to be performed with field samples. PMID:23901757

  7. A Human Vaccine Strategy Based On Chimpanzee Adenoviral and MVA Vectors That Primes, Boosts and Sustains Functional HCV Specific T-Cell Memory*

    Science.gov (United States)

    Swadling, Leo; Capone, Stefania; Antrobus, Richard D.; Brown, Anthony; Richardson, Rachel; Newell, Evan W.; Halliday, John; Kelly, Christabel; Bowen, Dan; Fergusson, Joannah; Kurioka, Ayako; Ammendola, Virginia; Sorbo, Mariarosaria Del; Grazioli, Fabiana; Esposito, Maria Luisa; Siani, Loredana; Traboni, Cinzia; Hill, Adrian; Colloca, Stefano; Davis, Mark; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul; Barnes, Eleanor

    2015-01-01

    A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies and assessment of host immunity during acute infection highlight the critical role that effective T-cell immunity plays in viral control. In this first-in-man study we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A and NS5B proteins of HCV genotype-1b. Analysis employed single cell mass cytometry (CyTOF), and HLA class-I peptide tetramer technology in healthy human volunteers. We show that HCV specific T-cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8+ and CD4+ HCV specific T-cells targeting multiple HCV antigens. Sustained memory and effector T-cell populations are generated and T-cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) following heterologous MVA boost. We have developed a HCV vaccine strategy, with durable, broad, sustained and balanced T-cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine. PMID:25378645

  8. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Directory of Open Access Journals (Sweden)

    Gennaro Ciliberto

    2011-09-01

    Full Text Available Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  9. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Aurisicchio, Luigi, E-mail: aurisicchio@takis-it.it [Takis, via di Castel Romano 100, 00128 Rome (Italy); BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV) (Italy); Ciliberto, Gennaro [Takis, via di Castel Romano 100, 00128 Rome (Italy); Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro (Italy)

    2011-09-22

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  10. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    International Nuclear Information System (INIS)

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  11. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method

    Directory of Open Access Journals (Sweden)

    Roy Chad J

    2011-11-01

    Full Text Available Abstract Conventional parenteral injection of vaccines is limited in its ability to induce locally-produced immune responses in the respiratory tract, and has logistical disadvantages in widespread vaccine administration. Recent studies suggest that intranasal delivery or vaccination in the respiratory tract with recombinant viral vectors can enhance immunogenicity and protection against respiratory diseases such as influenza and tuberculosis, and can offer more broad-based generalized protection by eliciting durable mucosal immune responses. Controlled aerosolization is a method to minimize vaccine particle size and ensure delivery to the lower respiratory tract. Here, we characterize the dynamics of aerosolization and show the effects of vaccine concentration on particle size, vector viability, and the actual delivered dose of an aerosolized adenoviral vector. In addition, we demonstrate that aerosol delivery of a recombinant adenoviral vaccine encoding H1N1 hemagglutinin is immunogenic and protects ferrets against homologous viral challenge. Overall, aerosol delivery offers comparable protection to intramuscular injection, and represents an attractive vaccine delivery method for broad-based immunization campaigns.

  12. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    OpenAIRE

    Wold, William S.M.; Toth, Karoly

    2013-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vector...

  13. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Directory of Open Access Journals (Sweden)

    Joan Joseph

    2010-01-01

    Full Text Available Mycobacterium bovis Bacillus Calmette-Guérin (BCG as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261 and Mycobacteria spp. α-antigen promoter (in plasmid pJH222. Among 14 rBCG:HIV-1gp120 (pMV261 colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222 colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors.

  14. Adenoviral-based foot-and-mouth disease virus vaccine: evaluation of new vectors expressing serotype O in bovines

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV), an antigenically variable virus, is considered the most important infectious disease of cloven-hoofed animals. Recently serotypes A and O have been the cause of major outbreaks. We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine...

  15. Functional Human Immunodeficiency Virus Type 1 (HIV-1) Gag-Pol or HIV-1 Gag-Pol and Env Expressed from a Single Rhabdovirus-Based Vaccine Vector Genome

    OpenAIRE

    McGettigan, James P.; Naper, Kristin; Orenstein, Jan; Koser, Martin; McKenna, Philip M.; Schnell, Matthias J.

    2003-01-01

    Recombinant rabies virus (RV) vaccine strain-based vectors have been successfully developed as vaccines against other viral diseases (J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001; McGettigan et al., J. Virol. 75:8724-8732, 2001; C. A. Siler et al., Virology 292:24-34, 2002), and safety concerns have recently been addressed (McGettigan et al., J. Virol. 77:237-244, 2003). However, size limitations of the vectors may restrict their use for development of vaccine applications that requi...

  16. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus

    Indian Academy of Sciences (India)

    Helin Li; Pengbo Ning; Zhi Lin; Wulong Liang; Kai Kang; Lei He; Yanming Zhang

    2015-03-01

    The use of adenovirus vector-based vaccines is a promising approach for generating antigen-specific immune responses. Improving vaccine potency is necessary in other approaches to address their inadequate protection for the majority of infectious diseases. This study is the first to reconstruct a recombinant replication-defective human adenovirus co-expressing E2 and invasin C-terminal (InvC) glycoproteins (rAd-E2-InvC). rAd-E2-InvC with 2×106 TCID50 was intramuscularly administered two times to CSFV-free pigs at 14 day intervals. No adverse clinical reactions were observed in any of the pigs after the vaccination. The CSFV E2-specific antibody titer was significantly higher in the rAd-E2-InvC group than that in the rAdV-E2 group as measured by NPLA and blocking ELISA. Pigs immunized with rAd-E2-InvC were completely protected against lethal challenge. Neither CSFV RNA nor pathological changes were detected in the tissues after CSFV challenge. These results demonstrate that rAd-E2-InvC could be an alternative to the existing CSF vaccine. Moreover, InvC that acts as an adjuvant could enhance the immunogenicity of rAdV-E2 and induce high CSFV E2-specific antibody titer and protection level.

  17. Protective Efficacy of a Single Immunization of a Chimeric Adenovirus Vector-Based Vaccine against Simian Immunodeficiency Virus Challenge in Rhesus Monkeys▿

    OpenAIRE

    Barouch, Dan H.; Liu, Jinyan; Lynch, Diana M; O'Brien, Kara L.; La Porte, Annalena; Simmons, Nathaniel L.; Riggs, Ambryice M.; Clark, Sarah; Abbink, Peter; Montefiori, David C.; Landucci, Gary; Forthal, Donald N.; Self, Steven G.; Carville, Angela; Mansfield, Keith

    2009-01-01

    Rare serotype and chimeric recombinant adenovirus (rAd) vectors that evade anti-Ad5 immunity are currently being evaluated as potential vaccine vectors for human immunodeficiency virus type 1 and other pathogens. We have recently reported that a heterologous rAd prime-boost regimen expressing simian immunodeficiency virus (SIV) Gag afforded durable partial immune control of an SIV challenge in rhesus monkeys. However, single-shot immunization may ultimately be preferable for global vaccine de...

  18. VectorBase

    Data.gov (United States)

    U.S. Department of Health & Human Services — VectorBase is a Bioinformatics Resource Center for invertebrate vectors. It is one of four Bioinformatics Resource Centers funded by NIAID to provide web-based...

  19. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    Science.gov (United States)

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development. PMID:26514419

  20. Development of an AIDS vaccine using Sendai virus vectors.

    Science.gov (United States)

    Ishii, Hiroshi; Matano, Tetsuro

    2015-11-01

    Development of an effective AIDS vaccine is crucial for the control of global human immunodeficiency virus type 1 (HIV-1) prevalence. We have developed a novel AIDS vaccine using a Sendai virus (SeV) vector and investigated its efficacy in a macaque AIDS model of simian immunodeficiency virus (SIV) infection. Its immunogenicity and protective efficacy have been shown, indicating that the SeV vector is a promising delivery tool for AIDS vaccines. Here, we describe the potential of SeV vector as a vaccine antigen delivery tool to induce effective immune responses against HIV-1 infection. PMID:26232346

  1. Challenges in manufacturing adenoviral vectors for global vaccine product deployment.

    Science.gov (United States)

    Vellinga, Jort; Smith, J Patrick; Lipiec, Agnieszka; Majhen, Dragomira; Lemckert, Angelique; van Ooij, Mark; Ives, Paul; Yallop, Christopher; Custers, Jerome; Havenga, Menzo

    2014-04-01

    Abstract Once adenovirus vector-based vaccines are licensed for the prevention of important infectious diseases, manufacturing processes capable of reliably delivering large numbers of vaccine doses will be required. The highest burden of disease for many infectious pathogens under investigation occurs in resource-poor settings. Therefore, the price per dose will be an important determinant of success. This review describes common practices for manufacturing replication-incompetent adenovirus vectors at clinical scale. Recent innovations and strategies aimed at improving the cost-effectiveness of manufacturing and ensuring high-volume vaccine production and purification are described. Hereto, technologies to increase bioreactor yields are reviewed. In addition, the use of single-use perfusion bioreactors, modification of some purification steps to avoid the use of expensive endonucleases, and use of charged filters during anion exchange all have the potential to bring down the cost of goods and are thus described. Finally, processes for ensuring quality throughout the manufacturing process, methods for testing viral identity, and safety of master seeds through to the end vaccine product are described. PMID:24593243

  2. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses.

    Science.gov (United States)

    Holman, David H; Wang, Danher; Raja, Nicholas U; Luo, Min; Moore, Kevin M; Woraratanadharm, Jan; Mytle, Nutan; Dong, John Y

    2008-05-19

    There are legitimate concerns that the highly pathogenic H5N1 avian influenza virus could adapt for human-to-human transmission and cause a pandemic similar to the 1918 "Spanish flu" that killed 50 million people worldwide. We have developed pandemic influenza vaccines by incorporating multiple antigens from both avian and Spanish influenza viruses into complex recombinant adenovirus vectors. In vaccinated mice, these vaccines induced strong humoral and cellular immune responses against pandemic influenza virus antigens, and protected vaccinated mice against lethal H5N1 virus challenge. These results indicate that this multi-antigen, broadly protective vaccine may serve as a safer and more effective approach than traditional methods for development of a pandemic influenza vaccine. PMID:18395306

  3. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. PMID:25218295

  4. 人乳头瘤病毒治疗性活载体疫苗的研究进展%Research progress of human papillonmavirus live vector-based vaccines

    Institute of Scientific and Technical Information of China (English)

    吴小红; 陈科达; 吴洁; 庄昉

    2011-01-01

    The high-risk types of human papillomavirus (HPV-16 and HPV-18) play essential roles in the pathogenesis of cervical cancers. Despite recent advances in preventive HPV vaccine development, preventive HPV vaccines are costly and may not be capable of treating established HPV infections and HPV-associated esions. Various forms of therapeutic HPV vaccines targeting E6/E7 antigens have been tested in preclinical models and clinical trials, including live vector-based vaccines, peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines, and whole cellbased vaccines. Live-based therapeutic HPV vaccines are reviewed in the article.%高危型人乳头瘤病毒(HPV)-16和HPV-18在宫颈癌的致病过程中起着重要作用.近年来,HPV预防性疫苗已成功上市,但其费用较高,且不能治疗已感染的患者及相关的损伤.多种靶向E6/E7抗原的HPV治疗性疫苗已进入临床前模型和临床试验,包括活载体疫苗,多肽、蛋白疫苗,核酸疫苗及细胞疫苗.此文就HPV治疗性活载体疫苗进行了综述.

  5. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  6. Recombinant Mycobacterium bovis BCG as an HIV Vaccine Vector

    OpenAIRE

    Chapman, Rosamund; Chege, Gerald; Shephard, Enid; Stutz, Helen; Williamson, Anna-Lise

    2010-01-01

    HIV-1 has resulted in a devastating AIDS pandemic. An effective HIV/AIDS vaccine that can be used to either, prevent HIV infection, control infection or prevent progression of the disease to AIDS is needed. In this review we discuss the use of Mycobacterium bovis BCG, the tuberculosis vaccine, as a vaccine vector for an HIV vaccine. Numerous features make BCG an attractive vehicle to deliver HIV antigens. It has a good safety profile, elicits long-lasting cellular immune responses and in addi...

  7. The Influence of Delivery Vectors on HIV Vaccine Efficacy

    Directory of Open Access Journals (Sweden)

    BeatriceOmusiroOndondo

    2014-08-01

    Full Text Available Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximise transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502 where human adenovirus serotype 5 (Ad5 was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared towards delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.

  8. The influence of delivery vectors on HIV vaccine efficacy.

    Science.gov (United States)

    Ondondo, Beatrice O

    2014-01-01

    Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy. PMID:25202303

  9. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus.

    Science.gov (United States)

    Singh, Neetu; Pandey, Aseem; Jayashankar, Lakshmi; Mittal, Suresh K

    2008-05-01

    Because of the high prevalence of adenovirus (Ad) infections in humans, it is believed that pre-existing Ad-neutralizing antibodies (vector immunity) may negatively impact the immune response to vaccine antigens when delivered by human Ad (HAd) vectors. In order to evaluate whether bovine Ad subtype 3 (BAd3), a non-HAd vector, can effectively elude high levels of pre-existing vector immunity, naïve and HAd serotype 5 (HAd)-primed mice were immunized with BAd-H5HA [BAd3 vector expressing the hemagglutinin (HA) gene from H5N1 influenza virus]. Even in the presence of very high levels of HAd-specific neutralizing antibody, no significant reductions in HA-specific humoral and cell-mediated immune (CMI) responses were observed in HAd-primed mice immunized with BAd-H5HA. In naïve mice immunized with HAd-H5HA (HAd5 vector expressing H5N1 HA) and boosted with BAd-H5HA, the humoral responses elicited were significantly higher (P mice with BAd-H5HA bestowed full protection from morbidity and mortality following a potentially lethal challenge with A/Hong Kong/483/97. These results demonstrate the importance of BAd vectors as an alternate or supplement to HAd vectors for influenza pandemic preparedness. PMID:18301400

  10. Progress of Influenza Virus Like Particles Vaccine Based on Baculovirus Expression Vector System%昆虫杆状病毒表达系统生产流感疫苗的研究进展

    Institute of Scientific and Technical Information of China (English)

    李晶梅; 靖志强; 秦红刚; 薛霜; 漆世华; 谢红玲; 吴玉石

    2012-01-01

    Influenza virus -like particles (VLPs) based on baculovirus expression vector system (BEVS) was a new platform for influenza vaccines. Its research progress was reviewed so as to provide reference for development of animal influenza VLPs vaccine. Influenza VLPs derived from BEVS may be promising vaccine candidate for influenza. Furthermore, influenza VLPs derived from BEVS may be used as animal vaccines.%综述了昆虫杆状病毒表达系统生产流感疫苗的研究进展,同时分析了昆虫杆状病毒表达系统表达流感病毒样颗粒用于流感疫苗的优势和前景,以期为兽用流感病毒VLPs疫苗研发提供参考。

  11. A Vesicular Stomatitis Virus-Based Hepatitis B Virus Vaccine Vector Provides Protection against Challenge in a Single Dose ▿

    OpenAIRE

    Cobleigh, Melissa A.; Buonocore, Linda; Uprichard, Susan L; Rose, John K.; Robek, Michael D.

    2010-01-01

    As one of the world's most common infectious diseases, hepatitis B virus (HBV) is a serious worldwide public health problem, with HBV-associated liver disease accounting for more than half a million deaths each year. Although there is an effective prophylactic vaccine currently available to prevent infection, it has a number of characteristics that are suboptimal: multiple doses are needed to induce long-lasting immunity, immunity declines over time, it does not elicit protection in some indi...

  12. Protection against infectious laryngotracheitis by in ovo vaccination with commercially available viral vector recombinant vaccines.

    Science.gov (United States)

    Johnson, Deirdre I; Vagnozzi, Ariel; Dorea, Fernanda; Riblet, Sylva M; Mundt, Alice; Zavala, Guillermo; García, Maricarmen

    2010-12-01

    Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is mainly controlled through biosecurity and by vaccination with live-attenuated vaccines. The chicken embryo origin (CEO) vaccines, although proven to be effective in experimental settings, have limited efficacy in controlling the disease in dense broiler production sites due to unrestricted use and poor mass vaccination coverage. These factors allowed CEO vaccines to regain virulence, causing long lasting and, consequently, severe outbreaks of the disease. A new generation of viral vector fowl poxvirus (FPV) and herpesvirus of turkey (HVT) vaccines carrying ILTV genes has been developed and such vaccines are commercially available. These vaccines are characterized by their lack of transmission, lack of ILTV-associated latent infections, and no reversion to virulence. HVT-vectored ILTV recombinant vaccines were originally approved for subcutaneous HVT or transcutaneous (pox) delivery. The increased incidence of ILTV outbreaks in broiler production sites encouraged the broiler industry to deliver the FPV-LT and HVT-LT recombinant vaccines in ovo. The objective of this study was to evaluate the protection induced by ILTV viral vector recombinant vaccines after in ovo application in 18-day-old commercial broiler embryos. The protection induced by recombinant ILTV vaccines was assessed by their ability to prevent clinical signs and mortality; to reduce challenge virus replication in the trachea; to prevent an increase in body temperature; and to prevent a decrease in body weight gain after challenge. In this study, both recombinant-vectored ILTV vaccines provided partial protection, thereby mitigating the disease, but did not reduce challenge virus loads in the trachea. PMID:21313847

  13. Poxvirus-vectored vaccines for rabies--a review.

    Science.gov (United States)

    Weyer, Jacqueline; Rupprecht, Charles E; Nel, Louis H

    2009-11-27

    Oral rabies vaccination of target reservoir species has proved to be one of the pillars of successful rabies elimination programs. The use of live attenuated rabies virus vaccines has been extensive but several limitations hamper its future use. A recombinant vaccinia-rabies vaccine has also been successfully used for the oral vaccination of several species. Nevertheless, its lack of efficacy in certain important rabies reservoirs and concerns on the use of this potent live virus as vaccine carrier (vector) impair the expansion of its use for new target species and new areas. Several attenuated and host-restricted poxvirus alternatives, which supposedly offer enhanced safety, have been investigated. Once again, efficacy in certain target species and innocuity through the oral route remain major limitations of these vaccines. Alternative recombinant vaccines using adenovirus as an antigen delivery vector have been extensively investigated and may provide an important addition to the currently available oral rabies vaccine repertoire, but are not the primary subject of this review. PMID:19925953

  14. Attenuated Measles Virus as a Vaccine Vector

    OpenAIRE

    Zuniga, Armando; Wang, Zili; Liniger, Matthias; Hangartner, Lars; Caballero, Michael; Pavlovic, Jovan; Wild, Peter; Viret, Jean Francois; Glueck, Reinhard; Billeter, Martin A.; Naim, Hussein Y.

    2007-01-01

    Live attenuated measles virus (MV) vaccines have an impressive record of safety, efficacy and ability to induce life-long immunity against measles infection. Using reverse genetics technology, such negative-strand RNA viruses can now be rescued from cloned DNA. This technology allows the insertion of exogenous genes encoding foreign antigens into the MV genome in such a way that they can be expressed by the MV vaccine strain, without affecting virus structure, propagation and cell targeting. ...

  15. Dendritic cell-based vaccination with lentiviral vectors encoding ubiquitinated hepatitis B core antigen enhances hepatitis B virus-specific immune responses in vivo.

    Science.gov (United States)

    Dai, Shenglan; Zhuo, Meng; Song, Linlin; Chen, Xiaohua; Yu, Yongsheng; Tang, Zhenghao; Zang, Guoqing

    2015-11-01

    The activity of hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) plays a predominant role in the clearance of HBV. Dendritic cells (DCs) are key antigen-presenting cells and play an important role in the initiation of immune responses. We previously verified that lentiviral vector encoding ubiquitinated hepatitis B core antigen (LV-Ub-HBcAg) effectively transduced DCs to induce maturation, and the mature DCs efficiently induced T cell polarization to Th1 and generated HBcAg-specific CTLs ex vivo. In this study, HBV-specific immune responses of LV-Ub-HBcAg in BALB/c mice (H-2Kd) were evaluated. It was shown that direct injection of LV-Ub-HBcAg increased the production of cytokines IL-2 and IFN-γ, elicited strong antibody responses, and remarkably generated a high percentage of IFN-γ+CD8+ T cells with HBV-specific CTL responses in BALB/c mice. In addition, direct injection of LV-Ub-HBcAg induced potent anti-HBV immune responses, similar to those elicited by in vitro-transduced DCs. In conclusion, the DC-based therapeutic vaccine LV-Ub-HBcAg elicited specific antibody immune responses and induced robust specific CTL activity in vivo. PMID:26373843

  16. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, O; Svane, I M;

    2012-01-01

    Cancer vaccines designed to re-calibrate the existing host-tumour interaction, tipping the balance from tumor acceptance towards tumor control holds huge potential to complement traditional cancer therapies. In general, limited success has been achieved with vaccines composed of tumor...... in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  17. Recombinant Mycobacterium bovis BCG as an HIV vaccine vector.

    Science.gov (United States)

    Chapman, Rosamund; Chege, Gerald; Shephard, Enid; Stutz, Helen; Williamson, Anna-Lise

    2010-06-01

    HIV-1 has resulted in a devastating AIDS pandemic. An effective HIV/AIDS vaccine that can be used to either, prevent HIV infection, control infection or prevent progression of the disease to AIDS is needed. In this review we discuss the use of Mycobacterium bovis BCG, the tuberculosis vaccine, as a vaccine vector for an HIV vaccine. Numerous features make BCG an attractive vehicle to deliver HIV antigens. It has a good safety profile, elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable, a necessary consideration for developing countries. In this review we discuss the numerous factors that influence generation of a genetically stable recombinant BCG vaccine for HIV. PMID:20353397

  18. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    Directory of Open Access Journals (Sweden)

    Nathan C Peters

    2009-06-01

    Full Text Available Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  19. Adenovirus-Vectored Vaccine as a Rapid-Response Tool Against Avian Influenza Pandemic

    International Nuclear Information System (INIS)

    Influenza viruses in nature undergo genetic mutation and reassortment. Three pandemics of avian influenza in man were recorded in the twentieth century. Highly pathogenic avian influenza (HPAI) viruses currently in circulation pose a threat for another world-wide pandemic, if they become transmissible from man to man. Manufacturing protective vaccines using current egg-based technology is often difficult due to the virulence of the virus and its adverse effects on the embryonating egg substrate. New technologies allow the creation of safe and protective pandemic influenza vaccines without the need for egg based substrates. These technologies allow new vaccines to be created in less than one month. Manufacturing is in tissue culture, not eggs. Vaccine can be administered to man non-invasively, without adjuvants, eliciting a rapid and protective immune response. Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad5)-derived vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5N2 HPAI virus challenges. Mass-administration of this bird flu vaccine can be streamlined with available robotic in ovo injectors. Vaccination using this vaccine could protect the the largest host reservoir (chickens) and greatly reduce the exposure of man to avian influenza. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of a non-replicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural AI virus infections. In addition to mass immunization of poultry, both animals and humans have been effectively immunized by intranasal administration of Ad5-vectored influenza vaccines without any appreciable side effects, even in mice and human volunteers with

  20. Successful vaccination with a polyvalent live vector despite existing immunity to an expressed antigen.

    Science.gov (United States)

    Flexner, C; Murphy, B R; Rooney, J F; Wohlenberg, C; Yuferov, V; Notkins, A L; Moss, B

    1988-09-15

    A global vaccination strategy must take into account production and delivery costs as well as efficacy and safety. A heat-stable, polyvalent vaccine that requires only one inoculation and induces a high level of humoral and cellular immunity against several diseases is therefore desirable. A new approach is to use live microorganisms such as mycobacteria, enteric bacteria, adenoviruses, herpesviruses and poxviruses as vaccine vectors. A potential limitation of live polyvalent vaccines, however, is existing immunity within the target population not only to the vector, but to any of the expressed antigens. This could restrict replication of the vector, curtail expression of antigens, and reduce the total immune response to the vaccine. Recently acquired immunity to vaccinia virus can severely limit the efficacy of a live recombinant vaccinia-based vaccine, so a strategy involving closely spaced inoculations with the same vector expressing different antigens may present difficulties. We have constructed a recombinant vaccinia virus that expresses surface proteins from two diverse pathogens, influenza A virus haemagglutinin and herpes simplex virus type 1 (HSV-1) glycoprotein D. Mice that had recently recovered from infection with either HSV-1 or influenza A virus could still be effectively immunized with the double recombinant. PMID:2842693

  1. Evaluation of avian paramyxovirus serotypes 2 to 10 as vaccine vectors in chickens previously immunized against Newcastle disease virus.

    Science.gov (United States)

    Tsunekuni, Ryota; Hikono, Hirokazu; Saito, Takehiko

    2014-08-15

    Newcastle disease virus (NDV), also known as avian paramyxovirus (APMV) serotype 1, is used as a vaccine vector to express the hemagglutinin protein of avian influenza (AI) virus. However, use of live NDV recombinant vaccines expressing AI virus hemagglutinin is not desirable in emergency vaccination programs to control severe AI outbreaks in chickens, because commercial chickens often possess pre-existing NDV immunity induced by routine vaccination. Therefore, a novel vaccine vector is required for emergency vaccination of chickens to control AI during outbreaks. We investigated whether candidate APMV strains could be used as vaccine vectors that could evade the pre-existing immunity acquired by chickens through NDV vaccination and that would replicate in the mucosal tissues where AI virus primarily replicates. To this end, we examined strains of APMV serotypes 2 to 10 for their immunogenicity and replication in chickens with pre-existing immunity to NDV. APMV serotypes 2, 6, and 10 were the least cross-reactive to antibodies to NDV in hemagglutination inhibition and/or virus neutralization tests. Virus replication in mucosal tissues, as well as antibody response after oculonasal inoculation, was observed when 7-week-old chickens were challenged with APMV of serotype 2, 6, or 10. The APMV also replicated in mucosal tissues and induced antibody responses in chickens that had been vaccinated twice with NDV before challenge. These results warrant further study to develop vaccine vectors based on APMV serotype 2, 6, or 10 for emergency vaccination of chickens against AI. PMID:24880702

  2. Characterization of Nonpathogenic, Live, Viral Vaccine Vectors Inducing Potent Cellular Immune Responses

    OpenAIRE

    Publicover, Jean; Ramsburg, Elizabeth; Rose, John K.

    2004-01-01

    Experimental vaccines based on recombinant vesicular stomatitis viruses (VSV) expressing foreign viral proteins are protective in several animal disease models. Although these attenuated viruses are nonpathogenic in nonhuman primates when given by nasal, oral, or intramuscular routes, they are pathogenic in mice when given intranasally, and further vector attenuation may be required before human trials with VSV-based vectors can begin. Mutations truncating the VSV glycoprotein (G) cytoplasmic...

  3. Canine adenovirus based rabies vaccines.

    Science.gov (United States)

    Tordo, N; Foumier, A; Jallet, C; Szelechowski, M; Klonjkowski, B; Eloit, M

    2008-01-01

    Adenovirus based vectors are very attractive candidates for vaccination purposes as they induce in mammalian hosts potent humoral, mucosal and cellular immune responses to antigens encoded by the inserted genes. We have generated E1-deleted and replication-competent recombinant canine type-2 adenoviruses expressing the rabies virus glycoprotein (G). The effectiveness of both vectors to express a native G protein has been characterized in vitro in permissive cell lines. We compared the humoral and cellular immune responses induced in mice by intramuscular injection of the recombinant canine adenovirus vectors with those induced by a human (Ad5) E1-deleted virus expressing the same rabies G protein. Humoral responses specific to the adenoviruses or the rabies glycoprotein antigens were studied. The influence of the mouse strain was observed using replication-competent canine adenovirus. A high level of rabies neutralizing antibody was observed upon i.m. inoculation, and 100% of mice survived lethal challenge. These results are very promising in the perspective of oral vaccine for dog rabies control. PMID:18634509

  4. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  5. Dengue in Cape Verde: vector control and vaccination

    CERN Document Server

    Rodrigues, Helena Sofia; Torres, Delfim F M

    2012-01-01

    In 2009, for the first time in Cape Verde, an outbreak of dengue was reported and over twenty thousand people were infected. Only a few prophylactic measures were taken. The effects of vector control on disease spreading, such as insecticide (larvicide and adulticide) and mechanical control, as well as an hypothetical vaccine, are estimated through simulations with the Cape Verde data.

  6. Avipoxviruses: infection biology and their use as vaccine vectors

    Directory of Open Access Journals (Sweden)

    Tryland Morten

    2011-02-01

    Full Text Available Abstract Avipoxviruses (APVs belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated. The virus species Fowlpox virus (FWPV causes disease in poultry and associated mortality is usually low, but in flocks under stress (other diseases, high production mortality can reach up to 50%. APVs are also major players in viral vaccine vector development for diseases in human and veterinary medicine. Abortive infection in mammalian cells (no production of progeny viruses and their ability to accommodate multiple gene inserts are some of the characteristics that make APVs promising vaccine vectors. Although abortive infection in mammalian cells conceivably represents a major vaccine bio-safety advantage, molecular mechanisms restricting APVs to certain hosts are not yet fully understood. This review summarizes the current knowledge relating to APVs, including classification, morphogenesis, host-virus interactions, diagnostics and disease, and also highlights the use of APVs as recombinant vaccine vectors.

  7. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    OpenAIRE

    Yoshikazu Nakayama; Atsushi Aruga

    2015-01-01

    Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing he...

  8. Pre-existing immunity against vaccine vectors – friend or foe?

    OpenAIRE

    Saxena, Manvendra; Van, Thi Thu Hao; Baird, Fiona J.; Coloe, Peter J; Smooker, Peter M.

    2013-01-01

    Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Sa...

  9. Venezuelan Equine Encephalitis Virus-Vectored Vaccines Protect Mice against Anthrax Spore Challenge

    OpenAIRE

    Lee, John S.; Hadjipanayis, Angela G.; Welkos, Susan L.

    2003-01-01

    Anthrax, a disease usually associated with herbivores, is caused by the bacterium Bacillus anthracis. The current vaccine licensed for human use requires a six-dose primary series and yearly boosters and causes reactogenicity in up to 30% of vaccine recipients. A minimally reactogenic vaccine requiring fewer inoculations is warranted. Venezuelan equine encephalitis (VEE) virus has been configured for use as a vaccine vector for a wide variety of immunogens. The VEE vaccine vector is composed ...

  10. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    Science.gov (United States)

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-01

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. PMID:27523740

  11. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification. The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1 elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that

  12. Adenovirus vectored vaccines against influenza a virus do not result in vaccine associated enhanced respiratory disease following heterologous challenge in contrast to whole inactivated virus vaccine

    Science.gov (United States)

    Heterologous influenza A virus (IAV) challenge following vaccination with an intramuscular (IM) whole inactivated vaccine (WIV) can result in vaccine-associated enhanced respiratory disease (VAERD). The objective of this study was to use an adenovirus (Ad5) vector vaccine platform that expressed IAV...

  13. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    Science.gov (United States)

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  14. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  15. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene;

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model...... replicates both a passive and active flight of midges between cattle distributed on pastures and cattle farms in Denmark. A seasonal abundance of midges and temperature dependence of biological processes were included in the model. The eight vaccination strategies were investigated under four different...

  16. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    Science.gov (United States)

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  17. Salmonella Typhi: from a Human Pathogen to a Vaccine Vector

    Institute of Scientific and Technical Information of China (English)

    Xiao-Lian Zhang; Victor Tunje Jeza; Qin Pan

    2008-01-01

    Salmonella (S.) typhi is an important intracellular pathogen. Among the more than 2,300 closely-related Salmonella serovars bacteria recognized, S. Typhi is the only one that is pathogenic exclusively for humans, in whom it causes typhoid or enteric fever. The pathogen has been around for many years and many studies have been done in an effort to combat it. Molecular and biologic features of S. Typhi and host factors and immune responses involved in Salmonella invasion have been extensively studies. Vaccines that have been developed most notably are Vi polysaccharide and Ty21a. However, as the results show, there is still a long way to go. It is also shown that multi-drug resistance has occurred to the few available antibiotics. More and more studies have shown that Salmonella can be used as a vaccine vector carrying antigens of other pathogens. This has been promising in that the immune system can be elicited in response to both the Salmonella bacteria and the antigen of the pathogen in question. This review aims to highlight some of the milestones attained in the fight against the disease from the time S. Typhi was seen as a pathogen causing typhoid fever to the use of Salmonella as a vaccine vector.

  18. Salmonella typhi: from a human pathogen to a vaccine vector.

    Science.gov (United States)

    Zhang, Xiao-Lian; Jeza, Victor Tunje; Pan, Qin

    2008-04-01

    Salmonella (S.) typhi is an important intracellular pathogen. Among the more than 2,300 closely-related Salmonella serovars bacteria recognized, S. typhi is the only one that is pathogenic exclusively for humans, in whom it causes typhoid or enteric fever. The pathogen has been around for many years and many studies have been done in an effort to combat it. Molecular and biologic features of S. typhi and host factors and immune responses involved in Salmonella invasion have been extensively studies. Vaccines that have been developed most notably are Vi polysaccharide and Ty21a. However, as the results show, there is still a long way to go. It is also shown that multi-drug resistance has occurred to the few available antibiotics. More and more studies have shown that Salmonella can be used as a vaccine vector carrying antigens of other pathogens. This has been promising in that the immune system can be elicited in response to both the Salmonella bacteria and the antigen of the pathogen in question. This review aims to highlight some of the milestones attained in the fight against the disease from the time S. typhi was seen as a pathogen causing typhoid fever to the use of Salmonella as a vaccine vector. PMID:18445338

  19. B5 deficient vaccinia virus as a vaccine vector for the expression of a foreign antigen in vaccinia immune animals

    OpenAIRE

    Viner, Kendra M.; Girgis, Natasha; Kwak, Heesun; Isaacs, Stuart N.

    2006-01-01

    Recombinant vaccinia viruses have shown promise as vaccine vectors. However, their effectiveness is markedly reduced by pre-existing anti-vaccinia immunity. The possibility of new vaccinia immunizations in the event of a bioterror-related smallpox release poses an additional negative impact on the utility of vaccinia-based vectors. Thus, we aimed to design a vaccinia vector that would enhance the immune response to an expressed foreign protein in a pre-immune animal model. To do this, we made...

  20. A CD46-binding chimpanzee adenovirus vector as a vaccine carrier.

    Science.gov (United States)

    Tatsis, Nia; Blejer, Ariella; Lasaro, Marcio O; Hensley, Scott E; Cun, Ann; Tesema, Lello; Li, Yan; Gao, Guang-Ping; Xiang, Zhi Q; Zhou, Dongming; Wilson, James M; Ertl, Hildegund C J

    2007-03-01

    A replication-defective chimeric vector based on the chimpanzee adenovirus serotype C1 was developed and tested as a vaccine carrier in mice. The AdC1 virus is closely related to human adenoviruses of subgroup B2 and uses CD46 for cell attachment. To overcome poor growth of E1-deleted AdC1 vectors on cell lines that provide the E1 of adenovirus of the human serotype 5 (AdHu5) virus in trans, the inverted terminal repeats and some of the early genes of AdC1 were replaced with those from AdC5, a chimpanzee origin adenovirus of subfamily E. The chimeric AdC1/C5 vector efficiently transduces CD46-expressing mouse dendritic cells (DCs) in vitro and initiates their maturation. Transduction of DCs in vivo is inefficient in CD46 transgenic mice. The AdC1/C5 vector induces transgene product-specific B- and CD8(+) T-cell responses in mice. Responses are slightly higher in wild-type mice than in CD46 transgenic mice. Transgene product-specific T-cell responses elicited by the AdC1/C5 vector can be increased by priming or boosting with a heterologous adenovirus vector. Pre-existing immunity to adenovirus of the common human serotype 5 does not affect induction of cell-mediated immune responses by the AdC1/C5 vector. This vector provides an additional tool in a repertoire of adenovirus-based vaccine vectors. PMID:17228314

  1. Characterization of recombinant Raccoonpox Vaccine Vectors in Chickens

    Science.gov (United States)

    Hwa, S.-H.; Iams, K.P.; Hall, J.S.; Kingstad, B.A.; Osorio, J.E.

    2010-01-01

    Raccoonpox virus (RCN) has been used as a recombinant vector against several mammalian pathogens but has not been tested in birds. The replication of RCN in chick embryo fibroblasts (CEFs) and chickens was studied with the use of highly pathogenic avian influenza virus H5N1 hemagglutinin (HA) as a model antigen and luciferase (luc) as a reporter gene. Although RCN replicated to low levels in CEFs, it efficiently expressed recombinant proteins and, in vivo, elicited anti-HA immunoglobulin yolk (IgY) antibody responses comparable to inactivated influenza virus. Biophotonic in vivo imaging of 1-wk-old chicks with RCN-luc showed strong expression of the luc reporter gene lasting up to 3 days postinfection. These studies demonstrate the potential of RCN as a vaccine vector for avian influenza and other poultry pathogens. ?? American Association of Avian Pathologists 2010.

  2. Biodistribution and Toxicological Safety of Adenovirus Type 5 and Type 35 Vectored Vaccines Against Human Immunodeficiency Virus-1 (HIV-1), Ebola, or Marburg Are Similar Despite Differing Adenovirus Serotype Vector, Manufacturer's Construct, or Gene Inserts

    OpenAIRE

    Sheets, Rebecca L.; Stein, Judith; Bailer, Robert T.; Koup, Richard A.; Andrews, Charla; Nason, Martha; He, Bin; Koo, Edward; Trotter, Holly; Duffy, Chris; Manetz, T. Scott; Gomez, Phillip

    2008-01-01

    The Vaccine Research Center has developed vaccine candidates for different diseases/infectious agents (including HIV-1, Ebola, and Marburg viruses) built on an adenovirus vector platform, based on adenovirus type 5 or 35. To support clinical development of each vaccine candidate, pre-clinical studies were performed in rabbits to determine where in the body they biodistribute and how rapidly they clear, and to screen for potential toxicities (intrinsic and immunotoxicities). The vaccines biodi...

  3. Polysaccharide-Based Vaccines

    Science.gov (United States)

    Santana, Violeta Fernández; Balbin, Yury Valdés; Calderón, Janoi Chang; Icart, Luis Peña; Verez-Bencomo, Vicente

    Capsular polysaccharides (CPS) and lipopolysaccharides from bacteria are employed for the production of vaccines against human diseases. Initial development of CPS as a vaccine was followed by the development and introduction of conjugate polysaccharide-protein vaccines. The principles leading to both developments are reviewed.

  4. A Tetravalent Dengue Vaccine Based on a Complex Adenovirus Vector Provides Significant Protection in Rhesus Monkeys against All Four Serotypes of Dengue Virus▿

    OpenAIRE

    Raviprakash, Kanakatte; Wang, Danher; Ewing, Dan; Holman, David H.; Block, Karla; Woraratanadharm, Jan; Chen, Lan; Hayes, Curtis; Dong., John Y.; Porter, Kevin

    2008-01-01

    Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vect...

  5. A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an H5N1 virus disease model.

    Science.gov (United States)

    Patel, Ami; Tikoo, Suresh; Kobinger, Gary

    2010-01-01

    Human adenovirus 5 (AdHu5) vectors are robust vaccine platforms however the presence of naturally-acquired neutralizing antibodies may reduce vector efficacy and potential for re-administration. This study evaluates immune responses and protection following vaccination with a replication-incompetent porcine adenovirus 3 (PAV3) vector as an alternative vaccine to AdHu5 using an avian influenza H5N1 disease model. Vaccine efficacy was evaluated in BALB/c mice following vaccination with different doses of the PAV3 vector expressing an optimized A/Hanoi/30408/2005 H5N1 hemagglutinin antigen (PAV3-HA) and compared with an AdHu5-HA control. PAV3-HA rapidly generated antibody responses, with significant neutralizing antibody titers on day 21, and stronger cellular immune responses detected on day 8, compared to AdHu5-HA. The PAV3-HA vaccine, administered 8 days before challenge, demonstrated improved survival and lower virus load. Evaluation of long-term vaccine efficacy at 12 months post-vaccination showed better protection with the PAV3-HA than with the AdHu5-HA vaccine. Importantly, as opposed to AdHu5, PAV3 vector was not significantly neutralized by human antibodies pooled from over 10,000 individuals. Overall, PAV3-based vector is capable of mediating swift, strong immune responses and offer a promising alternative to AdHu5. PMID:21179494

  6. Mucin-Based Vaccines

    Science.gov (United States)

    Richardson, Jonathan P.; MacMillan, Derek

    Mucins are heavily O-glycosylated cell surface and secreted glycoproteins . In addition to orchestrating cell-extracellular matrix and cell-cell interactions in healthy organisms mucins are also the major carriers of altered glycosylation in carcinomas. Tumor-associated antigens displayed by cancer cells comprise oligosaccharide and glycopeptide motifs not encountered in the same locale or at the same frequency in healthy cells, and potentially confer a selective advantage to the tumor. Frequently tumor-associated antigens are under-glycosylated and prematurely sialylated, and it is these relatively simple saccharide and glycopeptide structures that have been targeted to serve as drug candidates in most cases. A major goal is to assemble glycopeptide vaccine candidates based on partial mucin sequences and displaying tumor-associated antigens that can mount a potent immunological tumor-specific response when, in reality, the tumor has already coerced the immune system into a state of co-existence.

  7. Efficacy of HVT-IBD vector vaccine compared to attenuated live vaccine using in-ovo vaccination against a Korean very virulent IBDV in commercial broiler chickens.

