WorldWideScience

Sample records for based transfer scattering

  1. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  2. Polarization Transfer in Proton Compton Scattering at High Momentum Transfer

    CERN Document Server

    Hamilton, D J; Aniol, K A; Annand, J R M; Bertin, P Y; Bimbot, L; Bosted, P; Calarco, J R; Camsonne, A; Chang, G C; Chang, T H; Chen, J P; Seonho Choi; Chudakov, E; Danagulyan, A S; Degtyarenko, P; De Jager, C W; Deur, A; Dutta, D; Egiyan, K; Gao, H; Garibaldi, F; Gayou, O; Gilman, R; Glamazdin, A; Glashausser, C; Gómez, J; Hansen, J O; Hayes, D; Higinbotham, D W; Hinton, W; Horn, T; Howell, C; Hunyady, T; Hyde-Wright, C E; Jiang, X; Jones, M K; Khandaker, M; Ketikyan, A; Koubarovski, V; Krämer, K; Kumbartzki, G; Laveissière, G; Le Rose, J J; Lindgren, R A; Margaziotis, D J; Markowitz, P; McCormick, K; Meziani, Z E; Michaels, R; Moussiegt, P; Nanda, S; Nathan, A M; Nikolenko, D M; Nelyubin, V V; Norum, B E; Paschke, K; Pentchev, L; Perdrisat, C F; Piasetzky, E; Pomatsalyuk, R I; Punjabi, V A; Rachek, Igor A; Radyushkin, A V; Reitz, B; Roché, R; Roedelbronn, M; Ron, G; Sabatie, F; Saha, A; Savvinov, N; Shahinyan, A; Shestakov, Yu V; Sirca, S; Slifer, K J; Solvignon, P; Stoler, P; Tajima, S; Sulkosky, V; Todor, L; Vlahovic, B; Weinstein, L B; Wang, K; Wojtsekhowski, B; Voskanyan, H; Xiang, H; Zheng, X; Zhu, L

    2004-01-01

    Compton scattering from the proton was investigated at s=6.9 (GeV/c)**2 and \\t=-4.0 (GeV/c)**2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.

  3. A Simple but Accurate Ultraviolet Limb-Scan Spherically-Layered Radiative-Transfer-Model Based on Single-Scattering Physics

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; L(U) Daren; L(U) Yao

    2007-01-01

    Here we present a study focusing on atmospheric limb-scattered radiative characteristics in the ultraviolet band by using a limb-scan spherically-layered radiative-transfer-model based on the single-scattering approximation, which was developed by the present authors. We have applied an accurate numerical integration technique involving an auto-adaptive modified-space step, which assured high accuracy and simplification.Comparisons were made to the newly released spherical radiative transfer model, SCIATRAN2.0, which was developed by Institute of Remote Sensing/Institute of Environmental Physics (IUP/IFE) at University of Bremen and to measurements collected via an ultraviolet spectrometer on the Solar Mesospheric Explorer (SME) satellite, which was launched in October, 1981. Preliminary results indicate that the present model provides a good interpretation of the earth-limb scattered ultraviolet radiance, and thus, is suitable for the study of the ultraviolet-limb radiative-transfer problem with high accuracy.

  4. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Volker Enss; Vadim Kostrykin; Robert Schrader

    2002-02-01

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave operators, and existence of a conserved quantity under scattering. In a simple model we determine the energy transferred to a particle by collision with a rotating blade.

  5. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Ye [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this

  6. Polarimetric signatures of a layer of random nonspherical discrete scatterers overlying a homogeneous half-space based on first- and second-order vector radiative transfer theory

    Science.gov (United States)

    Tsang, Leung; Ding, Kung-Hau

    1991-01-01

    Complete polarimetric signatures of a layer of random, nonspherical discrete scatterers overlying a homogeneous half space are studied with the first- and second-order solutions of the vector radiative transfer theory. Some of the salient features of the numerical results are as follows: (1) the inclusion of the nondiagonal extinction matrix in the vector radiative transfer theory accounts for an appreciable phase difference between vv and hh polarizations, particularly for aligned scatterers; (2) the ensemble-averaged scattered Stokes vector is generally partially polarized, with the degree of polarization less than unity; (3) there generally exists a pedestal in the copolarization return when plotted as a function of ellipticity and orientation angles, which may be due to heterogeneity of scattering objects and/or multiple scattering effects; and (4) multiple scattering effects generally enhance the pedestal in copolarization return, decrease the degree of polarization, affect phase difference, and also enhance the depolarization return.

  7. Evolution of the transfer function characterization of surface scatter phenomena

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  8. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    Science.gov (United States)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    Passive Differential Optical Absorption Spectroscopy (DOAS) has become a standard tool for measuring SO2 at volcanoes. More recently, ultra-violet (UV) cameras have also been applied to obtain 2D images of SO2-bearing plumes. Both techniques can be used to derive SO2 emission rates by measuring SO2 column densities, integrating these along the plume cross-section, and multiplying by the wind speed. Recent measurements and model studies have revealed that the dominating source of uncertainty in these techniques often originates from an inaccurate assessment of radiative transfer through the volcanic plume. The typical assumption that all detected radiation is scattered behind the volcanic plume and takes a straight path from there to the instrument is often incorrect. We recently showed that the straight path assumption can lead to column density errors of 50% or more in cases where plumes with high SO2 and aerosol concentrations are measured from several kilometers distance, or where the background atmosphere contains a large amount of scattering aerosols. Both under- and overestimation are possible depending on the atmospheric conditions and geometry during spectral acquisition. Simulated Radiative Transfer (SRT) DOAS is a new evaluation scheme that combines radiative transfer modeling with spectral analysis of passive DOAS measurements in the UV region to derive more accurate SO2 column densities than conventional DOAS retrievals, which in turn leads to considerably more accurate emission rates. A three-dimensional backward Monte Carlo radiative transfer model is used to simulate realistic light paths in and around the volcanic plume containing variable amounts of SO2 and aerosols. An inversion algorithm is then applied to derive the true SO2 column density. For fast processing of large datasets, a linearized algorithm based on lookup tables was developed and tested on a number of example datasets. In some cases, the information content of the spectral data is

  9. The study of electromagnetic wave propagation in photonic crystals via planewave based transfer (scattering) matrix method with active gain material applications

    Science.gov (United States)

    Li, Ming

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional (2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Further more, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. First, the planewave based transfer (scattering) matrix method (TMM) is described in every detail along with a brief review of photonic crystal history (Chapter 1 and 2). As a frequency domain method, TMM has the following major advantages over other numerical methods: (1) the planewave basis makes Maxwell's Equations a linear algebra problem and there are mature numerical package to solve linear algebra problem such as Lapack and Scalapack (for parallel computation). (2) Transfer (scattering) matrix method make 3D problem into 2D slices and link all slices together via the scattering matrix (S matrix) which reduces computation time and memory usage dramatically and makes 3D real photonic crystal devices design possible; and this also makes the simulated domain no length limitation along the propagation direction (ideal for waveguide simulation). (3) It is a frequency domain method and calculation results are all for steady state, without the influences of finite time span convolution effects and/or transient effects. (4) TMM can treat dispersive material (such as metal at visible light) naturally without introducing any additional computation; and meanwhile TMM can also deal with anisotropic material and magnetic material (such as perfectly matched layer) naturally from its algorithms. (5) Extension of TMM to deal with active gain material can be done through an iteration procedure with gain

  10. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres

    CERN Document Server

    Hayek, W; Carlsson, M; Trampedach, R; Collet, R; Gudiksen, B V; Hansteen, V H; Leenaarts, J

    2010-01-01

    We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with bo...

  11. Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    CERN Document Server

    Fanelli, C; Hamilton, D J; Salme, G; Wojtsekhowski, B; Ahmidouch, A; Annand, J R M; Baghdasaryan, H; Beaufait, J; Bosted, P; Brash, E J; Butuceanu, C; Carter, P; Christy, E; Chudakov, E; Danagoulian, S; Day, D; Degtyarenko, P; Ent, R; Fenker, H; Fowler, M; Frlez, E; Gaskell, D; Gilman, R; Horn, T; Huber, G M; de Jager, C W; Jensen, E; Jones, M K; Kelleher, A; Keppel, C; Khandaker, M; Kohl, M; Kumbartzki, G; Lassiter, S; Li, Y; Lindgren, R; Lovelace, H; Luo, W; Mack, D; Mamyan, V; Margaziotis, D J; Markowitz, P; Maxwell, J; Mbianda, G; Meekins, D; Meziane, M; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Mulholland, J; Nelyubin, V; Pentchev, L; Perdrisat, C F; Piasetzky, E; Prok, Y; Puckett, A J R; Punjabi, V; Shabestari, M; Shahinyan, A; Slifer, K; Smith, G; Solvignon, P; Subedi, R; Wesselmann, F R; Wood, S; Ye, Z; Zheng, X

    2015-01-01

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The WACS polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of \\cma$= 70^\\circ$. The longitudinal transfer \\KLL, measured to be $0.645 \\pm 0.059 \\pm 0.048$, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is $\\sim$3 times larger than predicted by the GPD-based calculations, which indicates a significant unknown contribution to the scattering amplitude.

  12. Spectral polarimetric light-scattering by particulate media: 1. Theory of spectral Vector Radiative Transfer

    Science.gov (United States)

    Ceolato, Romain; Riviere, Nicolas

    2016-07-01

    Spectral polarimetric light-scattering by particulate media has recently attracted growing interests for various applications due to the production of directional broadband light sources. Here the spectral polarimetric light-scattering signatures of particulate media are simulated using a numerical model based on the spectral Vector Radiative Transfer Equation (VRTE). A microphysical analysis is conducted to understand the dependence of the light-scattering signatures upon the microphysical parameters of particles. We reveal that depolarization from multiple scattering results in remarkable spectral and directional features, which are simulated by our model over a wide spectral range from visible to near-infrared. We propose to use these features to improve the inversion of the scattering problem in the fields of remote sensing, astrophysics, material science, or biomedical.

  13. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    Science.gov (United States)

    Ma, L. X.; Tan, J. Y.; Zhao, J. M.; Wang, F. Q.; Wang, C. A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus-Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus-Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied.

  14. Nuclear Transparency in Large Momentum Transfer Quasielastic Scattering

    Science.gov (United States)

    Mardor, I.; Durrant, S.; Aclander, J.; Alster, J.; Barton, D.; Bunce, G.; Carroll, A.; Christensen, N.; Courant, H.; Gushue, S.; Heppelmann, S.; Kosonovsky, E.; Mardor, Y.; Marshak, M.; Makdisi, Y.; Minor, E. D.; Navon, I.; Nicholson, H.; Piasetzky, E.; Roser, T.; Russell, J.; Sutton, C. S.; Tanaka, M.; White, C.; Wu, J.-Y.

    1998-12-01

    We measured simultaneously pp elastic and quasielastic \\(p,2p\\) scattering in hydrogen, deuterium, and carbon for momentum transfers of 4.8 to 6.2 \\(GeV/c\\)2 at incoming momenta of 5.9 and 7.5 GeV/c and center-of-mass scattering angles in the range θc.m. = 83.7°-90°. The nuclear transparency is defined as the ratio of the quasielastic cross section to the free pp cross section. At incoming momentum of 5.9 GeV/c, the transparency of carbon decreases by a factor of 2 from θc.m.~=85° to θc.m.~=89°. At the largest angle the transparency of carbon increases from 5.9 to 7.5 GeV/c by more than 50%. The transparency in deuterium does not depend on incoming momentum nor on θc.m..

  15. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    Science.gov (United States)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative

  16. Two-photon exchange correction to muon-proton elastic scattering at low momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany); Taras Shevchenko National University of Kyiv, Department of Physics, Kiev (Ukraine); Vanderhaeghen, Marc [Johannes Gutenberg Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany)

    2016-03-15

    We evaluate the two-photon exchange (TPE) correction to the muon-proton elastic scattering at small momentum transfer. Besides the elastic (nucleon) intermediate state contribution, which is calculated exactly, we account for the inelastic intermediate states by expressing the TPE process approximately through the forward doubly virtual Compton scattering. The input in our evaluation is given by the unpolarized proton structure functions and by one subtraction function. For the latter, we provide an explicit evaluation based on a Regge fit of high-energy proton structure function data. It is found that, for the kinematics of the forthcoming muon-proton elastic scattering data of the MUSE experiment, the elastic TPE contribution dominates, and the size of the inelastic TPE contributions is within the anticipated error of the forthcoming data. (orig.)

  17. Two-photon exchange correction to muon-proton elastic scattering at small momentum transfer

    CERN Document Server

    Tomalak, O

    2015-01-01

    We evaluate the two-photon exchange (TPE) correction to the muon-proton elastic scattering at small momentum transfer. Besides the elastic (nucleon) intermediate state contribution, which is calculated exactly, we account for the inelastic intermediate states by expressing the TPE process approximately through the forward doubly virtual Compton scattering. The input in our evaluation is given by the unpolarized proton structure functions and by one subtraction function. For the latter, we provide an explicit evaluation based on a Regge fit of high-energy proton structure function data. It is found that,for the kinematics of the forthcoming muon-proton elastic scattering data of the MUSE experiment, the elastic TPE contribution dominates, and the size of the inelastic TPE contributions is within the anticipated error of the forthcoming data.

  18. A novel hybrid scattering order-dependent variance reduction method for Monte Carlo simulations of radiative transfer in cloudy atmosphere

    Science.gov (United States)

    Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo

    2017-03-01

    We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.

  19. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR

    Science.gov (United States)

    Ustinov, E.

    1999-01-01

    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  20. First 3D radiative transfer with scattering for domain-decomposed MHD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hayek, W [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611 (Australia)], E-mail: hayek@mpa-garching.mpg.de

    2008-12-15

    This paper presents an implementation of the Gauss-Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.

  1. First 3D radiative transfer with scattering for domain-decomposed MHD simulations

    Science.gov (United States)

    Hayek, W.

    2008-12-01

    This paper presents an implementation of the Gauss Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.

  2. Time evolution of photon propagation in scattering and absorbing media: the Dynamic Radiative Transfer System

    CERN Document Server

    Georgakopoulos, A; Georgiou, E

    2016-01-01

    A new dynamic system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on firsthand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), calculates accurately the time evolution of photon propagation in media of complex structure and shape. DRTS employs a dynamical system formality using a global sparse matrix which characterizes the physical, optical and geometrical properties of the material volume of interest. The new system state vector is generated by the above time-independent matrix, using simple matrix vector multiplication addition for each subsequent time step. DRTS simulation results are presented for 3D light propagation in different optical media, demonstrating greatly reduced computational cost and resource requirements compared to other methods. Flexibility of the method allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and ...

  3. Measurement of diffractive scattering of photons with large momentum transfer at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania)]|[Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2008-09-15

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer {gamma}p {yields} {gamma}Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q{sup 2} < 0.01 GeV{sup 2}. Cross sections are measured as a function of W, the incident photonproton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4 < vertical stroke t vertical stroke < 36 GeV{sup 2}. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured vertical stroke t vertical stroke dependence is harder than that predicted by the model and those observed in exclusive vector meson production. (orig.)

  4. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  5. Truncation of the scattering phase matrix for vector radiative transfer simulation

    Science.gov (United States)

    Hioki, Souichiro; Yang, Ping; Kattawar, George W.; Hu, Yongxiang

    2016-11-01

    This short communication interprets the delta-fit technique in a context of similarity transformation and the correction to the source function, and derives the analogous form of the method to be applied for the scattering phase matrix. To adapt the delta-fit method to vector radiative transfer, the mathematically exact form of the similarity principle is used in the theoretical development. Some examples of relevant radiative transfer simulations are also presented for atmospheric ice particles. The performance of the adopted delta-fit method is comparable to the delta-M method with single scattering correction except for worse delta-fit performance for polarized radiance calculations in forward directions.

  6. Discrete-ordinate radiative transfer in a stratified medium with first-order rotational Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Spurr, Robert [RT Solutions Inc., 9 Channing Street, Cambridge, MA 02138 (United States)], E-mail: rtsolutions@verizon.net; Haan, Johan de; Oss, Roeland van [KNMI, de Bilt (Netherlands); Vasilkov, Alexander [SSAI, Lanham, MD (United States)

    2008-02-15

    Rotational Raman scattering (RRS) by air molecules in the Earth's atmosphere is predominantly responsible for the Ring effect: Fraunhofer and absorption-feature filling-in observed in UV/visible backscatter spectra. Accurate determination of RRS effects requires detailed radiative transfer (RT) treatment. In this paper, we demonstrate that the discrete-ordinate RT equations may be solved analytically in a multi-layer multiple scattering atmosphere in the presence of RRS treated as a first-order perturbation. Based on this solution, we develop a generic pseudo-spherical RT model LIDORT-RRS for the determination of backscatter radiances with RRS included; the model will generate output at arbitrary viewing geometry and optical thickness. Model comparisons with measured RRS filling-in effects from OMI observations show very good agreement. We examine telluric RRS filling-in effects for satellite-view backscatter radiances in a spectral range covering the ozone Huggins absorption bands. The model is also used to investigate calcium H and K Fraunhofer filling-in through cloud layers in the atmosphere.

  7. Outgoing Cuntz Scattering System for a Coisometric Lifting and Transfer Function

    Indian Academy of Sciences (India)

    Kalpesh J Haria

    2013-08-01

    We study a coisometry that intertwines Popescu’s presentations of minimal isometric dilations of a given operator tuple and of a coisometric lifting of the tuple. Using this we develop an outgoing Cuntz scattering system which gives rise to an input–output formalism. A transfer function is introduced for the system. We also compare the transfer function and the characteristic function for the associated lifting.

  8. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images.

    Science.gov (United States)

    Larsson, Anne; Johansson, Lennart

    2003-11-21

    In single photon emission computed tomography (SPECT), transmission-dependent convolution subtraction has been shown to be useful when correcting for scattered events. The method is based on convolution subtraction, but includes a matrix of scatter fractions instead of a global scatter fraction. The method can be extended to iteratively improve the scatter estimate, but in this note we show that this requires a modification of the theory to use scatter-to-total scatter fractions for the first iteration only and scatter-to-primary fractions thereafter. To demonstrate this, scatter correction is performed on a Monte Carlo simulated image of a point source of activity in water. The modification of the theory is compared to corrections where the scatter fractions are based on the scatter-to-total ratio, using one and ten iterations. The resulting ratios of subtracted to original counts are compared to the true scatter-to-total ratio of the simulation and the most accurate result is found for our modification of the theory.

  9. Weak Measurement and Two-State-Vector Formalism: Deficit of Momentum Transfer in Scattering Processes

    CERN Document Server

    Chatzidimitriou-Dreismann, C A

    2016-01-01

    The notions of weak measurement, weak value, and two-state-vector formalism provide a new quantum-theoretical frame for extracting additional information from a system in the limit of small disturbances to its state. Here, we provide an application to the case of two-body scattering with one body weakly interacting with an environment. The direct connection to real scattering experiments is pointed out by making contact with the field of impulsive incoherent neutron scattering from molecules and condensed systems. In particular, we predict a new quantum effect in neutron-atom collisions, namely an observable momentum transfer deficit; or equivalently, a reduction of effective mass below that of the free scattering atom. Two corroborative experimental findings are shortly presented. Implications for current and further experiments are mentioned. An interpretation of this effect and the associated experimental results within conventional theory is currently unavailable.

  10. Polarization transfer for inclusive proton-nucleus inelastic scattering at 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Fergerson, R.; McGill, J.; Glashausser, C.; Jones, K.; Nanda, S.; Sun Zuxun; Barlett, M.; Hoffmann, G.; Marshall, J.; McClelland, J.; and others

    1988-11-01

    The polarization-transfer observables D/sub N//sub N/, D/sub S//sub S/, D/sub L//sub L/, D/sub L//sub S/, and D/sub S//sub L/ have been measured at 800 MeV for polarized proton inelastic scattering from /sup 1/H, /sup 2/H, and /sup 12/C with energy losses up to about 400 MeV. The scattering angles in the laboratory were 5/sup 0/, 11/sup 0/, and 20/sup 0/. No large differences between the observables for the three targets were seen. The data for /sup 12/C in the quasielastic region are reasonably well explained by nonrelativistic and relativistic models of one-step quasifree scattering. Specifically nuclear effects appear small in both the quasielastic and delta regions.

  11. Target structure independent $^7\\vec{Li}$ elastic scattering at low momentum transfers

    CERN Document Server

    Momotyuk, O A; Crisp, A M; Keeley, N; Kemper, K W; Liendo, J; Maréchal, F; Mezhevych, S Y; Roeder, B T; Rusek, K; Schmidt, B G; Wiedeking, M

    2006-01-01

    Analyzing powers and cross sections for the elastic scattering of polarized 7Li by targets of 6Li, 7Li and 12C are shown to depend only on the properties of the projectile for momentum transfers of less than 1.0 fm-1. The result of a detailed analysis of the experimental data within the framework of the coupled channels model with ground state reorientation and transitions to the excited states of the projectile and targets included in the coupling schemes are presented. This work suggests that nuclear properties of weakly-bound nuclei can be tested by elastic scattering experiments, independent of the target used, if data are acquired for momentum transfers less than ~1.0 fm-1.

  12. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Science.gov (United States)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan; Guo, Yanling; Chen, Ximeng

    2016-11-01

    Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5-22.5 keV C- and F- ions scattering on H2O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  13. The Radiative Transfer Approach to Rotational Motions - Estimation of Crustal Scattering Parameters

    OpenAIRE

    Peter Gaebler; Christoph Sens-Schönfelder; Korn, M.

    2013-01-01

    Monte Carlo solutions to the Radiative Transfer Equations are used to model translational and rotational motion seismogram envelopes in random elastic media. Crustal attenuation and scattering parameters are estimated in a nonlinear inversion process. High amounts of rotational energy can be measured in the seismic wave-field excited by earthquakes or even by ambient seismic noise sources. The observation of these three additional components of rotational motions can provide independent infor...

  14. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    Science.gov (United States)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  15. Three-dimensional simulation of the Ring effect in observations of scattered sun light using Monte Carlo radiative transfer models

    Directory of Open Access Journals (Sweden)

    T. Deutschmann

    2009-04-01

    Full Text Available We present a new technique for the quantitative simulation of the "Ring effect" for scattered light observations from various platforms and under different atmospheric situations. The method is based on radiative transfer calculations at only one wavelength λ0 in the wavelength range under consideration, and is thus computationally fast. The strength of the Ring effect is calculated from statistical properties of the photon paths for a given situation, which makes Monte Carlo radiative transfer models in particular appropriate. We quantify the Ring effect by the so called rotational Raman scattering probability, the probability that an observed photon has undergone a rotational Raman scattering event. The Raman scattering probability is independent from the spectral resolution of the instrument and can easily be converted into various definitions used to characterise the strength of the Ring effect. We compare the results of our method to the results of previous studies and in general good quantitative agreement is found. In addition to the simulation of the Ring effect, we developed a detailed retrieval strategy for the analysis of the Ring effect based on DOAS retrievals, which allows the precise determination of the strength of the Ring effect for a specific wavelength while using the spectral information within a larger spectral interval around the selected wavelength. Using our technique, we simulated synthetic satellite observation of an atmospheric scenario with a finite cloud illuminated from different sun positions. The strength of the Ring effect depends systematically on the measurement geometry, and is strongest if the satellite points to the side of the cloud which lies in the shadow of the sun.

  16. A wave-mechanical model of incoherent neutron scattering II. Role of the momentum transfer

    OpenAIRE

    Frauenfelder, Hans; Young, Robert D.; Fenimore, Paul W.

    2015-01-01

    We recently introduced a wave-mechanical model for quasi-elastic neutron scattering (QENS) in proteins. We call the model ELM for "Energy Landscape Model". We postulate that the spectrum of the scattered neutrons consists of lines of natural width shifted from the center by fluctuations. ELM is based on two facts: Neutrons are wave packets; proteins have low-lying substates that form the free-energy landscape (FEL). Experiments suggest that the wave packets are a few hundred micrometers long....

  17. Multiple scattering effects with cyclical terms in active remote sensing of vegetated surface using vector radiative transfer theory

    Science.gov (United States)

    The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...

  18. A polarization-based Thomson scattering technique for burning plasmas

    CERN Document Server

    Parke, E; Hartog, D J Den

    2013-01-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the scattered laser light. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the polarization state of the scattered photons. The resulting depolarization of the scattered light is temperature dependent and has been proposed elsewhere as a potential alternative to the traditional spectral decomposition technique. Following similar work, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures r...

  19. A Multiple Scattering Polarized Radiative Transfer Model: Application to HD 189733b

    CERN Document Server

    Kopparla, Pushkar; Zhang, Xi; Swain, Mark R; Wiktorowicz, Sloane J; Yung, Yuk L

    2015-01-01

    We present a multiple scattering vector radiative transfer model which produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet's atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partial...

  20. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    Energy Technology Data Exchange (ETDEWEB)

    Roger, M., E-mail: maxime.roger@insa-lyon.fr [Université de Lyon, CNRS, INSA-Lyon, CETHIL, UMR5008, F-69621 Villeurbanne (France); Caliot, C. [PROMES-UPR CNRS 6144, 7 rue du Four Solaire, 66120 Font Romeu Odeillo (France); Crouseilles, N. [INRIA-Rennes Bretagne-Atlantique (IPSO Project) and Université de Rennes 1 (IRMAR), Campus de Beaulieu, 35042 Rennes Cedex (France); Coelho, P.J. [Mechanical Engineering Department, LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa (Portugal)

    2014-10-15

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  1. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; S. Beedoe; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; K. Dow; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; L. Lu; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; R. Mohring; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-05-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c){sup 2}. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q{sup 2} the deuteron charge form factors G{sub C} and G{sub Q}. They are in good agreement with relativistic calculations and disagree with pQCD predictions.

  2. Multi-coupled single scattering method of solving vector radiative transfer equations

    Institute of Scientific and Technical Information of China (English)

    Sun Bin; Wang Han; Sun Xiao-Bing; Hong Jin; Zhang Yun-Jie

    2012-01-01

    A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is developed and made public on Internet.Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result,which shows high precision.The MCSS method is theoretically simple and clear,so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties,which provides effective support for research into polarized remote sensing.

  3. Tensor polarization in elastic electron-deuteron scattering to the highest possible momentum transfers

    CERN Document Server

    Garçon, M; Ahmidouch, A; Anklin, H; Arvieux, J; Ball, J; Beedoe, S; Beise, E J; Bimbot, L; Böglin, W; Breuer, H; Carlini, R; Chant, N S; Danagulyan, S; Dow, K; Ducret, J E; Dunne, J; Ewell, L A; Eyraud, L; Furget, C; Gilman, R; Glashausser, C; Gueye, P; Gustafsson, K K; Hafidi, K; Honegger, A; Jourdan, J; Kox, S; Kumbartzki, G; Lü, L; Lung, A; Mack, D; Markowitz, P; McIntyre, J; Meekins, D; Merchez, F; Mitchell, J; Möhring, R H; Mtingwa, S; Mrktchyan, H; Pitz, D; Qin, L; Ransome, R; Real, J S; Roos, P G; Rutt, P; Schmidt, W; Sawafta, R; Stepanyan, S; Stephenson, E J; Tieulent, R; Tomasi-Gustafsson, E; Turchinetz, W E; Vansyoc, K; Volmer, J; Voutier, E; Vulcan, W; Williamson, C; Wood, S A; Yan, C; Zhao, J; Zhao, W

    1999-01-01

    In elastic electron-deuteron scattering, the tensor polarization moments t sub 2 sub 0 , t sub 2 sub 1 and t sub 2 sub 2 , together with the unpolarized cross-sections, have been measured up to a momentum transfer of 1.8 (GeV/c) sup 2 , or 6.8 fm sup - sup 1. The experiment was performed at Jefferson Laboratory using the recoil deuteron polarimeter POLDER. Preliminary results are presented and discussed, especially in view of their significance concerning the applicability of perturbative QCD to this exclusive process.

  4. Is a nucleon core being seen in high-energy elastic pp scattering at large momentum transfer?

    CERN Document Server

    Islam, M M

    1978-01-01

    Recently proton-proton elastic scattering has been measured at CERN ISR for the equivalent laboratory energy 1496 GeV and at Fermilab for the laboratory energy 201 GeV to probe the momentum transfer region -t (4-12)/(GeV/c)/sup 2/. The new data show a number of distinctive features which presently popular models of diffraction cannot explain. The authors show that a model of pp elastic scattering suggested earlier to explain the scattering data at the lower energies (1969) provides a satisfactory agreement with the features of the new data qualitatively as well as quantitatively. In the model besides diffraction a hard-scattering process originating from the existence of a nucleon core is envisaged. The hard process is regarded as responsible for the large momentum transfer scattering and the Orear exponential fall-off of d sigma /dt. (19 refs).

  5. Longitudinal Spin Transfer to the $\\Lambda$ Hyperon in Semi-Inclusive Deep-Inelastic Scattering

    CERN Document Server

    Airapetian, A; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Balin, D; Beckmann, M; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Chen, T; Chen, X; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Grebenyuk, O; Gregor, I M; Hadjidakis, C; Hafidi, K; Hartig, M; Hasch, D; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, H; Lü, J; Lu, S; Lü, X; Ma, B Q; Maiheu, B; Makins, N C R; Manaenkov, S I; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Osborne, A; Pickert, N; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Sommer, W; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Vikhrov, V; Vincter, M G; Vogel, C; Volmer, J; Wang, S; Wendland, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P

    2006-01-01

    The transfer of polarization from a high-energy positron to a \\lam hyperon produced in semi-inclusive deep-inelastic scattering has been measured. The data have been obtained by the HERMES experiment at DESY using the 27.6 GeV longitudinally polarized positron beam of the HERA collider and unpolarized gas targets internal to the positron (electron) storage ring. The longitudinal spin transfer coefficient is found to be $\\dll = 0.11 \\pm 0.10 \\mathrm{(stat)} \\pm 0.03 \\mathrm{(syst)}$ at an average fractional energy carried by the \\lam hyperon $= 0.45$. The dependence of \\dll on both the fractional energy $z$ and the fractional longitudinal momentum $x_F$ is presented.

  6. RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Degl’Innocenti, Egidio Landi [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy)

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.

  7. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering

    Science.gov (United States)

    Lippitsch, Max E.

    1984-03-01

    A model is presented for the contribution of ground-state charge transfer between a metal and adsorbate to surface-enhanced Raman scattering (SERS). It is shown that this contribution can be understood using the vibronic theory for calculating Raman intensities. The enhancement is due to vibronic coupling of the molecular ground state to the metal states, the coupling mechanism being a modulation of the ground-state charge-transfer energy by the molecular vibrations. An analysis of the coupling operator gives the selection rules for this process, which turn out to be dependent on the overall symmetry of the adsorbate-metal system, even if the charge transfer is small enough for the symmetry of the adsorbate to remain the same as that of the free molecule. It is shown that the model can yield predictions on the properties of SERS, e.g., specificity to adsorption geometry, appearance of forbidden bands, dependence on the applied potential, and dependence on the excitation wavelength. The predictions are in good agreement with experimental results. It is also deduced from this model that in many cases atomic-scale roughness is a prerequisite for the observation of SERS. A result on the magnitude of the enhancement can only be given in a crude approximation. Although in most cases an additional electromagnetic enhancement seems to be necessary to give an observable signal, this charge-transfer mechanism should be important in many SERS systems.

  8. High Stability Low Scatter Telescope for a Space-based Gravitational Wave Observatory

    Science.gov (United States)

    Livas, Jeffrey; Sankar, Shannon

    2017-01-01

    A laser interferometer space-based gravitational wave observatory requires an optical telescope to efficiently transfer laser light between pairs of widely-separated sciencecraft. The application is precision interferometric metrology, and therefore requires the telescope to have high optical pathlength stability, and low scattered light performance. We discuss the expected on-orbit environment and present the latest design, including materials choice trades, surface roughness and cleanliness requirements, and an optical prescription optimized to reduce scattered light. We will also discuss some of the remaining system-level trades. This work is supported by NASA Strategic Astrophysics Technology grant 14-SAT14-0014.

  9. A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: pkk@gps.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)

    2016-01-20

    We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.

  10. Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jie [Univ. of Manitoba, Winnipeg (Canada)

    2012-01-01

    The goal of the Q-weak experiment is to make a measurement of the proton's weak charge QWp = 1 - 4 sin2W2(θW2(θWWp by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q2 = 0.026 (GeV/c)2 and forward angles (8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.

  11. Tomographic imaging of flourescence resonance energy transfer in highly light scattering media

    Science.gov (United States)

    Soloviev, Vadim Y.; McGinty, James; Tahir, Khadija B.; Laine, Romain; Stuckey, Daniel W.; Mohan, P. Surya; Hajnal, Joseph V.; Sardini, Alessandro; French, Paul M. W.; Arridge, Simon R.

    2010-02-01

    Three-dimensional localization of protein conformation changes in turbid media using Förster Resonance Energy Transfer (FRET) was investigated by tomographic fluorescence lifetime imaging (FLIM). FRET occurs when a donor fluorophore, initially in its electronic excited state, transfers energy to an acceptor fluorophore in close proximity through non-radiative dipole-dipole coupling. An acceptor effectively behaves as a quencher of the donor's fluorescence. The quenching process is accompanied by a reduction in the quantum yield and lifetime of the donor fluorophore. Therefore, FRET can be localized by imaging changes in the quantum yield and the fluorescence lifetime of the donor fluorophore. Extending FRET to diffuse optical tomography has potentially important applications such as in vivo studies in small animal. We show that FRET can be localized by reconstructing the quantum yield and lifetime distribution from time-resolved non-invasive boundary measurements of fluorescence and transmitted excitation radiation. Image reconstruction was obtained by an inverse scattering algorithm. Thus we report, to the best of our knowledge, the first tomographic FLIM-FRET imaging in turbid media. The approach is demonstrated by imaging a highly scattering cylindrical phantom concealing two thin wells containing cytosol preparations of HEK293 cells expressing TN-L15, a cytosolic genetically-encoded calcium FRET sensor. A 10mM calcium chloride solution was added to one of the wells to induce a protein conformation change upon binding to TN-L15, resulting in FRET and a corresponding decrease in the donor fluorescence lifetime. The resulting fluorescence lifetime distribution, the quantum efficiency, absorption and scattering coefficients were reconstructed.

  12. Demonstration of scattering suppression in retardation-based plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Nielsen, M.G.; Pors, A.; Nielsen, Rasmus Bundgaard;

    2010-01-01

    Modifications in scattering strength of and local field enhancement by retardation-based plasmonic nanoantennas when being transformed from straight nanorods to split-ring resonators are investigated experimentally. Scattering properties are characterized with linear reflection and extinction...... is decreased, a feature that is attributed to the decrease in the nanoantenna electric-dipole response when bending the nanorods. The experimental observations are corroborated with numerical simulations using the finite-element method....

  13. Geometric Feature Extraction and Model Reconstruction Based on Scattered Data

    Institute of Scientific and Technical Information of China (English)

    胡鑫; 习俊通; 金烨

    2004-01-01

    A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated to reconstruct the mesh surface model. The curvatures of cloud data were calculated based on the mesh surface, and the point data were segmented by edge-based method; Every patch of data was fitted by quadric surface of freeform surface, and the type of quadric surface was decided by parameters automatically, at last the whole CAD model was created. An example of mouse model was employed to confirm the effect of the algorithm.

  14. Resonant charge transfer in low-energy ion scattering: Information depth in the reionization regime.

    Science.gov (United States)

    Primetzhofer, D; Spitz, M; Taglauer, E; Bauer, P

    2011-11-01

    Time-Of-Flight Low-energy ion scattering (TOF-LEIS) experiments were performed for He(+) ions scattered from Cu(100) and Cu(0.5)Au(0.5)(100). Probabilities for resonant neutralization and reionization in close collisions were deduced in a wide energy range. To learn about the information depth in LEIS, in a next step ion spectra were analyzed for polycrystalline Cu samples. The relative yield of backscattered projectiles, which have undergone distinct charge exchange processes, was calculated. Results indicate a strong contribution to the ion yield that origins from particles reionized in a close collision in deeper layers when experiments are performed at energies where reionization is prominent. The surface sensitivity of the ion signal at different energies is quantified. Based on these results, the total ion spectrum was quantitatively modelled by two consistent, but different approaches.

  15. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    Science.gov (United States)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  16. NOTE: Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images

    Science.gov (United States)

    Larsson, Anne; Johansson, Lennart

    2003-11-01

    In single photon emission computed tomography (SPECT), transmission-dependent convolution subtraction has been shown to be useful when correcting for scattered events. The method is based on convolution subtraction, but includes a matrix of scatter fractions instead of a global scatter fraction. The method can be extended to iteratively improve the scatter estimate, but in this note we show that this requires a modification of the theory to use scatter-to-total scatter fractions for the first iteration only and scatter-to-primary fractions thereafter. To demonstrate this, scatter correction is performed on a Monte Carlo simulated image of a point source of activity in water. The modification of the theory is compared to corrections where the scatter fractions are based on the scatter-to-total ratio, using one and ten iterations. The resulting ratios of subtracted to original counts are compared to the true scatter-to-total ratio of the simulation and the most accurate result is found for our modification of the theory.

  17. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  18. Radiative transfer modeling of the enigmatic scattering polarization in the solar NaI D1 line

    CERN Document Server

    Belluzzi, Luca; Degl'Innocenti, Egidio Landi

    2015-01-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of NaI, with emphasis on the enigmatic D1 line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polariza...

  19. Thermal invisibility based on scattering cancellation and mantle cloaking

    KAUST Repository

    Farhat, M.

    2015-04-30

    We theoretically and numerically analyze thermal invisibility based on the concept of scattering cancellation and mantle cloaking. We show that a small object can be made completely invisible to heat diffusion waves, by tailoring the heat conductivity of the spherical shell enclosing the object. This means that the thermal scattering from the object is suppressed, and the heat flow outside the object and the cloak made of these spherical shells behaves as if the object is not present. Thermal invisibility may open new vistas in hiding hot spots in infrared thermography, military furtivity, and electronics heating reduction.

  20. Modeling near-field radiative heat transfer from sharp objects using a general 3d numerical scattering technique

    CERN Document Server

    McCauley, Alexander P; Krüger, Matthias; Johnson, Steven G

    2011-01-01

    We examine the non-equilibrium radiative heat transfer between a plate and finite cylinders and cones, making the first accurate theoretical predictions for the total heat transfer and the spatial heat flux profile for three-dimensional compact objects including corners or tips. We find qualitatively different scaling laws for conical shapes at small separations, and in contrast to a flat/slightly-curved object, a sharp cone exhibits a local \\emph{minimum} in the spatially resolved heat flux directly below the tip. The method we develop, in which a scattering-theory formulation of thermal transfer is combined with a boundary-element method for computing scattering matrices, can be applied to three-dimensional objects of arbitrary shape.

  1. Infrared radiative transfer modelling in a 3D scattering cloudy atmosphere: Application to limb sounding measurements of cirrus

    Energy Technology Data Exchange (ETDEWEB)

    Ewen, G.B.L. [Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU (United Kingdom)]. E-mail: gewen@atm.ox.ac.uk; Grainger, R.G. [Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU (United Kingdom); Lambert, A. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Baran, A.J. [Met Office, Exeter (United Kingdom)

    2005-11-15

    The Monte Carlo cloud scattering forward model (McClouds{sub F}M) has been developed to simulate limb radiative transfer in the presence of cirrus clouds, for the purposes of simulating cloud contaminated measurements made by an infrared limb sounding instrument, e.g. the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). A reverse method three-dimensional Monte Carlo transfer model is combined with a line-by-line model for radiative transfer through the non-cloudy atmosphere to explicitly account for the effects of multiple scattering by the clouds. The ice cloud microphysics are characterised by a size distribution of randomly oriented ice crystals, with the single scattering properties of the distribution determined by accurate calculations accounting for non-spherical habit. A comparison of McClouds{sub F}M simulations and real MIPAS spectra of cirrus shows good agreement. Of particular interest are several noticeable spectral features (i.e. H{sub 2}O absorption lines) in the data that are replicated in the simulations: these can only be explained by upwelling tropospheric radiation scattered into the line-of-sight by the cloud ice particles.

  2. Scattering effect in radiative heat transfer during selective laser sintering of polymers

    Science.gov (United States)

    Liu, Xin; Boutaous, M'hamed; Xin, Shihe

    2016-10-01

    The aim of this work is to develop an accurate model to simulate the selective laser sintering (SLS) process, in order to understand the multiple phenomena occurring in the material and to study the influence of each parameter on the quality of the sintered parts. A numerical model, coupling radiative and conductive heat transfers in a polymer powder bed providing a local temperature field, is proposed. To simulate the polymer sintering by laser heating as in additive manufacturing, a double-lines scanning of a laser beam over a thin layer of polymer powder is studied. An effective volumetric heat source, using a modified Monte Carlo method, is estimated from laser radiation scattering and absorption in a semi-transparent polymer powder bed. In order to quantify the laser-polymer interaction, the heating and cooling of the material is modeled and simulated with different types heat sources by both finite elements method (FEM) and discrete elements method (DEM). To highlight the importance of introducing a semi-transparent behavior of such materials and in order to validate our model, the results are compared with works taken from the literature.

  3. Inline Modeling of Cross-Beam Energy Transfer and Raman Scattering in NIF Hohlraums

    Science.gov (United States)

    Strozzi, David; Bailey, D. S.; Thomas, C. A.; Sepke, S. M.; Kerbel, G. D.; Michel, P.; Divol, L.; Jones, O. S.

    2015-11-01

    Inline models of cross-beam energy transfer (CBET) and stimulated Raman Scattering (SRS) have been added to the radiation-hydrodynamics codes Hydra and Lasnex. Both processes are important in hohlraums with high gas fill density, particularly for implosion symmetry. Coupled-mode equations are solved along laser ray paths for both models. The inline model shows the SRS gain rate exceeds that of SRS light absorption along most of the laser ray path, and most SRS light escapes the target. Most SRS-driven Langmuir wave power is deposited slightly inside the laser entrance hole (LEH), which reduces how much inner-beam power reaches the equator. This also makes the LEH hotter, which affects CBET. Compared to removing SRS power from the incident laser, the inline SRS model does not change total x-ray drive but makes the drive stronger from the poles than the equatorial waist. This reduces the need to artificially clamp CBET in order to match implosion shape data, which has historically been needed for high gas fill hohlraums. We are applying the models to a set of NIF shots with varying gas fill densities. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  4. A silver nanorod resonance rayleigh scattering-energy transfer analytical platform for trace tea polyphenols.

    Science.gov (United States)

    Liang, Aihui; Wang, Yaohui; Wen, Guiqing; Zhang, Xinghui; Luo, Yanghe; Jiang, Zhiliang

    2016-04-15

    The stable silver nanorod (AgNR) sol in red was prepared by the two-step procedure of NaBH4-H2O2 and citrate heating reduction, and it exhibited a strong resonance Rayleigh scattering (RRS) peak at 346 nm. In pH 3.8 HAc-NaAc buffer solution, tea polyphenols (TP) reacted with ammonium molybdate (AM) to form yellow organic molybdate (OM) as receptor that was closed to the donor of AgNR, the RRS energy transfer (RRS-ET) takes place, owing to the overlapping between the AgNR RRS spectra and OM absorption spectra. When TP concentration increased, the RRS intensity decreased due to the RRS-ET increasing. So, a simple and sensitive AgNR surface plasmon RRS-ET analytical platform was fabricated to detect trace TP in the range of 0.05-0.85 μg/mL, with a detection limit of 0.03 μg/mL TP. The TP in tea samples was analyzed by this RRS-ET analysis platform, with satisfactory results.

  5. Studies of diffractive scattering of photons at large momentum transfer and of the VFPS detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Hreus, Tomas

    2008-11-15

    In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep {yields} eXp in the regime of high photon virtuality (Q{sup 2}>few GeV{sup 2}), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb{sup -1} was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F{sup D(3)}{sub 2} at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x{sub P} is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, {gamma}p {yields} {gamma}Y, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p{sub T} > 2 GeV. Large p{sub T} imply the presence of the hard scale t (vertical stroke t vertical stroke {approx_equal} p{sup 2}{sub T}) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb{sup -1} of data collected in the 1999-2000 running period. Cross sections {sigma}(W) as a function of the incident photon-proton centre of mass energy, W, and d{sigma}/d vertical stroke t vertical stroke are measured in the range Q{sup 2}<0.01 GeV{sup 2}, 175

  6. Geometry and quadratic nonlinearity of charge transfer complexes in solution using depolarized hyper-Rayleigh scattering.

    Science.gov (United States)

    Pandey, Ravindra; Ghosh, Sampa; Mukhopadhyay, S; Ramasesha, S; Das, Puspendu K

    2011-01-28

    We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, β(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D=I(2ω,X,X)/I(2ω,Z,X) and D(')=I(2ω,X,C)/I(2ω,Z,C) in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, β(HRS), and the value of macroscopic depolarization ratios, D and D('), are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical β(HRS), D and D(') values as a function of the geometry of the complex. The calculated β(HRS), D, and D(') values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30° is observed. Thus, we have demonstrated in

  7. Scattering angle base filtering of the inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.

  8. An effective scatter correction method based on single scatter simulation for a 3D whole-body PET scanner

    Institute of Scientific and Technical Information of China (English)

    Gao Fei; Yamada Ryoko; Watanabe Mitsuo; Liu Hua-Feng

    2009-01-01

    Hamamatsu SHR74000 is a newly designed full three-dimensional(3D)whole body positron emission tomography (PET)scanner with small crystal size and large field of view(FOV).With the improvement of sensitivity,the scatter events increase significantly at the same time,especially for large objects.Monte Carlo simulations help US to understand the scatter phenomena and provide good references for scatter correction.In this paper,we introduce an effective scatter correction method based on single scatter simulation for the new PET scanner,which accounts for the full 3D scatter correction.With the results from Monte Carlo simulations,we implement a new scale method with special concentration on scatter events from outside the axial FOV and multiple scatter events.The effects of scatter correction are investigated and evaluated by phantom experiments;the results show good improvements in quantitative accuracy and contrast of the images,even for large objects.

  9. Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations

    OpenAIRE

    Uskoković, Vuk

    2012-01-01

    Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including...

  10. Ultraviolet refractometry using field-based light scattering spectroscopy

    OpenAIRE

    2009-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angula...

  11. Differential, integral, and momentum-transfer cross sections for elastic electron scattering by neon - 5 to 100 eV

    Science.gov (United States)

    Register, D. F.; Trajmar, S.

    1984-01-01

    Relative elastic-scattering differential cross sections were measured in the 5-100-eV impact energy and 10-145 deg angular ranges. Normalization of these cross sections was achieved by utilizing accurate total electron-scattering cross sections. A phase-shift analysis of the angular distributions in terms of real phase shifts has been carried out. From the differential cross sections, momentum-transfer cross sections were obtained and the values of the critical energy and angle were established (associated with the lowest value of the differential cross section) as 62.5 + or - 2.5 eV and 101.7 deg + or - 1.5 deg, respectively. The present phase shifts, the critical parameters, and differential, integral, and momentum-transfer cross sections are compared to previous experimental and theoretical results. The error associated with the present data is about 10 percent.

  12. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres. Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star

    Science.gov (United States)

    Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B. V.; Hansteen, V. H.; Leenaarts, J.

    2010-07-01

    Aims: We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. Methods: A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. Results: We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 ⪉ -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.

  13. The Inclusion of Raman Scattering Effects in the Combined Ocean-Atmosphere Radiative Transfer Model MOMO to Estimate the Influence of Raman Scattering in Case 1 Waters on Satellite Ocean Remote Sensing Applications

    Science.gov (United States)

    von Bismarck, J.; Fischer, J.

    2011-12-01

    Raman scattering of the solar lightfield, due to energy absorption by vibrational modes of water molecules, may contribute significantly to the signals observed by remote sensing satellites over water. The inelastic fraction of the water-leaving radiance for clear water reaches values of 30% in the red part of the visible spectrum, and still reaches values of several percent in moderately turbid waters. Furthermore, inelastic scattering due to chlorophyll and yellow substance fluorescence adds to this fraction. For these reasons the inclusion of inelastic scattering sources into radiative-transfer models, used in ocean remote sensing applications or atmosphere remote sensing over the ocean, can be important. MOMO is a computer code based on the matrix-operator method designed to calculate the lightfield in the stratified atmosphere-ocean system. It has been developed at the Institute for Space Sciences of the Freie Universität Berlin and provides the full polarization state (in the newest version) and an air-sea interface accounting for radiative effects of the wind roughened water surface. The inclusion of Raman scattering effects is done by a processing module, that starts a primary MOMO program run with a high spectral resolution, to calculate the radiative energy available for inelastic scattering at each model layer boundary. The processing module then calculates the first order Raman source-terms for every observation wavelength at every layer boundary, accounting for the non-isotropicity (including the azimuthal dependence) of the Raman phase-function, the spectral redistribution, and the spectral dependence of the Raman scattering coefficient. These elementary source-terms then serve as input for the second program run, which then calculates the source-terms of all model layers, using the doubling-adding method, and the resulting radiance field. Higher orders of the Raman contribution can be computed with additional program runs. Apart from the Raman

  14. Disordered Cellulose-Based Nanostructures for Enhanced Light Scattering

    Science.gov (United States)

    2017-01-01

    Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light–matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible, and when compared to ordinary microfiber-based paper, it shows enhanced scattering strength (×4), yielding a transport mean free path as low as 3.5 μm in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation. PMID:28191920

  15. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yaqiu [Center for Wave Scattering and Remote Sensing, Fudan University, Shanghai 200433 (China)]. E-mail: yqjin@fundan.ac.cn; Liang Zichang [Center for Wave Scattering and Remote Sensing, Fudan University, Shanghai 200433 (China)

    2005-05-15

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed.

  16. Personalized recommendation based on heat bidirectional transfer

    Science.gov (United States)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  17. Hermite interpolation of scattered data based on the assistant surface

    Institute of Scientific and Technical Information of China (English)

    WANG Quan-wei; LI Xue-yi; LI Bin; WANG Xiao-chun

    2006-01-01

    An assistant surface was constructed on the base of boundary that being automatically extracted from the scattered data. The parameters of every data point corresponding to the assistant surface and their applied fields were calculated respectively. In every applied region, a surface patch was constructed by a special Hermite interpolation.The final surface can be obtained by a piecewise bicubic Hermite interpolation in the aggregate of applied regions of metrical data. This method avoids the triangulation problem.Numerical results indicate that it is efficient and accurate.

  18. Vibrational imaging based on stimulated Raman scattering microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nandakumar, P; Kovalev, A; Volkmer, A [3. Physikalisches Institut, Universitaet Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)], E-mail: a.volkmer@physik.uni-stuttgart.de

    2009-03-15

    A stimulated Raman scattering microscope with near-infrared picosecond laser pulses at high repetition rates (76 MHz) and radio-frequency lock-in detection is accomplished. Based on stimulated Raman loss detection, we demonstrate noninvasive point-by-point vibrational mapping of chemical and biological samples with high sensitivity and without the requirement for labeling of the sample with natural or artificial fluorophores. We experimentally demonstrate a major benefit of this technique, which is the capability to respond exclusively to the linear Raman-resonance properties of the sample, thus allowing a direct quantitative interpretation of image contrast in terms of the number density of Raman-active modes.

  19. Vibrational imaging based on stimulated Raman scattering microscopy

    Science.gov (United States)

    Nandakumar, P.; Kovalev, A.; Volkmer, A.

    2009-03-01

    A stimulated Raman scattering microscope with near-infrared picosecond laser pulses at high repetition rates (76 MHz) and radio-frequency lock-in detection is accomplished. Based on stimulated Raman loss detection, we demonstrate noninvasive point-by-point vibrational mapping of chemical and biological samples with high sensitivity and without the requirement for labeling of the sample with natural or artificial fluorophores. We experimentally demonstrate a major benefit of this technique, which is the capability to respond exclusively to the linear Raman-resonance properties of the sample, thus allowing a direct quantitative interpretation of image contrast in terms of the number density of Raman-active modes.

  20. Event-based processing of neutron scattering data

    Science.gov (United States)

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik

    2015-12-01

    Many of the world's time-of-flight spallation neutrons sources are migrating to recording individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode which preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final uncertainties compared to traditional methods, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniques will be shown for comparison.

  1. Secure information transfer based on computing reservoir

    Science.gov (United States)

    Szmoski, R. M.; Ferrari, F. A. S.; de S. Pinto, S. E.; Baptista, M. S.; Viana, R. L.

    2013-04-01

    There is a broad area of research to ensure that information is transmitted securely. Within this scope, chaos-based cryptography takes a prominent role due to its nonlinear properties. Using these properties, we propose a secure mechanism for transmitting data that relies on chaotic networks. We use a nonlinear on-off device to cipher the message, and the transfer entropy to retrieve it. We analyze the system capability for sending messages, and we obtain expressions for the operating time. We demonstrate the system efficiency for a wide range of parameters. We find similarities between our method and the reservoir computing.

  2. Scattered Data Processing Approach Based on Optical Facial Motion Capture

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2013-01-01

    Full Text Available In recent years, animation reconstruction of facial expressions has become a popular research field in computer science and motion capture-based facial expression reconstruction is now emerging in this field. Based on the facial motion data obtained using a passive optical motion capture system, we propose a scattered data processing approach, which aims to solve the common problems of missing data and noise. To recover missing data, given the nonlinear relationships among neighbors with the current missing marker, we propose an improved version of a previous method, where we use the motion of three muscles rather than one to recover the missing data. To reduce the noise, we initially apply preprocessing to eliminate impulsive noise, before our proposed three-order quasi-uniform B-spline-based fitting method is used to reduce the remaining noise. Our experiments showed that the principles that underlie this method are simple and straightforward, and it delivered acceptable precision during reconstruction.

  3. Communication: Energy transfer and reaction dynamics for DCl scattering on Au(111): An ab initio molecular dynamics study

    Science.gov (United States)

    Kolb, Brian; Guo, Hua

    2016-07-01

    Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment.

  4. On the use of a finite difference method for solving anisotropic scattering problems. [for atmospheric radiative transfer

    Science.gov (United States)

    Barkstrom, B. R.

    1975-01-01

    A new method of solving the radiative transfer equation is developed in which the scattering and absorption coefficients may have arbitrary variations with depth, and in which both internal (thermal) emission and incident radiation are allowed. Specular and diffuse reflection at both boundaries also is taken into account. The method begins by forming a paired set of coupled first-order differential equations for the symmetric and antisymmetric parts of the radiation field after writing the scattering integral as a numerical quadrature. These differential equations are broken into finite difference form, in which the symmetric and antisymmetric parts of the radiation field are found on alternate grid points. Numerical results for a number of test problems are shown, demonstrating that the method is very fast, that it returns specific intensities and fluxes that are accurate to at least a percent, and that it can be applied to optically thick problems.

  5. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada); Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada)

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  6. [Heart rate variability study based on a novel RdR RR Intervals Scatter Plot].

    Science.gov (United States)

    Lu, Hongwei; Lu, Xiuyun; Wang, Chunfang; Hua, Youyuan; Tian, Jiajia; Liu, Shihai

    2014-08-01

    On the basis of Poincare scatter plot and first order difference scatter plot, a novel heart rate variability (HRV) analysis method based on scatter plots of RR intervals and first order difference of RR intervals (namely, RdR) was proposed. The abscissa of the RdR scatter plot, the x-axis, is RR intervals and the ordinate, y-axis, is the difference between successive RR intervals. The RdR scatter plot includes the information of RR intervals and the difference between successive RR intervals, which captures more HRV information. By RdR scatter plot analysis of some records of MIT-BIH arrhythmias database, we found that the scatter plot of uncoupled premature ventricular contraction (PVC), coupled ventricular bigeminy and ventricular trigeminy PVC had specific graphic characteristics. The RdR scatter plot method has higher detecting performance than the Poincare scatter plot method, and simpler and more intuitive than the first order difference method.

  7. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu, E-mail: usst-caixs@163.com [Institute of Particle and Two-Phase Flow Measurement, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093 (China)

    2015-11-15

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.

  8. Evaluation of Influence of Multiple Scattering Effect in Light-Scattering-Based Applications

    Institute of Scientific and Technical Information of China (English)

    XU Sheng-Hua; SUN Zhi-Wei

    2007-01-01

    The extinction cross sections of a system containing two particles are calculated by the T-matrix method, and the results are compared with those of two single particles with single-scattering approximation. The necessity of the correction of the refractive indices of water and polystyrene for different incident wavelengths is particularly addressed in the calculation. By this means, the volume fractions allowed for certain accuracy requirements of single-scattering approximation in the light scattering experiment can be evaluated. The volume fractions calculated with corrected refractive indices are compared with those obtained with fixed refractive indices which have been rather commonly used, showing that fixed refractive indices may cause significant error in evaluating multiple scattering effect. The results also give a simple criterion for selecting the incident wavelength and particle size to avoid the 'blind zone' in the turbidity measurement, where the turbidity change is insensitive to aggregation of two particles.

  9. Search for effects beyond the Born approximation in polarization transfer observables in $\\vec{e}p$ elastic scattering

    CERN Document Server

    Meziane, M; Jones, M K; Luo, W; Pentchev, L; Perdrisat, C F; Puckett, A J R; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Ates, O; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Kang, H; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Markowitz, P; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nuruzzaman,; Nedev, S; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P E; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Subedi, R; Suleiman, R; Tomasi-Gustafsson, E; Vasiliev, A; Vanderhaeghen, M; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L

    2010-01-01

    Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton form factor ratio $G_{Ep}/G_{Mp}$ obtained from cross section and polarization measurements. One possible explanation for this difference is a two-photon-exchange contribution. We report the results of the JLab Hall C $GEp2\\gamma$ experiment, which measured the kinematical dependence of polarization transfer observables in elastic electron-proton scattering at $Q^2=2.5$ GeV$^2$, in search of effects beyond the Born approximation. For a wide range of values of the kinematic factor $\\epsilon$ ($\\epsilon=$0.15, 0.63, and 0.77), the proton polarization component ratio and the longitudinal polarization transfer component were measured with statistical uncertainties of $\\pm$0.01 and $\\pm$0.006 and systematic uncertainties of 0.013 and 0.01, respectively.

  10. A Comprehensive Propagation Prediction Model Comprising Microfacet Based Scattering and Probability Based Coverage Optimization Algorithm

    OpenAIRE

    A. S. M. Zahid Kausar; Ahmed Wasif Reza; Lau Chun Wo; Harikrishnan Ramiah

    2014-01-01

    Although ray tracing based propagation prediction models are popular for indoor radio wave propagation characterization, most of them do not provide an integrated approach for achieving the goal of optimum coverage, which is a key part in designing wireless network. In this paper, an accelerated technique of three-dimensional ray tracing is presented, where rough surface scattering is included for making a more accurate ray tracing technique. Here, the rough surface scattering is represented...

  11. A Comprehensive Propagation Prediction Model Comprising Microfacet Based Scattering and Probability Based Coverage Optimization Algorithm

    OpenAIRE

    Kausar, A. S. M. Zahid; Reza, Ahmed Wasif; Wo, Lau Chun; Ramiah, Harikrishnan

    2014-01-01

    Although ray tracing based propagation prediction models are popular for indoor radio wave propagation characterization, most of them do not provide an integrated approach for achieving the goal of optimum coverage, which is a key part in designing wireless network. In this paper, an accelerated technique of three-dimensional ray tracing is presented, where rough surface scattering is included for making a more accurate ray tracing technique. Here, the rough surface scattering is represented ...

  12. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions.

  13. Maximizing the information transfer in a quantum-limited light-scattering system

    DEFF Research Database (Denmark)

    Lading, Lars; Jørgensen, Thomas Martini

    1990-01-01

    A quantum-limited light-scattering system is considered. The spatial configuration that maximizes a given figure of merit is investigated, assuming that the emitted light has Poisson photon statistics. A specific system for measuring the velocity of a small particle is considered as an example...

  14. Portable fiber sensors based on surface-enhanced Raman scattering.

    Science.gov (United States)

    Yang, Xuan; Tanaka, Zuki; Newhouse, Rebecca; Xu, Qiao; Chen, Bin; Chen, Shaowei; Zhang, Jin Z; Gu, Claire

    2010-12-01

    Two portable molecular sensing systems based on surface-enhanced Raman scattering (SERS) have been experimentally demonstrated using either a tip-coated multimode fiber (TCMMF) or a liquid core photonic crystal fiber (LCPCF) as the SERS probe. With Rhodamine 6G as a test molecule, the TCMMF-portable SERS system achieved 2-3 times better sensitivity than direct sampling (focusing the laser light directly into the sample without the fiber probe), and a highly sensitive LCPCF-portable SERS system reached a sensitivity up to 59 times that of direct sampling, comparable to the sensitivity enhancement achieved using fiber probes in the bulky Renishaw system. These fiber SERS probes integrated with a portable Raman spectrometer provide a promising scheme for a compact and flexible molecular sensing system with high sensitivity and portability.

  15. 2D Static Light Scattering for Dairy Based Applications

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke

    Throughout this thesis we investigate a recently introduced optical technique denoted 2D static light scattering (2DSLS). The technique is remote sensing, non-invasive, highly flexible, and appears to be well suited for in-line process control. Moreover, the output signal contains contributions......, this specific process control can be highly beneficial. To provide suitable reference measures on the actual microstructure, we investigate how to quantify micrographs of yogurts objectively. We provide a comparative study, that includes a broad range of different image texture descriptors....... from several different optical phenomena, which can be utilised to provide information on chemical composition and underlying microstructure of an investigated sample. The main goal of this thesis is to provide an exploratory study of the 2DSLS technique in relation to dairy based applications...

  16. A passive FPAA based RF scatter meteor detector

    CERN Document Server

    Popowicz, Adam; Bernacki, Krzysztof; Fietkiewicz, Karol

    2015-01-01

    In the article we present a hardware meteor detector. The detection principle is based on the electromagnetic wave reflection from the ionized meteor trail in the atmosphere. The detector uses the ANADIGM field programmable analogue array (FPAA), which is an attractive alternative for a typically used detecting equipment - a PC computer with dedicated software. We implement an analog signal path using most of available FPAA resources to obtain precise audio signal detection. Our new detector was verified in collaboration with the Polish Fireball Network - the organization which monitors meteor activity in Poland. When compared with currently used signal processing PC software employing real radio meteor scatter signals, our low-cost detector proved to be more precise and reliable. Due to its cost and efficiency superiority over the current solution, the presented module is going to be implemented in the planned distributed detectors system.

  17. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Kosar, Ali; Peles, Yoav [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2007-03-15

    Flow boiling of R-123 in a hydrofoil-based micro pin fin heat sink was investigated. Average two-phase heat transfer coefficients were obtained over effective heat fluxes ranging from 19 to 312 W/cm{sup 2} and mass fluxes from 976 to 2349 kg/m{sup 2} s. The paper presents a flow map, which divides the data into three flow pattern regions: bubbly, wavy intermittent and spray-annular flows. Heat transfer coefficient trends and flow morphologies were used to infer boiling heat transfer mechanisms. Existing conventional scale correlations for circular tubes resulted in large scatter and were not able to predict the heat transfer coefficients accurately. (author)

  18. Transfer line scattering model of therapeutic hadron beams and applications to nozzle and gantry optimization

    Science.gov (United States)

    Palm, M.; Benedikt, M.; Dorda, U.

    2013-01-01

    The field of hadron therapy is growing rapidly with several facilities currently being planned, under construction or in commissioning worldwide. In the “active scanning” irradiation technique, the target is irradiated using a narrow pencil beam that is scanned transversally over the target while the penetration depth is altered with the beam energy. Together, the target dose can thereby be conformed in all three dimensions to the shape of the tumor. For applications where a sharp lateral beam penumbra is required in order to spare critical organs from unwanted dose, beam size blowup due to scattering in on-line beam diagnostic monitors, air gaps and passive elements like the ripple filter must be minimized. This paper presents a model for transverse scattering of therapeutic hadron beams along arbitrary multislab geometries. The conventional scattering formulation, which is only applicable to a drift space, is extended to not only take beam optics into account, but also non-Gaussian transverse beam profiles which are typically obtained from the slow resonant extraction from a synchrotron. This work has been carried out during the design phase of the beam delivery system for MedAustron, an Austrian hadron therapy facility with first patient treatment planned for the end of 2015. Irradiation will be performed using active scanning with proton and carbon ion beams. As a direct application of the scattering model, design choices for the MedAustron proton gantry and treatment nozzles are evaluated with respect to the transverse beam profile at the focal point; in air and at the Bragg peak.

  19. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    Science.gov (United States)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  20. Study of heat transfer in CI engine using heat transfer correlation based on intake jet velocity

    Energy Technology Data Exchange (ETDEWEB)

    Sharief, A. [Sri Siddharhta Inst. of Technology, Tumkur, Karnataka (India); Samaga, B.S.; Shrinivas Rao, B.R. [Nitte Mahalinga Adyantaya Institute of Technology, Karkala, Karnataka (India); JAntonyc, A. [Sahyadri Inst. of Technology, Mangalore, Karnataka (India)

    2009-07-01

    A reliable heat transfer formulation is needed to simulate reciprocating combustion engines. In order to reduce heat loss and improve thermal efficiency, it is necessary to calculate the rate of heat transfer from the working fluid to the combustion chamber walls. The thermal stresses in the engine components must also be determined. In this study, the author calculated heat transfer coefficient in a diesel engine using a heat transfer correlation based on intake jet velocity instead of mean piston speed. Experiments were conducted in a diesel engine with natural aspiration of hot air at 150 to 300 degrees C. Peak temperature was 1100 degrees C at various loads. The convective heat transfer coefficient and radiative heat transfer coefficient component was also determined separately at various loads. This model based on intake jet velocity instead of mean piston speed was found to be more realistic when considering the influence of gas velocities on the thermal boundary layer thickness. 11 refs., 12 figs.

  1. Differential, elastic integral and moment transfer cross sections for electron scattering from N2 at intermediate- and high-energies

    Institute of Scientific and Technical Information of China (English)

    Shi De-Heng; Liu Yu-Fang; Sun Jin-Feng; Zhu Zun-Lue; Yang Xiang-Dong

    2005-01-01

    A complex optical model potential modified by incorporating the concept of bonded atom, with the overlapping effect of electron clouds between two atoms in a molecule taken into consideration, is firstly employed to calculate the differential cross sections, elastic integral cross sections, and moment transfer cross sections for electron scattering from molecular nitrogen over the energy range 300-1000eV by using additivity rule model at Hartree-Fock level. The bondedatom concept is used in the study of the complex optical model potential composed of static, exchange, correlation polarization and absorption contributions. The calculated quantitative molecular differential cross sections, elastic integral cross sections, and moment transfer cross sections are compared with the experimental and theoretical ones wherever available, and they are found to be in good agreement with each other. It is shown that the additivity rule model together with the complex optical model potential modified by incorporating the concept of bonded atom is completely suitable for the calculations of differential cross section, elastic integral cross section and moment transfer cross section over the intermediate- and high-energy ranges.

  2. Compton Scattering Cross Section on the Proton at High Momentum Transfer

    CERN Document Server

    Danagoulian, A; Annand, J R M; Bertin, P Y; Bimbot, L; Bosted, P; Calarco, J R; Camsonne, A; Chang, C C; Chang, T H; Chen, J P; Choi, Seonho; Chudakov, E; De Jager, C W; Degtyarenko, P; Deur, A; Dutta, D; Egiyan, K; Gao, H; Garibaldi, F; Gayou, O; Gilman, R; Glamazdin, A; Glashausser, C; Gómez, J; Hamilton, D J; Hansen, J O; Hayes, D; Higinbotham, D W; Hinton, W; Horn, T; Howell, C; Hunyady, T; Hyde-Wright, C E; Jiang, X; Jones, M K; Ketikyan, A; Khandaker, M; Koubarovski, V; Krämer, K; Kumbartzki, G; Laveissière, G; Le Rose, J; Lindgren, R A; Mamyan, V H; Margaziotis, D J; Markowitz, P; McCormick, K; Meziani, Z E; Michaels, R; Moussiegt, P; Nanda, S; Nathan, A M; Nelyubin, V V; Nikolenko, D M; Norum, B E; Paschke, K; Pentchev, L; Perdrisat, C F; Piasetzky, E; Pomatsalyuk, R I; Punjabi, V A; Rachek, Igor A; Radyushkin, A; Reitz, B; Roché, R; Roedelbronn, M; Ron, G; Sabatie, F; Saha, A; Savvinov, N; Shahinyan, A; Shestakov, Yu V; Sirca, S; Slifer, K J; Solvignon, P; Stoler, P; Sulkosky, V; Tajima, S; Todor, L; Vlahovic, B; Voskanyan, H; Wang, K; Weinstein, L B; Wojtsekhowski, B; Xiang, H; Zheng, X; Zhu, L

    2007-01-01

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

  3. Compton Scattering Cross Section on the Proton at High Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    A. Danagoulian; V.H. Mamyan; M. Roedelbronn; K.A. Aniol; J.R.M. Annand; P.Y. Bertin; L. Bimbot; P. Bosted; J.R. Calarco; A. Camsonne; C.C. Chang; T.-H. Chang; J.-P. Chen; Seonho Choi; E. Chudakov; P. Degtyarenko; C.W. de Jager; A. Deur; D. Dutta; K. Egiyan; H. Gao; F. Garibaldi; O. Gayou; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; D.J. Hamilton; J.-O. Hansen; D. Hayes; D.W. Higinbotham; W. Hinton; T. Horn; C. Howell; T. Hunyady; C.E. Hyde-Wright; X. Jiang; M.K. Jones; M. Khandaker; A. Ketikyan; V. Koubarovski; K. Kramer; G. Kumbartzki; G. Laveissiere; J. LeRose; R.A. Lindgren; D.J. Margaziotis; P. Markowitz; K. McCormick; Z.-E. Meziani; R. Michaels; P. Moussiegt; S. Nanda; A.M. Nathan; D.M. Nikolenko; V. Nelyubin; B.E. Norum; K. Paschke; L. Pentchev; C.F. Perdrisat; E. Piasetzky; R. Pomatsalyuk; V.A. Punjabi; I. Rachek; A. Radyushkin; B. Reitz; R. Roche; G. Ron; F. Sabatie; A. Saha; N. Savvinov; A. Shahinyan; Y. Shestakov; S. Sirca; K. Slifer; P. Solvignon; P. Stoler; S. Tajima; V. Sulkosky; L. Todor; B. Vlahovic; L.B. Weinstein; K. Wang; B. Wojtsekhowski; H. Voskanyan; H. Xiang; X. Zheng; L. Zhu

    2007-01-29

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/- 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

  4. Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

    Science.gov (United States)

    Chen, Lin; Wu, Wen-Bin; Liu, Pin-Yang; Xiao, Yun-Qing; Li, Guo-Peng; Liu, Yi-Ran; Jiang, Hao-Yu; Guo, Yan-Ling; Chen, Xi-Meng

    2016-08-01

    For Li+ and Na+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako-Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li+ and Na+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405078 and 11474140), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2014-169 and lzujbky-2015-244), the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry, and the National Students’ Innovation and Entrepreneurship Training Program (Grant Nos. 201410730069 and 201510730078).

  5. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will

  6. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  7. Chebyshev collocation spectral method for one-dimensional radiative heat transfer in linearly anisotropic-scattering cylindrical medium

    Science.gov (United States)

    Zhou, Rui-Rui; Li, Ben-Wen

    2017-03-01

    In this study, the Chebyshev collocation spectral method (CCSM) is developed to solve the radiative integro-differential transfer equation (RIDTE) for one-dimensional absorbing, emitting and linearly anisotropic-scattering cylindrical medium. The general form of quadrature formulas for Chebyshev collocation points is deduced. These formulas are proved to have the same accuracy as the Gauss-Legendre quadrature formula (GLQF) for the F-function (geometric function) in the RIDTE. The explicit expressions of the Lagrange basis polynomials and the differentiation matrices for Chebyshev collocation points are also given. These expressions are necessary for solving an integro-differential equation by the CCSM. Since the integrand in the RIDTE is continuous but non-smooth, it is treated by the segments integration method (SIM). The derivative terms in the RIDTE are carried out to improve the accuracy near the origin. In this way, a fourth order accuracy is achieved by the CCSM for the RIDTE, whereas it's only a second order one by the finite difference method (FDM). Several benchmark problems (BPs) with various combinations of optical thickness, medium temperature distribution, degree of anisotropy, and scattering albedo are solved. The results show that present CCSM is efficient to obtain high accurate results, especially for the optically thin medium. The solutions rounded to seven significant digits are given in tabular form, and show excellent agreement with the published data. Finally, the solutions of RIDTE are used as benchmarks for the solution of radiative integral transfer equations (RITEs) presented by Sutton and Chen (JQSRT 84 (2004) 65-103). A non-uniform grid refined near the wall is advised to improve the accuracy of RITEs solutions.

  8. Exclusive meson pair production in gamma* gamma scattering at small momentum transfer

    CERN Document Server

    Lansberg, J P; Szymanowski, L

    2006-01-01

    We study the exclusive production of pi pi and rho pi in hard gamma* gamma scattering in the forward kinematical region where the virtuality of one photon provides us with a hard scale in the process. The newly introduced concept of Transition Distribution Amplitudes (TDA) is used to perform a QCD calculation of these reactions thanks to two simple models for TDAs. Cross sections for rho pi and pi pi production are evaluated and compared to the possible background from the Bremsstrahlung process. This picture may be tested at intense electron-positron colliders such as CLEO and B factories. The cross section e gamma -> e' pi0 pi0 is finally shown to provide a possible determination of the pi0 axial form factor, FA, at small t, which seems not to be measurable elsewhere.

  9. The inelastic neutron scattering spectrum of chromous acid at high energy transfers

    Science.gov (United States)

    Tomkinson, J.; Taylor, A. D.; Howard, J.; Eckert, J.; Goldstone, J. A.

    1985-02-01

    The inelastic incoherent neutron scattering spectrum of chromous acid, at 77 K, is presented. It is dominated by the intense bending mode at 1254 cm-1 with some modes at lower frequencies showing indications of dispersion. The antisymmetric stretch νas(OHS) {‖1>-‖2>} was assigned to a broad band centered at ˜2050 cm-1, significantly displaced for the IR assignment (1650 cm-1). The breadth of the band is due to the dispersion, and kinematic coupling, that is anticipated for this compound. These new data allows us to fit chromous acid more clearly into the general trend of hydrogen bonded compounds. Chromous acid compares very well in its overall INS spectrum with the isomorphous sodium bifluoride, except that the kinematic coupling between νas(OHO) and the symmetric stretch does not occur in this compound.

  10. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    OpenAIRE

    Сaputo J.G; Gabitov I.R.; Kudyshev Zh.; Kupaev T.; Maimistov A.I.

    2015-01-01

    Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability). In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness ...

  11. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    Science.gov (United States)

    Raputo, J. G.; Gabitov, I. R.; Kudyshev, Zh.; Kupaev, T.; Maimistov, A. I.

    2015-09-01

    Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability). In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a "thin film", whose thickness is much smaller than the wavelength.

  12. A New Glauber Theory based on Multiple Scattering Theory

    CERN Document Server

    Yahiro, Masanobu; Ogata, Kazuyuki; Kawai, Mitsuji

    2008-01-01

    Glauber theory for nucleus-nucleus scattering at high incident energies is reformulated so as to become applicable also for the scattering at intermediate energies. We test validity of the eikonal and adiabatic approximations used in the formulation, and discuss the relation between the present theory and the conventional Glauber calculations with either the empirical nucleon-nucleon profile function or the modified one including the in-medium effect.

  13. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching

    Directory of Open Access Journals (Sweden)

    Zhou Yu

    2015-12-01

    Full Text Available This study proposes a model-based Synthetic Aperture Radar (SAR automatic target recognition algorithm. Scattering is computed offline using the laboratory-developed Bidirectional Analytic Ray Tracing software and the same system parameter settings as the Moving and Stationary Target Acquisition and Recognition (MSTAR datasets. SAR images are then created by simulated electromagnetic scattering data. Shape features are extracted from the measured and simulated images, and then, matches are searched. The algorithm is verified using three types of targets from MSTAR data and simulated SAR images, and it is shown that the proposed approach is fast and easy to implement with high accuracy.

  14. Parallel proton transfer pathways in aqueous acid-base reactions

    NARCIS (Netherlands)

    Cox, M.J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25M to 4M. Using femtose

  15. A fiber-laser-based stimulated Raman scattering spectral microscope

    Science.gov (United States)

    Nose, Keisuke; Ozeki, Yasuyuki; Kishi, Tatsuya; Sumimura, Kazuhiko; Kanematsu, Yasuo; Itoh, Kazuyoshi

    2013-02-01

    Stimulated Raman scattering (SRS) spectral microscopy is a powerful technique for label-free biological imaging because it allows us to distinguish chemical species with overlapping Raman bands. Here we present an SRS spectral microscope based only on fiber lasers (FL's), which offer the possibilities of downsizing and simplification of the system. A femtosecond figure-8 Er-FL at a repetition rate of 54.4 MHz is used to generate pump pulses. After amplified by an Er doped fiber amplifier, Er-FL pulses are spectrally compressed to 2-ps second harmonic pulses. For generating Stokes pulses, a femtosecond Yb-FL pulses at a repetition rate of 27.2 MHz is used. Then these lasers are synchronized by a phase locked loop, which consists of a two-photon absorption photodetector, a loop filter, a phase modulator in the Er- FL cavity, and a piezo electric transducer in the Yb-FL cavity. The intensity noise of pump pulses is reduced by the collinear balanced detection (CBD) technique based on delay-and-add fiber lines. Experimentally, we confirmed that the intensity noise level of probe pulses was close to the shot noise limit. The Stokes pulses are introduced to a wavelength tunable band pass filter (BPF), which consists of a galvanomirror scanner, a 4-f optical system, a reflection grating, and a collimator. This system is able to scan the wavenumber from 2850 cm-1 to 3100 cm-1 by tuning the BPF. We succeeded in the spectral imaging of a mixture of polystyrene beads and poly(methyl methacrylate) beads.

  16. Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo

    Science.gov (United States)

    Mercatelli, Luca; Sani, Elisa; Giannini, Annalisa; di Ninni, Paola; Martelli, Fabrizio; Zaccanti, Giovanni

    2012-02-01

    The full characterization of the optical properties of nanofluids consisting of single-wall carbon nanohorns of different morphologies in aqueous suspensions is carried out using a novel spectrophotometric technique. Information on the nanofluid scattering and absorption spectral characteristics is obtained by analyzing the data within the single scattering theory and validating the method by comparison with previous monochromatic measurements performed with a different technique. The high absorption coefficient measured joint to the very low scattering albedo opens promising application perspectives for single-wall carbon nanohorn-based fluid or solid suspensions. The proposed approximate approach can be extended also to other low-scattering turbid media. PACS: 78.35.+c Brillouin and Rayleigh scattering, other light scattering; 78.40.Ri absorption and reflection spectra, fullerenes and related materials; 81.05.U- carbon/carbon-based materials; 78.67.Bf optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures, nanocrystals, nanoparticles, and nanoclusters.

  17. Simultaneous observation of small- and large-energy-transfer electron-electron scattering in three-dimensional indium oxide thick films

    Science.gov (United States)

    Yang, Yang; Liu, Xin-Dian; Li, Zhi-Qing

    2016-05-01

    In three-dimensional (3D) disordered metals, the electron-phonon (e-ph) scattering is the sole significant inelastic process. Thus the theoretical prediction concerning the electron-electron (e\\text-e) scattering rate 1/τ_\\varphi as a function of temperature T in 3D disordered metal has not been fully tested thus far, though it was proposed 40 years ago (Schmid A., Z. Phys., 271 (1974) 251). We report here the simultaneous observation of small- and large-energy-transfer e\\text-e scattering in 3D indium oxide thick films. In the temperature region T≳100 \\text{K} , the temperature dependence of resistivity of each film obeys Bloch-Grüneisen law, indicating that the films possess degenerate-semiconductor characteristics in electrical transport property. In the low-temperature regime, 1/τ_\\varphi as a function of T for each film can not be ascribed to e-ph scattering. To quantitatively describe the temperature behavior of 1/τ_\\varphi , both the 3D small- and large-energy-transfer e\\text-e scattering processes should be considered. (The small- and large-energy-transfer e\\text-e scattering rates are proportional to T3/2 and T 2, respectively.) In addition, the experimental prefactors of T3/2 and T 2 are proportional to k_F-5/2 \\ell-3/2 and E_F-1 (k F is the Fermi wave number, ℓ is the electron elastic mean free path, and E F is the Fermi energy), respectively, which are completely consistent with the theoretical predictions. Our experimental results fully demonstrate the validity of the theoretical predictions concerning both small- and large-energy-transfer e\\text-e scattering rates.

  18. Inclusive electron scattering from nuclei in the quasielastic region at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fomin, Nadia [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2008-12-01

    Experiment E02-019, performed in Hall C at the Thomas Jefferson National Accelerator Facility (TJNAF), was a measurement of inclusive electron cross sections for several nuclei (2H,3He, 4He, 9Be,12C, 63Cu, and 197Au) in the quasielastic region at high momentum transfer. In the region of low energy transfer, the cross sections were analyzed in terms of the reduced response, F(y), by examining its y-scaling behavior. The data were also examined in terms of the nuclear structure function νWA 2 and its behavior in x and the Nachtmann variable ξ. The data show approximate scaling of νWA 2 in ξ for all targets at all kinematics, unlike scaling in x, which is confined to the DIS regime. However, y-scaling observations are limited to the kinematic region dominated by the quasielastic response (y <0), where some scaling violations arising from FSIs are observed.

  19. Measurement of quasi-elastic 12C(p,2p) scattering at high momentum transfer

    Science.gov (United States)

    Mardor, Y.; Aclander, J.; Alster, J.; Barton, D.; Bunce, G.; Carroll, A.; Christensen, N.; Courant, H.; Durrant, S.; Gushue, S.; Heppelmann, S.; Kosonovsky, E.; Mardor, I.; Marshak, M.; Makdisi, Y.; Minor, E. D.; Navon, I.; Nicholson, H.; Piasetzky, E.; Roser, T.; Russell, J.; Sutton, C. S.; Tanaka, M.; White, C.; Wu, J.-Y.

    1998-10-01

    We measured the high-momentum transfer [Q2=4.8 and 6.2 (GeV/c)2] quasi-elastic 12C(p,2p) reaction at θcm~=90 deg for 6 and 7.5 GeV/c incident protons. The momentum components of both outgoing protons and the missing energy and momentum of the proton in the nucleus were measured. We verified the validity of the quasi-elastic picture for ground state momenta up to about 0.5 GeV/c. Transverse and longitudinal momentum distributions of the target proton were measured. They have the same shape with a large momentum tail which is not consistent with independent particle models. We observed that the transverse distribution gets wider as the longitudinal component increases in the beam direction.

  20. Analysis of Scattering from Archival Pulsar Data using a CLEAN-based Method

    Science.gov (United States)

    Tsai, -Wei, Jr.; Simonetti, John H.; Kavic, Michael

    2017-02-01

    In this work, we adopted a CLEAN-based method to determine the scatter time, τ, from archived pulsar profiles under both the thin screen and uniform medium scattering models and to calculate the scatter time frequency scale index α, where τ \\propto {ν }α . The value of α is ‑4.4, if a Kolmogorov spectrum of the interstellar medium turbulence is assumed. We deconvolved 1342 profiles from 347 pulsars over a broad range of frequencies and dispersion measures. In our survey, in the majority of cases the scattering effect was not significant compared to pulse profile widths. For a subset of 21 pulsars scattering at the lowest frequencies was large enough to be measured. Because reliable scatter time measurements were determined only for the lowest frequency, we were limited to using upper limits on scatter times at higher frequencies for the purpose of our scatter time frequency slope estimation. We scaled the deconvolved scatter time to 1 GHz assuming α =-4.4 and considered our results in the context of other observations which yielded a broad relation between scatter time and dispersion measure.

  1. Photon Acceleration of Laser-plasma Based on Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; XIE Hong-jun

    2006-01-01

    The one-dimensional electron density disturbance is studied by using the inelastic collision model of the relativity electron and photon group, the relativity theory, the momentum equation and the continuity equation, which is generated by a driving laser pulse and scattered laser pulse propagating through a tenuous plasma, and the electron density disturbance is closely associated with the incident laser and scattering laser. The electron plasma wave(EPW)is formed by the propagation of the electron density disturbance. Owing to the action of EPW, the increasing of the frequency of the photons in the incident laser pulses that there is a distance with the driving laser pulses is studied by using optical metric. The results show that it is possible that the photon will gain higher energy from the EPW when photon number is decreased and one-photon Compton scattering enters, the photon will be accelerated.

  2. UV absorption and scattering properties of inorganic-based sunscreens.

    Science.gov (United States)

    Egerton, Terry A; Tooley, Ian R

    2012-04-01

    This article first introduces the concepts that underlie the calculations of scattering and absorption of light by small particles. Results of Mie theory calculations of light scattering and light absorption by 20, 50 and 100 nm TiO₂ and ZnO particles are then presented. As the attenuation, or extinction, by these particles is the sum of the scattering and absorption, the attenuation can then be calculated for wavelengths over the UVA and UVB region. These theoretical results are then shown to be in reasonable agreement with experimental results for alkyl benzoate dispersions of three different types of TiO₂ particle whose mean sizes range from 35 to 145 nm. Finally, the link between these measurements and the absorption curves of formulated dispersions of sunscreens are demonstrated and related to in vitro SPF and UVAPF measurements.

  3. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    Directory of Open Access Journals (Sweden)

    Сaputo J.G

    2015-01-01

    Full Text Available Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability. In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness is much smaller than the wavelength.

  4. Linearized inverse scattering based on seismic reverse time migration

    NARCIS (Netherlands)

    op 't Root, T.J.P.M.; Stolk, C.C.; de Hoop, M.V.

    2012-01-01

    In this paper we study the linearized inverse problem associated with imaging of reflection seismic data. We introduce an inverse scattering transform derived from reverse time migration (RTM). In the process, the explicit evaluation of the so-called normal operator is avoided, while other different

  5. Financial time series analysis based on effective phase transfer entropy

    Science.gov (United States)

    Yang, Pengbo; Shang, Pengjian; Lin, Aijing

    2017-02-01

    Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.

  6. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

    CERN Document Server

    Kitzmann, D; Rauer, H

    2013-01-01

    Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

  7. Modeling Current Transfer from PV Modules Based on Meteorological Data

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Smith, Ryan; Kurtz, Sarah; Jordan, Dirk; Wohlgemuth, John

    2016-11-21

    Current transferred from the active cell circuit to ground in modules undergoing potential-induced degradation (PID) stress is analyzed with respect to meteorological data. Duration and coulombs transferred as a function of whether the module is wet (from dew or rain) or the extent of uncondensed surface humidity are quantified based on meteorological indicators. With this, functions predicting the mode and rate of coulomb transfer are developed for use in estimating the relative PID stress associated with temperature, moisture, and system voltage in any climate. Current transfer in a framed crystalline silicon module is relatively high when there is no condensed water on the module, whereas current transfer in a thin-film module held by edge clips is not, and displays a greater fraction of coulombs transferred when wet compared to the framed module in the natural environment.

  8. SU-E-I-08: Investigation of Deconvolution Methods for Blocker-Based CBCT Scatter Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C; Jin, M [University of Texas at Arlington, Arlington, TX (United States); Ouyang, L; Wang, J [UT Southwestern Medical Center at Dallas, Dallas, TX (United States)

    2015-06-15

    Purpose: To investigate whether deconvolution methods can improve the scatter estimation under different blurring and noise conditions for blocker-based scatter correction methods for cone-beam X-ray computed tomography (CBCT). Methods: An “ideal” projection image with scatter was first simulated for blocker-based CBCT data acquisition by assuming no blurring effect and no noise. The ideal image was then convolved with long-tail point spread functions (PSF) with different widths to mimic the blurring effect from the finite focal spot and detector response. Different levels of noise were also added. Three deconvolution Methods: 1) inverse filtering; 2) Wiener; and 3) Richardson-Lucy, were used to recover the scatter signal in the blocked region. The root mean square error (RMSE) of estimated scatter serves as a quantitative measure for the performance of different methods under different blurring and noise conditions. Results: Due to the blurring effect, the scatter signal in the blocked region is contaminated by the primary signal in the unblocked region. The direct use of the signal in the blocked region to estimate scatter (“direct method”) leads to large RMSE values, which increase with the increased width of PSF and increased noise. The inverse filtering is very sensitive to noise and practically useless. The Wiener and Richardson-Lucy deconvolution methods significantly improve scatter estimation compared to the direct method. For a typical medium PSF and medium noise condition, both methods (∼20 RMSE) can achieve 4-fold improvement over the direct method (∼80 RMSE). The Wiener method deals better with large noise and Richardson-Lucy works better on wide PSF. Conclusion: We investigated several deconvolution methods to recover the scatter signal in the blocked region for blocker-based scatter correction for CBCT. Our simulation results demonstrate that Wiener and Richardson-Lucy deconvolution can significantly improve the scatter estimation

  9. Time-dependent Multi-group Multidimensional Relativistic Radiative Transfer Code Based On Spherical Harmonic Discrete Ordinate Method

    CERN Document Server

    Tominaga, Nozomu; Blinnikov, Sergei I

    2015-01-01

    We develop a time-dependent multi-group multidimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) that evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with a ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed frame approach; the source function is evaluated in the comoving frame whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated with various test problems and comparisons with results of a relativistic Monte Carlo code. These validations confirm that the code ...

  10. Library-based scatter correction for dedicated cone beam breast CT: a feasibility study

    Science.gov (United States)

    Shi, Linxi; Vedantham, Srinivasan; Karellas, Andrew; Zhu, Lei

    2016-04-01

    Purpose: Scatter errors are detrimental to cone-beam breast CT (CBBCT) accuracy and obscure the visibility of calcifications and soft-tissue lesions. In this work, we propose practical yet effective scatter correction for CBBCT using a library-based method and investigate its feasibility via small-group patient studies. Method: Based on a simplified breast model with varying breast sizes, we generate a scatter library using Monte-Carlo (MC) simulation. Breasts are approximated as semi-ellipsoids with homogeneous glandular/adipose tissue mixture. On each patient CBBCT projection dataset, an initial estimate of scatter distribution is selected from the pre-computed scatter library by measuring the corresponding breast size on raw projections and the glandular fraction on a first-pass CBBCT reconstruction. Then the selected scatter distribution is modified by estimating the spatial translation of the breast between MC simulation and the clinical scan. Scatter correction is finally performed by subtracting the estimated scatter from raw projections. Results: On two sets of clinical patient CBBCT data with different breast sizes, the proposed method effectively reduces cupping artifact and improves the image contrast by an average factor of 2, with an efficient processing time of 200ms per conebeam projection. Conclusion: Compared with existing scatter correction approaches on CBBCT, the proposed library-based method is clinically advantageous in that it requires no additional scans or hardware modifications. As the MC simulations are pre-computed, our method achieves a high computational efficiency on each patient dataset. The library-based method has shown great promise as a practical tool for effective scatter correction on clinical CBBCT.

  11. Electron scattering times in ZnO based polar heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Falson, J., E-mail: j.falson@fkf.mpg.de [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Kozuka, Y. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Smet, J. H. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Arima, T. [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-08-24

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.

  12. Parallel proton transfer pathways in aqueous acid-base reactions

    OpenAIRE

    Cox, M. J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25M to 4M. Using femtosecond midinfrared spectroscopy, we probe the vibrational responses of HPTS, its conjugate photobase, the hydrated proton/deuteron, and chloroacetate. The measurement of these four resonances allows ...

  13. A Comprehensive Propagation Prediction Model Comprising Microfacet Based Scattering and Probability Based Coverage Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    A. S. M. Zahid Kausar

    2014-01-01

    Full Text Available Although ray tracing based propagation prediction models are popular for indoor radio wave propagation characterization, most of them do not provide an integrated approach for achieving the goal of optimum coverage, which is a key part in designing wireless network. In this paper, an accelerated technique of three-dimensional ray tracing is presented, where rough surface scattering is included for making a more accurate ray tracing technique. Here, the rough surface scattering is represented by microfacets, for which it becomes possible to compute the scattering field in all possible directions. New optimization techniques, like dual quadrant skipping (DQS and closest object finder (COF, are implemented for fast characterization of wireless communications and making the ray tracing technique more efficient. In conjunction with the ray tracing technique, probability based coverage optimization algorithm is accumulated with the ray tracing technique to make a compact solution for indoor propagation prediction. The proposed technique decreases the ray tracing time by omitting the unnecessary objects for ray tracing using the DQS technique and by decreasing the ray-object intersection time using the COF technique. On the other hand, the coverage optimization algorithm is based on probability theory, which finds out the minimum number of transmitters and their corresponding positions in order to achieve optimal indoor wireless coverage. Both of the space and time complexities of the proposed algorithm surpass the existing algorithms. For the verification of the proposed ray tracing technique and coverage algorithm, detailed simulation results for different scattering factors, different antenna types, and different operating frequencies are presented. Furthermore, the proposed technique is verified by the experimental results.

  14. A Method to Retrieve the Multi-Receiver Moho Reflection Response from SH-Wave Scattering Coda in the Radiative Transfer Regime

    Science.gov (United States)

    Hartstra, I.; Wapenaar, C. P. A.

    2015-12-01

    We discuss a method to retrieve the multi-receiver Moho reflection response by interferometry from SH-wave coda in the 0.5-3 Hz frequency range. An image derived from a reflection response with a well defined virtual source would provide deterministic impedance contrasts, which can complement transmission tomography. For an accurate retrieval, cross-correlation interferometry requires the coda wave field to sample the imaging target and isotropically illuminate the receiver array. When these illumination requirements are not or only partially met, the stationary phase cannot be fully captured and artifacts will contaminate the retrieved reflection response. Here we conduct numerical scalar 2D finite difference simulations to investigate the challenging situation in which only shallow crustal earthquake sources illuminate the Moho and the response is recorded by a 2D linear array. We quantify to what extent the prevalence of scatterers in the crust can improve the illumination conditions and thus the retrieval of the Moho reflection. The accuracy of the retrieved reflection is evaluated for two physically different scattering regimes: the Rayleigh and Mie regime. We only use the earlier part of the scattering coda, because we have found that the later diffusive part does not significantly improve the retrieval. The density of the spherical scatterers is varied in order to change the scattering mean free path. This characteristic length scale is calculated for each model with the 2D radiative transfer equation, which is the governing equation in the earlier part of the scattering coda. The experiment is repeated for models of different geological settings derived from existing S-wave tomographies, which vary in Moho depth and reflectivity. The scattering mean free path can be approximated for real data if intrinsic attenuation is known, because the wavenumber-dependent scattering attenuation of the coherent wave amplitude is dependent on the scattering mean free path

  15. Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.

  16. Experimental investigation on wake profile detection based on laser scattering by bubbles

    Institute of Scientific and Technical Information of China (English)

    Liping Su; Weijiang Zhao; Xiaoyong Hu; Deming Ren; Xizhan Liu

    2007-01-01

    @@ The optical system for detecting wake profiles based on laser backscattering by bubbles at 180° is reported, in which the monostatic optical geometry is adopted and the power density estimation is used to process bubble scattering signal.