    Science.gov (United States)

    Roh, J-H; Kang, M; Wei, B; Yoon, R-H; Seo, H-S; Bahng, J-Y; Kwon, J-T; Cha, S-Y; Jang, H-K

    2016-05-01

    The production performance, efficacy, and safety of two types of vaccines for infectious bursal disease virus (IBDV) were compared with in-ovo vaccination of Cobb 500 broiler chickens for gross and microscopic examination of the bursa of Fabricius, bursa/body weight (b/B) ratio, flow cytometry, and serologic response to Newcastle disease virus (NDV) vaccination. One vaccine was a recombinant HVT-IBD vector vaccine (HVT as for herpesvirus of turkeys) and the other was an intermediate plus live IBDV vaccine. A significant difference was detected at 21 d. Eight of 10 chickens that received the IBDV live vaccine had severe bursal lesions and a relatively low b/B ratio of 0.95, and an inhibited NDV vaccine response. On the other hand, the HVT-IBD vector vaccine resulted in mild bursal lesions and a b/B ratio of 1.89. Therefore, the live vaccine had lower safety than that of the HVT-IBD vector vaccine. To determine the protective efficacy, chickens were intraocularly challenged at 24 d. Eight of 10 chickens in the IBDV live vaccination group showed gross and histological lesions characterized by hemorrhage, cyst formation, lymphocytic depletion, and a decreased b/B ratio. In contrast, the HVT-IBD vector vaccinated chickens showed mild gross and histological lesions in three of 10 chickens with a b/B ratio of 1.36, which was similar to that of the unchallenged controls. Vaccinated chickens showed a significant increase in IBDV antibody titers, regardless of the type of vaccine used. In addition, significantly better broiler flock performance was observed with the HVT-IBD vector vaccine compared to that of the live vaccine. Our results revealed that the HVT-IBD vector vaccine could be used as an alternative vaccine to increase efficacy, and to have an improved safety profile compared with the IBDV live vaccine using in-ovo vaccination against the Korean very virulent IBDV in commercial broiler chickens. PMID:26944964

  8. Safety of the novel influenza viral vector Brucella abortus vaccine in pregnant heifers

    OpenAIRE

    Kaissar Tabynov; Sholpan Ryskeldinova; Zhailaubay Kydyrbayev; Abylai Sansyzbay

    2016-01-01

    ABSTRACT: The present study provides the first information about the safety of a new influenza viral vector vaccine expressing the Brucella ribosomal protein L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vac...

  9. Pre-existing immunity against vaccine vectors--friend or foe?

    Science.gov (United States)

    Saxena, Manvendra; Van, Thi Thu Hao; Baird, Fiona J; Coloe, Peter J; Smooker, Peter M

    2013-01-01

    Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses. PMID:23175507

  10. A stimulating way to improve T cell responses to poxvirus-vectored vaccines

    OpenAIRE

    Isaacs, Stuart N.

    2010-01-01

    Vaccines remain one of the most cost-effective public health measures. Despite ongoing efforts, protective vaccines against cancer and many infectious diseases, including malaria, tuberculosis, and HIV/AIDS, are still not in hand. Most investigators believe that to succeed against these difficult targets, vaccines that generate potent T cell responses are needed. In this issue of the JCI, Salek-Ardakani et al. show how the relative virulence of a virus/vaccine vector affects the memory CD8+ T...

  11. Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine

    OpenAIRE

    Zeng, Mingtao; Xu, Qingfu; Elias, Md.; Pichichero, Michael E.; Simpson, Lance L.; Leonard A. Smith

    2007-01-01

    Botulinum neurotoxins cause botulism, a neuroparalytic disease in humans and animals. We constructed a replication-incompetent adenovirus encoding a synthesized codon-optimized gene for expression of the heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). This recombinant human serotype 5 adenoviral vector (Ad5) was evaluated as a genetic vaccine candidate against botulism caused by BoNT/C in a mouse model. A one-time intramuscular injection with 105 to 2 × 107 pfu of adeno...

  12. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    Science.gov (United States)

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  13. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector.

    Science.gov (United States)

    Toro, Haroldo; Tang, De-chu C; Suarez, David L; Sylte, Matt J; Pfeiffer, Jennifer; Van Kampen, Kent R

    2007-04-12

    Protective immunity against avian influenza virus was elicited in chickens by single-dose in ovo vaccination with a non-replicating human adenovirus vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 (89% hemagglutinin homology; 68% protection) and H5N2 (94% hemagglutinin homology; 100% protection) highly pathogenic avian influenza virus challenges. This vaccine can be mass-administered using available robotic in ovo injectors which provide a major advantage over current vaccination regimens. In addition, this class of adenovirus-vectored vaccines can be produced rapidly with improved safety since they do not contain any replication-competent adenoviruses. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural avian influenza virus infections. PMID:17055126

  14. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    Science.gov (United States)

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years. PMID:26511884

  15. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    OpenAIRE

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L; Bellamy, Scarlett L.; Betts, Michael R.; James M Wilson

    2014-01-01

    The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T ...

  16. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine.

    Science.gov (United States)

    Ma, Jimei; Xu, Jinmei; Guan, Lingyu; Hu, Tianjian; Liu, Qin; Xiao, Jingfan; Zhang, Yuanxing

    2014-07-01

    It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications. PMID:24746937

  17. Sequence and immunogenicity of a clinically approved novel measles virus vaccine vector

    OpenAIRE

    Zuniga, Amando; Liniger, Mathias; Morin, Teldja Neige Azzouz; Marty, René R.; Wiegand, Marian; Ilter, Orhan; Weibel, Sara; Billeter, Martin A.; Knuchel, Marlyse C.; Naim, Hussein Y

    2013-01-01

    The measles virus vaccine (MVbv) is a clinically certified and well-tolerated vaccine strain that has been given both parenterally and mucosally. It has been extensively used in children and has proven to be safe and effective in eliciting protective immunity. This specific strain was therefore chosen to generate a measles viral vector. The genome of the commercial MVbv vaccine strain was isolated, sequenced and a plasmid, p(+)MVb, enabling transcription of the viral antigenome and rescue of ...

  18. Marek's Disease Virus As a Vectored Vaccine for Infectious Laryngotracheitis and Marek's Disease

    Science.gov (United States)

    We replaced the MEQ gene from a bacterial artificial chromosome clone of Marek’s disease virus with gJ and gB genes from infectious laryngotracheitis virus. We will compare the efficacy of these vectored vaccines with commercial vaccines for Marek’s disease and infectious laryngotracheitis....

  19. Vaccines within vaccines: the use of adenovirus types 4 and 7 as influenza vaccine vectors.

    Science.gov (United States)

    Weaver, Eric A

    2014-01-01

    Adenovirus Types 4 and 7 (Ad4 and Ad7) are associated with acute respiratory distress (ARD). In order to prevent widespread Ad-associated ARD (Ad-ARD) the United States military immunizes new recruits using a safe and effective lyophilized wildtype Ad4 and Ad7 delivered orally in an enteric-coated capsule. We cloned Ad4 and Ad7 and modified them to express either a GFP-Luciferase (GFPLuc) fusion gene or a centralized influenza H1 hemagglutinin (HA1-con). BALB/c mice were injected with GFPLuc expressing viruses intramuscularly (i.m.) and intranasally (i.n.). Ad4 induced significantly higher luciferase expression levels as compared with Ad7 by both routes. Ad7 transduction was restored using a human CD46+ transgenic mouse model. Mice immunized with serial dilutions of viruses expressing the HA1-con influenza vaccine gene were challenged with 100 MLD 50 of influenza virus. Ad4 protected BALB/c mice at a lower dose by i.m. immunization as compared with Ad7. Unexpectedly, there was no difference in protection by i.n. immunization. Although Ad7 i.m. transduction was restored in CD46+ transgenic mice, protection against influenza challenge required even higher doses as compared with the BALB/c mice. However, Ad7 i.n. immunized CD46+ transgenic mice were better protected as compared with Ad4. Interestingly, the restoration of Ad7 transduction in CD46+ mice did not increase vaccine efficacy and indicates that Ad7 may transduce a different subset of cells through alternative receptors in the absence of CD46. These data indicate that both Ad4 and Ad7 can effectively induce anti-H1N1 immunity against a heterologous challenge using a centralized H1 gene. Future studies in non-human primates or human clinical trials will determine the overall effectiveness of Ad4 and Ad7 as vaccines for influenza. PMID:24280656

  20. Vaccines for viral and parasitic diseases produced with baculovirus vectors

    NARCIS (Netherlands)

    Oers, van M.M.

    2006-01-01

    The baculovirus¿insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this

  1. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    M Honda; R Wang; W Kong; M Kanekiyo; Q Akahata; L Xu; K Matsuo; K Natarajan; H Robinson; et al.

    2011-12-31

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  2. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M.; Robinson, H.; Wang, R.; Kong, W.-P.; Kanekiyo, M.; Akahata, W.; Xu, L.; Matsuo, K.; Natarajan, K.; Asher, T. E.; Price, D. A.; Douek, D. C.; Margulies, D. H.; Nabel, G. J.

    2009-08-15

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  3. Cross-protective immunity against multiple influenza virus subtypes by a novel modified vaccinia Ankara (MVA) vectored vaccine in mice.

    Science.gov (United States)

    Brewoo, Joseph N; Powell, Tim D; Jones, Jeremy C; Gundlach, Nancy A; Young, Ginger R; Chu, Haiyan; Das, Subash C; Partidos, Charalambos D; Stinchcomb, Dan T; Osorio, Jorge E

    2013-04-01

    Development of an influenza vaccine that provides cross-protective immunity remains a challenge. Candidate vaccines based on a recombinant modified vaccinia Ankara (MVA) viral vector expressing antigens from influenza (MVA/Flu) viruses were constructed. A vaccine candidate, designated MVA/HA1/C13L/NP, that expresses the hemagglutinin from pandemic H1N1 (A/California/04/09) and the nucleoprotein (NP) from highly pathogenic H5N1 (A/Vietnam/1203/04) fused to a secretory signal sequence from vaccinia virus was highly protective. The vaccine elicited strong antibody titers to homologous H1N1 viruses while cross-reactive antibodies to heterologous viruses were not detectable. In mice, this MVA/HA1/C13L/NP vaccine conferred complete protection against lethal challenge with A/Vietnam/1203/04 (H5N1), A/Norway/3487-2/09 (pandemic H1N1) or A/Influenza/Puerto Rico/8/34 (seasonal H1N1) and partial protection (57.1%) against challenge with seasonal H3N2 virus (A/Aichi/68). The protective efficacy of the vaccine was not affected by pre-existing immunity to vaccinia. Our findings highlight MVA as suitable vector to express multiple influenza antigens that could afford broad cross-protective immunity against multiple subtypes of influenza virus. PMID:23376279

  4. Protection of chickens against avian influenza with nonreplicating adenovirus-vectored vaccine.

    Science.gov (United States)

    Toro, H; Tang, D C

    2009-04-01

    Protective immunity against avian influenza (AI) virus has been elicited in chickens by single-dose in ovo or i.m. vaccination with a replication-competent adenovirus (Ad)-free human Ad vector encoding the AI virus A/Turkey/Wisconsin/68 H5 (AdTW68. H5) or the A/Chicken/New York/94 H7 (AdChNY94. H7) hemagglutinin (HA). The AdTW68.H5-vaccinated chickens were protected against both H5N1 and H5N2 highly pathogenic AI virus challenges. The AdChNY94. H7-vaccinated chickens were protected against an H7N3 highly pathogenic avian influenza virus challenge. Chickens vaccinated in ovo with AdTW68.H5 followed by posthatch i.m. vaccination with AdChNY94.H7 responded to both vaccinations, with robust antibody titers against both the H5 and H7 AI proteins. The use of a synthetic AI H5 HA gene codon optimized to match the tRNA pool found in chicken cells is more potent than the cognate H5 HA gene. Mass administration of this AI vaccine can be streamlined with available robotic in ovo injectors. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of the nonreplicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination will not interfere with epidemiological surveys of natural AI infections. Finally, the demonstration that Ad-vectored vaccines can be administered repeatedly without appreciably losing potency highlights the commercial potential of this new class of vaccine in poultry. PMID:19276437

  5. The Influence of Delivery Vectors on HIV Vaccine Efficacy

    OpenAIRE

    BeatriceOmusiroOndondo

    2014-01-01

    Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximise t...

  6. The influence of delivery vectors on HIV vaccine efficacy

    OpenAIRE

    Ondondo, Beatrice O.

    2014-01-01

    Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize t...

  7. New pre-pandemic influenza vaccines: an egg- and adjuvant-independent human adenoviral vector strategy induces long-lasting protective immune responses in mice.

    Science.gov (United States)

    Hoelscher, M A; Jayashankar, L; Garg, S; Veguilla, V; Lu, X; Singh, N; Katz, J M; Mittal, S K; Sambhara, S

    2007-12-01

    Highly pathogenic avian H5N1 influenza viruses that are currently circulating in southeast Asia may acquire the potential to cause the next influenza pandemic. A number of alternate approaches are being pursued to generate cross-protective, dose-sparing, safe, and effective vaccines, as traditional vaccine approaches, i.e., embryonated egg-grown, are not immunogenic. We developed a replication-incompetent adenoviral vector-based, adjuvant- and egg-independent pandemic influenza vaccine strategy as a potential alternative to conventional egg-derived vaccines. In this paper, we address suboptimal dose and longevity of vaccine-induced protective immunity and demonstrate that a vaccine dose as little as 1 x 10(6) plaque-forming unit (PFU) is sufficient to induce protective immune responses against a highly pathogenic H5N1 virus. Furthermore, the vaccine-induced humoral and cellular immune responses and protective immunity persisted at least for a year. PMID:17957181

  8. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    Science.gov (United States)

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. PMID:25102364

  9. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes

    Directory of Open Access Journals (Sweden)

    Groitl Peter

    2011-09-01

    Full Text Available Abstract Background Type I interferons (IFNs exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV or HIV. Results Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4+ T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4+ T cell responses were enhanced by IFNα subtypes. Conclusions Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4+ T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.

  10. RECOMBINANT INFLUENZA VACCINES

    OpenAIRE

    Sedova, E.; Shcherbinin, D.; Migunov, A.; Smirnov, Iu; Logunov, D.; Shmarov, M.; Tsybalova, L.; Naroditskiĭ, B.; O. Kiselev; Gintsburg, A.

    2012-01-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery pla...

  11. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  12. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    International Nuclear Information System (INIS)

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 107 pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV

  13. Newcastle disease virus as a vaccine vector for infectious laryngotracheitis

    Science.gov (United States)

    Effective, safe, and incapable of reverting to virulence are characteristics desirable for infectious laryngotracheitis virus (ILTV) vaccines. Recombinant Newcastle disease virus (NDV) expressing foreign antigens of avian and mammalian pathogens have been demonstrated to elicit protective immunity....

  14. Measles virus: A pathogen, vaccine, and a vector

    OpenAIRE

    Naim, Hussein Y.

    2014-01-01

    Measles was an inevitable infection during the human development with substantial degree of morbidity and mortality. The severity of measles virus (MV) infection was largely contained by the development of a live attenuated vaccine that was introduced into the vaccination programs. However, all efforts to eradicate the disease failed and continued to annually result in significant deaths. The development of molecular biology techniques allowed the rescue of MV from cDNA that enabled important...

  15. Hexon-modified recombinant E1-deleted adenovirus vectors as dual specificity vaccine carriers for influenza virus.

    Science.gov (United States)

    Zhou, Dongming; Wu, Te-Lang; Emmer, Kristel L; Kurupati, Raj; Tuyishime, Steven; Li, Yan; Giles-Davis, Wynetta; Zhou, Xiangyang; Xiang, Zhiquan; Liu, Qin; Ratcliffe, Sarah J; Ertl, Hildegund C J

    2013-03-01

    To determine if an ordered and repetitive display of an epitope promoted induction of superior antibody responses, we compared B-cell responses to an influenza A virus epitope that was either encoded as a transgene by an adenovirus (Ad) vector or expressed on the vector's surface. To this end, we constructed a panel of influenza A virus vaccines based on chimpanzee-derived replication-defective adenovirus (AdC) vectors of serotype SAd-V25 also called AdC68. AdC68 vectors were modified to express a linear B-cell epitope of the ectodomain of matrix 2 (M2e) within variable regions 1 (VR1) or 4 (VR4) of the adenovirus hexon. Additional vectors with wild-type or M2e-modified hexon encoded M2e fused to the influenza A virus nucleoprotein (NP) as a transgene product. Hexon-modified vectors were tested for immunogenicity and efficacy in mice in comparison to vectors with native hexon expressing the M2e-NP fusion protein. Upon priming, vectors expressing M2e within VR1 of hexon induced M2e-specific antibody responses of higher magnitude and avidity than those carrying M2e within VR4 or vectors expressing the M2e as part of a transgene product. CD8(+) T-cell responses to the transgenic NP were comparable between vectors. M2e-specific antibody responses could be boosted by a second dose of the VR1 hexon-modified vector but not by repeated immunization with the VR4 hexon-modified vector. PMID:23229092

  16. Algae-based oral recombinant vaccines

    OpenAIRE

    Specht, Elizabeth A.; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in ...

  17. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakayama

    2015-03-01

    Full Text Available Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region.

  18. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2012-11-01

    Full Text Available The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.

  19. Advances and future challenges in recombinant adenoviral vectored H5N1 influenza vaccines.

    Science.gov (United States)

    Zhang, Jianfeng

    2012-11-01

    The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future. PMID:23202501

  20. Safety of the novel influenza viral vector Brucella abortus vaccine in pregnant heifers

    Directory of Open Access Journals (Sweden)

    Kaissar Tabynov

    2016-01-01

    Full Text Available ABSTRACT: The present study provides the first information about the safety of a new influenza viral vector vaccine expressing the Brucella ribosomal protein L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10 or subcutaneous (n=10 route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with B. abortus S19 (n=10 or B. abortus RB51 (n=10 and a negative (PBS+Montanide Gel01; n=10 control group. Clinical studies, thermometry, assessment of local reactogenicity and observation of abortion showed that the vector vaccine via the conjunctival or subcutaneous route was completely safe for pregnant heifers compared to the commercial vaccines B. abortus S19 or B. abortus RB51. The only single adverse event was the formation of infiltration at the site of subcutaneous injection; this reaction was not observed for the conjunctival route.

  1. Recent advances in recombinant protein-based malaria vaccines.

    Science.gov (United States)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  2. VaccineDA: Prediction, design and genome-wide screening of oligodeoxynucleotide-based vaccine adjuvants.

    Science.gov (United States)

    Nagpal, Gandharva; Gupta, Sudheer; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Prakash, Satya; Raghava, Gajendra P S

    2015-01-01

    Immunomodulatory oligodeoxynucleotides (IMODNs) are the short DNA sequences that activate the innate immune system via toll-like receptor 9. These sequences predominantly contain unmethylated CpG motifs. In this work, we describe VaccineDA (Vaccine DNA adjuvants), a web-based resource developed to design IMODN-based vaccine adjuvants. We collected and analyzed 2193 experimentally validated IMODNs obtained from the literature. Certain types of nucleotides (e.g., T, GT, TC, TT, CGT, TCG, TTT) are dominant in IMODNs. Based on these observations, we developed support vector machine-based models to predict IMODNs using various compositions. The developed models achieved the maximum Matthews Correlation Coefficient (MCC) of 0.75 with an accuracy of 87.57% using the pentanucleotide composition. The integration of motif information further improved the performance of our model from the MCC of 0.75 to 0.77. Similarly, models were developed to predict palindromic IMODNs and attained a maximum MCC of 0.84 with the accuracy of 91.94%. These models were evaluated using a five-fold cross-validation technique as well as validated on an independent dataset. The models developed in this study were integrated into VaccineDA to provide a wide range of services that facilitate the design of DNA-based vaccine adjuvants (http://crdd.osdd.net/raghava/vaccineda/). PMID:26212482

  3. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge.

    Science.gov (United States)

    Schutta, Christopher; Barrera, José; Pisano, Melia; Zsak, Laszlo; Grubman, Marvin J; Mayr, Gregory A; Moraes, Mauro P; Kamicker, Barbara J; Brake, David A; Ettyreddy, Damodar; Brough, Douglas E; Butman, Bryan T; Neilan, John G

    2016-06-01

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularly to a total of 150 steers in doses ranging from approximately 1.0×10(8) to 2.1×10(11) particle units per animal. No detectable local or systemic reactions were observed after vaccination. At 7 days post-vaccination (dpv), vaccinated and control animals were challenged with FMDV serotype A24 Cruzeiro via the intradermal lingual route. Vaccine efficacy was measured by FMDV A24 serum neutralizing titers and by protection from clinical disease and viremia after challenge. The results of eight studies demonstrated a strong correlation between AdtA24 vaccine dose and protection from clinical disease (R(2)=0.97) and viremia (R(2)=0.98). There was also a strong correlation between FMDV A24 neutralization titers on day of challenge and protection from clinical disease (R(2)=0.99). Vaccination with AdtA24 enabled differentiation of infected from vaccinated animals (DIVA) as demonstrated by the absence of antibodies to the FMDV nonstructural proteins in vaccinates prior to challenge. Lack of AdtA24 vaccine shedding after vaccination was indicated by the absence of neutralizing antibody titers to both the adenovector and FMDV A24 Cruzeiro in control animals after co-mingling with vaccinated cattle for three to four weeks. In summary, a non-adjuvanted AdtA24 experimental vaccine was shown to be safe, immunogenic, consistently protected cattle at 7 dpv against direct, homologous FMDV challenge, and enabled differentiation of infected from vaccinated cattle prior to challenge. PMID:26707216

  4. Vector prime/protein boost vaccine that overcomes defects acquired during aging and cancer

    DEFF Research Database (Denmark)

    Tang, Y.; Akbulut, H.; Maynard, J.;

    2006-01-01

    following the Ad-sig-TAA/ecdCD40L vector, the levels of the TAA-specific CD8 T cells and Abs increase dramatically over that seen with vector alone, in young (2-mo-old) as well as old (18-mo-old) mice. The Abs induced against hMUC-1 react with human breast cancer. This vaccine also induces a 4-fold...

  5. General Considerations on the Biosafety of Virus-derived Vectors Used in Gene Therapy and Vaccination

    OpenAIRE

    Baldo, Aline; van den Akker, Eric; Bergmans, Hans E.; Lim, Filip; Pauwels, Katia

    2013-01-01

    This introductory paper gathers general considerations on the biosafety of virus-derived vectors that are used in human gene therapy and/or vaccination. The importance to assess the potential risks for human health and the environment related to the use of genetically modified organisms (GMO) in this case genetically modified viral vectors is highlighted by several examples. This environmental risk assessment is one of the requirements within the European regulatory framework covering the con...

  6. Antigen design enhances the immunogenicity of Semliki Forest virus-based therapeutic human papillomavirus vaccines

    NARCIS (Netherlands)

    Ip, P. P.; Boerma, A.; Walczak, M.; Oosterhuis, K.; Haanen, J. B.; Schumacher, T. N.; Nijman, H. W.; Daemen, T.

    2015-01-01

    Cellular immunity against cancer can be achieved with viral vector-and DNA-based immunizations. In preclinical studies, cancer vaccines are very potent, but in clinical trials these potencies are not achieved yet. Thus, a rational approach to improve cancer vaccines is warranted. We previously demon

  7. Enhanced protective immunity of the chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever in pigs by a Salmonella bacterial ghost adjuvant.

    Science.gov (United States)

    Xia, Shui-Li; Lei, Jian-Lin; Du, Mingliang; Wang, Yimin; Cong, Xin; Xiang, Guang-Tao; Li, Lian-Feng; Yu, Shenye; Du, Enqi; Liu, Siguo; Sun, Yuan; Qiu, Hua-Ji

    2016-01-01

    Classical swine fever (CSF) is a highly contagious swine disease caused by classical swine fever virus (CSFV). Previously, we demonstrated that rAdV-SFV-E2, an adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine against CSF, is able to protect pigs against lethal CSFV challenge. From an economical point of view, it will be beneficial to reduce the minimum effective dose of the vaccine. This study was designed to test the adjuvant effects of Salmonella enteritidis-derived bacterial ghosts (BG) to enhance the protective immunity of rAdV-SFV-E2 in pigs. Groups of 5-week-old pigs (n = 4) were immunized intramuscularly twice with 10(5) median tissue culture infective doses (TCID50) rAdV-SFV-E2 combined with 10(10) colony forming units (CFU) BG, 10(6) or 10(5) TCID50 rAdV-SFV-E2 alone or 10(10) CFU BG alone at an interval of 3 weeks, and challenged with the highly virulent CSFV Shimen strain at 1 week post-booster immunization. The results show that the pigs inoculated with 10(5) TCID50 rAdV-SFV-E2 plus BG or 10(6) TCID50 rAdV-SFV-E2 alone were completely protected from lethal CSFV challenge, in contrast with the pigs vaccinated with 10(5) TCID50 rAdV-SFV-E2 or BG alone, which displayed partial or no protection following virulent challenge. The data indicate that BG are a promising adjuvant to enhance the efficacy of rAdV-SFV-E2 and possibly other vaccines. PMID:27301745

  8. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens;

    2011-01-01

    Potent and broad cellular immune responses against the nonstructural (NS) proteins of hepatitis C virus (HCV) are associated with spontaneous viral clearance. In this study, we have improved the immunogenicity of an adenovirus (Ad)-based HCV vaccine by fusing NS3 from HCV (Strain J4; Genotype 1b...... memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...... demonstrated that this protection was mediated primarily through IFN-¿ production. On the basis of these promising results, we suggest that this vaccination technology should be evaluated further in the chimpanzee HCV challenge model....

  9. The interplay of vaccination and vector control on small dengue networks.

    Science.gov (United States)

    Hendron, Ross-William S; Bonsall, Michael B

    2016-10-21

    Dengue fever is a major public health issue affecting billions of people in over 100 countries across the globe. This challenge is growing as the invasive mosquito vectors, Aedes aegypti and Aedes albopictus, expand their distributions and increase their population sizes. Hence there is an increasing need to devise effective control methods that can contain dengue outbreaks. Here we construct an epidemiological model for virus transmission between vectors and hosts on a network of host populations distributed among city and town patches, and investigate disease control through vaccination and vector control using variants of the sterile insect technique (SIT). Analysis of the basic reproductive number and simulations indicate that host movement across this small network influences the severity of epidemics. Both vaccination and vector control strategies are investigated as methods of disease containment and our results indicate that these controls can be made more effective with mixed strategy solutions. We predict that reduced lethality through poor SIT methods or imperfectly efficacious vaccines will impact efforts to control disease spread. In particular, weakly efficacious vaccination strategies against multiple virus serotype diversity may be counter productive to disease control efforts. Even so, failings of one method may be mitigated by supplementing it with an alternative control strategy. Generally, our network approach encourages decision making to consider connected populations, to emphasise that successful control methods must effectively suppress dengue epidemics at this landscape scale. PMID:27457093

  10. General considerations on the biosafety of virus-derived vectors used in gene therapy and vaccination.

    Science.gov (United States)

    Baldo, Aline; van den Akker, Eric; Bergmans, Hans E; Lim, Filip; Pauwels, Katia

    2013-12-01

    This introductory paper gathers general considerations on the biosafety of virus-derived vectors that are used in human gene therapy and/or vaccination. The importance to assess the potential risks for human health and the environment related to the use of genetically modified organisms (GMO) in this case genetically modified viral vectors is highlighted by several examples. This environmental risk assessment is one of the requirements within the European regulatory framework covering the conduct of clinical trials using GMO. Risk assessment methodologies for the environmental risk assessment of genetically modified virus-derived vectors have been developed. PMID:24195604

  11. Intranasal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances Protection by Parenteral Mycobacterium bovis BCG Immunization against Pulmonary Tuberculosis

    OpenAIRE

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-01-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to...

  12. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    Science.gov (United States)

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. PMID:26476366

  13. Towards a Coronavirus-Based HIV Multigene Vaccine

    Directory of Open Access Journals (Sweden)

    Klara K. Eriksson

    2006-01-01

    Full Text Available Human immunodeficiency virus (HIV infection represents one of the major health threats in the developing world. The costly treatment of infected individuals with multiple highly efficient anti-HIV drugs is only affordable in industrialized countries. Thus, an efficient vaccination strategy is required to prevent the further spread of the infection. The molecular biology of coronaviruses and particular features of the human coronavirus 229E (HCoV 229E indicate that HCoV 229E-based vaccine vectors can become a new class of highly efficient vaccines. First, the receptor of HCoV 229E, human aminopeptidase N (hAPN or CD13 is expressed mainly on human dendritic cells (DCs and macrophages indicating that targeting of HCoV 229E-based vectors to professional antigen presenting cells can be achieved by receptor-mediated transduction. Second, HCoV 229E structural genes can be replaced by multiple transcriptional units encoding various antigens. These virus-like particles (VLPs containing HCoV 229E-based vector RNA have the ability to transduce human DCs and to mediate heterologous gene expression in these cells. Finally, coronavirus infections are associated with mainly respiratory and enteric diseases, and natural transmission of coronaviruses occurs via mucosal surfaces. In humans, HCoV 229E causes common cold by infecting the upper respiratory tract. HCoV 229E infections are mainly encountered in children and re-infection occurs frequently in adults. It is thus most likely that pre-existing immunity against HCoV 229E will not significantly impact on the vaccination efficiency if HCoV 229E-based vectors are used in humans.

  14. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    Science.gov (United States)

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  15. Protection induced by commercially available live-attenuated and recombinant viral vector vaccines against infectious laryngotracheitis virus in broiler chickens.

    Science.gov (United States)

    Vagnozzi, Ariel; Zavala, Guillermo; Riblet, Sylva M; Mundt, Alice; García, Maricarmen

    2012-01-01

    Viral vector vaccines using fowl poxvirus (FPV) and herpesvirus of turkey (HVT) as vectors and carrying infectious laryngotracheitis virus (ILTV) genes are commercially available to the poultry industry in the USA. Different sectors of the broiler industry have used these vaccines in ovo or subcutaneously, achieving variable results. The objective of the present study was to determine the efficacy of protection induced by viral vector vaccines as compared with live-attenuated ILTV vaccines. The HVT-LT vaccine was more effective than the FPV-LT vaccine in mitigating the disease and reducing levels of challenge virus when applied in ovo or subcutaneously, particularly when the challenge was performed at 57 days rather than 35 days of age. While the FPV-LT vaccine mitigated clinical signs more effectively when administered subcutaneously than in ovo, it did not reduce the concentration of challenge virus in the trachea by either application route. Detection of antibodies against ILTV glycoproteins expressed by the viral vectors was a useful criterion to assess the immunogenicity of the vectors. The presence of glycoprotein I antibodies detected pre-challenge and post challenge in chickens vaccinated with HVT-LT indicated that the vaccine induced a robust antibody response, which was paralleled by significant reduction of clinical signs. The chicken embryo origin vaccine provided optimal protection by significantly mitigating the disease and reducing the challenge virus in chickens vaccinated via eye drop. The viral vector vaccines, applied in ovo and subcutaneously, provided partial protection, reducing to some degree clinical signs, and challenge VIRUS replication in the trachea. PMID:22845318

  16. Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults.

    Science.gov (United States)

    Green, Christopher A; Scarselli, Elisa; Sande, Charles J; Thompson, Amber J; de Lara, Catherine M; Taylor, Kathryn S; Haworth, Kathryn; Del Sorbo, Mariarosaria; Angus, Brian; Siani, Loredana; Di Marco, Stefania; Traboni, Cinzia; Folgori, Antonella; Colloca, Stefano; Capone, Stefania; Vitelli, Alessandra; Cortese, Riccardo; Klenerman, Paul; Nicosia, Alfredo; Pollard, Andrew J

    2015-08-12

    Respiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication-defective viral vectors encoding the RSV fusion (F), nucleocapsid (N), and matrix (M2-1) proteins for the induction of humoral and cellular responses. We performed an open-label, dose escalation, phase 1 clinical trial in 42 healthy adults in which four different combinations of prime/boost vaccinations were investigated for safety and immunogenicity, including both intramuscular (IM) and intranasal (IN) administration of the adenovirus-vectored vaccine. The vaccines were safe and well tolerated, with the most common reported adverse events being mild injection site reactions. No vaccine-related serious adverse events occurred. RSV neutralizing antibody titers rose in response to IM prime with PanAd3-RSV and after IM boost for individuals primed by the IN route. Circulating anti-F immunoglobulin G (IgG) and IgA antibody-secreting cells (ASCs) were observed after the IM prime and IM boost. RSV-specific T cell responses were increased after the IM PanAd3-RSV prime and were most efficiently boosted by IM MVA-RSV. Interferon-γ (IFN-γ) secretion after boost was from both CD4(+) and CD8(+) T cells, without detectable T helper cell 2 (TH2) cytokines that have been previously associated with immune pathogenesis following exposure to RSV after the formalin-inactivated RSV vaccine. In conclusion, PanAd3-RSV and MVA-RSV are safe and immunogenic in healthy adults. These vaccine candidates warrant further clinical evaluation of efficacy to assess their potential to reduce the burden of RSV disease. PMID:26268313

  17. Development and Applications of VSV Vectors Based on Cell Tropism

    OpenAIRE

    HidekiTani; YoshiharuMatsuura

    2012-01-01

    Viral vectors have been available in various fields such as medical and biological research or gene therapy applications. Targeting vectors pseudotyped with distinct viral envelope proteins that influence cell tropism and transfection efficiency is a useful tool not only for examining entry mechanisms or cell tropisms but also for vaccine vector development. Vesicular stomatitis virus (VSV) is an excellent candidate for development as a pseudotype vector. A recombinant VSV lacking its own env...

  18. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  19. Vaccines: Engineering immune evasion

    Science.gov (United States)

    Mascola, John R.

    2006-05-01

    One obstacle to realizing the promise of viral vectors for vaccine delivery is pre-existing immunity to such vectors. An adroit application of structure-based design points to a way around that problem.

  20. Safety and efficacy of a turkey herpesvirus vector laryngotracheitis vaccine for chickens.

    Science.gov (United States)

    Esaki, Motoyuki; Noland, Lauren; Eddins, Tim; Godoy, Alecia; Saeki, Sakiko; Saitoh, Shuji; Yasuda, Atsushi; Dorsey, Kristi Moore

    2013-06-01

    Turkey herpesvirus vector laryngotracheitis vaccine (HVT/LT) expressing the glycoprotein B gene of laryngotracheitis virus (LTV) has been developed. In vitro growth kinetics of HVT/LT were similar to those of parental turkey herpesvirus (HVT), FC-126 strain. Genetic and phenotypic stabilities of HVT/LT after in vitro (in cell culture) or in vivo (in chickens) passage were confirmed by various assays, including Southern blot analysis, western blot analysis, and an indirect immunofluorescence assay. Safety of HVT/LT was assessed by an overdose study as well as by a backpassage study in specific-pathogen-free (SPF) chickens. The overdose study indicated that HVT/LT did not cause any adverse effects in chickens. The backpassage study confirmed that HVT/LT does not revert to virulence after five passages in chickens. The vaccine did not transmit laterally from vaccinated chickens to commingled nonvaccinated chickens. Efficacy of HVT/LT was evaluated in SPF layer chickens after vaccination by the subcutaneous route at 1 day of age. The majority of the vaccinated chickens (92%-100%) were protected against challenge with virulent LTV at 7 wk of age. Efficacy of HVT/LT was further evaluated in broiler chickens from a commercial source after in ovo vaccination to embryos at 18 days of incubation. After challenge with virulent LTV at 21 and 35 days of age, 67% and 87% of HVT/LT-vaccinated chickens did not develop LT clinical signs, respectively, while 100% (21 days of age) and 73% (35 days of age) of the challenge control chickens showed clinical signs of LT. These results suggest that HVT/LT is a safe and efficacious vaccine for control of laryngotracheitis (LT). PMID:24689173

  1. Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71.

    Science.gov (United States)

    Zhang, Chao; Yang, Yong; Chi, Yudan; Yin, Jieyun; Yan, Lijun; Ku, Zhiqiang; Liu, Qingwei; Huang, Zhong; Zhou, Dongming

    2015-09-22

    Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens. PMID:26296491

  2. Evaluation of a Fiber-Modified Adenovirus Vector Vaccine against Foot-and-Mouth Disease in Cattle

    Science.gov (United States)

    Medina, Gisselle N.; Montiel, Nestor; Diaz-San Segundo, Fayna; Sturza, Diego; Ramirez-Medina, Elizabeth; Grubman, Marvin J.

    2015-01-01

    Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvβ6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4+ and CD8+ gamma interferon (IFN-γ)+ cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle. PMID:26607309

  3. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  4. Evaluation of fiber-modified adenovirus vector-vaccine against foot-and-mouth diseaes in cattle

    Science.gov (United States)

    Novel vaccination approaches against foot-and-mouth-disease (FMD) include the use of a replication-defective human adenovirus type 5 vector (Ad5) that contains the capsid encoding regions of FMD virus (FMDV). An Ad5.A24 has proven effective as a vaccine against FMD in swine and cattle. However, ther...

  5. [Construction of recombinant yellow fever virus 17D containing 2A fragment as a vaccine vector].

    Science.gov (United States)

    Xiaowu, Pang; Fu, Wen-Chuan; Guo, Yin-Han; Zhang, Li-Shu; Xie, Tian-Pei; Xinbin, Gu

    2006-05-01

    The Yellow Fever (YF) vaccine, an attenuated yellow fever 17D (YF-17D) live vaccine, is one of the most effective and safest vaccines in the world and is regarded as one of the best candidates for viral expression vector. We here first reported in China the construction and characterization of the recombinant expression vector of yellow fever 17D which contained the proteinase 2A fragment of foot-and-mouth disease virus (FMDV). Three cDNA fragments representing the full-length YF-17D genome, named 5'-end cDNA (A), 3'-end cDNA (B) and middle cDNA (C), were obtained by reverse transcription polymerase chain reaction (RT-PCR), together with the introduction of SP6 enhancer, necessary restriction sites and overlaps for homologous recombination in yeast. Fragment A and B were then introduced into pRS424 in turn by DNA recombination, followed by transfection of fragment C and the recombinant pRS424 containing A and B (pRS-A-B) into yeast. A recombinant vector containing full length cDNA of YF-17D (pRS-YF) was obtained by screening on medium lack of tryptophan and uracil. A recombinant YF-17D expression vector containing FMDV-2A gene fragment (pRS-YF-2A1) was then constructed by methods of DNA recombination and homologous recombination in yeast described above. In vitro transcription of the recombinant vector pRS-YF-2A1 was then carried out and introduced into BHK-21 cells by electroporation. Results of indirect immunofluorescence assay (IFA) and titer determination showed a stable infectious recombinant virus was gotten, whose features such as growth curve were similar to those of the parental YF-17D. The results suggest that the recombinant vector pRS-YF-2A1, by introduction of heterogenous genes via 2A region, is potential to be an effective live vaccine expression vector. PMID:16755933

  6. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  7. Apple latent spherical virus vector as vaccine for the prevention and treatment of mosaic diseases in pea, broad bean, and eustoma plants by bean yellow mosaic virus.

    Science.gov (United States)

    Satoh, Nozomi; Kon, Tatsuya; Yamagishi, Noriko; Takahashi, Tsubasa; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2014-11-01

    We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV) harboring a segment of the Bean yellow mosaic virus (BYMV) genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases. PMID:25386843

  8. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nozomi Satoh

    2014-11-01

    Full Text Available We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV harboring a segment of the Bean yellow mosaic virus (BYMV genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  9. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance.

    Directory of Open Access Journals (Sweden)

    Emily Xie

    Full Text Available The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.

  10. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity.

    Science.gov (United States)

    Caufour, Philippe; Rufael, Tesfaye; Lamien, Charles Euloge; Lancelot, Renaud; Kidane, Menbere; Awel, Dino; Sertse, Tefera; Kwiatek, Olivier; Libeau, Geneviève; Sahle, Mesfin; Diallo, Adama; Albina, Emmanuel

    2014-06-24

    Sheeppox, goatpox and peste des petits ruminants (PPR) are highly contagious ruminant diseases widely distributed in Africa, the Middle East and Asia. Capripoxvirus (CPV)-vectored recombinant PPR vaccines (rCPV-PPR vaccines), which have been developed and shown to protect against both Capripox (CP) and PPR, would be critical tools in the control of these important diseases. In most parts of the world, these disease distributions overlap each other leaving concerns about the potential impact that pre-existing immunity against either disease may have on the protective efficacy of these bivalent rCPV-PPR vaccines. Currently, this question has not been indisputably addressed. Therefore, we undertook this study, under experimental conditions designed for the context of mass vaccination campaigns of small ruminants, using the two CPV recombinants (Kenya sheep-1 (KS-1) strain-based constructs) developed previously in our laboratory. Pre-existing immunity was first induced by immunization either with an attenuated CPV vaccine strain (KS-1) or the attenuated PPRV vaccine strain (Nigeria 75/1) and animals were thereafter inoculated once subcutaneously with a mixture of CPV recombinants expressing either the hemagglutinin (H) or the fusion (F) protein gene of PPRV (10(3) TCID50/animal of each). Finally, these animals were challenged with a virulent CPV strain followed by a virulent PPRV strain 3 weeks later. Our study demonstrated full protection against CP for vaccinated animals with prior exposure to PPRV and a partial protection against PPR for vaccinated animals with prior exposure to CPV. The latter animals exhibited a mild clinical form of PPR and did not show any post-challenge anamnestic neutralizing antibody response against PPRV. The implications of these results are discussed herein and suggestions made for future research regarding the development of CPV-vectored vaccines. PMID:24837763

  11. Live virus vaccines based on a yellow fever vaccine backbone: Standardized template with key considerations for a risk/benefit assessment

    OpenAIRE

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T.

    2014-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for mark...

  12. Plant-Based Vaccines: Production and Challenges

    Directory of Open Access Journals (Sweden)

    Erna Laere

    2016-01-01

    Full Text Available Plant-based vaccine technologies involve the integration of the desired genes encoding the antigen protein for specific disease into the genome of plant tissues by various methods. Agrobacterium-mediated gene transfer and transformation via genetically modified plant virus are the common methods that have been used to produce effective vaccines. Nevertheless, with the advancement of science and technology, new approaches have been developed to increase the efficiency of former methods such as biolistic, electroporation, agroinfiltration, sonication, and polyethylene glycol treatment. Even though plant-based vaccines provide many benefits to the vaccine industry, there are still challenges that limit the rate of successful production of these third-generation vaccines. Even with all the limitations, continuous efforts are still ongoing in order to produce efficient vaccine for many human and animals related diseases owing to its great potentials. This paper reviews the existing conventional methods as well as the development efforts by researchers in order to improve the production of plant-based vaccines. Several challenges encountered during and after the production process were also discussed.