  17. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  18. A moment method for radiative transfer in an anisotropically-scattering slab medium with space-dependent albedo omega(x)

    Science.gov (United States)

    Wilson, S. J.; Wan, F. S.

    1987-10-01

    A variation of the moment method of Wilson and Sen (1986) is used to solve the radiative transfer problem in an anisotropic scattering plane-parallel medium with an arbitrary space-dependent albedo, omega (x). Considering the case of both forward and backward scattering, the reflectance and transmission functions for linear and quadratic variation of omega(x) are given for isotropic incidence of unit intensity. The exit distribution of radiation for a linear variation of omega(x) is also given for both isotropic and normal incidence of intensity. Results from the present delta approximation method are in good agreement with those of Cengel and Ozisik (1985).

  19. PET energy-based scatter estimation and image reconstruction with energy-dependent corrections

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, L M; Lewitt, Robert M; Matej, Samuel; Karp, Joel S [Department of Radiology, University of Pennsylvania, 423 Guardian Drive, 4th floor Blockley Hall, Philadelphia, PA 19104-6021 (United States)

    2006-06-07

    In this paper we propose a comprehensive energy-based scatter correction approach for positron emission tomography (PET). We take advantage of the marked difference between the energy spectra of the unscattered and scattered photons, and use the detailed energy information that comes with the list-mode data for the estimation of the scattered events distribution in the data space. Also, inside the maximum-likelihood expectation maximization (ML-EM) image reconstruction algorithm, we introduce energy-dependent factors that individualize the correction terms for each event, given its position and energy information. The central piece of our approach is the two-dimensional detector energy response model represented as a linear combination of four components, each one representing a particular state a PET event can be found in: both photons unscattered, the second scattered while the first not, the first photon scattered while the second not and both photons scattered. For a set of events collected in the vicinity of a point in the projection space, the coefficient of each component is determined by applying a statistical estimator. As a result we obtain the number of scattered events that are in the given set. The model also gives us the variation of scatter fraction with the photon pair energies for that particular position in the data space. A simulation study that demonstrates the proposed methods is presented.

  20. Novel Boron-10-based detectors for Neutron Scattering Science

    CERN Document Server

    Piscitelli, Francesco

    2015-01-01

    Nowadays neutron scattering science is increasing its instrumental power. Most of the neutron sources in the world are pushing the development of their technologies to be more performing. The neutron scattering development is also pushed by the European Spallation Source (ESS) in Sweden, a neutron facility which has just started construction. Concerning small area detectors (1m^2), the 3He technology, which is today cutting edge, is reaching fundamental limits in its development. Counting rate capability, spatial resolution and cost-e?ectiveness, are only a few examples of the features that must be improved to ful?fill the new requirements. On the other hand, 3He technology could still satisfy the detector requirements for large area applications (50m^2), however, because of the present 3He shortage that the world is experiencing, this is not practical anymore. The recent detector advances (the Multi-Grid and the Multi-Blade prototypes) developed in the framework of the collaboration between the Institut Laue...

  1. Recent neutron scattering results from Gd-based pyrochlore oxides

    Science.gov (United States)

    Gardner, Jason

    2009-03-01

    In my presentation I will present recent results that have determined the spin-spin correlations in the geometrically frustrated magnets Gd2Sn2O7 and Gd2Ti2O7. This will include polarised neutron diffraction, inelastic neutron scattering and neutron spin echo data. One sample of particular interest is Gd2Sn2O7 which is believed to be a good approximation to a Heisenberg antiferromagnet on a pyrochlore lattice with exchange and dipole-dipole interactions. Theoretically such a system is expected to enter long range ordered ground state known as the ``Palmer Chalker'' state [1]. We show conclusively, through neutron scattering data, that the system indeed enters an ordered state with the Palmer-Chalker spin configuration below Tc = 1 K [2-3]. Within this state we have also observed long range collective spin dynamics, spin waves. This work has been performed in collaboration with many research groups including G. Ehlers (SNS), R. Stewart (ISIS). [0pt] [1] S. E. Palmer and J. T. Chalker, Phys. Rev. B 62, 488 (2000). [0pt] [2] J. R. Stewart, G. Ehlers, A. S. Wills, S. T. Bramwell, and J. S. Gardner, J. Phys.: Condens. Matter 16, L321 (2004). [0pt] [3] J R Stewart, J S Gardner, Y. Qiu and G Ehlers, Phys. Rev. B. 78, 132410 (2008)

  2. Wireless power transfer based on dielectric resonators with colossal permittivity

    Science.gov (United States)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2016-11-01

    Magnetic resonant wireless power transfer system based on dielectric disk resonators made of colossal permittivity (ɛ = 1000) and low loss (tan δ = 2.5 × 10-4) microwave ceramic is experimentally investigated. The system operates at the magnetic dipole mode excited in the resonators providing maximal power transfer efficiency of 90% at the frequency 232 MHz. By applying an impedance matching technique, the efficiency of 50% is achieved within the separation between the resonators d = 16 cm (3.8 radii of the resonator). The separation, misalignment and rotation dependencies of wireless power transfer efficiency are experimentally studied.

  3. Tikhonov regularization-based operational transfer path analysis

    Science.gov (United States)

    Cheng, Wei; Lu, Yingying; Zhang, Zhousuo

    2016-06-01

    To overcome ill-posed problems in operational transfer path analysis (OTPA), and improve the stability of solutions, this paper proposes a novel OTPA based on Tikhonov regularization, which considers both fitting degrees and stability of solutions. Firstly, fundamental theory of Tikhonov regularization-based OTPA is presented, and comparative studies are provided to validate the effectiveness on ill-posed problems. Secondly, transfer path analysis and source contribution evaluations for numerical cases studies on spherical radiating acoustical sources are comparatively studied. Finally, transfer path analysis and source contribution evaluations for experimental case studies on a test bed with thin shell structures are provided. This study provides more accurate transfer path analysis for mechanical systems, which can benefit for vibration reduction by structural path optimization. Furthermore, with accurate evaluation of source contributions, vibration monitoring and control by active controlling vibration sources can be effectively carried out.

  4. Elastic scattering of 59.54-keV {gamma}-rays in elements with 22 {<=} Z {<=} 92 at momentum transfer 0.4 {<=} x {<=} 4.7 Angstrom{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Sharma, V.; Shahi, J.S.; Mehta, D.; Singha, N. [Panjab Univ., Dept. of Physics (India)

    2009-10-15

    Differential cross sections for elastic scattering of the 59.54 keV {gamma}-rays in elements with 22 {<=} Z {<=} 92 have been measured over the angular range 10-160 degrees corresponding to the momentum transfer 0.4 {<=} x {<=} 4.7 Angstrom{sup -1}. The measurements at forward and backward angles were performed using the {sup 241}Am radioactive point-source, target and the Ge detectors in the transmission and reflection arrangements, respectively. The measured differential scattering cross sections are compared with those based on the form-factor (FF) formalism and state-of-the-art S-matrix calculations to differentiate between their relative efficacies and to check angular-dependence of the anomalous scattering factors (ASF) incorporated as correction to the modified form-factor (MF). The S-matrix values exhibit agreement with the measured data at backward angles and differences about 10% at forward angles. The scattering cross sections based on the MF including ASF's are in general lower at various angles by up to 20% for medium- and high-Z elements. The observed deviations being higher at the forward angles infer possibility of angular-dependence of ASF's. (authors)

  5. Characterization and Simulation of the Heat Transfer Behaviour of Water-Based ZnO Nanofluids.

    Science.gov (United States)

    Colla, Laura; Marinelli, Lorenzo; Fedele, Laura; Bobbo, Sergio; Manca, Oronzio

    2015-05-01

    This paper deals with the characterization and modelling of water-based nanofluids containing zinc oxide (ZnO) nanoparticles in concentrations ranging between 1 and 10 wt%. Low concentrations were chosen to reduce fouling and excessive pressure drops. First of all, the stability was verified by means of an instrument, based on the dynamic light scattering (DLS) technique, measuring mean nanoparticle diameters and Zeta potential. Moreover, nanofluids pH was measured. Then, thermal conductivities and dynamic viscosities were measured, analysing their dependence on temperature and nanoparticle concentration. Thermal conductivity was measured by means of a hot disk apparatus in the temperature range between 10 and 70 degrees C, while viscosity was measured by a magnetic suspension rheometer in the same range of temperatures. Finally, the heat transfer capability of these fluids was studied measuring their heat transfer coefficients in a dedicated apparatus between 18 and 40 degrees C. Heat transfer coefficient was evaluated at different Reynolds number, in turbulent flow regime. Reynolds and Nusselt numbers were deduced by using previously measured thermal conductivity and viscosity values. Moreover, numerical simulations in two-dimensional turbulent and steady state flow were carried out. No increase in heat transfer coefficient in the temperature range between 18 and 40 degrees C was found. Comparison between experimental and numerical simulation data, in terms of wall temperature profiles, showed a good agreement.

  6. Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method

    Institute of Scientific and Technical Information of China (English)

    Sang Ming-Huang; Yu Zi-Xing; Li Cui-Cui; Tu Kai

    2011-01-01

    For the conventional translational shape-invariant potentials (TSIPs),it has demonstrated that the phase contribution devoted by the scattered subwaves in the analytical transfer matrix quantization condition is integrable and independent of n.Based on this fact we propose a novel strategy to generate the whole set of conventional TSIPs and classify them into three types.The generating functions are given explicitly and the Morse potential is taken as an example to illustrate this strategy.

  7. Scattering correction based on regularization de-convolution for Cone-Beam CT

    CERN Document Server

    Xie, Shi-peng

    2016-01-01

    In Cone-Beam CT (CBCT) imaging systems, the scattering phenomenon has a significant impact on the reconstructed image and is a long-lasting research topic on CBCT. In this paper, we propose a simple, novel and fast approach for mitigating scatter artifacts and increasing the image contrast in CBCT, belonging to the category of convolution-based method in which the projected data is de-convolved with a convolution kernel. A key step in this method is how to determine the convolution kernel. Compared with existing methods, the estimation of convolution kernel is based on bi-l1-l2-norm regularization imposed on both the intermediate the known scatter contaminated projection images and the convolution kernel. Our approach can reduce the scatter artifacts from 12.930 to 2.133.

  8. Bumpless Transfer between Observer-based Gain Scheduled Controllers

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Stoustrup, Jakob; Trangbæk, Klaus

    2005-01-01

    This paper deals with bumpless transfer between a number of observer-based controllers in a gain scheduling architecture. Linear observer-based controllers are designed for a number of linear approximations of a nonlinear system in a set of operating points, and gain scheduling control can...

  9. Investigations of scattering and field enhancement effects in retardation-based plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Nielsen, M. G.; Pors, A.; Nielsen, Rasmus Bundgaard;

    2010-01-01

    Modifications in scattering strength of and local field enhancement by retardation-based plasmonic nanoantennas when being transformed from straight nanorods to split-rings are investigated. The scattering properties are monitored by linear reflection and extinction spectroscopy whereas local field......, a feature that we attribute to the decrease in the nanoantenna electric-dipole response in tact with its bending. The experimental observations are corroborated with numerical simulations using the finite-element method....

  10. Transfer of Trust in Event-based Reputation Systems

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Krukow, Karl

    2012-01-01

    choice of model from concurrency theory. In this paper, we continue this line of research, addressing the problem on how to transfer trust from one behavioural context to another. Our proposed frameworks build on morphisms between event structures, and we prove some generic results guaranteeing formal......In the Global Computing scenario, trust-based systems have been proposed and studied as an alternative to traditional security mechanisms. A promising line of research concerns the so-called reputation-based computational trust. The approach here is that trust in a computing agent is defined...... properties of transfers in the frameworks....

  11. A level set-based shape optimization method for periodic sound barriers composed of elastic scatterers

    Science.gov (United States)

    Hashimoto, Hiroshi; Kim, Min-Geun; Abe, Kazuhisa; Cho, Seonho

    2013-10-01

    This paper presents a level set-based topology optimization method for noise barriers formed from an assembly of scatterers. The scattering obstacles are modeled by elastic bodies arranged periodically along the wall. Due to the periodicity, the problem can be reduced to that in a unit cell. The interaction between the elastic scatterers and the acoustic field is described in the context of the level set analysis. The semi-infinite acoustic wave regions located on the both sides of the barrier are represented by impedance matrices. The objective function is defined by the energy transmission passing the barrier. The design sensitivity is evaluated analytically by the aid of adjoint equations. The dependency of the optimal profile on the stiffness of scatterers and on the target frequency band is examined. The feasibility of the developed optimization method is proved through numerical examples.

  12. Controlling software development of CW terahertz target scattering properties measurements based on LabVIEW

    Science.gov (United States)

    Fan, Chang-Kun; Li, Qi; Zhou, Yi; Zhao, Yong-Peng; Chen, De-Ying

    2016-10-01

    With the development of terahertz technology and increasing studies on terahertz target scattering properties, research on terahertz target scattering properties measurements attracts more and more attention. In this paper, to solve problems in the detection process, we design a controlling software for Continuous-Wave (CW) terahertz target scattering properties measurements. The software is designed and programmed based on LabVIEW. The software controls the whole system, involving the switch between the target and the calibration target, the rotation of target, collection, display and storage of the initial data and display, storage of the data after the calibration process. The experimental results show that the software can accomplish the expected requirement, enhance the speed of scattering properties measurements and reduce operation errors.

  13. Distinguishing Structure Change of Cells Based on Analysis of Light Scattering Patterns

    Institute of Scientific and Technical Information of China (English)

    JIN Yong-Long; YANG Fang; WANG Meng; ZHANG Yu; GU Ning

    2008-01-01

    We develop a new method to distinguish structural change of cells based on light scattering and Fourier spectra analysis. The light scattering detection system is composed of a laser source, an optical microscope, a CCD with high resolution and low distortion. After the scattering patterns of cells are recorded by the CCD, the Fourier spectra are obtained by the intensity distribution of scattered light. In the experiment, the change of cell structure is designed by sonication treatment. It is found that different typical peaks can be shown in the Fourier spectra of MCF7 cells with and without sonication treatment, which indicates that this method can be used to distinguish the structural change of cells.

  14. Three-Component Power Decomposition for Polarimetric SAR Data Based on Adaptive Volume Scatter Modeling

    Directory of Open Access Journals (Sweden)

    Sang-Eun Park

    2012-05-01

    Full Text Available In this paper, the three-component power decomposition for polarimetric SAR (PolSAR data with an adaptive volume scattering model is proposed. The volume scattering model is assumed to be reflection-symmetric but parameterized. For each image pixel, the decomposition first starts with determining the adaptive parameter based on matrix similarity metric. Then, a respective scattering power component is retrieved with the established procedure. It has been shown that the proposed method leads to complete elimination of negative powers as the result of the adaptive volume scattering model. Experiments with the PolSAR data from both the NASA/JPL (National Aeronautics and Space Administration/Jet Propulsion Laboratory Airborne SAR (AIRSAR and the JAXA (Japan Aerospace Exploration Agency ALOS-PALSAR also demonstrate that the proposed method not only obtains similar/better results in vegetated areas as compared to the existing Freeman-Durden decomposition but helps to improve discrimination of the urban regions.

  15. Micro-Doppler Effect of Extended Streamlined Targets Based on Sliding Scattering Centre Model

    Directory of Open Access Journals (Sweden)

    Bo Tang

    2016-06-01

    Full Text Available The scattering center of extended streamlined targets can slide when the direction of radiation is changed. The sliding scattering center has influence on the micro-Doppler effect of micro-motion of the extended streamlined target. This paper focused on the micro-Doppler of the extended streamlined target for the bistatic radar. Based on the analysis, the analytical expressions of the micro-Doppler of coning motion with sliding scattering center model were given for bistatic radar. And the results were validated by the simulated results of the scattering field based on the full-wave method of the electromagnetic computation. The results showed that the sliding of the scattering center can make the micro-Doppler be less and distorted, and the influence of the sliding is different for two different types of the sliding scattering centers: sliding on the surface and sliding on the bottom circle. The analytical expressions of the micro-Doppler are helpful to analyze the time-frequency presentations (TFR of the coning motion of the extended streamlined target and to estimate the parameters of the target.

  16. Monte Carlo based investigation of Berry phase for depth resolved characterization of biomedical scattering samples

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; John, Dwayne O [ORNL; Koju, Vijay [ORNL

    2015-01-01

    The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>10million) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case for many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al.,1 to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.

  17. Simulation of a fast diffuse optical tomography system based on radiative transfer equation

    Science.gov (United States)

    Motevalli, S. M.; Payani, A.

    2016-12-01

    Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.

  18. Hindi to English Transfer Based Machine Translation System

    Directory of Open Access Journals (Sweden)

    Shashi Pal Singh

    2015-06-01

    Full Text Available In large societies like India there is a huge demand to convert one human language into another. Lots of work has been done in this area. Many transfer based MTS have developed for English to other languages, as MANTRA CDAC Pune, MATRA CDAC Pune, SHAKTI IISc Bangalore and IIIT Hyderabad. Still there is a little work done for Hindi to other languages. Currently we are working on it. In this paper we focus on designing a system, that translate the document from Hindi to English by using transfer based approach. This system takes an input text check its structure through parsing. Reordering rules are used to generate the text in target language. It is better than Corpus Based MTS because Corpus Based MTS require large amount of word aligned data for translation that is not available for many languages while Transfer Based MTS requires only knowledge of both the languages (source language and target language to make transfer rules. We get correct translation for simple assertive sentences and almost correct for complex and compound sentences.

  19. Crosstalk Study in a FBG-MOC-Based OXC Using Scattering Parameters

    Institute of Scientific and Technical Information of China (English)

    Xiangnong Wu; Chao Lu; Yixin. Wang; Z. Xiong; P. Shum; G. C. Lim

    2003-01-01

    Crosstalk in FBG-MOC-based OXCs is simulated using scattering parameters and compared with that in FBG-OC-based OXCs. The former is able to enhance the output power without significant degradation in signal-to-crosstalk ratio compared with the latter.

  20. Phonon-based mesh optimization for the Monte Carlo on-the-fly thermal scattering temperature fit coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pavlou, Andrew T., E-mail: pavloa2@rpi.edu; Ji, Wei, E-mail: jiw2@rpi.edu

    2016-06-15

    Highlights: • Thermal scattering data are fit using linear least squares regression. • Mesh points are optimally selected from phonon frequency distributions. • New meshes give more accurate fits of thermal data than our previous work. • Coefficient data storage is significantly reduced compared to current methods. - Abstract: In a series of papers, we have introduced a new sampling method for Monte Carlo codes for the low-energy secondary scattering parameters that greatly reduces data storage requirements. The method is based on the temperature dependence of the energy transfer (beta) and squared momentum transfer (alpha) between a neutron and a target nuclide. Cumulative distribution functions (CDFs) in beta and alpha are constructed for a range of temperatures on a mesh of incident energies in the thermal range and temperature fits are created for beta and alpha at discrete CDF probability lines. The secondary energy and angle distributions generated from the fit coefficients showed good agreement with the standard Monte Carlo sampling. However, some discrepancies still existed because the CDF probability mesh values were selected uniformly and arbitrarily. In this paper, a physics-based approach for optimally selecting the CDF probability meshes for the on-the-fly sampling method is introduced, using bound carbon in graphite as the example nuclide. This approach is based on the structure of the phonon frequency distribution of thermal excitations. From the study, it was determined that low (<0.1) and high (>0.9) beta CDF probabilities are important to the structure of the beta probability density functions (PDFs) while very low (<1 × 10{sup −4}) alpha CDF probabilities are important to the structure of the alpha PDFs. The final meshes contain 200 probability values for both beta and alpha. This results in 14.5 MB of total data storage for the on-the-fly coefficients which are used for any temperature realization. This is a significant reduction in

  1. A frequency-based numerical approach for unsteady radiative transfer in participating media

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, Daniel R. [Department of Applied Sciences, Universite du Quebec a Chicoutimi, Chicoutimi (Canada)

    2008-11-15

    The one-dimensional transient radiative transfer problem in the Cartesian coordinate system - an absorbing and scattering medium illuminated by a short laser pulse - is solved by the use of a discrete ordinates-finite volume method. Previous works have shown that the original numerical approach, based in the space-time domain, induces transmitted flux emerging earlier than the minimal time required by the radiation to leave the medium. Therefore, a frequency-based numerical method is formulated, implemented, and validated in this paper. Results for transmittances are accurate, without physically unrealistic behaviors at early time periods. However, the frequency-dependent approach is computationally expensive; it requires approximately five times more computational time than its temporal counterpart. Ongoing research is devoted to the optimization of these CPU requirements. (author)

  2. Graphene nonvolatile memory prototype based on charge-transfer mechanism

    Science.gov (United States)

    Lv, Hongming; Wu, Huaqiang; Huang, Can; Wang, Yuda; Qian, He

    2014-04-01

    A graphene nonvolatile memory (GNVM) prototype based on charge transfer between the graphene layer and the NH2(CH2)3Si(OEt)3 (APTES) self-assembled monolayer (SAM) is demonstrated. Graphene was transferred to an APTES-SAM-engineered SiO2 substrate and patterned into bottom-gate transistors. Owing to the charge trapping/detrapping property of the nitrogen atoms in APTES, a significant and reproducible transfer curve hysteresis is observed. Memory performance metrics, including retention and endurance, are reported. Comparisons between vacuum and ambient environment test results indicate air absorbates’ detrimental effect. Loss of nonvolatile storage is explained on the basis of a two-layer tunneling junction model, which sheds light on further device improvement through aminosilane molecule structure optimization.

  3. Simulation of Metal Transfer in GMAW Based on FLUENT

    Institute of Scientific and Technical Information of China (English)

    Xueping DING; Huan LI; Lijun YANG; Ying GAO

    2013-01-01

    A new numerical approach is presented,which is used to simulate the dynamic process of metal transfer.The process of metal transfer in gas metal arc welding is simulated based on FLUENT.A two-dimensional axisymmetric numerical model is developed using volume of fluid method and the distributions of physical quantities including pressure,current density,electric potential in the droplet are investigated.For improving the veracity of the simulated results and decreasing the effect of the uncertain surface tension coefficient on the simulated results,the relationship between the welding current and surface tension coefficient is modified by analysis of regression.Meanwhile for testing the accuracy of simulated results,the welding experiments are performed and the high-speed photography system is used to record the real process of metal transfer.The results show that the simulated results are in reasonably good agreement with the experimental ones.

  4. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Science.gov (United States)

    Round, A. R.; Wilkinson, S. J.; Hall, C. J.; Rogers, K. D.; Glatter, O.; Wess, T.; Ellis, I. O.

    2005-09-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  5. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Round, A R [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Wilkinson, S J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Hall, C J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Rogers, K D [Department of Materials and Medical Sciences, Cranfield University, Swindon, SN6 8LA (United Kingdom); Glatter, O [Department of Chemistry, University of Graz (Austria); Wess, T [School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales (United Kingdom); Ellis, I O [Nottingham City Hospital, Nottingham (United Kingdom)

    2005-09-07

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  6. A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex.

    Science.gov (United States)

    Birke, Ronald L; Znamenskiy, Vasiliy; Lombardi, John R

    2010-06-07

    Vibrational frequency calculations were made for a Ag(10)-pyridine vertex complex with density functional theory (DFT) for static simulated spectra and with time-dependent DFT (TD-DFT) for preresonance and resonance simulated spectra using both B3LYP/LANL2DZ and BP86/TZP methodologies. In addition, 40 excited states of the complex were calculated and assigned symmetry based on a C(2v) symmetry of the optimized complex found with B3LYP/LANL2DZ. Molecular orbital isosurfaces show that the excited states involve both Ag(10) intercluster excitations and charge-transfer (CT) excitations between the Ag nanocluster and the pyridine molecule. An excitation around 500 nm involving CT from the Ag cluster to pyridine was found in both calculations. For free pyridine, the relative average deviations between unscaled calculated and experimental results were 1.5 cm(-1) for BP86 and 3.1 cm(-1) for the B3LYP calculations. For the complex, simulated spectra at a variety of excitation wavelengths were calculated. In the case of 514 nm excitation, the simulated Raman cross section from the TD-DFT calculations (near the CT resonance) was plotted versus Raman shift frequency and compared with an experimental surface enhanced Raman scattering (SERS) spectrum obtained on an oxidation-reduction cycle, ORC roughened Ag electrode. The BP86 TD-DFT calculation with finite damping term showed a better fit to experimental spectrum with respect to both relative intensities and frequencies. The average deviation of the unscaled BP86 calculations for 16 bands in the experimental spectrum was 13.0 cm(-1). The calculated spectrum in both cases shows many contributions from nontotally symmetric as well as totally symmetric modes, indicating the contribution of Herzberg-Teller (HT) scattering. The simulated intensities of the Raman modes of different symmetry from Ag(10)-pyridine can be correlated with HT intensity borrowing from excited states of given symmetry and decent oscillator strength. These

  7. Analysis of error in soot characterization using scattering-based techniques

    Institute of Scientific and Technical Information of China (English)

    Lin Ma

    2011-01-01

    The increasing concern of the health and environmental effects of ultrafine soot particles emitted by modern combustion devices calls for new techniques to monitor such particles. Techniques based on light scattering represent one possible monitoring method. In this study, numerical simulations were conducted to examine the errors involved in soot characterization using light scattering techniques.Specifically, this study focused on examining the error caused by the approximate fractal scattering models based on the Rayleigh-Deybe-Gans theory (the RDG-FA model). When the angular scattering properties were used to retrieve parameters of soot aggregates (the radius of gyration and the fractal dimension), the RDG-FA method was observed to cause a relative error of ~10% for a representative set of soot parameters. The effects of measurement uncertainties were also investigated. Our results revealed the pattern of the errors: the errors consisted of a relatively constant baseline error caused by the RDG-FA approximation and an error increasing with the measurement uncertainties. These results are expected to be useful in the analysis and interpretation of experimental data, and also in the determination of the accuracy and applicable range of scattering techniques.

  8. Three-dimensional analysis of free-space light propagation based on quantum mechanical scattering theory of light

    Science.gov (United States)

    Son, Hyeonho; Choi, Honggu; Oh, Kyunghwan

    2017-01-01

    In this paper, a free-space light propagation analysis between 3-dimensional (3-D) volumetric spaces is proposed. In contrast to conventional scalar diffraction, the proposed theory is based on quantum mechanical scattering providing a general volumetric analysis for the free-space light propagation. Assuming a plane wave light incidence, we obtained a new analytic formula for 3-D volumetric convolution, which provided a transfer function in a closed form used for caculating the electric fields at the observation points. The proposed method was consistent with the conventional numerical methods for a 2-dimensional aperture and can be further applied to exact calculation of diffraction fields from 3-D surfaces, providing a compact reconstruction algorithm for 3-D images in a computer generated hologram.

  9. All-sky radiance simulation of Megha-Tropiques SAPHIR microwave sensor using multiple scattering radiative transfer model for data assimilation applications

    Indian Academy of Sciences (India)

    A Madhulatha; John P George; E N Rajagopal

    2017-03-01

    Incorporation of cloud- and precipitation-affected radiances from microwave satellite sensors in data assimilation system has a great potential in improving the accuracy of numerical model forecasts over the regions of high impact weather. By employing the multiple scattering radiative transfer model RTTOVSCATT,all-sky radiance (clear sky and cloudy sky) simulation has been performed for six channel microwave SAPHIR (Sounder for Atmospheric Profiling of Humidity in the Inter-tropics by Radiometry) sensors of Megha-Tropiques (MT) satellite. To investigate the importance of cloud-affected radiance data in severe weather conditions, all-sky radiance simulation is carried out for the severe cyclonic storm ‘Hudhud’ formed over Bay of Bengal. Hydrometeors from NCMRWF unified model (NCUM) forecasts are used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. Horizontal and vertical distribution of all-sky simulated radiances agrees reasonably well with the SAPHIR observed radiancesover cloudy regions during different stages of cyclone development. Simulated brightness temperatures of six SAPHIR channels indicate that the three dimensional humidity structure of tropical cyclone is well represented in all-sky computations. Improved correlation and reduced bias and root mean squareerror against SAPHIR observations are apparent. Probability distribution functions reveal that all-sky simulations are able to produce the cloud-affected lower brightness temperatures associated with cloudy regions. The density scatter plots infer that all-sky radiances are more consistent with observed radiances.Correlation between different types of hydrometeors and simulated brightness temperatures at respective atmospheric levels highlights the significance of inclusion of scattering effects from different hydrometeors in simulating the cloud-affected radiances in all-sky simulations. The results are promisingand suggest that the inclusion of multiple scattering

  10. All-sky radiance simulation of Megha-Tropiques SAPHIR microwave sensor using multiple scattering radiative transfer model for data assimilation applications

    Science.gov (United States)

    Madhulatha, A.; George, John P.; Rajagopal, E. N.

    2017-03-01

    Incorporation of cloud- and precipitation-affected radiances from microwave satellite sensors in data assimilation system has a great potential in improving the accuracy of numerical model forecasts over the regions of high impact weather. By employing the multiple scattering radiative transfer model RTTOV-SCATT, all-sky radiance (clear sky and cloudy sky) simulation has been performed for six channel microwave SAPHIR (Sounder for Atmospheric Profiling of Humidity in the Inter-tropics by Radiometry) sensors of Megha-Tropiques (MT) satellite. To investigate the importance of cloud-affected radiance data in severe weather conditions, all-sky radiance simulation is carried out for the severe cyclonic storm `Hudhud' formed over Bay of Bengal. Hydrometeors from NCMRWF unified model (NCUM) forecasts are used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. Horizontal and vertical distribution of all-sky simulated radiances agrees reasonably well with the SAPHIR observed radiances over cloudy regions during different stages of cyclone development. Simulated brightness temperatures of six SAPHIR channels indicate that the three dimensional humidity structure of tropical cyclone is well represented in all-sky computations. Improved correlation and reduced bias and root mean square error against SAPHIR observations are apparent. Probability distribution functions reveal that all-sky simulations are able to produce the cloud-affected lower brightness temperatures associated with cloudy regions. The density scatter plots infer that all-sky radiances are more consistent with observed radiances. Correlation between different types of hydrometeors and simulated brightness temperatures at respective atmospheric levels highlights the significance of inclusion of scattering effects from different hydrometeors in simulating the cloud-affected radiances in all-sky simulations. The results are promising and suggest that the inclusion of multiple scattering

  11. A small-angle neutron scattering study of cholic acid-based organogel systems

    NARCIS (Netherlands)

    Willemen, H.M.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Bouwman, W.G.; Deme, B.; Terech, P.

    2004-01-01

    Small-angle neutron scattering measurements were performed on some cholic acid-based gel systems in order to gain detailed information about the network structure. The presence of thin fibers with a radius of about 10-20 Å was found for various gelators. Two types of interaction between different so

  12. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.;

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  13. New neutron-based isotopic analytical methods; An explorative study of resonance capture and incoherent scattering

    NARCIS (Netherlands)

    Perego, R.C.

    2004-01-01

    Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the isotopic-spe

  14. QUANTUM CRYPTOGRAPHY SYSTEM WITH A SINGLE PHOTON SOURCE BASED ON THE SPONTANEOUS PARAMETRIC SCATTERING EFFECT

    Directory of Open Access Journals (Sweden)

    V. I. Egorov

    2012-01-01

    Full Text Available A scheme of a single photon source for quantum informatics applications based on the spontaneous parametric scattering effect is proposed and a quantum cryptography setup using it is presented. The system is compared to the alternative ones that operate with attenuated classic light.

  15. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO{sub 2} based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaohua, E-mail: mksxh@163.com; Zhou, Xin; Xu, Yalong; Sun, Panpan; Huang, Niu; Sun, Yihua

    2015-05-15

    Graphical abstract: - Highlights: • Mixed P25 nanoparticles and large rutile particles were employed to form a top scattering layer. • The top scattering layer exhibits superior light scattering effect. • The bottom nanocrystalline TiO{sub 2} layer can make good use of the back-scattered light. • Bilayer TiO{sub 2} photoanode shows faster interfacial electron transfer and slower charge recombination process. • Bilayer photoanode enhances the DSSC efficiency by a factor of 25%. - Abstract: Herein, we report a bilayer TiO{sub 2} photoanode composed of nanocrystalline TiO{sub 2} (NCT) bottom layer and mixed P25 nanoparticles and large rutile particles (PR) top scattering layer. The present structure performs well in solar light harvesting which is mainly attributed to the fact that the top scattering layer exhibits superior light scattering effect and meanwhile the NCT bottom layer with large dye-loading capacity can make better use of the back-scattered light. Moreover, electrochemical impedance spectroscopy and open circuit voltage decay measurements demonstrate that DSSC based on bilayer photoanode shows faster interfacial electron transfer and slower charge recombination process than that based on NCT monolayer photoanode. These advantages render the DSSCs based on NCT-PR bilayer photoanode exhibiting superior performance under AM1.5G simulated solar irradiation. As an example, by tuning mass ratio between P25 nanoparticles and large rutile particles in the top scattering layer, the DSSC based on NCT-PR bilayer photoanode exhibits an optimum solar energy conversion efficiency of 9.0%, which is about 1.25 times higher than that of monolayer NCT device (7.2%) with the same film thickness.

  16. Enhancement of photoluminescence and raman scattering in one-dimensional photonic crystals based on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, K. A., E-mail: k.a.gonchar@gmail.com [Moscow State University, Physics Faculty (Russian Federation); Musabek, G. K.; Taurbayev, T. I. [Al Farabi Kazakh National University, Physics Department (Kazakhstan); Timoshenko, V. Yu. [Moscow State University, Physics Faculty (Russian Federation)

    2011-05-15

    In porous-silicon-based multilayered structures that exhibit the properties of one-dimensional photonic crystals, an increase in the photoluminescence and Raman scattering intensities is observed upon optical excitation at the wavelength 1.064 {mu}m. When the excitation wavelength falls within the edge of the photonic band gap of the structures, a multiple increase (by a factor larger than 400) in the efficiency of Raman scattering is detected. The effect is attributed to partial localization of excitation light and, correspondingly, to the much longer time of interaction of light with the material in the structures.

  17. Performance Analysis of Temperature and Strain Simultaneous Measurement System Based on Heterodyne Detection of Brillouin Scattering

    Institute of Scientific and Technical Information of China (English)

    Ji-Sheng Zhang; Yong-Qian Li; Shuo Zhang; Li-Juan Zhao

    2008-01-01

    Microwave heterodyne detection can be used to measure the temperature and strain distribution along a fiber with high accuracy in a Brillouin optical time domain reflectometry (BOTDR) system. This method involves simultaneous measurement of Brillouin scattering and Rayleigh scattering in fiber, and scanning of Briliouin spectrum to obtain the desired information. This paper presents a simultaneous measurement system of temperature and strain based on microwave detection and analyzed the system performances such as measurement accuracy, dynamic range, and spatial resolution theoretically. The analysis shows that the system can achieve a temperature resolution of 1℃ and a strain resolution of 100 με.

  18. Optical tomography of fluorophores in dense scattering media based on ultrasound-enhanced chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Masaki, E-mail: masaki@tohtech.ac.jp; Kikuchi, Naoto; Sato, Akihiro [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan)

    2015-01-12

    This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm{sup 2}. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of this method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm{sup −1}), indicating the potential for expansion of this technique for use in biological applications.

  19. Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping

    CERN Document Server

    de Aguiar, Hilton B; Brasselet, Sophie

    2016-01-01

    Despite the tremendous progresses in wavefront control through or inside complex scattering media, several limitations prevent reaching practical feasibility for nonlinear imaging in biological tissues. While the optimization of nonlinear signals might suffer from low signal to noise conditions and from possible artifacts at large penetration depths, it has nevertheless been largely used in the multiple scattering regime since it provides a guide star mechanism as well as an intrinsic compensation for spatiotemporal distortions. Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches under broadband illumination conditions, to perform nonlinear imaging. Using ultrashort pulse illumination with spectral bandwidth comparable but still lower than the spectral width of the scattering medium, we show strong nonlinear enhancements of several orders of magnitude, through thicknesses of a few transport mean free paths, which corresponds to millimeters in biological tissues. Linear TM refocusing ...

  20. A Compton scattering image reconstruction algorithm based on total variation minimization

    Institute of Scientific and Technical Information of China (English)

    Li Shou-Peng; Wang Lin-Yuan; Yan Bin; Li Lei; Liu Yong-Jun

    2012-01-01

    Compton scattering imaging is a novel radiation imaging method using scattered photons.Its main characteristics are detectors that do not have to be on the opposite side of the source,so avoiding the rotation process.The reconstruction problem of Compton scattering imaging is the inverse problem to solve electron densities from nonlinear equations,which is ill-posed.This means the solution exhibits instability and sensitivity to noise or erroneous measurements.Using the theory for reconstruction of sparse images,a reconstruction algorithm based on total variation minimization is proposed.The reconstruction problem is described as an optimization problem with nonlinear data-consistency constraint.The simulated results show that the proposed algorithm could reduce reconstruction error and improve image quality,especially when there are not enough measurements.

  1. Multi-polarization reconstruction from compact polarimetry based on modified four-component scattering decomposition

    Institute of Scientific and Technical Information of China (English)

    Junjun Yin; Jian Yang

    2014-01-01

    An improved algorithm for multi-polarization recon-struction from compact polarimetry (CP) is proposed. According to two fundamental assumptions in compact polarimetric reconstruc-tion, two improvements are proposed. Firstly, the four-component model-based decomposition algorithm is modified with a new vol-ume scattering model. The decomposed helix scattering compo-nent is then used to deal with the non-reflection symmetry con-dition in compact polarimetric measurements. Using the decom-posed power and considering the scattering mechanism of each component, an average relationship between co-polarized and cross-polarized channels is developed over the original polariza-tion state extrapolation model. E-SAR polarimetric data acquired over the Oberpfaffenhofen area and JPL/AIRSAR polarimetric data acquired over San Francisco are used for verification, and good re-construction results are obtained, demonstrating the effectiveness of the proposed algorithm.

  2. Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level

    CERN Document Server

    Mastrolia, P; Reiter, T; Tramontano, F

    2010-01-01

    SAMURAI is a tool for the automated numerical evaluation of one-loop corrections to any scattering amplitudes within the dimensional-regularization scheme. It is based on the decomposition of the integrand according to the OPP-approach, extended to accommodate an implementation of the generalized d-dimensional unitarity-cuts technique, and uses a polynomial interpolation exploiting the Discrete Fourier Transform. SAMURAI can process integrands written either as numerator of Feynman diagrams or as product of tree-level amplitudes. We discuss some applications, among which the 6- and 8-photon scattering in QED, and the 6-quark scattering in QCD. SAMURAI has been implemented as a Fortran90 library, publicly available, and it could be a useful module for the systematic evaluation of the virtual corrections oriented towards automating next-to-leading order calculations relevant for the LHC phenomenology.

  3. English to Sanskrit Machine Translation Using Transfer Based approach

    Science.gov (United States)

    Pathak, Ganesh R.; Godse, Sachin P.

    2010-11-01

    Translation is one of the needs of global society for communicating thoughts and ideas of one country with other country. Translation is the process of interpretation of text meaning and subsequent production of equivalent text, also called as communicating same meaning (message) in another language. In this paper we gave detail information on how to convert source language text in to target language text using Transfer Based Approach for machine translation. Here we implemented English to Sanskrit machine translator using transfer based approach. English is global language used for business and communication but large amount of population in India is not using and understand the English. Sanskrit is ancient language of India most of the languages in India are derived from Sanskrit. Sanskrit can be act as an intermediate language for multilingual translation.

  4. Improving Adenovirus Based Gene Transfer: Strategies to Accomplish Immune Evasion

    Directory of Open Access Journals (Sweden)

    Andrea Amalfitano

    2010-09-01

    Full Text Available Adenovirus (Ad based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1 Ad-capsid-display of specific inhibitors or ligands; (2 covalent modifications of the entire Ad vector capsid moiety; (3 the use of tissue specific promoters and local administration routes; (4 the use of genome modified Ads; and (5 the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  5. A molecularly based theory for electron transfer reorganization energy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Bilin; Wang, Zhen-Gang, E-mail: zgw@cheme.caltech.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  6. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo [National Center for Geriatrics and Gerontology Research Institute, Department of Brain Science and Molecular Imaging, Obu, Aichi (Japan); Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita (Japan); Kato, Rikio [National Center for Geriatrics and Gerontology, Department of Radiology, Obu (Japan)

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with {sup 99m}Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I{sub AC}{sup {mu}}{sup b} with Chang's attenuation correction factor. The scatter component image is estimated by convolving I{sub AC}{sup {mu}}{sup b} with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and {sup 99m}Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  7. Influence of Spectral Transfer Processes in Compressible Low Frequency Plasma Turbulence on Scattering and Refraction of Electromagnetic Signals

    Science.gov (United States)

    2015-01-01

    Matlab for simplicity. 6.1 Hamilton-Jacobi Ray Tracing approximation The Hamilton-Jacobi ray tracing or geometric optics approximation is valid...SCATTERING SIMULATIONS: RAY TRACING ..................................... 56 6.0 6.1 Hamilton-Jacobi Ray Tracing approximation...58 6.3 Integration of Ray Tracing Algorithm with Vortex Solutions ............................................ 60 6.4 Fokker-Planck

  8. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  9. Effective atomic number of some sugars and amino acids for scattering of (241)Am and (137)Cs gamma rays at low momentum transfer.

    Science.gov (United States)

    Vinaykumar, L; Umesh, T K

    2015-09-01

    In this paper, we report the effective atomic number of some H, C, N and O based sugars and amino acids. These have been determined by using a handy expression which is based on the theoretical angle integrated small angle (coherent+incoherent) scattering cross sections of seven elements of Z≤13 in four angular ranges of (0-4°), (0-6°), (0-8°) and (0-10°)for (241)Am (59.54 keV) and (137)Cs (661.6 keV) gamma rays. The theoretical scattering cross sections were computed by a suitable numerical integration of the atomic form factor and incoherent scattering function compilations of Hubbell et al. (1975) which make use of the non-relativistic Hartree-Fock (NRHF) model for the atomic charge distribution of the elements in the angular ranges of interest. The angle integrated small angle scattering cross sections of the H, C, N and O based sugars and amino acids measured by a new method reported recently by the authors were used in the handy expression to derive their effective atomic number. The results are compared with the other available data and discussed. Possible conclusions are drawn based on the present study.

  10. Elastic scattering, muon transfer, bound states and resonances in the three-body mesic molecular systems in the reduced adiabatic hyperspherical approach

    Science.gov (United States)

    Abramov, D. I.; Gusev, V. V.; Ponomarev, L. I.

    1999-06-01

    The uniform method of numerical investigation of bound states and scattering processes 2→ 2 (including resonance states) in the Coulomb three-body (CTB) systems is developed. It is based on the adiabatic hyperspherical approach (AHSA) and includes the numerical realization and applications to the three-body mesic atomic systems. The results of calculations of bound states of these systems (including the local characteristics of the wave functions) and the scattering processes 2→ 2 (including the characteristics of the resonance states) are presented.

  11. Elastic scattering, muon transfer, bound states and resonances in the three-body mesic molecular systems in the reduced adiabatic hyperspherical approach

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, D.I. [St.-Petersburg State University (Russian Federation); Gusev, V.V. [Institute for High Energy Physics (Russian Federation); Ponomarev, L.I. [Russian Research Center ' Kurchatov Institute' (Russian Federation)

    1999-06-15

    The uniform method of numerical investigation of bound states and scattering processes 2{sup {yields}} 2 (including resonance states) in the Coulomb three-body (CTB) systems is developed. It is based on the adiabatic hyperspherical approach (AHSA) and includes the numerical realization and applications to the three-body mesic atomic systems. The results of calculations of bound states of these systems (including the local characteristics of the wave functions) and the scattering processes 2{sup {yields}} 2 (including the characteristics of the resonance states) are presented.

  12. Scatter correction in myocardial thallium SPECT. Needs for optimization of energy window settings in the energy window-based scatter correction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Yuichiro [Akita Research Institute of Brain and Blood Vessels (Japan); Iida, Hidehiro

    1999-02-01

    Accuracy and limitation of energy-window based scatter correction techniques have been evaluated for myocardial {sup 201}Tl SPECT by means of Monte Carlo simulation. In particular, projection view-dependency of energy distribution of the scattered photons was evaluated. Two geometrical configurations were simulated; namely a homogeneous cylindrical radioactivity located asymmetrically in a homogeneous cylindrical phantom, and a homogeneous ring radioactivity positioned at the myocardial region of a human thorax phantom. Energy spectra were recorded for each projection, and accuracy of the triple-energy window (TEW) method was then evaluation for both phantoms. The energy distribution of the scattered photons was apparently dependent on the projection view. TEW also demonstrated systematic overcorrection for the scatter because of multiple photo peaks around 80 keV, and more importantly, the error was highly dependent on the projection view. The error reached to 35-38% for the view that is the closest to the {sup 201}Tl radioactivity (anterior view in case of the myocardial ring phantom), and was approximately 20% in the opposite view. This view-dependency of the error remained for other energy window settings, and was found to cause significant artifact in the reconstructed myocardial images, typically causing a defect in the anterior myocardial wall. Thus, this study demonstrated the need for optimizing the window settings for each projection view in all energy window-based scatter correction methods. (author)

  13. Sound field separating on arbitrary surfaces enclosing a sound scatterer based on combined integral equations.

    Science.gov (United States)

    Fan, Zongwei; Mei, Deqing; Yang, Keji; Chen, Zichen

    2014-12-01

    To eliminate the limitations of the conventional sound field separation methods which are only applicable to regular surfaces, a sound field separation method based on combined integral equations is proposed to separate sound fields directly in the spatial domain. In virtue of the Helmholtz integral equations for the incident and scattering fields outside a sound scatterer, combined integral equations are derived for sound field separation, which build the quantitative relationship between the sound fields on two arbitrary separation surfaces enclosing the sound scatterer. Through boundary element discretization of the two surfaces, corresponding systems of linear equations are obtained for practical application. Numerical simulations are performed for sound field separation on different shaped surfaces. The influences induced by the aspect ratio of the separation surfaces and the signal noise in the measurement data are also investigated. The separated incident and scattering sound fields agree well with the original corresponding fields described by analytical expressions, which validates the effectiveness and accuracy of the combined integral equations based separation method.

  14. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    Science.gov (United States)

    Di Simone, Alessio

    2016-06-25

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions.

  15. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm

    Directory of Open Access Journals (Sweden)

    Alessio Di Simone

    2016-06-01

    Full Text Available Synthetic Aperture Radar (SAR imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D despeckling filter, named Scattering-Based (SB-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions.

  16. Three-dimensional radiative transfer simulations of the scattering polarization of the hydrogen Ly$\\alpha$ line in a MHD model of the chromosphere-corona transition region

    CERN Document Server

    Stepan, Jiri; Leenaarts, Jorrit; Carlsson, Mats

    2015-01-01

    Probing the magnetism of the upper solar chromosphere requires measuring and modeling the scattering polarization produced by anisotropic radiation pumping in UV spectral lines. Here we apply PORTA (a novel radiative transfer code) to investigate the hydrogen Ly$\\alpha$ line in a 3D model of the solar atmosphere resulting from a state of the art MHD simulation. At full spatial resolution the linear polarization signals are very significant all over the solar disk, with a large fraction of the field of view showing line-center amplitudes well above the 1% level. Via the Hanle effect the line-center polarization signals are sensitive to the magnetic field of the model's transition region, even when its mean field strength is only 15 G. The breaking of the axial symmetry of the radiation field produces significant forward-scattering polarization in Ly$\\alpha$, without the need of an inclined magnetic field. Interestingly, the Hanle effect tends to decrease such forward-scattering polarization signals in most of ...

  17. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    Science.gov (United States)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  18. Vertical bearing capacity of pile based on load transfer model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming-hua; YANG Ming-hui; ZOU Xin-jun

    2005-01-01

    The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.