  13. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    Science.gov (United States)

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  14. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    Directory of Open Access Journals (Sweden)

    Ivan Y. C. Lin

    2015-11-01

    Full Text Available Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.

  15. A Complex Adenovirus-Vectored Vaccine against Rift Valley Fever Virus Protects Mice against Lethal Infection in the Presence of Preexisting Vector Immunity▿

    OpenAIRE

    Holman, David H.; Penn-Nicholson, Adam; Wang, Danher; Woraratanadharm, Jan; Harr, Mary-Katherine; Luo, Min; Maher, Ellen M.; Holbrook, Michael R.; Dong, John Y.

    2009-01-01

    Rift Valley fever virus (RVFV) has been cited as a potential biological-weapon threat due to the serious and fatal disease it causes in humans and animals and the fact that this mosquito-borne virus can be lethal in an aerosolized form. Current human and veterinary vaccines against RVFV, however, are outdated, inefficient, and unsafe. We have incorporated the RVFV glycoprotein genes into a nonreplicating complex adenovirus (CAdVax) vector platform to develop a novel RVFV vaccine. Mice vaccina...

  16. Particle-based platforms for malaria vaccines.

    Science.gov (United States)

    Wu, Yimin; Narum, David L; Fleury, Sylvain; Jennings, Gary; Yadava, Anjali

    2015-12-22

    Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa. PMID:26458803

  17. Vaccination with Ad5 vectors expands Ad5-specific CD8 T cells without altering memory phenotype or functionality.

    Directory of Open Access Journals (Sweden)

    Natalie A Hutnick

    Full Text Available BACKGROUND: Adenoviral (Ad vaccine vectors represent both a vehicle to present a novel antigen to the immune system as well as restimulation of immune responses against the Ad vector itself. To what degree Ad-specific CD8(+ T cells are restimulated by Ad vector vaccination is unclear, although such knowledge would be important as vector-specific CD8(+ T cell expansion could potentially further limit Ad vaccine efficacy beyond Ad-specific neutralizing antibody alone. METHODOLOGY/PRINCIPAL FINDINGS: Here we addressed this issue by measuring human Adenovirus serotype 5 (Ad5-specific CD8(+ T cells in recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after vaccination by multicolor flow cytometry. Ad5-specific CD8(+ T-cells were detectable in 95% of subjects prior to vaccination, and displayed primarily an effector-type functional profile and phenotype. Peripheral blood Ad5-specific CD8(+ T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but differential expansion kinetics were noted in some baseline Ad5-neutralizing antibody (Ad5 nAb seronegative subjects compared to baseline Ad5 nAb seropositive subjects. However, in neither group did vaccination alter polyfunctionality, mucosal targeting marker expression, or memory phenotype of Ad5-specific CD8(+ T-cells. CONCLUSIONS: These data indicate that repeat Ad5-vector administration in humans expands Ad5-specific CD8(+ T-cells without overtly affecting their functional capacity or phenotypic properties. This is a secondary analysis of samples collected during the 016 trial. Results of the Merck 016 trial safety and immunogenicity have been previously published in the journal of clinical infectious diseases [1]. TRIAL REGISTRATION: ClinicalTrials.gov NCT00849680[http://www.clinicaltrials.gov/show/NCT00849680].

  18. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    OpenAIRE

    Xiang Zuoshuang; Hur Junguk; Feldman Eva L; He Yongqun

    2011-01-01

    Abstract Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of va...

  19. Different Levels of Immunogenicity of Two Strains of Fowlpox Virus as Recombinant Vaccine Vectors Eliciting T-Cell Responses in Heterologous Prime-Boost Vaccination Strategies

    OpenAIRE

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T.; Anderson, Richard J.; Howard, M. Keith; Schneider, Jörg; Skinner, Michael A.

    2006-01-01

    The FP9 strain of Fowlpox virus has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recom...

  20. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems

    OpenAIRE

    Ru Wen; Umeano, Afoma C.; Lily Francis; Nivita Sharma; Smanla Tundup; Shanta Dhar

    2016-01-01

    Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death ...

  1. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies.

    Science.gov (United States)

    Aboul-Ata, Aboul-Ata E; Vitti, Antonella; Nuzzaci, Maria; El-Attar, Ahmad K; Piazzolla, Giuseppina; Tortorella, Cosimo; Harandi, Ali M; Olson, Olof; Wright, Sandra A; Piazzolla, Pasquale

    2014-01-01

    A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and

  2. Intranasal vaccination with a helper-dependent adenoviral vector enhances transgene-specific immune responses in BALB/c mice.

    Science.gov (United States)

    Fu, Yuan-hui; He, Jin-sheng; Zheng, Xian-xian; Wang, Xiao-bo; Xie, Can; Shi, Chang-xin; Zhang, Mei; Tang, Qian; Wei, Wei; Qu, Jian-guo; Hong, Tao

    2010-01-01

    Helper-dependent adenoviral (HDAd) vectors were developed primarily for genetic disease therapy by deleting all coding regions for attenuating the host cellular immune response to adenovirus (Ad) and long-lasting gene expression. Recently Harui et al. reported that HDAd vaccine could stimulate superior transgene-specific cytotoxic T lymphocyte (CTL) and antibody responses via the intraperitoneal route, compared to first-generation adenoviral (FGAd) vaccine. This prompted us to explore the potential of HDAd as a vaccine vector administrated intranasally. In this study, we prepared HDAd and FGAd vectors expressing enhanced green fluorescent protein (EGFP), respectively, and compared their efficacy in mice. Mice were immunized intranasally with 5x10(9) vp HDAd or FGAd vector particles. Despite stimulating similar anti-Ad antibody responses with FGAd vaccine in the prime/boost strategy, HDAd vector expressing EGFP displayed superior transgene-specific serum IgG, mucosal IgA and cellular immune response, with the characterization of balanced or mixed Th1/Th2 CD4+ T-cell responses. Meanwhile, a single dose of intranasal (i.n.) vaccine of HDAd-EGFP induced a serum IgG response with more efficacy than FGAd-EGFP. In addition, i.n. boost immunization enhanced transgene-specific humoral and cellular responses, compared to single i.n. HDAd-EGFP immunization. Our results suggest that HDAd has potential for a mucosal vaccine vector via i.n. route, which will be useful for the development of vaccines against respiratory viruses, such as respiratory syncytial virus and influenza virus. PMID:19945423

  3. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    OpenAIRE

    Diego J Comerci; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a goo...

  4. Evaluation of the Protection Efficacy of a Serotype 1 Marek's Disease Virus-Vectored Bivalent Vaccine Against Infectious Laryngotracheitis and Marek's Disease.

    Science.gov (United States)

    Gimeno, Isabel M; Cortes, Aneg L; Faiz, Nik M; Hernandez-Ortiz, Byron A; Guy, James S; Hunt, Henry D; Silva, Robert F

    2015-06-01

    Laryngotracheitis (LT) is a highly contagious respiratory disease of chickens that produces significant economic losses to the poultry industry. Traditionally, LT has been controlled by administration of modified live vaccines. In recent years, the use of recombinant DNA-derived vaccines using turkey herpesvirus (HVT) and fowlpox virus has expanded, as they protect not only against the vector used but also against LT. However, HVT-based vaccines confer limited protection against challenge, with emergent very virulent plus Marek's disease virus (vv+MDV). Serotype 1 vaccines have been proven to be the most efficient against vv+MDV. In particular, deletion of oncogene MEQ from the oncogenic vvMDV strain Md5 (BACδMEQ) resulted in a very efficient vaccine against vv+MDV. In this work, we have developed two recombinant vaccines against MD and LT by using BACδMEQ as a vector that carries either the LT virus (LTV) gene glycoprotein B (gB; BACΔMEQ-gB) or LTV gene glycoprotein J (gJ; BACδMEQ-gJ). We have evaluated the protection that these recombinant vaccines confer against MD and LT challenge when administered alone or in combination. Our results demonstrated that both bivalent vaccines (BACΔMEQ-gB and BACδMEQ-gJ) replicated in chickens and were safe to use in commercial meat-type chickens bearing maternal antibodies against MDV. BACΔMEQ-gB protected as well as a commercial recombinant (r)HVT-LT vaccine against challenge with LTV. However, BACδMEQ-gJ did not protect adequately against LT challenge or increase protection conferred by BACΔMEQ-gB when administered in combination. On the other hand, both BACΔMEQ-gB and BACδMEQ-gJ, administered alone or in combination, protected better against an early challenge with vv+MDV strain 648A than commercial strains of rHVT-LT or CVI988. Our results open a new avenue in the development of recombinant vaccines by using serotype 1 MDV as vectors. PMID:26473676

  5. Equiangular Vectors Approach to Mutually Unbiased Bases

    Directory of Open Access Journals (Sweden)

    Maurice R. Kibler

    2013-05-01

    Full Text Available Two orthonormal bases in the d-dimensional Hilbert space are said to be unbiased if the square modulus of the inner product of any vector of one basis with any vector of the other equals 1 d. The presence of a modulus in the problem of finding a set of mutually unbiased bases constitutes a source of complications from the numerical point of view. Therefore, we may ask the question: Is it possible to get rid of the modulus? After a short review of various constructions of mutually unbiased bases in Cd, we show how to transform the problem of finding d + 1 mutually unbiased bases in the d-dimensional space Cd (with a modulus for the inner product into the one of finding d(d+1 vectors in the d2-dimensional space Cd2 (without a modulus for the inner product. The transformation from Cd to Cd2 corresponds to the passage from equiangular lines to equiangular vectors. The transformation formulas are discussed in the case where d is a prime number.

  6. Recombinant influenza vaccines.

    Science.gov (United States)

    Sedova, E S; Shcherbinin, D N; Migunov, A I; Smirnov, Iu A; Logunov, D Iu; Shmarov, M M; Tsybalova, L M; Naroditskiĭ, B S; Kiselev, O I; Gintsburg, A L

    2012-10-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery platform for a variety of genetic vaccines. Adenoviruses can efficiently penetrate the human organism through mucosal epithelium, thus providing long-term antigen persistence and induction of the innate immune response. This review provides an overview of the practicability of the production of new recombinant influenza cross-protective vaccines on the basis of adenoviral vectors expressing hemagglutinin genes of different influenza strains. PMID:23346377

  7. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    OpenAIRE

    Nozomi Satoh; Tatsuya Kon; Noriko Yamagishi; Tsubasa Takahashi; Tomohide Natsuaki; Nobuyuki Yoshikawa

    2014-01-01

    We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV) harboring a segment of the Bean yellow mosaic virus (BYMV) genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic sym...

  8. Nonlinear Growth of Singular Vector Based Perturbations

    Science.gov (United States)

    Reynolds, C. A.

    2002-12-01

    The nonlinearity of singular vector-based perturbation growth is examined within the context of a global atmospheric forecast model. The characteristics of these nonlinearities and their impact on the utility of SV-based diagnostics are assessed both qualitatively and quantitatively. Nonlinearities are quantified by examining the symmetry of evolving positive and negative "twin" perturbations. Perturbations initially scaled to be consistent with estimates of analysis uncertainty become significantly nonlinear by 12 hours. However, the relative magnitude of the nonlinearities is a strong function of scale and metric. Small scales become nonlinear very quickly while synoptic scales can remain significantly linear out to three day. Small shifts between positive and negative perturbations can result in significant nonlinearities even when the basic anomaly patterns are quite similar. Thus, singular vectors may be qualitatively useful even when nonlinearities are large. Post-time pseudo-inverse experiments show that despite significant nonlinear perturbation growth, the nonlinear forecast corrections are similar to the expected linear corrections, even at 72 hours. When the nonlinear correction does differ significantly from the expected linear correction, the nonlinear correction is usually better, indicating that in some cases the pseudo-inverse correction effectively suppresses error growth outside the subspace defined by the leading (dry) singular vectors. Because a significant portion of the nonlinear growth occurs outside of the dry singular vector subspace, an a priori nonlinearity index based on the full perturbations is not a good predictor of when pseudo-inverse based corrections will be ineffective. However, one can construct a reasonable predictor of pseudo-inverse ineffectiveness by focusing on nonlinearities in the synoptic scales or in the singular vector subspace only.

  9. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech; Steffensen, Maria Abildgaard; Nørgaard Nielsen, Karen;

    2014-01-01

    approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8+ T-cell response. Furthermore, in a melanoma model we observed significantly...... prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following...

  10. Novel Cocaine Vaccine Linked to a Disrupted Adenovirus Gene Transfer Vector Blocks Cocaine Psychostimulant and Reinforcing Effects

    OpenAIRE

    Wee, Sunmee; Hicks, Martin J.; De, Bishnu P.; Rosenberg, Jonathan B; Moreno, Amira Y.; KaMinSky, Stephen M.; Kim D. Janda; Crystal, Ronald G.; Koob, George F.

    2011-01-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexano...

  11. Cost-Based Vectorization of Instance-Based Integration Processes

    Science.gov (United States)

    Boehm, Matthias; Habich, Dirk; Preissler, Steffen; Lehner, Wolfgang; Wloka, Uwe

    The inefficiency of integration processes—as an abstraction of workflow-based integration tasks—is often reasoned by low resource utilization and significant waiting times for external systems. With the aim to overcome these problems, we proposed the concept of process vectorization. There, instance-based integration processes are transparently executed with the pipes-and-filters execution model. Here, the term vectorization is used in the sense of processing a sequence (vector) of messages by one standing process. Although it has been shown that process vectorization achieves a significant throughput improvement, this concept has two major drawbacks. First, the theoretical performance of a vectorized integration process mainly depends on the performance of the most cost-intensive operator. Second, the practical performance strongly depends on the number of available threads. In this paper, we present an advanced optimization approach that addresses the mentioned problems. Therefore, we generalize the vectorization problem and explain how to vectorize process plans in a cost-based manner. Due to the exponential complexity, we provide a heuristic computation approach and formally analyze its optimality. In conclusion of our evaluation, the message throughput can be significantly increased compared to both the instance-based execution as well as the rule-based process vectorization.

  12. Mucosal parainfluenza virus-vectored vaccine against Ebola virus replicates in the respiratory tract of vector-immune monkeys and is immunogenic

    OpenAIRE

    Bukreyev, Alexander A.; DiNapoli, Joshua M.; Yang, Lijuan; Murphy, Brian R.; Collins, Peter L.

    2010-01-01

    We previously used human parainfluenza virus type 3 (HPIV3) as a vector to express the Ebola virus (EBOV) GP glycoprotein. The resulting HPIV3/EboGP vaccine was immunogenic and protective against EBOV challenge in a non-human primate model. However it remained unclear whether the vaccine would be effective in adults due to pre-existing immunity to HPIV3. Here, the immunogenicity of HPIV3/EboGP was compared in HPIV3-naïve and HPIV3-immune Rhesus monkeys. After a single dose of HPIV3/EboGP, the...

  13. In vitro analysis of expression vectors for DNA vaccination of horses: the effect of a Kozak sequence

    Directory of Open Access Journals (Sweden)

    Torsteinsdóttir Sigurbjörg

    2008-11-01

    Full Text Available Abstract One of the prerequisite for developing DNA vaccines for horses are vectors that are efficiently expressed in horse cells. We have analysed the ectopic expression of the human serum albumin gene in primary horse cells from different tissues. The vectors used are of pcDNA and pUC origin and include the cytomegalovirus (CMV promoter. The pUC vectors contain CMV intron A whereas the pcDNA vectors do not. Insertion of intron A diminished the expression from the pcDNA vectors whereas insertion of a Kozak sequence upstream of the gene in two types of pUC vectors increased significantly the in vitro expression in primary horse cells derived from skin, lung, duodenum and kidney. We report for the first time the significance of full consensus Kozak sequences for protein expression in horse cells in vitro.

  14. B cell infection and activation by rabies virus-based vaccines.

    Science.gov (United States)

    Lytle, Andrew G; Norton, James E; Dorfmeier, Corin L; Shen, Shixue; McGettigan, James P

    2013-08-01

    Replication-deficient rabies viruses (RABV) are promising rabies postexposure vaccines due to their prompt and potent stimulation of protective virus neutralizing antibody titers, which are produced in mice by both T-dependent and T-independent mechanisms. To promote such early and robust B cell stimulation, we hypothesized that live RABV-based vaccines directly infect B cells, thereby activating a large pool of antigen-presenting cells (APCs) capable of providing early priming and costimulation to CD4(+) T cells. In this report, we show that live RABV-based vaccine vectors efficiently infect naive primary murine and human B cells ex vivo. Infection of B cells resulted in the significant upregulation of early markers of B cell activation and antigen presentation, including CD69, major histocompatibility complex class II (MHC-II), and CD40 in murine B cells or HLA-DR and CD40 in human B cells compared to mock-infected cells or cells treated with an inactivated RABV-based vaccine. Furthermore, primary B cells infected with a live RABV expressing ovalbumin were able to prime and stimulate naive CD4(+) OT-II T cells to proliferate and to secrete interleukin-2 (IL-2), demonstrating a functional consequence of B cell infection and activation by live RABV-based vaccine vectors. We propose that this direct B cell stimulation by live RABV-based vaccines is a potential mechanism underlying their induction of early protective T cell-dependent B cell responses, and that designing live RABV-based vaccines to infect and activate B cells represents a promising strategy to develop a single-dose postexposure rabies vaccine where the generation of early protective antibody titers is critical. PMID:23760241

  15. Intranasal Mucosal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances the Protection of BCG-Primed Guinea Pigs against Pulmonary Tuberculosis

    OpenAIRE

    Xing, Zhou; McFarland, Christine T.; Sallenave, Jean-Michel; Izzo, Angelo; Wang, Jun; McMURRAY, David N.

    2009-01-01

    Background Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Methods and Findings Specific pathogen-free guinea pigs were immuniz...

  16. Chikungunya vaccines in development.

    Science.gov (United States)

    Schwameis, Michael; Buchtele, Nina; Wadowski, Patricia Pia; Schoergenhofer, Christian; Jilma, Bernd

    2016-03-01

    Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates. PMID:26554522

  17. Vaccinia Virus LC16m8∆ as a Vaccine Vector for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Minoru Kidokoro

    2014-10-01

    Full Text Available The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety profile, the occurrence of spontaneously-generated large plaque-forming virulent LC16m8 revertants following passage in cell culture is a major drawback. We identified the gene responsible for the reversion and deleted the gene (B5R from LC16m8 to derive LC16m8Δ. LC16m8∆ is non-pathogenic in immunodeficient severe combined immunodeficiency (SCID mice, genetically-stable and does not reverse to a large-plaque phenotype upon passage in cell culture, even under conditions in which most LC16m8 populations are replaced by revertants. Moreover, LC16m8∆ is >500-fold more effective than the non-replicating vaccinia virus (VV, Modified Vaccinia Ankara (MVA, at inducing murine immune responses against pathogenic VV. LC16m8∆, which expresses the SIV gag gene, also induced anti-Gag CD8+ T-cells more efficiently than MVA and another non-replicating VV, Dairen I minute-pock variants (DIs. Moreover, LC16m8∆ expressing HIV-1 Env in combination with a Sendai virus vector induced the production of anti-Env antibodies and CD8+ T-cells. Thus, the safety and efficacy of LC16m8∆ mean that it represents an outstanding platform for the development of human vaccine vectors.

  18. Vector Control Based on SVPWM for ACIM

    Directory of Open Access Journals (Sweden)

    Zhu Jun

    2013-05-01

    Full Text Available To solve the large torque ripple and current harmonics, low DC bus voltage problems, a new control strategy is proposed for AC induction motor by using space vector pulse width modulation, so that the static and dynamic performance are improved. The system simulation experiment mode was established based on SVPWM to verify the effectiveness of the system control mode. It is showed that it can reduce the current ripple and torque ripple, improve the utilization of DC bus voltage. It means that the control strategy based SVPWM can improve dynamic and static performance effectively for the ACIM servo system.

  19. Immune responses to rAAV6: The influence of canine parvovirus vaccination and neonatal administration of viral vector

    Directory of Open Access Journals (Sweden)

    AndreaL HArnett

    2011-11-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV. rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, one month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.

  20. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Directory of Open Access Journals (Sweden)

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  1. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    OpenAIRE

    Samantha Sayers; Guerlain Ulysse; Zuoshuang Xiang; Yongqun He

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bi...

  2. An influenza viral vector Brucella abortus vaccine induces good cross-protection against Brucella melitensis infection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Ryskeldinova, Sholpan; Sansyzbay, Abylai

    2015-07-17

    Brucella melitensis can be transmitted and cause disease in cattle herds as a result of inadequate management of mixed livestock farms. Ideally, vaccines against Brucella abortus for cattle should also provide cross-protection against B. melitensis. Previously we created a novel influenza viral vector B. abortus (Flu-BA) vaccine expressing the Brucella ribosomal proteins L7/L12 or Omp16. This study demonstrated Flu-BA vaccine with adjuvant Montanide Gel01 provided 100% protection against abortion in vaccinated pregnant heifers and good cross-protection of the heifers and their calves or fetuses (90-100%) after challenge with B. melitensis 16M; the level of protection provided by Flu-BA was comparable to the commercial vaccine B. abortus S19. In terms of the index of infection and colonization of Brucella in tissues, both vaccines demonstrated significant (P=0.02 to P<0.0001) protection against B. melitensis 16M infection compared to the negative control group (PBS+Montanide Gel01). Thus, we conclude the Flu-BA vaccine provides cross-protection against B. melitensis infection in pregnant heifers. PMID:26093199

  3. Robust Video Stabilization Based on Motion Vectors

    Institute of Scientific and Technical Information of China (English)

    宋利; 周源华; 周军

    2005-01-01

    This paper proposes a new robust video stabilization algorithm to remove unwanted vibrations in video sequences. A complete theoretical analysis is first established for video stabilization, providing a basis for new stabilization algorithm. Secondly, a new robust global motion estimation (GME) algorithm is proposed. Different from classic methods, the GME algorithm is based on spatlal-temporal filtered motion vectors computed by block-matching methods. In addition, effective schemes are employed in correction phase to prevent boundary artifacts and error accumulation. Experiments show that the proposed algorithm has satisfactory stabilization effects while maintaining good tradeoff between speed and precision.

  4. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a “Single-Cycle” Alphavirus Vector and Empty Capsid Particles

    Science.gov (United States)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette; McInerney, Gerald M.; Burman, Alison; Jackson, Terry; Polacek, Charlotta

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a “single cycle” packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle vaccinated with these rSFV-FMDV vectors alone, anti-FMDV antibodies were elicited but the immune response was insufficient to give protection against FMDV challenge. However, the prior vaccination with these vectors resulted in a much stronger immune response against FMDV post-challenge and the viremia observed was decreased in level and duration. In subsequent experiments, cattle were sequentially vaccinated with a rSFV-FMDV followed by recombinant FMDV empty capsid particles, or vice versa, prior to challenge. Animals given a primary vaccination with the rSFV-FMDV vector and then boosted with FMDV empty capsids showed a strong anti-FMDV antibody response prior to challenge, they were protected against disease and no FMDV RNA was detected in their sera post-challenge. Initial inoculation with empty capsids followed by the rSFV-FMDV was much less effective at combating the FMDV challenge and a large post-challenge boost to the level of anti-FMDV antibodies was observed. This prime-boost system, using reagents that can be generated outside of high

  5. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles.

    Science.gov (United States)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette; McInerney, Gerald M; Burman, Alison; Jackson, Terry; Polacek, Charlotta; Belsham, Graham J

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle vaccinated with these rSFV-FMDV vectors alone, anti-FMDV antibodies were elicited but the immune response was insufficient to give protection against FMDV challenge. However, the prior vaccination with these vectors resulted in a much stronger immune response against FMDV post-challenge and the viremia observed was decreased in level and duration. In subsequent experiments, cattle were sequentially vaccinated with a rSFV-FMDV followed by recombinant FMDV empty capsid particles, or vice versa, prior to challenge. Animals given a primary vaccination with the rSFV-FMDV vector and then boosted with FMDV empty capsids showed a strong anti-FMDV antibody response prior to challenge, they were protected against disease and no FMDV RNA was detected in their sera post-challenge. Initial inoculation with empty capsids followed by the rSFV-FMDV was much less effective at combating the FMDV challenge and a large post-challenge boost to the level of anti-FMDV antibodies was observed. This prime-boost system, using reagents that can be generated outside of high-containment facilities

  6. Membrane-bound SIV envelope trimers are immunogenic in ferrets after intranasal vaccination with a replication-competent canine distemper virus vector.

    Science.gov (United States)

    Zhang, Xinsheng; Wallace, Olivia; Wright, Kevin J; Backer, Martin; Coleman, John W; Koehnke, Rebecca; Frenk, Esther; Domi, Arban; Chiuchiolo, Maria J; DeStefano, Joanne; Narpala, Sandeep; Powell, Rebecca; Morrow, Gavin; Boggiano, Cesar; Zamb, Timothy J; Richter King, C; Parks, Christopher L

    2013-11-01

    We are investigating canine distemper virus (CDV) as a vaccine vector for the delivery of HIV envelope (Env) that closely resembles the native trimeric spike. We selected CDV because it will promote vaccine delivery to lymphoid tissues, and because human exposure is infrequent, reducing potential effects of pre-existing immunity. Using SIV Env as a model, we tested a number of vector and gene insert designs. Vectors containing a gene inserted between the CDV H and L genes, which encoded Env lacking most of its cytoplasmic tail, propagated efficiently in Vero cells, expressed the immunogen on the cell surface, and incorporated the SIV glycoprotein into progeny virus particles. When ferrets were vaccinated intranasally, there were no signs of distress, vector replication was observed in the gut-associated lymphoid tissues, and the animals produced anti-SIV Env antibodies. These data show that live CDV-SIV Env vectors can safely induce anti-Env immune responses following intranasal vaccination. PMID:24074564

  7. Evaluation of regulated delayed attenuation strategies for Salmonella enterica serovar Typhi vaccine vectors in neonatal and infant mice.

    Science.gov (United States)

    Shi, Huoying; Wang, Shifeng; Curtiss, Roy

    2013-06-01

    We developed regulated delayed attenuation strategies for Salmonella vaccine vectors. In this study, we evaluated the combination of these strategies in recombinant attenuated Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium vaccine vectors with similar genetic backgrounds in vitro and in vivo. Our goal is to develop a vaccine to prevent Streptococcus pneumoniae infection in newborns; thus, all strains delivered a pneumococcal antigen PspA and the impact of maternal antibodies was evaluated. The results showed that all strains with the regulated delayed attenuated phenotype (RDAP) displayed an invasive ability stronger than that of the S. Typhi vaccine strain, Ty21a, but weaker than that of their corresponding wild-type parental strains. The survival curves of different RDAP vaccine vectors in vitro and in vivo exhibited diverse regulated delayed attenuation kinetics, which was different from S. Typhi Ty21a and the wild-type parental strains. Under the influence of maternal antibody, the persistence of the S. Typhimurium RDAP strain displayed a regulated delayed attenuation trend in nasal lymphoid tissue (NALT), lung, and Peyer's patches, while the persistence of S. Typhi RDAP strains followed the curve only in NALT. The bacterial loads of S. Typhi RDAP strains were lower in NALT, lung, and Peyer's patches in mice born to immune mothers than in those born to naive mothers. In accordance with these results, RDAP vaccine strains induced high titers of IgG antibodies against PspA and against Salmonella lipopolysaccharides. Immunization of mothers with S. Typhi RDAP strains enhanced the level of vaginal mucosal IgA, gamma interferon (IFN-γ), and interleukin 4 (IL-4) and resulted in a higher level of protection against S. pneumoniae challenge. PMID:23616408

  8. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Thomas W Geisbert

    2008-11-01

    Full Text Available Ebola virus (EBOV is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVDeltaG/ZEBOVGP in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV. All six animals showed no evidence of illness associated with the VSVDeltaG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.

  9. Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future?

    Science.gov (United States)

    Smaill, Fiona; Xing, Zhou

    2014-08-01

    Despite progress in managing TB, there were 8.6 million new cases in 2012. To control TB will require a more effective vaccine than BCG, new drugs and better diagnostic tests. Recombinant replication-defective adenoviruses expressing foreign DNA have been studied as vaccines. We developed and evaluated a recombinant replication-deficient human Ad5 vector expressing Ag85A (Ad5Ag85A) as a TB vaccine in animal models and a Phase I human study. Animal models of Ad5Ag85A show markedly improved protection over BCG alone and immunization via the respiratory route provides the best type of protection. In humans, intramuscular vaccination was safe; Ad5Ag85A was immunogenic and stimulated polyfunctional T cell responses, more potently in previously BCG-vaccinated volunteers. Pre-existing Ad5 antibodies did not dampen the response. Given its potency, Ad5-based TB vaccines are well-positioned to be delivered to the respiratory tract, induce local lung immunity to control TB, and inform innovative approaches to new TB vaccination strategies. PMID:24935214

  10. DBSC-Based Grayscale Line Image Vectorization

    Institute of Scientific and Technical Information of China (English)

    Konstantin Melikhov; Feng Tian; Jie Qiu; Quan Chen; Hock Soon Seah

    2006-01-01

    Vector graphics plays an important role in computer animation and imaging technologies. However present techniques and tools cannot fully replace traditional pencil and paper. Additionally, vector representation of an image is not always available. There is not yet a good solution for vectorizing a picture drawn on a paper. This work attempts to solve the problem of vectorizing grayscale line drawings. The solution proposed uses Disk B-Spline curves to represent strokes of an image in vector form. The algorithm builds a vector representation from a grayscale raster image, which can be a scanned picture for instance. The proposed method uses a Gaussian sliding window to calculate skeleton and perceptive width of a stroke. As a result of vectorization, the given image is represented by a set of Disk B-Spline curves.

  11. Utilizing the antigen capsid-incorporation strategy for the development of adenovirus serotype 5-vectored vaccine approaches.

    Science.gov (United States)

    Gu, Linlin; Farrow, Anitra L; Krendelchtchikov, Alexandre; Matthews, Qiana L

    2015-01-01

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-vectored we first constructed the hexon shuttle plasmid HVR1-KWAS-HVR5-His6/pH5S by subcloning the hypervariable region (HVR) 1 of hexon into a previously constructed shuttle plasmid HVR5-His6/pH5S, which had His6 tag incorporated into the HVR5. This HVR1 DNA fragment containing a HIV epitope ELDKWAS was synthesized. HVR1-KWAS-HVR5-His6/pH5S was then linearized and co-transformed with linearized backbone plasmid pAd5/∆H5 (GL) , for homologous recombination. This recombined plasmid pAd5/H5-HVR1-KWAS-HVR5-His6 was transfected into cells to generate the viral vector Ad5/H5-HVR1-KWAS-HVR5-His6. This vector was validated to have qualitative fitness indicated by viral physical titer (VP/ml), infectious titer (IP/ml) and corresponding VP/IP ratio. Both the HIV epitope and His6 tag were surface-exposed on the Ad5 capsid, and retained epitope-specific antigenicity of their own. A neutralization assay indicated the ability of this divalent vector to circumvent neutralization by Ad5-positive sera in vitro. Mice immunization demonstrated the generation of robust humoral immunity specific to the HIV epitope and His6. This proof-of-principle study suggested that the protocol associated with the Antigen Capsid-Incorporation strategy could be feasibly utilized for the generation of Ad5-vectored vaccines by modifying different capsid proteins. This protocol could even be further modified for the generation of rare-serotype adenovirus-vectored vaccines. PMID:25993057

  12. Outpatient-Based Pneumococcal Vaccine Campaign and Survey of Perceptions about Pneumococcal Vaccination in Patients and Doctors

    OpenAIRE

    Song, Joon Young; Cheong, Hee Jin; Heo, Jung Yeon; Noh, Ji Yun; Seo, Yu Bin; Kim, In Seon; Choi, Won Suk; Kim, Woo Joo

    2013-01-01

    Purpose Despite the ready availability of pneumococcal vaccine, vaccination rates are quite low in South Korea. This study was designed to assess perceptions and awareness about pneumococcal vaccines among subjects at risk and find strategies to increases vaccine coverage rates. Materials and Methods A cross sectional, community-based survey was conducted to assess perceptions about the pneumococcal vaccine at a local public health center. In a tertiary hospital, an outpatient-based pneumococ...

  13. Development of Recombinant Vaccine Using Herpesvirus of Turkey (Hvt as Vector for Several Viral Diseases in Poultry Industry

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-03-01

    Full Text Available Herpesvirus of turkey (HVT has been utilised as live vaccine against Marek’s disease in poultry industry world-wide for many years. However, the potency of HVT is not limited on the Marek’s disease only. Along with rapid development of recombinant technique, the potency of HVT can be broaden for other diseases. As naturally apathogenic virus, HVT is a suitable candidate as vector vaccine to express important antigens of viral pathogens. Several researches have been dedicated to design HVT recombinant vaccine by inserting gene of important virus, such as Marek’s disease virus (MDV, immuno bursal disease virus (IBDV, Newcastle disease virus (NDV and Avian Influenza virus (AIV. Therefore, the future recombinant of HVT has been expected to be better in performance along with the improvement of recombinant technique.

  14. Differential CD4+ versus CD8+ T-Cell Responses Elicited by Different Poxvirus-Based Human Immunodeficiency Virus Type 1 Vaccine Candidates Provide Comparable Efficacies in Primates▿ †

    OpenAIRE

    Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S.; Koopman, Gerrit; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G.; Kondova, Ivanela; Wagner, Ralf; Wolf, Hans; Gómez, Carmen E.; José L Nájera; Jiménez, Victoria; Esteban, Mariano; Heeney, Jonathan L.

    2008-01-01

    Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune response...

  15. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Science.gov (United States)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  16. An Adenovirus-Vectored Nasal Vaccine Confers Rapid and Sustained Protection against Anthrax in a Single-Dose Regimen

    OpenAIRE

    Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C.

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sust...

  17. Vaccinations

    Science.gov (United States)

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  18. Stability of vaccinia-vectored recombinant oral rabies vaccine under field conditions: A 3-year study

    OpenAIRE

    Hermann, Joseph R.; Fry, Alethea M.; Siev, David; Slate, Dennis; Lewis, Charles; Gatewood, Donna M.

    2011-01-01

    Rabies is an incurable zoonotic disease caused by rabies virus, a member of the rhabdovirus family. It is transmitted through the bite of an infected animal. Control methods, including oral rabies vaccination (ORV) programs, have led to a reduction in the spread and prevalence of the disease in wildlife. This study evaluated the stability of RABORAL, a recombinant vaccinia virus vaccine that is used in oral rabies vaccination programs. The vaccine was studied in various field microenvironment...

  19. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness.

    Science.gov (United States)

    Vemula, Sai V; Ahi, Yadvinder S; Swaim, Anne-Marie; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-01-01

    Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced. PMID:23638099

  20. Efficacy of parainfluenza virus 5 (PIV5)-based tuberculosis vaccines in mice.

    Science.gov (United States)

    Chen, Zhenhai; Gupta, Tuhina; Xu, Pei; Phan, Shannon; Pickar, Adrian; Yau, Wilson; Karls, Russell K; Quinn, Frederick D; Sakamoto, Kaori; He, Biao

    2015-12-16

    Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an important human pathogen. Bacillus Calmette-Guérin (BCG), a live, attenuated variant of Mycobacterium bovis, is currently the only available TB vaccine despite its low efficacy against the infectious pulmonary form of the disease in adults. Thus, a more-effective TB vaccine is needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, has several characteristics that make it an attractive vaccine vector. It is safe, inexpensive to produce, and has been previously shown to be efficacious as the backbone of vaccines for influenza, rabies, and respiratory syncytial virus. In this work, recombinant PIV5 expressing M. tuberculosis antigens 85A (PIV5-85A) and 85B (PIV5-85B) have been generated and their immunogenicity and protective efficacy evaluated in a mouse aerosol infection model. In a long-term protection study, a single dose of PIV5-85A was found to be most effective in reducing M. tuberculosis colony forming units (CFU) in lungs when compared to unvaccinated, whereas the BCG vaccinated animals had similar numbers of CFUs to unvaccinated animals. BCG-prime followed by a PIV5-85A or PIV5-85B boost produced better outcomes highlighted by close to three-log units lower lung CFUs compared to PBS. The results indicate that PIV5-based M. tuberculosis vaccines are promising candidates for further development. PMID:26552000

  1. Applications of nanoparticles for DNA based rabies vaccine.

    Science.gov (United States)

    Shah, Muhammad Ali A; Khan, Sajid Umar; Ali, Zeeshan; Yang, Haowen; Liu, Keke; Mao, Lanlan

    2014-01-01

    Rabies is a fatal encephalomyelitis. Most cases occur in developing countries and are transmitted by dogs. The cell culture vaccines as associated with high cost; therefore, have not replaced the unsafe brain-derived vaccines. In the developing countries these brain-derived rabies vaccines still can be seen in action. Moreover, there will be a need for vaccines against rabies-related viruses against which classical vaccines are not always effective. The worldwide incidence of rabies and the inability of currently used vaccination strategies to provide highly potent and cost-effective therapy indicate the need for alternate control strategies. DNA vaccines have emerged as the safest vaccines and best remedy for complicated diseases like hepatitis, HIV, and rabies. A number of recombinant DNA vaccines are now being developed against several diseases such as AIDS and malaria. Therefore, it can be a valuable alternative for the production of cheaper rabies vaccines against its larger spectrum of viruses. In this review we report published data on DNA-based immunization with sequences encoding rabies with special reference to nanotechnology. PMID:24730305

  2. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Directory of Open Access Journals (Sweden)

    Yoshimi Tsuda

    2011-08-01

    Full Text Available BACKGROUND: Human outbreaks of Ebola virus (EBOV are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV vector expressing a CD8+ T cell epitope from the nucleoprotein (NP of Zaire ebolavirus (ZEBOV (MCMV/ZEBOV-NP(CTL. MCMV/ZEBOV-NP(CTL induced high levels of long-lasting (>8 months CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  3. School-Based Influenza Vaccination: Parents’ Perspectives

    OpenAIRE

    Lind, Candace; Russell, Margaret L; MacDonald, Judy; Collins, Ramona; Frank, Christine J.; Davis, Amy E.

    2014-01-01

    Background School-age children are important drivers of annual influenza epidemics yet influenza vaccination coverage of this population is low despite universal publicly funded influenza vaccination in Alberta, Canada. Immunizing children at school may potentially increase vaccine uptake. As parents are a key stakeholder group for such a program, it is important to consider their concerns. Purpose We explored parents’ perspectives on the acceptability of adding an annual influenza immunizati...

  4. Novel bivalent vectored vaccine for control of myxomatosis and rabbit haemorrhagic disease.

    Science.gov (United States)

    Spibey, N; McCabe, V J; Greenwood, N M; Jack, S C; Sutton, D; van der Waart, L

    2012-03-24

    A novel, recombinant myxoma virus-rabbit haemorrhagic disease virus (RHDV) vaccine has been developed for the prevention of myxomatosis and rabbit haemorrhagic disease (RHD). A number of laboratory studies are described illustrating the safety and efficacy of the vaccine following subcutaneous administration in laboratory rabbits from four weeks of age onwards. In these studies, both vaccinated and unvaccinated control rabbits were challenged using pathogenic strains of RHD and myxoma viruses, and 100 per cent of the vaccinated rabbits were protected against both myxomatosis and RHD. PMID:22266680

  5. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  6. Bethe vectors in GL(3)-based quantum integrable models

    CERN Document Server

    Pakuliak, S; Slavnov, N A

    2015-01-01

    We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik--Zamolodchokov equation.

  7. Recent progress in polymer-based gene delivery vectors

    Institute of Scientific and Technical Information of China (English)

    HUANG Shiwen; ZHUO Renxi

    2003-01-01

    The gene delivery system is one of the three components of a gene medicine, which is the bottle neck of current gene therapy. Nonviral vectors offer advantages over the viral system of safety, ease of manufacturing, etc. As important nonviral vectors, polymer gene delivery systems have gained increasing attention and have begun to show increasing promising. In this review, the fundamental and recent progress of polymer-based gene delivery vectors is reviewed.

  8. Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria

    Directory of Open Access Journals (Sweden)

    Ana Paula Morais Martins Almeida

    2011-08-01

    Full Text Available The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures, has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.

  9. One-Dimensional Vector Based Pattern Matching

    Directory of Open Access Journals (Sweden)

    Y.M.Fouda

    2014-08-01

    Full Text Available Template matching is a basic method in image analysis to extract useful information from images. In this paper, we suggest a new method for pattern matching. Our method transform the template image from two dimensional image into one dimensional vector. Also all sub - windows (same size of template in the reference image will transform into one dimensional vectors. The three similarity measures SAD, SSD, and Euclidean are used to c ompute the likeness between template and all sub - windows in the reference image to find the best match. The experimental results show the superior performance of the proposed metho d over the conventional methods on various template of different sizes

  10. Highly Sensitive Method for Titration of Adenovirus Vectors

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Hildegund Ertl, ZhiQuan Xiang, Yan Li, Dongming Zhou, Xiangyang Zhou, Wynetta Giles-Davis & Yi-lin E. Liu ### Abstract Clinical development of vaccines based on adenovirus (Ad) vectors requires accurate techniques to determine vector doses including contents of infectious particles. For vectors derived from Ad virus of human serotype 5 content of infectious particles can readily be determined by plaque assays. Vaccine vectors based on alternative Ad serotypes such as thos...

  11. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  12. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  13. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  14. Room temperature stabilization of oral, live attenuated Salmonella enterica serovar Typhi-vectored vaccines.

    Science.gov (United States)

    Ohtake, Satoshi; Martin, Russell; Saxena, Atul; Pham, Binh; Chiueh, Gary; Osorio, Manuel; Kopecko, Dennis; Xu, Deqi; Lechuga-Ballesteros, David; Truong-Le, Vu

    2011-03-24

    Foam drying, a modified freeze drying process, was utilized to produce a heat-stable, live attenuated Salmonella Typhi 'Ty21a' bacterial vaccine. Ty21a vaccine was formulated with pharmaceutically approved stabilizers, including sugars, plasticizers, amino acids, and proteins. Growth media and harvesting conditions of the bacteria were also studied to enhance resistance to desiccation stress encountered during processing as well as subsequent storage at elevated temperatures. The optimized Ty21a vaccine, formulated with trehalose, methionine, and gelatin, demonstrated stability for approximately 12 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1log(10)CFU) and no loss in titer at 4 and 25°C following storage for the same duration. Furthermore, the foam dried Ty21a elicited a similar immunogenic response in mice as well as protection in challenge studies compared to Vivotif™, the commercial Ty21a vaccine. The enhanced heat stability of the Ty21a oral vaccine, or Ty21a derivatives expressing foreign antigens (e.g. anthrax), could mitigate risks of vaccine potency loss during long-term storage, shipping, delivery to geographical areas with warmer climates or during emergency distribution following a bioterrorist attack. Because the foam drying process is conducted using conventional freeze dryers and can be readily implemented at any freeze drying manufacturing facility, this technology appears ready and appropriate for large scale processing of foam dried vaccines. PMID:21300096

  15. Vaccine potential of recombinant antigens of Theileria annulata and Hyalomma anatolicum anatolicum against vector and parasite.

    Science.gov (United States)

    Jeyabal, L; Kumar, Binod; Ray, Debdatta; Azahahianambi, Palavesam; Ghosh, Srikanta

    2012-09-10

    In an attempt to develop vaccine against Hyalomma anatolicum anatolicum and Theileria annulata, three antigens were expressed in prokaryotic expression system and protective potentiality of the antigens was evaluated in cross bred calves. Two groups (grs. 1 and 4) of male cross-bred (Bos indicus × Bos taurus) calves were immunized with rHaa86, a Bm86 ortholog of H. a. anatolicum, while one group of calves (gr. 2) were immunized with cocktails of two antigens viz., surface antigens of T. annulata (rSPAG1, rTaSP). One group each was kept as negative controls (grs. 3 and 5). The animals of groups 1, 2 and 3 were challenged with T. annulata infected H. a. anatolicum adults while the animals of groups 1, 3, 4 and 5 were challenged with uninfected adult ticks. A significantly high (p<0.05) antibody responses to all the three antigens were detected in immunized calves, but the immune response was comparatively higher with rHaa86 followed by rTaSP and rSPAG1. Upon challenge with T. annulata infected ticks, animals of all groups showed symptoms of the disease but there was 50% survival of calves of group 1 while all non immunized control calves (group 3) and rSPAG1+rTaSP immunized calves died. The rHaa86 antigen was found efficacious to protect calves against more than 71.4-75.5% of the challenge infestation. The experiment has given a significant clue towards the development of rHaa86 based vaccine against both H. a. anatolicum and T. annulata. PMID:22546546

  16. Targeted vaccine adjuvants based on modified cholera toxin.

    Science.gov (United States)

    Lycke, Nils

    2005-09-01

    The present review describes immunomodulation with targeted adjuvants that will allow for the development of efficacious mucosal vaccines. We have studied cholera toxin (CT) and derivatives thereof, to rationally design vaccine adjuvant vectors that are both highly efficacious as well as safe and non-toxic. Two strategies were exploited; the first using CT or the enzymatically inactive receptor-binding B-subunit of CT (CTB) and the second, using CTA1 or an enzymatically inactive mutant CTA1R7K., that was linked, in a fusion protein, to the B-cell targeting moiety, DD, from Staphylococcus areus proteinA. Our studies provide compelling evidence that delivery of Ag in the absence of ADP-ribosylation can promote tolerance, whereas, ADP-ribosyltransferase-active conjugates, prevent tolerance but induce IgA immunity. Our analysis revealed unique subsets of mucosal and systemic DC that appeared to be responsible for the ADP-ribosyltransferase sensitive dichotomy between tolerance and IgA immunity. Whether targeting of B cells suffice for tolerance-induction or requires participation of DCs, is at present an unresolved issue. Nevertheless, enzymatic modulation differentiates and matures the DC to promote CD4 T cell help for IgA B cell development. Ag-presentation in the absence of enzyme, as seen with CTA1R7K-DD, expands specific T cells to a similar extent as enzymatically active CTA1-DD, but fails to recruit help for germinal center expansion of activated B cells. We have given special attention to the genes that adjuvants turn on using Affymetrix technology. In particular, modulation of the expression of co-stimulatory molecules on the targeted APC; CD80, CD86, CD83 and B7RP-1, play important roles for the effect of the ADP-ribosylating CTA1-based adjuvants for the development of tolerance or active IgA immunity. PMID:16178769

  17. Great Ellipse Route Planning Based on Space Vector

    Directory of Open Access Journals (Sweden)

    LIU Wenchao

    2015-07-01

    Full Text Available Aiming at the problem of navigation error caused by unified earth model in great circle route planning using sphere model and modern navigation equipment using ellipsoid mode, a method of great ellipse route planning based on space vector is studied. By using space vector algebra method, the vertex of great ellipse is solved directly, and description of great ellipse based on major-axis vector and minor-axis vector is presented. Then calculation formulas of great ellipse azimuth and distance are deduced using two basic vectors. Finally, algorithms of great ellipse route planning are studied, especially equal distance route planning algorithm based on Newton-Raphson(N-R method. Comparative examples show that the difference of route planning between great circle and great ellipse is significant, using algorithms of great ellipse route planning can eliminate the navigation error caused by the great circle route planning, and effectively improve the accuracy of navigation calculation.

  18. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection.

    Science.gov (United States)

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-07-01

    Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  19. Development and applications of VSV vectors based on cell tropism

    Directory of Open Access Journals (Sweden)

    Hideki eTani

    2012-01-01

    Full Text Available Viral vectors have been available in various fields such as medical and biological research or gene therapy applications. Targeting vectors pseudotyped with distinct viral envelope proteins that influence cell tropism and transfection efficiency is a useful tool not only for examining entry mechanisms or cell tropisms but also for vaccine vector development. Vesicular stomatitis virus (VSV is an excellent candidate for development as a pseudotype vector. A recombinant VSV lacking its own envelope (G gene has been used to produce a pseudotype or recombinant VSV possessing the envelope proteins of heterologous viruses. These viruses possess a reporter gene instead of a VSV G gene in their genome, and therefore it is easy to evaluate their infectivity in the study of viral entry, including identification of viral receptors. Furthermore, advantage can be taken of a property of the pseudotype VSV, which is competence for single-round infection, in handling many different viruses that are either difficult to amplify in cultured cells or animals or that require specialized containment facilities. Here we describe procedures for producing pseudotype or recombinant VSVs and a few of the more prominent examples from among envelope viruses, such as hepatitis C virus, Japanese encephalitis virus, baculovirus, and hemorrhagic fever viruses.

  20. A Fingerprint Minutiae Matching Method Based on Line Segment Vector

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Minutiae-based fingerprint matching is the most commonly used in an automatic fingerprint identification system. In this paper, we propose a minutia matching method based on line segment vector. This method uses all the detected minutiae (the ridge ending and the ridge bifurcation) in a fingerprint image to create a set of new vectors (line segment vector). Using these vectors, we can determine a truer reference point more efficiently. In addition, this new minutiae vector can also increase the accuracy of the minutiae matching. By experiment on the public domain collections of fingerprint images fvc2004 DB3 set A and DB4 set A, the result shows that our algorithm can obtain an improved verification performance.

  1. Image Segmentation Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    XU Hai-xiang; ZHU Guang-xi; TIAN Jin-wen; ZHANG Xiang; PENG Fu-yuan

    2005-01-01

    Image segmentation is a necessary step in image analysis. Support vector machine (SVM) approach is proposed to segment images and its segmentation performance is evaluated.Experimental results show that: the effects of kernel function and model parameters on the segmentation performance are significant; SVM approach is less sensitive to noise in image segmentation; The segmentation performance of SVM approach is better than that of back-propagation multi-layer perceptron (BP-MLP) approach and fuzzy c-means (FCM) approach.

  2. Image indexing based on vector quantization

    Science.gov (United States)

    Grana Romay, Manuel; Rebollo, Israel

    2000-10-01

    We propose the computation of the color palette of each image in isolation, using Vector Quantization methods. The image features are, then, the color palette and the histogram of the color quantization of the image with this color palette. We propose as a measure of similitude the weighted sum of the differences between the color palettes and the corresponding histograms. This approach allows the increase of the database without the recomputation of the image features and without substantial loss of discriminative power.

  3. A population-based evaluation of a publicly funded, school-based HPV vaccine program in British Columbia, Canada: parental factors associated with HPV vaccine receipt.

    OpenAIRE

    Gina Ogilvie; Maureen Anderson; Fawziah Marra; Shelly McNeil; Karen Pielak; Meena Dawar; Marilyn McIvor; Thomas Ehlen; Simon Dobson; Deborah Money; David M Patrick; Monika Naus

    2010-01-01

    BACKGROUND: Information on factors that influence parental decisions for actual human papillomavirus (HPV) vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada. METHODS AND FINDINGS: All parents of girls enrolled in grade 6 during...

  4. Prospects of HA-Based Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Anwar M. Hashem

    2015-01-01

    Full Text Available Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs. Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA. Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.

  5. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  6. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Science.gov (United States)

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines. PMID:23536756

  7. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Directory of Open Access Journals (Sweden)

    Alessandra Vitelli

    Full Text Available Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP and matrix 1 (M1. We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  8. A novel method for synthetic vaccine construction based on protein assembly

    OpenAIRE

    Zhida Liu; Hang Zhou; Wenjun Wang; Wenjie Tan; Yang-Xin Fu; Mingzhao Zhu

    2014-01-01

    In the history of vaccine development, the synthetic vaccine is a milestone that is in stark contrast with traditional vaccines based on live-attenuated or inactivated microorganisms. Synthetic vaccines not only are safer than attenuated or inactivated microorganisms but also provide the opportunity for vaccine design for specific purposes. The first generation of synthetic vaccines has been largely based on DNA recombination technology and genetic manipulation. This de novo generation is occ...

  9. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors

    OpenAIRE

    Walsh, Stephen R.; Dolin, Raphael

    2011-01-01

    Less than 200 years after its introduction, widespread use of vaccinia virus (VACV) as a smallpox vaccine has eradicated variola virus. Along with the remarkable success of the vaccination program, frequent and sometimes severe adverse reactions to VACV were encountered. After eradication, VACV has been reserved for select populations who might be at significant risk for orthopoxvirus infections. Events over the past decade have renewed concerns over the potential use of variola virus as a bi...

  10. Modeling Pre-Existing Immunity to Adenovirus in Rodents: Immunological Requirements for Successful Development of a Recombinant Adenovirus Serotype 5-based Ebola Vaccine

    OpenAIRE

    Choi, Jin Huk; Schafer, Stephen C.; Zhang, Lihong; Juelich, Terry; Freiberg, Alexander N.; Croyle, Maria A.

    2013-01-01

    Pre-existing immunity (PEI) to human adenovirus serotype 5 (Ad5) worldwide is the primary limitation to routine clinical use of Ad5-based vectors in immunization platforms. Using systemic and mucosal PEI induction models in rodents (mice and guinea pigs), we assessed the influence of PEI on the type of adaptive immune response elicited by an Ad5-based vaccine for Ebola with respect to immunization route. Splenocytes isolated from vaccinated animals revealed that immunization by the same route...

  11. LandSat-Based Land Use-Land Cover (Vector)

    Data.gov (United States)

    Minnesota Department of Natural Resources — Vector-based land cover data set derived from classified 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with...

  12. Comparative immunogenicity of recombinant adenovirus-vectored vaccines expressing different forms of hemagglutinin (HA) proteins from the H5 serotype of influenza A viruses in mice.

    Science.gov (United States)

    Hu, Xiangjing; Meng, Weixu; Dong, Zhenyuan; Pan, Weiqi; Sun, Caijun; Chen, Ling

    2011-01-01

    Recent outbreaks of highly pathogenic avian influenza (HPAI) H5N1 viruses in poultry and their subsequent transmission to humans have highlighted an urgent need to develop preventive vaccines in the event of a pandemic. In this paper we constructed recombinant adenovirus (rAd)-vectored influenza vaccines expressing different forms of H5 hemagglutinin (HA) from the A/Vietnam/1194/04 (VN/1194/04) virus, a wild-type HA, a sequence codon-optimized HA and a transmembrane (TM) domain-truncated HA. Compared to the rAd vectors expressing the wild-type HA (rAd-04wtHA) and the TM-truncated form of HA (rAd-04optHA-dTM), the rAd vectored vaccine with the sequence codon-optimized HA (rAd-04optHA) showed a tendency to induce much higher hemagglutinin inhibition (HI) antibody titers in mice immunized with a prime-boost vaccine. Furthermore, administration of the rAd-04optHA vaccine to mice could elicit cross-reactive immune responses against the antigenically distinct HK/482/97 virus. Additionally, we constructed another vector containing the codon-optimized HA of the A/Hong Kong/482/97 (HK/482/97) virus. Administration of a bivalent immunization formulation including the rAd-04optHA and rAd-97optHA vaccines to mice induced a stronger immune response against HK/482/97 virus than the monovalent formulation. Taken together, these findings may have some implications for the development of rAd-vectored vaccines in the event of the pandemic spread of HPAI. PMID:20883733

  13. A Novel Replication-Competent Vaccinia Vector MVTT Is Superior to MVA for Inducing High Levels of Neutralizing Antibody via Mucosal Vaccination

    OpenAIRE

    Huang, Xiaoxing; Lu, Bin; Yu, Wenbo; Fang, Qing; Liu, Li; Zhuang, Ke; Shen, Tingting; Wang, Haibo; Tian, Po; Zhang, Linqi; Chen, Zhiwei

    2009-01-01

    Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallp...

  14. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination

    OpenAIRE

    Xiaoxing Huang; Bin Lu; Wenbo Yu; Qing Fang; Li Liu; Ke Zhuang; Tingting Shen; Haibo Wang; Po Tian; Linqi Zhang; Zhiwei Chen

    2009-01-01

    Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallp...

  15. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial

    OpenAIRE

    Susanne H. Hodgson; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Thomas W Rampling; Biswas, Sumi; Ian D Poulton; Miura, Kazutoyo; Douglas, Alexander D.; Alanine, Daniel GW; Illingworth, Joseph J.; de Cassan, Simone C.; ZHU, DAMING; Nicosia, Alfredo; Long, Carole A.

    2014-01-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovir...

  16. Infection of Nonhost Species Dendritic Cells In Vitro with an Attenuated Myxoma Virus Induces Gene Expression That Predicts Its Efficacy as a Vaccine Vector ▿ †

    OpenAIRE

    TOP, S.; E. Foulon; Pignolet, B.; Deplanche, M; Caubet, C.; Tasca, C; Bertagnoli, S; Meyer, G.; Foucras, G.

    2011-01-01

    Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle...

  17. Production of Rice Seed-Based Allergy Vaccines.

    Science.gov (United States)

    Takagi, Hidenori; Takaiwa, Fumio

    2016-01-01

    Recombinant hypoallergenic derivative is the next generation of tolerogen replacing the natural allergen extract to increase safety and efficacy. Japanese cedar pollinosis is the predominant seasonal allergy disease in Japan. A rice seed-based oral vaccine containing the recombinant hypoallergens derived from these allergens was developed. Efficacy of this rice-based allergy vaccine was evaluated by oral administration in animal models. PMID:27076162

  18. Newcastle Disease Virus-Vectored Rabies Vaccine Is Safe, Highly Immunogenic, and Provides Long-Lasting Protection in Dogs and Cats ▿

    OpenAIRE

    Ge, Jinying; Wang, Xijun; Tao, Lihong; Wen, Zhiyuan; Feng, Na; Yang, Songtao; Xia, Xianzhu; Yang, Chinglai; Chen, Hualan; Bu, Zhigao

    2011-01-01

    Effective, safe, and affordable rabies vaccines are still being sought. Newcastle disease virus (NDV), an avian paramyxovirus, has shown promise as a vaccine vector for mammals. Here, we generated a recombinant avirulent NDV La Sota strain expressing the rabies virus glycoprotein (RVG) and evaluated its potential to serve as a vaccine against rabies. The recombinant virus, rL-RVG, retained its high-growth property in chicken eggs, with titers of up to 109.8 50% egg infective doses (EID50)/ml ...

  19. A stable RNA virus-based vector for citrus trees

    International Nuclear Information System (INIS)

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees

  20. Risk based surveillance for vector borne diseases

    DEFF Research Database (Denmark)

    Bødker, Rene

    and new exotic diseases like Usutu and West Nile Virus may lead to outbreaks in the region. In the worst case the combined effect of climate change and globalization may potentially lead to European outbreaks of important zoonotic mosquito borne infections like Rift Valley Fever in cattle and Japanese...... Encephalitis in swine. Being able to model the impact of climate and environmental change on the transmission intensity of vector borne diseases is potentially a powerful tool to both monitor and prevent outbreaks in a cost effective way. The recent unexpected outbreaks of bluetongue and Schmallenberg virus...... is the direct result of climate change. The potential for virus transmission by biting midges was here modeled monthly for the Baltic See Region and the rest of Europe. The results showed that Baltic See Region has a lower transmission potential than most other areas in Europe. And the model identified...

  1. Fuzzy rule-based support vector regression system

    Institute of Scientific and Technical Information of China (English)

    Ling WANG; Zhichun MU; Hui GUO

    2005-01-01

    In this paper,we design a fuzzy rule-based support vector regression system.The proposed system utilizes the advantages of fuzzy model and support vector regression to extract support vectors to generate fuzzy if-then rules from the training data set.Based on the first-order linear Tagaki-Sugeno (TS) model,the structure of rules is identified by the support vector regression and then the consequent parameters of rules are tuned by the global least squares method.Our model is applied to the real world regression task.The simulation results gives promising performances in terms of a set of fuzzy rules,which can be easily interpreted by humans.

  2. Plasmid Chemokines and Colony-Stimulating Factors Enhance the Immunogenicity of DNA Priming-Viral Vector Boosting Human Immunodeficiency Virus Type 1 Vaccines

    OpenAIRE

    Barouch, Dan H.; McKay, Paul F.; Sumida, Shawn M.; Santra, Sampa; Jackson, Shawn S.; Gorgone, Darci A.; Lifton, Michelle A.; Chakrabarti, Bimal K.; Xu, Ling; Nabel, Gary J.; Letvin, Norman L.

    2003-01-01

    Heterologous “prime-boost” regimens that involve priming with plasmid DNA vaccines and boosting with recombinant viral vectors have been shown to elicit potent virus-specific cytotoxic T-lymphocyte responses. Increasing evidence, however, suggests that the utility of recombinant viral vectors in human populations will be significantly limited by preexisting antivector immunity. Here we demonstrate that the coadministration of plasmid chemokines and colony-stimulating factors with plasmid DNA ...

  3. Seroprevalence of Fowl Pox Antibody in Indigenous Chickens in Jos North and South Council Areas of Plateau State, Nigeria: Implication for Vector Vaccine

    OpenAIRE

    Meseko Clement Adebajo; Shittu Ismail Ademola; Akinyede Oluwaseun

    2012-01-01

    Fowl pox is a viral disease of domestic and wild birds. The large size of the genome makes it a useful vector for recombinant DNA technology. Although the disease has been described in both commercial and indigenous chickens in Nigeria, data are limited on seroprevalence in free range chickens. Such data are, however, important in the design and implementation of fowl pox virus vector vaccine. We surveyed current antibody status to fowl pox virus in free range chickens by testing 229 sera col...

  4. Cellular Changes Induced by Adenovirus Vaccine Vectors Expressing Foot-and-Mouth Disease Virus Structural and Nonstructural Proteins

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) is the most contagious pathogen of cloven-hoofed animals including swine and bovines. The emergency control of outbreaks is dependent on rapid protection and prevention of virus spread. Adenovirus-based FMD subunit vaccines containing the coding region of viral ca...

  5. Implicit Boundary Control of Vector Field Based Shape Deformations

    OpenAIRE

    von Funck, Wolfram; Theisel, Holger; Seidel, Hans-Peter

    2007-01-01

    We present a shape deformation approach which preserves volume, prevents self-intersections and allows for exact control of the deformation impact. The volume preservation and prevention of selfintersections are achieved by utilizing the method of Vector Field Based Shape Deformations. This method produces physically plausible deformations efficiently by integrating formally constructed divergence-free vector fields, where the region of influence is described by implicitly ...

  6. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.

    Directory of Open Access Journals (Sweden)

    Xiaoxing Huang

    Full Text Available Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA and a novel replication-competent modified vaccinia Tian Tan (MVTT for inducing neutralizing antibodies (Nabs via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels ( approximately 2-3-fold of anti- SARS-CoV neutralizing antibodies (Nabs than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (approximately 10-fold higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.

  7. Escherichia coli O83:K24:H31 – a potential live vaccine delivery vector

    Czech Academy of Sciences Publication Activity Database

    Šimšová, Marcela; Schwarzer, Martin; Hrnčíř, Tomáš; Hudcovic, Tomáš; Kozáková, Hana; Šebo, Peter

    Praha: Springer, 2006, s. 128-128. [Meeting of the European Mucosal Immunology Group /5./. Prague (CZ), 05.10.2006-07.10.2006] Grant ostatní: XE(XE) MUVAPRED LSHP – CT – 2003 - 503240 Institutional research plan: CEZ:AV0Z50200510 Keywords : mucosal vaccine * e coli * immunization Subject RIV: EE - Microbiology, Virology

  8. Efficacy and safety of a live canine adenovirus-vectored rabies virus vaccine in swine.

    Science.gov (United States)

    Liu, Ye; Zhang, Shoufeng; Ma, Guangpeng; Zhang, Fei; Hu, Rongliang

    2008-10-01

    Rabies infections in swine have been reported occasionally in recent years in certain geographic locations. Although a protective vaccine consisting of inactivated rabies virus is available for use in swine, searching for a more economically viable formulation for use in developing countries is always a priority. This work describes the testing of a canine adenovirus that expresses a rabies viral epitope (CAV-2-E3Delta-RGP) in a porcine rabies model. The data presented here show that the recombinant viral vaccine was effective in protecting swine against rabies if administered intramuscularly, but not orally or intranasally, and that protection was probably related to the development of a humoral response that lasted at least 28 weeks. Following vaccination, no behavioral abnormalities were observed in vaccinated swine and virus particles were not detected in either tissues or body fluids, indicating that this formulation was safe. The recombinant virus stimulated an effective level of antibody response in the immunized swine after a single intramuscular inoculation. PMID:18721839

  9. Adenovirus serotype 5 vectored foot-and-mouth disease subunit vaccines: the first decade

    Science.gov (United States)

    Here we present the results of the first decade of development of a replication-defective human adenovirus (Ad5) containing the capsid and 3C protease coding regions of foot-and-mouth disease virus (FMDV) as a vaccine candidate. In proof-of concept studies we demonstrated that a single inoculation w...

  10. Development of CpG ODN Based Vaccine Adjuvant Formulations.

    Science.gov (United States)

    Gursel, Mayda; Gursel, Ihsan

    2016-01-01

    Development of effective vaccine mediated immune responses relies on the use of vaccine adjuvants capable of enhancing and directing the adaptive immune response to the antigen. When used as vaccine adjuvants, type I interferon inducing agents can elicit potent effector/memory T cell responses and humoral immunity. Distinct sequences of single stranded synthetic oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine oligodeoxynucleotide motifs (CpG ODN) can generate type I interferon production via a TLR9-MyD88-IRF7-mediated signaling pathway. Here, we describe two different methods of preparing CpG ODN-based vaccine adjuvant formulations that can induce a robust IFNα response from human peripheral blood mononuclear cells. PMID:27076306

  11. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  12. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    Science.gov (United States)

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-07-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.

  13. Construction and Immunogenicity Testing of Whole Recombinant Yeast-Based T-Cell Vaccines.

    Science.gov (United States)

    King, Thomas H; Guo, Zhimin; Hermreck, Melanie; Bellgrau, Donald; Rodell, Timothy C

    2016-01-01

    GlobeImmune's Tarmogen(®) immunotherapy platform utilizes recombinant Saccharomyces cerevisiae yeast as a vaccine vector to deliver heterologous antigens for activation of disease-specific, targeted cellular immunity. The vaccines elicit immune-mediated killing of target cells expressing viral and cancer antigens in vivo via a CD8(+) CTL-mediated mechanism. Tarmogens are not neutralized by host immune responses and can be administered repeatedly to boost antigen-specific immunity. Production of the vaccines yields stable off-the-shelf products that avoid the need for patient-specific manufacturing found with other immunotherapeutic approaches. Tarmogens for the treatment of chronic hepatitis B and C and various cancers were well tolerated and immunogenic in phase 1 and 2 clinical trials encompassing >600 subjects. The platform is being widely utilized in basic vaccine research and the most rapid path to success in these endeavors follows from optimal immunoassay selection and execution. This chapter provides detailed methods for the construction and preclinical immunogenicity testing of yeast-based immunotherapeutic products to support the rapid and efficient use of this versatile technology. PMID:27076321

  14. HCV prototype vaccine based on hepatitis B core virus-like particles

    OpenAIRE

    Marija Mihailova

    2008-01-01

    HCV prototype vaccine based on hepatitis B core virus-like particles Abstract In the current study the C-terminally truncated HBc expression vectors were used for exposure of different hepatitis C virus (HCV) protein (core, E2, and NS3) fragments. All created chimeric constructs directed high level of recombinant protein synthesis in E.coli. However, not all chimeric proteins were able to self-assemble into virus-like particles (VLPs). HBcCterm/HVR1tetramer VLPs turned ou...

  15. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Science.gov (United States)

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective

  16. Have we found an optimal insertion site in a Newcastle disease virus vector to express a foreign gene for vaccine and gene therapy purposes?

    Science.gov (United States)

    Using reverse genetics technology, many strains of Newcastle disease virus (NDV) have been developed as vectors to express foreign genes for vaccine and gene therapy purposes. The foreign gene is usually inserted into a non-coding region of the NDV genome as an independent transcription unit. Eval...

  17. Oral immunization of mice against Clostridium perfringens epsilon toxin with a Lactobacillus casei vector vaccine expressing epsilon toxoid.

    Science.gov (United States)

    Alimolaei, Mojtaba; Golchin, Mehdi; Daneshvar, Hamid

    2016-06-01

    Clostridium perfringens type D infects ruminants and causes the enterotoxemia disease by ε-toxin. A mutated ε-toxin gene lacking toxicity was designed, synthesized, and cloned into the pT1NX vector and electroporated into Lactobacillus casei competent cells to yield LC-pT1NX-ε recombinant strain. BALB/c mice, immunized orally with this strain, highly induced mucosal, humoral, and cell-mediated immune responses and developed a protection against 200 MLD/ml of the activated ε-toxin. This study showed that the LC-pT1NX-ε could be a promising vaccine candidate against the enterotoxemia disease. PMID:27012151

  18. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  19. Support Vector Machine-Based Nonlinear System Modeling and Control

    Institute of Scientific and Technical Information of China (English)

    张浩然; 韩正之; 冯瑞; 于志强

    2003-01-01

    This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM.At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.

  20. The integration profile of EIAV-based vectors.

    Science.gov (United States)

    Hacker, Caroline V; Vink, Conrad A; Wardell, Theresa W; Lee, Sheena; Treasure, Peter; Kingsman, Susan M; Mitrophanous, Kyriacos A; Miskin, James E

    2006-10-01

    Lentiviral vectors based on equine infectious anemia virus (EIAV) stably integrate into dividing and nondividing cells such as neurons, conferring long-term expression of their transgene. The integration profile of an EIAV vector was analyzed in dividing HEK293T cells, alongside an HIV-1 vector as a control, and compared to a random dataset generated in silico. A multivariate regression model was generated and the influence of the following parameters on integration site selection determined: (a) within/not within a gene, (b) GC content within 20 kb, (c) within 10 kb of a CpG island, (d) gene density within a 2-Mb window, and (e) chromosome number. The majority of the EIAV integration sites (68%; n = 458) and HIV-1 integration sites (72%; n = 162) were within a gene, and both vectors favored AT-rich regions. Sites within genes were examined using a second model to determine the influence of the gene-specific parameters, gene region, and transcriptional activity. Both EIAV and HIV-1 vectors preferentially integrated within active genes. Unlike the gammaretrovirus MLV, EIAV and HIV-1 vectors do not integrate preferentially into the promoter region or the 5' end of the transcription unit. PMID:16950499

  1. Adenovirus-vectored drug-vaccine duo as a rapid-response tool for conferring seamless protection against influenza.

    Science.gov (United States)

    Zhang, Jianfeng; Tarbet, E Bart; Feng, Tsungwei; Shi, Zhongkai; Van Kampen, Kent R; Tang, De-chu C

    2011-01-01

    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs. PMID:21818346

  2. A candidate therapeutic vaccine against hepatitis C virus infection: Use of a recombinant alphavirus vector

    OpenAIRE

    Ip, Peng

    2014-01-01

    Peng Peng Ip beschrijft in dit proefschrift haar onderzoek naar de ontwikkeling van een immuuntherapie gericht tegen hepatitis C virus infecties. Wereldwijd zijn ongeveer 150 miljoen mensen chronisch besmet met hepatitis C virus (HCV) en jaarlijks sterven 350.000 mensen aan een HCV-gerelateerde leverziekte zoals cirrose of leverkanker. In Nederland zijn ongeveer 60.000 mensen besmet met HCV, vaak nog zonder het te weten. Het doel van het promotie onderzoek was om een vaccin tegen HCV infectie...

  3. Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination.

    Science.gov (United States)

    Wyszyńska, Agnieszka; Kobierecka, Patrycja; Bardowski, Jacek; Jagusztyn-Krynicka, Elżbieta Katarzyna

    2015-04-01

    Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented. PMID:25750046

  4. Incorporation of 4-1BB ligand into an adenovirus vaccine vector increases the number of functional antigen-specific CD8 T cells and enhances the duration of protection against influenza-induced respiratory disease.

    Science.gov (United States)

    Moraes, Theo J; Lin, Gloria H Y; Wen, Tao; Watts, Tania H

    2011-08-26

    T cell based influenza vaccines offer the potential for cross protective immunity to multiple clades of influenza virus. Here we explored the effect of increasing CD8 T cell responses during intranasal vaccination by incorporating a T cell costimulator, 4-1BBL. Inclusion of 4-1BBL in an influenza nucleoprotein (NP)-containing adenoviral vector increased the number of NP-specific CD8 T cells and lowered the vaccine dose required for short-term protection from influenza-induced disease in mice. At higher vaccine doses, the inclusion of 4-1BBL increased the duration of protection of mice from influenza-induced mortality. Bone marrow chimera experiments revealed that the major effects of 4-1BBL were directly on αβ T cells with minor additional effects through cells other than αβ T cells. The implications of these findings are that including 4-1BBL or adjuvants that induce 4-1BBL expression may be of benefit in a vaccine setting for enhancing the magnitude and duration of T cell responses to influenza virus. PMID:21704101

  5. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Science.gov (United States)

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  6. Plant based oral vaccines for human and animal pathogens – a new era of prophylaxis: current and future perspectives

    Directory of Open Access Journals (Sweden)

    Kuldeep Dhama

    Full Text Available Vaccination remains a high priority for animal disease prevention and control especially on account of rising antimicrobial resistant strains of pathogens and frightening increase in new emerging and reemerging pathogens. Traditional vaccines have limitation like residual virulence, need of extensive safety precautions, production difficulty and huge initial investments. Additionally, they are inefficient in producing a protective response at mucosal surfaces such as of lungs and intestinal tract, the actual sites where disease agents enter the body. Recent advances in plant molecular farming has resulted in genetic manipulations in plants to make them bioreactors for production of various recombinant proteins, by using infectious vectors or stable transgenic systems, which formulate the edible/oral vaccines. Such plant-based oral/edible vaccines have several advantages like they are functionally similar to conventional vaccines, demonstrate extended storage period in food grains, are heat-stable and does not require cold storage, eliminate need for expensive purification steps, are free from contaminating pathogens, can be produced in large scale in a time bound fashion and their delivery is easier with practical feasibility for large masses application. Additionally, these are also ideal for vaccination of animals and birds living in the wild areas thereby preventing many zoonoses. However, at this moment there are many practical challenges like degradation of vaccine antigen by enzymes of upper digestive tract, dosage regime, oral tolerance and the issues concerned to the use of genetically modified plant. In the near future the biomedical applications of these vaccines could become a common alternative to conventional vaccines, for which there is a great need to strengthen research and development activities in this promising area for protecting health of animals as well as of humans.

  7. Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus.

    OpenAIRE

    Lubeck, M D; Davis, A R; Chengalvala, M; Natuk, R J; Morin, J E; Molnar-Kimber, K; Mason, B. B.; Bhat, B M; Mizutani, S; Hung, P P

    1989-01-01

    As a major cause of acute and chronic liver disease as well as hepatocellular carcinoma, hepatitis B virus (HBV) continues to pose significant health problems world-wide. Recombinant hepatitis B vaccines based on adenovirus vectors have been developed to address global needs for effective control of hepatitis B infection. Although considerable progress has been made in the construction of recombinant adenoviruses that express large amounts of HBV gene products, preclinical immunogenicity and ...

  8. Progress and prospects for L2-based human papillomavirus vaccines.

    Science.gov (United States)

    Jiang, Rosie T; Schellenbacher, Christina; Chackerian, Bryce; Roden, Richard B S

    2016-07-01

    Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized. PMID:26901354

  9. Product Quality Modelling Based on Incremental Support Vector Machine

    International Nuclear Information System (INIS)

    Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.

  10. A universal influenza A vaccine based on adenovirus expressing matrix-2 ectodomain and nucleoprotein protects mice from lethal challenge.

    Science.gov (United States)

    Zhou, Dongming; Wu, Te-Lang; Lasaro, Marcio O; Latimer, Brian P; Parzych, Elizabeth M; Bian, Ang; Li, Yan; Li, Hua; Erikson, Jan; Xiang, Zhiquan; Ertl, Hildegund C J

    2010-12-01

    A universal influenza vaccine, designed to induce broadly cross-reactive immunity against current and future influenza A virus strains, is in critical demand to reduce the need for annual vaccinations with vaccines chosen upon predicting the predominant circulating viral strains, and to ameliorate the threat of cyclically occurring pandemics that have, in the past, killed tens of millions. Here, we describe a vaccine regimen based on sequential immunization with two serologically distinct chimpanzee-derived replication-defective adenovirus (Ad) vectors expressing the matrix-2 protein ectodomain (M2e) from three divergent strains of influenza A virus fused to the influenza virus nucleoprotein (NP) for induction of antibodies to M2e and virus-specific CD8(+) T cells to NP. In preclinical mouse models, the Ad vaccines expressing M2e and NP elicit robust NP-specific CD8(+) T-cell responses and moderate antibody responses to all three M2e sequences. Most importantly, vaccinated mice are protected against morbidity and mortality following challenge with high doses of different influenza virus strains. Protection requires both antibodies to M2e and cellular immune responses to NP. PMID:20877342

  11. Novel synthetic (poly)glycerolphosphate-based antistaphylococcal conjugate vaccine.

    Science.gov (United States)

    Chen, Quanyi; Dintaman, Jay; Lees, Andrew; Sen, Goutam; Schwartz, David; Shirtliff, Mark E; Park, Saeyoung; Lee, Jean C; Mond, James J; Snapper, Clifford M

    2013-07-01

    Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid is a major antigenic target of the humoral immune system during staphylococcal infections, we developed a synthetic method for producing glycerol phosphoramidites to create a covalent 10-mer of (poly)glycerolphosphate for potential use in a conjugate vaccine. We initially demonstrated that intact Staphylococcus aureus elicits murine CD4(+) T cell-dependent (poly)glycerolphosphate-specific IgM and IgG responses in vivo. Naive mice immunized with a covalent conjugate of (poly)glycerolphosphate and tetanus toxoid in alum plus CpG-oligodeoxynucleotides produced high secondary titers of serum (poly)glycerolphosphate-specific IgG. Sera from immunized mice enhanced opsonophagocytic killing of live Staphylococcus aureus in vitro. Mice actively immunized with the (poly)glycerolphosphate conjugate vaccine showed rapid clearance of staphylococcal bacteremia in vivo relative to mice similarly immunized with an irrelevant conjugate vaccine. In contrast to purified, natural lipoteichoic acid, the (poly)glycerolphosphate conjugate vaccine itself exhibited no detectable inflammatory activity. These data suggest that a synthetic (poly)glycerolphosphate-based conjugate vaccine will contribute to active protection against extracellular Gram-positive pathogens expressing this highly conserved backbone structure in their membrane-associated lipoteichoic acid. PMID:23649092

  12. Dynamic Vector Space Secret Sharing Based on Certificates

    Institute of Scientific and Technical Information of China (English)

    XU Chunxiang; LI Jiajia; LIU Dongsu

    2006-01-01

    A vector space secret sharing scheme based on certificates is proposed in this paper. The difficulties of solving discrete logarithm assure confidential information's security, and the use of each participant's certificate makes the dealer have no need to transfer secret information to the participants. The proposed scheme is dynamic. It can effectively check cheaters and does not have secure channel requirements.

  13. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens.

    Science.gov (United States)

    Antrobus, Richard D; Coughlan, Lynda; Berthoud, Tamara K; Dicks, Matthew D; Hill, Adrian Vs; Lambe, Teresa; Gilbert, Sarah C

    2014-03-01

    Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection. PMID:24374965

  14. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  15. Copula-based integration of vector-valued functions

    Czech Academy of Sciences Publication Activity Database

    Klement, E.; Mesiar, Radko

    Vol. Part 6. Heidelberg: Springer, 2012 - (Greco, S.; Bouchon-Meunier, B.), s. 559-564. (Communications in Computer and Information Science. 300). ISBN 978-3-642-31724-8. [IPMU 2012 /14./. Catania (IT), 09.07.2012-13.07.2012] R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : capacity * copula * universal integral * vector-valued function Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2012/E/mesiar-copula-based integration of vector-valued functions.pdf

  16. Estimation of sand liquefaction based on support vector machines

    Institute of Scientific and Technical Information of China (English)

    苏永华; 马宁; 胡检; 杨小礼

    2008-01-01

    The origin and influence factors of sand liquefaction were analyzed, and the relation between liquefaction and its influence factors was founded. A model based on support vector machines (SVM) was established whose input parameters were selected as following influence factors of sand liquefaction: magnitude (M), the value of SPT, effective pressure of superstratum, the content of clay and the average of grain diameter. Sand was divided into two classes: liquefaction and non-liquefaction, and the class label was treated as output parameter of the model. Then the model was used to estimate sand samples, 20 support vectors and 17 borderline support vectors were gotten, then the parameters were optimized, 14 support vectors and 6 borderline support vectors were gotten, and the prediction precision reaches 100%. In order to verify the generalization of the SVM method, two other practical samples’ data from two cities, Tangshan of Hebei province and Sanshui of Guangdong province, were dealt with by another more intricate model for polytomies, which also considered some influence factors of sand liquefaction as the input parameters and divided sand into four liquefaction grades: serious liquefaction, medium liquefaction, slight liquefaction and non-liquefaction as the output parameters. The simulation results show that the latter model has a very high precision, and using SVM model to estimate sand liquefaction is completely feasible.

  17. Retrovirus-based vectors for transient and permanent cell modification.

    Science.gov (United States)

    Schott, Juliane W; Hoffmann, Dirk; Schambach, Axel

    2015-10-01

    Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas. PMID:26433198

  18. Establishment of human sperm-specific voltage-dependent anion channel 3 recombinant vector for the production of a male contraceptive vaccine

    Directory of Open Access Journals (Sweden)

    Asmarinah Asmarinah

    2012-05-01

    Full Text Available Background: The aim of this study was to construct a recombinant vector of human sperm specific VDAC3 gene for production of VDAC3 antibody, which is potential as male contraception vaccine.Methods: Target fragment sequence of VDAC3 gene was obtained through amplification of human sperm VDAC3 cDNA with primers covering exon 5 to exon 8. Its PCR product in size of 435 bp was cloned to the pET101/D-TOPO expression vector (5753 bp. E. coli bacteria were transformed with this vector. Cloning of VDAC3 fragment gene to the vector was confirmed by the using of XbaI restriction enzyme and PCR colony method with primers covering exons 5-8 of the human VDAC3 gene.Results: Alignment analysis of amplified fragment covering exon 5 to exon 8 of VDAC3 gene showed 94% homology to human VDAC3 gene from databank. After cloning to the expression vector and transformation to E. coli competent cells, twelve colonies could grow in culture media. Gel electrophoresis of sliced VDAC3 recombinant vector showed a single band in the size of 6181 bp in 8 colonies. After application of PCR colony and amplicon sequencing, the result showed a single band in the size of 435 bp and fragment sequence with 94% identity to human VDAC3 gene.Conclusion: The construction of human sperm specific VDAC3 gene recombinant vector was established in this study. In the future, this recombinant vector will be used to produce VDAC3 antibody for the development of a male contraception vaccine. (Med J Indones. 2012;21:61-5Keywords: Contraception, recombinant vector, sperm, VDAC3

  19. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  20. Disrupted Adenovirus-Based Vaccines Against Small Addictive Molecules Circumvent Anti-Adenovirus Immunity

    OpenAIRE

    De, Bishnu P.; Pagovich, Odelya E; Hicks, Martin J.; Rosenberg, Jonathan B.; Moreno, Amira Y.; Janda, Kim D.; Koob, George F; Worgall, Stefan; Kaminsky, Stephen M; Sondhi, Dolan; Crystal, Ronald G

    2012-01-01

    Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1−E3− Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized ...