  19. Relational Analysis based Concurrent Multipath Transfer over Heterogeneous Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Hongke Zhang

    2012-09-01

    Full Text Available In recent years, the growing interest in the Intelligent Transportation Systems (ITS has resulted in variety of peer-reviewed publications. Significant results in this area have enabled many civilian and industry applications. As more and more vehicles are equipped with multiple network interfaces, how to efficient utilize the coexistence of Radio Access Technologies (RAT such as WiFi, UMTS and WiMAX to serve a best Concurrent Multipath Transfer (CMT service is still a challenge in ITS. In this paper, we propose GRA-CMT, a novel Grey Relational Analysis (GRA based Concurrent Multipath Transfer, extension for Stream Control Transport Protocol (SCTP. Depending on the advantages of GRA, a GRA-based Data Distribution algorithm is proposed in GRA-CMT to calculate the Grey Relational Coefficient (GRC value of all candidate paths and offer a more efficient data scheduling algorithm, a further proposed GRA-based CMT Retransmission algorithm devotes to select destination for efficient retransmission. Moreover, the GRA-CMT provides a GRA-based CMT Path Selection scheme to manage candidate paths. Sufficient simulation results obtained by a close realistic simulation topology show how GRA-CMT outperforms existing CMT in heterogeneous SCTP-based vehicular networks.

  20. Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A; Sale, K E; Meyer, A M

    2010-03-02

    The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when ships are intercepted by U.S. Coast Guard harbor patrols searching for contraband. The development of a sequential model-based processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representation of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from the noisy measurements portable radiation detection systems used to interdict contraband. It is shown that this physics representation can incorporated scattering physics leading to an 'extended' model-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is shown to perform quite well based on data obtained from a controlled experiment.

  1. Half space albedo problem for the nonconservative vector equation of transfer with a combination of Rayleigh and isotropic scattering

    Science.gov (United States)

    Şenyiğit, M.

    2016-09-01

    The half-space albedo problem has been solved for a combination of Rayleigh and isotropic scattering using HN method which is developed for the neutron transport studies. The numerical results are compared with exact values obtained using variational method and Chandrasekhar's equation for the {H}-matrix. The analytical solutions of HN method are easy to handle in comparison with the other methods. The numerical results are in good agreement with previous works in literature.

  2. Molecular weight–gyration radius relation of globular proteins: a comparison of light scattering, small-angle X-ray scattering and structure-based data

    Science.gov (United States)

    Smilgies, Detlef-M.; Folta-Stogniew, Ewa

    2015-01-01

    The molecular weight–gyration radius relation for a number of globular proteins based on experimental light scattering data is compared with small-angle X-ray scattering data recently published by Mylonas & Svergun [J. Appl. Cryst. (2007 ▸), 40, s245–s249]. In addition, other recent experimental data and theoretical calculations are reviewed. It is found that the M W–R g relation for the globular proteins is well represented by a power law with an exponent of 0.37 (2). PMID:26500468

  3. Spatial transferability of landscape-based hydrological models

    Science.gov (United States)

    Gao, Hongkai; Hrachowitz, Markus; Fenicia, Fabrizio; Gharari, Shervan; Sriwongsitanon, Nutchanart; Savenije, Hubert

    2015-04-01

    Landscapes, mainly distinguished by land surface topography and vegetation cover, are crucial in defining runoff generation mechanisms, interception capacity and transpiration processes. Landscapes information provides modelers with a way to take into account catchment heterogeneity, while simultaneously keeping model complexity low. A landscape-based hydrological modelling framework (FLEX-Topo), with parallel model structures, was developed and tested in various catchments with diverse climate, topography and land cover conditions. Landscape classification is the basic and most crucial procedure to create a tailor-made model for a certain catchment, as it explicitly relates hydrologic similarity to landscape similarity, which is the base of this type of models. Therefore, the study catchment is classified into different landscapes units that fulfil similar hydrological function, based on classification criteria such as the height above the nearest drainage, slope, aspect and land cover. At present, to suggested model includes four distinguishable landscapes: hillslopes, terraces/plateaus, riparian areas, and glacierized areas. Different parallel model structures are then associated with the different landscape units to describe their different dominant runoff generation mechanisms. These hydrological units are parallel and only connected by groundwater reservoir. The transferability of this landscape-based model can then be compared with the transferability of a lumped model. In this study, FLEX-Topo was developed and tested in three study sites: two cold-arid catchments in China (the upper Heihe River and the Urumqi Glacier No1 catchment), and one tropical catchment in Thailand (the upper Ping River). Stringent model tests indicate that FLEX-Topo, allowing for more process heterogeneity than lumped model formulations, exhibits higher capabilities to be spatially transferred. Furthermore, the simulated water balances, including internal fluxes, hydrograph

  4. Excited-state intermolecular proton transfer of firefly luciferin III. Proton transfer to a mild base.

    Science.gov (United States)

    Presiado, Itay; Erez, Yuval; Huppert, Dan

    2010-12-30

    Steady-state and time-resolved techniques were employed to study the excited-state proton transfer (ESPT) from d-luciferin, the natural substrate of the firefly luciferase, to the mild acetate base in aqueous solutions. We found that in 1 M aqueous solutions of acetate or higher, a proton transfer (PT) process to the acetate takes place within 30 ps in both H(2)O and D(2)O solutions. The time-resolved emission signal is composed of three components. We found that the short-time component decay time is 300 and 600 fs in H(2)O and D(2)O, respectively. This component is attributed either to a PT process via the shortest water bridged complex available, ROH··H(2)O··Ac(-), or to PT taking place within a contact ion pair. The second time component of 2000 and 3000 fs for H(2)O and D(2)O, respectively, is attributed to ROH* acetate complex, whose proton wire is longer by one water molecule. The decay rate of the third, long-time component is proportional to the acetate concentration. We attribute it to the diffusion-assisted reaction as well as to PT process to the solvent.

  5. Optical diagnostics based on elastic scattering: Recent clinical demonstrations with the Los Alamos Optical Biopsy System

    Energy Technology Data Exchange (ETDEWEB)

    Bigio, I.J.; Loree, T.R.; Mourant, J.; Shimada, T. [Los Alamos National Lab., NM (United States); Story-Held, K.; Glickman, R.D. [Texas Univ. Health Science Center, San Antonio, TX (United States). Dept. of Ophthalmology; Conn, R. [Lovelace Medical Center, Albuquerque, NM (United States). Dept. of Urology

    1993-08-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.

  6. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties.

    Science.gov (United States)

    Thueler, Philippe; Charvet, Igor; Bevilacqua, Frederic; St Ghislain, M; Ory, G; Marquet, Pierre; Meda, Paolo; Vermeulen, Ben; Depeursinge, Christian

    2003-07-01

    A fast spectroscopic system for superficial and local determination of the absorption and scattering properties of tissue (480 to 950 nm) is described. The probe can be used in the working channel of an endoscope. The scattering properties include the reduced scattering coefficient and a parameter of the phase function called gamma, which depends on its first two moments. The inverse problem algorithm is based on the fit of absolute reflectance measurements to cubic B-spline functions derived from the interpolation of a set of Monte Carlo simulations. The algorithm's robustness was tested with simulations altered with various amounts of noise. The method was also assessed on tissue phantoms of known optical properties. Finally, clinical measurements performed endoscopically in vivo in the stomach of human subjects are presented. The absorption and scattering properties were found to be significantly different in the antrum and in the fundus and are correlated with histopathologic observations. The method and the instrument show promise for noninvasive tissue diagnostics of various epithelia.

  7. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  8. A learning framework for age rank estimation based on face images with scattering transform.

    Science.gov (United States)

    Chang, Kuang-Yu; Chen, Chu-Song

    2015-03-01

    This paper presents a cost-sensitive ordinal hyperplanes ranking algorithm for human age estimation based on face images. The proposed approach exploits relative-order information among the age labels for rank prediction. In our approach, the age rank is obtained by aggregating a series of binary classification results, where cost sensitivities among the labels are introduced to improve the aggregating performance. In addition, we give a theoretical analysis on designing the cost of individual binary classifier so that the misranking cost can be bounded by the total misclassification costs. An efficient descriptor, scattering transform, which scatters the Gabor coefficients and pooled with Gaussian smoothing in multiple layers, is evaluated for facial feature extraction. We show that this descriptor is a generalization of conventional bioinspired features and is more effective for face-based age inference. Experimental results demonstrate that our method outperforms the state-of-the-art age estimation approaches.

  9. Object-oriented change detection based on weighted polarimetric scattering differences on POLSAR images

    Science.gov (United States)

    Shi, X.; Lu, L.; Yang, S.; Huang, G.; Zhao, Z.

    2015-06-01

    For wide application of change detection with SAR imagery, current processing technologies and methods are mostly based on pixels. It is difficult for pixel-based technologies to utilize spatial characteristics of images and topological relations of objects. Object-oriented technology takes objects as processing unit, which takes advantage of the shape and texture information of image. It can greatly improve the efficiency and reliability of change detection. Recently, with the development of polarimetric synthetic aperture radar (PolSAR), more backscattering features on different polarization state can be available for usage of object-oriented change detection study. In this paper, the object-oriented strategy will be employed. Considering the fact that the different target or target's state behaves different backscattering characteristics dependent on polarization state, an object-oriented change detection method that based on weighted polarimetric scattering difference of PolSAR images is proposed. The method operates on the objects generated by generalized statistical region merging (GSRM) segmentation processing. The merit of GSRM method is that image segmentation is executed on polarimetric coherence matrix, which takes full advantages of polarimetric backscattering features. And then, the measurement of polarimetric scattering difference is constructed by combining the correlation of covariance matrix and the difference of scattering power. Through analysing the effects of the covariance matrix correlation and the scattering echo power difference on the polarimetric scattering difference, the weighted method is used to balance the influences caused by the two parts, so that more reasonable weights can be chosen to decrease the false alarm rate. The effectiveness of the algorithm that proposed in this letter is tested by detection of the growth of crops with two different temporal radarsat-2 fully PolSAR data. First, objects are produced by GSRM algorithm

  10. A Markov Chain-based quantitative study of angular distribution of photons through turbid slabs via isotropic light scattering

    Science.gov (United States)

    Li, Xuesong; Northrop, William F.

    2016-04-01

    This paper describes a quantitative approach to approximate multiple scattering through an isotropic turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering for optical diagnostic purposes; however, existing methods are either inaccurate or computationally expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering angular distribution (AD) that can accurately calculate AD while significantly reducing computational cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering research and deterministic reconstruction algorithm development with AD measurements.

  11. Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method

    Science.gov (United States)

    Eremina, Elena; Eremin, Yuri; Wriedt, Thomas

    2006-11-01

    The resonance properties of nanoshells are of great interest in nanosensing applications such as surface enhanced Raman scattering or biological sensing. In this paper the discrete sources method has been applied to analyze the spectrum of evanescent light scattering from a nanoshell particle deposited near a plane surface. Based on the rigorous theoretical model, which allows to take into account all features of the scattering problem as: medium with frequency dispersion, presence of the interface, the objective aperture and its location and core-shell asphericity, the scattering spectrum of nanoshells was calculated. The dependence of the local nanoshell spectral density behavior on its properties is discussed.

  12. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  13. Modeling of Energy Transfer for Carbon Nanotube-Based Precision Machining

    Science.gov (United States)

    Wong, Basil T.; Pinar Menguc, M.; Vallance, R. Ryan; Rao, Apparao M.

    2003-03-01

    INTRODUCTION Possible use of electron emission from carbon nanotubes (CNTs) for precision machining has been realized only recently. It is hypothesized that by coupling CNT electron emission with radiation transfer mechanism nano-scaled machining can be achieved. A laser, for example, can be used to raise the temperature of the workpiece near its melting point, and a carbon nanotube is then used to transfer additional energy required to the workpiece to complete the removal of minute amount of materials for nanomachining process. To investigate this hypothesis, a detailed numerical/analytical study is conducted. Electron transfer is modeled using a Monte Carlo approach, and a detailed radiation transfer model, including Fresnel reflections is adapted. Based on the numerical simulations we found that a power of one-tenth of a watt is required from a CNT alone to raise the temperature of gold beyond its melting point. However, using a localized heating with a laser, the required power can be reduced by roughly more than a half. This paper outlines the details of the numerical simulation and establishes a set of design guidelines for future nanomachining modalities. We are interested in nanomachining using the CNTs. Our objective is to determine if we can effectively remove tens of atoms from the workpiece by electron transfer from a single CNT and proper laser heating from either side of the workpiece. To reach our goal, energy transfer from a single CNT may not be sufficient. One way to overcome this setback is to preheat the workpiece to a certain temperature through a bulk heating, and using a subsequent localized heating by the laser beam to further increase the temperature of a specified location. Thus only a minimum amount of energy is required from the nanotube to process the material, i.e. to remove tens of atoms. Due to the complicated interactions between propagating electrons and the solid material, obtaining a physically realistic theoretical analysis

  14. Elastic scattering and cluster-transfer reactions of 98Rb on 7Li at REX-ISOLDE

    CERN Document Server

    Bouma, Jake

    Exotic nuclei are nuclei with unusual proton to neutron ratios that exist far away from stability. Due to their instability, these nuclei are only available for nuclear reactions as radioactive ion beams. Experiments must therefore be performed in inverse kinematics at advanced radioactive isotope separation and acceleration facilities. REX-ISOLDE at CERN is one such facility, capable of producing post-accelerated radioactive ion beams with energies up to 2.85 MeV/u. Cluster-transfer reactions in inverse kinematics with a $^{7}$Li target are proposed as a tool for the study of exotic nuclei at REX-ISOLDE. In these reactions, either the $\\alpha$ or triton clusters that make up the weakly bound $^{7}$Li nucleus can be transfered to the beam nucleus. The remaining cluster that is not transferred can be detected, and identifies the particular transfer channel. Through this mechanism it is possible to populate states of very high spin, which is useful for $\\gamma$-spectroscopy in poorly known exotic regions. Speci...

  15. Search for effects beyond the Born approximation in polarization transfer observables in $\\vec{e}p$ elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Meziane, M; Brash, E J; Jones, M K; Luo, W; Pentchev, L; Perdrisat, C F; Puckett, A J.R.; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Ates, O; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbothan, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Kang, H; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Markowitz, P; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnick, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nuruzzaman,; Nedev, S; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P E; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Subedi, R; Suleiman, R; Tomasi-Gustafsson, E; Vasiliev, A; Vanderhaeghen, M; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L

    2011-04-01

    Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, $G_{E}/G_{M}$, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic $H(\\vec{e},e'\\vec{p})$ reaction for three different beam energies at a fixed squared momentum transfer $Q^2 = 2.5$ GeV$^2$, spanning a wide range of the virtual photon polarization parameter, $\\epsilon$. From these measured polarization observables, we have obtained separately the ratio $R$, which equals $\\mu_p G_{E}/G_{M}$ in the Born approximation, and the longitudinal polarization transfer component $P_\\ell$, with statistical and systematic uncertainties of $\\Delta R \\approx \\pm 0.01 \\mbox{(stat)} \\pm 0.013 \\mbox{(syst)}$ and $\\Delta P_\\ell/P^{Born}_{\\ell} \\approx \\pm 0.006 \\mbox{(stat)}\\pm 0.01 \\mbox{(syst)}$. The ratio $R$ is found to be independent of $\\epsilon$ at the 1.5% level, while the $\\epsilon$ dependence of $P_\\ell$ shows an enhancement of $(2.3 \\pm 0.6) %$ relative to the Born approximation at large $\\epsilon$.

  16. A Network Based Methodology to Reveal Patterns in Knowledge Transfer

    Directory of Open Access Journals (Sweden)

    Orlando López-Cruz

    2015-12-01

    Full Text Available This paper motivates, presents and demonstrates in use a methodology based in complex network analysis to support research aimed at identification of sources in the process of knowledge transfer at the interorganizational level. The importance of this methodology is that it states a unified model to reveal knowledge sharing patterns and to compare results from multiple researches on data from different periods of time and different sectors of the economy. This methodology does not address the underlying statistical processes. To do this, national statistics departments (NSD provide documents and tools at their websites. But this proposal provides a guide to model information inferences gathered from data processing revealing links between sources and recipients of knowledge being transferred and that the recipient detects as main source to new knowledge creation. Some national statistics departments set as objective for these surveys the characterization of innovation dynamics in firms and to analyze the use of public support instruments. From this characterization scholars conduct different researches. Measures of dimensions of the network composed by manufacturing firms and other organizations conform the base to inquiry the structure that emerges from taking ideas from other organizations to incept innovations. These two sets of data are actors of a two- mode-network. The link between two actors (network nodes, one acting as the source of the idea. The second one acting as the destination comes from organizations or events organized by organizations that “provide” ideas to other group of firms. The resulting demonstrated design satisfies the objective of being a methodological model to identify sources in knowledge transfer of knowledge effectively used in innovation.

  17. Bioaerosol analysis based on a label-free microarray readout method using surface-enhanced Raman scattering.

    Science.gov (United States)

    Schwarzmeier, Kathrin; Knauer, Maria; Ivleva, Natalia P; Niessner, Reinhard; Haisch, Christoph

    2013-06-01

    Bacterial contamination of indoor air is a serious threat to human health. Pathogenic germs can be transferred from the liquid to the aerosol phase, for instance, when water is sprayed in the air, such as in shower rooms, air conditioners, or fountains. Existing analytical methods for biological indoor air-quality assessment and contamination monitoring are mostly time consuming as they generally require a cultivation step. The need for a rapid, sensitive, and selective detection method for bioaerosols is evident. Our approach is based on the combination of a commercial wet particle sampler (Coriolis μ, Bertin Technologies, France) and a label-free microarray readout based on surface-enhanced Raman scattering (SERS) for detection, which was established in our laboratories. Heat-inactivated Escherichia coli bacteria were used as test microorganisms. An E. coli suspension was sprayed into the chamber by a jet air nebulizer. The resulting bioaerosol was dried, neutralized, and then collected by a Coriolis μ sampler. The bacteria collected were detected by a recently developed microarray readout system, based on label-free SERS detection. A special data evaluation procedure was applied in order to fully exploit the selectivity of the detection scheme, resulting in a detection limit of 144 particles per cubic centimeter.

  18. Miniature fiber optic sensor based on fluorescence energy transfer

    Science.gov (United States)

    Meadows, David L.; Schultz, Jerome S.

    1992-04-01

    Optical fiber biosensors based on fluorescence assays have several distinct advantages when measuring biological analytes such as metabolites, cofactors, toxins, etc. Not only are optical signals immune to electronic interferences, but the polychromatic nature of most fluorochemical assays provides more potentially useful data about the system being studied. One of the most common difficulties normally encountered with optical biosensors is the inability to routinely recalibrate the optical and electronic components of the system throughout the life of the sensor. With this in mind, we present an optical fiber assay system for glucose based on a homogeneous singlet/singlet energy transfer assay along with the electronic instrumentation built to support the sensor system. In the sensor probe, glucose concentrations are indirectly measured from the level of fluorescence quenching caused by the homogeneous competition assay between TRITC labeled concanavalin A (receptor) and FITC labeled Dextran (ligand). The FITC signal is used to indicate glucose concentrations and the TRITC signal is used for internal calibration. Data is also presented on a protein derivatization procedure that was used to prevent aggregation of the receptor protein in solution. Also, a molecular model is described for the singlet/singlet energy transfer interactions that can occur in a model system composed of a monovalent ligand (FITC labeled papain) and a monovalent receptor (TRITC labeled concanavalin A).

  19. Resonance Energy Transfer-Based Approaches to Study GPCRs.

    Science.gov (United States)

    Ayoub, Mohammed Akli

    2016-01-01

    Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.

  20. Development of peptide-based patterns by laser transfer

    Science.gov (United States)

    Dinca, V.; Kasotakis, E.; Catherine, J.; Mourka, A.; Mitraki, A.; Popescu, A.; Dinescu, M.; Farsari, M.; Fotakis, C.

    2007-12-01

    Peptide-based arrays and patterns have provided a powerful tool in the study of protein recognition and function. A variety of applications have been identified, including the interactions between peptides-enzymes, peptides-proteins, peptides-DNA, peptides-small molecules and peptides-cells. One of the main and most critical unresolved issues is the generation of high-density arrays which maintain the biological function of the peptides. In this study, we employ nanosecond laser-induced forward transfer for the generation of high-density peptide arrays and patterns on modified glass surfaces. We show that peptide-based microarrays can be fabricated on solid surfaces and specifically recognized by appropriate fluorescent tags, with the transfer not affecting the ability of the peptides to form fibrils. These initial results are poised to the construction of larger peptide patterns as scaffolds for the incorporation and display of ligands critical for cell attachment and growth, or for the templating of inorganic materials.

  1. Simulation of Low-Grazing Scattering Properties of Vegetation

    Institute of Scientific and Technical Information of China (English)

    张民; 宋月霞; 吴振森; 马岸英

    2003-01-01

    The Monte Carlo method is applied to study the low-grazing scattering from a vegetation medium. Based on the two-layer model, phase of different fields and volume-surface scattering interaction are taken into account. The scattering coefficient is obtained. The numerical results are in agreement well with the measured data and the vector radiative transfer theory. The results are also used to explain the backscattering enhancement and the grazing incidence characteristic.

  2. Optimisation of Simultaneous Tl-201/Tc-99m Dual Isotope Reconstruction with Monte-Carlo-Based Scatter Correction

    Directory of Open Access Journals (Sweden)

    Tuija Kangasmaa

    2012-01-01

    Full Text Available Simultaneous Tl-201/Tc-99m dual isotope myocardial perfusion SPECT is seriously hampered by down-scatter from Tc-99m into the Tl-201 energy window. This paper presents and optimises the ordered-subsets-expectation-maximisation-(OS-EM- based reconstruction algorithm, which corrects the down-scatter using an efficient Monte Carlo (MC simulator. The algorithm starts by first reconstructing the Tc-99m image with attenuation, collimator response, and MC-based scatter correction. The reconstructed Tc-99m image is then used as an input for an efficient MC-based down-scatter simulation of Tc-99m photons into the Tl-201 window. This down-scatter estimate is finally used in the Tl-201 reconstruction to correct the crosstalk between the two isotopes. The mathematical 4D NCAT phantom and physical cardiac phantoms were used to optimise the number of OS-EM iterations where the scatter estimate is updated and the number of MC simulated photons. The results showed that two scatter update iterations and 105 simulated photons are enough for the Tc-99m and Tl-201 reconstructions, whereas 106 simulated photons are needed to generate good quality down-scatter estimates. With these parameters, the entire Tl-201/Tc-99m dual isotope reconstruction can be accomplished in less than 3 minutes.

  3. Optimisation of simultaneous tl-201/tc-99m dual isotope reconstruction with monte-carlo-based scatter correction.

    Science.gov (United States)

    Kangasmaa, Tuija; Kuikka, Jyrki; Sohlberg, Antti

    2012-01-01

    Simultaneous Tl-201/Tc-99m dual isotope myocardial perfusion SPECT is seriously hampered by down-scatter from Tc-99m into the Tl-201 energy window. This paper presents and optimises the ordered-subsets-expectation-maximisation-(OS-EM-) based reconstruction algorithm, which corrects the down-scatter using an efficient Monte Carlo (MC) simulator. The algorithm starts by first reconstructing the Tc-99m image with attenuation, collimator response, and MC-based scatter correction. The reconstructed Tc-99m image is then used as an input for an efficient MC-based down-scatter simulation of Tc-99m photons into the Tl-201 window. This down-scatter estimate is finally used in the Tl-201 reconstruction to correct the crosstalk between the two isotopes. The mathematical 4D NCAT phantom and physical cardiac phantoms were used to optimise the number of OS-EM iterations where the scatter estimate is updated and the number of MC simulated photons. The results showed that two scatter update iterations and 10(5) simulated photons are enough for the Tc-99m and Tl-201 reconstructions, whereas 10(6) simulated photons are needed to generate good quality down-scatter estimates. With these parameters, the entire Tl-201/Tc-99m dual isotope reconstruction can be accomplished in less than 3 minutes.

  4. Biochemical component identification by light scattering techniques in whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-03-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins (albumin, interferon, C reactive protein), microelements (Na+, Ca+), antibiotic of different generations, in both single and multi component solutions under varied in wide range concentration are represented. Analysis has been performed on the light scattering parameters of whispering gallery mode (WGM) optical resonance based sensor with dielectric microspheres from glass and PMMA as sensitive elements fixed by spin - coating techniques in adhesive layer on the surface of substrate or directly on the coupling element. Sensitive layer was integrated into developed fluidic cell with a digital syringe. Light from tuneable laser strict focusing on and scattered by the single microsphere was detected by a CMOS camera. The image was filtered for noise reduction and integrated on two coordinates for evaluation of integrated energy of a measured signal. As the entrance data following signal parameters were used: relative (to a free spectral range) spectral shift of frequency of WGM optical resonance in microsphere and relative efficiency of WGM excitation obtained within a free spectral range which depended on both type and concentration of investigated agents. Multiplexing on parameters and components has been realized using spatial and spectral parameters of scattered by microsphere light with developed data processing. Biochemical component classification and identification of agents under investigation has been performed by network analysis techniques based on probabilistic network and multilayer perceptron. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis.

  5. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  6. Concept of a multichannel spin-resolving electron analyzer based on Mott scattering

    Energy Technology Data Exchange (ETDEWEB)

    Strocov, Vladimir N., E-mail: vladimir.strocov@psi.ch [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Petrov, Vladimir N. [St Petersburg Polytechnical University, Polytechnicheskaya Str. 29, St Petersburg RU-195251 (Russian Federation); Dil, J. Hugo [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2015-04-10

    The concept of a two-dimensional multichannel electron spin detector based on Mott scattering and imaging-type electron optics is presented. The efficiency increase of about four orders of magnitude opens new scientific fields including buried magnetic interfaces. The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 10{sup 4} which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities.

  7. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  8. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  9. Fast 3D EM scattering and radiation solvers based on MLFMA

    Institute of Scientific and Technical Information of China (English)

    Hu Jun; Nie Zaiping; Lei Lin; Hu Jie; Gong Xiaodong; Zhao Huapeng

    2008-01-01

    As the fastest integral equation solver to date, the multilevel fast multipole algorithm (MLFMA)has been applied successfully to solve electromagnetic scattering and radiation from 3D electrically large objects.But for very large-scale problems, the storage and CPU time required in MLFMA are still expensive. Fast 3D electromagnetic scattering and radiation solvers are introduced based on MLFMA. A brief review of MLFMA is first given. Then, four fast methods including higher-order MLFMA (HO-MLFMA), fast far field approximation combined with adaptive ray propagation MLFMA (FAFFA-ARP-MLFMA), local MLFMA and parallel MLFMA are introduced. Some typical numerical results demonstrate the efficiency of these fast methods.

  10. Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix

    Science.gov (United States)

    Kaliteevski, M. A.; Gubaydullin, A. R.; Ivanov, K. A.; Mazlin, V. A.

    2016-09-01

    We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.

  11. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    Science.gov (United States)

    Bakhlanov, S. V.; Bazlov, N. V.; Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2016-06-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  12. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    CERN Document Server

    Bakhlanov, S V; Derbin, A V; Drachnev, I S; Kayunov, A S; Muratova, V N; Semenov, D A; Unzhakov, E V

    2016-01-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  13. Modular Python-based Code for Thomson Scattering System on NSTX-U

    Science.gov (United States)

    Horowitz, Benjamin; Diallo, Ahmed; Feibush, Eliot; Leblanc, Benoit

    2013-10-01

    Fast accurate and reliable measurements of electron temperature and density profiles within magnetically confined plasmas are essential for full operation of fusion devices. We detail the design and implementation of a modular Pythonbased code for the Thomson Scattering diagnostic system of NSTX-U which offers improvements in speed by making full use of the Python's architecture, open-source module packages, and ability to be parallelized across many processors. SciPy's weave package allows the implementation of C/C++ code within our program to clear up bottlenecks in data fitting while not loosing the flexibility and clarity of Python, while Numpy and MatplotLib allow calculations and plotting of the processed data. Using the standard MDSplus input, we create a flexible and expandable algorithm structure which can be implemented on any fusion device utilizing polychromator-based Thomson scattering diagnostic system. Supported by DOE SULI Fellowship at Princeton Plasma Physics Lab.

  14. Effects of La Incorporation in Hf Based Dielectric on Leakage Conduction and Carrier Scattering Mechanisms.

    Science.gov (United States)

    You, Seung-Won; Lee, Dong Hwi; Nguyen, Manh Cuong; Jeon, Yoon Seok; Tong, Duc-Tai; Bang, Hyun Joon; Jeong, Jae Kyoung; Choi, Rino

    2015-10-01

    Metal-oxide-semiconductor field effect transistors (MOSFETs) with various doses of La-incorporated in Hafnium-based dielectrics were characterized to evaluate the effect of La on dielectric and device properties. It is found that the Poole-Frenkel emission model could explain our experimental leakage current conduction mechanism reasonably and barrier heights of localized Poole-Frenkel trap sites increase gradually with increasing La incorporation. Cryogenic measurement (from 100 K to 300 K) of MOSFETs reveals that, as the content of La incorporation in the dielectric increases, the more increase of maximum effective mobility has been found at low temperature. It is mainly attributed to the more reduction of phonon scattering due to higher content of La atoms at the interface of dielectric and channel. Though it is relatively small, the existence of La in dielectric reduces coulomb scattering rate as well.

  15. Prolonged interval between fusion and activation impairs embryonic development by inducing chromosome scattering and nuclear aneuploidy in pig somatic cell nuclear transfer.

    Science.gov (United States)

    You, Jinyoung; Song, Kilyoung; Lee, Eunsong

    2010-01-01

    The aim of the present study was to examine the effect of various intervals between electrofusion and activation (FA interval) on the nuclear remodelling and development of somatic cell nuclear transfer (SCNT) embryos in pigs. Reconstructed oocytes were activated at 0 (simultaneous fusion and activation; SFA), 1, 2 and 3 h (delayed activation) after electrofusion; these groups were designated as DA1, DA2 and DA3, respectively. When oocyte nuclear status was examined at 0.5, 1, 2 and 3 h after electrofusion, the incidence of chromosome scattering was increased (P or=3) pseudopronuclei (PPN) (0.0% of SFA; 5.3% of DA1; 21.7% of DA2; and 33.5% of DA3). The development of SCNT embryos to the blastocyst stage was decreased (P nuclear aneuploidy.

  16. Search for effects beyond the born approximation in polarization transfer observables in e(over→)p elastic scattering.

    Science.gov (United States)

    Meziane, M; Brash, E J; Gilman, R; Jones, M K; Luo, W; Pentchev, L; Perdrisat, C F; Puckett, A J R; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Ates, O; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Kang, H; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Markowitz, P; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nuruzzaman; Nedev, S; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P E; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Širca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Subedi, R; Suleiman, R; Tomasi-Gustafsson, E; Vasiliev, A; Vanderhaeghen, M; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L

    2011-04-01

    Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, G(E)/G(M), obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic H(e[over →],e(')p[over →]) reaction for three different beam energies at a Q(2)=2.5  GeV(2), spanning a wide range of the kinematic parameter ε. The ratio R, which equals μ(p)G(E)/G(M) in the Born approximation, is found to be independent of ε at the 1.5% level. The ε dependence of the longitudinal polarization transfer component P(ℓ) shows an enhancement of (2.3±0.6)% relative to the Born approximation at large ε.

  17. Transfer Scheme Evaluation Model for a Transportation Hub based on Vectorial Angle Cosine

    Directory of Open Access Journals (Sweden)

    Li-Ya Yao

    2014-07-01

    Full Text Available As the most important node in public transport network, efficiency of a transport hub determines the entire efficiency of the whole transport network. In order to put forward effective transfer schemes, a comprehensive evaluation index system of urban transport hubs’ transfer efficiency was built, evaluation indexes were quantified, and an evaluation model of a multi-objective decision hub transfer scheme was established based on vectorial angle cosine. Qualitative and quantitative analysis on factors affecting transfer efficiency is conducted, which discusses the passenger satisfaction, transfer coordination, transfer efficiency, smoothness, economy, etc. Thus, a new solution to transfer scheme utilization was proposed.

  18. Radioactive Threat Detection with Scattering Physics: A Model-Based Application

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A; Sale, K E; Meyer, A M

    2010-01-21

    The detection of radioactive contraband is a critical problem in maintaining national security for any country. Emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. The development of a model-based sequential Bayesian processor that captures both the underlying transport physics including scattering offers a physics-based approach to attack this challenging problem. It is shown that this processor can be used to develop an effective detection technique.

  19. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  20. Comparing Ray-Based and Wave-Based Models of Cross-Beam Energy Transfer

    Science.gov (United States)

    Follett, R. K.; Edgell, D. H.; Shaw, J. G.; Froula, D. H.; Myatt, J. F.

    2016-10-01

    Ray-based models of cross-beam energy transfer (CBET) are used in radiation-hydrodynamics codes to calculate laser-energy deposition. The accuracy of ray-based CBET models is limited by assumptions about the polarization and phase of the interacting laser beams and by the use of a paraxial Wentzel-Kramers-Brillouin (WKB) approximation. A 3-D wave-based solver (LPSE-CBET) is used to study the nonlinear interaction between overlapping laser beams in underdense plasma. A ray-based CBET model is compared to the wave-based model and shows good agreement in simple geometries where the assumptions of the ray-based model are satisfied. Near caustic surfaces, the assumptions of the ray-based model break down and the calculated energy transfer deviates from wave-based calculations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Charge Transfer Based Colorimetric Detection of Silver Ion

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Kim, Kwang Seob; Choi, Soon Kyu; Oh, Jinho; Lee, Jae Wook [Dong-A Univ., Busan (Korea, Republic of)

    2014-05-15

    We have demonstrated the colorimetric chemosensor for detection of Ag{sup +} via formation of nanoparticles which is based on the intramolecular CT interaction between the electron-rich (2,6-dialkoxynaphthalene; Np) moiety and the electron-deficient (methyl viologen; MV{sup 2+}) moiety of a single sensor molecule. Under irradiation of light, Ag{sup +} was reduced to very small silver nanoparticle by CT interaction in the presence of OEGs as flexible recognition moiety of Ag{sup +} and stabilizer for Ag nanoparticles, thus Ag nanoparticles resulted to reddish brown in the color change of sensor solution, gradually. Therefore, the charge-transfer interaction between an electron-deficient and an electron-rich units existing at a sensor molecule can be regarded as a new and efficient method to construct various colorimetric chemosensors. Donor.acceptor interactions or charge transfer (CT) interactions are an important class of non-covalent interactions and have been widely exploited in self-assembling systems. Beyond molecular chemistry, supramolecular chemistry aims at constituting highly complex, functional chemical systems from components held together by intermolecular forces. Chemosensors are the molecules of abiotic origin that bind selectively and reversibly with the analyte with concomitant change in one or more properties of the system. The recognition and signaling of ionic and neutral species of varying complexity is one of the most intensively studied areas of contemporary supramolecular chemistry.

  2. A Spectral Geometrical Model for Compton Scatter Tomography Based on the SSS Approximation

    DEFF Research Database (Denmark)

    Kazantsev, Ivan G.; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2016-01-01

    annihilation event and undergoing a single scattering at a certain angle. The equations for single scatter calculation are derived using the Single Scatter Simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion...

  3. Excited-state intermolecular proton transfer of firefly luciferin V. Direct proton transfer to fluoride and other mild bases.

    Science.gov (United States)

    Presiado, Itay; Gepshtein, Rinat; Erez, Yuval; Huppert, Dan

    2011-07-07

    We studied the direct proton transfer (PT) from electronically excited D-luciferin to several mild bases. The fluorescence up-conversion technique is used to measure the rise and decay of the fluorescence signals of the protonated and deprotonated species of D-luciferin. From a base concentration of 0.25 M or higher the proton transfer rates to the fluoride, dihdyrogen phosphate or acetate bases are fast and comparable. The fluorescence signals are nonexponential and complex. We suggest that the fastest decay component arises from a direct proton transfer process from the hydroxyl group of D-luciferin to the mild base. The proton donor and acceptor molecules form an ion pair prior to photoexcitation. Upon photoexcitation solvent rearrangement occurs on a 1 ps time-scale. The PT reaction time constant is ∼2 ps for all three bases. A second decay component of about 10 ps is attributed to the proton transfer in a contact pair bridged by one water molecule. The longest decay component is due to both the excited-state proton transfer (ESPT) to the solvent and the diffusion-assisted PT process between a photoacid and a base pair positioned remotely from each other prior to photoexcitation.

  4. Full waveform inversion based on scattering angle enrichment with application to real dataset

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI). However, the drawback of the existing RWI methods is inability to utilize diving waves and the extra sensitivity to the migrated image. We propose a combined FWI and RWI optimization problem through dividing the velocity into the background and perturbed components. We optimize both the background and perturbed components, as independent parameters. The new objective function is quadratic with respect to the perturbed component, which will reduce the nonlinearity of the optimization problem. Solving this optimization provides a true amplitude image and utilizes the diving waves to update the velocity of the shallow parts. To insure a proper wavenumber continuation, we use an efficient scattering angle filter to direct the inversion at the early stages to direct energy corresponding to large (smooth velocity) scattering angles to the background velocity update and the small (high wavenumber) scattering angles to the perturbed velocity update. This efficient implementation of the filter is fast and requires less memory than the conventional approach based on extended images. Thus, the new FWI procedure updates the background velocity mainly along the wavepath for both diving and reflected waves in the initial stages. At the same time, it updates the perturbation with mainly reflections (filtering out the diving waves). To demonstrate the capability of this method, we apply it to a real 2D marine dataset.

  5. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    Directory of Open Access Journals (Sweden)

    Raja Syamsul Azmir Raja Abdullah

    2016-09-01

    Full Text Available The passive bistatic radar (PBR system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR. The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  6. A parallelized Python based Multi-Point Thomson Scattering analysis in NSTX-U

    Science.gov (United States)

    Miller, Jared; Diallo, Ahmed; Leblanc, Benoit

    2014-10-01

    Multi-Point Thomson Scattering (MPTS) is a reliable and accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Nd:YAG (1064 nm) lasers are fired into the plasma with a frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the midplane of the tokamak pick up the light at various radii/scattering angles, and the avalanche photodiode's voltages are added to an MDSplus tree for later analysis. This project ports and optimizes the prior serial IDL MPTS code into a well-documented Python package that runs in parallel. Since there are 30 polychromators in the current NSTX setup (12 more will be added when NSTX-U is completed), using parallelism offers vast savings in performance. NumPy and SciPy further accelerate numerical calculations and matrix operations, Matplotlib and PyQt make an intuitive GUI with plots of the output, and Multiprocessing parallelizes the computationally intensive calculations. The Python package was designed with portability and flexibility in mind so it can be adapted for use in any polychromator-based MPTS system.

  7. Analyses of Nucleon Scattering Based on the Modified Statistical Hauser - Feshbach - Weidenmueller Formalism.

    Science.gov (United States)

    Chan, Desmond Wing-Sum

    An S-matrix formalism of the statistical theory of nuclear reactions has been developed by Weidenmuller et al., based upon the Engelbrecht-Weidenmuller transformation and extended to cases where direct reactions are present as a means of deriving expressions for the fluctuation cross section going beyond the framework of conventional Hauser-Feshbach theory. This unified approach, from which a coherent sum of fluctuation and direct-interaction cross sections is combined to yield a net reaction cross section, provides a means of deriving a comprehensive and accurate theoretical description of the scattering process. Although a framework for the formal theory has been constructed, it had not previously been applied to the qualitative analyses of scattering data. As described in this thesis, a computer program "NANCY" has been compiled by modifying Tamura's coupled -channels code "JUPITOR-1" (through modifications suggested by Moldauer) and incorporating Smith's optical model routine "SCAT", as a means of generating the entire symmetric S -matrix. Using this program, computations were undertaken to determine numerically the energy-averaged cross sections for inelastic neutron scattering on ('232)Th and ('238)U from threshold to several MeV. With appropriate variation of coupling strengths between the ground state rotational band and vibrational levels good fits to the experimental data were attained, which compared favorably with theoretical results generated from conventional approaches.

  8. High-definition projection screen based on multiple light scattering technique

    Science.gov (United States)

    Suzuki, Hiromasa; Okumura, Takamitsu; Tagaya, Akihiro; Higuchi, Eizaburo; Koike, Yasuhiro

    2004-05-01

    A novel rear projection screen (Blue Ocean screen, Nitto Jyushi Kogyo, Co., Ltd.) has been developed. Blue Ocean screen is a single polymer plate requiring no lens element. The projected image is formed on the screen surface by the multiple light scattering. An image light is multiply scattered and is converted into homogeneous light distribution efficiently due to the internal particles of micron order dispersed in the acrylic polymer matrix. An ambient light is reduced by the dye molecules doped in the polymer and the anti-reflective coating on the screen surface. The condition of the particles and the concentration of the dye molecules have been optimized by the ray tracing simulation program based on Mie scattering theory using a Monte Carlo method. The screen containing the particles of optimum condition exhibits the wide viewing angle, the well-controlled color balance, and the high sharpness level at the same time. The contrast level of the projected image in ambient light is improved by controlling the concentration of the dye molecules. This paper describes the optimization obtained theoretically and experimentally, and demonstrates the advantage of Blue Ocean screen.

  9. A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards

    Directory of Open Access Journals (Sweden)

    István Makra

    2015-01-01

    • The concentration of virus nanoparticles can be calculated based on the two measured scattered light intensities by knowing the refractive index of the dispersing solution, of the polymer and virus nanoparticles as well as their relative sphere equivalent diameters.

  10. Study of Electromagnetic Scattering from Randomly Rough Ocean-Like Surfaces Using Integral-Equation-Based Numerical Technique

    OpenAIRE

    Toporkov, Jakov V.

    1998-01-01

    A numerical study of electromagnetic scattering by one-dimensional perfectly conducting randomly rough surfaces with an ocean-like Pierson-Moskowitz spectrum is presented. Simulations are based on solving the Magnetic Field Integral Equation (MFIE) using the numerical technique called the Method of Ordered Multiple Interactions (MOMI). The study focuses on the application and validation of this integral equation-based technique to scattering at low grazing angles and considers other aspects o...

  11. Membrane-based gas transfer: an environmental engineering laboratory.

    Science.gov (United States)

    Kilduff, J; Liu, J X; Komisar, S J

    2004-01-01

    We propose an educational experience in which students design a membrane gas transfer reactor, construct a bench-scale version in the laboratory, and employ the reactor to measure mass transfer coefficients. The membrane reactor is useful for teaching mass transfer principles because the mass transfer interface is well defined and easily observed. The system can be modeled successfully using straightforward mathematics. The reactor can be designed and constructed by students, using the mathematical model as a basis, providing insight into the physical meaning of model parameters. The proposed membrane system can be readily operated to obtain data that can be employed to develop or modify existing mass transfer correlations. This can provide students with significant insight into the development of mass transfer correlations and how the constants in such correlations are typically determined. These features help promote a deeper understanding of mass transfer principles.

  12. New type high-index dielectric nanosensors based on the scattering intensity shift

    Science.gov (United States)

    Yan, Jiahao; Liu, Pu; Lin, Zhaoyong; Yang, Guowei

    2016-03-01

    Sensing is regarded as one of the most important applications of noble metal-based nanoplasmonics. However, all previous designs have been based on the wavelength-shift of the localized surface plasmon resonance, in which the sensitivity is intrinsically limited by the low quality factors induced by metal losses, and meanwhile the large ohmic loss, high cost and inevitable toxicity and biofouling for detection in vivo greatly hinder their further applications in biosensors. Beyond noble metals, high-refractive index dielectric materials (HRDMs) like silicon with low-loss and strong magnetic response have drawn more attention. Here, for the first time, we proposed a HRDM nanosphere as a new nanosensor for biomolecule detection, and experimentally demonstrated a HRDM sensor working on the intensity-shift but not wavelength-shift of the scattering. The sensing mechanism based on the synergistic effect of the broadening electric mode shift of HRDMs and the Kerker's scattering intensity-shift is beneficial to achieve higher sensitivity. We validated the efficacy of our sensor to detect refractive index changes and trace amounts of streptavidin molecules, and the sensitivity can reach 27 times as high as the highest sensitivity reported to date for nanoplasmonic structures. These findings showed that monitoring the change of the scattering intensity of HRDM nanostructures is superior to monitoring the wavelength-shift of nanoplasmonic structures, as is widely used in nanoplasmonic sensors, for biosensing, meaning HRDM nanosensors could be an important tool in biomolecule detection.Sensing is regarded as one of the most important applications of noble metal-based nanoplasmonics. However, all previous designs have been based on the wavelength-shift of the localized surface plasmon resonance, in which the sensitivity is intrinsically limited by the low quality factors induced by metal losses, and meanwhile the large ohmic loss, high cost and inevitable toxicity and

  13. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    Science.gov (United States)

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation.

  14. Hardware-in-the-loop simulation technology of wide-band radar targets based on scattering center model

    Institute of Scientific and Technical Information of China (English)

    Huang Hao; Pan Minghai; Lu Zhijun

    2015-01-01

    Hardware-in-the-loop (HWIL) simulation technology can verify and evaluate the radar by simulating the radio frequency environment in an anechoic chamber. The HWIL simulation technology of wide-band radar targets can accurately generate wide-band radar target echo which stands for the radar target scattering characteristics and pulse modulation of radar transmitting sig-nal. This paper analyzes the wide-band radar target scattering properties first. Since the responses of target are composed of many separate scattering centers, the target scattering characteristic is restructured by scattering centers model. Based on the scattering centers model of wide-band radar target, the wide-band radar target echo modeling and the simulation method are discussed. The wide-band radar target echo is reconstructed in real-time by convoluting the transmitting signal to the target scattering parameters. Using the digital radio frequency memory (DRFM) system, the HWIL simulation of wide-band radar target echo with high accuracy can be actualized. A typical wide-band radar target simulation is taken to demonstrate the preferable simulation effect of the reconstruction method of wide-band radar target echo. Finally, the radar target time-domain echo and high-resolution range profile (HRRP) are given. The results show that the HWIL simulation gives a high-resolution range distribution of wide-band radar target scattering centers.

  15. Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Science.gov (United States)

    Chen, Xueli; Zhang, Qitan; Yang, Defu; Liang, Jimin

    2014-01-01

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP3 equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP3) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  16. Image Reconstruction of Two-Dimensional Highly Scattering Inhomogeneous Medium Using MAP-Based Estimation

    Directory of Open Access Journals (Sweden)

    Hong Qi

    2015-01-01

    Full Text Available A maximum a posteriori (MAP estimation based on Bayesian framework is applied to image reconstruction of two-dimensional highly scattering inhomogeneous medium. The finite difference method (FDM and conjugate gradient (CG algorithm serve as the forward and inverse solving models, respectively. The generalized Gaussian Markov random field model (GGMRF is treated as the regularization, and finally the influence of the measurement errors and initial distributions is investigated. Through the test cases, the MAP estimate algorithm is demonstrated to greatly improve the reconstruction results of the optical coefficients.

  17. Resolving directional ambiguity in dynamic light scattering-based transverse motion velocimetry in optical coherence tomography

    Science.gov (United States)

    Huang, Brendan K.; Choma, Michael A.

    2014-01-01

    Dynamic Light Scattering-based Optical Coherence Tomography approaches have been successfully implemented to measure total transverse (xy) flow speed, but are unable to resolve directionality. We propose a method to extract directional velocity in the transverse plane by introducing a variable scan bias to our system. Our velocity estimation, which yields the directional velocity component along the scan axis, is also independent of any point spread function calibration. By combining our approach with Doppler velocimetry, we show three-component velocimetry that is appropriately dependent on latitudinal and longitudinal angle. PMID:24487855

  18. Design of a multimode beamforming network based on the scattering matrix analysis

    Institute of Scientific and Technical Information of China (English)

    CHENG YuJian; HONG Wei; WU Ke

    2009-01-01

    The investigation of the multimode beamforming network (BFN) has been developed from its scattering matrix (S-matrix) analysis. A substrate integrated waveguide (SIW) BFN is designed and fabricated on a single Rogers 5880 substrate. This device is not only marked by features of conventional BFN, such as Butler matrix, but also has additional benefits, e.g. more compact configuration and higher radiation efficiency. Measured and simulated results based on the proposed structure are in a good agreement, which indicates that this novel type of BFN has good characteristics and presents an excellent candidate in the development of intelligent microwave and millimeter-wave multibeam antenna systems.

  19. Scattering properties of normal and cancerous tissues from human stomach based on phase-contrast microscope

    Science.gov (United States)

    Zhang, Hui; Li, Zhifang; Li, Hui

    2012-12-01

    In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue

  20. Model for water pollution remote sensing based on double scattering and its application in the Zhujiang River outfall

    Institute of Scientific and Technical Information of China (English)

    DENG Ruru; LIU Qinhuo; KE Ruiping; CHENG Lei; LIU Xiaoping

    2004-01-01

    It is a valid route for quantitatively remote sensing on water pollution to build a model according to the physical mechanisms of scattering and absorbing of suspended substance, pollutant, and molecules of water. Remote sensing model for water pollution based on single scattering is simple and easy to be used, but the precision is affected by turbidity of water. The characteristics of the energy composition of multiple scattering, are analyzed and it is proposed that, based on the model of single scattering, ifthe flux of the second scattering is considered additionally, the precision of the modelwill be remarkably improved and the calculation is still very simple. The factor of the second scattering is deduced to build a double scattering model, and the practical arithmetic for the calculation of the model is put forward. The result of applying this model in the water area around the Zhujiang(Pearl) River outfall shows that the precision is obviously improved. The result also shows that the seriously polluted water area is distributed in the northeast of Lingding Sea, the Victoria Bay of Hong Kong, and the Shengzhen Bay.

  1. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    Energy Technology Data Exchange (ETDEWEB)

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David, E-mail: David.Lennon@Glasgow.ac.uk [School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, Scotland G12 8QQ (United Kingdom); MacLaren, Donald A. [School of Physics and Astronomy, University of Glasgow, The Kelvin Building, Glasgow, Scotland G12 8QQ (United Kingdom); Webb, Paul B.; Tooze, Robert P. [Sasol Technology UK Ltd., Purdie Building, North Haugh, St Andrews, Fife KY16 9ST (United Kingdom); Taylor, Jon; Ewings, Russell A.; Parker, Stewart F. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe{sub 2}O{sub 3}) is distinguished by a relatively intense band at 810 cm{sup −1}, which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.

  2. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  3. A method based on iterative morphological filtering and multiple scattering for detecting layer boundaries and extinction coefficients with LIDAR

    Science.gov (United States)

    Li, Meng; Jiang, Li-Hui; Xiong, Xing-Long; Ma, Yu-Zhao; Liu, Jie-Sheng

    2016-08-01

    Layer boundaries detection with LIDAR is of great significance for the meteorological and environmental research. Apart from the background noise, multiple scattering can also seriously affect the detection results in LIDAR signal processing. To alleviate these issues, a novel approach was proposed based upon morphological filtering and multiple scattering correction with multiple iterations, which essentially acts as a weighted algorithm with multiple scattering factors in different filtering scales, and applies integral extinction coefficients as media to perform correction. Simulations on artificial signals and real LIDAR signals support this approach.

  4. A theoretical approach to room acoustic simulations based on a radiative transfer model

    DEFF Research Database (Denmark)

    Ruiz-Navarro, Juan-Miguel; Jacobsen, Finn; Escolano, José;

    2010-01-01

    A theoretical approach to room acoustic simulations based on a radiative transfer model is developed by adapting the classical radiative transfer theory from optics to acoustics. The proposed acoustic radiative transfer model expands classical geometrical room acoustic modeling algorithms by inco...

  5. A sensitivity function-based conjugate gradient method for optical tomography with the frequency-domain equation of radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Keol [Departement des Sciences Appliquees, Universite du Quebec a Chicoutimi, Chicoutimi, Que., G7H 2B1 (Canada); Charette, Andre [Departement des Sciences Appliquees, Universite du Quebec a Chicoutimi, Chicoutimi, Que., G7H 2B1 (Canada)]. E-mail: andre_charette@uqac.ca

    2007-03-15

    The Sensitivity Function-based Conjugate Gradient Method (SFCGM) is described. This method is used to solve the inverse problems of function estimation, such as the local maps of absorption and scattering coefficients, as applied to optical tomography for biomedical imaging. A highly scattering, absorbing, non-reflecting, non-emitting medium is considered here and simultaneous reconstructions of absorption and scattering coefficients inside the test medium are achieved with the proposed optimization technique, by using the exit intensity measured at boundary surfaces. The forward problem is solved with a discrete-ordinates finite-difference method on the framework of the frequency-domain full equation of radiative transfer. The modulation frequency is set to 600 MHz and the frequency data, obtained with the source modulation, is used as the input data. The inversion results demonstrate that the SFCGM can retrieve simultaneously the spatial distributions of optical properties inside the medium within a reasonable accuracy, by significantly reducing a cross-talk between inter-parameters. It is also observed that the closer-to-detector objects are better retrieved.

  6. Information-theoretic analysis of a stimulated-Brillouin-scattering-based slow-light system.

    Science.gov (United States)

    Lee, Myungjun; Zhu, Yunhui; Gauthier, Daniel J; Gehm, Michael E; Neifeld, Mark A

    2011-11-10

    We use an information-theoretic method developed by Neifeld and Lee [J. Opt. Soc. Am. A 25, C31 (2008)] to analyze the performance of a slow-light system. Slow-light is realized in this system via stimulated Brillouin scattering in a 2 km-long, room-temperature, highly nonlinear fiber pumped by a laser whose spectrum is tailored and broadened to 5 GHz. We compute the information throughput (IT), which quantifies the fraction of information transferred from the source to the receiver and the information delay (ID), which quantifies the delay of a data stream at which the information transfer is largest, for a range of experimental parameters. We also measure the eye-opening (EO) and signal-to-noise ratio (SNR) of the transmitted data stream and find that they scale in a similar fashion to the information-theoretic method. Our experimental findings are compared to a model of the slow-light system that accounts for all pertinent noise sources in the system as well as data-pulse distortion due to the filtering effect of the SBS process. The agreement between our observations and the predictions of our model is very good. Furthermore, we compare measurements of the IT for an optimal flattop gain profile and for a Gaussian-shaped gain profile. For a given pump-beam power, we find that the optimal profile gives a 36% larger ID and somewhat higher IT compared to the Gaussian profile. Specifically, the optimal (Gaussian) profile produces a fractional slow-light ID of 0.94 (0.69) and an IT of 0.86 (0.86) at a pump-beam power of 450 mW and a data rate of 2.5 Gbps. Thus, the optimal profile better utilizes the available pump-beam power, which is often a valuable resource in a system design.

  7. Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer.

    Science.gov (United States)

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-05-11

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F- ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity.

  8. Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques

    Institute of Scientific and Technical Information of China (English)

    苏伍各; 王宏强; 阳召成

    2014-01-01

    The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters’ positions among a much large number of potential scatters’ positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed l0 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.

  9. Back-Influence of Molecular Motion on Energy Transfer in the Landau-Teller Model of Atom Molecule Scattering.

    Science.gov (United States)

    Pollak, Eli

    2016-07-21

    This year we celebrate the 80th anniversary of the Landau-Teller model for energy exchange in a collinear collision of an atom with a harmonic diatomic molecule. Even after 80 years though, the analytic theory to date has not included in it the back-influence of the oscillator's motion on the energy transfer between the approaching particle and the molecule. This is the topic of the present paper. The back-influence can be obtained by employing classical second-order perturbation theory. The second-order theory is used in both a classical and semiclassical context. Classically, analytic expressions are derived for the final phase and action of the diatom, after the collision. The energy loss of the atom is shown to decrease linearly with the increasing energy of the oscillator. The magnitude of this decrease is a direct consequence of the back-reaction of the oscillator on the translational motion. The qualitative result is universal, in the sense that it is not dependent on the details of the interaction of the atom with the oscillator. A numerical application to a model collision of an Ar atom with a Br2 diatom demonstrates the importance and accuracy of the second-order perturbation theory. The same results are then used to derive a second-order perturbation theory semiclassical expression for the quantum transition probability from initial vibrational state ni to final vibrational state nf of the oscillator. A comparison of the theory with exact quantum data is presented for a model collision of Br2 with a hydrogen molecule, where the hydrogen molecule is considered as a single approaching particle.

  10. Novel technique for distributed fibre sensing based on coherent Rayleigh scattering measurements of birefringence

    Science.gov (United States)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.

  11. Avoidance-based human Pavlovian-to-instrumental transfer.

    Science.gov (United States)

    Lewis, Andrea H; Niznikiewicz, Michael A; Delamater, Andrew R; Delgado, Mauricio R

    2013-12-01

    The Pavlovian-to-instrumental transfer (PIT) paradigm probes the influence of Pavlovian cues over instrumentally learned behavior. The paradigm has been used extensively to probe basic cognitive and motivational processes in studies of animal learning. More recently, PIT and its underlying neural basis have been extended to investigations in humans. These initial neuroimaging studies of PIT have focused on the influence of appetitively conditioned stimuli on instrumental responses maintained by positive reinforcement, and highlight the involvement of the striatum. In the current study, we sought to understand the neural correlates of PIT in an aversive Pavlovian learning situation when instrumental responding was maintained through negative reinforcement. Participants exhibited specific PIT, wherein selective increases in instrumental responding to conditioned stimuli occurred when the stimulus signaled a specific aversive outcome whose omission negatively reinforced the instrumental response. Additionally, a general PIT effect was observed such that when a stimulus was associated with a different aversive outcome than was used to negatively reinforce instrumental behavior, the presence of that stimulus caused a non-selective increase in overall instrumental responding. Both specific and general PIT behavioral effects correlated with increased activation in corticostriatal circuitry, particularly in the striatum, a region involved in cognitive and motivational processes. These results suggest that avoidance-based PIT utilizes a similar neural mechanism to that seen with PIT in an appetitive context, which has implications for understanding mechanisms of drug-seeking behavior during addiction and relapse.

  12. Scattering Solar Thermal Concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  13. Concept of multichannel spin-resolving electron analyzer based on Mott scattering

    CERN Document Server

    Strocov, Vladimir N; Dil, J Hugo

    2014-01-01

    Concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 keV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared to the single-channel Mott detector can be a factor of 1.5e4 and above, opening new prospects of spin-resolved spectroscopies in application not only to standard bulk and sur...

  14. Free-electron laser based resonant inelastic X-ray scattering on molecules and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kunnus, Kristjan, E-mail: kkunnus@stanford.edu [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany); Schreck, Simon; Föhlisch, Alexander [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-10-15

    Highlights: • Femtosecond time-resolved RIXS can be used to follow charge, spin and structural dynamics of dilute solute molecules in solution. • Ultrashort X-ray pulses allow probing of highly radiation sensitive states of matter. • Nonlinear X-ray probes provide an enhanced selectivity and sensitivity as well as a path to control radiation damage and increase the photon yields in RIXS experiments. - Abstract: The unprecedented beam properties of free-electron laser based X-ray sources enable novel resonant inelastic X-ray scattering (RIXS) experiments. Femtosecond time-resolved RIXS can be used to follow charge, spin and structural dynamics of dilute solute molecules in solution. Ultrashort X-ray pulses allow probing of highly radiation sensitive states of matter such as the metastable phase of supercooled liquid water. Nonlinear X-ray probes like amplified spontaneous emission and stimulated resonant X-ray scattering provide an enhanced selectivity and sensitivity as well as a path to control radiation damage and increase the photon yields in RIXS experiments.

  15. A light scattering study of the evolution of pairing in Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hackl, Rudi; Kretzschmar, Florian; Muschler, Bernhard; Boehm, Thomas [Walther-Meissner-Institut, DE-85748 Garching (Germany); Wen, Hai-Hu [Nanjing University, Nanjing 210093 (China); Tsurkan, Vladimir [University of Augsburg, DE-86159 Augsburg (Germany); Academy of Sciences of Moldova, MD-2028 Chisinau (Moldova, Republic of); Deisenhofer, Joachim; Loidl, Alois [University of Augsburg, DE-86159 Augsburg (Germany)

    2013-07-01

    The iron-based superconductors are a laboratory for exploring the relevance of electron-electron interactions beyond electron-phonon coupling, being at work in conventional superconductors, since the Fermi surfaces can be varied systematically by atomic substitution. This enables one to systematically study magnetism and superconductivity as a function of the Fermi surface topology. Inelastic light scattering affords a window into the electronic properties of the ordered states. In particular, the evolution of the superconducting pairing upon doping can be probed since light scattering allows access to the anisotropy of the energy gap and, in some cases, of the pairing potential. Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} is one of those cases since the competition between s- and d-wave pairing leads to the appearance of exciton-like modes below the gap edges of the various bands. Along with the results from other materials having different Fermi surface cross-sections the data in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} support the spin fluctuation scenario driven by interband coupling. The experiments show that there exist alternative routes for the analysis of the pairing interaction in superconductors with unconventional coupling and anisotropic gaps.

  16. Concept of a multichannel spin-resolving electron analyzer based on Mott scattering

    Science.gov (United States)

    Strocov, Vladimir N.; Petrov, Vladimir N.; Dil, J. Hugo

    2015-01-01

    The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 104 which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities. PMID:25931087

  17. Quantum information storage and state transfer based on spin systems

    CERN Document Server

    Song, Z

    2004-01-01

    The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.

  18. Proton transfer assisted charge transfer phenomena in photochromic Schiff bases and effect of -NEt2 groups to the anil Schiff bases.

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Guchhait, Nikhil

    2012-11-15

    Photochromic Schiff bases 5-diethylamino-2-[(4-diethylamino-benzylidene)-hydrazonomethyl]-phenol (DDBHP) and N,N'-bis(4-N,N-diethylaminosalisalidene) hydrazine (DEASH) with both the proton and charge transfer moieties have been synthesized, and their photophysical properties such as excited state intramolecular charge transfer (ICT) and proton transfer (ESIPT) processes have been reported on the basis of steady-state and time-resolved spectral measurement in various solvents. The ground-state six-membered intramolecular hydrogen bonding network at the proton transfer site accelerates the ESIPT process for these compounds. Both the compounds show large Stokes-shifted emission bands for proton transfer and charge transfer processes. The hydrogen bonding solvents play a crucial role in these photophysical processes. Excited-state dipole moment of DDBHP and DEASH calculated by the solvatochromic method supports the polar character of the charge transfer excited state. Introduction of -NEt(2) groups to the reported salicylaldehyde azine (SAA) Schiff base results an increase in fluorescence lifetime from femtosecond to picosecond time scale for the proton transfer process.

  19. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-02-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a {sup 137}Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  20. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; He, Yao

    2016-08-15

    During the past few decades, thanks to silicon nanomaterials' outstanding electronic/optical/mechanical properties, large surface-to-volume ratio, abundant surface chemistry, facile tailorability and good compatibility with modern semiconductor industry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance surface-enhanced Raman scattering (SERS) sensors for the detection of various chemical and biological species. Among these, two-dimensional silicon nanostructures made of metal nanoparticle-modified silicon wafers and three-dimensional silicon nanostructures made of metal nanoparticle-decorated SiNW arrays are of particular interest, and have been extensively exploited as promising silicon-based SERS-active substrates for the construction of high-performance SERS sensors. With an aim to retrospect these important and exciting achievements, we herein focus on reviewing recent representative studies on silicon-based SERS sensors for sensing applications from a broad perspective and possible future direction, promoting readers' awareness of these novel powerful silicon-based SERS sensing technologies. Firstly, we summarize the two unique merits of silicon-based SERS sensors, and those are high sensitivity and good reproducibility. Next, we present recent advances of two- and three-dimensional silicon-based SERS sensors, especially for real applications. Finally, we discuss the major challenges and prospects for the development of silicon-based SERS sensors.

  1. Computer-based sensing and visualizing of metal transfer mode in gas metal arc welding

    Institute of Scientific and Technical Information of China (English)

    Chen Maoai; Wu Chuansong; Lü Yunfei

    2008-01-01

    Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of the welding current and arc voltage with high speed imaging of the metal transfer. It can simultaneously display the metal transfer processes and waveforms of electrical welding parameters in real-time The metal transfer videos and waveforms of electrical welding parameters can be recorded. Metal transfers under various welding conditions have been investigated with the system developed.

  2. Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues

    CERN Document Server

    Aubry, Alexandre

    2010-01-01

    Waves scattered by a weakly inhomogeneous random medium contain a predominant single scattering contribution as well as a multiple scattering contribution which is usually neglected, especially for imaging purposes. We propose a method, based on random matrix theory, in order to separate the single and multiple scattering contributions. The experimental set up uses an array of programmable sources/receivers placed in front of the medium. The impulse responses between every couple of transducers are measured and form a matrix. Single-scattering contributions are shown to exhibit a deterministic coherence along the antidiagonals of the array response matrix, whatever the distribution of inhomogeneities. This property is taken advantage of to discriminate single from multiple-scattered waves. This allows one to evaluate the absorption losses and the scattering losses separately, by comparing the multiple scattering intensity with a radiative transfer model. Moreover, the relative contribution of multiple scatter...

  3. Clustering in Water Based Magnetic Nanofluids: Investigations by Light Scattering Methods

    Science.gov (United States)

    Socoliuc, Vlad; Taculescu, Alina; Podaru, Camelia; Dobra, Andreea; Daia, Camelia; Marinica, Oana; Turcu, Rodica; Vekas, Ladislau

    2010-12-01

    Nanosized magnetite particles, with mean physical diameter of about 7 nm, obtained by chemical coprecipitation procedure were dispersed in water carrier by applying sterical stabilization of particles in order to prevent their aggregation and to ensure colloidal stability of the systems. Different chain length (C12, C14, C18) carboxylic acids (lauric (LA), myristic (MA) and oleic (OA)) were used for double layer coating of magnetite nanoparticles. Structural and magnetic properties were investigated by electron microscopy (TEM), dynamical and static light scattering (DLS, SLS) and magnetometry (VSM) to evaluate the role of chain length and of the saturated/unsaturated nature of surfactant layers. Also investigated were two water based magnetic nanocomposites obtained by encapsulating the magnetic nanoparticles in polymers with different functional properties.

  4. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudesai, S. A., E-mail: swapnil@barc.gov.in; Mitra, S.; Mukhopadhyay, R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 40085 (India); Lawrence, Mathias B. [Department of Physics, St. Xavier’s College, Mapusa, Goa 403507 (India); Desa, J. A. E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 (India)

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  5. Photoacoustic blood glucose and skin measurement based on optical scattering effect

    Science.gov (United States)

    Zhao, Zuomin; Myllyla, Risto A.

    2002-07-01

    Non-invasive blood glucose determination has been investigated by more than 100 research groups in the world during the past fifteen years. The commonly optical methods are based on the capacity of near-IR light to penetrate a few hundreds micrometers or a few millimeters into human tissue where it interacts with glucose. A change of glucose concentration may modify the optical parameters in tissue, with the result that its glucose concentration can be extracted by analyzing the received optical signals. This paper demonstrates that glucose affects on the scattering coefficient of human blood, by applying the streak camera and pulsed photoacoustic techniques; and drinking water seems also affecting on PA signal from skin surface.

  6. GPU-based Monte Carlo dust radiative transfer scheme applied to AGN

    CERN Document Server

    Heymann, Frank

    2012-01-01

    A three dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons (PAH). Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray-tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust...

  7. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Robles, Francisco E.; Fischer, Martin C.; Warren, Warren S.

    2016-03-01

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time. In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. We use a modified pump-probe system (pulses with duration of ~0.5 ps and 75 fs, respectively) with interferometric detection in the Fourier-domain to demonstrate that the dispersive measurements are more robust to noise (e.g., laser noise) compared to conventional amplitude measurements, which in turn permits facile spectral and spatial multiplexing. Results show that it is possible to assess a broadband dispersion spectrum (currently limited to ~400 cm-1) with a single laser shot or spectrometer acquisition (20-50 µs). For molecular imaging with broadband spectral information, we achieve spatial pixel rates of 2.5 kHz, and will discuss how this can be further improved to 20-50 kHz. We also combine SRS with optical coherence tomography (OCT) (molecular and structural information are rendered from the same data), which enables axial multiplexing by coherence gating and paves the way for volumetric biochemical imaging. The approach is tested on a thin water-and-oil phantom, a thick scattering polystyrene bead phantom, and thick freshly excised human adipose tissue. Finally, we will outline other opportunities for spatial multiplexing using wide-field holography and spectroscopic-OCT, which would massively parallelize the spatial and spectral information. The combination of dispersion-based SRS and phase imaging has the potential to enable faster wide-area and volumetric molecular imaging. Such methods would be valuable in a clinical setting for many applications.

  8. Manipulating scattering features by metamaterials

    Directory of Open Access Journals (Sweden)

    Lu Cui

    2016-01-01

    Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.

  9. Rolling-based direct-transfer printing: A process for large-area transfer of micro- and nanostructures onto flexible substrates

    Science.gov (United States)

    Grierson, D. S.; Flack, F. S.; Lagally, M. G.; Turner, K. T.

    2016-09-01

    A rolling-based printing approach for transferring arrays of patterned micro- and nano-structures directly from rigid fabrication substrates onto flexible substrates is presented. Transfer-printing experiments show that the new process can achieve high-yield and high-fidelity transfer of silicon nanomembrane components with diverse architectures to polyethylene terephthalate substrates over chip-scale areas (>1 × 1 cm2) in process are investigated through finite element simulations of the contact and transfer process. These mechanics models provide guidance for controlling the contact area and strain in the flexible substrate during transfer, both of which are key for achieving reproducible and controlled component transfer over large areas.

  10. Low power proximity electronics for dust analysers based on light scattering

    Science.gov (United States)

    Molfese, C.; Esposito, F.; Cortecchia, F.; Cozzolino, F.

    2012-04-01

    The present paper focuses on the development of an optimized version of the Proximity Electronics (PE) for dust analysers based on static light scattering. This kind of instruments, aimed to the systematic measurement of the size of dust grains in Martian atmosphere, was developed by the Cosmic Physics and Planetology Group at the INAF Astronomical Observatory of Capodimonte (OAC) and University Parthenope (LFC group), in Naples, Italy. One of these instruments, the MEDUSA Experiment, was selected for the Humboldt Payload of the ExoMars mission, the first mission to Mars of the ESA Aurora Programme. Thereafter, this mission was revised because of increasing costs and lack of funds and the MEDUSA experiment has been completely re-engineered to meet more demanding constraints of mass and power consumption. The dust analyser under development is named MicroMED, as it is a lighter and more compact version of MEDUSA. MicroMED is provided with an Optical System (OS) based on the same concept of the one present in MEDUSA, but with a low power PE and low power laser source. This paper reports the features and the tests results of three versions of low power PE developed for MicroMED, and also compares two basic approaches, one based on a linear amplifier, derived from the solution implemented in two different MEDUSA breadboards (B/Bs), and the other one based on a logarithmic amplifier, with better performance in terms of compactness and low power consumption.

  11. Trophic transfer of metal-based nanoparticles in aquatic environments

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal; Selck, Henriette; Winther-Nielsen, Margrethe

    2016-01-01

    -ENPs, and where this information is scarce, we utilize the existing literature on aqueous metal trophic transfer as a potential starting point for greater mechanistic insight and for setting directions for future studies. We identify four key factors affecting trophic transfer of Me-ENPs: (1) environmental...... environment where they have been shown to be taken up by a variety of species. Therefore, there is a possibility that Me-ENPs will enter and pass through aquatic food webs, but research on this topic is limited. In this tutorial review, we discuss the factors contributing to trophic transfer of Me...... transformations of Me-ENPs, (2) uptake and accumulation in prey organisms, (3) internal fate and localization in the prey, and (4) digestive physiology of the predator. Whilst much research has been conducted on the first two of these factors, key knowledge gaps exist in our understanding of how Me-ENP trophic...

  12. Non-line-of-sight optical scattering communication based on atmospheric inhomogeneity

    Science.gov (United States)

    Sun, X. J.; Li, S. H.; Yan, W. X.; Zhang, R. W.; Zhang, C. L.

    2017-01-01

    In this paper, a new non-line-of-sight (NLOS) propagation model in inhomogeneous atmosphere for long range is presented. The optical scattering communication is simulated, in which the single-scatter propagation model is used and the atmospheric inhomogeneity is also taken into account. Through the comparison with that in other atmosphere conditions, the scattering phase function is found to be a function of height. Moreover, the received energy does not decrease monotonically as the apex angle increases, and there is an optimal apex angle in which the received energy is the largest. All these results are conducive to the precise calculation of the optical scattering communication for long range.

  13. Symbolic transfer entropy-based premature signal analysis

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Yu Zheng-Feng

    2012-01-01

    In this paper,we use symbolic transfer entropy to study the coupling strength between premature signals.Numerical experiments show that three types of signal couplings are in the same direction.Among them,normal signal coupling is the strongest,followed by that of premature ventricular contractions,and that of atrial premature beats is the weakest.The T test shows that the entropies of the three signals are distinct.Symbolic transfer entropy requires less data,can distinguish the three types of signals and has very good computational efficiency.

  14. Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation

    Science.gov (United States)

    Qiao, Yao-Bin; Qi, Hong; Zhao, Fang-Zhou; Ruan, Li-Ming

    2016-12-01

    Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure. Project supported by the National Natural Science Foundation of China (Grant No. 51476043), the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).

  15. The role of technological transfer in the societies based on knowledge economy

    OpenAIRE

    2009-01-01

    The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  16. Change Detection Based on Persistent Scatterer Interferometry - a New Method of Monitoring Building Changes

    Science.gov (United States)

    Yang, C. H.; Kenduiywo, B. K.; Soergel, U.

    2016-06-01

    Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC) points. On the other hand, incoherent change detection (ICD) relies on local comparison of multi-temporal images (e.g. image difference, image ratio) to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  17. CHANGE DETECTION BASED ON PERSISTENT SCATTERER INTERFEROMETRY – A NEW METHOD OF MONITORING BUILDING CHANGES

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2016-06-01

    Full Text Available Persistent Scatterer Interferometry (PSI is a technique to detect a network of extracted persistent scatterer (PS points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC points. On the other hand, incoherent change detection (ICD relies on local comparison of multi-temporal images (e.g. image difference, image ratio to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  18. Study on the performance of polycarboxylate-based superplasticizers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization

    Science.gov (United States)

    Yu, Binbin; Zeng, Zhong; Ren, Qinyu; Chen, Yang; Liang, Mei; Zou, Huawei

    2016-09-01

    A series of block type polycarboxylate-based superplasticizers (PCs) with different molecular architectures were synthesized with macromonomer butenyl alkylene polyoxyethylene-polyoxypropylene ether (BAPP) and acrylic acid (AA) by reversible addition-fragmentation chain transfer (RAFT) polymerization. Fourier-Transformed Infrared (FTIR) Spectroscopy and dynamic light scattering (DLS) were applied to investigate the PCs' molecular structure. The dispersion capacity of the PCs in cement were also measured, and the results showed that the polycarboxylic dispersing agents prepared by this method were suitable for portlant cement. It was found that the PCs could affect the hydration process, which was performed through retarding the generation of ettringite in the hydrated product. Our studies with X-ray diffraction (XRD), scanning electron microscopy (SEM) and compressive strength measurement of hydrated production were all supporting this conclusion.

  19. Charge transfer devices. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-04-01

    The technology, design, fabrication, and applications of charge transfer devices are presented in the cited research reports. Applications include imaging, signal processing, detectors, filters, amplifiers, and memory devices. This updated bibliography contains 107 abstracts, all of which are new entries to the previous edition.

  20. Workflow automation based on OSI job transfer and manipulation

    NARCIS (Netherlands)

    Sinderen, van Marten J.; Joosten, Stef M.M.; Guareis de Farias, Clever R.

    1999-01-01

    This paper shows that Workflow Management Systems (WFMS) and a data communication standard called Job Transfer and Manipulation (JTM) are built on the same concepts, even though different words are used. The paper analyses the correspondence of workflow concepts and JTM concepts. Besides, the corres

  1. Liposome micropatterning based on laser-induced forward transfer

    Science.gov (United States)

    Palla-Papavlu, Alexandra; Paraico, Iurie; Shaw-Stewart, James; Dinca, Valentina; Savopol, Tudor; Kovacs, Eugenia; Lippert, Thomas; Wokaun, Alexander; Dinescu, Maria

    2011-03-01

    The numerous properties of liposomes, i.e., nontoxicity, biodegradability, and their ability to encapsulate different biological active substances in aqueous and lipid phase, make them perfect models of biomembranes. Liposomes made up of phospholipids may be used to study new applications such as cell targeting or, under specific experimental conditions, may be applied in micro and nano-sized biosensors. This study demonstrates the capability of direct laser printing of liposomes in micron-scale patterns for the realization of biosensors or drug delivery systems. The transfer experiments were carried out onto ordinary glass substrates, and optical microscopy images reveal that well-defined patterns without splashes can be obtained for a narrow range of laser transfer fluences using 193 nm irradiation and an intermediate triazene polymer. The triazene polymer with different thicknesses was used as sacrificial layer with the purpose of protecting the liposome solution from direct laser irradiation. It was found that the thickness of the sacrificial layer should exceed 150 nm to obtain clean, debris-free patterns. Moreover, the integrity of the liposomes after laser transfer was maintained as demonstrated through fluorescence microscopy. Raman spectroscopy data suggest that the chemical composition of the liposomes does not change for transfer fluences in the range of 40 to 60 mJ/cm2. Following these results, one can envision that liposome patterns obtained by LIFT can be ultimately applied for in vitro and in vivo studies.

  2. Rule set transferability for object-based feature extraction

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, Arie C.; Bouten, Willem

    2015-01-01

    Cirques are complex landforms resulting from glacial erosion and can be used to estimate Equilibrium Line Altitudes and infer climate history. Automated extraction of cirques may help research on glacial geomorphology and climate change. Our objective was to test the transferability of an object-

  3. High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics

    Science.gov (United States)

    Venkatapathi, Murugesan; Rajwa, Bartek; Ragheb, Kathy; Banada, Padmapriya P.; Lary, Todd; Robinson, J. Paul; Hirleman, E. Daniel

    2008-02-01

    We describe a model-based instrument design combined with a statistical classification approach for the development and realization of high speed cell classification systems based on light scatter. In our work, angular light scatter from cells of four bacterial species of interest, Bacillus subtilis, Escherichia coli, Listeria innocua, and Enterococcus faecalis, was modeled using the discrete dipole approximation. We then optimized a scattering detector array design subject to some hardware constraints, configured the instrument, and gathered experimental data from the relevant bacterial cells. Using these models and experiments, it is shown that optimization using a nominal bacteria model (i.e., using a representative size and refractive index) is insufficient for classification of most bacteria in realistic applications. Hence the computational predictions were constituted in the form of scattering-data-vector distributions that accounted for expected variability in the physical properties between individual bacteria within the four species. After the detectors were optimized using the numerical results, they were used to measure scatter from both the known control samples and unknown bacterial cells. A multivariate statistical method based on a support vector machine (SVM) was used to classify the bacteria species based on light scatter signatures. In our final instrument, we realized correct classification of B. subtilis in the presence of E. coli,L. innocua, and E. faecalis using SVM at 99.1%, 99.6%, and 98.5%, respectively, in the optimal detector array configuration. For comparison, the corresponding values for another set of angles were only 69.9%, 71.7%, and 70.2% using SVM, and more importantly, this improved performance is consistent with classification predictions.

  4. Composed Scattering Model for Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    蔡文立; 石教英

    1996-01-01

    Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.

  5. Correlation-based virtual source imaging in strongly scattering random media

    Science.gov (United States)

    Garnier, Josselin; Papanicolaou, George

    2012-07-01

    Array imaging in a strongly scattering medium is limited because coherent signals recorded at the array and coming from a reflector to be imaged are weak and dominated by incoherent signals coming from multiple scattering by the medium. If, however, an auxiliary passive array can be placed between the reflector to be imaged and the scattering medium then the cross correlations of the incoherent signals on this array can also be used to image the reflector. In this paper, we show both in the weakly scattering paraxial regime and in strongly scattering layered media that this cross-correlation approach produces images as if the medium between the sources and the passive array was homogeneous and the auxiliary passive array was an active one made up of both sources and receivers.

  6. Short-pulsed laser transport in absorbing and scattering media: time-based versus frequency-based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Francoeur, Mathieu [Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506 (United States); Rousse, Daniel R [Department of Mathematics, Computer Sciences, and Engineering, Universite du Quebec a Rimouski, Levis, PQ G6V 8R9 (Canada)

    2007-09-21

    Optical tomography (OT) is a promising non-intrusive characterization technique of absorbing and scattering media that uses transmitted and/or reflected signals of samples irradiated with visible or near-infrared light. The quality of OT techniques is directly related to the accuracy of their forward models due to the use of inversion algorithms. In this paper, forward models for transient OT approaches are investigated. The system under study involves a one-dimensional absorbing and scattering medium illuminated by a short laser pulse; this problem is solved using a discrete ordinates-finite volume (DO-FV) method in both time and frequency domain. Previous works have shown that time-domain approaches coupled with first order spatial interpolation schemes cannot represent the physics of the problem adequately as transmitted fluxes emerge before the minimal physical time required to leave the medium. In this work, the Van Leer and Superbee flux limiters, combined with the second order Lax-Wendroff scheme, are used in an attempt to prevent this. Results show that despite significant improvement, flux limiters fail to completely eliminate the physically unrealistic behaviour. On the other hand, results for transmittance obtained from the frequency-based method are accurate, without physically unrealistic behaviours at early time periods. The frequency-dependent approach is however computationally expensive, since it requires approximately five times more computational time than its temporal counterpart when used as a forward model for transient OT. On the other hand, the great advantages of the frequency-based approach is that limited windows of temporal signals can be calculated efficiently (in transient OT), and it can also be used as a forward model for steady-state, frequency-based and transient OT techniques.

  7. Magnetic relaxations in a Tb-based single molecule magnet studied by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kofu, Maiko [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Kajiwara, Takashi [Faculty of Science, Nara Women’s University, Nara, Nara 630-8506 (Japan); Gardner, Jason S. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102 (United States); Simeoni, Giovanna G. [Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II, D-85747 Garching (Germany); Tyagi, Madhusudan; Faraone, Antonio [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science, University of Maryland, College Park, MD 20742 (United States); Nakajima, Kenji; Ohira-Kawamura, Seiko [Neutron Science Section, J-PARC Center, Tokai, Ibaraki 319-1195 (Japan); Nakano, Motohiro [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Yamamuro, Osamu, E-mail: yamamuro@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan)

    2013-12-12

    Highlights: • We examined a Tb based single molecule magnet by ac susceptibility and QENS. • We found two distinct magnetic relaxations in a wide time range from 0.1 ms to 1 ps. • The slower relaxation corresponds to the thermally activated tunneling process. • The faster one couples with the motion of H atoms around the magnetic ions. • The two relaxations exhibit a crossover around 100 ns. - Abstract: By using ac magnetic susceptibility and quasielatic neutron scattering (QENS) techniques, we have investigated a magnetization relaxation phenomenon of a rare-earth based single molecule magnet, TbCuC{sub 19}H{sub 20}N{sub 3}O{sub 16}. We clearly identified and characterized two magnetic relaxations. The slower relaxation observed in the ac susceptibility is at the ms timescale around T=2 K and its activation energy is 16 K. On the other hand, the faster relaxation in the QENS measurements occurs on the timescale between ns and ps with activation energy of 174 K. The slower relaxation may occur through thermally activated tunneling among magnetic substates. We discuss two possible origins for the faster relaxation; one is a thermally activated tunneling between the higher excited states, the other is the magnetic relaxation coupled with the motion of ligands around the magnetic ions. This is the first clear observation of magnetic relaxation on the single molecule magnet revealed by QENS.

  8. A novel transport based model for wire media and its application to scattering problems

    Science.gov (United States)

    Forati, Ebrahim

    Artificially engineered materials, known as metamaterials, have attracted the interest of researchers because of the potential for novel applications. Effective modeling of metamaterials is a crucial step for analyzing and synthesizing devices. In this thesis, we focus on wire medium (both isotropic and uniaxial) and validate a novel transport based model for them. Scattering problems involving wire media are computationally intensive due to the spatially dispersive nature of homogenized wire media. However, it will be shown that using the new model to solve scattering problems can simplify the calculations a great deal. For scattering problems, an integro-differential equation based on a transport formulation is proposed instead of the convolution-form integral equation that directly comes from spatial dispersion. The integro-differential equation is much faster to solve than the convolution equation form, and its effectiveness is confirmed by solving several examples in one-, two-, and three-dimensions. Both the integro-differential equation formulation and the homogenized wire medium parameters are experimentaly confirmed. To do so, several isotropic connected wire medium spheres have been fabricated using a rapid-prototyping machine, and their measured extinction cross sections are compared with simulation results. Wire parameters (period and diameter) are varied to the point where homogenization theory breaks down, which is observed in the measurements. The same process is done for three-dimensional cubical objects made of a uniaxail wire medium, and their measured results are compared with the numerical results based on the new model. The new method is extremely fast compared to brute-force numerical methods such as FDTD, and provides more physical insight (within the limits of homogenization), including the idea of a Debye length for wire media. The limits of homogenization are examined by comparing homogenization results and measurement. Then, a novel

  9. Optical transfer function optimization based on linear expansions

    Science.gov (United States)

    Schwiegerling, Jim

    2015-09-01

    The Optical Transfer Function (OTF) and its modulus the Modulation Transfer Function (MTF) are metrics of optical system performance. However in system optimization, calculation times for the OTF are often substantially longer than more traditional optimization targets such as wavefront error or transverse ray error. The OTF is typically calculated as either the autocorrelation of the complex pupil function or as the Fourier transform of the Point Spread Function. We recently demonstrated that the on-axis OTF can be represented as a linear combination of analytical functions where the weighting terms are directly related to the wavefront error coefficients and apodization of the complex pupil function. Here, we extend this technique to the off-axis case. The expansion technique offers a potential for accelerating OTF optimization in lens design, as well as insight into the interaction of aberrations with components of the OTF.

  10. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...

  11. Boundary emphasis transfer function generation based on HSL color space

    Science.gov (United States)

    Li, Xiao; Wu, Jianhuang; Luo, Shengzhou; Ma, Xin

    2011-10-01

    Direct volume rendering has been received much attention since it need not to extract geometric primitives for visualization and its performance is generally better than surface rendering. Transfer functions, which are used for mapping scalar field to optical properties, are of vital importance in obtaining a sensible rendering result from volume data. Though traditional color transfer functions are in RGB color space, HSL color space that conveys semantic meanings is more intuitive and user-friendly. In this paper, we present a novel approach aims to emphasize and distinguish strong boundaries between different materials. We achieve it by using data value, gradient magnitude and dimension of the volumetric data to set opacity. Then, through a linear map from data value, gradient magnitude and second derivative to hue, saturation and lightness respectively, a color transfer function is obtained in HSL color space. Experimental tests on real-world datasets indicate that our method could achieve desirable rendering results with revealing important boundaries between different structures and indicating data value's distribution in the volume by using different colors.

  12. A HSS Matrix-Inspired Butterfly-Based Direct Solver for Analyzing Scattering from Two-dimensional Objects

    CERN Document Server

    Liu, Yang; Michielssen, Eric

    2016-01-01

    A butterfly-based fast direct integral equation solver for analyzing high-frequency scattering from two-dimensional objects is presented. The solver leverages a randomized butterfly scheme to compress blocks corresponding to near- and far-field interactions in the discretized forward and inverse electric field integral operators. The observed memory requirements and computational cost of the proposed solver scale as O(Nlog^2N) and O(N^1.5 logN), respectively. The solver is applied to the analysis of scattering from electrically large objects spanning over ten thousand of wavelengths and modeled in terms of five million unknowns.

  13. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D. [NICADD, DeKalb; Jacobson, B. [RadiaBeam Tech.; Murokh, A. [Fermilab; Piot, P. [Fermilab; Ruan, J. [Fermilab

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  14. Distant and wide range wireless power transfer from metamedia

    Science.gov (United States)

    Zhu, Lin; Luo, Xudong; Ma, Hongru

    2016-07-01

    Based on electromagnetic scattering theory, a model of superscatterer enhanced distant wireless power transfer (WPT) device has designed and analyzed with the concept of transformation optics. The numerical results obtained through a series expansion method reveal that a properly designed ss-WPT has high efficiency for long transfer distances as well as a wide transfer range. The transfer distance can be further enlarged by fine tuning of the design. These effects can be explained qualitatively through the study of magnetic flux.

  15. Relational Competence-Based Knowledge Transfer Within Intrafamily Succession: an Experimental Study

    NARCIS (Netherlands)

    Hatak, Isabella; Roessl, Dietmar

    2015-01-01

    This article discusses the challenges of knowledge management within intrafamily succession against the background of the knowledge-based view. As a knowledge transfer is crucial for a successful business continuation, factors that promote the interpersonal knowledge transfer are identified. Since t

  16. Accurate optical simulation of nano-particle based internal scattering layers for light outcoupling from organic light emitting diodes

    Science.gov (United States)

    Egel, Amos; Gomard, Guillaume; Kettlitz, Siegfried W.; Lemmer, Uli

    2017-02-01

    We present a numerical strategy for the accurate simulation of light extraction from organic light emitting diodes (OLEDs) comprising an internal nano-particle based scattering layer. On the one hand, the light emission and propagation through the OLED thin film system (including the scattering layer) is treated by means of rigorous wave optics calculations using the T-matrix formalism. On the other hand, the propagation through the substrate is modeled in a ray optics approach. The results from the wave optics calculations enter in terms of the initial substrate radiation pattern and the bidirectional reflectivity distribution of the OLED stack with scattering layer. In order to correct for the truncation error due to a finite number of particles in the simulations, we extrapolate the results to infinitely extended scattering layers. As an application example, we estimate the optimal particle filling fraction for an internal scattering layer in a realistic OLED geometry. The presented treatment is designed to emerge from electromagnetic theory with as few additional assumptions as possible. It could thus serve as a baseline to validate faster but approximate simulation approaches.

  17. Persistent Scatterer Interferometry based detection of strong subsidence in Semarang, Indonesia

    Science.gov (United States)

    Cahyadi Kalia, Andre

    2016-04-01

    The City of Semarang (Indonesia) faces land subsidence since more than 100 years. The impact for the cities approximately 1.3 million inhabitants is severe: strong subsidence (up to several cm per year) affect the living environment, buildings and infrastructure. The main reasons for the subsidence is groundwater extraction, compaction of coastal sediments and construction load. In order to monitor the spatio-temporal variability of the subsidence phenomena the Persistent Scatterer Interferometry (PSI) is used. The presentation will show multiple PSI results and assess their characteristics with respect to PS density and coverage. The PSI analysis is based on SAR data stacks from ERS-1/-2 C-band data (1996-2000), ERS-1/-2 & Envisat-ASAR C-band data (2002-2006) and ALOS-Palsar L-band data (2006-2011). For the assessment of the PSI results thematic data (geological, hydrogeological maps) as well as orthorectified optical images (IKONOS 2005) are used. All three PSI results show an overall pattern of increasing subsidence towards the coastline where the subsurface is built up by unconsolidated coastal sediments. However, the PSI results based on C-band SAR data show a lower PS density ( 500 PS/km2 in urban areas) and PS coverage (no PSs in areas with rural land cover in the PSI results based on C-band) compared to the PSI result based on L-band SAR data. The main reason for this differences is the longer wavelength of the L-band (λ = 23.6 cm) compared to the C-band (λ = 5.6 cm) resulting in less temporal phase decorrelation through an increased penetration depth and higher capability to detect fast displacements.

  18. Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications.

    Science.gov (United States)

    Yuan, Huanxiang; Wang, Bing; Lv, Fengting; Liu, Libing; Wang, Shu

    2014-10-29

    Conjugated polymers (CPs) attract a lot of attention in sensing, imaging, and biomedical applications because of recent achievements that are highlighted in this Research News article. A brief review of recent progress in the application of CP-based energy-transfer systems in antimicrobial and anticancer treatments is provided. The transfer of excitation energy from CPs to photosensitizers leads to the generation of reactive oxygen species (ROS) that are able to efficiently kill pathogenic microorganisms and cancer cells in the surroundings. Both fluorescence resonance energy transfer (FRET) and bioluminescence energy transfer (BRET) modes are discussed.

  19. Hydrogen-bonded proton transfer in the protonated guanine-cytosine (GC+H)+ base pair.

    Science.gov (United States)

    Lin, Yuexia; Wang, Hongyan; Gao, Simin; Schaefer, Henry F

    2011-10-13

    The single proton transfer at the different sites of the Watson-Crick (WC) guanine-cytosine (GC) DNA base pair are studied here using density functional methods. The conventional protonated structures, transition state (TS) and proton-transferred product (PT) structures of every relevant species are optimized. Each transition state and proton-transferred product structure has been compared with the corresponding conventional protonated structure to demonstrate the process of proton transfer and the change of geometrical structures. The relative energies of the protonated tautomers and the proton-transfer energy profiles in gas and solvent are analyzed. The proton-transferred product structure G(+H(+))-H(+)C(N3)(-H(+))(PT) has the lowest relative energy for which only two hydrogen bonds exist. Almost all 14 isomers of the protonated GC base pair involve hydrogen-bonded proton transfer following the three pathways, with the exception of structure G-H(+)C(O2). When the positive charge is primarily "located" on the guanine moiety (H(+)G-C, G-H(+)C(C4), and G-H(+)C(C6)), the H(1) proton transfers from the N(1) site of guanine to the N(3) site of cytosine. The structures G-H(+)C(C5) and G-H(+)C(C4) involve H(4a) proton transfer from the N(4) of cytosine to the O(6) site of guanine. H(2a) proton transfer from the N(2) site of guanine to the O(2) site of cytosine is found only for the structure G-H(+)C(C4). The structures to which a proton is added on the six-centered sites adjoining the hydrogen bonds are more prone to proton transfer in the gas phase, whereas a proton added on the minor groove and the sites adjoining the hydrogen bonds is favorable to the proton transfer in energy in the aqueous phase.

  20. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hye-Young Park

    2005-12-17

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  1. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  2. Validation of atmospheric scattering radiance caculated by combined atmospheric radiance transfer (CART) code%通用大气辐射传输软件(CART)大气散射辐射计算精度验证

    Institute of Scientific and Technical Information of China (English)

    戴聪明; 魏合理; 陈秀红

    2013-01-01

    To validate the combined atmospheric radiative transfer model(CART) code on calculating the scattering of atmospheric molecules and aerosol particles, comparisons of CART scattering results (including the single scattering radiance and multiple scattering radiance) to the moderate resolution atmospheric transmittance and radiance code (MODTRAN5.0) and discrete ordinate radiative transfer (DISORT) model were made, respectively, on the wide range of observation zenith angle, solar zenith angle, the differ of observation and solar azimuth angle, the asymmetry factor of scattering phase function. The results show that the relative percent difference is less than 10% mostly, 15% at maxmium on single scattering radiance, and less than 2.5% on multiple scattering radiance. CART have a good calculation precision and efficiency on atmospheric background radiance calculation including multiple scattering.%  为检验通用大气辐射传输软件(CART)计算大气分子、气溶胶散射辐射的计算精度,在大观测天顶角、太阳天顶角、观测与太阳方位角之差、散射相函数不对称因子变化范围内,就CART软件模拟的单次散射辐射和多次散射辐射,分别与MODTRAN5.0计算的单次散射辐射和离散坐标辐射传输软件(DISORT)计算的多次散射辐射进行比较分析。结果表明:CART软件计算的单次散射辐射与MODTRAN5.0的相对偏差一般小于10%,最大相对偏差为15%;CART计算的多次散射辐射与精确的DISORT算法的相对相差小于2.5%。CART在包括多次散射在内的大气背景辐射计算方面具有较有高的计算精度和效率。

  3. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel.