  1. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    Science.gov (United States)

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-01

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process. PMID:26430814

  2. Virus-based nanoparticles as platform technologies for modern vaccines.

    Science.gov (United States)

    Lee, Karin L; Twyman, Richard M; Fiering, Steven; Steinmetz, Nicole F

    2016-07-01

    Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website. PMID:26782096

  3. Caractérisation de vaccin à base glucides

    OpenAIRE

    Tontini, Marta

    2012-01-01

    CARACTERISATION DE VACCINS A BASE DE GLUCIDESVariables influençant l'immunogénicité et propriétés physico-chimiques des vaccins glycoconjuguésDe nombreux aspects peuvent influer sur l'immunogénicité des vaccins conjugués et les principales variables étudiées jusqu'ici sont la taille du fragment saccharide et la nature des glycosides: taux de protéine dans le conjugué purifié, la stratégie de conjugaison, nature de l’espaceur et la protéine porteuse.La taille de la partie saccharidique et le r...

  4. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax.

    Science.gov (United States)

    Blagborough, A M; Musiychuk, K; Bi, H; Jones, R M; Chichester, J A; Streatfield, S; Sala, K A; Zakutansky, S E; Upton, L M; Sinden, R E; Brian, I; Biswas, S; Sattabonkot, J; Yusibov, V

    2016-06-14

    Malaria transmission blocking (TB) vaccines (TBVs) directed against proteins expressed on the sexual stages of Plasmodium parasites are a potentially effective means to reduce transmission. Antibodies induced by TBVs block parasite development in the mosquito, and thus inhibit transmission to further human hosts. The ookinete surface protein P25 is a primary target for TBV development. Recently, transient expression in plants using hybrid viral vectors has demonstrated potential as a strategy for cost-effective and scalable production of recombinant vaccines. Using a plant virus-based expression system, we produced recombinant P25 protein of Plasmodium vivax (Pvs25) in Nicotiana benthamiana fused to a modified lichenase carrier protein. This candidate vaccine, Pvs25-FhCMB, was purified, characterized and evaluated for immunogenicity and efficacy using multiple adjuvants in a transgenic rodent model. An in vivo TB effect of up to a 65% reduction in intensity and 54% reduction in prevalence was observed using Abisco-100 adjuvant. The ability of this immunogen to induce a TB response was additionally combined with heterologous prime-boost vaccination with viral vectors expressing Pvs25. Significant blockade was observed when combining both platforms, achieving a 74% and 68% reduction in intensity and prevalence, respectively. This observation was confirmed by direct membrane feeding on field P. vivax samples, resulting in reductions in intensity/prevalence of 85.3% and 25.5%. These data demonstrate the potential of this vaccine candidate and support the feasibility of expressing Plasmodium antigens in a plant-based system for the production of TBVs, while demonstrating the potential advantages of combining multiple vaccine delivery systems to maximize efficacy. PMID:27177945

  5. Digital video steganalysis using motion vector recovery-based features.

    Science.gov (United States)

    Deng, Yu; Wu, Yunjie; Zhou, Linna

    2012-07-10

    As a novel digital video steganography, the motion vector (MV)-based steganographic algorithm leverages the MVs as the information carriers to hide the secret messages. The existing steganalyzers based on the statistical characteristics of the spatial/frequency coefficients of the video frames cannot attack the MV-based steganography. In order to detect the presence of information hidden in the MVs of video streams, we design a novel MV recovery algorithm and propose the calibration distance histogram-based statistical features for steganalysis. The support vector machine (SVM) is trained with the proposed features and used as the steganalyzer. Experimental results demonstrate that the proposed steganalyzer can effectively detect the presence of hidden messages and outperform others by the significant improvements in detection accuracy even with low embedding rates. PMID:22781241

  6. SAMEX vector magnetograph: a design study for a space-based solar vector magnetograph

    International Nuclear Information System (INIS)

    This report presents the results of a pre-phase A study performed by the Marshall Space Flight Center (MSFC) for the Air Force Geophysics Laboratory (AFGL) to develop a design concept for a space-based solar vector magnetograph and hydrogen-alpha telescope. These are two of the core instruments for a proposed Air Force mission, the Solar Activities Measurement Experiments (SAMEX). This mission is designed to study the processes which give rise to activity in the solar atmosphere and to develop techniques for predicting solar activity and its effects on the terrestrial environment

  7. Oral vaccination with a recombinant Salmonella vaccine vector provokes systemic HIV-1 subtype C Gag-specific CD4+ Th1 and Th2 cell immune responses in mice

    Directory of Open Access Journals (Sweden)

    Williamson Anna-Lise

    2009-06-01

    Full Text Available Abstract Background Recombinant Salmonella vaccine vectors may potentially be used to induce specific CD4+ T cell responses against foreign viral antigens. Such immune responses are required features of vaccines against pathogens such as human immunodeficiency virus type 1 (HIV-1. The aim of this study was to investigate the induction of systemic HIV-1-specific CD4+ T helper (Th responses in mice after oral immunization with a live attenuated Salmonella vaccine vector that expressed HIV-1 subtype C Gag. Groups of BALB/c mice were vaccinated orally three times (4 weeks apart with this recombinant Salmonella. At sacrifice, 28 days after the last immunization, systemic CD4+ Th1 and Th2 cytokine responses were evaluated by enzyme-linked immunospot assay and cytometric bead array. HIV-1 Gag-specific IgG1 and IgG2a humoral responses in the serum were determined by enzyme-linked immunosorbent assay. Results Mice vaccinated with the recombinant Salmonella elicited both HIV-1-specific Th1 (interferon-gamma (IFN-γ and tumour necrosis factor-alpha (TNF-α and Th2 (interleukin-4 (IL-4 and interleukin-5 (IL-5 cytokine responses. The vaccine induced 70 (IFN-γ spot-forming units (SFUs/10e6 splenocytes and 238 IL-4 SFUs/10e6 splenocytes. Splenocytes from vaccinated mice also produced high levels of Th1 and Th2 cytokines upon stimulation with a Gag CD4 peptide. The levels of IFN-γ, TNF-α, IL-4 and IL-5 were 7.5-, 29.1-, 26.2- and 89.3-fold above the background, respectively. Both HIV-1 Gag-specific IgG1 and IgG2a antibodies were detected in the sera of vaccinated mice. Conclusion The study highlights the potential of orally-delivered attenuated Salmonella as mucosal vaccine vectors for HIV-1 Subtype C Gag to induce Gag-specific CD4+ Th1 and Th2 cellular immune responses and antibodies which may be important characteristics required for protection against HIV-1 infection.

  8. Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy.

    Directory of Open Access Journals (Sweden)

    Janet Lei

    Full Text Available The use of whole viruses as antigen scaffolds is a recent development in vaccination that improves immunogenicity without the need for additional adjuvants. Previous studies highlighted the potential of foamy viruses (FVs in prophylactic vaccination and gene therapy. Replication-competent FVs can trigger immune signaling and integrate into the host genome, resulting in persistent antigen expression and a robust immune response. Here, we explored feline foamy virus (FFV proteins as scaffolds for therapeutic B and T cell epitope delivery in vitro. Infection- and cancer-related B and T cell epitopes were grafted into FFV Gag, Env, or Bet by residue replacement, either at sites of high local sequence homology between the epitope and the host protein or in regions known to tolerate sequence alterations. Modified proviruses were evaluated in vitro for protein steady state levels, particle release, and virus titer in permissive cells. Modification of Gag and Env was mostly detrimental to their function. As anticipated, modification of Bet had no impact on virion release and affected virus titers of only some recombinants. Further evaluation of Bet as an epitope carrier was performed using T cell epitopes from the model antigen chicken ovalbumin (OVA, human tyrosinase-related protein 2 (TRP-2, and oncoprotein E7 of human papillomavirus type 16 (HPV16E7. Transfection of murine cells with constructs encoding Bet-epitope chimeric proteins led to efficient MHC-I-restricted epitope presentation as confirmed by interferon-gamma enzyme-linked immunospot assays using epitope-specific cytotoxic T lymphocyte (CTL lines. FFV infection-mediated transduction of cells with epitope-carrying Bet also induced T-cell responses, albeit with reduced efficacy, in a process independent from the presence of free peptides. We show that primate FV Bet is also a promising T cell epitope carrier for clinical translation. The data demonstrate the utility of replication

  9. Versatile Supramolecular Gene Vector Based on Host-Guest Interaction.

    Science.gov (United States)

    Liu, Jia; Hennink, Wim E; van Steenbergen, Mies J; Zhuo, Renxi; Jiang, Xulin

    2016-04-20

    It is a great challenge to arrange multiple functional components into one gene vector system to overcome the extra- and intracellular obstacles for gene therapy. In this study, we developed a supramolecular approach for constructing a versatile gene delivery system composed of adamantyl-terminated functional polymers and a β-cyclodextrin based polymer. Adamantyl-functionalized low molecular weight PEIs (PEI-Ad) and PEG (Ad-PEG) as well as poly(β-cyclodextrin) (PCD) were synthesized by one-step chemical reactions. The supramolecular inclusion complex formed from PCD to assemble LMW PEI-Ad4 via host-guest interactions can condense plasmid DNA to form nanopolyplexes by electrostatic interactions. The supramolecular polyplexes can be further PEGylated with Ad-PEG to form inclusion complexes, which showed increased salt and serum stability. In vitro experiments revealed that these supramolecular assembly polyplexes had good cytocompatibility and showed high transfection activity close to that of the commercial ExGen 500 at high dose of DNA. Also, the supramolecular vector system exhibited about 60% silencing efficiency as a siRNA vector. Thus, a versatile effective supramolecular gene vector based on host-guest complexes was fabricated with good cytocompatbility and transfection activity. PMID:27019340

  10. A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies

    OpenAIRE

    Faber, Milosz; Lamirande, Elaine W.; Roberts, Anjeanette; Rice, Amy B.; Koprowski, Hilary; Dietzschold, Bernhard; Schnell, Matthias J.

    2005-01-01

    Foreign viral proteins expressed by rabies virus (RV) have been shown to induce potent humoral and cellular immune responses in immunized animals. In addition, highly attenuated and, therefore, very safe RV-based vectors have been constructed. Here, an RV-based vaccine vehicle was utilized as a novel vaccine against severe acute respiratory syndrome coronavirus (SARS-CoV). For this approach, the SARS-CoV nucleocapsid protein (N) or envelope spike protein (S) genes were cloned between the RV g...

  11. Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine.

    Science.gov (United States)

    Jones, Frank R; Gabitzsch, Elizabeth S; Xu, Younong; Balint, Joseph P; Borisevich, Viktoriya; Smith, Jennifer; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Salazar, Magda; Paessler, Slobodan

    2011-09-16

    Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases. PMID:21821082

  12. Novel DNA vaccine based on hepatitis B virus core gene induces specific immune responses in Balb/c mice

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Xing; Zu-Hu Huang; Shi-Xia Wang; Jie Cai; Jun Li; Te-Hui W Chou; Shan Lu

    2005-01-01

    AIM: To investigate the immunogenicity of a novel DNA vaccine,pSW3891/HBc, based on HBV core gene in Balb/c mice.METHODS: A novel DNA vaccine, pSW3891/HBc, encoding HBV core gene was constructed using a vector plasmid pSW3891. Balb/c mice were immunized with either pSW3891/HBc or empty vector DNA via gene gun. IgG anti-HBc responses in mouse sera were demonstrated by ELISA. Specific cytotoxicity of cytotoxic T lymphocytes (CTLs) of mice was quantitatively measured by lactate dehydrogenase release assay.RESULTS: HBcAg was expressed effectively in 293T cell line transiently transfected with pSW3891/HBc. Strong IgG anti-HBc responses were elicited in mice immunized with pSW3891/HBc. The end-point titers of anti-HBc reached the highest 1:97 200, 4 wk after the third immunization. The specific CTL killing with the highest specific lysis reached 73.25% at effector:target ratio of 20:1 in mice that received pSW3891/HBc DNA vaccine.CONCLUSION: pSW3891/HBc vaccination elicits specific anti-HBc response and induces HBc-specific CTL response in immunized Balb/c mice.

  13. Highest Vaccine Uptake after School-Based Delivery - A County-Level Evaluation of the Implementation Strategies for HPV Catch-Up Vaccination in Sweden

    OpenAIRE

    Rehn, Moa; Uhnoo, Ingrid; Kuhlmann-Berenzon, Sharon; Wallensten, Anders; Sparen, Par; Netterlid, Eva

    2016-01-01

    Background The Swedish school-based vaccination programme offers HPV vaccine to girls born >= 1999 in 5-6th grade. In 2012, all counties introduced free-of-charge catch-up vaccination campaigns targeting girls born 1993-1998. Varying vaccine uptake in the catch-up group by December 2012 suggested that some implementation strategies were more successful than others. In order to inform future vaccination campaigns, we assessed the impact of different implementation strategies on the county-l...

  14. 4-1BBL enhances CD8+ T cell responses induced by vectored vaccines in mice but fails to improve immunogenicity in rhesus macaques.

    OpenAIRE

    Spencer, AJ; Furze, J; Honeycutt, JD; Calvert, A; Saurya, S; Colloca, S; Wyllie, DH; Gilbert, SC; Bregu, M; Cottingham, MG; Hill, AV

    2014-01-01

    T cells play a central role in the immune response to many of the world's major infectious diseases. In this study we investigated the tumour necrosis factor receptor superfamily costimulatory molecule, 4-1BBL (CD137L, TNFSF9), for its ability to increase T cell immunogenicity induced by a variety of recombinant vectored vaccines. To efficiently test this hypothesis, we assessed a number of promoters and developed a stable bi-cistronic vector expressing both the antigen and adjuvant. Co-expre...

  15. An adenovirus-based vaccine with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral delivery models.

    Science.gov (United States)

    Scallan, Ciaran D; Tingley, Debora W; Lindbloom, Jonathan D; Toomey, James S; Tucker, Sean N

    2013-01-01

    An oral gene-based avian influenza vaccine would allow rapid development and simplified distribution, but efficacy has previously been difficult to achieve by the oral route. This study assessed protection against avian influenza virus challenge using a chimeric adenovirus vector expressing hemagglutinin and a double-stranded RNA adjuvant. Immunized ferrets and mice were protected upon lethal challenge. Further, ferrets immunized by the peroral route induced cross-clade neutralizing antibodies, and the antibodies were selective against hemagglutinin, not the vector. Similarly, experiments in mice demonstrated selective immune responses against HA with peroral delivery and the ability to circumvent preexisting vector immunity. PMID:23155123

  16. Support vector machine-based multi-model predictive control

    Institute of Scientific and Technical Information of China (English)

    Zhejing BA; Youxian SUN

    2008-01-01

    In this paper,a support vector machine-based multi-model predictive control is proposed,in which SVM classification combines well with SVM regression.At first,each working environment is modeled by SVM regression and the support vector machine network-based model predictive control(SVMN-MPC)algorithm corresponding to each environment is developed,and then a multi-class SVM model is established to recognize multiple operating conditions.As for control,the current environment is identified by the multi-class SVM model and then the corresponding SVMN.MPCcontroller is activated at each sampling instant.The proposed modeling,switching and controller design is demonstrated in simulation results.

  17. Biosensor method and system based on feature vector extraction

    Science.gov (United States)

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  18. Endpoint Prediction of EAF Based on Multiple Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    YUAN Ping; MAO Zhi-zhong; WANG Fu-li

    2007-01-01

    The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub-models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF.

  19. IRIS RECOGNITION BASED ON KERNELS OF SUPPORT VECTOR MACHINE

    OpenAIRE

    K.Saminathan; T. Chakravarthy; M.Chithra Devi

    2015-01-01

    Ensuring security biometrically is essential in most of the authentication and identification scenario. Recognition based on iris patterns is a thrust area of research cause to provide reliable, simple and rapid identification system. Machine learning classification algorithm of support vector machine [SVM] is applied in this work for personal identification. The profuse as well as unique patterns of iris are acquired and stored in the form of matrix template which contains 4800 elements for ...

  20. Classifier based on support vector machine for JET plasma configurations

    International Nuclear Information System (INIS)

    The last flux surface can be used to identify the plasma configuration of discharges. For automated recognition of JET configurations, a learning system based on support vector machines has been developed. Each configuration is described by 12 geometrical parameters. A multiclass system has been developed by means of the one-versus-the-rest approach. Results with eight simultaneous classes (plasma configurations) show a success rate close to 100%.

  1. Classifier based on support vector machine for JET plasma configurationsa)

    Science.gov (United States)

    Dormido-Canto, S.; Farias, G.; Vega, J.; Dormido, R.; Sánchez, J.; Duro, N.; Vargas, H.; Murari, A.; Jet-Efda Contributors

    2008-10-01

    The last flux surface can be used to identify the plasma configuration of discharges. For automated recognition of JET configurations, a learning system based on support vector machines has been developed. Each configuration is described by 12 geometrical parameters. A multiclass system has been developed by means of the one-versus-the-rest approach. Results with eight simultaneous classes (plasma configurations) show a success rate close to 100%.

  2. Available Bandwidth Estimation Strategy Based on the Network Allocation Vector

    OpenAIRE

    Hongtao Liu; Lianglun Cheng

    2012-01-01

    Available bandwidth is of great importance to network Quality of Service assurance, network load balancing, streaming media rate control, routing, and congestion control, etc.. In this paper, the available bandwidth estimation strategy based on the Network Allocation Vector for Wireless Sensor Networks is proposed. According to the size of the average contention window, network nodes predict the probability of collision in process of frame transmission, and then estimate the number of retrans...

  3. Infection of Nonhost Species Dendritic Cells In Vitro with an Attenuated Myxoma Virus Induces Gene Expression That Predicts Its Efficacy as a Vaccine Vector ▿ †

    Science.gov (United States)

    Top, S.; Foulon, E.; Pignolet, B.; Deplanche, M.; Caubet, C.; Tasca, C.; Bertagnoli, S.; Meyer, G.; Foucras, G.

    2011-01-01

    Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses. PMID:21835800

  4. Analysis of Antibody Responses to Protective Antigen-Based Anthrax Vaccines through Use of Competitive Assays▿

    OpenAIRE

    Rebecca A Brady; Verma, Anita; Meade, Bruce D.; Burns, Drusilla L.

    2010-01-01

    The licensed anthrax vaccine and many of the new anthrax vaccines being developed are based on protective antigen (PA), a nontoxic component of anthrax toxin. For this reason, an understanding of the immune response to PA vaccination is important. In this study, we examined the antibody response elicited by PA-based vaccines and identified the domains of PA that contribute to that response in humans as well as nonhuman primates (NHPs) and rabbits, animal species that will be used to generate ...

  5. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Ørskov, Cathrine; Thomsen, Allan Randrup;

    2010-01-01

    Adenoviral vectors have been widely used for experimental gene therapy and vaccination, yet there is a surprising lack of knowledge connecting the route and dose of adenovirus administration to the induced transgene-specific immune response. We have recently demonstrated polyfunctional CD8(+) T c...... effector functions, accumulated in the spleen. These findings indicate that the localization of the adenoviral inoculum and not the total Ag load determines the quality of the CD8(+) T cell response induced with adenoviral vaccines.......Adenoviral vectors have been widely used for experimental gene therapy and vaccination, yet there is a surprising lack of knowledge connecting the route and dose of adenovirus administration to the induced transgene-specific immune response. We have recently demonstrated polyfunctional CD8(+) T...... correlated positively with dissemination, whereas the functional capacity of the generated T cells correlated inversely with vector dissemination. A comparison of the immune response to s.c. or i.v. administration at moderate doses revealed that inoculation by both routes induced a transient peak of IFN...

  6. Scalable chromatography-based purification of virus-like particle carrier for epitope based influenza A vaccine produced in Escherichia coli.

    Science.gov (United States)

    Lagoutte, Priscillia; Mignon, Charlotte; Donnat, Stéphanie; Stadthagen, Gustavo; Mast, Jan; Sodoyer, Régis; Lugari, Adrien; Werle, Bettina

    2016-06-01

    Virus-like particles (VLPs) are promising molecular structures for the design and construction of novel vaccines, diagnostic tools, and gene therapy vectors. Size, oligomer assembly and repetitiveness of epitopes are optimal features to induce strong immune responses. Several VLP-based vaccines are currently licensed and commercialized, and many vaccine candidates are now under preclinical and clinical studies. In recent years, the development of genetically engineered recombinant VLPs has accelerated the need for new, improved downstream processes. In particular, a rapid low cost purification process has been identified as a remaining key challenge in manufacturing process development. In the present study we set up a size-exclusion chromatography-based, scalable purification protocol for the purification of a VLP-based influenza A vaccine produced in Escherichia coli. Recombinant VLPs derived from the RNA bacteriophage MS2 displaying an epitope from the ectodomain of Matrix 2 protein from influenza A virus were produced and purified. The 3 steps purification protocol uses a recently developed multimodal size-exclusion chromatography medium (Capto™ Core 700) in combination with detergent extraction and size-exclusion polishing to reach a 89% VLP purity with a 19% yield. The combination of this downstream strategy following production in E. coli would be suited for production of VLP-based veterinary vaccines targeting livestock and companion animals where large amounts of doses must be produced at an affordable price. PMID:26947397

  7. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Zhou Xing

    Full Text Available BACKGROUND: Recombinant adenovirus-vectored (Ad tuberculosis (TB vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. METHODS AND FINDINGS: Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n, AdAg85A intramuscularly (i.m, BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb. At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. CONCLUSIONS: Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.

  8. Tipping the Proteome with Gene-Based Vaccines: Weighing in on the Role of Nano materials

    International Nuclear Information System (INIS)

    Since the first generation of DNA vaccines was introduced in 1988, remarkable improvements have been made to improve their efficacy and immunogenicity. Although human clinical trials have shown that delivery of DNA vaccines is well tolerated and safe, the potency of these vaccines in humans is somewhat less than optimal. The development of a gene-based vaccine that was effective enough to be approved for clinical use in humans would be one of, if not the most important, advance in vaccines to date. This paper highlights the literature relating to gene-based vaccines, specifically DNA vaccines, and suggests possible approaches to boost their performance. In addition, we explore the idea that combining RNA and nano materials may hold the key to successful gene-based vaccines for prevention and treatment of disease

  9. Mycobacterium bovis Bacille Calmette-Guérin as a Vaccine Vector for Global Infectious Disease Control

    OpenAIRE

    Kazuhiro Matsuo; Yasuhiro Yasutomi

    2011-01-01

    Mycobacterium bovis bacille Calmette-Guérin (BCG) is the only available vaccine for tuberculosis (TB). Although this vaccine is effective in controlling infantile TB, BCG-induced protective effects against pulmonary diseases in adults have not been clearly demonstrated. Recombinant BCG (rBCG) technology has been extensively applied to obtain more potent immunogenicity of this vaccine, and several candidate TB vaccines have currently reached human clinical trials. On the other hand, recent pro...

  10. Rabies virus-based vaccines elicit neutralizing antibodies, poly-functional CD8+ T cell, and protect rhesus macaques from AIDS-like disease after SIVmac251 challenge

    Science.gov (United States)

    Faul, Elizabeth J.; Aye, Pyone P.; Papaneri, Amy B.; Pahar, Bapi; McGettigan, James P.; Schiro, Faith; Chervoneva, Inna; Montefiori, David C.; Lackner, Andrew A.; Schnell, Matthias J.

    2010-01-01

    Highly attenuated rabies virus (RV) vaccine vectors were evaluated for their ability to protect against highly pathogenic SIVmac251 challenge. Mamu-A*01 negative rhesus macaques were immunized in groups of four with either: RV expressing SIVmac239-GagPol, a combination of RV expressing SIVmac239-Env and RV expressing SIVmac239-GagPol, or with empty RV vectors. Eight weeks later animals received a booster immunization with a heterologous RV expressing the same antigens. At twelve weeks post-boost, all animals were challenged intravenously with 100 TCID50 of pathogenic SIVmac251-CX. Immunized macaques in both vaccine groups had 1.3–1.6-log fold decrease in viral set point compared to control animals. The GagPol/Env immunized animals also had a significantly lower peak viral load. When compared to control animals following challenge, vaccinated macaques had a more rapid induction of SIVmac251 neutralizing antibodies and of CD8+ T cell responses to various SIV epitopes. Moreover, vaccinated macaques better-maintained peripheral memory CD4+ T cells and were able to mount a poly-functional CD8+ T cell response in the mucosa. These findings indicate promise for RV-based vectors and have important implications for the development of an efficacious HIV vaccine. PMID:19879223

  11. A new generation of pPRIG-based retroviral vectors

    Directory of Open Access Journals (Sweden)

    Boulukos Kim E

    2007-11-01

    Full Text Available Abstract Background Retroviral vectors are valuable tools for gene transfer. Particularly convenient are IRES-containing retroviral vectors expressing both the protein of interest and a marker protein from a single bicistronic mRNA. This coupled expression increases the relevance of tracking and/or selection of transduced cells based on the detection of a marker protein. pAP2 is a retroviral vector containing eGFP downstream of a modified IRES element of EMCV origin, and a CMV enhancer-promoter instead of the U3 region of the 5'LTR, which increases its efficiency in transient transfection. However, pAP2 contains a limited multicloning site (MCS and shows weak eGFP expression, which previously led us to engineer an improved version, termed pPRIG, harboring: i the wild-type ECMV IRES sequence, thereby restoring its full activity; ii an optimized MCS flanked by T7 and SP6 sequences; and iii a HA tag encoding sequence 5' of the MCS (pPRIG HAa/b/c. Results The convenience of pPRIG makes it a good basic vector to generate additional derivatives for an extended range of use. Here we present several novel pPRIG-based vectors (collectively referred to as PRIGs in which : i the HA tag sequence was inserted in the three reading frames 3' of the MCS (3'HA PRIGs; ii a functional domain (ER, VP16 or KRAB was inserted either 5' or 3' of the MCS (« modular » PRIGs; iii eGFP was replaced by either eCFP, eYFP, mCherry or puro-R (« single color/resistance » PRIGs; and iv mCherry, eYFP or eGFP was inserted 5' of the MCS of the IRES-eGFP, IRES-eCFP or IRES-Puro-R containing PRIGs, respectively (« dual color/selection » PRIGs. Additionally, some of these PRIGs were also constructed in a pMigR MSCV background which has been widely used in pluripotent cells. Conclusion These novel vectors allow for straightforward detection of any expressed protein (3'HA PRIGs, for functional studies of chimeric proteins (« modular » PRIGs, for multiple transductions and

  12. Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tengyue Mao

    2012-03-01

    Full Text Available Satellite scheduling is a typical multi-peak, many-valley, nonlinear multi-objective optimization problem. How to effectively implement the satellite scheduling is a crucial research in space areas.This paper mainly discusses the performance of VEGA (Vector Evaluated Genetic Algorithm based on the study of basic principles of VEGA algorithm, algorithm realization and test function, and then improves VEGA algorithm through introducing vector coding, new crossover and mutation operators, new methods to assign fitness and hold good individuals. As a result, the diversity and convergence of improved VEGA algorithm of improved VEGA algorithm have been significantly enhanced and will be applied to Earth-Mars orbit optimization. At the same time, this paper analyzes the results of the improved VEGA, whose results of performance analysis and evaluation show that although VEGA has a profound impact upon multi-objective evolutionary research,  multi-objective evolutionary algorithm on the basis of Pareto seems to be a more effective method to get the non-dominated solutions from the perspective of diversity and convergence of experimental result. Finally, based on Visual C + + integrated development environment, we have implemented improved vector evaluation algorithm in the satellite scheduling.

  13. SAM: Support Vector Machine Based Active Queue Management

    International Nuclear Information System (INIS)

    Recent years have seen an increasing interest in the design of AQM (Active Queue Management) controllers. The purpose of these controllers is to manage the network congestion under varying loads, link delays and bandwidth. In this paper, a new AQM controller is proposed which is trained by using the SVM (Support Vector Machine) with the RBF (Radial Basis Function) kernal. The proposed controller is called the support vector based AQM (SAM) controller. The performance of the proposed controller has been compared with three conventional AQM controllers, namely the Random Early Detection, Blue and Proportional Plus Integral Controller. The preliminary simulation studies show that the performance of the proposed controller is comparable to the conventional controllers. However, the proposed controller is more efficient in controlling the queue size than the conventional controllers. (author)

  14. Available Bandwidth Estimation Strategy Based on the Network Allocation Vector

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    2012-12-01

    Full Text Available Available bandwidth is of great importance to network Quality of Service assurance, network load balancing, streaming media rate control, routing, and congestion control, etc.. In this paper, the available bandwidth estimation strategy based on the Network Allocation Vector for Wireless Sensor Networks is proposed. According to the size of the average contention window, network nodes predict the probability of collision in process of frame transmission, and then estimate the number of retransmission. Through the collection of Hello packets periodically sent by neighbors, nodes obtain their Network Allocation Vector, and then estimate the available bandwidth. The simulation results show that the strategy is simple and effective, can accurately estimate the collision of data frames as well as the available bandwidth of Wireless Sensor Networks.

  15. Neural cell image segmentation method based on support vector machine

    Science.gov (United States)

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  16. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T

  17. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection.

    Science.gov (United States)

    Swadling, Leo; Halliday, John; Kelly, Christabel; Brown, Anthony; Capone, Stefania; Ansari, M Azim; Bonsall, David; Richardson, Rachel; Hartnell, Felicity; Collier, Jane; Ammendola, Virginia; Del Sorbo, Mariarosaria; Von Delft, Annette; Traboni, Cinzia; Hill, Adrian V S; Colloca, Stefano; Nicosia, Alfredo; Cortese, Riccardo; Klenerman, Paul; Folgori, Antonella; Barnes, Eleanor

    2016-01-01

    An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were

  18. Riesz multiwavelet bases generated by vector refinement equation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L2(Rs). Suppose ψ = (ψ1, . . . , ψr)T and ψ = ( ψ1, . . . , ψr)T are two compactly supported vectors of functions in the Sobolev space (Hμ(Rs))r for some μ > 0. We provide a characterization for the sequences {ψjk : = 1, . . . , r, j ∈ Z, k ∈ Zs} and {ψ jk : = 1, . . . , r, j ∈ Z, k ∈ Zs} to form two Riesz sequences for L2(Rs), where ψjk = mj/2ψ (M j ·k) and ψjk = mj/2 ψ (M j ·k), M is an s × s integer matrix such that limn→∞ Mn = 0 and m = |detM|. Furthermore, let = (1, . . . , r)T and = ( 1, . . . , r)T be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, a and M, where a and a are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1, . . . , ψνr)T and ψν = ( ψν1, . . . , ψ?νr)T , ν = 1, . . . , m 1 such that two sequences {ψjνk : ν = 1, . . . , m 1, = 1, . . . , r, j ∈ Z, k ∈ Zs} and {ψ jνk : ν = 1, . . . , m 1, = 1, . . . , r, j ∈ Z, k ∈ Zs} form two Riesz multiwavelet bases for L2(Rs). The bracket product [f, g] of two vectors of functions f, g in (L2(Rs))r is an indispensable tool for our characterization.

  19. Novel Vaccine Against Mycoplasma Hyosynoviae: The Immunogenic Effect of Iscom-Based Vaccines in Swine

    DEFF Research Database (Denmark)

    Lauritsen, Klara Tølbøll; Vinther Heydenreich, Annette; Riber, Ulla;

    Arthritis in swine is frequently caused by Mycoplasma hyosynoviae (Mhs). For the development of an effective vaccine we investigated the immunogenic effect of three vaccine preparations with the ISCOM adjuvant Posintro™ from Nordic Vaccine. A: formalin fixed whole-cells Mhs (300 µg/dose) mixed....... IFNγ in supernatants of whole-blood cultured with Mhs-antigen was used as a marker of cell-mediated immune response (CMI). All pigs secreted IFNγ after primary vaccination followed by an increased production after booster vaccination. The CMI response was highest with vaccine B when compared...... with Posintro, B: Deoxycholate extracted lipoproteins from Mhs organisms (DOC-antigen, 300 μg/dose) in Posintro and C: DOC-antigen (50 μg/dose) in Posintro. Each vaccine-group contained three pigs. Vaccinations (i.m.) were performed at 12 and 15 weeks of age. The development of specific IgG and secretion...

  20. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    Science.gov (United States)

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-01

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. PMID:27026148

  1. A Core Set Based Large Vector-Angular Region and Margin Approach for Novelty Detection

    OpenAIRE

    Jiusheng Chen; Xiaoyu Zhang; Kai Guo

    2016-01-01

    A large vector-angular region and margin (LARM) approach is presented for novelty detection based on imbalanced data. The key idea is to construct the largest vector-angular region in the feature space to separate normal training patterns; meanwhile, maximize the vector-angular margin between the surface of this optimal vector-angular region and abnormal training patterns. In order to improve the generalization performance of LARM, the vector-angular distribution is optimized by maximizing th...

  2. Two initial vaccinations with the Bm86-based Gavacplus vaccine against Rhipicephalus (Boophilus) microplus induce similar reproductive suppression to three initial vaccinations under production conditions

    OpenAIRE

    Fernández Erlinda; Suárez Marisela; Lleonart Ricardo; Méndez Luis; Rodríguez Elsa; Machado Héctor; Joglar Marisdania; Alfonso Aymé; Valdés Mario; Pérez Danny; Sánchez Dunia; Montero Carlos; Vargas Milagros; Estrada Mario P; Rodríguez-Mallón Alina

    2010-01-01

    Abstract Background The cattle tick, Rhipicephalus (Boophilus) microplus, affects livestock production in many regions of the world. Up to now, the widespread use of chemical acaricides has led to the selection of acaricide-resistant ticks and to environmental contamination. Gavacplus is a subunit vaccine based on the recombinant Bm86 tick antigen expressed in yeast, capable to control infestations of R. microplus under controlled and production conditions. The vaccine constitutes the core el...

  3. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/- Mice from Monkeypoxvirus Lethal Challenge.

    Directory of Open Access Journals (Sweden)

    Valentina Franceschi

    2015-06-01

    Full Text Available Monkeypox virus (MPXV is the etiological agent of human (MPX. It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV, and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4 vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/- mice

  4. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge.

    Science.gov (United States)

    Franceschi, Valentina; Parker, Scott; Jacca, Sarah; Crump, Ryan W; Doronin, Konstantin; Hembrador, Edguardo; Pompilio, Daniela; Tebaldi, Giulia; Estep, Ryan D; Wong, Scott W; Buller, Mark R; Donofrio, Gaetano

    2015-06-01

    Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against

  5. Role of regulatory T-cells in immunization strategies involving a recombinant alphavirus vector system

    NARCIS (Netherlands)

    Walczak, Mateusz; Regts, Joke; van Oosterhout, Antoon J. M.; Boon, Louis; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    2011-01-01

    Background: Regulatory T-cells (Treg) hamper immune responses elicited by cancer vaccines. Therefore, depletion of Treg is being used to improve the outcome of vaccinations. Methods: We studied whether an alphavirus vector-based immunotherapeutic vaccine changes the number and/or activity of Treg an

  6. Adenovirus-based vaccine against Listeria monocytogenes

    DEFF Research Database (Denmark)

    Jensen, Søren; Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech;

    2013-01-01

    bacteria, using Listeria monocytogenes as a model organism. Protection in C57BL/6 mice against recombinant L. monocytogenes expressing an immunodominant epitope of the LCMV glycoprotein (GP33) was greatly accelerated, augmented, and prolonged following vaccination with an adenoviral vaccine encoding GP......, vaccination of C57BL/6 (L. monocytogenes-resistant) and BALB/c (L. monocytogenes-susceptible) mice with adenoviral vectors encoding natural L. monocytogenes-derived soluble Ags (listeriolysin O and p60) revealed that tethering of these Ags to Ii markedly improved the vaccine-induced CD8(+) T cell response to...... two of three epitopes studied. More importantly, Ii linkage accelerated and augmented vaccine-induced protection in both mouse strains and prolonged protection, in particular that induced by the weak Ag, p60, in L. monocytogenes-susceptible BALB/c mice....

  7. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz

    2014-03-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. These geometric metrics do not consider the flow magnitude, an important physical property of the flow. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness, which provides a complementary view on flow structure compared to the traditional topological-skeleton-based approaches. Robustness enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory, has fewer boundary restrictions, and so can handle more general cases. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. © 2014 IEEE.

  8. Development of prophylactic recombinant HPV58-attenuated Shigeila live vector vaccine and evaluation of its protective efficacy and immunogenicity in the guinea pig keratoconjunctivitis model

    Institute of Scientific and Technical Information of China (English)

    Wensheng Li; Hongli Liu; Xiaofeng Yang; Jin Zheng; Yili Wang; Lusheng Si

    2009-01-01

    To develop a prophylactic recombinant HPV58L1-attenuated Shigella live vector vaccine and evaluate its protective efficacy and immunogenicity in the guinea pig keratoconjunctivitis model, the HPV58L1 gene was cloned into vector pUCmt, and then subcloned into the suicide vector pCVD442. The recombinant plasmid pCVD442-HPV58L1 was introduced into attenuated Shigella (sf301:△virG) with the helper plasmid PRK2013 by filter mating. The positive colonies were harvested and confirmed by polymerase chain reaction. The expression of the HPV58L1 protein with a molecu-lar weight of 60 kDa was confirmed by western blot. The ability of the interested protein to self-assemble into virus-like particles was identified by transmission electron microscope, and murine erythrocyte hemagglu-tination assay. The guinea pig keratoconjunctivitis model was used to evaluate the protective efficacy and immunogenicity of the vaccine. Animal experiments showed that there was no keratoconjunctivitis occurred in the immunized group (HPV58-attenuated Shigella), and the serum levels of anti-HPV58L1-IgG and -IgA were obviously increased (P0.05). Enzyme-linked immunosorbent spot assay showed that HPV58L1-specific IgA-antibody-secreting cells (ASC) and IgG-ASC of spleen and lymph nodes were also obviously increased (P<0.01). In this study, a recombi-nant HPV58L1-attenuated Shigella live vector vaccine was successfully constructed, and it could induce strong humoral immune responses in the immunized animals, and induce protective antibody production.

  9. In vivo image analysis of BoHV-4-based vector in mice.

    Directory of Open Access Journals (Sweden)

    Valentina Franceschi

    Full Text Available Due to its biological characteristics bovine herpesvirus 4 (BoHV-4 has been considered as an appropriate gene delivery vector. Its genomic clone, modified as a bacterial artificial chromosome (BAC, is better genetically manipulable and can be used as an efficient gene delivery and vaccine vector. Although a large amount of data have been accumulated in vitro on this specific aspect, the same cannot be asserted for the in vivo condition. Therefore, here we investigated the fate of a recombinant BoHV-4 strain expressing luciferase (BoHV-4-A-CMVlucΔTK after intraperitoneal or intravenous inoculation in mice, by generating a novel recombinant BoHV-4 expressing luciferase (BoHV-4-A-CMVlucΔTK and by following the virus replication through in vivo imaging analysis. BoHV-4-A-CMVlucΔTK was first characterized in vitro where it was shown, on one hand that its replication properties are identical to those of the parental virus, and on the other that the transduced/infected cells strongly express luciferase. When BoHV-4-A-CMVlucΔTK was inoculated in mice, either intraperitoneally or intravenously, BoHV-4-A-CMVlucΔTK infection/transduction was exclusively localized to the liver, as detected by in vivo image analysis, and in particular almost exclusively in the hepatocytes, as determined by immuno-histochemistry. These data, that add a new insight on the biology of BoHV-4 in vivo, provide the first indication for the potential use of a BoHV-4-based vector in gene-transfer in the liver.

  10. Vaccine process technology.

    Science.gov (United States)

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory

  11. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  12. Debris Flow Hazard Assessment Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    YUAN Lifeng; ZHANG Youshui

    2006-01-01

    Seven factors, including the maximum volume of once flow , occurrence frequency of debris flow , watershed area , main channel length , watershed relative height difference , valley incision density and the length ratio of sediment supplement are chosen as evaluation factors of debris flow hazard degree. Using support vector machine (SVM) theory, we selected 259 basic data of 37 debris flow channels in Yunnan Province as learning samples in this study. We create a debris flow hazard assessment model based on SVM. The model was validated though instance applications and showed encouraging results.

  13. Stokes vector formalism based second harmonic generation microscopy

    Science.gov (United States)

    Qiu, Jianjun; Mazumder, Nirmal; Tsai, Han-Ruei; Hu, Chih-Wei; Kao, Fu-Jen

    2012-02-01

    In this study, we have developed a four-channel Stokes vector formalism based second harmonic generation (SHG) microscopy to map and analyze SHG signal. A four-channel Stokesmeter setup is calibrated and integrated into a laser scanning microscope to measure and characterize the SH's corresponding Stokes parameters. We are demonstrating the use of SH and its Stokes parameters to visualize the birefringence and crystalline orientation of KDP and collagen. We believe the developed method can reveal unprecedented information for biomedical and biomaterial studies.

  14. Support vector classification algorithm based on variable parameter linear programming

    Institute of Scientific and Technical Information of China (English)

    Xiao Jianhua; Lin Jian

    2007-01-01

    To solve the problems of SVM in dealing with large sample size and asymmetric distributed samples, a support vector classification algorithm based on variable parameter linear programming is proposed.In the proposed algorithm, linear programming is employed to solve the optimization problem of classification to decrease the computation time and to reduce its complexity when compared with the original model.The adjusted punishment parameter greatly reduced the classification error resulting from asymmetric distributed samples and the detailed procedure of the proposed algorithm is given.An experiment is conducted to verify whether the proposed algorithm is suitable for asymmetric distributed samples.

  15. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  16. Experimental rabies vaccines for humans.