    Science.gov (United States)

    Granger, Jennifer H; Granger, Michael C; Firpo, Matthew A; Mulvihill, Sean J; Porter, Marc D

    2013-01-21

    Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous read-out of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface-enhanced Raman scattering (SERS) as a sensitive readout method.

  4. Polarization multiplexed dual-loop optoelectronic oscillator based on stimulated Brillouin scattering

    Science.gov (United States)

    Han, Xiuyou; Ma, Liang; Shao, Yuchen; Ye, Qing; Gu, Yiying; Zhao, Mingshan

    2017-01-01

    A polarization multiplexed dual-loop optoelectronic oscillator (OEO) based on stimulated Brillouin scattering (SBS) is theoretically analyzed and experimentally demonstrated. The narrow bandwidth of SBS gain spectrum is utilized to implement the phase modulation to intensity modulation conversion and select the oscillation mode of the OEO. The polarization multiplexed dual-loop is constructed to suppress the side modes with Vernier effect. The output frequency of the OEO can be tuned by changing the frequency of the signal or the pump light wave. With the polarization multiplexed dual-loop the side-mode suppression ratio (SMSR) of 45 dB is achieved at 10 GHz. The generated oscillation frequency is tuned from 4 GHz to 16 GHz by changing the frequency of the signal light wave. The phase noise decreases with the power increase of the signal light wave when it is under the threshold of SBS. By adjusting the polarization state of the light wave, the influence of the power distribution between the long loop and the short loop on the phase noise of the OEO is investigated. The results show that more power in the long loop is helpful to suppress the near end phase noise.

  5. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber.

    Science.gov (United States)

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2014-09-22

    We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber.

  6. Range verification of passively scattered proton beams based on prompt gamma time patterns

    Science.gov (United States)

    Testa, Mauro; Min, Chul Hee; Verburg, Joost M.; Schümann, Jan; Lu, Hsiao-Ming; Paganetti, Harald

    2014-07-01

    We propose a proton range verification technique for passive scattering proton therapy systems where spread out Bragg peak (SOBP) fields are produced with rotating range modulator wheels. The technique is based on the correlation of time patterns of the prompt gamma ray emission with the range of protons delivering the SOBP. The main feature of the technique is the ability to verify the proton range with a single point of measurement and a simple detector configuration. We performed four-dimensional (time-dependent) Monte Carlo simulations using TOPAS to show the validity and accuracy of the technique. First, we validated the hadronic models used in TOPAS by comparing simulations and prompt gamma spectrometry measurements published in the literature. Second, prompt gamma simulations for proton range verification were performed for the case of a water phantom and a prostate cancer patient. In the water phantom, the proton range was determined with 2 mm accuracy with a full ring detector configuration for a dose of ~2.5 cGy. For the prostate cancer patient, 4 mm accuracy on range determination was achieved for a dose of ~15 cGy. The results presented in this paper are encouraging in view of a potential clinical application of the technique.

  7. R12 hydrate formation kinetics based on laser light scattering technique

    Institute of Scientific and Technical Information of China (English)

    孙长宇; 陈光进; 郭天民

    2003-01-01

    A circulating flow system consisting of a transparent U-bend flow loop, a mixing tank and a laser granulometer was set up for studying the kinetics hydrate formation and the pressure is up to 4 MPa. Refrigerant CCl2F2 (R12) hydrate formation experiments were performed using laser light scattering method at 277.1 K and pressures of 0.24 and 0.32 MPa. The liquid flow rates were in the range of 300-1400 L/h. The size distribution and density of R12 hydrate particles in pure water were measured using a laser granulometer. Experimental results show that the size of hydrate particles increases sharply at the initial stage and approaches gradually to a stable size. The hydrate particle concentration in the aqueous phase increases with pressure and circulating liquid flow rate. Based on the material balance, the mathematical model among gas consumption, average hydrate particle size and shading ratio has been established. The calculated results using the mathematical model accord well with the experimental gas consumption data.

  8. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials.

    Science.gov (United States)

    Kaszowska, Zofia; Malek, Kamilla; Staniszewska-Slezak, Emilia; Niedzielska, Karina

    2016-12-05

    This work presents an in-depth study on Raman spectra excited with 1064 and 532nm lasers of lime binders employed in the past as building materials and revealed today as valuable conservation materials. We focus our interest on the bands of strong intensity, which are present in the spectra of all binders acquired with laser excitation at 1064nm, but absent in the corresponding spectra acquired with laser excitation at 532nm. We suggest, that the first group of spectra represents fluorescence phenomena of unknown origin and the second true Raman scattering. In our studies, we also include two other phases of lime cycle, i.e. calcium carbonate (a few samples of calcite of various origins) and calcium oxide (quicklime) to assess how structural and chemical transformations of lime phases affect the NIR-Raman spectral profile. Furthermore, we analyse a set of carbonated limewashes and lime binders derived from old plasters to give an insight into their spectral characteristics after excitation with the 1064nm laser line. NIR-Raman micro-mapping results are also presented to reveal the spatial distribution of building materials and fluorescent species in the cross-section of plaster samples taken from a 15th century chapel. Our study shows that the Raman analysis can help identify lime-based building and conservation materials, however, a caution is advised in the interpretation of the spectra acquired using 1064nm excitation.

  9. Surface ligation-based resonance light scattering analysis of methylated genomic DNA on a microarray platform.

    Science.gov (United States)

    Ma, Lan; Lei, Zhen; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-05-10

    DNA methylation is a crucial epigenetic modification and is closely related to tumorigenesis. Herein, a surface ligation-based high throughput method combined with bisulfite treatment is developed for analysis of methylated genomic DNA. In this method, a DNA microarray is employed as a reaction platform, and resonance light scattering (RLS) of nanoparticles is used as the detection principle. The specificity stems from allele-specific ligation of Taq DNA ligase, which is further enhanced by improving the fidelity of Taq DNA ligase in a heterogeneous reaction. Two amplification techniques, rolling circle amplification (RCA) and silver enhancement, are employed after the ligation reaction and a gold nanoparticle (GNP) labeling procedure is used to amplify the signal. As little as 0.01% methylated DNA (i.e. 2 pmol L(-1)) can be distinguished from the cocktail of methylated and unmethylated DNA by the proposed method. More importantly, this method shows good accuracy and sensitivity in profiling the methylation level of genomic DNA of three selected colonic cancer cell lines. This strategy provides a high throughput alternative with reasonable sensitivity and resolution for cancer study and diagnosis.

  10. Optical limiting effect based on stimulated Brillouin scattering in CCl4

    Institute of Scientific and Technical Information of China (English)

    LueZhi-Wei; LueYue-Lan; YangJun

    2003-01-01

    The optical limiting effect based on stimulated Brillouin scattering(SBS) in a nonlinear medium was investigated. We numerically treated the nonlinear propagation process with a theoretical model, which includes the spontansous nature of the initiation of SBS, and obtained optical limiting effect in the process. Energy limiting,pulse reshaping and stabilization have been demonstrated on SBS mechanism with the nonlinear medium CCl4. The input optical signals were Nd:YAG nanosecond laser pulses with width varying from 16ns to 7ns then to 2ns, the relationship between the transmitted signal and launched pump signal was shown. In the experimental regime, the most stable pulse the transmitted signal and launched pump signal was shown. In the experimental regime, the most stable pulse and a superior energy stabilization of the transmitted pulse were obtained when the laser pulse-width became as short as 2ns. For the energy variation of laser pulses in a wide range of 14-88mJ, the output energy was limited in a quite narrow range 4.5-5.5mJ.

  11. Partial-differential-equation-constrained amplitude-based shape detection in inverse acoustic scattering

    Science.gov (United States)

    Na, Seong-Won; Kallivokas, Loukas F.

    2008-03-01

    In this article we discuss a formal framework for casting the inverse problem of detecting the location and shape of an insonified scatterer embedded within a two-dimensional homogeneous acoustic host, in terms of a partial-differential-equation-constrained optimization approach. We seek to satisfy the ensuing Karush-Kuhn-Tucker first-order optimality conditions using boundary integral equations. The treatment of evolving boundary shapes, which arise naturally during the search for the true shape, resides on the use of total derivatives, borrowing from recent work by Bonnet and Guzina [1-4] in elastodynamics. We consider incomplete information collected at stations sparsely spaced at the assumed obstacle’s backscattered region. To improve on the ability of the optimizer to arrive at the global optimum we: (a) favor an amplitude-based misfit functional; and (b) iterate over both the frequency- and wave-direction spaces through a sequence of problems. We report numerical results for sound-hard objects with shapes ranging from circles, to penny- and kite-shaped, including obstacles with arbitrarily shaped non-convex boundaries.

  12. Surface Enhanced Raman Scattering Based in Situ Hybridization Strategy for Telomere Length Assessment.

    Science.gov (United States)

    Zong, Shenfei; Chen, Chen; Wang, Zhuyuan; Zhang, Yizhi; Cui, Yiping

    2016-02-23

    Assessing telomere length is of vital importance since telomere length is closely related with several fatal diseases such as atherosclerosis and cancer. Here, we present a strategy to assess/measure telomere length, that is, surface enhanced Raman scattering (SERS) based in situ hybridization (SISH). The SISH method uses two kinds of SERS nanoprobes to hybridize in situ with telomeres and centromeres, respectively. The telomere specific SERS nanoprobe is called the Telo-probe, while the centromere specific SERS nanoprobe is called the Centro-probe. They are composed of metal nanoparticles (NPs), Raman reporter molecules and specially designed DNA strands. With longer telomeres, more Telo-probes will hybridize with them, resulting in a stronger SERS signal. To exclude possible influence of the SERS intensity by external factors (such as the nanoprobe concentration, the cell number or different batches of nanoprobes), centromeres are used as the inner control, which can be recognized by Centro-probes. Telomere length is evaluated using a redefined telomere-to-centromere ratio (T/C ratio). The calculation method for T/C ratio in SISH method is more reliable than that in fluorescent in situ hybridization (FISH). In addition, unlike FISH method, the SISH method is insensitive to autofluorescence. Moreover, SISH method can be used to analyze single telomeres. These features make SISH an excellent alternative strategy for telomere length measurement.

  13. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    Science.gov (United States)

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  14. Bit-efficient sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media (Conference Presentation)

    Science.gov (United States)

    Liu, Yan; Ma, Cheng; Shen, Yuecheng; Wang, Lihong V.

    2016-03-01

    Optical focusing plays a central role in biomedical optical imaging, manipulation, and therapy. However, in scattering media, direct optical focusing becomes infeasible beyond ~10 mean free paths. To break this limit, time-reversed ultrasonically encoded (TRUE) optical focusing phase-conjugates ultrasonically tagged diffuse light back to the ultrasonic focus, thus forming a focus deep inside scattering media. In previous works, the speed of wavefront measurement was limited by the low frame rate of the camera used to record the four images required for phase-shifting holography. Moreover, most of the bits of a pixel value were used to represent an informationless background caused by the large amount of untagged light, increasing the amount of data to transfer and necessitating the use of costly high-resolution analog-to-digital converters (ADCs). Here, we developed a digital TRUE focusing system based on a lock-in camera (300×300 pixels), in which each pixel performs analog lock-in detection on chip. Since only the information of the signal, not that of the background, is digitized, the lock-in camera reduces the amount of data to transfer, and enables the use of cheap low-resolution ADCs. Using this lock-in camera, we were able to measure the wavefront of ultrasonically tagged light in less than 0.3 ms, and to achieve TRUE focusing in between two ground glass diffusers. Even when the signal-to-background ratio dropped to 6.32×10^-4, a phase sensitivity as low as 0.51 rad could still be realized, which is more than enough for digital optical phase conjugation.

  15. A Model-Based Scatter Artifacts Correction for Cone Beam CT

    CERN Document Server

    Zhao, Wei; Zhu, Jun; Wang, Luyao; Xing, Lei

    2016-01-01

    The purpose of this work is to provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profiles for a set of CBCT data in either image domain or projection domain. A denoising algorithm designed specifically for Poisson signals is then applied to derive the final scatter distribution. Qualitative and quantitative evaluations using thorax and abdomen phantoms with Monte Carlo (MC) simulations, experimental Catphan phantom data, and in vivo human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU in either projection domain or image domain. For the MC thorax phantom study, four components segmentation yield the best results, while the results of three components segmentation are still acceptable. For the Catphan phantom data, the mean value over all pixels in the residual image is...

  16. EFFECTS OF EXAMPLE-PROBLEM BASED LEARNING ON TRANSFER PERFORMANCE IN CIRCUIT THEORY

    Directory of Open Access Journals (Sweden)

    Noor Hisham Jalani

    2014-12-01

    Full Text Available The main goal of the study was to test a hypothesis that Example-Problem-Based Learning (EPBL would lead to better transfer performance compared Traditional Learning (TL approach.  The participants were vocational diploma-level students and the learning domain was Circuit Theory. As a means of data collection, 10-items open-ended test (five items each for assessing near-transfer and far-transfer was administered as a pre-test and post-test. A sufficient reliability estimate was obtained, a= 0.74, based on the Cronbach Alpha method. A statistically significant difference on the post test score was observed between the EPBL and the TL group where the EPBL group scored higher than the TL group on both near and far-transfer.  In conclusion, EPBL approaches produces greater learning compared to TL approach, for both near and distant-transfer.

  17. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    Science.gov (United States)

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues.

  18. Elastic scattering of hadrons

    Science.gov (United States)

    Dremin, I. M.

    2013-01-01

    Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.

  19. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shang Li; Dong Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: dongsj@ciac.jl.cn

    2008-03-05

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10{sup -7} M, 3.5 x 10{sup -7} M, 4.1 x 10{sup -7} M, and 7.7 x 10{sup -7} M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  20. Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

    Directory of Open Access Journals (Sweden)

    Nurilla Avazov

    2012-01-01

    Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.

  1. Physics picture from neutron scattering study on Fe-based superconductors

    Institute of Scientific and Technical Information of China (English)

    Bao Wei

    2013-01-01

    Neutron scattering,with its ability to measure the crystal structure,the magnetic order,and the structural and magnetic excitations,plays an active role in investigating various families of Fe-based high-Tc superconductors.Three different types of antiferromagnetic orders have been discovered in the Fe plane,but two of them cannot be explained by the spin-densitywave (SDW) mechanism of nesting Fermi surfaces.Noticing the close relation between antiferromagnetic order and lattice distortion in orbital ordering from previous studies on manganites and other oxides,we have advocated orbital ordering as the underlying common mechanism for the structural and antiferromagnetic transitions in the 1111,122,and 11 parent compounds.We observe the coexistence of antiferromagnetic order and superconductivity in the (Ba,K)Fe2As2 system,when its phase separation is generally accepted.Optimal Tc is proposed to be controlled by the local FeAs4 tetrahedron from our investigation on the 1111 materials.The Bloch phase coherence of the Fermi liquid is found crucial to the occurrence of bulk superconductivity in iron chalcogenides of both the 11 and the 245 families.Iron chalcogenides carry a larger staggered magnetic moment (> 2 μB/Fe) than that in iron pnictides (< 1 μB/Fe) in the antiferromagnetic order.Normal state magnetic excitations in the 11 superconductor are of the itinerant nature while in the 245 superconductor the spin-waves of localized moments.The observation of superconducting resonance peak provides a crucial piece of information in current deliberation of the pairing symmetry in Fe-based superconductors.

  2. Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators

    Science.gov (United States)

    Song, Mingzhao; Iorsh, Ivan; Kapitanova, Polina; Nenasheva, Elizaveta; Belov, Pavel

    2016-01-01

    We numerically investigate a magnetic resonant wireless power transfer system based on high refractive index dielectric resonators. We propose to operate at magnetic quadrupole mode of the resonators to enlarge the efficiency due to minimization of ohmic and radiation losses. Numerical estimation predicts the 80% efficiency of the wireless power transfer (WPT) system operating at quadrupole mode at 300 MHz. Moreover, the system operating at magnetic quadrupole mode is capable of transferring power with 70% efficiency when the receiver rotates 90°. We verify the simulated results by experimental investigation of the WPT system based on microwave ceramic resonators (ɛ = 80 and tanδ = 10-4).

  3. Direct electrochemical detection of PCR product based on charge transfer through DNA

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongtao; ZHANG Zhijie; JU Huangxian

    2005-01-01

    @@ Human genome project and genetic identification for inherited diseases will definitely have a profound impact on the diagnosis of diseases[1], which calls for rapid and accurate assays of DNA. Among different types of sensors, electrochemical DNA biosensors offer a promising alternative means[2,3]. Recent efforts to elucidate the mechanism of charge transfer in DNA have demonstrated that the charge transfer is sensitive to the perturbation in base stack[4,5]. Long-range charge transfer in DNA therefore has been showing great potential application in the development of DNA-based biosensors, especially in the study of single nucleotide polymorphs[7―10].

  4. Software-Based Wireless Power Transfer Platform for Various Power Control Experiments

    OpenAIRE

    Sun-Han Hwang; Chung G. Kang; Yong-Ho Son; Byung-Jun Jang

    2015-01-01

    In this paper, we present the design and evaluation of a software-based wireless power transfer platform that enables the development of a prototype involving various open- and closed-loop power control functions. Our platform is based on a loosely coupled planar wireless power transfer circuit that uses a class-E power amplifier. In conjunction with this circuit, we implement flexible control functions using a National Instruments Data Acquisition (NI DAQ) board and algorithms in the MATLAB/...

  5. Proposal to determine the Fermi-surface topology of a doped iron-based superconductor using bulk-sensitive Fourier-transform Compton scattering

    NARCIS (Netherlands)

    Wang, Y.J.; Lin, H.; Barbiellini, B.; Mijnarends, P.E.; Kaprzyk, S.; Markiewicz, R.S.; Bansil, A.

    2010-01-01

    We have carried out first-principles calculations of the Compton scattering spectra to demonstrate that the filling of the hole Fermi surface in LaO1−xFxFeAs produces a distinct signature in the Fourier-transformed Compton spectrum when the momentum transfer vector lies along the [100] direction. We

  6. Research on Structural Stress Optical Fiber Testing Technology Based on Brillouin Scattering

    Directory of Open Access Journals (Sweden)

    Wang Xian-Jin

    2016-01-01

    Full Text Available In this paper, the principle of distributed optical fiber measurement and measurement of axial stress is introduced by analyzing the principle of Brillouin scattering in an optical fiber with a certain power. Making the experimental device, measuring the individual strain model, analyzing the wave shape of the scattered wave, and preliminary understanding of the image characteristics of the stress in the optical fiber Brillouin scattering spectrum. The effect of stress on the different position of the fiber, and the difference between them and the scattering waveform obtained from the stress free action poetry are compared, and the effect of the light pulse on the optical fiber transmission is studied. The results show that the effect of the stress is different in the position of the action, and the effect of the propagation of the pulse light is mainly affected by the Stokes and anti Stokes light scattering. The research can provide reference for distributed optical fiber measurement, and it can promote the application of distributed optical fiber in measuring micro deformation. The innovative point of this study is to use the pulley method to solve the effect of the different position of the same stress in the distribution of optical fiber.

  7. A Mass Transfer Model Based on Individual Bubbles and an Unsteady State Film Mechanism

    Institute of Scientific and Technical Information of China (English)

    赵斌; 王铁峰; 王金福

    2004-01-01

    A gas-liquid mass transfer model based on an unsteady state film mechanism applied to a single bubble is presented. The mathematical model was solved using Laplace transform to obtain an analytical solution of concentration profile in terms of the radial position r and time t. The dynamic mass transfer flux was deduced and the influence of the bubble size was also determined. A mathematical method for deducing the average mass transfer flux directly from the Laplace transformed concentration is presented. Its accuracy is verified by comparing the numerical results with those from the indirect method. The influences of the model parameters, namely, the bubble size R, liquid film thickness δ, and the surface renewal constant s on the average mass transfer flux were investigated. The proposed model is useful for a better understanding of the mass transfer mechanism and an optimum design of gas-liquid contact equipment.

  8. Analysis of nematode motion using an improved light-scatter based system.

    Directory of Open Access Journals (Sweden)

    Chuck S Nutting

    2015-02-01

    Full Text Available The detailed assessment of nematode activity and viability still remains a relatively undeveloped area of biological and medical research. Computer-based approaches to assessing the motility of larger nematode stages have been developed, yet these lack the capability to detect and analyze the more subtle and important characteristics of the motion of nematodes. There is currently a need to improved methods of assessing the viability and health of parasitic worms.We describe here a system that converts the motion of nematodes through a light-scattering system into an electrical waveform, and allows for reproducible, and wholly non-subjective, assessment of alterations in motion, as well as estimation of the number of nematode worms of different forms and sizes. Here we have used Brugia sp. microfilariae (L1, infective larvae (L3 and adults, together with the free-living nematode Caenorhabditis elegans.The motion of worms in a small (200 ul volume can be detected, with the presence of immotile worms not interfering with the readings at practical levels (up to at least 500 L1 /200 ul. Alterations in the frequency of parasite movement following the application of the anti-parasitic drugs, (chloroquine and imatinib; the anti-filarial effect of the latter agent is the first demonstrated here for the first time. This system can also be used to estimate the number of parasites, and shortens the time required to estimate parasites numbers, and eliminates the need for microscopes and trained technicians to provide an estimate of microfilarial sample sizes up to 1000 parasites/ml. Alterations in the form of motion of the worms can also be depicted.This new instrument, named a "WiggleTron", offers exciting opportunities to further study nematode biology and to aid drug discovery, as well as contributing to a rapid estimate of parasite numbers in various biological samples.

  9. Experimental validation of a convolution- based ultrasound image formation model using a planar arrangement of micrometer-scale scatterers.

    Science.gov (United States)

    Gyöngy, Miklós; Makra, Ákos

    2015-06-01

    The shift-invariant convolution model of ultrasound is widely used in the literature, for instance to generate fast simulations of ultrasound images. However, comparison of the resulting simulations with experiments is either qualitative or based on aggregate descriptors such as envelope statistics or spectral components. In the current work, a planar arrangement of 49-μm polystyrene microspheres was imaged using macrophotography and a 4.7-MHz ultrasound linear array. The macrophotograph allowed estimation of the scattering function (SF) necessary for simulations. Using the coefficient of determination R(2) between real and simulated ultrasound images, different estimates of the SF and point spread function (PSF) were tested. All estimates of the SF performed similarly, whereas the best estimate of the PSF was obtained by Hanningwindowing the deconvolution of the real ultrasound image with the SF: this yielded R(2) = 0.43 for the raw simulated image and R(2) = 0.65 for the envelope-detected ultrasound image. R(2) was highly dependent on microsphere concentration, with values of up to 0.99 for regions with scatterers. The results validate the use of the shift-invariant convolution model for the realistic simulation of ultrasound images. However, care needs to be taken in experiments to reduce the relative effects of other sources of scattering such as from multiple reflections, either by increasing the concentration of imaged scatterers or by more careful experimental design.

  10. Aerosol Single Scattering Albedo retrieved from ground-based measurements in the UV-visible

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2010-07-01

    Full Text Available Estimates of Aerosol Single Scattering Albedo (SSA from ground-based spectral measurements in the UV-visible are conducted at Villeneuve d'Ascq (VdA in France. In order to estimate this parameter, measurements of global and diffuse UV-visible solar irradiances performed under cloud-free conditions since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA are used. The technique consists in comparing the measured irradiance values to modelled irradiances computed for various SSA. The retrieval is restricted to the 330–450 nm range to avoid ozone influence.

    For validation purpose, the retrieved values of SSA at 440 nm are compared to the ones obtained from sunphotometer measurements of the AERONET/PHOTONS network available on the LOA site. The results are rather satisfying: in 2003 and 2005–2006 the Root Mean Square (RMS of the differences are about 0.05, these values are within the uncertainty domain of retrieval of both products. Distinction between days characterized by different aerosol content, by means of the aerosol optical thickness (AOT retrieved from ground-based measurements at the same wavelength, shows that the comparisons between both products are better when AOT are higher. Indeed in case AOT are greater than 0.2, the RMS is 0.027 in 2003 and 0.035 in 2005–2006. The SSA estimated at 340 and 380 nm from ground-based spectra are also studied, though no validation can be carried out with sunphotometer data (440 nm is the shortest wavelength at which the SSA is provided by the network. The good comparisons observed at 440 nm can let assume that the SSA retrieved from spectroradiometer measurements at the two other wavelengths are also obtained with a good confidence level. Thus these values in the UV range can be used to complete aerosol data provided by AERONET/PHOTONS at VdA. Moreover they can be used for a best knowledge of the aerosol absorption that is necessary to quantify the

  11. Compton scattered imaging based on the V-line radon transform and its medical imaging applications.

    Science.gov (United States)

    Nguyen, M K; Regniery, R; Truong, T T; Zaidi, H

    2010-01-01

    The Radon transform (RT) on straight lines deals as mathematical foundation for many tomographic modalities (e.g. Xray scanner, Positron Emission Tomography), using only primary radiation. In this paper, we consider a new RT defined on a pair of half-lines forming a letter V, arising from the modeling a two-dimensional emission imaging process by Compton scattered gamma rays. We establish its analytic inverse, which is shown to support the feasibility of the reconstruction of a two-dimensional image from scattered radiation collected on a one-dimensional collimated camera. Moreover, a filtered back-projection inversion method is also constructed. Its main advantages are algorithmic efficiency and computational rapidity. We present numerical simulations to illustrate the working. To sum up, the V-line RT leads not only to a new imaging principle, but also to a new concept of detector with high energetic resolution capable to collect the scattered radiation.

  12. Utilizing Time Redundancy for Particle Filter-Based Transfer Alignment

    Science.gov (United States)

    Chattaraj, Suvendu; Mukherjee, Abhik

    2016-07-01

    Signal detection in the presence of high noise is a challenge in natural sciences. From understanding signals emanating out of deep space probes to signals in protein interactions for systems biology, domain specific innovations are needed. The present work is in the domain of transfer alignment (TA), which deals with estimation of the misalignment of deliverable daughter munitions with respect to that of the delivering mother platform. In this domain, the design of noise filtering scheme has to consider a time varying and nonlinear system dynamics at play. The accuracy of conventional particle filter formulation suffers due to deviations from modeled system dynamics. An evolutionary particle filter can overcome this problem by evolving multiple system models through few support points per particle. However, this variant has even higher time complexity for real-time execution. As a result, measurement update gets deferred and the estimation accuracy is compromised. By running these filter algorithms on multiple processors, the execution time can be reduced, to allow frequent measurement updates. Such scheme ensures better system identification so that performance improves in case of simultaneous ejection of multiple daughters and also results in better convergence of TA algorithms for single daughter.

  13. Indicators based on fluorescence resonance energy transfer (FRET).

    Science.gov (United States)

    Tsien, Roger Y

    2009-07-01

    One of the major new trends in the design of indicators for optically imaging biochemical and physiological functions of living cells has been the exploitation of fluorescence resonance energy transfer (FRET). FRET is a well-known spectroscopic technique for monitoring changes in the proximity and mutual orientation of pairs of chromophores. It has long been used in biochemistry and cell biology to assess distances and orientations between specific labeling sites within a single macromolecule or between two separate molecules. More recently, macromolecules or molecular pairs have been engineered to change their FRET in response to biochemical and physiological signals such as membrane potential, cyclic AMP (cAMP), protease activity, free Ca(2+) and Ca(2+)-calmodulin (CaM) concentrations, protein-protein heterodimerization, phosphorylation, and reporter-gene expression. Because FRET is general, nondestructive, and easily imaged, it has proven to be one of the most versatile spectroscopic readouts available to the designer of new probes. FRET is particularly amenable to emission ratioing, which is more reliably quantifiable than single-wavelength monitoring and better suited than excitation ratioing to high-speed and laser-excited imaging. This article summarizes the photophysical principles of FRET and the types of indicators used.

  14. Passenger Flow Prediction of Subway Transfer Stations Based on Nonparametric Regression Model

    Directory of Open Access Journals (Sweden)

    Yujuan Sun

    2014-01-01

    Full Text Available Passenger flow is increasing dramatically with accomplishment of subway network system in big cities of China. As convergence nodes of subway lines, transfer stations need to assume more passengers due to amount transfer demand among different lines. Then, transfer facilities have to face great pressure such as pedestrian congestion or other abnormal situations. In order to avoid pedestrian congestion or warn the management before it occurs, it is very necessary to predict the transfer passenger flow to forecast pedestrian congestions. Thus, based on nonparametric regression theory, a transfer passenger flow prediction model was proposed. In order to test and illustrate the prediction model, data of transfer passenger flow for one month in XIDAN transfer station were used to calibrate and validate the model. By comparing with Kalman filter model and support vector machine regression model, the results show that the nonparametric regression model has the advantages of high accuracy and strong transplant ability and could predict transfer passenger flow accurately for different intervals.

  15. Wave scattering theory a series approach based on the Fourier transformation

    CERN Document Server

    Eom, Hyo J

    2001-01-01

    The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.

  16. Providing data transfer with QoS as agreement-based service.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Keahey, K.; Allcock, W.; Mathematics and Computer Science; Univ. of Illinois

    2004-01-01

    Over the last decade, grids have become a successful tool for providing distributed environments for secure and coordinated execution of applications. The successful deployment of many realistic applications in such environments on a large scale has motivated their use in experimental science [L. C. Pearlman et al., (2004), K. Keahey et al. (2004)] where grid-based computations are used to assist in ongoing experiments. In such scenarios, quality of service (QoS) guarantees on execution as well as data transfer is desirable. The recently proposed WS-Agreement model [K. Czajkowski et al. K. Keahey et al. (2004)] provides an infrastructure within which such quality of service can be negotiated and obtained. We have designed and implemented a data transfer service that exposes an interface based on this model and defines agreements which guarantee that, within a certain confidence level, file transfer can be completed under a specified time. The data transfer service accepts a client's request for data transfer and makes an agreement with the client based on QoS metrics (such as the transfer time and confidence level with which the service can be provided). In our approach we use prediction as a base for formulating an agreement with the client, and we combine prediction and rate limiting to adoptively ensure that the agreement is met.

  17. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  18. Initial experience with personal digital assistant-based reflectance photoplethysmograph for free tissue transfer monitoring.

    Science.gov (United States)

    Stack, Brendan C; Futran, Neal D; Zang, Billy; Scharf, John E

    2003-08-01

    Improved microsurgical technique has resulted in a high percentage of successful free tissue transfers. When a tissue transfer fails in the head and neck, however, the results are orocutaneous fistulas, carotid artery exposure, and deformity that adds morbidity, expense, and may delay adjuvant therapy. Postoperative monitoring of tissue perfusion can detect early problems in free tissue transfer that may allow for early intervention and salvage. The authors have demonstrated that reflectance photoplethysmography can detect perfusion changes in free tissue transfer within 5 minutes of a pedicle "insult" intraoperatively. Normative data for viable flaps from various donor sites have been established. The authors now report their initial experience with a newly developed reflectance photoplethysmograph based on a hand-held computer for routine clinical use. Their results are compared with a conventional surveillance protocol that included observation, bleeding to pin prick, and bedside duplex scanning of the vascular pedicle. In a series of 30 free tissue transfers (29 patients), there was one ischemic event (skin paddle loss only), which was detected by the monitor. The monitor was able to predict correctly (one flap) survival of a free tissue transfer even when duplex ultrasonic data were indicative of an absence of perfusion. Personal digital assistant-based photoplethysmography appears to be a promising device for bedside diagnosis of free tissue transfer viability or ischemia.

  19. Monte-Carlo simulation of an ultra small-angle neutron scattering instrument based on Soller slits

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, T. [Univ. of New Mexico, Albuquerque, NM (United States); Hubbard, P. [Sandia National Labs., Albuquerque, NM (United States)

    1997-09-01

    Monte Carlo simulations are used to investigate an ultra small-angle neutron scattering instrument for use at a pulsed source based on a Soller slit collimator and analyzer. The simulations show that for a q{sub min} of {approximately}le-4 {angstrom}{sup -1} (15 {angstrom} neutrons) a few tenths of a percent of the incident flux is transmitted through both collimators at q=0.

  20. A grayscale image color transfer method based on region texture analysis using GLCM

    Science.gov (United States)

    Zhao, Yuanmeng; Wang, Lingxue; Jin, Weiqi; Luo, Yuan; Li, Jiakun

    2011-08-01

    In order to improve the performance of grayscale image colorization based on color transfer, this paper proposes a novel method by which pixels are matched accurately between images through region texture analysis using Gray Level Co-occurrence Matrix (GLCM). This method consists of six steps: reference image selection, color space transformation, grayscale linear transformation and compression, texture analysis using GLCM, pixel matching through texture value comparison, and color value transfer between pixels. We applied this method to kinds of grayscale images, and they gained natural color appearance like the reference images. Experimental results proved that this method is more effective than conventional method in accurately transferring color to grayscale images.

  1. Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating

    Science.gov (United States)

    Chen, Chun-Hung; Lee, Yung-Chun

    2007-07-01

    This paper reports a novel contact printing method which can transfer patterned metallic films directly from a mold to a substrate, based on applied contact pressure and infrared pulse laser heating. Experiments have been carried out using a 1064 nm pulsed Nd:YAG laser to demonstrate the feasibility of the proposed method. Chromium (Cr) films of 70 nm thickness with both array-dot patterns and linear grating patterns of typically 500 nm feature sizes are successfully transferred. The transferred Cr patterns can serve as an etching mask for the subsequent etching on the substrate. The potential for applying this method to nano-patterning and nano-fabrication is addressed.

  2. [Transferability of remote sensing-based models for estimating moso bamboo forest aboveground biomass].

    Science.gov (United States)

    Yu, Chao-Lin; Du, Hua-Qiang; Zhou, Guo-Mo; Xu, Xiao-Jun; Gui, Zu-Yun

    2012-09-01

    Taking the moso bamboo production areas Lin'an, Anji, and Longquan in Zhejiang Province of East China as study areas, and based on the integration of field survey data and Landsat 5 Thematic Mappr images, five models for estimating the moso bamboo (Phyllostachys heterocycla var. pubescens) forest biomass were constructed by using linear, nonlinear, stepwise regression, multiple regression, and Erf-BP neural network, and the models were evaluated. The models with higher precision were then transferred to the study areas for examining the model's transferability. The results indicated that for the three moso bamboo production areas, Erf-BP neural network model presented the highest precision, followed by stepwise regression and nonlinear models. The Erf-BP neural network model had the best transferability. Model type and independent variables had relatively high effects on the transferability of statistical-based models.

  3. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    Science.gov (United States)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  4. [A Brillouin Scattering Spectrum Feature Extraction Based on Flies Optimization Algorithm with Adaptive Mutation and Generalized Regression Neural Network].

    Science.gov (United States)

    Zhang, Yan-jun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong

    2015-10-01

    According to the high precision extracting characteristics of scattering spectrum in Brillouin optical time domain reflection optical fiber sensing system, this paper proposes a new algorithm based on flies optimization algorithm with adaptive mutation and generalized regression neural network. The method takes advantages of the generalized regression neural network which has the ability of the approximation ability, learning speed and generalization of the model. Moreover, by using the strong search ability of flies optimization algorithm with adaptive mutation, it can enhance the learning ability of the neural network. Thus the fitting degree of Brillouin scattering spectrum and the extraction accuracy of frequency shift is improved. Model of actual Brillouin spectrum are constructed by Gaussian white noise on theoretical spectrum, whose center frequency is 11.213 GHz and the linewidths are 40-50, 30-60 and 20-70 MHz, respectively. Comparing the algorithm with the Levenberg-Marquardt fitting method based on finite element analysis, hybrid algorithm particle swarm optimization, Levenberg-Marquardt and the least square method, the maximum frequency shift error of the new algorithm is 0.4 MHz, the fitting degree is 0.991 2 and the root mean square error is 0.024 1. The simulation results show that the proposed algorithm has good fitting degree and minimum absolute error. Therefore, the algorithm can be used on distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can improve the fitting of Brillouin scattering spectrum and the precision of frequency shift extraction effectively.

  5. Pedestrian movement analysis in transfer station corridor: Velocity-based and acceleration-based

    Science.gov (United States)

    Ji, Xiangfeng; Zhang, Jian; Hu, Yongkai; Ran, Bin

    2016-05-01

    In this paper, pedestrians are classified into aggressive and conservative ones by their temper. Aggressive pedestrians' walking through crowd in transfer station corridor is analyzed. Treating pedestrians as particles, this paper uses the modified social force model (MSFM) as the building block, where forces involve self-driving force, repulsive force and friction force. The proposed model in this paper is a discrete model combining the MSFM and cellular automata (CA) model, where the updating rules of the CA are redefined with MSFM. Due to the continuity of values generated by the MSFM, we use the fuzzy logic to discretize the continuous values into cells pedestrians can move in one step. With the observation that stimulus around pedestrians influences their acceleration directly, an acceleration-based movement model is presented, compared to the generally reviewed velocity-based movement model. In the acceleration-based model, a discretized version of kinematic equation is presented based on the acceleration discretized with fuzzy logic. In real life, some pedestrians would rather keep their desired speed and this is also mimicked in this paper, which is called inertia. Compared to the simple triangular membership function, a trapezoidal membership function and a piecewise linear membership function are used to capture pedestrians' inertia. With the trapezoidal and the piecewise linear membership function, many overlapping scenarios should be carefully handled and Dubois and Prade's four-index method is used to completely describe the relative relationship of fuzzy quantities. Finally, a simulation is constructed to demonstrate the effect of our model.

  6. Measurements of Nascent Soot Using a Cavity Attenauted Phase Shift (CAPS)-based Single Scattering Albedo Monitor

    Science.gov (United States)

    Freedman, A.; Onasch, T. B.; Renbaum-Wollf, L.; Lambe, A. T.; Davidovits, P.; Kebabian, P. L.

    2015-12-01

    Accurate, as compared to precise, measurement of aerosol absorption has always posed a significant problem for the particle radiative properties community. Filter-based instruments do not actually measure absorption but rather light transmission through the filter; absorption must be derived from this data using multiple corrections. The potential for matrix-induced effects is also great for organic-laden aerosols. The introduction of true in situ measurement instruments using photoacoustic or photothermal interferometric techniques represents a significant advance in the state-of-the-art. However, measurement artifacts caused by changes in humidity still represent a significant hurdle as does the lack of a good calibration standard at most measurement wavelengths. And, in the absence of any particle-based absorption standard, there is no way to demonstrate any real level of accuracy. We, along with others, have proposed that under the circumstance of low single scattering albedo (SSA), absorption is best determined by difference using measurement of total extinction and scattering. We discuss a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement of non-absorbing particles. For small particles and low SSA, absorption can be measured with an accuracy of 6-8% at absorption levels as low as a few Mm-1. We present new results of the measurement of the mass absorption coefficient (MAC) of soot generated by an inverted methane diffusion flame at 630 nm. A value

  7. Community-based capital cash transfer to support orphans in Western Kenya

    DEFF Research Database (Denmark)

    Skovdal, Morten; Mwasiaji, W.; Morrison, J.

    2008-01-01

    Various types of 'cash transfer' are currently receiving much attention as a way of helping orphans and vulnerable children in Africa. Drawing on a qualitative study conducted in Western Kenya, this paper points to the strategy of community-based capital cash transfers (CCCT) as a particularly...... that the programme not only increased food availability, but also enhanced social capital. Further research is needed to explore the potential of CCCT in supporting orphans and vulnerable children in countries with high orphanhood rates....

  8. Synthetic molecular systems based on porphyrins as models for the study of energy transfer in photosynthesis

    Science.gov (United States)

    Konovalova, Nadezhda V.; Evstigneeva, Rima P.; Luzgina, Valentina N.

    2001-11-01

    The published data on the synthesis and photochemical properties of porphyrin-based molecular ensembles which represent models of natural photosynthetic light-harvesting complexes are generalised and systematised. The dependence of the transfer of excitation energy on the distance between donor and acceptor components, their mutual arrangement, electronic and environmental factors are discussed. Two mechanisms of energy transfer reactions, viz., 'through space' and 'through bond', are considered. The bibliography includes 96 references.

  9. A CO2 laser based two-volume collective scattering instrument for spatially localized turbulence measurements

    DEFF Research Database (Denmark)

    Saffman, Mark; Zoletnik, S.; Basse, Nils Plesner

    2001-01-01

    We describe and demonstrate a two-volume collective scattering system for localized measurements of plasma turbulence. The finite crossfield correlation length of plasma turbulence combined with spatial variations in the magnetic field direction are used to obtain spatially localized turbulence m...

  10. Design of a Polarised Positron Source Based on Laser Compton Scattering

    CERN Document Server

    Araki, S; Honda, Y; Kurihara, Y; Kuriki, M; Okugi, T; Omori, T; Taniguchi, T; Terunuma, N; Urakawa, J; Artru, X; Chevallier, M; Strakhovenko, V M; Bulyak, E; Gladkikh, P; Mönig, K; Chehab, R; Variola, A; Zomer, F; Guiducci, S; Raimondi, Pantaleo; Zimmermann, Frank; Sakaue, K; Hirose, T; Washio, M; Sasao, N; Yokoyama, H; Fukuda, M; Hirano, K; Takano, M; Takahashi, T; Sato, H; Tsunemi, A; Gao, J; Soskov, V

    2005-01-01

    We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring.

  11. Four-Parameter white blood cell differential counting based on light scattering measurements

    NARCIS (Netherlands)

    Terstappen, L.W.M.M.; Grooth, de B.G.; Visscher, K.; Kouterik, F.A.; Greve, J.

    1988-01-01

    Measurement of the depolarized orthogonal light scattering in flow cytometry enables one to discriminate human eosinephilic granulocytes from neutrophilic granulocytes. We use this method to perform a four-parameter differential white blood cell analysis. A simple flow cytometer was built equipped

  12. Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile.

    Science.gov (United States)

    Cabaleiro, D; Colla, L; Barison, S; Lugo, L; Fedele, L; Bobbo, S

    2017-12-01

    This research aims at studying the stability and thermophysical properties of nanofluids designed as dispersions of sulfonic acid-functionalized graphene nanoplatelets in an (ethylene glycol + water) mixture at (10:90)% mass ratio. Nanofluid preparation conditions were defined through a stability analysis based on zeta potential and dynamic light scattering (DLS) measurements. Thermal conductivity, dynamic viscosity, and density were experimentally measured in the temperature range from 283.15 to 343.15 K and nanoparticle mass concentrations of up to 0.50% by using a transient plate source, a rotational rheometer, and a vibrating-tube technique, respectively. Thermal conductivity enhancements reach up to 5% without a clear effect of temperature while rheological tests evidence a Newtonian behavior of the studied nanofluids. Different equations such as the Nan, Vogel-Fulcher-Tamman (VFT), or Maron-Pierce (MP) models were utilized to describe the temperature or nanoparticle concentration dependences of thermal conductivity and viscosity. Finally, different figures of merit based on the experimental values of thermophysical properties were also used to compare the heat transfer capability and pumping power between nanofluids and base fluid.

  13. Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile

    Science.gov (United States)

    Cabaleiro, D.; Colla, L.; Barison, S.; Lugo, L.; Fedele, L.; Bobbo, S.

    2017-01-01

    This research aims at studying the stability and thermophysical properties of nanofluids designed as dispersions of sulfonic acid-functionalized graphene nanoplatelets in an (ethylene glycol + water) mixture at (10:90)% mass ratio. Nanofluid preparation conditions were defined through a stability analysis based on zeta potential and dynamic light scattering (DLS) measurements. Thermal conductivity, dynamic viscosity, and density were experimentally measured in the temperature range from 283.15 to 343.15 K and nanoparticle mass concentrations of up to 0.50% by using a transient plate source, a rotational rheometer, and a vibrating-tube technique, respectively. Thermal conductivity enhancements reach up to 5% without a clear effect of temperature while rheological tests evidence a Newtonian behavior of the studied nanofluids. Different equations such as the Nan, Vogel-Fulcher-Tamman (VFT), or Maron-Pierce (MP) models were utilized to describe the temperature or nanoparticle concentration dependences of thermal conductivity and viscosity. Finally, different figures of merit based on the experimental values of thermophysical properties were also used to compare the heat transfer capability and pumping power between nanofluids and base fluid.

  14. Scattered surface wave energy in the seismic coda

    Science.gov (United States)

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  15. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  16. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  17. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    Science.gov (United States)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  18. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

    Science.gov (United States)

    Yokokawa, Takumi; Nishidate, Izumi

    2016-04-01

    We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

  19. An ecofriendly graphene-based nanofluid for heat transfer applications

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Akhiani, Amir Reza

    2016-01-01

    Herein, a new ecofriendly approach to generate a graphene-based nanofluid was established. Specifically, a novel mode of graphene oxide reduction through functionalization with polyphenol extracted from red wine was introduced. Comprehensive characterization methods were employed to confirm...... and understand the reduction process of graphene oxide in the red wine polyphenol solution. It was noted, that the deoxygenation level of the reduced graphene oxide is comparable with the levels obtained by conventional and non-ecofriendly methods. The physical and thermal properties of the generated nanofluid...... coefficient of the nanofluid in a laminar flow regime with uniform wall heat flux was investigated to estimate its cooling capabilities. These results, firmly confirm that the generated graphene-based nanofluid is a formidable transporter of heat and yet ecofriendly. Therefore, it's anticipate...

  20. Networking properties of cyclodextrin-based cross-linked polymers probed by inelastic light-scattering experiments.

    Science.gov (United States)

    Rossi, Barbara; Caponi, Silvia; Castiglione, Franca; Corezzi, Silvia; Fontana, Aldo; Giarola, Marco; Mariotto, Gino; Mele, Andrea; Petrillo, Caterina; Trotta, Francesco; Viliani, Gabriele

    2012-05-03

    An integrated experimental approach, based on inelastic light-scattering techniques, has been here employed for a multilength scale characterization of networking properties of cyclodextrin nanosponges, a new class of cross-linked polymeric materials built up from natural oligosaccharides cyclodextrins. By using Raman and Brillouin scattering experiments, we performed a detailed inspection of the vibrational dynamics of these polymers over a wide frequency window ranging from gigahertz to terahertz, with the aim of providing physical descriptors correlated to the cross-linking degree and elastic properties of the material. The results seem to suggest that the stiffness of cross-linked polymers can be successfully tuned by acting on the type and the relative amount of the cross-linker during the synthesis of a polymer matrix, predicting and controlling their swelling and entrapment properties. The proposed experimental approach is a useful tool for investigating the structural and physicochemical properties of polymeric network systems.

  1. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  2. Effects of density distribution of scattering media on radiation transfer. Case of growing frost layer; Fukusha denpa ni ataeru sanransei baitai no mitsudo bunpu no eikyo. Seicho kateini aru shimoso no baai

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, A.; Washio, S. [Okayama University, Okayama (Japan); Haida, T. [NGK Insulators, Ltd., Nagoya (Japan); Matsumoto, E. [Oji Paper Co. Ltd., Tokyo (Japan)

    1999-09-25

    The main interest was taken in the effects of the density distribution on the radiation transfer in the scattering media. The frost layer in the early growth stage under the control of diffusion was chosen as the media. Numerical analysis of the radiation transfer was carried out by using a modified Monte Carlo method on the basis of the geometrical optics. A diffusion limited aggregation theory was introduced to simulate the growth of frost layer with treelike structure. The relation between the density distribution and the transmittance of the simulated model was made clear by the numerical analysis. On the basis of its result, the optical measurements in the visible wavelength region were utilized to evaluate the density distribution in the frost layer, which varied with the cooling condition, from the transmittance values. (author)

  3. On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2017-01-01

    Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there

  4. Block-Localized Wavefunction (BLW) Based Two-State Approach for Charge Transfers between Phenyl Rings.

    Science.gov (United States)

    Mo, Yirong; Song, Lingchun; Lin, Yuchun; Liu, Minghong; Cao, Zexing; Wu, Wei

    2012-03-13

    The block-localized wave function (BLW) method is the simplest and most efficient variant of ab initio valence bond (VB) theory which defines electron-localized resonance states following the conventional VB concepts. Here, a BLW-based two-state approach is proposed to probe the charge/hole transfer reactions within the Marcus-Hush model. With this approach, both the electronic coupling and reorganization energies can be derived at the ab initio level. Pilot applications to the electron/hole transfers between two phenyl rings are presented. Good exponential correlation between the electronic coupling energy and the donor-acceptor distance is shown, whereas the inner-sphere reorganization shows little geometric dependency. Computations also support the assumption in Marcus theory that the thermal electron transfer barrier (ΔG*), which is a sum of the reaction barrier (ΔEa) for electron/hole transfer and the coupling energy (VAB), is a quarter of the reorganization energy (λ).

  5. Molecular dynamics-based refinement of nanodiamond size measurements obtained with dynamic light scattering

    CERN Document Server

    Koniakhin, S V; Terterov, I N; Shvidchenko, A V; Eidelman, E D; Dubina, M V

    2016-01-01

    The determination of particle size by dynamic light scattering uses the Stokes-Einstein relation, which can break down for nanoscale objects. Here we employ a molecular dynamics simulation of fully solvated 1-5 nm carbon nanoparticles for the refinement of the experimental data obtained for nanodiamonds in water by using dynamic light scattering. We performed molecular dynamics simulations in differently sized boxes and calculated nanoparticles diffusion coefficients using the velocity autocorrelation function and mean-square displacement. We found that the predictions of the Stokes-Einstein relation are accurate for nanoparticles larger than 3 nm while for smaller nanoparticles the diffusion coefficient should be corrected and different boundary conditions should be taken into account.

  6. Folding model analysis of the nucleus–nucleus scattering based on Jacobi coordinates

    Indian Academy of Sciences (India)

    F PAKDEL; A A RAJABI; L NICKHAH

    2016-12-01

    This paper presents the results of scattering of $^{16}O+^{209}Bi interaction near the Coulomb barrier. The interaction potential between two nuclei is calculated using the double folding model with the effective nucleon–nucleon (NN) interaction. The calculations of the exchange part of the interaction were assumed to be of finite range and the density dependence of the $NN$ interaction is accounted for. Also the results are compared with thezero-range approximation. All these calculations are done using the wave functions of the two colliding nuclei in place of their density distributions. The wave functions are obtained by the $D$-dimensional wave equationusing the hyper spherical calculations on the basis of Jacobi coordinates. The numerical results for the interaction potential and the differential scattering are in good agreement with the previous works.

  7. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    Science.gov (United States)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  8. POMME: A medium energy deuteron polarimeter based on semi-inclusive d-carbon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, B.; Boudard, A.; Fanet, H.; Fergerson, R.W.; Garcon, M.; Giorgetti, C.; Habault, J.; Le Meur, J.; Lombard, R.M.; Lugol, J.C.; Mayer, B.; Mouly, J.P.; Tomasi-Gustafsson, E. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Nucleaire a Moyenne Energie); Duchazeaubeneix, J.C.; Yonnet, J. (Laboratoire National Saturne, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Morlet, M.; Wiele, J. van de; Willis, A. (Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire); Greeniaus, G. (Alberta Univ., Edmonton (Canada). Dept. of Physics British Columbia Univ., Vancouver (Canada). TRIUMF Facility); Gaillard, G. (Geneva Univ. (Switzerland). Inst. de Physique); Markowitz, P.; Perdrisat, C.F. (College of William and Mary, Williamsburg, VA (USA). Dept. of Physics); Abegg, R.; Hutcheon, D.A. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility)

    1990-03-15

    POMME is the first calibrated deuteron polarimeter using a d + carbon semi-inclusive scattering reaction. We present the results of its calibration in the region T{sub d}=150-700 MeV, with the polarized deuteron beam from the synchrotron Saturne. A parametrization of the measured analyzing powers, and a discussion of the obtained efficiency and figure of merit are also given. (orig.).

  9. Voronoi diagram-based spheroid model for microwave scattering of complex snow aggregates

    Science.gov (United States)

    Honeyager, Ryan; Liu, Guosheng; Nowell, Holly

    2016-02-01

    Methods to model snow aggregate scattering properties at microwave frequencies can be divided into structurally explicit and implicit techniques. Explicit techniques, such as the discrete dipole approximation (DDA), determine scattering and backscatter cross-sections assuming full knowledge of a given snow particle's structure. Such calculations are computationally expensive. Implicit techniques, such as using the T-matrix method (TMM) with optically soft spheroids, model equivalent particles with variable mass, bulk density and aspect ratio according to an effective-medium approximation. It is highly desirable that there should be a good agreement between modeled aggregate cross-sections using both methods. A Voronoi bounding-neighbor algorithm is presented in this study to determine the bulk equivalent density of complex three-dimensional snow aggregates. While mass and aspect ratio are easily parameterized quantities, attempts to parameterize the bulk density of snowflakes have usually relied on a bounding ellipsoid, which can be determined from a flake's radius of gyration, root mean square mean or simply from its maximum diameter. We compared the Voronoi algorithm against existing bounding spheroid approaches and mass-effective density relations at ten frequencies from 10.65 to 183.31 GHz, using a set of 1005 aggregates with maximum dimensions from a few hundred microns to several centimeters. When using the Voronoi-determined effective density, the asymmetry parameter, scattering, and backscatter cross-sections determined using the TMM reasonably match those for DDA-computed snow aggregates. From Ku to W-band, soft spheroids can reproduce cross-sections for aggregates up to 9 mm in maximum dimension. Volume-integrated cross-sections always agree to within 25% of DDA. As the DDA is computationally expensive, this offers a fast alternative that efficiently evaluates scattering properties at microwave frequencies.

  10. Solution-based characterization of surface-enhanced Raman response of single scattering centers

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Talley, C; Schwartzberg, A; Braun, G; Moskovits, M; Reich, N; Huser, T

    2008-03-06

    We demonstrate the rapid optical characterization of large numbers of individual metal nanoparticles freely diffusing in colloidal solution by confocal laser spectroscopy. We find that hollow gold nanospheres and solid silver nanoparticles linked with a bifunctional ligand, both designed nanostructures, exhibit significantly higher monodispersity in their Rayleigh and Raman scattering response than randomly aggregated gold and silver nanoparticles. We show that measurements of rotational diffusion timescales allow sizing of particles significantly more reliably than can be obtained using translational diffusion timescales.

  11. A fast and scalable content transfer protocol (FSCTP) for VANET based architecture

    Science.gov (United States)

    Santamaria, A. F.; Scala, F.; Sottile, C.; Tropea, M.; Raimondo, P.

    2016-05-01

    In the modern Vehicular Ad-hoc Networks (VANET) based systems even more applications require lot of data to be exchanged among vehicles and infrastructure entities. Due to mobility issues and unplanned events that may occurs it is important that contents should be transferred as fast as possible by taking into account consistence of the exchanged data and reliability of the connections. In order to face with these issues, in this work we propose a new transfer data protocol called Fast and Scalable Content Transfer Protocol (FSCTP). This protocol allows a data transfer by using a bidirectional channel among content suppliers and receivers exploiting several cooperative sessions. Each session will be based on User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) to start and manage data transfer. Often in urban area the VANET scenario is composed of several vehicle and infrastructures points. The main idea is to exploit ad-hoc connections between vehicles to reach content suppliers. Moreover, in order to obtain a faster data transfer, more than one session is exploited to achieve a higher transfer rate. Of course it is important to manage data transfer between suppliers to avoid redundancy and resource wastages. The main goal is to instantiate a cooperative multi-session layer efficiently managed in a VANET environment exploiting the wide coverage area and avoiding common issues known in this kind of scenario. High mobility and unstable connections between nodes are some of the most common issues to address, thus a cooperative work between network, transport and application layers needs to be designed.

  12. Sound Scattering From Rough Bubbly Ocean Surface Based on Modified Sea Surface Acoustic Simulator and Consideration of Various Incident Angles and Sub-surface Bubbles’ Radii

    Institute of Scientific and Technical Information of China (English)

    Alireza Bolghasi; Parviz Ghadimi; Mohammad A. Feizi Chekab

    2016-01-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall–Novarini model and optimized HKF method. The extended Hall–Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  13. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    Science.gov (United States)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-09-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  14. GPU-based calculation of scattering characteristics of space target in the visible spectrum

    Science.gov (United States)

    Cao, YunHua; Wu, Zhensen; Bai, Lu; Song, Zhan; Guo, Xing

    2014-10-01

    Scattering characteristics of space target in the visible spectrum, which can be used in target detection, target identification, and space docking, is calculated in this paper. Algorithm of scattering characteristics of space target is introduced. In the algorithm, space target is divided into thousands of triangle facets. In order to obtain scattering characteristics of the target, calculation of each facet will be needed. For each facet, calculation will be executed in the spectrum of 400-760 nanometers at intervals of 1 nanometer. Thousands of facets and hundreds of bands of each facet will cause huge calculation, thus the calculation will be very time-consuming. Taking into account the high parallelism of the algorithm, Graphic Processing Units (GPUs) are used to accelerate the algorithm. The acceleration reaches 300 times speedup on single Femi-generation NVDIA GTX 590 as compared to the single-thread CPU version of code on Intel(R) Xeon(R) CPU E5-2620. And a speedup of 412x can be reached when a Kepler-generation NVDIA K20c is used.

  15. Improving prediction of total viable counts in pork based on hyperspectral scattering technique

    Science.gov (United States)

    Tao, Feifei; Peng, Yankun; Song, Yulin; Guo, Hui; Chao, Kuanglin

    2012-05-01

    A hyperspectral scattering technique was investigated for predicting the total viable counts (TVC) of pork in the article. Fresh pork was purchased from a local market and stored at 4°C for 1-15 days. Totally 35 samples were used in the experiment and 2-4 samples were taken out randomly each day for collecting hyperspectral images and reference microbiological tests. Gompertz function was applied to fit the scattering profiles of pork and Teflon, and the fitting results were pretty good in the spectral range of 470-1010 nm. Both individual parameters and integrated parameters were explored to develop the multi-linear regression models for predicting pork TVC, and the results indicated that individual Gompertz parameter α was superior to other individual parameters, while the integrated parameters can perform better. The best result for predicting pork TVC was achieved by the form of (α, β, ɛ), with the RCV of 0.963. The study demonstrated that hyperspectral scattering technique combined with Gompertz function was potential for rapid determination of pork TVC, and would be a valid tool for monitoring the quality and safety attributes of meat in the future.

  16. Selecting the aspect ratio of a scatter plot based on its delaunay triangulation.

    Science.gov (United States)

    Fink, Martin; Haunert, Jan-Henrik; Spoerhase, Joachim; Wolff, Alexander

    2013-12-01

    Scatter plots are diagrams that visualize two-dimensional data as sets of points in the plane. They allow users to detect correlations and clusters in the data. Whether or not a user can accomplish these tasks highly depends on the aspect ratio selected for the plot, i.e., the ratio between the horizontal and the vertical extent of the diagram. We argue that an aspect ratio is good if the Delaunay triangulation of the scatter plot at this aspect ratio has some nice geometric property, e.g., a large minimum angle or a small total edge length. More precisely, we consider the following optimization problem. Given a set Q of points in the plane, find a scale factor s such that scaling the x-coordinates of the points in Q by s and the y-coordinates by 1=s yields a point set P(s) that optimizes a property of the Delaunay triangulation of P(s), over all choices of s. We present an algorithm that solves this problem efficiently and demonstrate its usefulness on real-world instances. Moreover, we discuss an empirical test in which we asked 64 participants to choose the aspect ratios of 18 scatter plots. We tested six different quality measures that our algorithm can optimize. In conclusion, minimizing the total edge length and minimizing what we call the 'uncompactness' of the triangles of the Delaunay triangulation yielded the aspect ratios that were most similar to those chosen by the participants in the test.

  17. Numerical Investigation of Electromagnetic Scattering Problems Based on the Compactly Supported Radial Basis Functions

    Science.gov (United States)

    Roohani Ghehsareh, Hadi; Kamal Etesami, Seyed; Hajisadeghi Esfahani, Maryam

    2016-08-01

    In the current work, the electromagnetic (EM) scattering from infinite perfectly conducting cylinders with arbitrary cross sections in both transverse magnetic (TM) and transverse electric (TE) modes is numerically investigated. The problems of TE and TM EM scattering can be mathematically modelled via the magnetic field integral equation (MFIE) and the electric field integral equation (EFIE), respectively. An efficient technique is performed to approximate the solution of these surface integral equations. In the proposed numerical method, compactly supported radial basis functions (RBFs) are employed as the basis functions. The radial and compactly supported properties of these basis functions substantially reduce the computational cost and improve the efficiency of the method. To show the accuracy of the proposed technique, it has been applied to solve three interesting test problems. Moreover, the method is well used to compute the electric current density and also the radar cross section (RCS) for some practical scatterers with different cross section geometries. The reported numerical results through the tables and figures demonstrate the efficiency and accuracy of the proposed technique.

  18. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  19. Hierarchical modeling of heat transfer in silicon-based electronic devices

    Science.gov (United States)

    Goicochea Pineda, Javier V.

    In this work a methodology for the hierarchical modeling of heat transfer in silicon-based electronic devices is presented. The methodology includes three steps to integrate the different scales involved in the thermal analysis of these devices. The steps correspond to: (i) the estimation of input parameters and thermal properties required to solve the Boltzmann transport equation (BTE) for phonons by means of molecular dynamics (MD) simulations, (ii) the quantum correction of some of the properties estimated with MD to make them suitable for BTE and (iii) the numerical solution of the BTE using the lattice Boltzmann method (LBM) under the single mode relaxation time approximation subject to different initial and boundary conditions, including non-linear dispersion relations and different polarizations in the [100] direction. Each step of the methodology is validated with numerical, analytical or experimental reported data. In the first step of the methodology, properties such as, phonon relaxation times, dispersion relations, group and phase velocities and specific heat are obtained with MD at of 300 and 1000 K (i.e. molecular temperatures). The estimation of the properties considers the anhamonic nature of the potential energy function, including the thermal expansion of the crystal. Both effects are found to modify the dispersion relations with temperature. The behavior of the phonon relaxation times for each mode (i.e. longitudinal and transverse, acoustic and optical phonons) is identified using power functions. The exponents of the acoustic modes are agree with those predicted theoretically perturbation theory at high temperatures, while those for the optical modes are higher. All properties estimated with MD are validated with values for the thermal conductivity obtained from the Green-Kubo method. It is found that the relative contribution of acoustic modes to the overall thermal conductivity is approximately 90% at both temperatures. In the second step

  20. Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points

    Science.gov (United States)

    Peng, Haijun; Wang, Wei

    2016-10-01

    An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.

  1. Improving Healthcare Team Collaboration in Hospital Transfers through Cloud-Based Mobile Systems

    Directory of Open Access Journals (Sweden)

    Andres Neyem

    2016-01-01

    Full Text Available It is a clinical fact that better patient flow management in and between hospitals improves quality of care, resource utilization, and cost efficiency. As the number of patients in hospitals constantly grows, the need for hospital transfers is directly affected. Interhospital transfers can be required for several reasons but they are most commonly made when the diagnostic and therapeutic facilities required for a patient are not available locally. Transferring a critical patient between hospitals is commonly associated with risk of death and complications. This raises the question: How can we improve healthcare team collaboration in hospital transfers through the use of emerging information technology and communication services? This paper presents a cloud-based mobile system for supporting team collaboration and decision-making in the transportation of patients in critical condition. The Rapid Emergency Medicine Score (REMS scale was used as an outcome variable, being a useful scale to assess the risk profile of critical patients requiring transfers between hospitals. This helps medical staff to adopt proper risk-prevention measures when handling a transfer and to react on time if any complications arise in transit.

  2. Lyapunov-based Low-thrust Optimal Orbit Transfer: An approach in Cartesian coordinates

    CERN Document Server

    Zhang, Hantian; Cao, Qingjie

    2014-01-01

    This paper presents a simple approach to low-thrust optimal-fuel and optimal-time transfer problems between two elliptic orbits using the Cartesian coordinates system. In this case, an orbit is described by its specific angular momentum and Laplace vectors with a free injection point. Trajectory optimization with the pseudospectral method and nonlinear programming are supported by the initial guess generated from the Chang-Chichka-Marsden Lyapunov-based transfer controller. This approach successfully solves several low-thrust optimal problems. Numerical results show that the Lyapunov-based initial guess overcomes the difficulty in optimization caused by the strong oscillation of variables in the Cartesian coordinates system. Furthermore, a comparison of the results shows that obtaining the optimal transfer solution through the polynomial approximation by utilizing Cartesian coordinates is easier than using orbital elements, which normally produce strongly nonlinear equations of motion. In this paper, the Eart...

  3. Blue Skies through a Blue Sky: an attempt to detect Rayleigh scattering in an exoplanet atmosphere from a ground-based telescope

    Science.gov (United States)

    Luchsinger, Kristen; Redfield, Seth; Cauley, Paul W.; Barman, Travis S.; Jensen, Adam G.

    2017-01-01

    When studying planetary atmospheres, scattering signatures, such as Rayleigh scattering, can often be the most easily characterized signal. This is especially true in terrestrial atmospheres, where Rayleigh scattering is the dominant spectral feature in optical wavelengths. These scattering signatures, unlike molecular or atomic line absorption, are broad and continuous, and are char- acterized by a single slope. Rayleigh scattering provides an imporant glimpse into the atmospheric composition of an exoplanet's atmosphere, and a Rayleigh scattering detection on a smaller, ground-based telescope can be a useful method to identify interesting science targets for larger, space-based telescopes.We will present observations of three exoplanets using the HYDRA multi- object spectrometer on the WIYN telescope at Kitt Peak National Observatory. We obtained two transits each for WASP 12b and GJ 3470b, and one transit for HD 189733b, for a range of wavelengths between 4500 Å and 9201 Å. A successful Rayleigh scattering detection in the atmospheres of these planets using this in- strument would represent a step forward in our current detection capabilities and open up the study of planetary atmospheres to smaller, ground-based telescopes.Data presented herein were obtained at the WIYN Observatory from telescope time allocated to NN-EXPLORE through the scientific partnership of the National Aeronautics and Space Administration, the National Science Foundation, and the National Optical Astronomy Observatory. This work was supported by a NASA WIYN PI Data Award, administered by the NASA Exoplanet Science Institute.

  4. Charge transfer in single and multiple scattering events at metal surfaces: a wavepacket study of the Na(+)/Cu(100) system.

    Science.gov (United States)

    Sindona, A; Pisarra, M; Maletta, S; Riccardi, P; Falcone, G

    2010-12-01

    Resonant neutralization of hyperthermal energy Na(+) ions impinging on Cu(100) surfaces is studied, focusing on two specific collision events: one in which the projectile is reflected off the surface, the other in which the incident atom penetrates the outer surface layers initiating a series of scattering processes, within the target, and coming out together with a single surface atom. A semi-empirical model potential is adopted that embeds: (i) the electronic structure of the sample, (ii) the central field of the projectile, and (iii) the contribution of the Cu atom ejected in multiple scattering events. The evolution of the ionization orbital of the scattered atom is simulated, backwards in time, using a wavepacket propagation algorithm. The output of the approach is the neutralization probability, obtained by projecting the time-reversed valence wavefunction of the projectile onto the initially filled conduction band states. The results are in agreement with available data from the literature (Keller et al 1995 Phys. Rev. Lett. 75 1654) indicating that the motion of surface atoms, exiting the targets with kinetic energies of the order of a few electronvolts, plays a significant role in the final charge state of projectiles.

  5. Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview

    Science.gov (United States)

    Brustlein, Sophie; Ferrand, Patrick; Walther, Nico; Brasselet, Sophie; Billaudeau, Cyrille; Marguet, Didier; Rigneault, Hervé

    2011-02-01

    We present the assets and constraints of using optical parametric oscillators (OPOs) to perform point scanning nonlinear microscopy and spectroscopy with special emphasis on coherent Raman spectroscopy. The difterent possible configurations starting with one OPO and two OPOs are described in detail and with comments that are intended to be practically useful for the user. Explicit examples on test samples such as nonlinear organic crystal, polystyrene beads, and fresh mouse tissues are given. Special emphasis is given to background-free coherent Raman anti-Stokes scattering (CARS) imaging, including CARS hyperspectral imaging in a fully automated mode with commercial OPOs.

  6. A Cluster Based Scatter Search Heuristic for the Vehicle Routing Problem

    OpenAIRE

    Wendolsky, Rolf; Scheuerer, Stephan

    2006-01-01

    The Vehicle Routing Problem (VRP) is one of the most studied problems in the field of Operations Research. Closely related to the VRP is the Capacitated Clustering Problem (CCP). The VRP can be considered as an 'extension' of the CCP in the way that for each cluster in the CCP solution, additionally a route through all cluster customers and the depot has to be constructed to generate the routing information. In a previous study the Scatter Search methodology was used to solve the CCP. This al...

  7. Measurement of two-phase particle flow based on the characteristics of particle-system scattering

    Science.gov (United States)

    Li, Min; Zhang, Yang; Wang, Yuan; Yang, Bin

    2017-02-01

    Precise measurement of the mass of moving particles (MPM) is fundamental to the research on particle flows. In non-intrusive optical measurements, traditional discrete methods obtain the MPM by determining the connected domains on experimental pictures, leading to inevitable errors. In this study, the constitutive relationship between the MPM and the foreground grey scale value of the experimental picture is investigated on the basis of the working principle of digital cameras and the scattering theory of particle systems. This relationship is confirmed to be effective in wind-blown sand particle flow experiments using high-speed photography.

  8. Community-based knowledge transfer and exchange: Helping community-based organizations link research to action

    Directory of Open Access Journals (Sweden)

    Lavis John N

    2010-04-01

    Full Text Available Abstract Background Community-based organizations (CBOs are important stakeholders in health systems and are increasingly called upon to use research evidence to inform their advocacy, program planning, and service delivery efforts. CBOs increasingly turn to community-based research (CBR given its participatory focus and emphasis on linking research to action. In order to further facilitate the use of research evidence by CBOs, we have developed a strategy for community-based knowledge transfer and exchange (KTE that helps CBOs more effectively link research evidence to action. We developed the strategy by: outlining the primary characteristics of CBOs and why they are important stakeholders in health systems; describing the concepts and methods for CBR and for KTE; comparing the efforts of CBR to link research evidence to action to those discussed in the KTE literature; and using the comparison to develop a framework for community-based KTE that builds on both the strengths of CBR and existing KTE frameworks. Discussion We find that CBR is particularly effective at fostering a climate for using research evidence and producing research evidence relevant to CBOs through community participation. However, CBOs are not always as engaged in activities to link research evidence to action on a larger scale or to evaluate these efforts. Therefore, our strategy for community-based KTE focuses on: an expanded model of 'linkage and exchange' (i.e., producers and users of researchers engaging in a process of asking and answering questions together; a greater emphasis on both producing and disseminating systematic reviews that address topics of interest to CBOs; developing a large-scale evidence service consisting of both 'push' efforts and efforts to facilitate 'pull' that highlight actionable messages from community relevant systematic reviews in a user-friendly way; and rigorous evaluations of efforts for linking research evidence to action. Summary

  9. Hybrid radiosity-SP{sub 3} equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Zhang, Qitan; Yang, Defu; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-01-14

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP{sub 3} equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP{sub 3}) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  10. Theoretical base of the approach to the representation of aggregate information on the cross sections of the scattering processes

    Directory of Open Access Journals (Sweden)

    Alla A. Mityureva

    2015-12-01

    Full Text Available In the present paper, the approach to the representation of aggregate information on the cross sections of elementary processes is described and its justification within mathematical statistics is given. It is caused by necessity of integrated account of the results obtained by different works at different times, in different groups, based on experimental and theoretical studies in various energy ranges. The main attention is paid to the process of electron-atom scattering. As an example of the proposed approach application, the aggregate result on thus obtained integral cross sections of electron impact excitation of the transitions in the hydrogen atom is presented.

  11. Detection of captopril based on its enhanced resonance light scattering signals of fluorosurfactant-capped gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this study,based on its enhancement effect on resonance light scattering (RLS) of fluorosurfactant (FSN)-capped gold nanoparticles (GNPs),we reported a simple approach for the rapid sensing of captopril. Under optimum conditions,the lowest detectable concentration of captopril through this approach (S/N=3) was 0.01μg/mL. The calibration curve was linear over the range of 0.08-4.0μg/mL for the detection of captopril. The recoveries of captopril were found to fall in the range between 99% and 100%. We have...

  12. Investigation on the effect of beam divergence angle upon output waveform based on stimulated Brillouin scattering optical limiting

    Institute of Scientific and Technical Information of China (English)

    Hasi Wu-Li-Ji; Lu Huan-Huan; Gong Sheng; Fu Mei-Ling; Lin Zhi-Wei; Lin Dian-Yang; He Wei-Ming

    2009-01-01

    This paper investigates the effect of beam divergence angle on output waveform based on stimulated Brillouin scattering optical limiting. Output waveforms in the case of different pump divergence angles are numerically simulated,and validated in a Nd:YAG seed-injected laser system. The results indicate that a small pump divergence angle can lead to good interaction between pump and Stokes, and a platform can be easily realized in the transmitted waveform.In contrast, a peak followed by the platform appears when the divergence angle becomes large.

  13. A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem

    Science.gov (United States)

    Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.

    2010-01-01

    To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…

  14. Technology Transfer from University-Based Research Centers: The University of New Mexico Experience.

    Science.gov (United States)

    Rogers, Everett M.; Hall, Brad; Hashimoto, Michio; Steffensen, Morten; Speakman, Kristen L.; Timko, Molly K.

    1999-01-01

    A study of 55 research centers at the University of New Mexico investigated the nature of the typical center, why funding has risen during the 1990s, reasons for founding the centers, the director's role, how university-based research centers transfer technology to private companies and other organizations, and what determines program…

  15. Universally composable oblivious transfer based on a variant of lPN

    DEFF Research Database (Denmark)

    David, Bernardo Machado; Dowsley, Rafael; Nascimento, Anderson C A

    2014-01-01

    Oblivious transfer (OT) is a fundamental two-party cryptographic primitive that implies secure multiparty computation. In this paper, we introduce the first OT based on the Learning Parity with Noise (LPN) problem. More specifically, we use the LPN variant that was introduced by Alekhnovich (FOCS...

  16. Fast ethylamine gas sensing based on intermolecular charge-transfer complexation

    Institute of Scientific and Technical Information of China (English)

    Eun Mi Lee; Seon Young Gwon; Young A Son; Sung Hoon Kim

    2012-01-01

    We have investigated the fast ethylamine gas sensing of 2-chloro-3,5-dinitrobenzotrifluoride (CDBF) loaded poly(acrylonitrile)nanofiber based on an intermolecular charge-transfer complexation.Reversible response and recovery were achieved using alternating gas exposure.This system shows a fast ethylamine gas sensing within 0.4 s.

  17. Long-range proton transfer in aqueous acid-base reactions

    NARCIS (Netherlands)

    Siwick, B.J.; Cox, M.J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) in the aqueous acid−base reaction between the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS) and acetate by probing the vibrational resonances of HPTS, acetate, and the hydrated proton with femtosecond mid-infrared laser pulses. We find that PT

  18. Numerical Problems and Agent-Based Models for a Mass Transfer Course

    Science.gov (United States)

    Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.

    2009-01-01

    Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…

  19. Analysis of a Knowledge-Management-Based Process of Transferring Project Management Skills

    Science.gov (United States)

    Ioi, Toshihiro; Ono, Masakazu; Ishii, Kota; Kato, Kazuhiko

    2012-01-01

    Purpose: The purpose of this paper is to propose a method for the transfer of knowledge and skills in project management (PM) based on techniques in knowledge management (KM). Design/methodology/approach: The literature contains studies on methods to extract experiential knowledge in PM, but few studies exist that focus on methods to convert…

  20. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla;

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  1. Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection.

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2015-10-05

    Spectral analysis is essential for measuring and monitoring advanced optical communication systems and the characterization of active and passive devices like amplifiers, filters and especially frequency combs. Conventional devices have a limited resolution or tuning range. Therefore, the true spectral shape of the signal remains hidden. In this work, a small part of the signal under test is preselected with help of the polarization pulling effect of stimulated Brillouin scattering where all unwanted spectral components are suppressed. Subsequently, this part is analyzed more deeply through heterodyne detection. Thereby, the local oscillator is generated from a narrow linewidth fiber laser which acts also as pump wave for Brillouin scattering. By scanning the pump wave together with the local oscillator through the signal spectrum, the whole signal is measured. The method is tunable over a broad wavelength range, is not affected by unwanted mixing products and utilizes a conventional narrow bandwidth photo diode. First proof of concept experiments show the measurement of the power spectral density function with a resolution in the attometer or lower kilohertz range at 1550 nm.

  2. [LLE-SVM classification of apple mealiness based on hyperspectral scattering image].

    Science.gov (United States)

    Zhao, Gui-lin; Zhu, Qi-bing; Huang, Min

    2010-10-01

    Apple mealiness degree is an important factor for its internal quality. hyperspectral scattering, as a promising technique, was investigated for noninvasive measurement of apple mealiness. In the present paper, a locally linear embedding (LLE) coupled with support vector machine (SVM) was proposed to achieve classification because of large number of image data. LLE is a nonlinear lowering dimension method, which reveals the structure of the global nonlinearity by the local linear joint. This method can effectively calculate high-dimensional input data embedded in a low-dimensional space manifold. The dimension reduction of hyperspectral data was classified by SVM. Comparing the LLE-SVM classification method with the traditional SVM classification, the results indicated that the training accuracy obtained with the LLE-SVM was higher than that just with SVM; and the testing accuracy of the classifier changed a little before and after dimensionality reduction, and the range of fluctuation was less than 5%. It is expected that LLE-SVM method would provide an effective classification method for apple mealiness nondestructive detection using hyperspectral scattering image technique.

  3. GPU-based Monte Carlo Dust Radiative Transfer Scheme Applied to Active Galactic Nuclei

    Science.gov (United States)

    Heymann, Frank; Siebenmorgen, Ralf

    2012-05-01

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman & Wood method to reduce the calculation time, and the Fleck & Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 μm silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.

  4. Microwave scattering coefficient of snow in MEMLS and DMRT-ML revisited: the relevance of sticky hard spheres and tomography-based estimates of stickiness

    Science.gov (United States)

    Löwe, H.; Picard, G.

    2015-11-01

    The description of snow microstructure in microwave models is often simplified to facilitate electromagnetic calculations. Within dense media radiative transfer (DMRT), the microstructure is commonly described by sticky hard spheres (SHS). An objective mapping of real snow onto SHS is however missing which prevents measured input parameters from being used for DMRT. In contrast, the microwave emission model of layered snowpacks (MEMLS) employs a conceptually different approach, based on the two-point correlation function which is accessible by tomography. Here we show the equivalence of both electromagnetic approaches by reformulating their microstructural models in a common framework. Using analytical results for the two-point correlation function of hard spheres, we show that the scattering coefficient in both models only differs by a factor which is close to unity, weakly dependent on ice volume fraction and independent of other microstructural details. Additionally, our analysis provides an objective retrieval method for the SHS parameters (diameter and stickiness) from tomography images. For a comprehensive data set we demonstrate the variability of stickiness and compare the SHS diameter to the optical equivalent diameter. Our results confirm the necessity of a large grain-size scaling when relating both diameters in the non-sticky case, as previously suggested by several authors.

  5. Community-based capital cash transfer to support orphans in Western Kenya

    DEFF Research Database (Denmark)

    Skovdal, Morten; Mwasiaji, W.; Morrison, J.;

    2008-01-01

    Various types of 'cash transfer' are currently receiving much attention as a way of helping orphans and vulnerable children in Africa. Drawing on a qualitative study conducted in Western Kenya, this paper points to the strategy of community-based capital cash transfers (CCCT) as a particularly...... promising method of supporting orphans and carers. Qualitative data were obtained from 15 orphans and 26 caregivers in Bondo District, Kenya, beneficiaries of a CCCT programme run by a partnership between the community, the government social services department and a foreign donor. Our findings suggest...

  6. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    Directory of Open Access Journals (Sweden)

    Hairong Chu

    2017-01-01

    Full Text Available In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  7. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    Science.gov (United States)

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  8. Calibration transfer based on maximum margin criterion for qualitative analysis using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Hu, Yong; Peng, Silong; Bi, Yiming; Tang, Liang

    2012-12-21

    A traditional multivariate calibration transfer method such as piecewise direct standardization (PDS) is usually applied to quantitative analysis. To make the method apply to qualitative analysis of Fourier Transform Infrared spectroscopy (FTIR), we propose an improved calibration transfer method based on the maximum margin criterion (CTMMC). The new method not only considers the spectral changes under different conditions, but also takes into account the geometric characteristics of spectra from different classes, so the transformed spectra from different classes will be separated as far as possible, and this will improve the performance of the follow-up qualitative analysis. A comparative study is provided between the proposed method CTMMC and other traditional calibration transfer methods on two data sets. Experimental results show that the proposed method can achieve better performance than previous methods.

  9. Risk Contagion in Chinese Banking Industry: A Transfer Entropy-Based Analysis

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2013-12-01

    Full Text Available What is the impact of a bank failure on the whole banking industry? To resolve this issue, the paper develops a transfer entropy-based method to determine the interbank exposure matrix between banks. This method constructs the interbank market structure by calculating the transfer entropy matrix using bank stock price sequences. This paper also evaluates the stability of Chinese banking system by simulating the risk contagion process. This paper contributes to the literature on interbank contagion mainly in two ways: it establishes a convincing connection between interbank market and transfer entropy, and exploits the market information (stock price rather than presumptions to determine the interbank exposure matrix. Second, the empirical analysis provides an in depth understanding of the stability of the current Chinese banking system.

  10. 3-Coil resonance-based wireless power transfer system for implantable electronic

    KAUST Repository

    Yi, Ying

    2013-05-01

    This paper presents a 3-coil resonance-based wireless power transfer (R-WPT) system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. A theoretical analysis and experimental measurements in terms of quality factor Q and power transfer efficiency (PTE), was done. Our proposed 3-coil scheme can achieve a high PTE with a resonance frequency of 2.46 MHz over a transfer distance of up to 30 mm, by using two 15-mm radius implant coils. The achieved experimental PTE is more than 85%at a 5 mm separation distance, and about 50% PTE at a distance of 20 mm. © 2013 IEEE.

  11. A feedback-based inverse heat transfer method to estimate unperturbed temperatures in wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico); Espinosa-Martinez, Erick G. [Retorno Quebec 6, Col. Burgos de Cuernavaca 62580, Temixco, Mor. (Mexico)

    2009-01-15

    This paper presents a feedback-based strategy to solve an inverse heat transfer problem for the estimation of unperturbed formation temperatures (UFT) from measured temperatures in wellbores. The feedback function uses the error between the measured and estimated temperatures during the shut-in process. Thus, an inverse heat transfer problem was solved in this way since the UFT represents the unknown initial conditions and the measured temperatures in the wellbore represents the particular solution of the PDE'S governing the heat transfer process in the formation and in the wellbore system. The performance of the method is illustrated via numerical simulations of two wells: (a) oil well FE-1227 from the Gulf of Mexico maritime zone and (b) well CP-0512 from Cerro Prieto Mexican geothermal field. (author)

  12. VLBI and GPS-based Time-Transfer Using CONT08 Data

    Science.gov (United States)

    Rieck, Carsten; Haas, Ruediger; Jaldehag, Kenneth; Jahansson, Jan

    2010-01-01

    One important prerequisite for geodetic Very Long Baseline Interferometry (VLBI) is the use of frequency standards with excellent short term stability. This makes VLBI stations, which are often co-located with Global Navigation Satellite System (GNSS) receiving stations, interesting for studies of time- and frequency-transfer techniques. We present an assessment of VLBI time-transfer based on the data of the two week long consecutive IVS CONT08 VLBI campaign by using GPS Carrier Phase (GPSCP). CONT08 was a 15 day long campaign in August 2008 that involved eleven VLBI stations on five continents. For CONT08 we estimated the worst case VLBI frequency link stability between the stations of Onsala and Wettzell to 1e-15 at one day. Comparisons with GPSCP confirm the VLBI results. We also identify time-transfer related challenges of the VLBI technique as used today.

  13. Cellular automata-based artificial life system of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Ji-xin Liu

    2016-02-01

    Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.

  14. Phonon Boltzmann equation-based discrete unified gas kinetic scheme for multiscale heat transfer

    CERN Document Server

    Guo, Zhaoli

    2016-01-01

    Numerical prediction of multiscale heat transfer is a challenging problem due to the wide range of time and length scales involved. In this work a discrete unified gas kinetic scheme (DUGKS) is developed for heat transfer in materials with different acoustic thickness based on the phonon Boltzmann equation. With discrete phonon direction, the Boltzmann equation is discretized with a second-order finite-volume formulation, in which the time-step is fully determined by the Courant-Friedrichs-Lewy (CFL) condition. The scheme has the asymptotic preserving (AP) properties for both diffusive and ballistic regimes, and can present accurate solutions in the whole transition regime as well. The DUGKS is a self-adaptive multiscale method for the capturing of local transport process. Numerical tests for both heat transfers with different Knudsen numbers are presented to validate the current method.

  15. Gauss-Seidel Limb Scattering (GSLS radiative transfer model development in support of the Ozone Mapping and Profiler Suite (OMPS Limb Profiler mission

    Directory of Open Access Journals (Sweden)

    R. Loughman

    2014-07-01

    5. Addition of the ability to model multiple aerosol types within the model atmosphere. The model improvements numbered 1–3 above are verified by comparison to previously published results (using standard radiance tables whenever possible, demonstrating significant improvement in cases for which previous versions of the GSLS model performed poorly. The single-scattered radiance errors that were as high as 4% in earlier studies are now generally reduced to 10% to 1–2%. In all cases, the height dependence of the GSLS radiance error is greatly reduced.

  16. Single-scan scatter correction in CBCT by using projection correlation based view interpolation (PC-VI) and a stationary ring-shaped beam stop array (BSA)

    CERN Document Server

    Yan, Hao; Zhang, Yanbo; Zankl, Maria

    2014-01-01

    In the scatter correction for x-ray Cone Beam (CB) CT, the single-scan scheme with moving Beam Stop Array (BSA) offers reliable scatter measurement with low dose, and by using Projection Correlation based View Interpolation (PC-VI), the primary fluence shaded by the moving BSA (during scatter measurement) could be recovered with high accuracy. However, the moving BSA may increase the mechanical burden in real applications. For better practicability, in this paper we proposed a PC-VI based single-scan scheme with a ring-shaped stationary BSA, which serves as a virtual moving BSA during CB scan, so the shaded primary fluence by this stationary BSA can be also well recovered by PC-VI. The principle in designing the whole system is deduced and evaluated. The proposed scheme greatly enhances the practicability of the single-scan scatter correction scheme.

  17. Multi-walled carbon nanotubes based catalyst plasmon resonance light scattering analysis of tetracycline hydrochloride

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It was found that multi-walled carbon nanotubes (MWNTs) could catalyze the redox reaction between chlorauric acid (HAuCl4) and reductive drugs such as tetracycline hydrochloride (TC), producing gold nanoparticles (Au NPs). By measuring the plasmon resonance light scattering (PRLS) signals of the resulting Au NPs, tetracycline hydrochloride can be detected simply and rapidly with a linear range of 4―26 μmol/L, a correlated coefficient (r ) of 0.9955, and a limit of detection (3σ) of 6.0 nmol/L. This method has been successfully applied to the detection of tetracycline hydrochloride tablets in clinic with the recovery of 101.9% and that of fresh urine samples with the recovery of 98.3%―102.0%.

  18. Multi-walled carbon nanotubes based catalyst plasmon resonance light scattering analysis of tetracycline hydrochloride

    Institute of Scientific and Technical Information of China (English)

    HU Po; HUANG ChengZhi; ZHANG Li

    2008-01-01

    It was found that multi-walled carbon nanotubes (MWNTs) could catalyze the redox reaction between chlorauric acid (HAuCl4) and reductive drugs such as tetracycline hydrochloride (TC), producing gold nanoparticles (Au NPs). By measuring the plasmon resonance light scattering (PRLS) signals of the resulting Au NPs, tetracycline hydrochloride can be detected simply and rapidly with a linear range of 4-26 μmol/L, a correlated coefficient (r) of 0.9955, and a limit of detection (3σ) of 6.0 nmol/L. This method has been successfully applied to the detection of tetracycline hydrochloride tablets in clinic with the recovery of 101.9% and that of fresh urine samples with the recovery of 96.3%-102.0%.

  19. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-01

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  20. Multi-Frequency and Multi-Polarization Scattering Analysis for Model-Based Coastal Areas Classification

    Science.gov (United States)

    Buono, A.; Nunziata, F.; Migliaccio, M.; Li, X.; Wei, Y.; Shen, D.

    2016-08-01

    The Yellow River (in Chinese, Huang He) is the most sediment-filled river and the sixth-longest one in the world. The Yellow River is of paramount importance for safe navigation, local economy and environment due to the presence of floods, farms, aquacultures and pollution. Nonetheless, its delta area it is characterized by of several physical phenomena due to both natural and anthropogenic processes: sedimentation, erosion, floods, pollution, etc.In this study, actual partially overlapped L-/C-band FP SAR data collected from Radarsat-2 and ALOS PalSAR-2, respectively, are used to investigate the scattering properties of the Yellow River delta, whose very challenging area is characterized by different scenarios as recorded by ground truth data acquired during an in-situ campaign. 10 different classes have been codified: sea, river, forest, pond, swamp, tide-land, sand, saline soil, rural and industrial urban areas. However, no ground truth data is available in some codified areas.

  1. Scattering cross-section of a transformation optics-based metamaterial cloak

    Energy Technology Data Exchange (ETDEWEB)

    Kundtz, Nathan; Gaultney, Daniel; Smith, David R, E-mail: nbk@duke.ed [Center for Metamaterials and Integrated Plasmonics, Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2010-04-15

    We present experimental quantitative scattering cross-section (SCS) measurements for a metamaterial cloak. The cloak is nearly identical to that reported in 2006; however, quantitative experimental measurements have not yet been reported for such a structure. This cylindrically symmetric cloak is designed to operate at a frequency of 10 GHz and to reduce the SCS of a cylinder 50 mm in diameter. Despite being only a crude approximation of the ideal transformation optical design, the fabricated metamaterial cloak is shown to reduce the SCS of the cylinder over the frequency range from 9.91 to 10.14 GHz, a span of 230 MHz or a 2.3% bandwidth. The maximum reduction in the SCS is 24%. This result provides a useful experimental, quantitative benchmark that can form the basis for comparison of the performances of future improved cloaking structures.

  2. Modeling of fibrin gels based on confocal microscopy and light-scattering data.

    Science.gov (United States)

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-03-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3-4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension D(m) = 1), for the overall system 1, joined at randomly distributed nodal points. The resulting 3D network strikingly resembles real fibrin gels and can be sketched as an assembly of densely packed fractal blobs, i.e., regions of size ξ, where the fiber concentration is higher than average. The blobs are placed at a distance ξ0 between their centers of mass so that they are overlapped by a factor η =ξ/ξ0 and have D(m) ∼1.2-1.6. The in silico gels' structure is quantitatively analyzed by its 3D spatial correlation function g(3D)(r) and corresponding power spectrum I(q) = FFT(3D[g3D(r)]), from which ρ, d, D(m), η, and ξ0 can be extracted. In particular, ξ0 provides an excellent estimate of the gel mesh size. The in silico gels' I(q) compares quite well with real gels' elastic light-scattering measurements. We then derived an analytical form factor for accurately fitting the scattering data, which allowed us to directly recover the gels' structural parameters.

  3. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    Science.gov (United States)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  4. A resonance light scattering sensor based on bioinspired molecularly imprinted polymers for selective detection of papain at trace levels.

    Science.gov (United States)

    Yang, Bin; Lv, Sifang; Chen, Feng; Liu, Chan; Cai, Changqun; Chen, Chunyan; Chen, Xiaoming

    2016-03-17

    A novel resonance light scattering sensor based on the molecularly imprinted polymers (MIPs) technique was developed for specific recognition of the trace quantities of papain (Pap). In this sensor, as the specific recognition element, an excellent biocompatibility of protein-imprinted polymer without fluorescent materials was easily prepared, which based on the effective synthesis of mussel-inspired bionic polydopamine (PDA) on the surface of SiO2 nanoparticles (SiO2@PDA NPs). This recognition element could capture the target protein selectively, which led to the enhancement of resonance light scattering intensity with the increasing of the target protein concentration. The sensor was applied to determine Pap in the linear concentration range of 2.0-20.0 nM with a correlation coefficient r = 0.9966, and a low detection limit of 0.63 nM. The relative standard deviation for 14 nM of Pap was 1.02% (n = 7). In addition, the specificity study confirmed the resultant Pap-imprinted SiO2@PDA NPs had a high-selectivity to Pap, and the practical analytical performance was further examined by evaluating the detection of Pap in the dietary supplement with satisfactory results, with good recoveries of 97.5-105.3%.

  5. Recovering Long-term Aerosol Optical Depth Series (1976–2012 from an Astronomical Potassium-based Resonance Scattering Spectrometer

    Directory of Open Access Journals (Sweden)

    A. Barreto

    2014-04-01

    Full Text Available A 37 year long-term series of monochromatic Aerosol Optical Depth (AOD has been recovered from solar irradiance measurements performed with the solar spectrometer Mark-I, deployed at Izaña mountain since 1976. The instrument operation is based on the method of resonant scattering, which presents a long-term stability and high precision in comparison to other instruments based on interference filters. However, it has been specifically designed as a reference instrument for helioseismology, and its ability to determine AOD from transmitted and scattered monochromatic radiation at 769.9 nm inside a potassium vapor cell in the presence of a permanent magnetic field is evaluated in this paper. Particularly, the use of an exposed mirrors arrangement to collect sunlight as well as the Sun-laboratory velocity dependence of the scattered component introduces some inconveniences when we perform the instrument's calibration. We have solved this problem using a quasi-continuous Langley calibration technique and a refinement procedure to correct for calibration errors as well as for the fictitious diurnal cycle on AOD data. Our results showed that calibration errors associated to the quasi-continuous Langley technique are not dependent on aerosol load, provided aerosol concentration remains constant throughout the day, assuring the validity of this technique for those periods with relatively high aerosol content required to calibrate the scattered component. The comparative analysis between the recovered AOD dataset from Mark-I and collocated quasi-simultaneous data from Cimel AErosol RObotic NETwork (AERONET and Precision Filter Radiometer (PFR instruments showed an absolute mean bias ≤ 0.01 in the 11 year and 12 year comparison, respectively. High correlation coefficients between AERONET/Mark-I and PFR/Mark-I pairs confirmed a very good linear relationship between instruments, proving that recovered AOD data series from Mark-I can be used together PFR

  6. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept

    Science.gov (United States)

    Lee, Ho; Fahimian, Benjamin P.; Xing, Lei

    2017-03-01

    This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method’s performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.

  7. Optical scatter: an overview

    Science.gov (United States)

    Stover, John C.