    Science.gov (United States)

    McGettigan, James P

    2010-10-01

    Rabies remains a global public health threat that kills more than 55,000 people per year. Rabies disproportionately affects children and, therefore, is ranked the seventh most important infectious disease due to years lost. Prevention of human rabies is accomplished by controlling rabies in domestic and wild animals, including the use of vaccination programs. The usefulness of human rabies vaccines is hampered by high cost, complicated vaccination regimens and lack of compliance, especially in areas of Africa and Asia where human rabies infections are endemic. A single-dose vaccine would greatly benefit efforts to combat this global health threat. However, a single-dose vaccine based on current inactivated vaccines does not appear feasible and other approaches are needed. Technology has advanced since modern human rabies vaccines were developed over 40 years ago. In addition, our understanding of immunological principles that influence the outcome of vaccination has increased. This article describes the current status of inactivated rabies virus vaccines and recent developments arising from the use of reverse genetics technologies designed to develop replication-deficient or single-cycle live rabies virus-based vectors for use as a single-dose rabies vaccine for humans. PMID:20923268

  17. A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque.

    Science.gov (United States)

    Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H; Bell, Peter; Somanathan, Suryanarayan; Wilson, James M

    2009-12-01

    We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8(+) T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8(+) T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses. PMID:19812149

  18. IRIS RECOGNITION BASED ON KERNELS OF SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    K. Saminathan

    2015-01-01

    Full Text Available Ensuring security biometrically is essential in most of the authentication and identification scenario. Recognition based on iris patterns is a thrust area of research cause to provide reliable, simple and rapid identification system. Machine learning classification algorithm of support vector machine [SVM] is applied in this work for personal identification. The profuse as well as unique patterns of iris are acquired and stored in the form of matrix template which contains 4800 elements for each iris. The row vectors of 2400 elements are passed as inputs to SVM classifier. The SVM generates separate classes for each user and performs matching based on the template’s unique spectral features of iris. The experimental results of this proposed work illustrate a better performance of 98.5% compared to the existing methods such as hamming distance, local binary pattern and various kernels of SVM. The popular CASIA (Chinese Academy of Sciences – Institute of Automation iris database with fifty users’ eye image samples are experimented to prove, that the least Square method of Quadratic kernel based SVM is comparatively better with minimal true rejection rate.

  19. Terminal Design in Vector Network based on Windows Platform

    Directory of Open Access Journals (Sweden)

    Aqun Zhao

    2013-03-01

    Full Text Available The research work of this study focuses on the design and implementation technology of terminal in Vector Network (VN based indows platform. The VN is a kind of new communication network with vector address as the switching adon Wdress. The premise of successful deployment of VN is its integration with the current IP networks, so it is necessary to study the implementation technology of VN terminal on the base of IP terminal. Firstly, a kind of software implementation method of VN terminal and a kind of integration method of VN and IP networks named “IP over VN” were proposed in this study. Secondly, the VN driver module was designed and implemented based on the NDIS driver interface and the key technique in the implementation was summarized. Finally, the experiment network was built to test the functions of VN terminal. The test results validated the rationality of the design and implementation scheme of VN terminal. The work of this study establishes the foundation for the deployment of VN and provides an example to the development of similar systems.

  20. Peptide/protein vaccine delivery system based on PLGA particles.

    Science.gov (United States)

    Allahyari, Mojgan; Mohit, Elham

    2016-03-01

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  1. The yellow fever 17D vaccine virus as a vector for the expression of foreign proteins: development of new live flavivirus vaccines

    Directory of Open Access Journals (Sweden)

    Myrna C Bonaldo

    2000-01-01

    Full Text Available The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF, dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

  2. Virtual-vector-based space vector pulse width modulation of the DC-AC multilevel-clamped multilevel converter (MLC2)

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Busquets-Monge, Sergio; Blaabjerg, Frede; Munoz-Aguilar, Raul S.; Bellar, Maria D.

    This work presents the development of the space vector pulse width modulation (SVPWM) of a new multi-level converter topology. First, the proposed converter and its natural space vector diagram are presented. Secondly, a modified space vector diagram based on the virtual-vectors technique is shown....... Simulation results by using a space vector approach are presented. Special emphasis is given on the total harmonic distortion (THD) by making a comparison with those of the classical NPC topologies....

  3. Threat Assessment of Targets Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    CAI Huai-ping; LIU Jing-xu; CHEN Ying-wu

    2006-01-01

    In the context of cooperative engagement of armored vehicles, the threat factors of offensive targets are analyzed, and a threat assessment (TA) model is built based on a support v.ector machine (SVM) method. The SVM-based model has some advantages over the traditional method-based models: the complex factors of threat are considered in the cooperative engagement; the shortcomings of neural networks, such as local minimum and "over fitting", are overcome to improve the generalization ability; its operation speed is high and meets the needs of real time C2 of cooperative engagement; the assessment results could be more reasonable because of its self-learning capability. The analysis and simulation indicate that the SVM method is an effective method to resolve the TA problems.

  4. 携带人卵泡刺激素受体的慢病毒载体疫苗的构建及其免疫效应检测%Development of a Lentivirus Vector-based Vaccine Carrying Follicle-stimulating Hormone Receptor and Assay of Its Immunological Effect

    Institute of Scientific and Technical Information of China (English)

    马晓玲; 刘红春; 李江伟

    2016-01-01

    制备携带卵泡刺激素受体的慢病毒载体疫苗,并研究其对小鼠的免疫效应。将卵泡刺激素受体胞外区(fshr366)基因克隆到慢病毒载体上,采用脂质体转染法将重组质粒转染至293T细胞中,包装并产生含有目的基因的病毒颗粒;分别利用RT-PCR和Western blot检测感染病毒颗粒的293T细胞中fshr366在mRNA水平及蛋白水平的表达情况;用携带fshr366的病毒颗粒单次腹腔免疫BALB/c小鼠,分别在免疫0、14、21和28 d对小鼠眼眶采血,ELISA法检测免疫小鼠血清的特异性并测定抗体滴度。酶切和测序结果表明fshr366基因片段成功构建到慢病毒载体上。将包装产生的携带fshr366的慢病毒颗粒感染293T细胞后, RT-PCR和Western blot检测结果表明细胞在转录水平和蛋白水平均表达fshr基因。ELISA结果显示携带fshr366的慢病毒颗粒单次腹腔免疫小鼠后,免疫14 d就激起了机体的体液免疫反应,抗体滴度达到1∶1600。成功制备了携带卵泡刺激素受体的慢病毒载体疫苗,其可以在小鼠体内激发FSHR抗原特异的早期持续性免疫反应。%This work aims to prepare lentivirus vaccine with a follicle-stimulating hormone receptor(FSHR)and investigate the immunological effect of it on mice. The gene(fshr366)of extracellular region of FSHR was cloned into lentivirus vector. The recombinant plasmids were transfected into the 239T cells by the method of lipidosome transfection,and the virus particles(Lenti-FSHR366)with target gene were produced after encapsulation. The expressions offshr366mRNA and FSHR366 protein in 293T cells infected by Lenti-FSHR366 were detected by RT-PCR and Western blot. For evaluating the immunological effects,BALB/c mice were intraperitoneally inoculated with single immunization offshr366-carring virus,collecting the blood samples from the orbits of mice at day 0,14,21 and 28 after immunization,then ELISA method was used to detect

  5. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice.

    Science.gov (United States)

    de Andrade Pereira, Bruna; Maduro Bouillet, Leoneide E; Dorigo, Natalia A; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels. PMID:26679149

  6. Seroprevalence of fowl pox antibody in indigenous chickens in jos north and South council areas of plateau state, Nigeria: implication for vector vaccine.

    Science.gov (United States)

    Adebajo, Meseko Clement; Ademola, Shittu Ismail; Oluwaseun, Akinyede

    2012-01-01

    Fowl pox is a viral disease of domestic and wild birds. The large size of the genome makes it a useful vector for recombinant DNA technology. Although the disease has been described in both commercial and indigenous chickens in Nigeria, data are limited on seroprevalence in free range chickens. Such data are, however, important in the design and implementation of fowl pox virus vector vaccine. We surveyed current antibody status to fowl pox virus in free range chickens by testing 229 sera collected from 10 villages in Jos North and Jos South LGA of Plateau State Nigeria. Sera were analyzed by AGID against standard fowl pox antigen. Fifty-two of the 229 (23%) tested sera were positive for fowl pox virus antibody, and the log titre in all positive specimen was >2. Thirty (21%) and twenty-two (27%) of the samples from Jos South and Jos North, respectively, tested positive. This was, however, not statistically significant (P = 0.30). Generally the study showed a significant level of antibody to fowl pox virus in the study area. This observation may hinder effective use of fowl pox vectored viral vaccine. Fowl pox control is recommended to reduce natural burden of the disease. PMID:23762578

  7. Toolbox for Non-Intrusive Structural and Functional Analysis of Recombinant VLP Based Vaccines: A Case Study with Hepatitis B Vaccine

    OpenAIRE

    Mulder, Anke M.; Bridget Carragher; Victoria Towne; Yuan Meng; Yang Wang; Lance Dieter; Potter, Clinton S.; Washabaugh, Michael W.; Sitrin, Robert D; Qinjian Zhao

    2012-01-01

    BACKGROUND: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP) approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg) VLP-based vaccin...

  8. Genetic manipulation of endosymbionts to control vector and vector borne diseases

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    Full Text Available Vector borne diseases (VBD are on the rise because of failure of the existing methods of control of vector and vector borne diseases and the climate change. A steep rise of VBDs are due to several factors like selection of insecticide resistant vector population, drug resistant parasite population and lack of effective vaccines against the VBDs. Environmental pollution, public health hazard and insecticide resistant vector population indicate that the insecticides are no longer a sustainable control method of vector and vector-borne diseases. Amongst the various alternative control strategies, symbiont based approach utilizing endosymbionts of arthropod vectors could be explored to control the vector and vector borne diseases. The endosymbiont population of arthropod vectors could be exploited in different ways viz., as a chemotherapeutic target, vaccine target for the control of vectors. Expression of molecules with antiparasitic activity by genetically transformed symbiotic bacteria of disease-transmitting arthropods may serve as a powerful approach to control certain arthropod-borne diseases. Genetic transformation of symbiotic bacteria of the arthropod vector to alter the vector’s ability to transmit pathogen is an alternative means of blocking the transmission of VBDs. In Indian scenario, where dengue, chikungunya, malaria and filariosis are prevalent, paratransgenic based approach can be used effectively. [Vet World 2012; 5(9.000: 571-576

  9. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    induction motor (IM) drives. The control design, based on synchronously rotating d-q frame model of the machine, has a simple structure that combines the proportional portion of a conventional PI control and output of the observer. The observer is predicted to estimate the disturbances caused by parameters......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...... change in current control loop and, also to remove undesired cross coupling existing between components of the stator current. The observer uses the measured stator currents and estimated PWM voltages, and produces a disturbance signal with a low pass filter. The proposed control scheme reduces cross...

  10. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    Directory of Open Access Journals (Sweden)

    Y. He

    2008-05-01

    Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  11. Hexavalent IPV-based combination vaccines for public-sector markets of low-resource countries.

    Science.gov (United States)

    Mahmood, Kutub; Pelkowski, Sonia; Atherly, Deborah; Sitrin, Robert D; Donnelly, John J

    2013-09-01

    In anticipation of the successful eradication of wild polio virus, alternative vaccination strategies for public-sector markets of low-resource countries are extremely important, but are still under development. Following polio eradication, inactivated polio vaccine (IPV) would be the only polio vaccine available, and would be needed for early childhood immunization for several years, as maintenance of herd immunity will be important for sustaining polio eradication. Low-cost combination vaccines containing IPV could provide reliable and continuous immunization in the post-polio eradication period. Combination vaccines can potentially simplify complex pediatric routine immunization schedules, improve compliance, and reduce costs. Hexavalent vaccines containing Diphtheria (D), Tetanus (T), whole cell pertussis (wP), Hepatitis B (HBV), Haemophilus b (Hib) and the three IPV serotype antigens have been considered as the ultimate combination vaccine for routine immunization. This product review evaluates potential hexavalent vaccine candidates by composition, probable time to market, expected cost of goods, presentation, and technical feasibility and offers suggestions for development of low-cost hexavalent combination vaccines. Because there are significant technical challenges facing wP-based hexavalent vaccine development, this review also discusses other alternative approaches to hexavalent that could also ensure a timely and reliable supply of low-cost IPV based combination vaccines. PMID:23787559

  12. Parallel Kalman filter track fit based on vector classes

    International Nuclear Information System (INIS)

    Modern high energy physics experiments have to process terabytes of input data produced in particle collisions. The core of the data reconstruction in high energy physics is the Kalman filter. Therefore, developing the fast Kalman filter algorithm, which uses maximum available power of modern processors, is important, in particular for initial selection of events interesting for the new physics. One of processors features, which can speed up the algorithm, is a SIMD instruction set, which allows to pack several data items in one register and operate on all of them in one go, thus achieving more operations per clock cycle. Therefore a flexible and useful interface, which uses the SIMD instruction set on different CPU and GPU processors architectures, has been realized as a vector classes library. The Kalman filter based track fitting algorithm has been implemented with use of the vector classes. Fitting quality tests show good results with the residuals equal to 49 μm and 44 μm for x and y track parameters and relative momentum resolution of 0.7%. The fitting time of 0.053 μs per track has been achieved on Intel Xeon X5550 with 8 cores at 2.6 GHz by using in addition Intel Threading Building Blocks.

  13. Facial biometrics based on 2D vector geometry

    Science.gov (United States)

    Malek, Obaidul; Venetsanopoulos, Anastasios; Androutsos, Dimitrios

    2014-05-01

    The main challenge of facial biometrics is its robustness and ability to adapt to changes in position orientation, facial expression, and illumination effects. This research addresses the predominant deficiencies in this regard and systematically investigates a facial authentication system in the Euclidean domain. In the proposed method, Euclidean geometry in 2D vector space is being constructed for features extraction and the authentication method. In particular, each assigned point of the candidates' biometric features is considered to be a 2D geometrical coordinate in the Euclidean vector space. Algebraic shapes of the extracted candidate features are also computed and compared. The proposed authentication method is being tested on images from the public "Put Face Database". The performance of the proposed method is evaluated based on Correct Recognition (CRR), False Acceptance (FAR), and False Rejection (FRR) rates. The theoretical foundation of the proposed method along with the experimental results are also presented in this paper. The experimental results demonstrate the effectiveness of the proposed method.

  14. Normal Vector Based Subdivision Scheme to Generate Fractal Curves

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-08-01

    Full Text Available In this paper, we firstly devise a new and general p-ary subdivision scheme based on normal vectors with multi-parameters to generate fractals. Rich and colorful fractals including some known fractals and a lot of unknown ones can be generated directly and conveniently by using it uniformly. The method is easy to use and effective in generating fractals since the values of the parameters and the directions of normal vectors can be designed freely to control the shape of generated fractals. Secondly, we illustrate the technique with some design results of fractal generation and the corresponding fractal examples from the point of view of visualization, including the classical Lévy curves, Dragon curves, Sierpiński gasket, Koch curve, Koch-type curves and other fractals. Finally, some fractal properties of the limit of the presented subdivision scheme, including existence, self-similarity, non-rectifiability, and continuity but nowhere differentiability are described from the point of view of theoretical analysis.

  15. Poly(I:C/alum mixed adjuvant priming enhances HBV subunit vaccine-induced immunity in mice when combined with recombinant adenoviral-based HBV vaccine boosting.

    Directory of Open Access Journals (Sweden)

    Xia Chuai

    Full Text Available BACKGROUND: Virus-specific cellular immune responses play a critical role in virus clearance during acute or chronic HBV infection. Currently, the commercially available HBV vaccine is combined with alum adjuvant, which stimulates mainly Th2 immune responses. Therefore, development of new therapeutic HBV vaccine adjuvants and immune strategies that also promote Th1 and CTL responses is urgently needed. METHODOLOGY/PRINCIPAL FINDINGS: To improve the immunity induced by the novel HBSS1 HBV vaccine, we evaluated the ability of adjuvants, including alum, CpG and polyriboinosinic polyribocytidylic acid [poly(I:C], to enhance the response when boosted with the recombinant adenoviral vector vaccine rAdSS1. The immune responses to different adjuvant combinations were assessed in C57BL/6 mice by enzyme-linked immunosorbent assay (ELISA, ELISpot and cytokine release assays. Among the combinations tested, a HBV protein particle vaccine with CpG/alum and poly(I:C/alum priming combinations accelerated specific seroconversion and produced high antibody (anti-PreS1, anti-S antibody titres with a Th1 bias. After boosting with recombinant adenoviral vector vaccine rAdSS1, both groups produced a strong multi-antigen (S and PreS1-specific cellular immune response. HBSS1 immunisation with poly(I:C/alum priming also generated high-level CD4(+ and CD8(+ T cell responses in terms of Th1 cytokines (IFN-γ and IL-2. CONCLUSIONS: The protein-vaccine HBSS1 with mixed poly(I:C/alum adjuvant priming, followed by a rAdSS1 vaccine boost, maximises specific antibody and Th1-biased cellular immune responses. This regime might prove useful in the development of HBV therapeutic vaccines. Furthermore, this promising strategy might be applied to vaccines against other persistent infections, such as human immunodeficiency virus and tuberculosis.

  16. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    OpenAIRE

    Jiang, Xiaohong; Dalebout, Tim J.; Peter J Bredenbeek; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison...

  17. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate.

    Science.gov (United States)

    Shen, Chun Fang; Jacob, Danielle; Zhu, Tao; Bernier, Alice; Shao, Zhongqi; Yu, Xuefeng; Patel, Mehul; Lanthier, Stephane; Kamen, Amine

    2016-06-17

    Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials. PMID:27154390

  18. Dengue vaccine: an update on recombinant subunit strategies.

    Science.gov (United States)

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines. PMID:26982462

  19. A three-axis SQUID-based absolute vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G. [Department of Quantum Detection, Leibniz Institute of Photonic Technology, Jena 07745 (Germany); Zakosarenko, V.; Meyer, M. [Supracon AG, An der Lehmgrube 11, Jena 07751 (Germany)

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  20. A three-axis SQUID-based absolute vector magnetometer

    Science.gov (United States)

    Schönau, T.; Zakosarenko, V.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, M.; Meyer, H.-G.

    2015-10-01

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth's magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz1/2. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  1. Three—Dimensional Vector Field Visualization Based on Tensor Decomposition

    Institute of Scientific and Technical Information of China (English)

    梁训东; 李斌; 等

    1996-01-01

    This paper presents a visualization method called the deformed cube for visualizing 3D velocity vector field.Based on the decomposition of the tensor which describes the changes of the velocity,it provides a technique for visualizing local flow.A deformed cube,a cube transformed by a tensor in a local coordinate frame,shows the local stretch,shear and rigid body rotation of the local flow corresponding to the decomposed component of the tensor.Users can interactively view the local deformation or any component of the changes.The animation of the deformed cube moving along a streamline achieves a more global impression of the flow field.This method is intended as a complement to global visualization methods.

  2. Support vector machine based battery model for electric vehicles

    International Nuclear Information System (INIS)

    The support vector machine (SVM) is a novel type of learning machine based on statistical learning theory that can map a nonlinear function successfully. As a battery is a nonlinear system, it is difficult to establish the relationship between the load voltage and the current under different temperatures and state of charge (SOC). The SVM is used to model the battery nonlinear dynamics in this paper. Tests are performed on an 80Ah Ni/MH battery pack with the Federal Urban Driving Schedule (FUDS) cycle to set up the SVM model. Compared with the Nernst and Shepherd combined model, the SVM model can simulate the battery dynamics better with small amounts of experimental data. The maximum relative error is 3.61%

  3. BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    V. Dheepa

    2012-07-01

    Full Text Available Along with the great increase of internet and e-commerce, the use of credit card is an unavoidable one. Due to the increase of credit card usage, the frauds associated with this have also increased. There are a lot of approaches used to detect the frauds. In this paper, behavior based classification approach using Support Vector Machines are employed and efficient feature extraction method also adopted. If any discrepancies occur in the behaviors transaction pattern then it is predicted as suspicious and taken for further consideration to find the frauds. Generally credit card fraud detection problem suffers from a large amount of data, which is rectified by the proposed method. Achieving finest accuracy, high fraud catching rate and low false alarms are the main tasks of this approach.

  4. Image replica detection based on support vector classifier

    Science.gov (United States)

    Maret, Y.; Dufaux, F.; Ebrahimi, T.

    2005-08-01

    In this paper, we propose a technique for image replica detection. By replica, we mean equivalent versions of a given reference image, e.g. after it has undergone operations such as compression, filtering or resizing. Applications of this technique include discovery of copyright infringement or detection of illicit content. The technique is based on the extraction of multiple features from an image, namely texture, color, and spatial distribution of colors. Similar features are then grouped into groups and the similarity between two images is given by several partial distances. The decision function to decide whether a test image is a replica of a given reference image is finally derived using Support Vector Classifier (SVC). In this paper, we show that this technique achieves good results on a large database of images. For instance, for a false negative rate of 5 % the system yields a false positive rate of only 6 " 10-5.

  5. A three-axis SQUID-based absolute vector magnetometer

    International Nuclear Information System (INIS)

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz1/2. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration

  6. TYRE DYNAMICS MODELLING OF VEHICLE BASED ON SUPPORT VECTOR MACHINES

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shuibo; TANG Houjun; HAN Zhengzhi; ZHANG Yong

    2006-01-01

    Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented via support vector machines (SVMs). The feasibility of applying SVMs to steady-state tyre modelling is investigated by comparison with three-layer backpropagation(BP) neural network at pure slip and combined slip. The results indicate SVMs outperform the BP neural network in modelling the tyre characteristics with better generalization performance. The SVMs-tyre is implemented in 8-DOF vehicle model for vehicle dynamics simulation by means of the PAC 2002 Magic Formula as reference. The SVMs-tyre can be a competitive and accurate method to model a tyre for vehicle dynamics simulation.

  7. SENSITIVITY ANALYSIS FOR ROLLING PROCESS BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    Huang Yanwei; Wu Tihua; Zhao Jingyi; Wang Yiqun

    2005-01-01

    A method for the calculation of the sensitivity factors of the rolling process has been obtained by differentiating the roll force model based on support vector machine. It can eliminate the algebraic loop of the analytical model of the rolling process. The simulations in the first stand of five stand cold tandem rolling mill indicate that the calculation for sensitivities by this proposed method can obtain a good accuracy, and an appropriate adjustment on the control variables determined directly by the sensitivity has an excellent compensation accuracy. Moreover, the roll gap has larger effect on the exit thickness than both front tension and back tension, and it is more efficient to select the roll gap as the controlvariable of the thickness control system in the first stand.

  8. High stability vector-based direct power control for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes an improved vector-based direct power control (DPC) strategy for the doubly-fed induction generator (DFIG)-based wind energy conversion system. Based on the small signal model, the proposed DPC improves the stability of the DFIG, and avoids the DFIG operating in the marginal...

  9. Molecular bases of proliferation of Francisella tularensis in Arthropod vectors

    OpenAIRE

    Asare, Rexford; Akimana, Christine; Jones, Snake; Kwaik, Yousef Abu

    2010-01-01

    Arthropod vectors are important vehicles for transmission of Francisella tularensis between mammals, but very little is known about the F. tularensis-arthropod vector interaction. Drosophila melanogaster has been recently developed as an arthropod vector model for F. tularensis. We have shown that intracellular trafficking of F. tularensis within human monocytes-derived macrophages and D. melanogaster-derived S2 cells is very similar. Within both evolutionarily distant host cells, the Francis...

  10. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control

    DEFF Research Database (Denmark)

    Sorensen, Maria R; Holst, Peter J; Pircher, Hanspeter;

    2009-01-01

    Antigen-specific immunotherapy is an attractive strategy for cancer control. In the context of antiviral vaccines, adenoviral vectors have emerged as a favorable means for immunization. Therefore, we chose a strategy combining use of these vectors with another successful approach, namely linkage of...... the vaccine antigen to invariant chain (Ii). To evaluate this strategy we used a mouse model, in which an immunodominant epitope (GP33) of the LCMV glycoprotein (GP) represents the tumor-associated neoantigen. Prophylactic vaccination of C57BL/6 mice with a replication-deficient human adenovirus 5...... than vaccination with adenovirus expressing GP alone (Ad-GP), or GP and Ii unlinked (Ad-GP+Ii). Ad-Ii-GP- induced tumor control depended on an improved generation of the tumor-associated neoantigen-specific CD8(+) T-cell response and was independent of CD4(+) T cells. IFN-gamma was shown to be a key...

  11. Tailoring a Combination Preerythrocytic Malaria Vaccine.

    Science.gov (United States)

    Bauza, Karolis; Atcheson, Erwan; Malinauskas, Tomas; Blagborough, Andrew M; Reyes-Sandoval, Arturo

    2015-01-01

    The leading malaria vaccine candidate, RTS,S, based on the Plasmodium falciparum circumsporozoite protein (CSP), will likely be the first publicly adopted malaria vaccine. However, this and other subunit vaccines, such as virus-vectored thrombospondin-related adhesive protein (TRAP), provide only intermediate to low levels of protection. In this study, the Plasmodium berghei homologues of antigens CSP and TRAP are combined. TRAP is delivered using adenovirus- and vaccinia virus-based vectors in a prime-boost regime. Initially, CSP is also delivered using these viral vectors; however, a reduction of anti-CSP antibodies is seen when combined with virus-vectored TRAP, and the combination is no more protective than either subunit vaccine alone. Using an adenovirus-CSP prime, protein-CSP boost regime, however, increases anti-CSP antibody titers by an order of magnitude, which is maintained when combined with virus-vectored TRAP. This combination regime using protein CSP provided 100% protection in C57BL/6 mice compared to no protection using virus-vectored TRAP alone and 40% protection using adenovirus-CSP prime and protein-CSP boost alone. This suggests that a combination of CSP and TRAP subunit vaccines could enhance protection against malaria. PMID:26667840

  12. Human immunodeficiency virus vaccine an update

    Directory of Open Access Journals (Sweden)

    V T Beena

    2013-01-01

    Full Text Available Since the discovery of acquired immuno deficiency syndrome (AIDS in late1980s, the spread of human immunodeficiency virus (HIV has reached pandemic proportions, representing a global developmental and public health threat. Finding of a safe, globally effective and affordable HIV vaccine offers the best hope for the future control of the disease pandemic. Significant progress has been made over the past years in the areas of basic virology, immunology, and pathogenesis of HIV/AIDS and the development of anti-retroviral drugs. However, the search for an HIV vaccine faces formidable scientific challenges related to the high genetic variability of the virus, the lack of immune correlates of protection, limitations with the existing animal models and logistical problems associated with the conduct of multiple clinical trials. Most of the vaccine approaches developed so far aim at inducing cell-mediated immune responses. Multiple vaccine concepts and vaccination strategies have been tested, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines, various prime-boost vaccine combinations and vaccine based on broadly neutralizing human anti-HIV Antibody 2G12. This article reviews the state of the art in HIV vaccine research, summarizes the results obtained so far and discusses the challenges to be met in the development of a successful HIV vaccine.

  13. Need for a safe vaccine against respiratory syncytial virus infection

    Directory of Open Access Journals (Sweden)

    Joo-Young Kim

    2012-09-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of severe respiratory tract illnesses in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for HRSV. Following failure of the initial trial of formalin-inactivated virus particle vaccine, continuous efforts have been made for the development of safe and efficacious vaccines against HRSV. However, several obstacles persist that delay the development of HRSV vaccine, such as the immature immune system of newborn infants and the possible Th2-biased immune responses leading to subsequent vaccine-enhanced diseases. Many HRSV vaccine strategies are currently being developed and evaluated, including live-attenuated viruses, subunit-based, and vector-based candidates. In this review, the current HRSV vaccines are overviewed and the safety issues regarding asthma and vaccine-induced pathology are discussed.

  14. Vector ordinal optimization based multi-objective transmission planning

    International Nuclear Information System (INIS)

    The deregulation of the power industry has resulted in a restructured industry. The integrated power industry has been separated into generation companies, transmission company and distribution companies. Each individual market participant has its own goal of maximizing its profit in power system planning and power system operation. In this paper, the vector ordinal optimization (VOO) theory was applied to solve the multi-objective transmission expansion planning (TEP) problems. The weight-summation of multiple objectives was considered as a single objective. In order to reflect the interests of different market participants and the social benefit, the authors used the Transmission Economic Assessment Methodology (TEAM) to formulate the multi-objective TEP. The VOO solution algorithm was presented and tested based on the TEAM model. Numerical examples were presented to test the proposed VOO based solution algorithm. The 4 indices of the transmission economic assessment methodology were used as the 4 objectives for transmission planning. VOO uses crude models to estimate the indices of the TEAM base multi-objective optimization problem to determine a select subset of schemes to simulate and find solutions which have been termed as good enough. The calculation burden was reduced significantly by using this method. Test results on the modified IEEE 14-bus system show that the VOO is efficient and practical for solving multi-objective TEP problems. The test results show that the proposed VOO approach can find good enough solutions in a short time with less computational burden. 11 refs., 5 tabs., 3 figs., 1 appendix.

  15. DBCSVM: Density Based Clustering Using Support VectorMachines

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Rai

    2012-07-01

    Full Text Available Data categorization is challenging job in a current scenario. The growth rate of a multimedia data are increase day to day in an internet technology. For the better retrieval and efficient searching of a data, a process required for grouping the data. However, data mining can find out helpful implicit information in large databases. To detect the implicit useful information from large databases various data mining techniques are use. Data clustering is an important data mining technique for grouping data sets into different clusters and each cluster having same properties of data. In this paper we have taken image data sets and firstly applying the density based clustering to grouped the images, density based clustering grouped the images according to the nearest feature sets but not grouped outliers, then we used an important super hyperplane classifier support vector machine (SVM which classify the all outlier left from density based clustering. This method improves the efficiency of image grouping and gives better results.

  16. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    Science.gov (United States)

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. PMID:26994964

  17. Gene-based vaccine development for improving animal production in developing countries. Possibilities and constraints

    International Nuclear Information System (INIS)

    For vaccine production, recombinant antigens must be protective. Identifying protective antigens or candidate antigens is an essential precursor to vaccine development. Even when a protective antigen has been identified, cloning of its gene does not lead directly to vaccine development. The fimbrial protein of Dichelobacter nodosus, the agent of foot-rot in ruminants, was known to be protective. Recombinant vaccines against this infection are ineffective if expressed protein subunits are not assembled as mature fimbriae. Antigenic competition between different, but closely related, recombinant antigens limited the use of multivalent vaccines based on this technology. Recombinant antigens may need adjuvants to enhance response. DNA vaccines, potentiated with genes for different cytokines, may replace the need for aggressive adjuvants, and especially where cellular immunity is essential for protection. The expression of antigens from animal pathogens in plants and the demonstration of some immunity to a disease like rinderpest after ingestion of these, suggests an alternative approach to vaccination by injection. Research on disease pathogenesis and the identification of candidate antigens is specific to the disease agent. The definition of expression systems and the formulation of a vaccine for each disease must be followed by research to establish safety and efficacy. Where vaccines are based on unique gene sequences, the intellectual property is likely to be protected by patent. Organizations, licensed to produce recombinant vaccines, expect to recover their costs and to make a profit. The consequence is that genetically-derived vaccines are expensive. The capacity of vaccines to help animal owners of poorer countries depends not only on quality and cost but also on the veterinary infrastructure where they are used. Ensuring the existence of an effective animal health infrastructure in developing countries is as great a challenge for the developed world as

  18. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret.

    Science.gov (United States)

    Rao, Srinivas S; Kong, Wing-Pui; Wei, Chih-Jen; Van Hoeven, Neal; Gorres, J Patrick; Nason, Martha; Andersen, Hanne; Tumpey, Terrence M; Nabel, Gary J

    2010-01-01

    Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge. PMID:20352112

  19. Investigating Stakeholder Attitudes and Opinions on School-Based Human Papillomavirus Vaccination Programs

    Science.gov (United States)

    Nodulman, Jessica A.; Starling, Randall; Kong, Alberta S.; Buller, David B.; Wheeler, Cosette M.; Woodall, W. Gill

    2015-01-01

    Background: In several countries worldwide, school-based human papillomavirus (HPV) vaccination programs have been successful; however, little research has explored US stakeholders' acceptance toward school-based HPV vaccination programs. Methods: A total of 13 focus groups and 12 key informant interviews (N?=?117; 85% females; 66% racial/ethnic…

  20. Efficacy of a Vaccine Based on Protective Antigen and Killed Spores against Experimental Inhalational Anthrax▿ ‡

    OpenAIRE

    Gauthier, Yves P.; Tournier, Jean-Nicolas; Paucod, Jean-Charles; Corre, Jean-Philippe; Mock, Michèle; Goossens, Pierre L.; Vidal, Dominique R.

    2008-01-01

    Protective antigen (PA)-based anthrax vaccines acting on toxins are less effective than live attenuated vaccines, suggesting that additional antigens may contribute to protective immunity. Several reports indicate that capsule or spore-associated antigens may enhance the protection afforded by PA. Addition of formaldehyde-inactivated spores (FIS) to PA (PA-FIS) elicits total protection against cutaneous anthrax. Nevertheless, vaccines that are effective against cutaneous anthrax may not be so...

  1. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining

    OpenAIRE

    Hur, Junguk; Özgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and tit...

  2. Hybrid Support Vector Machines-Based Multi-fault Classification

    Institute of Scientific and Technical Information of China (English)

    GAO Guo-hua; ZHANG Yong-zhong; ZHU Yu; DUAN Guang-huang

    2007-01-01

    Support Vector Machines (SVM) is a new general machine-learning tool based on structural risk minimization principle. This characteristic is very signific ant for the fault diagnostics when the number of fault samples is limited. Considering that SVM theory is originally designed for a two-class classification, a hybrid SVM scheme is proposed for multi-fault classification of rotating machinery in our paper. Two SVM strategies, 1-v-1 (one versus one) and 1-v-r (one versus rest), are respectively adopted at different classification levels. At the parallel classification level, using 1-v-1 strategy, the fault features extracted by various signal analysis methods are transferred into the multiple parallel SVM and the local classification results are obtained. At the serial classification level, these local results values are fused by one serial SVM based on 1-v-r strategy. The hybrid SVM scheme introduced in our paper not only generalizes the performance of signal binary SVMs but improves the precision and reliability of the fault classification results. The actually testing results show the availability suitability of this new method.

  3. Clarification of vaccines: An overview of filter based technology trends and best practices.

    Science.gov (United States)

    Besnard, Lise; Fabre, Virginie; Fettig, Michael; Gousseinov, Elina; Kawakami, Yasuhiro; Laroudie, Nicolas; Scanlan, Claire; Pattnaik, Priyabrata

    2016-01-01

    Vaccines are derived from a variety of sources including tissue extracts, bacterial cells, virus particles, recombinant mammalian, yeast and insect cell produced proteins and nucleic acids. The most common method of vaccine production is based on an initial fermentation process followed by purification. Production of vaccines is a complex process involving many different steps and processes. Selection of the appropriate purification method is critical to achieving desired purity of the final product. Clarification of vaccines is a critical step that strongly impacts product recovery and subsequent downstream purification. There are several technologies that can be applied for vaccine clarification. Selection of a harvesting method and equipment depends on the type of cells, product being harvested, and properties of the process fluids. These techniques include membrane filtration (microfiltration, tangential-flow filtration), centrifugation, and depth filtration (normal flow filtration). Historically vaccine harvest clarification was usually achieved by centrifugation followed by depth filtration. Recently membrane based technologies have gained prominence in vaccine clarification. The increasing use of single-use technologies in upstream processes necessitated a shift in harvest strategies. This review offers a comprehensive view on different membrane based technologies and their application in vaccine clarification, outlines the challenges involved and presents the current state of best practices in the clarification of vaccines. PMID:26657051

  4. Evaluation of a Salmonella vectored vaccine expressing Mycobacterium avium subsp. paratuberculosis antigens against challenge in a goat model.

    Directory of Open Access Journals (Sweden)

    Syed M Faisal

    Full Text Available Johnes disease (JD, caused by Mycobacterium avium subsp paratuberculosis (MAP, occurs worldwide as chronic granulomatous enteritis of domestic and wild ruminants. To develop a cost effective vaccine, in a previous study we constructed an attenuated Salmonella strain that expressed a fusion product made up of partial fragments of MAP antigens (Ag85A, Ag85B and SOD that imparted protection against challenge in a mouse model. In the current study we evaluated the differential immune response and protective efficacy of the Sal-Ag vaccine against challenge in a goat model as compared to the live attenuated vaccine MAP316F. PBMCs from goats vaccinated with Sal-Ag and challenged with MAP generated significantly lower levels of IFN-γ, following in vitro stimulation with either Antigen-mix or PPD jhonin, than PBMC from MAP316F vaccinated animals. Flow cytometric analysis showed the increase in IFN-γ correlated with a significantly higher level of proliferation of CD4, CD8 and γδT cells and an increased expression of CD25 and CD45R0 in MAP316F vaccinated animals as compared to control animals. Evaluation of a range of cytokines involved in Th1, Th2, Treg, and Th17 immune responses by quantitative PCR showed low levels of expression of Th1 (IFN-γ, IL-2, IL-12 and proinflammatory cytokines (IL-6, IL-8, IL-18, TNF-α in the Sal-Ag immunized group. Significant levels of Th2 and anti-inflammatory cytokines transcripts (IL-4, IL-10, IL-13, TGF-β were expressed but their level was low and with a pattern similar to the control group. Over all, Sal-Ag vaccine imparted partial protection that limited colonization in tissues of some animals upon challenge with wild type MAP but not to the level achieved with MAP316F. In conclusion, the data indicates that Sal-Ag vaccine induced only a low level of protective immunity that failed to limit the colonization of MAP in infected animals. Hence the Sal-Ag vaccine needs further refinement to increase its efficacy.

  5. Stable expression of Shigella sonnei form I O-polysaccharide genes recombineered into the chromosome of live Salmonella oral vaccine vector Ty21a.

    Science.gov (United States)

    Dharmasena, Madushini N; Hanisch, Brock W; Wai, Tint T; Kopecko, Dennis J

    2013-04-01

    Live, attenuated Salmonella enterica serovar Typhi strain Ty21a, a licensed oral typhoid fever vaccine, has also been employed for use as a vector to deliver protective antigens of Shigella and other pathogens. Importantly, lipopolysaccharide (LPS) alone has been shown to be a potent antigen for specific protection against shigellosis. We reported previously the plasmid cloning of heterologous LPS biosynthetic genes and the expression in Ty21a of either S. sonnei or of S. dysenteriae 1 LPS's. The resulting plasmids encoding Shigella LPS's were reasonably stable for >50 generations of growth in nonselective media, but still contained an antibiotic resistance marker that is objectionable to vaccine regulatory authorities. Deletion of this antibiotic-resistance marker inexplicably resulted in significant plasmid instability. Thus, we sought a method to insert the large ∼12kb S. sonnei LPS gene region into the chromosome, that would allow for subsequent removal of a selectable marker and would result in 100% genetic stability. Toward this objective, we optimized an existing recombination method to mediate the insertion of a ∼12kb region encoding the S. sonnei LPS genes into the Ty21a genome in a region that is nonfunctional due to mutation. The resulting strain Ty21a-Ss simultaneously expresses both homologous Ty21a and heterologous S. sonnei O-antigens. This chromosomal insert was shown to be 100% genetically stable in vitro and in vivo. Moreover, Ty21a-Ss elicited strong dual anti-LPS serum immune responses and 100% protection in mice against a virulent S. sonnei challenge. This new vaccine candidate, absolutely stable for vaccine manufacture, should provide combined protection against enteric fevers due to Salmonella serovar Typhi as shown previously (and some Paratyphi infections) and against shigellosis due to S. sonnei. PMID:23474241

  6. Design of nanomaterial based systems for novel vaccine development.

    Science.gov (United States)

    Yang, Liu; Li, Wen; Kirberger, Michael; Liao, Wenzhen; Ren, Jiaoyan

    2016-05-26

    With lower cell toxicity and higher specificity, novel vaccines have been greatly developed and applied to emerging infectious and chronic diseases. However, due to problems associated with low immunogenicity and complicated processing steps, the development of novel vaccines has been limited. With the rapid development of bio-technologies and material sciences, nanomaterials are playing essential roles in novel vaccine design. Incorporation of nanomaterials is expected to improve delivery efficiency, to increase immunogenicity, and to reduce the administration dosage. The purpose of this review is to discuss the employment of nanomaterials, including polymeric nanoparticles, liposomes, virus-like particles, peptide amphiphiles micelles, peptide nanofibers and microneedle arrays, in vaccine design. Compared to traditional methods, vaccines made from nanomaterials display many appealing benefits, including precise stimulation of immune responses, effective targeting to certain tissue or cells, and desirable biocompatibility. Current research suggests that nanomaterials may improve our approach to the design and delivery of novel vaccines. PMID:26891972

  7. What you always needed to know about electroporation based DNA vaccines

    DEFF Research Database (Denmark)

    Gothelf, Anita Birgitte; Gehl, Julie

    2012-01-01

    Vaccinations are increasingly used to fight infectious disease, and DNA vaccines offer considerable advantages, including broader possibilities for vaccination and lack of need for cold storage. It has been amply demonstrated, that electroporation augments uptake of DNA in both skin and muscle, and...... it is foreseen that future DNA vaccination may to a large extent be coupled with and dependent upon electroporation based delivery. Understanding the basic science of electroporation and exploiting knowledge obtained on optimization of DNA electrotransfer to muscle and skin, may greatly augment...

  8. Cell culture based production of avian influenza vaccines

    OpenAIRE

    Wielink, van, P.

    2012-01-01

    Vaccination of poultry can be used as a tool to control outbreaks of avian influenza, including that of highly pathogenic H5 and H7 strains. Influenza vaccines are traditionally produced in embryonated chicken eggs. Continuous cell lines have been suggested as an alternative substrate to produce influenza vaccines, as they are more robust and lack the long lead times associated with the production of large quantities of embryonated eggs. In the study that is described in this thesis, the prod...

  9. Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time.

    Science.gov (United States)

    Vemula, Sai V; Amen, Omar; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-12-26

    Reports of human infections with highly pathogenic H5N1 avian influenza viruses in many countries in Asia and Africa with varying case fatality rates highlight the pandemic potential of these viruses. In order to contain a rapidly spreading influenza virus in a pandemic scenario, a vaccine which can induce rapid and robust immune responses, preferably in a single dose, is necessary. Murine beta-defensin 2 (Mbd2), a small molecular weight protein expressed by epithelial cells, has been shown to enhance antigen-specific immune responses by recruiting and activating professional antigen presenting cells to the site of vaccination. This study assessed the potential of Mbd2 to enhance the immunogenicity and protective efficacy of a human adenovirus (HAd)-based vaccine expressing the hemagglutinin (HA) and nucleoprotein (NP) [HAd-HA-NP] of an H5N1 influenza virus. A single inoculation of mice with both HAd-HA-NP and a HAd vector expressing Murine β-defensin 2 (HAd-Mbd2) resulted in significantly higher levels of both humoral and cell-mediated immune responses compared to the groups vaccinated only with HAd-HA-NP. These responses were evident even at day 7 post-immunization. Furthermore, the HAd-HA-NP+HAd-Mbd2-immunized group receiving the lowest vector dose (2 × 10(7)+1 × 10(7)) was completely protected against an rgH5N1 virus challenge on day 7 post-vaccination. These results highlight the potential of Mbd2 as a genetic adjuvant in inducing rapid and robust immune responses to a HAd-based vaccine. PMID:24051000

  10. Optimization of vaccine responses with an E1, E2b, E3 deleted Ad5 vector circumvents pre-existing anti-vector immunity

    OpenAIRE

    Osada, Takuya; Yang, Xiao Yi; Hartman, Zachary C.; Glass, Oliver; Hodges, Bradley L; Niedzwiecki, Donna; Morse, Michael A; Lyerly, H. Kim; Amalfitano, Andrea; Clay, Timothy M.

    2009-01-01

    Recombinant serotype 5 adenovirus (Ad5) vectors lacking E1 expression induce robust immune responses against encoded transgenes in preclinical models, but have muted responses in human trials due to wide spread pre-existing anti-adenovirus immunity. Attempts to circumvent Ad5 specific immunity by using alternative serotypes or modifying capsid components have not yielded profound clinical improvement. To address this issue, we explored a novel alternative strategy, specifically reducing the e...

  11. Progress in Chimeric Vector and Chimeric Gene Based Cardiovascular Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    HU Chun-Song; YOON Young-sup; ISNER Jeffrey M.; LOSORDO Douglas W.

    2003-01-01

    Gene therapy for cardiovascular diseases has developed from preliminary animal experiments to clinical trials. However, vectors and target genes used currently in gene therapy are mainly focused on viral, nonviral vector and single target gene or monogene. Each vector system has a series of advantages and limitations. Chimeric vectors which combine the advantages of viral and nonviral vector,chimeric target genes which combine two or more target genes and novel gene delivery modes are being developed. In this article, we summarized the progress in chimeric vectors and chimeric genes based cardiovascular gene therapy, which including proliferative or occlusive vascular diseases such as atheroslerosis and restenosis, hypertonic vascular disease such as hypertension and cardiac diseases such as myocardium ischemia, dilated cardiomyopathy and heart failure, even heart transplantation. The development of chimeric vector, chimeric gene and their cardiovascular gene therapy is promising.

  12. Exploring the potential of novel multivalent DNA-based vaccines

    OpenAIRE

    Fissolo, Nicolas Miguel

    2005-01-01

    In this dissertation, we exploited the DNA vaccination approach to test in the mouse some aspects relevant for the design of optimal CTL-stimulating, multiepitope vaccines. We have used three different ways to prime multispecific CD8+ T cell responses: 1) We have cloned a polytope DNA vaccine that encodes 10 epitopes binding MHC class I molecules encoded by the K, D or L locus (of H-2d, H-2b and H-2k haplotype mice). Vaccination of different mouse strains showed that Ld-restricted CD8+ T cell...

  13. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-14

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  14. A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

    Directory of Open Access Journals (Sweden)

    Fang Su

    2013-01-01

    Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.

  15. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    Science.gov (United States)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  16. Priori Information Based Support Vector Regression and Its Applications

    Directory of Open Access Journals (Sweden)

    Litao Ma

    2015-01-01

    Full Text Available In order to extract the priori information (PI provided by real monitored values of peak particle velocity (PPV and increase the prediction accuracy of PPV, PI based support vector regression (SVR is established. Firstly, to extract the PI provided by monitored data from the aspect of mathematics, the probability density of PPV is estimated with ε-SVR. Secondly, in order to make full use of the PI about fluctuation of PPV between the maximal value and the minimal value in a certain period of time, probability density estimated with ε-SVR is incorporated into training data, and then the dimensionality of training data is increased. Thirdly, using the training data with a higher dimension, a method of predicting PPV called PI-ε-SVR is proposed. Finally, with the collected values of PPV induced by underwater blasting at Dajin Island in Taishan nuclear power station in China, contrastive experiments are made to show the effectiveness of the proposed method.

  17. Space Vector Based Hybrid PWM Techniques for Reduced Current Ripple

    OpenAIRE

    Narayanan, G.; Zhao, Di; Krishnamurthy, Harish K; Ayyanar, Rajapandian; Ranganathan, VT

    2008-01-01

    This paper investigates certain novel switching sequences involving division of active vector time for space vectorbased pulsewidth modulation (PWM) generation for a voltage source inverter. This paper proposes two new sequences, and identifies all possible sequences, which result in the same average switching frequency as conventional space vector PWM (CSVPWM) at a given sampling frequency. This paper brings out amethod for designing hybrid PWMtechniques involving multiple sequences to reduc...

  18. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    Science.gov (United States)

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines. PMID:25479556

  19. Arthropod vaccines.

    Science.gov (United States)

    Lee, R; Opdebeeck, J P

    1999-03-01

    Antigens located in the midgut of the tick are hidden from the host's immune system. Egg production of ticks can be reduced when ticks are fed on animals vaccinated with midgut antigens of the tick, and a subunit vaccine formulated with the recombinant antigen Bm86 is now available that can reduce the number of ticks infesting cattle grazing on pasture. Midgut antigens used in vaccines against insects that transmit pathogenic organisms to humans have not been as effective in reducing insect fecundity and an alternative approach may be necessary. Transmission-blocking vaccines directed at interfering with the vector-pathogen interaction could result in loss of vector competence and block the spread of disease-causing organisms. PMID:10198800

  20. [Approaches and problems in vaccine development against leishmaniasis].

    Science.gov (United States)

    Allahverdiyev, Adil; Bağirova, Melahat; Cakir Koç, Rabia; Oztel, Olga Nehir; Elçıçek, Serhat; Ateş, Sezen Canım; Karaca, Tuğçe Deniz

    2010-01-01

    Leishmaniasis is a major public health problem of the world and Turkey. Recently there has been increasing interest in vaccine studies among strategies for control of leishmaniasis. Recently the increase of interest in vaccine studies among leishmaniasis control strategies makes the subject more up to date. So the aim of this review is to present information about recent vaccine studies, problems and new strategies for vaccine development studies. There are 3 generations of vaccine against leishmaniasis. First-generation vaccines are killed or live attenuated parasites; second-generation vaccines are recombinant or native antigens and live genetically modified parasites (knock out and suicidal cassettes), third generation vaccines are DNA vaccines. Also vector salivary proteins, dendritic cells and non-pathogenic L. tarentolae have been used as vaccine candidates. However there is still no effective vaccine against leishmaniasis. Since polymer conjugates considerably increase immunogenicity, polymer based vaccine studies have gained importance in recent years. However, there has not been such a study for an antileishmanial vaccine yet. LPG, surface antigen of Leishmania promastigotes, and polymer conjugates may be promising in antileishmanial vaccine studies so we are carrying out a TUBITAK Project on this subject which has been given the number, 1085170SBAG-4007. PMID:20597059

  1. Acute disseminated encephalomyelitis onset: evaluation based on vaccine adverse events reporting systems.

    Directory of Open Access Journals (Sweden)

    Paolo Pellegrino

    Full Text Available OBJECTIVE: To evaluate epidemiological features of post vaccine acute disseminated encephalomyelitis (ADEM by considering data from different pharmacovigilance surveillance systems. METHODS: The Vaccine Adverse Event Reporting System (VAERS database and the EudraVigilance post-authorisation module (EVPM were searched to identify post vaccine ADEM cases. Epidemiological features including sex and related vaccines were analysed. RESULTS: We retrieved 205 and 236 ADEM cases from the EVPM and VAERS databases, respectively, of which 404 were considered for epidemiological analysis following verification and causality assessment. Half of the patients had less than 18 years and with a slight male predominance. The time interval from vaccination to ADEM onset was 2-30 days in 61% of the cases. Vaccine against seasonal flu and human papilloma virus vaccine were those most frequently associated with ADEM, accounting for almost 30% of the total cases. Mean number of reports per year between 2005 and 2012 in VAERS database was 40±21.7, decreasing after 2010 mainly because of a reduction of reports associated with human papilloma virus and Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B vaccines. CONCLUSIONS: This study has a high epidemiological power as it is based on information on adverse events having occurred in over one billion people. It suffers from lack of rigorous case verification due to the weakness intrinsic to the surveillance databases used. At variance with previous reports on a prevalence of ADEM in childhood we demonstrate that it may occur at any age when post vaccination. This study also shows that the diminishing trend in post vaccine ADEM reporting related to Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B and human papilloma virus vaccine groups is most likely not [corrected] due to a decline in vaccine coverage indicative of a reduced attention to this adverse drug reaction.

  2. Acute Disseminated Encephalomyelitis Onset: Evaluation Based on Vaccine Adverse Events Reporting Systems

    Science.gov (United States)

    Perrone, Valentina; Pozzi, Marco; Antoniazzi, Stefania; Clementi, Emilio; Radice, Sonia

    2013-01-01

    Objective To evaluate epidemiological features of post vaccine acute disseminated encephalomyelitis (ADEM) by considering data from different pharmacovigilance surveillance systems. Methods The Vaccine Adverse Event Reporting System (VAERS) database and the EudraVigilance post-authorisation module (EVPM) were searched to identify post vaccine ADEM cases. Epidemiological features including sex and related vaccines were analysed. Results We retrieved 205 and 236 ADEM cases from the EVPM and VAERS databases, respectively, of which 404 were considered for epidemiological analysis following verification and causality assessment. Half of the patients had less than 18 years and with a slight male predominance. The time interval from vaccination to ADEM onset was 2-30 days in 61% of the cases. Vaccine against seasonal flu and human papilloma virus vaccine were those most frequently associated with ADEM, accounting for almost 30% of the total cases. Mean number of reports per year between 2005 and 2012 in VAERS database was 40±21.7, decreasing after 2010 mainly because of a reduction of reports associated with human papilloma virus and Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B vaccines. Conclusions This study has a high epidemiological power as it is based on information on adverse events having occurred in over one billion people. It suffers from lack of rigorous case verification due to the weakness intrinsic to the surveillance databases used. At variance with previous reports on a prevalence of ADEM in childhood we demonstrate that it may occur at any age when post vaccination. This study also shows that the diminishing trend in post vaccine ADEM reporting related to Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B and human papilloma virus vaccine groups is most likely due to a decline in vaccine coverage indicative of a reduced attention to this adverse drug reaction. PMID:24147076

  3. The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response.

    Science.gov (United States)

    Li, Ang; Qin, Lili; Wang, Wenrui; Zhu, Rongrong; Yu, Yongchun; Liu, Hui; Wang, Shilong

    2011-01-01

    Our previous studies have shown that Mg:Al 1:1 layered double hydroxides (LDH(R1)) nanoparticles could be taken up by the MDDCs effectively and had an adjuvant activity for DC maturation. Furthermore, these LDH(R1) nanoparticles could up-regulate the expression of CCR7 and augment the migration of DCs in response to CCL21. In current study, we have evaluated whether LDH(R1) as DNA vaccine delivery carrier can augment the efficacy of DNA vaccine immunization in vivo. Firstly, we found that LDH(R1) was efficient in combining DNA and formed LDH(R1)/DNA complex with an average diameter of about 80-120 nm. Its high transfection efficiency in vivo delivered with a GFP expression plasmid was also observed. After delivery of pcDNA(3)-OVA/LDH(R1) complex by intradermal immunization in C57BL/6 mice, the LDH(R1) induced an enhanced serum antibody response much greater than naked DNA vaccine. Using B16-OVA melanoma as tumor model, we demonstrated that pcDNA(3)-OVA/LDH(R1) complex enhanced immune priming and protection from tumor challenge in vivo. Furthermore, we showed that LDH(R1) induced dramatically more effective CTL activation and skewed T helper polarization to Th1. Collectively, these findings demonstrate that this LDH(R1)/DNA plasmid complex should be a new and promising way in vaccination against tumor. PMID:20934217

  4. Space vector-based analysis of overmodulation in triangle-comparison based PWM for voltage source inverter

    OpenAIRE

    Modi, Manoj Kumar; Venugopal, S.; Narayanan, G.

    2013-01-01

    The equivalence of triangle-comparison-based pulse width modulation (TCPWM) and space vector based PWM (SVPWM) during linear modulation is well-known. This paper analyses triangle-comparison based PWM techniques (TCPWM) such as sine-triangle PWM (SPWM) and common-mode voltage injection PWM during overmodulation from a space vector point of view. The average voltage vector produced by TCPWM during overmodulation is studied in the stationary (a-b) reference frame. This is compared and contraste...

  5. Conservative rigid body dynamics by convected base vectors with implicit constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2014-01-01

    of the base vectors. Orthogonality and unit length of the base vectors are imposed by constraining the equivalent Green strain components, and the kinetic energy is represented corresponding to rigid body motion. The equations of motion are obtained via Hamilton’s equations including the zero......A conservative time integration formulation is developed for rigid bodies based on a convected set of orthonormal base vectors. The base vectors are represented in terms of their absolute coordinates, and thus the formulation makes use of three translation components, plus nine components......-strain conditions as well as external constraints via Lagrange multipliers. Subsequently, the Lagrange multipliers associated with the internal zero-strain constraints are eliminated by use of a set of orthogonality conditions between the generalized displacements and the momentum vector, leaving a set...

  6. Vaccines based on the cell surface carbohydrates of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Jones Christopher

    2005-01-01

    Full Text Available Glycoconjugate vaccines, in which a cell surface carbohydrate from a micro-organism is covalently attached to an appropriate carrier protein are proving to be the most effective means to generate protective immune responses to prevent a wide range of diseases. The technology appears to be generic and applicable to a wide range of pathogens, as long as antibodies against surface carbohydrates help protect against infection. Three such vaccines, against Haemophilus influenzae type b, Neisseria meningitidis Group C and seven serotypes of Streptococcus pneumoniae, have already been licensed and many others are in development. This article discusses the rationale for the development and use of glycoconjugate vaccines, the mechanisms by which they elicit T cell-dependent immune responses and the implications of this for vaccine development, the role of physicochemical methods in the characterisation and quality control of these vaccines, and the novel products which are under development.

  7. Developing plant-based vaccines against neglected tropical diseases: where are we?

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Govea-Alonso, Dania O; Monreal-Escalante, Elizabeth; Fragoso, Gladis; Sciutto, Edda

    2012-12-17

    Neglected tropical diseases (NTDs) impair the lives of 1 billion people worldwide, and threaten the health of millions more. Although vaccine candidates have been proposed to prevent some NTDs, no vaccine is available at the market yet. Vaccines against NTDs should be low-cost and needle-free to reduce the logistic cost of their administration. Plant-based vaccines meet both requirements: plant systems allow antigen production at low cost, and also yield an optimal delivery vehicle that prevents or delays digestive hydrolysis of vaccine antigens. This review covers recent reports on the development of plant-based vaccines against NTDs. Efforts conducted by a number of research groups to develop vaccines as a mean to fight rabies, cysticercosis, dengue, and helminthiasis are emphasized. Future perspectives are identified, such as the need to develop vaccination models for more than ten pathologies through a plant-based biotechnological approach. Current limitations on the method are also noted, and molecular approaches that might allow us to address such limitations are discussed. PMID:23142588

  8. Protective efficacy of a human endogenous retrovirus envelope-coated, nonreplicable, baculovirus-based hemagglutin vaccine against pandemic influenza H1N1 2009.

    Science.gov (United States)

    Choi, Jae-Yoo; Gwon, Yong-Dae; Kim, Jeong-Ki; Cho, Yeon-Dong; Heo, Yoon-Ki; Cho, Han-Sam; Choi, Tae-Jin; Poo, Ha-Ryoung; Oh, Yu-Kyoung; Kim, Young Bong

    2013-01-01

    Despite the advantages of DNA vaccines, overcoming their lower efficacy relative to that of conventional vaccines remains a challenge. Here, we constructed a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus-based HA vaccine against swine influenza A/California/04/2009(H1N1) hemagglutin (HA) (AcHERV-sH1N1-HA) as an alternative to conventional vaccines and evaluated its efficacy in two strains of mice, BALB/c and C57BL/6. A commercially available, killed virus vaccine was used as a positive control. Mice were intramuscularly administered AcHERV-sH1N1-HA or the commercial vaccine and subsequently given two booster injections. Compared with the commercial vaccine, AcHERV-sH1N1-HA induced significantly higher levels of cellular immune responses in both BALB/c and C57BL/6 mice. Unlike cellular immune responses, humoral immune responses depended on the strain of mice. Following immunization with AcHERV-sH1N1-HA, C57BL/6 mice showed HA-specific IgG titers 10- to 100-fold lower than those of BALB/c mice. In line with the different levels of humoral immune responses, the survival of immunized mice after intranasal challenge with sH1N1 virus (A/California/04/2009) depended on the strain. After challenge with 10-times the median lethal dose (MLD50) of sH1N1 virus, 100% of BALB/c mice immunized with the commercial vaccine or AcHERV-sH1N1-HA survived. In contrast, C57BL/6 mice immunized with AcHERV-sH1N1-HA or the commercial vaccine showed 60% and 70% survival respectively, after challenge with sH1N1 virus. In all mice, virus titers and results of histological analyses of lung tissues were consistent with the survival data. Our results indicate the importance of humoral immune response as a major defense system against influenza viral infection. Moreover, the complete survival of BALB/c mice immunized with AcHERV-sH1N1-HA after challenge with sH1N1 virus suggests the potential of baculoviral vector-based vaccines to achieve an efficacy comparable to

  9. Protective efficacy of a human endogenous retrovirus envelope-coated, nonreplicable, baculovirus-based hemagglutin vaccine against pandemic influenza H1N1 2009.

    Directory of Open Access Journals (Sweden)

    Jae-Yoo Choi

    Full Text Available Despite the advantages of DNA vaccines, overcoming their lower efficacy relative to that of conventional vaccines remains a challenge. Here, we constructed a human endogenous retrovirus (HERV envelope-coated, nonreplicable, baculovirus-based HA vaccine against swine influenza A/California/04/2009(H1N1 hemagglutin (HA (AcHERV-sH1N1-HA as an alternative to conventional vaccines and evaluated its efficacy in two strains of mice, BALB/c and C57BL/6. A commercially available, killed virus vaccine was used as a positive control. Mice were intramuscularly administered AcHERV-sH1N1-HA or the commercial vaccine and subsequently given two booster injections. Compared with the commercial vaccine, AcHERV-sH1N1-HA induced significantly higher levels of cellular immune responses in both BALB/c and C57BL/6 mice. Unlike cellular immune responses, humoral immune responses depended on the strain of mice. Following immunization with AcHERV-sH1N1-HA, C57BL/6 mice showed HA-specific IgG titers 10- to 100-fold lower than those of BALB/c mice. In line with the different levels of humoral immune responses, the survival of immunized mice after intranasal challenge with sH1N1 virus (A/California/04/2009 depended on the strain. After challenge with 10-times the median lethal dose (MLD50 of sH1N1 virus, 100% of BALB/c mice immunized with the commercial vaccine or AcHERV-sH1N1-HA survived. In contrast, C57BL/6 mice immunized with AcHERV-sH1N1-HA or the commercial vaccine showed 60% and 70% survival respectively, after challenge with sH1N1 virus. In all mice, virus titers and results of histological analyses of lung tissues were consistent with the survival data. Our results indicate the importance of humoral immune response as a major defense system against influenza viral infection. Moreover, the complete survival of BALB/c mice immunized with AcHERV-sH1N1-HA after challenge with sH1N1 virus suggests the potential of baculoviral vector-based vaccines to achieve an efficacy

  10. Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac.

    Science.gov (United States)

    Valle, Manuel Rodriguez; Mèndez, Luis; Valdez, Mario; Redondo, Miguel; Espinosa, Carlos Montero; Vargas, Milagro; Cruz, Ricardo Lleonart; Barrios, Humberto Perez; Seoane, Guillermo; Ramirez, Emerio Serrano; Boue, Oscar; Vigil, Jorge Lodos; Machado, Héctor; Nordelo, Carlos Borroto; Piñeiro, Marisdania Joglar

    2004-01-01

    Boophilus microplus has developed resistance against a range of chemical acaricides which has stimulated the development of alternative methods such as vaccination against ticks. In Cuba, the Bm86-based recombinant vaccine Gavac has been successfully used in a number of controlled laboratory and field trials in cattle against B. microplus. In this paper, we have evaluated Gavac in a large scale field trial wherein 588,573 dairy cattle were vaccinated with the aim to reduce the number of acaricidal treatments. It was found that the number of acaricidal treatments could be reduced by 87% over a period of 8 years (1995--2003). Prior to the introduction of the vaccine, 54 clinical cases of babesiosis and six fatal cases were reported per 1000 animals. Six years later, the incidence of babesiosis was reduced to 1.9 cases per 1000 cattle and mortality reduced to 0.18 per 1000. The national consumption of acaricides in Cuba could be reduced by 82% after the implementation of the integrated anti-B. microplus control program. PMID:15651533

  11. Agent-based modeling of malaria vectors: the importance of spatial simulation

    OpenAIRE

    Bomblies, Arne

    2014-01-01

    Background The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as “agents” in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. Methods In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simul...

  12. Immunogenicity of multi-epitope-based vaccine candidates administered with the adjuvant Gp96 against rabies.

    Science.gov (United States)

    Niu, Yange; Liu, Ye; Yang, Limin; Qu, Hongren; Zhao, Jingyi; Hu, Rongliang; Li, Jing; Liu, Wenjun

    2016-04-01

    Rabies, a zoonotic disease, causes > 55,000 human deaths globally and results in at least 500 million dollars in losses every year. The currently available rabies vaccines are mainly inactivated and attenuated vaccines, which have been linked with clinical diseases in animals. Thus, a rabies vaccine with high safety and efficacy is urgently needed. Peptide vaccines are known for their low cost, simple production procedures and high safety. Therefore, in this study, we examined the efficacy of multi-epitope-based vaccine candidates against rabies virus. The ability of various peptides to induce epitope-specific responses was examined, and the two peptides that possessed the highest antigenicity and conservation, i.e., AR16 and hPAB, were coated with adjuvant canine-Gp96 and used to prepare vaccines. The peptides were prepared as an emulsion of oil in water (O/W) to create three batches of bivalent vaccine products. The vaccine candidates possessed high safety. Virus neutralizing antibodies were detected on the day 14 after the first immunization in mice and beagles, reaching 5-6 IU/mL in mice and 7-9 IU/mL in beagles by day 28. The protective efficacy of the vaccine candidates was about 70%-80% in mice challenged by a virulent strain of rabies virus. Thus, a novel multi-epitope-based rabies vaccine with Gp96 as an adjuvant was developed and validated in mice and dogs. Our results suggest that synthetic peptides hold promise for the development of novel vaccines against rabies. PMID:27068655

  13. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Directory of Open Access Journals (Sweden)

    Dolores Rodríguez

    Full Text Available With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs carrying the CD8(+ T cell epitope (SYVPSAEQI of the circumsporozoite (CS protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS, and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV vectors from the Western Reserve (WR and modified virus Ankara (MVA strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  14. A Vector-based Cellular Automata Model for Simulating Urban Land Use Change

    Institute of Scientific and Technical Information of China (English)

    LU Yi; CAO Min; ZHANG Lei

    2015-01-01

    Cellular Automata (CA) is widely used for the simulation of land use changes.This study applied a vector-based CA model to simulate land use change in order to minimize or eliminate the scale sensitivity in traditional raster-based CA model.The cells of vector-based CA model are presented according to the shapes and attributes of geographic entities,and the transition rules of vector-based CA model are improved by taking spatial variables of the study area into consideration.The vector-based CA model is applied to simulate land use changes in downtown of Qidong City,Jiangsu Province,China and its validation is confirmed by the methods of visual assessment and spatial accuracy.The simulation result of vector-based CA model reveals that nearly 75% of newly increased urban cells are located in the northwest and southwest parts of the study area from 2002 to 2007,which is in consistent with real land use map.In addition,the simulation results of the vector-based and raster-based CA models are compared to real land use data and their spatial accuracies are found to be 84.0% and 81.9%,respectively.In conclusion,results from this study indicate that the vector-based CA model is a practical and applicable method for the simulation of urbanization processes.

  15. Vaccines and immunization strategies for dengue prevention.

    Science.gov (United States)

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  16. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins

    Science.gov (United States)

    WU, JIE; CHEN, KE-DA; GAO, MENG; CHEN, GANG; JIN, SU-FENG; ZHUANG, FANG-CHENG; WU, XIAO-HONG; JIANG, YUN-SHUI; LI, JIAN-BO

    2015-01-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development. PMID:25780403

  17. Genetic vaccination against acute viral disease

    OpenAIRE

    Fleeton, Marina N

    1999-01-01

    This thesis describes the development of recombinant vaccines based on the Semliki Forest virus (SFV) expression system. Immunisation of mice with recombinant virus particles, a layered DNA/RNA plasmid vector, and recombinant self-replicating RNA were carried out and the protective effect of these recombinant vaccines against viral challenge were examined. The construction of a full-length infectious clone formed the basis for the SFV expression system which has previous...

  18. Rabies virus-based vaccines elicit neutralizing antibodies, poly-functional CD8+ T cell, and protect rhesus macaques from AIDS-like disease after SIV(mac251) challenge.

    Science.gov (United States)

    Faul, Elizabeth J; Aye, Pyone P; Papaneri, Amy B; Pahar, Bapi; McGettigan, James P; Schiro, Faith; Chervoneva, Inna; Montefiori, David C; Lackner, Andrew A; Schnell, Matthias J

    2009-12-11

    Highly attenuated rabies virus (RV) vaccine vectors were evaluated for their ability to protect against highly pathogenic SIV(mac251) challenge. Mamu-A*01 negative rhesus macaques were immunized in groups of four with either: RV expressing SIV(mac239)-GagPol, a combination of RV expressing SIV(mac239)-Env and RV expressing SIV(mac239)-GagPol, or with empty RV vectors. Eight weeks later animals received a booster immunization with a heterologous RV expressing the same antigens. At 12 weeks post-boost, all animals were challenged intravenously with 100 TCID(50) of pathogenic SIV(mac251-CX). Immunized macaques in both vaccine groups had 1.3-1.6-log-fold decrease in viral set point compared to control animals. The GagPol/Env immunized animals also had a significantly lower peak viral load. When compared to control animals following challenge, vaccinated macaques had a more rapid induction of SIV(mac251) neutralizing antibodies and of CD8(+) T cell responses to various SIV epitopes. Moreover, vaccinated macaques better maintained peripheral memory CD4(+) T cells and were able to mount a poly-functional CD8(+) T cell response in the mucosa. These findings indicate promise for RV-based vectors and have important implications for the development of an efficacious HIV vaccine. PMID:19879223

  19. Rigid Body Time Integration by Convected Base Vectors with Implicit Constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2013-01-01

    of the kinetic energy used in the present formulation is deliberately chosen to correspond to a rigid body rotation, and the orthonormality constraints are introduced via the equivalent Green strain components of the base vectors. The particular form of the extended inertia tensor used here implies a......A conservative time integration algorithm based on a convected set of orthonormal base vectors is presented. The equations of motion are derived from an extended Hamiltonian formulation, combining the components of the three base vectors with a set of orthonormality constraints. The particular form...

  20. A Novel Coding Method Based on Fuzzy Vector Quantization for Noised Image

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically.

  1. ELABORATION OF A VECTOR BASED SEMANTIC CLASSIFICATION OVER THE WORDS AND NOTIONS OF THE NATURAL LANGUAGE

    OpenAIRE

    Safonov, K.; Lichargin, D.

    2009-01-01

    The problem of vector-based semantic classification over the words and notions of the natural language is discussed. A set of generative grammar rules is offered for generating the semantic classification vector. Examples of the classification application and a theorem of optional formal classification incompleteness are presented. The principles of assigning the meaningful phrases functions over the classification word groups are analyzed.

  2. New Iterative Learning Control Algorithms Based on Vector Plots Analysis1)

    Institute of Scientific and Technical Information of China (English)

    XIESheng-Li; TIANSen-Ping; XIEZhen-Dong

    2004-01-01

    Based on vector plots analysis, this paper researches the geometric frame of iterativelearning control method. New structure of iterative learning algorithms is obtained by analyzingthe vector plots of some general algorithms. The structure of the new algorithm is different fromthose of the present algorithms. It is of faster convergence speed and higher accuracy. Simulationspresented here illustrate the effectiveness and advantage of the new algorithm.

  3. Classification of Regional Ionospheric Disturbances Based on Support Vector Machines

    Science.gov (United States)

    Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil

    2016-07-01

    Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification

  4. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced. PMID:18411943

  5. Japanese encephalitis and vaccines: past and future prospects.

    Science.gov (United States)

    Paulke-Korinek, Maria; Kollaritsch, Herwig

    2008-01-01

    The Japanese encephalitis virus is the main cause of encephalitis in Asia. The vectors are mosquitoes. Every year 30,000 to 50,000 cases and 10,000 deaths from Japanese encephalitis are reported, and estimates go up to 100,000 cases. No effective antiviral therapy exists to treat this flavivirus infection. For prophylaxis vaccines are available. In Asia numerous vaccines are used regionally. The production of the only vaccine that was internationally licensed, JE-VAX, was ceased in 2005. Therefore a shortage of Japanese encephalitis vaccines might occur before new generation vaccines based on cell cultures will be available. An inactivated Vero cell-derived vaccine based on the Beijing-1 strain is developed in Japan by Biken and Kaketsuken. Another promising vaccine candidate is the inactivated whole-virus vaccine IC-51 (Strain SA14-14-2) by the Austrian company Intercell. The third interesting vaccine candidate being in the late stages of clinical trials is the genetically engineered, chimeric and live-attenuated vaccine ChimeriVaxtrade mark-JE by the UK/USA-based company Acambis. The new vaccines in the pipeline show promising results and market licensures are expected in the near future. Showing excellent tolerability, these vaccines will not only be used in the population living in endemic areas where the risk of infection is extremely high, but also for travellers and military personnel. PMID:19066766

  6. A commercial PCV2a-based vaccine significantly reduces PCV2b transmission in experimental conditions.

    Science.gov (United States)

    Rose, N; Andraud, M; Bigault, L; Jestin, A; Grasland, B

    2016-07-19

    Transmission characteristics of PCV2 have been compared between vaccinated and non-vaccinated pigs in experimental conditions. Twenty-four Specific Pathogen Free (SPF) piglets, vaccinated against PCV2 at 3weeks of age (PCV2a recombinant CAP protein-based vaccine), were inoculated at 15days post-vaccination with a PCV2b inoculum (6⋅10(5) TCID50), and put in contact with 24 vaccinated SPF piglets during 42days post-inoculation. Those piglets were shared in six replicates of a contact trial involving 4 inoculated piglets mingled with 4 susceptible SPF piglets. Two replicates of a similar contact trial were made with non-vaccinated pigs. Non vaccinated animals received a placebo at vaccination time and were inoculated the same way and at the same time as the vaccinated group. All the animals were monitored twice weekly using quantitative real-time PCR and ELISA for serology until 42days post-inoculation. The frequency of infection and the PCV2 genome load in sera of the vaccinated pigs were significantly reduced compared to the non-vaccinated animals. The duration of infectiousness was significantly different between vaccinated and non-vaccinated groups (16.6days [14.7;18.4] and 26.6days [22.9;30.4] respectively). The transmission rate was also considerably decreased in vaccinated pigs (β=0.09 [0.05-0.14] compared to β=0.19 [0.11-0.32] in non-vaccinated pigs). This led to an estimated reproduction ratio of 1.5 [95% CI 0.8 - 2.2] in vaccinated animals versus 5.1 [95% CI 2.5 - 8.2] in non-vaccinated pigs when merging data of this experiment with previous trials carried out in same conditions. PMID:27318416

  7. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FM...

  8. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac.

    Science.gov (United States)

    de la Fuente, J; Rodríguez, M; Montero, C; Redondo, M; García-García, J C; Méndez, L; Serrano, E; Valdés, M; Enríquez, A; Canales, M; Ramos, E; Boué, O; Machado, H; Lleonart, R

    1999-11-01

    The control of tick infestations and the transmission of tick-borne diseases remain a challenge for the cattle industry in tropical and subtropical areas of the world. Traditional control methods have been only partially successful and the parasites continue to result in significant losses for the cattle industry. Recently, vaccines containing the recombinant B. microplus gut antigen Bm86 have been developed. Our vaccine formulation (Gavac, Heber Biotec S.A., Havana, Cuba) has been registered and is commercially available in Cuba, Colombia, Dominican Republic, Brazil and Mexico. In controlled pen trials, Gavac has been effective for the control of artificial infestations of B. annulatus, B. decoloratus and chemical-sensitive and resistant B. microplus strains from Australia, Africa, America and Iran. In controlled field trials in Cuba, Brazil, Argentina and Mexico, Gavac has shown a 55-100% efficacy in the control of B. microplus infestations in grazing cattle 12-36 weeks after the first vaccination. Field trials under production conditions have been conducted in Cuba, Colombia, Brazil and Mexico in pure and cross-bred cattle herds. The application of Gavac has increased the time between acaricide treatments by an average of 32 /-21 days (P = 0.0005) resulting in important savings for the cattle industry. In Cuba, a cost-effectiveness analysis was conducted in more than 260000 animals. The cost-effectiveness analysis showed a 60% reduction in the number of acaricide treatments, together with the control of tick infestations and transmission of babesiosis, which resulted in savings of 23.4 dollars animal(-1) year (-1). These results clearly demonstrate the advantage of vaccination and support the application of Gavac for the control of Boophilus spp. infestations. PMID:10596754

  9. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals

    Directory of Open Access Journals (Sweden)

    Pit Sze Liew

    2015-01-01

    Full Text Available Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.

  10. Replication-Deficient Rabies Virus–Based Vaccines Are Safe and Immunogenic in Mice and Nonhuman Primates

    OpenAIRE

    Cenna, Jonathan; Hunter, Meredith; Tan, Gene S.; Papaneri, Amy B.; Ribka, Erin P; Schnell, Matthias J.; Marx, Preston A.; McGettigan, James P.

    2009-01-01

    Although current postexposure prophylaxis rabies virus (RV) vaccines are effective, ~40,000–70,000 rabies-related deaths are reported annually worldwide. The development of effective formulations requiring only 1–2 applications would significantly reduce mortality. We assessed in mice and nonhuman primates the efficacy of replication-deficient RV vaccine vectors that lack either the matrix (M) or phosphoprotein (P) gene. A single dose of M gene–deficient RV induced a more rapid and efficient ...

  11. Establishment of a Bovine Herpesvirus 4 based vector expressing a secreted form of the Bovine Viral Diarrhoea Virus structural glycoprotein E2 for immunization purposes

    Directory of Open Access Journals (Sweden)

    Donofrio Gaetano

    2007-10-01

    Full Text Available Abstract Background The biological characteristics of BoHV-4 make it a good candidate as a gene delivery vector for vaccination purposes. These characteristics include little or no pathogenicity, unlikely oncogenicity, the capability to accommodate large amounts of foreign genetic material, the ability to infect several cell types from different animal species, and the ability to maintain transgene expression in both undifferentiated and differentiated cells. Results A recombinant bovine herpesvirus 4 (BoHV-4CMV-IgKE2-14ΔTK expressing an enhanced secreted form of the bovine viral diarrhea virus (BVDV structural glycoprotein E2 (gE2-14, obtained by the removal of the putative transmembrane domain and addition of a 14 amino acids peptide at its carboxyl terminal and an immunoglobulin K signal peptide to the amino terminal, was successfully constructed using a Recombineering (recombination -mediated genetic engineering approach on BoHV-4 cloned as bacterial artificial chromosome. The galactokinase – based recombineering system was modified by the introduction of a kanamycin expression cassette and a kanamycin selection step that allowed a significant reduction of the untargeted background clones. BoHV-4CMV-IgKE2-14ΔTK infected cell lines highly expressed gE2-14, which maintained native antigenic properties in a serum neutralization inhibition test. When rabbits and sheep were immunized with BoHV-4CMV-IgKE2-14ΔTK, high levels of serum neutralized antibodies against BVDV were generated. Conclusion This work highlights the engineerization of BoHV-4 genome as a vector for vaccine purposes and may provide the basis for BVDV vaccination exploiting the BoHV-4- based vector that delivers an improved secreted version of the BVDV structural glycoprotein E2.

  12. Research on Matrix Converter Based on Space Vector Modulation

    Directory of Open Access Journals (Sweden)

    Zhanjun Qiao

    2013-09-01

    Full Text Available In this study, we study the control strategy for matrix converter. Through absorbing ideas about virtual rectification put forward by P.D.Ziogas, the common control idea of AC-DC-AC convertor is introduced into control of matrix converter; SPWM modulation strategy and space vector modulation strategy for matrix converter are studied respectively. In terms of SPWM modulation strategy, it has some advantages: for example, main circuit structure is simple; control program is simple; control switch function does not need complex mathematical derivation and calculation. In terms of space vector modulation strategy, it has advantages as follows: the physical conception is clear; input power factor can be adjusted; output voltage and current sine degree are high. In this chapter, an in-depth analysis will be conducted for this control method

  13. Parental education and text messaging reminders as effective community based tools to increase HPV vaccination rates among Mexican American children

    Directory of Open Access Journals (Sweden)

    Abraham Aragones

    2015-01-01

    Conclusions: Parental text messaging plus education, implemented in a community based setting, was strongly associated with vaccine completion rates among vaccine-eligible Mexican American children. Although pilot in nature, the study achieved an 88% series completion rate in the children of those who received the text messages, significantly higher than current vaccination levels.

  14. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  15. Wireless Localization Based on RSSI Fingerprint Feature Vector

    OpenAIRE

    Aiguo Zhang; Ying Yuan; Qunyong Wu; Shunzhi Zhu; Jian Deng

    2015-01-01

    RSSI wireless signal is a reference information that is widely used in indoor positioning. However, due to the wireless multipath influence, the value of the received RSSI will have large fluctuations and cause large distance error when RSSI is fitted to distance. But experimental data showed that, being affected by the combined factors of the environment, the received RSSI feature vector which is formed by lots of RSSI values from different APs is a certain stability. Therefore, the paper pr...

  16. Window-Based Example Selection in Learning Vector Quantization

    OpenAIRE

    Witoelar, A. W.; Ghosh, Anarta; De Vries, J.J.G.; Hammer, B; Biehl, M.

    2010-01-01

    A variety of modifications have been employed to learning vector quantization (LVQ) algorithms using either crisp or soft windows for selection of data. Although these schemes have been shown in practice to improve performance, a theoretical study on the influence of windows has so far been limited. Here we rigorously analyze the influence of windows in a controlled environment of gaussian mixtures in high dimensions. Concepts from statistical physics and the theory of online learning allow a...

  17. Research on Matrix Converter Based on Space Vector Modulation

    OpenAIRE

    Zhanjun Qiao; Wei Xu

    2013-01-01

    In this study, we study the control strategy for matrix converter. Through absorbing ideas about virtual rectification put forward by P.D.Ziogas, the common control idea of AC-DC-AC convertor is introduced into control of matrix converter; SPWM modulation strategy and space vector modulation strategy for matrix converter are studied respectively. In terms of SPWM modulation strategy, it has some advantages: for example, main circuit structure is simple; control program is simple; control swit...

  18. Rigid Body Time Integration by Convected Base Vectors with Implicit Constraints

    OpenAIRE

    Krenk, Steen; Nielsen, Martin Bjerre

    2013-01-01

    A conservative time integration algorithm based on a convected set of orthonormal base vectors is presented. The equations of motion are derived from an extended Hamiltonian formulation, combining the components of the three base vectors with a set of orthonormality constraints. The particular form of the kinetic energy used in the present formulation is deliberately chosen to correspond to a rigid body rotation, and the orthonormality constraints are introduced via the equivalent Green strai...

  19. Design, synthesis, and immunologic evaluation of vaccine adjuvant conjugates based on QS-21 and tucaresol

    OpenAIRE

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Gardner, Jeffrey R.; LIVINGSTON, PHILIP O.; Ragupathi, Govind; Tan, Derek S.; Gin, David Y.

    2014-01-01

    Immunoadjuvants are used to potentiate the activity of modern subunit vaccines that are based on molecular antigens. An emerging approach involves the combination of multiple adjuvants in a single formulation to achieve optimal vaccine efficacy. Herein, to investigate such potential synergies, we synthesized novel adjuvant conjugates based on the saponin natural product QS-21 and the aldehyde tucaresol via chemoselective acylation of an amine at the terminus of the acyl chain domain in QS sap...

  20. GET POKED: Comparing an Incentive-Based Flu Campaign with Vaccinate-or-Mask Policies to Boost Influenza Vaccination Rates Among Healthcare Workers.

    Science.gov (United States)

    Marwaha, Seema; Lorv, Bailey; Henseleit, Susanne; Iroanyah, Ngozi

    2016-01-01

    The median influenza vaccination rate for Toronto acute care facilities in 2013/14 was only 44%, well below the target rate of 90%. While many Toronto hospitals adopted a vaccinate-or-mask policy, Trillium Health Partners (THP) opted to create a multimodal incentives-based flu campaign entitled GET POKED. This campaign, which required significant additional resourcing, only increased our vaccination rate by 10%. While having some modest success, we believe it is unlikely that non-policy based interventions will efficiently and sustainably raise flu vaccine rates. Vaccinate-or-mask policies, while having some inherent challenges, may be worth exploring as part of THP's larger flu-prevention strategy. PMID:27009712

  1. Chord Recognition Based on Temporal Correlation Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongyang Rao

    2016-05-01

    Full Text Available In this paper, we propose a method called temporal correlation support vector machine (TCSVM for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and the sparse component to contain the vocal signals. Then, we extract a new logarithmic pitch class profile (LPCP feature called enhanced LPCP from the low-rank part. To exploit the temporal correlation among the LPCP features of chords, we propose an improved support vector machine algorithm called TCSVM. We perform this study using the MIREX’09 (Music Information Retrieval Evaluation eXchange Audio Chord Estimation dataset. Furthermore, we conduct comprehensive experiments using different pitch class profile feature vectors to examine the performance of TCSVM. The results of our method are comparable to the state-of-the-art methods that entered the MIREX in 2013 and 2014 for the MIREX’09 Audio Chord Estimation task dataset.

  2. Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition

    OpenAIRE

    Jeroen Coumou; Alex Wagemakers; Trentelman, Jos J.; Nijhof, Ard M; Hovius, Joppe W.

    2015-01-01

    Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme borreliosis and tick borne encephalitis, are on the rise in Europe. Diminishing I. ricinus populations in nature can reduce tick exposure to humans, and one way to do so is by developing an anti-vector vaccine against tick antigens. Currently, there is only one anti-vector vaccine available against ticks, which is a veterinary vaccine based on the tick antigen Bm86 in the gut of Rhipicephalus microplus. Bm86 vaccin...

  3. A novel M2e based flu vaccine formulation for dogs.

    Directory of Open Access Journals (Sweden)

    Denis Leclerc

    Full Text Available BACKGROUND: The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. METHODOLOGY AND PRINCIPAL FINDINGS: The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. CONCLUSIONS AND SIGNIFICANCE: The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs.

  4. A Novel M2e Based Flu Vaccine Formulation for Dogs

    Science.gov (United States)

    Leclerc, Denis; Rivest, Marie; Babin, Cindy; López-Macias, Constantino; Savard, Pierre

    2013-01-01

    Background The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. Methodology and Principal Findings The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV) nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC) purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. Conclusions and Significance The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs. PMID:24098576

  5. Clinical development of Ebola vaccines.

    Science.gov (United States)

    Sridhar, Saranya

    2015-09-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  6. New approaches to the development of virus vaccines for veterinary use.

    Science.gov (United States)

    Yamanouchi, K; Barrett, T; Kai, C

    1998-12-01

    The marked progress in recombinant deoxyribonucleic acid (DNA) technology during the past decade has led to the development of a variety of safe new vaccine vectors which are capable of efficiently expressing foreign immunogens. These have been based on a variety of virus types--poxviruses, herpesviruses and adenoviruses--and have led to the production of many new potential recombinant vaccines. Of these recombinant vaccines, the rabies vaccine, in which the rabies G protein is expressed in a vaccinia vector, has been widely used in the field to prevent the spread of rabies both in Europe and in the United States of America. A recombinant Newcastle disease virus vaccine, using fowlpox virus as the vector to express immunogenic proteins from the Newcastle disease virus, has been licensed as the first commercial recombinant vectored vaccine. Many other recombinant virus vaccines are still at the stage of laboratory or field testing. The most recent breakthrough in vaccinology has been the success with the use of naked DNA as a means of vaccination. This approach has shown great promise in mouse model systems and has now become the most active field in new vaccine development. Molecular redesigning of conventional ribonucleic acid (RNA) viruses to obtain more stable attenuated vaccines was previously possible only for positive-strand RNA viruses, such as poliovirus. However, recent advances in molecular biological techniques have enabled the rescuing of negative-strand viruses from DNA copies of their genomes. This has made it possible to engineer specific changes in the genomes of Rhabdoviridae and Paramyxoviridae, both of which include several viruses of veterinary importance. The authors describe the current progress in the development of vector vaccines, DNA vaccines and vaccines based on engineered positive- and negative-strand RNA virus genomes, with special emphasis on their application to diseases of veterinary importance. PMID:9850535

  7. Gene-based vaccine development for improving animal production in developing countries

    International Nuclear Information System (INIS)

    Full text: The cloning and expression of microbial genes in alternate hosts to enhance production of antigens for animal vaccines against all disease is theoretically achievable. It is essential, however, that antigens expressed in this way are known to be protective. Many years of costly research usually precedes the identification of such antigens or combinations of antigens. Thus, while conventional vaccines based on living, attenuated or inactivated microorganisms may be effective, the protective components contained in them i.e. the candidates for cloning, have yet to be found. The principal protective antigen in vaccines against foot rot of sheep and goats is fimbrial protein of Dichelobacter nodosus. Recombinant vaccines against this infection are ineffective if the protein subunits are not assembled and presented to the host in a manner morphologically indistinguishable from those of the natural fimbriae. Availability of recombinant antigen does not necessarily avoid the need for the use of adjuvants to potentiate response. Oil emulsion vaccines, while enhancing immune response, almost inevitably cause a marked reaction at the site of injection. Livestock owners in developing countries are as likely as those elsewhere to object to these reactions. The need to find an acceptable and effective formulation adds to the cost of recombinant vaccines and their application in countries with limited resources for disease control. Another costly feature of recombinant vaccines has been the patenting of processes involving gene technology and licencing agreements for production under the protection of these patents. In some systems antigenic competition between similar and disparate antigens limits the usefulness of even recombinant antigens that, administered individually, are highly potent. In the case of programs for the control and eventual eradication of footrot in sheep and goats in Nepal this problem was overcome by the prior identification of causal serotypes

  8. Refinement of a DNA based Alzheimer disease epitope vaccine in rabbits

    OpenAIRE

    Ghochikyan, Anahit; Davtyan, Hayk; Petrushina, Irina; Hovakimyan, Armine; Movsesyan, Nina; Davtyan, Arpine; Kiyatkin, Anatoly; Cribbs, David H.; Agadjanyan, Michael G.

    2013-01-01

    We previously demonstrated that our second-generation DNA-based Alzheimer disease (AD) epitope vaccine comprising three copies of a short amyloid-β (Aβ) B cell epitope, Aβ11 fused with the foreign promiscuous Th epitope, PADRE (p3Aβ11-PADRE) was immunogenic in mice. However, since DNA vaccines exhibit poor immunogenicity in large animals and humans, in this study, we sought to improve the immunogenicity of p3Aβ11-PADRE by modifying this vaccine to express protein 3Aβ11-PADRE with a free N-ter...

  9. Progress and challenges in the vaccine-based treatment of head and neck cancers

    Directory of Open Access Journals (Sweden)

    Venuti Aldo

    2009-05-01

    Full Text Available Abstract Head and neck (HN cancer represents one of the most challenging diseases because the mortality remains high despite advances in early diagnosis and treatment. Although vaccine-based approaches for the treatment of advanced squamous cell carcinoma of the head and neck have achieved limited clinical success, advances in cancer immunology provide a strong foundation and powerful new tools to guide current attempts to develop effective cancer vaccines. This article reviews what has to be rather what has been done in the field for the development of future vaccines in HN tumours.

  10. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette;

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced...... in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When...... the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle...

  11. A new method for comparing scanpaths based on vectors and dimensions

    OpenAIRE

    Dewhurst, Richard; Jarodzka, Halszka; Holmqvist, Kenneth; Foulsham, Tom; Nyström, Marcus

    2011-01-01

    Dewhurst, R., Jarodzka, H., Holmqvist, K., Foulsham, T., & Nyström, M. (2011, May). A new method for comparing scanpaths based on vectors and dimensions. Vision Sciences Society 2011, Naples, Florida.

  12. An evidence-based vector control strategy for military deployments: the British Army experience.

    Science.gov (United States)

    Croft, A M; Baker, D; von Bertele, M J

    2001-01-01

    We describe the British Army's current strategy for controlling arthropod vectors of disease during overseas deployments. Military commanders and medical officers have different, but complementary responsibilities in achieving vector control. In this paper we define a hierarchy of evidence-based vector control guidelines. Field guidelines must be based on the best available research evidence, preferably that derived from pragmatic randomised controlled trials (RCTs), and from systematic reviews of trials. Assessing the effectiveness of different vector control measures involves a trade-off between the relative benefits and harm of different technology options. There is compelling scientific evidence that bed nets and screens treated with a pyrethroid insecticide are highly effective in protecting against nocturnally active, anthropophilic arthropods (including ectoparasites), and will reduce the incidence of malaria, leishmaniasis, lymphatic filariasis and Chagas' disease. Etofenprox and deltamethrin are the safest pyrethroids, and permethrin the least safe. Vector control strategies of probable effectiveness are the use of insecticide-treated clothing, the wearing of protective clothing, and the correct use of DEET-based topical insect repellents. Aerosol insecticides are of debatable effectiveness. Other effective vector control measures, of limited usefulness during deployments, include electric fans, mosquito coils/vaporising mats, and smoke. "Biological" vector control measures, and insect buzzers/electrocuters are ineffective. Practical insect avoidance measures, based on an understanding of vector biology, complete the military vector-control arsenal. We conclude that practical insect avoidance measures, combined with pyrethroid-treated nets and clothing, and DEET-based topical repellents, can achieve almost 100% protection against biting arthropods. PMID:11584666

  13. Formulation of 2D Graphene Deformation Based on Chiral-Tube Base Vectors

    International Nuclear Information System (INIS)

    The intrinsic feature of graphene honeycomb lattice is defined by its chiral index (n,m), which can be taken into account when using molecular dynamics. However, how to introduce the index into the continuum model of graphene is still an open problem. The present manuscript adopts the continuum shell model with single director to describe the mechanical behaviors of graphene. In order to consider the intrinsic features of the graphene honeycomb lattice chira index (n,m), the chiral-tube vectors of graphene in real space have been used for construction of reference unit base vectors of the shell model; therefore, the formulations will contain the chiral index automatically, or in an explicit form in physical components. The results are quite useful for future studies of graphene mechanics

  14. Formulation of 2D Graphene Deformation Based on Chiral-Tube Base Vectors

    Directory of Open Access Journals (Sweden)

    Bohua Sun

    2010-01-01

    Full Text Available The intrinsic feature of graphene honeycomb lattice is defined by its chiral index (n,m, which can be taken into account when using molecular dynamics. However, how to introduce the index into the continuum model of graphene is still an open problem. The present manuscript adopts the continuum shell model with single director to describe the mechanical behaviors of graphene. In order to consider the intrinsic features of the graphene honeycomb lattice—chiral index (n,m, the chiral-tube vectors of graphene in real space have been used for construction of reference unit base vectors of the shell model; therefore, the formulations will contain the chiral index automatically, or in an explicit form in physical components. The results are quite useful for future studies of graphene mechanics.

  15. Soft Sensing Based on Hilbert-Huang Transform and Wavelet Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2013-07-01

    Full Text Available At present, much more soft sensing have been widely used in industrial process control to improve the quality of product and assure safety in production. A novel method using  Hilbert-Huang transform(HHT combined with wavelet support vector machine(WSVM is put forward.Firstly the method analyzes the intrinsic mode function (IMF obtained after the empirical mode decomposition (EMD, then extracts IMF energy feature as the input feature vectors of the wavelet support vector machine. Based on the wavelet analysis and conditions of the support vector kernel function, a novel multi-dimension admissible support vector wavelet kernel function is presented, which is a multidimensional wavelet kernel, thus enhancing the generalization ability of the SVM. The proposed method is used to build soft sensing of diesel oil solidifying point. Compared with other two models, the result shows that HHT-WSVM approach has a better prediction and generalization.

  16. Real-time traffic information extraction based on compressed video with interframe motion vector

    Institute of Scientific and Technical Information of China (English)

    黄庆明; 王聪

    2003-01-01

    Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed video with interframe motion vectors for speed, density and flow detection, has been proposed for ex-traction of traffic information under fixed camera setting and well-defined environment. The motion vectors arefirst separated from the compressed video streams, and then filtered to eliminate incorrect and noisy vectors u-sing the well-defined environmental knowledge. By applying the projective transform and using the filtered mo-tion vectors, speed can be calculated from motion vector statistics, density can be estimated using the motionvector occupancy, and flow can be detected using the combination of speed and density. The embodiment of aprototype system for sky camera traffic monitoring using the MPEG video has been implemented, and experi-mental results proved the effectiveness of the method proposed.

  17. Bethe vectors for models based on the super-Yangian $Y(\\mathfrak{gl}(m|n))$

    CERN Document Server

    Pakuliak, S Z; Slavnov, N A

    2016-01-01

    We study Bethe vectors of integrable models based on the super-Yangian $Y(\\mathfrak{gl}(m|n))$. Starting from the super-trace formula, we exhibit recursion relations for these vectors in the case of $Y(\\mathfrak{gl}(2|1))$ and $Y(\\mathfrak{gl}(1|2))$. These recursion relations allow to get explicit expressions for the Bethe vectors. Using an antimorphism of the super-Yangian $Y(\\mathfrak{gl}(m|n))$, we also construct a super-trace formula for dual Bethe vectors, and, for $Y(\\mathfrak{gl}(2|1))$ and $Y(\\mathfrak{gl}(1|2))$ super-Yangians, show recursion relations for them. Again, the latter allow us to get explicit expressions for dual Bethe vectors.

  18. Video Surveillance Application Based on Application Specific Vector Processors

    Czech Academy of Sciences Publication Activity Database

    Bartosinski, Roman; Daněk, Martin; Sýkora, Jaroslav; Kohout, Lukáš; Honzík, P.

    Gières: Electronic Chips & Systems design Initiative, 2012 - (Morawiec, A.; Hinderscheit, J.), s. 248-255 ISBN 978-2-9539987-2-6. ISSN 1966-7116. [Conference on Design & Architectures for Signal & Image Processing . Karlsruhe (DE), 23.10.2012-25.10.2012] R&D Projects: GA MŠk(CZ) 7H10001 Institutional support: RVO:67985556 Keywords : video surveillance * smart camera * custom accelerators * vector processing * FPGA Subject RIV: JC - Computer Hardware ; Software http://library.utia.cas.cz/separaty/2012/ZS/bartosinski-0382184.pdf

  19. Emotional Vector Distance Based Sentiment Analysis of Wakamono Kotoba

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper, we propose a method for estimating emotion in Wakamono Kotoba that were not registered in the system, by using Wakamono Kotoba example sentences as features. The pro- posed method applies Earth Mover's Distance (EMD) to vector of words. As a result of the evaluation ex- periment using 14 440 sentences, higher estimation accuracy is obtained by considering emotional dis- tance between words - an approach that had not been used in the conventional research - than by using only word importance value.

  20. Digital Simulation of Space Vector Modulation Based Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    G.V. Siva Krishna Rao and T.S. Surendra

    2011-04-01

    Full Text Available This study deals with simulation of Space vector modulated inverter fed induction motor drive. The drive system is modeled using matlab simulink and the results are presented. This drive has advantages like reduced harmonics and heating. Fixed AC is converted into DC and this DC is converted into variable voltage and variable frequency AC using SVM inverter. The output of SVM is applied to the stator of induction motor. The simulation results are compared with the analytical results. The FFT analysis shows that the current spectrum has reduced harmonics compared to the conventional system.

  1. Automatic SIMD vectorization of SSA-based control flow graphs

    CERN Document Server

    Karrenberg, Ralf

    2015-01-01

    Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation or video decoding require the same computations to be performed on huge amounts of data. Without WFV, one processor core executes a single instance of a data-parallel function. WFV transforms the function to execute multiple instances at once using SIMD instructions. The author describes an advanced WFV algorithm that includes a v

  2. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  3. Two initial vaccinations with the Bm86-based Gavacplus vaccine against Rhipicephalus (Boophilus microplus induce similar reproductive suppression to three initial vaccinations under production conditions

    Directory of Open Access Journals (Sweden)

    Fernández Erlinda

    2010-09-01

    Full Text Available Abstract Background The cattle tick, Rhipicephalus (Boophilus microplus, affects livestock production in many regions of the world. Up to now, the widespread use of chemical acaricides has led to the selection of acaricide-resistant ticks and to environmental contamination. Gavacplus is a subunit vaccine based on the recombinant Bm86 tick antigen expressed in yeast, capable to control infestations of R. microplus under controlled and production conditions. The vaccine constitutes the core element of broad control programs against this ectoparasite, in which acquired immunity in cattle to Bm86 is combined with a rational use of acaricides. At present, the conventional vaccine scheme consists of three doses that should be administered at weeks 0, 4 and 7, followed by a booster every six months. Results In this study we assayed a reduction in the number of the initial doses of Gavacplus, evaluated the time course and the level of bovine anti-Bm86 antibodies elicited, and analyzed the vaccine effect on ticks engorging on immunized cattle under production conditions. Following three different immunization schemes, the bovines developed a strong and specific immune response characterized by elevated anti-Bm86 IgG titers. A reduction in the weight of engorging female ticks, in the weight of the eggs laid and also in R. microplus viable eggs percentage was obtained by using only two doses of Gavacplus administered at weeks 0 and 4, followed by a booster six months later. This reduction did not differ from the results obtained on ticks engorging on cattle immunized at weeks 0, 4 and 7. It was also demonstrated that anti-Bm86 antibody titers over 1:640, measured in bovines immunized at weeks 0 and 4, were sufficient to affect weight and reproductive potential of female ticks as compared with ticks engorging on unvaccinated animals. In addition, no statistically significant differences were detected in the average weight of eggs laid by ticks engorged on

  4. Vaccines for List A poultry diseases: emphasis on avian influenza.

    Science.gov (United States)

    Swayne, D E

    2003-01-01

    Various vaccine technologies have been shown experimentally to be effective for immunization against avian influenza (AI) virus and include conventional inactivated oil-based whole AI virus, vectored virus, subunit protein and DNA vaccines. Vaccine-induced protection is based upon antibodies produced against the surface glycoproteins, principally the haemagglutinin, but also the neuraminidase. This protection is specific only for individual subtypes of haemagglutinin (H1-15) and neuraminidase (N1-9) proteins. AI vaccines protect chickens and turkeys from clinical signs and death, and reduce respiratory and intestinal replication of a challenge virus containing homologous haemagglutinin protein. Many of the vaccines are effective if given as a single injection and provide protection for greater than 20 weeks. Protection has been demonstrated against both low and high doses of challenge virus. Furthermore, subtype H5 AI vaccine has been shown to provide protection against heterologous H5 strains with 89.4% or greater haemagglutinin deduced amino acid sequence similarity and isolated over 38 years. Currently, inactivated whole AI virus vaccines and a fowl pox-vectored vaccine with AI H5 haemagglutinin gene insert are used commercially in various countries of the world. These vaccines have some disadvantages associated with the labour requirements for parenteral administration. However, an experimental recombinant Newcastle disease virus vaccine with an AI haemagglutinin gene insert shows some promise as a low cost, mass administered aerosol vaccine. A critical issue for the use of vaccines in the field is the need to differentiate vaccinated birds from those infected with the field virus. Differentiation is necessary for outbreak surveillance and trade. The use of AI vaccines varies with individual countries and for different AI virus subtypes. PMID:14677690

  5. Immunogenicity of DNA and Recombinant Sendai Virus Vaccines Expressing the HIV-1 gag Gene

    Institute of Scientific and Technical Information of China (English)

    Xia FENG; Shuang-qing YU; Tsugumine Shu; Tetsuro Matano; Mamoru Hasegawa; Xiao-li WANG; Hong-tao MA; Hong-xia LI; Yi ZENG

    2008-01-01

    Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1(+)-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.

  6. Future directions for the development of Chlamydomonas-based vaccines.

    Science.gov (United States)

    Rosales-Mendoza, Sergio

    2013-09-01

    Besides serving as a valuable model in biological sciences, Chamydomonas reinhardtii has been used during the last decade in the biotechnology arena to establish models for the low cost production of vaccines. Antigens from various pathogens including Plasmodium falciparum, foot and mouth disease virus, Staphylococcus aureus, classical swine fever virus (CSFV) as well as some auto-antigens, have been produced in C. reinhardtii. Although some of them have been functionally characterized with promising results, this review identifies future directions for the advancement in the exploitation of this robust and safe vaccine production platform. The present analysis reflects that important immunological implications exist for this system and remain unexplored, including the possible adjuvant effects of algae biomolecules, the effect of bioencapsulation on immunogenicity and the possible development of whole-cell vaccines as an approach to trigger cytotoxic immune responses. Recently described molecular strategies that aim to optimize the expression of nuclear-encoded target antigens are also discussed. PMID:24053395

  7. Inertial Vector Based Attitude Stabilization of Rigid Body Without Angular Velocity Measurements

    OpenAIRE

    Benziane, L.; Benallegue, A.; Chitour, Y.; Tayebi, A.

    2015-01-01

    We address the problem of attitude stabilization of a rigid body, in which neither the angular velocity nor the instantaneous measurements of the attitude are used in the feedback, only body vector measurements are needed. The design of the controller is based on an angular velocity observer-like system, where a first order linear auxiliary system based directly on vector measurements is introduced. The introduction of gain matrices provides more tuning flexibility and better results compared...

  8. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR tool

    Directory of Open Access Journals (Sweden)

    Huang Zhuojie

    2012-08-01

    Full Text Available Abstract Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR, to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Methods Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. Results The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. Conclusions VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements

  9. Virus like particle-based vaccines against emerging infectious disease viruses.

    Science.gov (United States)

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families. PMID:27405928

  10. The case for a rational genome-based vaccine against malaria

    Directory of Open Access Journals (Sweden)

    Carla eProietti

    2015-01-01

    Full Text Available Historically, vaccines have been designed to mimic the immunity induced by natural exposure to the target pathogen, but this approach has not been effective for any parasitic pathogens of humans or complex pathogens that cause chronic disease in humans, such as Plasmodium. Despite intense efforts by many laboratories around the world on different aspects of Plasmodium spp. molecular and cell biology, epidemiology and immunology, progress towards the goal of an effective malaria vaccine has been disappointing. The premise of rational vaccine design is to induce the desired immune response against the key pathogen antigens or epitopes targeted by protective immune responses. We advocate that development of an optimally efficacious malaria vaccine will need to improve on nature, and that this can be accomplished by rational vaccine design facilitated by mining genomic, proteomic and transcriptomic datasets in the context of relevant biological function. In our opinion, modern genome-based rational vaccine design offers enormous potential above and beyond that of whole-organism vaccines approaches established over 200 years ago where immunity is likely suboptimal due to the many genetic and immunological host-parasite adaptations evolved to allow the Plasmodium parasite to coexist in the human host, and which are associated with logistic and regulatory hurdles for production and delivery.

  11. B Cell Infection and Activation by Rabies Virus-Based Vaccines

    OpenAIRE

    Lytle, Andrew G.; Norton, James E.; Dorfmeier, Corin L.; Shen, Shixue; McGettigan, James P.

    2013-01-01

    Replication-deficient rabies viruses (RABV) are promising rabies postexposure vaccines due to their prompt and potent stimulation of protective virus neutralizing antibody titers, which are produced in mice by both T-dependent and T-independent mechanisms. To promote such early and robust B cell stimulation, we hypothesized that live RABV-based vaccines directly infect B cells, thereby activating a large pool of antigen-presenting cells (APCs) capable of providing early priming and costimulat...

  12. Immunogenicity and Protection Efficacy of Subunit-based Smallpox Vaccines Using Variola Major Antigens

    OpenAIRE

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2007-01-01

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the ide...

  13. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    OpenAIRE

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; José M Escribano

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previousl...

  14. Mass detection algorithm based on support vector machine and relevance feedback

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Xinbo GAO

    2008-01-01

    To improve the detection of mass with appearance that borders on the similarity between mass and density tissues in the breast,an support vector machine classifier based on typical features iS designed to classify the region of interest(ROI).Furthermore,relevance feedback is introduced to improve the performance of support vector machines.A new mass detection scheme based on the support vector machine and the relevance feedback is proposed.Simulation experiments on mammograms illustrate that the novel support vector machine classifier based on typical features can improve the detection performance of the featureless classifier by 5%,while the introduction of relevance feedback can further improve the detection performance to about 90%.

  15. Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

    OpenAIRE

    Jianfeng Zhang; E Bart Tarbet; Tsungwei Feng; Zhongkai Shi; Van Kampen, Kent R; Tang, De-chu C

    2011-01-01

    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity...

  16. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro;

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...

  17. Genetically modified dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 47, č. 5 (2001), s. 153-155. ISSN 0015-5500 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * cancer vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.519, year: 2001

  18. Genetically engineered dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 18, č. 3 (2001), s. 475-478. ISSN 1019-6439 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.330, year: 2001

  19. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza.

    Directory of Open Access Journals (Sweden)

    Byoung-Shik Shim

    Full Text Available BACKGROUND: The ectodomain of matrix protein 2 (M2e of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n. route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l. route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored. METHODS AND RESULTS: A recombinant M2 protein with three tandem copies of the M2e (3M2eC was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs. CONCLUSIONS: The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.

  20. Aero-Engine Condition Monitoring Based on Support Vector Machine

    Science.gov (United States)

    Zhang, Chunxiao; Wang, Nan

    The maintenance and management of civil aero-engine require advanced monitor approaches to estimate aero-engine performance and health in order to increase life of aero-engine and reduce maintenance costs. In this paper, we adopted support vector machine (SVM) regression approach to monitor an aero-engine health and condition by building monitoring models of main aero-engine performance parameters(EGT, N1, N2 and FF). The accuracy of nonlinear baseline models of performance parameters is tested and the maximum relative error does not exceed ±0.3%, which meets the engineering requirements. The results show that SVM nonlinear regression is an effective method in aero-engine monitoring.

  1. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Directory of Open Access Journals (Sweden)

    Emma-Jo Hayton

    Full Text Available TRIAL DESIGN: HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported. METHODS: Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination. RESULTS: Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern. CONCLUSIONS: These data demonstrate

  2. An Even Grid Based Lattice Vector Quantization Algorithm for Mobile Audio Coding

    Directory of Open Access Journals (Sweden)

    Bo Hang

    2011-06-01

    Full Text Available This paper proposed an even grid based lattice vector quantization method for audio coding. The method uses energy priority, with basic code book and the ball-type expansion, which is applicable to the low rate of the variable-rate vector quantization coding. The method uses the lattice characteristics to resolve rapid index distribution problem, as well as the compression of the basic code book. The experiment results show that the proposed method is as good as vector quantization method in ITU-T standard G729.1 in quality, with lower storage cost and computational complexity.

  3. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Shu Ki Tsoi

    2015-01-01

    Full Text Available Group A streptococcus (GAS is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.

  4. A Plant-Based Transient Expression System for the Rapid Production of Malaria Vaccine Candidates.

    Science.gov (United States)

    Boes, Alexander; Reimann, Andreas; Twyman, Richard M; Fischer, Rainer; Schillberg, Stefan; Spiegel, Holger

    2016-01-01

    There are currently no vaccines that provide sterile immunity against malaria. Various proteins from different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates, but none of them have fulfilled expectations. Therefore, combinations of key antigens from different stages of the parasites life cycle may be essential for the development of efficacious malaria vaccines. Following the identification of promising antigens using bioinformatics, proteomics, and/or immunological approaches, it is necessary to express, purify, and characterize these proteins and explore the potential of fusion constructs combining different antigens or antigen domains before committing to expensive and time-consuming clinical development. Here, using malaria vaccine candidates as an example, we describe how Agrobacterium tumefaciens-based transient expression in plants can be combined with a modular and flexible cloning strategy as a robust and versatile tool for the rapid production of candidate antigens during research and development. PMID:27076325

  5. Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines.

    Science.gov (United States)

    Dean, G; Whelan, A; Clifford, D; Salguero, F J; Xing, Z; Gilbert, S; McShane, H; Hewinson, R G; Vordermeier, M; Villarreal-Ramos, B

    2014-03-01

    There is a requirement for vaccines or vaccination strategies that confer better protection against TB than the current live attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine for use in cattle. Boosting with recombinant viral vectors expressing mycobacterial proteins, such as Ag85A, has shown a degree of promise as a strategy for improving on the protection afforded by BCG. Experiments in small animal models have indicated that broadening the immune response to include mycobacterial antigens other than Ag85A, such as Rv0288, induced by boosting with Ad5 constructs has a direct effect on the protection afforded against TB. Here, we compared the immunogenicity and protection against challenge with M. bovis afforded by boosting BCG-vaccinated cattle with a human type 5 (Ad5)-based vaccine expressing the mycobacterial antigens Ag85A (Ad5-85A); or Ag85A, Rv0251, Rv0287 and Rv0288 (Ad5-TBF); or with protein TBF emulsified in adjuvant (Adj-TBF). Boosting with TBF broaden the immune response. The kinetics of Ad5-TBF and Adj-TBF were shown to be different, with effector T cell responses from the latter developing more slowly but being more durable than those induced by Ad5-TBF. No increase in protection compared to BCG alone was afforded by Ad5-TBF or Adj-TBF by gross pathology or bacteriology. Using histopathology, as a novel parameter of protection, we show that boosting BCG vaccinated cattle with Ad5-85A induced significantly better protection than BCG alone. PMID:24269321

  6. Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex.

    Science.gov (United States)

    Farsiani, Hadi; Mosavat, Arman; Soleimanpour, Saman; Sadeghian, Hamid; Akbari Eydgahi, Mohammad Reza; Ghazvini, Kiarash; Sankian, Mojtaba; Aryan, Ehsan; Jamehdar, Saeid Amel; Rezaee, Seyed Abdolrahim

    2016-06-21

    Tuberculosis (TB) remains a major global health threat despite chemotherapy and Bacilli Calmette-Guérin (BCG) vaccination. Therefore, a safer and more effective vaccine against TB is urgently needed. This study evaluated the immunogenicity of a recombinant fusion protein consisting of early secreted antigenic target protein 6 kDa (ESAT-6), culture filtrate protein 10 kDa (CFP-10) and the Fc-domain of mouse IgG2a as a novel subunit vaccine. The recombinant expression vectors (pPICZαA-ESAT-6:CFP-10:Fcγ2a and pPICZαA-ESAT-6:CFP-10:His) were transferred into Pichia pastoris. After SDS-PAGE and immunoblotting, the immunogenicity of the recombinant proteins was evaluated in mice. When both recombinant proteins (ESAT-6:CFP-10:Fcγ2a and ESAT-6:CFP-10:His) were used for vaccination, Th1-type cellular responses were induced producing high levels of IFN-γ and IL-12. However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a small increase in IL-4 as compared to the BCG and ESAT-6:CFP-10:His groups. Moreover, mice primed with BCG and then supplemented with ESAT-6:CFP-10:Fcγ2a produced the highest levels of IFN-γ and IL-12 in immunized groups. The findings indicate that when Fcγ2a is fused to the ESAT-6:CFP-10 complex, as a delivery vehicle, there could be an increase in the immunogenicity of this type of subunit vaccine. Therefore, additional investigations are necessary for the development of appropriate Fc-based tuberculosis vaccines. PMID:27138226

  7. DNA vaccine: the miniature miracle

    Directory of Open Access Journals (Sweden)

    Karthik Kaliaperumal

    2013-08-01

    Full Text Available DNA, the essential part of the life is making way in to new vaccine technology. Plasmid vectors from the bacteria have revolutionized the world of vaccine design by its new technology – DNA vaccines. Small portion of the nucleotides from the pathogen held under the control of promoter in a plasmid vector can be used as a vaccine. DNA vaccines alleviate the odds of the other vaccines by having good hold on both the faces of the immunity. The key to the success of DNA vaccine lies in the route of administration of the vaccine which can be done in many ways. Prime boost strategy is an approach used to boost the action of DNA vaccine. To date there are only four DNA vaccine available in the market. [Vet World 2013; 6(4.000: 228-232

  8. A sight on the current nanoparticle-based gene delivery vectors

    Science.gov (United States)

    Dizaj, Solmaz Maleki; Jafari, Samira; Khosroushahi, Ahmad Yari

    2014-05-01

    Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/ in vivo transformation efficiency.

  9. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    Science.gov (United States)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  10. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines

    Science.gov (United States)

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela

    2016-01-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  11. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines.

    Science.gov (United States)

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela; Van Der Wielen, Marie

    2016-07-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  12. Adenovirus vaccine vectors expressing hepatitis B surface antigen: importance of regulatory elements in the adenovirus major late intron.

    Science.gov (United States)

    Mason, B B; Davis, A R; Bhat, B M; Chengalvala, M; Lubeck, M D; Zandle, G; Kostek, B; Cholodofsky, S; Dheer, S; Molnar-Kimber, K

    1990-08-01

    Adenovirus types 4 and 7 are currently used as live oral vaccines for prevention of acute respiratory disease caused by these adenovirus serotypes. To investigate the concept of producing live recombinant vaccines using these serotypes, adenovirus types 4 (Ad4) and 7 (Ad7) were constructed that produce HBsAg upon infection of cell cultures. Ad4 recombinants were constructed that express HBsAg from a cassette inserted 135 bp from the right-hand terminus of the viral genome. The cassette contained the Ad4 major late promoter followed by leader 1 of the tripartite leader, the first intervening sequence between leaders 1 and 2, leaders 2 and 3, the HBsAg gene, and tandem polyadenylation signals from the Ad4 E3B and hexon genes. Using this same cassette, a series of Ad4 recombinants expressing HBsAg were constructed with deletions in the intervening sequence between leaders 1 and 2 to evaluate the contribution of the downstream control elements more precisely. Inclusion of regions located between +82 and +148 as well as +148 and +232 resulted in increases in expression levels of HBsAg in A549-infected cells by 22-fold and 44-fold, respectively, over the levels attained by an adenovirus recombinant retaining only sequences from +1 to +82, showing the importance of these elements in the activation of the major late promoter during the course of a natural Ad4 viral infection. Parallel increases were also observed in steady-state levels of cytoplasmic HBsAg-specific mRNA. When similar Ad7 recombinant viruses were constructed, these viruses also expressed 20-fold more HBsAg due to the presence of the intron. All Ad4 and Ad7 recombinants produced HBsAg particles containing gp27 and p24 which were secreted in the medium. When dogs were immunized intratracheally with one of these Ad7 recombinants, they seroconverted to both Ad7 and HBsAg to a high level. PMID:2371766

  13. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  14. Incremental learning algorithm based on support vector machine with Mahalanobis distance (ISVMM) for intrusion prevention

    OpenAIRE

    Myint, Hnin Ohnmar; Meesad, Phayung

    2009-01-01

    In this paper we propose a new classifier called an incremental learning algorithm based on support vector machine with Mahalanobis distance (ISVMM). Prediction of the incoming data type by supervised learning of support vector machine (SVM), reducing the step of calculation and complexity of the algorithm by finding a support set, error set and remaining set, providing of hard and soft decisions, saving the time for repeatedly training the datasets by applying the incremental learning, a new...

  15. BET-independent MLV-based Vectors Target Away From Promoters and Regulatory Elements

    Science.gov (United States)

    El Ashkar, Sara; De Rijck, Jan; Demeulemeester, Jonas; Vets, Sofie; Madlala, Paradise; Cermakova, Katerina; Debyser, Zeger; Gijsbers, Rik

    2014-01-01

    Stable integration in the host genome renders murine leukemia virus (MLV)-derived vectors attractive tools for gene therapy. Adverse events in otherwise successful clinical trials caused by proto-oncogene activation due to vector integration hamper their application. MLV and MLV-based vectors integrate near strong enhancers, active promoters, and transcription start sites (TSS) through specific interaction of MLV integrase (IN) with the bromodomain and extra-terminal (BET) family of proteins, accounting for insertional mutagenesis. We identified a BET-interaction motif in the C-terminal tail of MLV IN conserved among gammaretroviruses. By deletion of this motif or a single point mutation (INW390A), BET-independent MLV (BinMLV) were engineered. BinMLV vectors carrying INW390A integrate at wild-type efficiency, with an integration profile that no longer correlates with BET chromatin distribution nor with the traditional markers of MLV integration. In particular, BinMLV vector integration associated less with oncogene TSS compared to the MLV vectors currently used in clinical trials. Together, these findings open perspectives to increase the biosafety of gammaretroviral vectors for gene therapy. PMID:25072693

  16. Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: A population-based study.

    Science.gov (United States)

    Herweijer, Eva; Sundström, Karin; Ploner, Alexander; Uhnoo, Ingrid; Sparén, Pär; Arnheim-Dahlström, Lisen

    2016-06-15

    Human papillomavirus (HPV) types 16/18, included in HPV vaccines, contribute to the majority of cervical cancer, and a substantial proportion of cervical intraepithelial neoplasia (CIN) grades 2/3 or worse (CIN2+/CIN3+) including adenocarcinoma in situ or worse. The aim of this study was to quantify the effect of quadrivalent HPV (qHPV) vaccination on incidence of CIN2+ and CIN3+. A nationwide cohort of girls and young women resident in Sweden 2006-2013 and aged 13-29 (n = 1,333,691) was followed for vaccination and histologically confirmed high-grade cervical lesions. Data were collected using the Swedish nationwide healthcare registers. Poisson regression was used to calculate incidence rate ratios (IRRs) and vaccine effectiveness [(1-IRR)x100%] comparing fully vaccinated with unvaccinated individuals. IRRs were adjusted for attained age and parental education, and stratified on vaccination initiation age. Effectiveness against CIN2+ was 75% (IRR = 0.25, 95%CI = 0.18-0.35) for those initiating vaccination before age 17, and 46% (IRR = 0.54, 95%CI = 0.46-0.64) and 22% (IRR = 0.78, 95%CI = 0.65-0.93) for those initiating vaccination at ages 17-19, and at ages 20-29, respectively. Vaccine effectiveness against CIN3+ was similar to vaccine effectiveness against CIN2+. Results were robust for both women participating to the organized screening program and for women at prescreening ages. We show high effectiveness of qHPV vaccination on CIN2+ and CIN3+ lesions, with greater effectiveness observed in girls younger at vaccination initiation. Continued monitoring of impact of HPV vaccination in the population is needed in order to evaluate both long-term vaccine effectiveness and to evaluate whether the vaccination program achieves anticipated effects in prevention of invasive cervical cancer. PMID:26856527

  17. Research of universal influenza virus vaccine conjugated human papillomavirus 16 LI as a vector%以人乳头瘤病毒16 L1为载体的流感通用疫苗初步研究

    Institute of Scientific and Technical Information of China (English)

    刘蕊; 李志奎; 王希良; 罗德炎; 颜艳; 陈中伟; 花艳红

    2008-01-01

    Objective To construct a universal influenza virus vaccine Baemid containing M2 extracellular domain(M2e) of influenza virus which conjugated human papillomavirus(HPV)16 L1 as a vector and expressed the protein in insect baeulovirus system. Methods HPV16 L1 gene was amplified by PCR with the primers contained M2e gene. The conjugated genes were inserted into pFast HTA vector to recombine in DHI0Bac. The recombinant baemid was transfected into sf9 insect cells by liposome to produce baculovirus contained M2e-HPVI6 L1. Protein was determined by SDS-PAGE, immunofluorescence and electronmicroseope. Results The universal influenza virus vaccine Bacmid containing M2e of influenza virus which conjugated HPV16 L1 as a vector was successfully constructed. The recombinant protein wasexpressed in insect cells. Conclusions The recombinant protein was expressed in insect cells in the form of virus-like particles through the baculovirus system,which was a base of the universal influenza virus vaccine development.%目的 构建以人乳头瘤病毒(human papillomavirus,HPV)16 L1为载体的甲型流感病毒M2基因胞外区(M2e)通用疫苗杆粒,利用昆虫细胞杆状病毒表达系统,进行初步的蛋白表达.方法 利用PCR技术将甲型流感病毒M2e基因序列与HPVl6 L1相连.经酶切、酶联将融合基因插入pFastBacHTA载体,在DH10Bac细胞中进行同源重组,经测序鉴定后构建M2e-HPV16 L1杆粒,脂质体转染sf9昆虫细胞,收获并扩增含有M2e-HPV16 L1的杆状病毒,经扩增后获得高效价的重组杆状病毒,用SDS-PAGE、免疫荧光法和电镜检测目的蛋白的表达.结果 构建了以HPV16 L1为载体的M2e通用疫苗杆粒,通过转染sf9昆虫细胞得到初步M2e-HPV16 L1融合蛋白表达.结论 成功构建了HPV16 L1与甲型流感病毒M2e融合蛋白的病毒样颗粒,为流感通用疫苗的研制奠定了基础.

  18. Using magnetic resonance imaging to evaluate dendritic cell-based vaccination.

    Directory of Open Access Journals (Sweden)

    Peter M Ferguson

    Full Text Available Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy.

  19. Preclinical Development of Inactivated Rabies Virus-Based Polyvalent Vaccine Against Rabies and Filoviruses.

    Science.gov (United States)

    Willet, Mallory; Kurup, Drishya; Papaneri, Amy; Wirblich, Christoph; Hooper, Jay W; Kwilas, Steve A; Keshwara, Rohan; Hudacek, Andrew; Beilfuss, Stefanie; Rudolph, Grit; Pommerening, Elke; Vos, Adriaan; Neubert, Andreas; Jahrling, Peter; Blaney, Joseph E; Johnson, Reed F; Schnell, Matthias J

    2015-10-01

    We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced. PMID:26063224

  20. Performance of matched subspace detectors and support vector machines for induction-based land mine detection

    Science.gov (United States)

    Torrione, Peter A.; Collins, Leslie M.

    2002-08-01

    Wideband electromagnetic induction (EMI) data provides an opportunity to apply statistical signal processing techniques to potentially mitigate false alarm rates in landmine detection. This paper explores the application of matched subspace detectors and support vector machines (SVMs) to this problem. A library of landmine responses is generated from background-corrected calibration data and a bank of matched subspace detectors, each tuned to a specific mine type, is generated. Support vector machines are implemented based on the full mine responses, decay rate estimates, and the outputs of the matched subspace filter banks. Different training approaches are considered for the support vector machines. Receiver operating characteristics (ROCs) for the matched subspace detectors and support vector machines operating in a blind field test are presented. The results indicate that substantial reductions in the false alarm rates can be achieved using these techniques.