    1991-12-01

    Optical scatter is a bothersome source of optical noise, limits resolution and reduces system throughput. However, it is also an extremely sensitive metrology tool. It is employed in a wide variety of applications in the optics industry (where direct scatter measurement is of concern) and is becoming a popular indirect measurement in other industries where its measurement in some form is an indicator of another component property - like roughness, contamination or position. This paper presents a brief review of the current state of this technology as it emerges from university and government laboratories into more general industry use. The bidirectional scatter distribution function (or BSDF) has become the common format for expressing scatter data and is now used almost universally. Measurements made at dozens of laboratories around the country cover the spectrum from the uv to the mid- IR. Data analysis of optical component scatter has progressed to the point where a variety of analysis tools are becoming available for discriminating between the various sources of scatter. Work has progressed on the analysis of rough surface scatter and the application of these techniques to some challenging problems outside the optical industry. Scatter metrology is acquiring standards and formal test procedures. The available scatter data base is rapidly expanding as the number and sophistication of measurement facilities increases. Scatter from contaminants is continuing to be a major area of work as scatterometers appear in vacuum chambers at various laboratories across the country. Another area of research driven by space applications is understanding the non-topographic sources of mid-IR scatter that are associated with Beryllium and other materials. The current flurry of work in this growing area of metrology can be expected to continue for several more years and to further expand to applications in other industries.

  8. Energy-based scatter correction for 3-D PET scanners using NaI(T1) detectors.

    Science.gov (United States)

    Adam, L E; Karp, J S; Freifelder, R

    2000-05-01

    Earlier investigations with BGO positron emission tomography (PET) scanners showed that the scatter correction technique based on multiple acquisitions with different energy windows are problematic to implement because of the poor energy resolution of BGO (22%), particularly for whole-body studies. We believe that these methods are likely to work better with NaI(TI) because of the better energy resolution achievable with NaI(TI) detectors (10%). Therefore, we investigate two different choices for the energy window, a low-energy window (LEW) on the Compton spectrum at 400-450 keV, and a high-energy window (HEW) within the photopeak (lower threshold above 511 keV). The results obtained for our three-dimensional (3-D) (septa-less) whole-body scanners [axial field of view (FOV) of 12.8 cm and 25.6 cm] as well as for our 3-D brain scanner (axial FOV of 25.6 cm) show an accurate prediction of the scatter distribution for the estimation of trues method (ETM) using a HEW, leading to a significant reduction of the scatter contamination. The dual-energy window (DEW) technique using a LEW is shown to be intrinsically wrong; in particular, it fails for line source and bar phantom measurements. However, the method is able to produce good results for homogeneous activity distributions. Both methods are easy to implement, are fast, have a low noise propagation, and will be applicable to other PET scanners with good energy resolution and stability, such as hybrid NaI(TI) PET/SPECT dual-head cameras and future PET cameras with GSO or LSO scintillators.

  9. Network-based representation of energy transfer in unsteady separated flow

    Science.gov (United States)

    Nair, Aditya; Taira, Kunihiko

    2015-11-01

    We construct a network-based representation of energy pathways in unsteady separated flows using a POD-Galerkin projection model. In this formulation, we regard the POD modes as the network nodes and the energy transfer between the modes as the network edges. Based on the energy transfer analysis performed by Noack et al. (2008), edge weights are characterized on the interaction graph. As an example, we examine the energy transfer within the two-dimensional incompressible flow over a circular cylinder. In particular, we analyze the energy pathways involved in flow transition from the unstable symmetric steady state to periodic shedding cycle. The growth of perturbation energy over the network is examined to highlight key features of flow physics and to determine how the energy transfer can be influenced. Furthermore, we implement closed-loop flow control on the POD-Galerkin model to alter the energy interaction path and modify the global behavior of the wake dynamics. The insights gained will be used to perform further network analysis on fluid flows with added complexity. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).

  10. Investigating potential transferability of place-based research in land system science

    Science.gov (United States)

    Václavík, Tomáš; Langerwisch, Fanny; Cotter, Marc; Fick, Johanna; Häuser, Inga; Hotes, Stefan; Kamp, Johannes; Settele, Josef; Spangenberg, Joachim H.; Seppelt, Ralf

    2016-09-01

    Much of our knowledge about land use and ecosystem services in interrelated social-ecological systems is derived from place-based research. While local and regional case studies provide valuable insights, it is often unclear how relevant this research is beyond the study areas. Drawing generalized conclusions about practical solutions to land management from local observations and formulating hypotheses applicable to other places in the world requires that we identify patterns of land systems that are similar to those represented by the case study. Here, we utilize the previously developed concept of land system archetypes to investigate potential transferability of research from twelve regional projects implemented in a large joint research framework that focus on issues of sustainable land management across four continents. For each project, we characterize its project archetype, i.e. the unique land system based on a synthesis of more than 30 datasets of land-use intensity, environmental conditions and socioeconomic indicators. We estimate the transferability potential of project research by calculating the statistical similarity of locations across the world to the project archetype, assuming higher transferability potentials in locations with similar land system characteristics. Results show that areas with high transferability potentials are typically clustered around project sites but for some case studies can be found in regions that are geographically distant, especially when values of considered variables are close to the global mean or where the project archetype is driven by large-scale environmental or socioeconomic conditions. Using specific examples from the local case studies, we highlight the merit of our approach and discuss the differences between local realities and information captured in global datasets. The proposed method provides a blueprint for large research programs to assess potential transferability of place-based studies to other

  11. Rapid and sensitive detection of cholera toxin using gold nanoparticle-based simple colorimetric and dynamic light scattering assay.

    Science.gov (United States)

    Khan, Sadia Afrin; DeGrasse, Jeffrey A; Yakes, Betsy Jean; Croley, Timothy R

    2015-09-10

    Herein, a rapid and simple gold nanoparticle based colorimetric and dynamic light scattering (DLS) assay for the sensitive detection of cholera toxin has been developed. The developed assay is based on the distance dependent properties of gold nanoparticles which cause aggregation of antibody-conjugated gold nanoparticles in the presence of cholera toxin resulting discernible color change. This aggregation induced color change caused a red shift in the plasmon band of nanoparticles which was measured by UV-Vis spectroscopy. In addition, we employed DLS assay to monitor the extent of aggregation in the presence of different concentration of cholera toxin. Our assay can visually detect as low as 10 nM of cholera toxin which is lower than the previously reported colorimetric methods. The reported assay is very fast and showed an excellent specificity against other diarrhetic toxins. Moreover, we have demonstrated the feasibility of our method for cholera toxin detection in local lake water.

  12. Study of electromagnetic scattering from randomly rough ocean-like surfaces using integral-equation-based numerical technique

    Science.gov (United States)

    Toporkov, Jakov V.

    A numerical study of electromagnetic scattering by one-dimensional perfectly conducting randomly rough surfaces with an ocean-like Pierson-Moskowitz spectrum is presented. Simulations are based on solving the Magnetic Field Integral Equation (MFIE) using the numerical technique called the Method of Ordered Multiple Interactions (MOMI). The study focuses on the application and validation of this integral equation-based technique to scattering at low grazing angles and considers other aspects of numerical simulations crucial to obtaining correct results in the demanding low grazing angle regime. It was found that when the MFIE propagator matrix is used with zeros on its diagonal (as has often been the practice) the results appear to show an unexpected sensitivity to the sampling interval. This sensitivity is especially pronounced in the case of horizontal polarization and at low grazing angles. We show---both numerically and analytically---that the problem lies not with the particular numerical technique used (MOMI) but rather with how the MFIE is discretized. It is demonstrated that the inclusion of so-called "curvature terms" (terms that arise from a correct discretization procedure and are proportional to the second surface derivative) in the diagonal of the propagator matrix eliminates the problem completely. A criterion for the choice of the sampling interval used in discretizing the MFIE based on both electromagnetic wavelength and the surface spectral cutoff is established. The influence of the surface spectral cutoff value on the results of scattering simulations is investigated and a recommendation for the choice of this spectral cutoff for numerical simulation purposes is developed. Also studied is the applicability of the tapered incident field at low grazing incidence angles. It is found that when a Gaussian-like taper with fixed beam waist is used there is a characteristic pattern (anomalous jump) in the calculated average backscattered cross section at

  13. Impact of Coherent Neutrino Nucleus Scattering on Direct Dark Matter Searches based on CaWO$_4$ Crystals

    CERN Document Server

    Gütlein, A; Bento, A; Bucci, C; Canonica, L; Erb, A; Feilitzsch, F v; Iachellini, N Ferreiro; Gorla, P; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J -C; Loebell, J; Münster, A; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Sivers, M v; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2014-01-01

    Atmospheric and solar neutrinos scattering coherently off target nuclei could be a serious background source for the next generation of direct dark matter searches. We present our studies on the maximal sensitivity on the elastic spin-independent WIMP-nucleon cross section which can be achieved by a background-free experiment based on calcium tungstate as target material. An experiment achieves this maximal sensitivity when one neutrino event is expected for the experiment's energy threshold and exposure. Thus, a first detection of coherent neutrino nucleus scattering (CNNS) could also be in reach of such an experiment, if neutron-like backgrounds are small enough ($\\lesssim 0.1$ events for the respective exposures). Due to the small energies of solar neutrinos, calcium tungstate with its light nuclei oxygen and calcium seems to be well suited for a detection of CNNS. We show that for a counting experiment using only the integral above an energy threshold as well as a Bayesian analysis taking into account spe...

  14. Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method

    Science.gov (United States)

    Lucido, Mario; Panariello, Gaetano; Schettino, Fulvio

    2017-01-01

    The aim of this paper is the introduction of a new analytically regularizing procedure, based on Helmholtz decomposition and Galerkin method, successfully employed to analyze the electromagnetic scattering by zero-thickness perfectly electrically conducting circular disk. After expanding the fields in cylindrical harmonics, the problem is formulated as an electric field integral equation in the vector Hankel transform domain. Assuming as unknowns the surface curl-free and divergence-free contributions of the surface current density, a second-kind Fredholm infinite matrix-operator equation is obtained by means of Galerkin method with expansion functions reconstructing the expected physical behavior of the surface current density and with closed-form spectral domain counterparts, which form a complete set of orthogonal eigenfunctions of the most singular part of the integral operator. The coefficients of the scattering matrix are single improper integrals which can be quickly computed by means of analytical asymptotic acceleration technique. Comparisons with the literature have been provided in order to show the accuracy and efficiency of the presented technique.

  15. Gold Nanorod Based Selective Identification of Escherichia coli Bacteria Using Two-Photon Rayleigh Scattering Spectroscopy.

    Science.gov (United States)

    Singh, Anant K; Senapati, Dulal; Wang, Shuguang; Griffin, Jelani; Neely, Adria; Candice, Perry; Naylor, Khaleah M; Varisli, Birsen; Kalluri, Jhansi Rani; Ray, Paresh Chandra

    2009-07-28

    The presence of E. coli in foodstuffs and drinking water is a chronic worldwide problem. The worldwide food production industry is worth about U.S. $578 billion, and the demand for biosensors to detect pathogens and pollutants in foodstuffs is growing day by day. Driven by the need, we report for the first time that two-photon Rayleigh scattering (TPRS) properties of gold nanorods can be used for rapid, highly sensitive and selective detection of Escherichia coli bacteria from aqueous solution, without any amplification or enrichment in 50 colony forming units (cfu)/mL level with excellent discrimination against any other bacteria. TPRS intensity increases 40 times when anti- E. coli antibody-conjugated nanorods were mixed with various concentrations of Escherichia coli O157:H7 bacterium. The mechanism of TPRS intensity change has been discussed. This bionanotechnology assay could be adapted in studies using antibodies specific for various bacterial pathogens for the detection of a wide variety of bacterial pathogens used as bioterrorism agents in food, clinical samples, and environmental samples.

  16. A Fourier transform method for powder diffraction based on the Debye scattering equation.

    Science.gov (United States)

    Thomas, Noel William

    2011-11-01

    A fast Fourier transform algorithm is introduced into the method recently defined for calculating powder diffraction patterns by means of the Debye scattering equation (DSE) [Thomas (2010). Acta Cryst. A66, 64-77]. For this purpose, conventionally used histograms of interatomic distances are replaced by compound transmittance functions. These may be Fourier transformed to partial diffraction patterns, which sum to give the complete diffraction pattern. They also lead to an alternative analytical expression for the DSE sum, which reveals its convergence behaviour. A means of embedding the DSE approach within the reciprocal-lattice-structure-factor method is indicated, with interpolation methods for deriving the peak profiles of nanocrystalline materials outlined. Efficient calculation of transmittance functions for larger crystallites requires the Patterson group symmetry of the crystals to be taken into account, as shown for α- and β-quartz. The capability of the transmittance functions to accommodate stacking disorder is demonstrated by reference to kaolinite, with a fully analytical treatment of disorder described. Areas of future work brought about by these developments are discussed, specifically the handling of anisotropic atomic displacement parameters, inverse Fourier transformation and the incorporation of instrumental (diffractometer) parameters.

  17. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Mikella E. Hankus

    2011-03-01

    Full Text Available We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs with surface enhanced Raman scattering (SERS. The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT. Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3 × 10−5 M for TNT and a 3 µM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest.

  18. Quantum dynamical simulation of the scattering of Ar from a frozen LiF(100) surface based on a first principles interaction potential

    Energy Technology Data Exchange (ETDEWEB)

    Azuri, Asaf; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovoth (Israel)

    2015-07-07

    In-plane two and three dimensional diffraction patterns are computed for the vertical scattering of an Ar atom from a frozen LiF(100) surface. Suitable collimation of the incoming wavepacket serves to reveal the quantum mechanical diffraction. The interaction potential is based on a fit to an ab initio potential calculated using density functional theory with dispersion corrections. Due to the potential coupling found between the two horizontal surface directions, there are noticeable differences between the quantum angular distributions computed for two and three dimensional scattering. The quantum results are compared to analogous classical Wigner computations on the same surface and with the same conditions. The classical dynamics largely provides the envelope for the quantum diffractive scattering. The classical results also show that the corrugation along the [110] direction of the surface is smaller than along the [100] direction, in qualitative agreement with experimental observations of unimodal and bimodal scattering for the [110] and [100] directions, respectively.

  19. Direct measurement of the spectral transfer function of a laser based anemometer.

    Science.gov (United States)

    Angelou, Nikolas; Mann, Jakob; Sjöholm, Mikael; Courtney, Michael

    2012-03-01

    The effect of a continuous-wave (cw) laser based anemometer's probe volume on the measurement of wind turbulence is studied in this paper. Wind speed time series acquired by both a remote sensing cw laser anemometer, whose line-of-sight was aligned with the wind direction, and by a reference sensor (sonic anemometer) located in the same direction, were used. The spectral transfer function, which describes the attenuation of the power spectral density of the wind speed turbulence, was calculated and found to be in good agreement with the theoretical exponential function, which is based on the properties of the probe volume of a focused Gaussian laser beam. Parameters such as fluctuations of the wind direction, as well as the overestimation of the laser Doppler spectrum threshold, were found to affect the calculation of the spectral transfer function by introducing high frequency noise.

  20. Phase transfer based synthesis and thermophysical properties of Au/Therminol VP-1 nanofluids

    Institute of Scientific and Technical Information of China (English)

    Caixia Wang; Jun Yang; Yulong Ding

    2013-01-01

    This paper reports a phase transfer based wet chemistry method for the preparation of Au/VP-1 nanofluids. The method involves the transfer of AuCl4- ions from water to the base liquid Therminol VP-1, followed by the reduction of AuCl4- ions using NaBH4. The prepared nanofluids are characterized for their thermophysical properties and stability. The results show that the mass concentration of Au particles has a significant effect on the stability of Au/VP-1 nanofluids. An increase in the Au concentration results in a higher extent of agglomeration among the particles, leading to a decrease in the nanofluid stability. The results also show that the introduction of 0.005-0.05%Au nanoparticles enhances the thermal conductivity of the fluids by up to 6.5%, whereas the viscosity increase is minimal.

  1. QoE-based transmission strategies for multi-user wireless information and power transfer

    Directory of Open Access Journals (Sweden)

    Taehun Jung

    2015-12-01

    Full Text Available One solution to the problem of supplying energy to wireless networks is wireless power transfer. One such technology–electromagnetic radiation enabled wireless power transfer–will change traditional wireless networks. In this paper, we investigate a transmission strategy for multi-user wireless information and power transfer. We consider a multi-user multiple-input multiple-output (MIMO channel that includes one base station (BS and two user terminals (UT consisting of one energy harvesting (EH receiver and one information decoding (ID receiver. Our system provides transmission strategies that can be executed and implemented in practical scenarios. The paper then analyzes the rate–energy (R–E pair of our strategies and compares them to those of the theoretical optimal strategy. We furthermore propose a QoE-based mode selection algorithm by mapping the R–E pair to the utility functions.

  2. Hydrogen bonding: a channel for protons to transfer through acid-base pairs.

    Science.gov (United States)

    Wu, Liang; Huang, Chuanhui; Woo, Jung-Je; Wu, Dan; Yun, Sung-Hyun; Seo, Seok-Jun; Xu, Tongwen; Moon, Seung-Hyeon

    2009-09-10

    Different from H(3)O(+) transport as in the vehicle mechanism, protons find another channel to transfer through the poorly hydrophilic interlayers in a hydrated multiphase membrane. This membrane was prepared from poly(phthalazinone ether sulfone kentone) (SPPESK) and H(+)-form perfluorosulfonic resin (FSP), and poorly hydrophilic electrostatically interacted acid-base pairs constitute the interlayer between two hydrophilic phases (FSP and SPPESK). By hydrogen bonds forming and breaking between acid-base pairs and water molecules, protons transport directly through these poorly hydrophilic zones. The multiphase membrane, due to this unique transfer mechanism, exhibits better electrochemical performances during fuel cell tests than those of pure FSP and Nafion-112 membranes: 0.09-0.12 S cm(-1) of proton conductivity at 25 degrees C and 990 mW cm(-2) of the maximum power density at a current density of 2600 mA cm(-2) and a cell voltage of 0.38 V.

  3. Modeling multi-layer effects in passive microwave remote sensing of dry snow using Dense Media Radiative Transfer Theory (DMRT) based on quasicrystalline approximation

    Science.gov (United States)

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.

  4. Clinical validation of surface-enhanced Raman scattering-based immunoassays in the early diagnosis of rheumatoid arthritis.

    Science.gov (United States)

    Chon, Hyangah; Wang, Rui; Lee, Sangyeop; Bang, So-Young; Lee, Hye-Soon; Bae, Sang-Cheol; Hong, Sung Hyun; Yoon, Young Ho; Lim, Dong Woo; deMello, Andrew J; Choo, Jaebum

    2015-11-01

    We assessed the clinical feasibility of conducting immunoassays based on surface-enhanced Raman scattering (SERS) in the early diagnosis of rheumatoid arthritis (RA). An autoantibody against citrullinated peptide (anti-CCP) was used as a biomarker, magnetic beads conjugated with CCP were used as substrates, and the SERS nanotags were comprised of anti-human IgG-conjugated hollow gold nanospheres (HGNs). We were able to determine the anti-CCP serum levels successfully by observing the distinctive Raman intensities corresponding to the SERS nanotags. At high concentrations of anti-CCP (>25 U/mL), the results obtained from the SERS assay confirmed those obtained via an ELISA-based assay. Nevertheless, quantitation via our SERS-based assay is significantly more accurate at low concentrations (25 U/mL) revealed a good correlation between the ELISA and SERS-based assays. However, in the anti-CCP-negative group (n = 43, <25 U/mL), the SERS-based assay was shown to be more reproducible. Accordingly, we suggest that SERS-based assays are novel and potentially useful tools in the early diagnosis of RA.

  5. Tetrastyryl-BODIPY-based dendritic light harvester and estimation of energy transfer efficiency.

    Science.gov (United States)

    Kostereli, Ziya; Ozdemir, Tugba; Buyukcakir, Onur; Akkaya, Engin U

    2012-07-20

    Versatile BODIPY dyes can be transformed into bright near-IR-emitting fluorophores by quadruple styryl substitutions. When clickable functionalities on the styryl moieties are inserted, an efficient synthesis of a light harvester is possible. In addition, clear spectral evidence is presented showing that, in dendritic light harvesters, calculations commonly based on quantum yield or emission lifetime changes of the donor are bound to yield large overestimations of energy transfer efficiency.

  6. Radical zinc-atom-transfer-based carbozincation of haloalkynes with dialkylzincs

    Directory of Open Access Journals (Sweden)

    Fabrice Chemla

    2013-02-01

    Full Text Available The formation of alkylidenezinc carbenoids by 1,4-addition/carbozincation of dialkylzincs or alkyl iodides based on zinc atom radical transfer, in the presence of dimethylzinc with β-(propargyloxyenoates having pendant iodo- and bromoalkynes, is disclosed. Formation of the carbenoid intermediate is fully stereoselective at −30 °C and arises from a formal anti-selective carbozincation reaction. Upon warming, the zinc carbenoid is stereochemically labile and isomerizes to its more stable form.

  7. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    CERN Document Server

    Dong, J W; Gao, C; Wang, L J

    2016-01-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The optimized system achieves a high accuracy of 0.3 ps with a 0.1 ps resolution, and a large dynamic range up to 50 km as well as no dead zone.

  8. Entropy-based analysis and bioinformatics-inspired integration of global economic information transfer.

    Science.gov (United States)

    Kim, Jinkyu; Kim, Gunn; An, Sungbae; Kwon, Young-Kyun; Yoon, Sungroh

    2013-01-01

    The assessment of information transfer in the global economic network helps to understand the current environment and the outlook of an economy. Most approaches on global networks extract information transfer based mainly on a single variable. This paper establishes an entirely new bioinformatics-inspired approach to integrating information transfer derived from multiple variables and develops an international economic network accordingly. In the proposed methodology, we first construct the transfer entropies (TEs) between various intra- and inter-country pairs of economic time series variables, test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a simulation study, the new method is shown to deliver better information integration compared to existing integration methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real world data reveals that Western countries are more influential in the global economic network and that Japan has become less influential following the Asian currency crisis.

  9. Entropy-based analysis and bioinformatics-inspired integration of global economic information transfer.

    Directory of Open Access Journals (Sweden)

    Jinkyu Kim

    Full Text Available The assessment of information transfer in the global economic network helps to understand the current environment and the outlook of an economy. Most approaches on global networks extract information transfer based mainly on a single variable. This paper establishes an entirely new bioinformatics-inspired approach to integrating information transfer derived from multiple variables and develops an international economic network accordingly. In the proposed methodology, we first construct the transfer entropies (TEs between various intra- and inter-country pairs of economic time series variables, test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a simulation study, the new method is shown to deliver better information integration compared to existing integration methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real world data reveals that Western countries are more influential in the global economic network and that Japan has become less influential following the Asian currency crisis.

  10. Photophysics, Dynamics, and Energy Transfer in Rigid Mimics of GFP-based Systems.

    Science.gov (United States)

    Dolgopolova, Ekaterina A; Rice, Allison M; Smith, Mark D; Shustova, Natalia B

    2016-08-01

    Engineering of novel systems capable of efficient energy capture and transfer in a predesigned pathway could potentially boost applications varying from organic photovoltaics to catalytic platforms and have implications for energy sustainability and green chemistry. While light-harvesting properties of different materials have been studied for decades, recently, there has been great progress in the understanding and modeling of short- and long-range energy transfer processes through utilization of metal-organic frameworks (MOFs). In this Forum Article, the recent advances in efficient multiple-chromophore coupling in well-defined metal-organic materials through mimicking a protein system possessing near 100% energy transfer are discussed. Utilization of a MOF as an efficient replica of a protein β-barrel to maintain chromophore emission was also demonstrated. Furthermore, we established a novel dependence of a photophysical response on an electronic configuration for chromophores with the benzylidene imidazolinone core. For that, we prepared 16 chromophores, in which the benzylidene imidazolinone core was modified with electron-donating and electron-withdrawing substituents. To establish the structure-dependent photophysical properties of the prepared chromophores, 11 novel molecular structures were determined by single-crystal X-ray diffraction. These findings allow one to predict the chromophore emission profile inside a rigid framework as a function of the substituent, a key parameter for achieving the spectral overlap necessary to study and increase resonance energy transfer efficiency in MOF-based materials.

  11. Angular Dependence of Spin Transfer Switching in Spin Valve Nanopillar Based Heusler Alloy

    Directory of Open Access Journals (Sweden)

    Pirat Khunkitti

    2016-01-01

    Full Text Available The spin transfer induced magnetization switching in current perpendicular-to-the-plane spin valve nanopillar based Co2FeAl0.5Si0.5 Heusler alloy with varying the initial angles of the magnetization of sensing layer, θ0, was investigated via macrospin simulations. The effects of an in-plane magnetic field, Hi, on the switching behavior were also evaluated. The magnetization switching was excited by spin polarized switching current, Is. The time varying magnetization was computed by the Landau-Lifshitz-Gilbert-Slonczewski equation, while the spin transfer induced noise was examined by using the power spectral density analysis. It was found that θ0 should be narrowly initialized since this configuration produces the small noise during the switching. Also, the negative Is produced more uniform switching than the positive Is due to existence of ferromagnetic exchange coupling. When Hi was presented, the noise generated at low frequencies could be suppressed, and then the switching behavior became more uniform. In addition, the results indicated that the noise configuration could be explained by the physical dynamic of magnetization behavior. Hence, the spin transfer induced noise needs to be minimized in order to improve the performance of spin transfer torque random access memory for high density recording.

  12. Phosphane-Based Cyclodextrins as Mass Transfer Agents and Ligands for Aqueous Organometallic Catalysis

    Directory of Open Access Journals (Sweden)

    Eric Monflier

    2012-11-01

    Full Text Available The replacement of hazardous solvents and the utilization of catalytic processes are two key points of the green chemistry movement, so aqueous organometallic catalytic processes are of great interest in this context. Nevertheless, these processes require not only the use of water-soluble ligands such as phosphanes to solubilise the transition metals in water, but also the use of mass transfer agents to increase the solubility of organic substrates in water. In this context, phosphanes based on a cyclodextrin skeleton are an interesting alternative since these compounds can simultaneously act as mass transfer agents and as coordinating species towards transition metals. For twenty years, various cyclodextrin-functionalized phosphanes have been described in the literature. Nevertheless, while their coordinating properties towards transition metals and their catalytic properties were fully detailed, their mass transfer agent properties were much less discussed. As these mass transfer agent properties are directly linked to the availability of the cyclodextrin cavity, the aim of this review is to demonstrate that the nature of the reaction solvent and the nature of the linker between cyclodextrin and phosphorous moieties can deeply influence the recognition properties. In addition, the impact on the catalytic activity will be also discussed.

  13. Verification measurements of the Karoo Array timing system: a laser radar based time transfer system

    Science.gov (United States)

    Siebrits, R.; Bauermeister, E.; Gamatham, R.; Adams, G.; Malan, J. A.; Burger, J. P.; Kapp, F.; Gibbon, T.; Kriel, H.; Abbott, T.

    2016-02-01

    An optical fiber based laser radar time transfer system has been developed for the 64-dish MeerKAT radiointerferometer telescope project to provide accurate atomic time to the receivers of the telescope system. This time transfer system is called the Karoo Array Timing System (KATS). Calibration of the time transfer system is essential to ensure that time is accurately transferred to the digitisers that form part of the receivers. Frequency domain reflectometry via vector network analysers is also used to verify measurements taken using time interval counters. This paper details the progress that is made in the verification measurements of the system in order to ensure that time, accurate to within a few nanoseconds of the Universal Coordinated Time (UTC, is available at the point where radio signals from astronomical sources are received. This capability enables world class transient and timing studies with a compact radio interferometer, which has inherent advantages over large single dish radio-telescopes, in observing the transient sky.

  14. 基于点散射地震-地质模型的地震散射波成像%Seismic scattering wave imaging based on seismic-earth model of point scattering

    Institute of Scientific and Technical Information of China (English)

    沈鸿雁; 李庆春; 边建民

    2014-01-01

    Seismic reflection imaging result is not satisfactory when the underground geological conditions are much complex,and the conventional reflection seismic exploration would be ineffective.In the paper,one 2D seismic scattering wave imaging method is achieved from the time-distance curve equation of 2D scattering wave based on the seismic-earth model of point scattering,and the seismic scattering wave kinematics law is ana-lyzed.With the processing results of fault model and a set of real seismic data,the characteristics of the seismic scattering wave imaging technique is discussed,and the imaging results of traditional reflection imaging tech-nique are compared to prove the effectiveness of this method.%地下地质条件比较复杂时,地震反射波成像效果不理想,致使常规反射地震勘探难以奏效。本文基于点散射地震-地质模型,推导出2D散射波时距曲线方程,分析了地震散射波的运动学规律;在此基础上,提出了2D地震散射波成像的方法与技术;结合断层模型和一套实际地震资料处理,讨论了散射波地震成像的特点,并与传统反射波成像结果进行了比较,证明了该方法的有效性。

  15. [Team-based community psychiatry: importance of context factors and transferability of evidence from studies].

    Science.gov (United States)

    Weinmann, S; Gühne, U; Kösters, M; Gaebel, W; Becker, T

    2012-07-01

    The German Society for Psychiatry, Psychotherapy and Neurology (DGPPN) guidelines on psychosocial interventions for people with severe mental illness appraise the transferability of results of trials evaluating community-based mental health services to the German situation. This assessment has to draw on research results on factors determining effectiveness. This must be seen against the background of a lack of high-quality trials in Germany. The article discusses system, context and setting factors related to the transfer of evidence on community-based service models from other countries. These issues are discussed on the basis of evidence concerning the models of case management, assertive community treatment and community mental health teams. International differences in study findings are highlighted and the importance of treatment-as-usual in influencing study results is emphasized. The more control services including elements of community-based care there are and the less the pressure to reduce inpatient treatment (threshold to inpatient care admission), the smaller the relative effect sizes of innovative care models will be.In the absence of direct evidence, careful examination of transferability is required before introducing health care models. Research has revealed solid evidence for several factors influencing the effects of innovative community mental health care. Among key factors in the care of people with severe mental illness, home visits and joint team responsibility for both psychiatric and social care were identified. This evidence can facilitate the adaptation of successful mental health care models in Germany.

  16. Software-Based Wireless Power Transfer Platform for Various Power Control Experiments

    Directory of Open Access Journals (Sweden)

    Sun-Han Hwang

    2015-07-01

    Full Text Available In this paper, we present the design and evaluation of a software-based wireless power transfer platform that enables the development of a prototype involving various open- and closed-loop power control functions. Our platform is based on a loosely coupled planar wireless power transfer circuit that uses a class-E power amplifier. In conjunction with this circuit, we implement flexible control functions using a National Instruments Data Acquisition (NI DAQ board and algorithms in the MATLAB/Simulink. To verify the effectiveness of our platform, we conduct two types of power-control experiments: a no-load or metal detection using open-loop power control, and an output voltage regulation for different receiver positions using closed-loop power control. The use of the MATLAB/Simulink software as a part of the planar wireless power transfer platform for power control experiments is shown to serve as a useful and inexpensive alternative to conventional hardware-based platforms.

  17. Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ly, Nguyen Hoang; Joo, Sang-Woo [Soongsil University, Seoul (Korea, Republic of); Cho, Kwang Hwi [School of Systems Biomedical Science, Seoul (Korea, Republic of)

    2015-01-15

    We performed density functional theory (DFT) calculations of 4-aminobenzo-15-crown-5 (4AB15C5) in conjugation with 4-mercaptobenzoic acid (4MCB) with the polarizable continuum model (PCM) while considering the aqueous media. After specific binding of the ferric ion onto the 4MCB.4AB15C5 compound, the Raman frequencies and intensities were estimated by DFT calculations with the PCM. It was predicted that the Raman intensities became significantly increased upon binding of the ferric ion. 4MCB.4AB15C5 could be assembled on gold nanoparticles (AuNPs) via the cleavage of the thiol bond. Colorimetric and UV.Vis absorption spectroscopy indicated that AuNPs became significantly aggregated in the presence of 1.10 mM of the ferric ion. Surface-enhanced Raman scattering (SERS) of 4MCB.4AB15C5 was used to identify the dissimilar spectral behaviors that yield a difference in intensity in the presence of the ferric ion. These changes were not observed in the other biological ions Zn{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+}, NH{sup 4+}, and Co{sup 2+}. This study indicated that 4AB15C5 could be used to detect ferric ions in aqueous AuNP solutions by a combined method of colorimetric, UV.Vis absorption, and Raman spectroscopy. AuNPs.[4MCB. 4AB15C5] can thus be utilized as a selective turn-on sensor to Fe3{sup +} in aqueous solutions above 1 mM.

  18. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT)

    Science.gov (United States)

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.

  19. Femtosecond double-pulse fabrication of hierarchical nanostructures based on electron dynamics control for high surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhang, Ning; Li, Xin; Jiang, Lan; Shi, Xuesong; Li, Cong; Lu, Yongfeng

    2013-09-15

    This Letter presents a simple, efficient approach for high surface-enhanced Raman scattering by one-step controllable fabrication of hierarchical structures (nanoparticles+subwavelength ripples) on silicon substrates in silver nitrate solutions using femtosecond double pulses based on nanoscale electron dynamics control. As the delays of the double pulses increase from 0 fs to 1 ps, the hierarchical structures can be controlled with (1) nanoparticles--the number of nanoparticles in the range of 40-100 nm reaches the maximum at 800 fs and (2) ripples--the subwavelength ripples become intermittent with decreased ablation depths. The redistributed nanoparticles and the modified ripple structures contribute to the maximum enhancement factor of 2.2×10(8) (measured by 10(-6)  M rhodamine 6G solution) at the pulse delay of 800 fs.

  20. Hotspot-engineered quasi-3D metallic network for surface-enhanced Raman scattering based on colloid monolayer templating

    Science.gov (United States)

    Du, Wei; Liu, Long; Gu, Ping; Hu, Jingguo; Zhan, Peng; Liu, Fanxin; Wang, Zhenlin

    2016-09-01

    A hotspot-engineered quasi-3D metallic network with controllable nanogaps is purposed as a high-quality surface-enhanced Raman scattering (SERS) substrate, which is prepared by a combination of non-close-packed colloid monolayer templating and metal physical deposition. The significant SERS effect arises from a strongly enhanced local electric field originating from the ultra-small-gaps between neighboring metal-caps and tiny interstices and between the metal-caps and the metal-bumps on the base, which is recognized by the numerical simulation. A remarkable average SERS enhancement factor of up to 1.5 × 108 and a SERS intensity relative standard deviation (RSD) of 10.5% are achieved by optimizing the nanogap size to sub-10 nm scale, leading to an excellent capability for Raman detection, which is represented by the clearly identified SERS signal of the Rhodamine 6G solution with a fairly low concentration of 1 nM.

  1. High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression

    Directory of Open Access Journals (Sweden)

    Zhenxu Bai

    2016-01-01

    Full Text Available A high beam quality hundred picoseconds single-longitudinal-mode (SLM laser is demonstrated based on stimulated Brillouin scattering (SBS pulse compression and aberration compensation. Flash-lamp-pumped Q-switched Nd3+:Y3Al5O12 (Nd:YAG SLM laser with Cr4+:Y3Al5O12 (Cr4+:YAG as a saturable absorber is used as the seed source. By combining master-oscillator-power-amplifier (MOPA, a compact single-cell with FC-770 as working medium is generated as pulse compressor. The 7.8 ns SLM laser is temporally compressed to about 450 ps, and 200 mJ energy is obtained at 1064 nm without optical damage. The energy stability is better than 3% with beam quality factor M2 less than 1.8, which makes this laser system an attractive source for scientific and industrial applications.

  2. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    Science.gov (United States)

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-28

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  3. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  4. Microstructural investigations of materials for low temperature co-fired ceramic (LTCC) based fuel cell using small angle neutron scattering

    Science.gov (United States)

    Mohamed, A. A.; Ahmad, M. H.; Ibrahim, A.; Azman, A.; Alias, R.; Ambak, Z.; Shapee, S.; Putra, E. G.; Patriati, A.; Sharom, M. A.; Yazid, H.; Mamat, M. R.; Karim, J. A.; Idris, F. M.; Yazid, K.; Zin, M. R.

    2013-06-01

    The concept and the realization fuel cell based on LTCC technology require the investigations of fired LTCC microstructures. The majority of the works involved using small angle neutron scattering studies on the microstructural of LTCC ceramic tape and development of neutron tomography for future tool to visualize channels inside the fired tape. Most SANS characterization were carried out at Smarter SANS instrument at BATAN, Indonesia. Standard sample for resolving tens of micron of object size were measured using simple neutron tomography setup utilizing monochromatic SANS beam at Malaysian Nuclear Agency. The initial microstructural findings indicates that organic additives shape the final microstructural of LTCC after firing with the glassy material possibly fill the space left by the burned organic additives. The tomography results showed that 40 micron size object can be differentiated. The conductor deposited on LTCC is preliminary investigated which will later be used as support for catalyst.

  5. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber.

    Science.gov (United States)

    Xu, Yanping; Ren, Meiqi; Lu, Yang; Lu, Ping; Lu, Ping; Bao, Xiaoyi; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie

    2016-03-15

    We propose a unique multi-parameter optical fiber sensor based on intramodal stimulated Brillouin scattering of higher-order acoustic modes in inverse-parabolic graded-index fiber (IPGIF) without a mode converter. Both optical modes and acoustic modes guided in the IPGIF are characterized and demonstrated theoretically and experimentally. Simulation analysis shows that the multi-peak feature in the Brillouin gain spectrum of the IPGIF is attributed to the couplings between the guided optical mode and the higher-order acoustic modes. Thanks to the distinct acoustic properties of the peaks induced by the sharp refractive index profile of the IPGIF, the different temperature and strain dependences of the first three Brillouin peaks enable the discrimination of the temperature and strain at an accuracy of 0.85°C and 17.4 με.

  6. Large delay tunable slow-light based on high-gain stimulated-Brillouin-scattering amplification in optical fibers

    Institute of Scientific and Technical Information of China (English)

    XING Liang; ZHAN Li; XIA YuXing

    2009-01-01

    Tunable stimulated-Brillouin-scattering (SBS)-based slow-light in optical fibers has potential applications in optical buffering in the future all-optical router commutation systems.However,due to the low SBS threshold and relatively high realistic signal power,the gain in the usual SBS systems is limited at~30 dB.This paper presents a high-gain SBS scheme to realize large delay slow-light,which benefits from avoiding the depletion of the pump power in a short fiber as SBS media.The experiment demon strates that,up to 50 dB non-saturated gain has been observed in the single-stage 591.8 m fiber SBS amplification.The slow-light delay can be obtained 52 ns,and the fractional delay can exceed 1.

  7. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  8. Recovering long-term aerosol optical depth series (1976–2012 from an astronomical potassium-based resonance scattering spectrometer

    Directory of Open Access Journals (Sweden)

    A. Barreto

    2014-12-01

    Full Text Available A 37-year long-term series of monochromatic aerosol optical depth (AOD has been recovered from solar irradiance measurements performed with the solar spectrometer Mark-I, deployed at Izaña mountain since 1976. The instrument operation is based on the method of resonant scattering, which affords wavelength absolute reference and stability (long-term stability and high precision in comparison to other instruments based purely on interference filters. However, it has been specifically designed as a reference instrument for helioseismology, and its ability to determine AOD from transmitted and scattered monochromatic radiation at 769.9 nm inside a potassium vapour cell in the presence of a permanent magnetic field is evaluated in this paper. Particularly, the use of an exposed mirror arrangement to collect sunlight as well as the Sun–laboratory velocity dependence of the scattered component introduces some important inconveniences to overcome when we perform the instrument's calibration. We have solved this problem using a quasi-continuous Langley calibration technique and a refinement procedure to correct for calibration errors as well as for the fictitious diurnal cycle on AOD data. Our results showed similar calibration errors retrieved by means of this quasi-continuous Langley technique applied in different aerosol load events (from 0.04 to 0.3, provided aerosol concentration remains constant throughout the calibration interval. It assures the validity of this technique when it is applied in those periods with relatively high aerosol content. The comparative analysis between the recovered AOD data set from the Mark-I and collocated quasi-simultaneous data from the Cimel-AErosol RObotic NETwork (AERONET and Precision Filter Radiometer (PFR instruments showed an absolute mean bias ≤ 0.01 in the 10- and 12-year comparison, respectively. High correlation coefficients between AERONET and Mark-I and PFR/Mark-I pairs confirmed a very good linear

  9. Critical scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics

    1996-12-31

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.

  10. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering.

    Science.gov (United States)

    Kontro, Inkeri; Svedström, Kirsi; Duša, Filip; Ahvenainen, Patrik; Ruokonen, Suvi-Katriina; Witos, Joanna; Wiedmer, Susanne K

    2016-12-01

    The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes.

  11. Heat Transfer Analysis of an Engine Exhaust-Based Thermoelectric Evaporation System

    Science.gov (United States)

    Chen, Ming; Tan, Gangfeng; Guo, Xuexun; Deng, Yadong; Zhang, Hongguang; Yang, Kai

    2016-03-01

    Engine exhaust can be used by thermoelectric generators for improving thermal efficiency of internal combustion engines. In his paper, the performance of a thermoelectric evaporation system is investigated. First, the thermal characteristics of diesel engines are obtained according to the experiment data. Then, mathematical models are created based on the specified conditions of the coolant cycle and the evaporator geometric parameters. Finally, the heat transfer characteristics and power performance of the thermoelectric evaporation system are estimated, and a comparison with the system in which the heat exchanger operates with all-liquid coolant is investigated. The results show that the overall heat transfer rate of the thermoelectric evaporator system increases with engine power. At the rated condition, the two-phase zone with an area of 0.8689 m2 dominates the evaporator's heat transfer area compared with the preheated zone area of 0.0055 m2, and for the thermoelectric module, the cold-side temperature is stable at 74°C while the hot-side temperature drops from 341.8°C to 304.9°C along the exhaust direction. For certain thermoelectric cells, the temperature difference between the cold side and hot side rises with the engine load, and the temperature difference drops from 266.9°C to 230.6°C along the exhaust direction. For two cold-side systems with the same heat transfer, coolant mass flow rate in the evaporator with two-phase state is much less, and the temperature difference along with equivalent heat transfer length L is significantly larger than in the all-liquid one. At rated power point, power generated by thermoelectric cells in the two-phase evaporation system is 508.4 W, while the other is only 328.8 W.

  12. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    Science.gov (United States)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2016-12-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  13. Solution of scattering from rough surface with a 2D target above it by a hybrid method based on the reciprocity theorem and the forward-backward method

    Institute of Scientific and Technical Information of China (English)

    Wang Yun-Hua; Zhang Yan-Min; He Ming-Xia; Guo Li-Xin

    2008-01-01

    This paper proposes a hybrid method based on the forward-backward method(FBM)and the reciprocity theorem(RT)for evaluating the scattering field from dielectric rough surface with a 2D target above it.Here,the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM,and the scattered field from the isolated target is obtained utilizing the method of moments(MOM).Meanwhile,the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT.Our hybrid method is first validated by available MOM results.Then,the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude,incident and scattering angles are numerically simulated and discussed.This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.

  14. An Evaluation of the Scattering Law for Light and Heavy Water in ENDF-6 Format, Based on Experimental Data and Molecular Dynamics

    Science.gov (United States)

    Márquez Damián, J. I.; Granada, J. R.; Malaspina, D. C.

    2014-04-01

    In this work we present an evaluation in ENDF-6 format of the scattering law for light and heavy water computed using the LEAPR module of NJOY99. The models used in this evaluation are based on experimental data on light water dynamics measured by Novikov, partial structure factors obtained by Soper, and molecular dynamics calculations performed with GROMACS using a reparameterized version of the flexible SPC model by Toukan and Rahman. The models use the Egelstaff-Schofield diffusion equation for translational motion, and a continuous spectrum calculated from the velocity autocorrelation function computed with GROMACS. The scattering law for H in H2O is computed using the incoherent approximation, and the scattering law D and O in D2O are computed using the Sköld approximation for coherent scattering. The calculations show significant improvement over ENDF/B-VI and ENDF/B-VII when compared with measurements of the total cross section, differential scattering experiments and quasi-elastic neutron scattering experiments (QENS).

  15. Sensitisation of Eu(III)- and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads: evidence for parallel energy-transfer and electron-transfer based mechanisms.

    Science.gov (United States)

    Sykes, Daniel; Cankut, Ahmet J; Ali, Noorshida Mohd; Stephenson, Andrew; Spall, Steven J P; Parker, Simon C; Weinstein, Julia A; Ward, Michael D

    2014-05-07

    A series of blue-luminescent Ir(III) complexes with a pendant binding site for lanthanide(III) ions has been synthesized and used to prepare Ir(III)/Ln(III) dyads (Ln = Eu, Tb, Gd). Photophysical studies were used to establish mechanisms of Ir→Ln (Ln = Tb, Eu) energy-transfer. In the Ir/Gd dyads, where direct Ir→Gd energy-transfer is not possible, significant quenching of Ir-based luminescence nonetheless occurred; this can be ascribed to photoinduced electron-transfer from the photo-excited Ir unit (*Ir, (3)MLCT/(3)LC excited state) to the pendant pyrazolyl-pyridine site which becomes a good electron-acceptor when coordinated to an electropositive Gd(III) centre. This electron transfer quenches the Ir-based luminescence, leading to formation of a charge-separated {Ir(4+)}˙-(pyrazolyl-pyridine)˙(-) state, which is short-lived possibly due to fast back electron-transfer (transfer pathway is again operative and leads to sensitisation of Eu-based and Tb-based emission using the energy liberated from the back electron-transfer process. In addition direct Dexter-type Ir→Ln (Ln = Tb, Eu) energy-transfer occurs on a similar timescale, meaning that there are two parallel mechanisms by which excitation energy can be transferred from *Ir to the Eu/Tb centre. Time-resolved luminescence measurements on the sensitised Eu-based emission showed both fast and slow rise-time components, associated with the PET-based and Dexter-based energy-transfer mechanisms respectively. In the Ir/Tb dyads, the Ir→Tb energy-transfer is only just thermodynamically favourable, leading to rapid Tb→Ir thermally-activated back energy-transfer and non-radiative deactivation to an extent that depends on the precise energy gap between the *Ir and Tb-based (5)D4 states. Thus, the sensitised Tb(iii)-based emission is weak and unusually short-lived due to back energy transfer, but nonetheless represents rare examples of Tb(III) sensitisation by a energy donor that could be excited using visible

  16. Direct measurement of the spectral transfer function of a laser based anemometer

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Mann, Jakob; Sjöholm, Mikael

    2012-01-01

    The effect of a continuous-wave (cw) laser based anemometer's probe volume on the measurement of wind turbulence is studied in this paper. Wind speed time series acquired by both a remote sensing cw laser anemometer, whose line-of-sight was aligned with the wind direction, and by a reference sensor...... (sonic anemometer) located in the same direction, were used. The spectral transfer function, which describes the attenuation of the power spectral density of the wind speed turbulence, was calculated and found to be in good agreement with the theoretical exponential function, which is based...

  17. GaN based transfer electron and avalanche transit time devices

    Institute of Scientific and Technical Information of China (English)

    R.K.Parida; A.K.Panda

    2012-01-01

    A new model is developed to study the microwave/mm wave characteristics of two-terminal GaN- based transfer electron devices (TEDs),namely a Gunn diode and an impact avalanche transit time (IMPATT) device.Microwave characteristics such as device efficiency and the microwave power generated are computed and compared at D-band (140 GHz center frequency) to see the potentiality of each device under the same operating conditions.It is seen that GaN-based IMPATT devices surpass the Gunn diode in the said frequency region.

  18. GaN based transfer electron and avalanche transit time devices

    Science.gov (United States)

    Parida, R. K.; Panda, A. K.

    2012-05-01

    A new model is developed to study the microwave/mm wave characteristics of two-terminal GaN-based transfer electron devices (TEDs), namely a Gunn diode and an impact avalanche transit time (IMPATT) device. Microwave characteristics such as device efficiency and the microwave power generated are computed and compared at D-band (140 GHz center frequency) to see the potentiality of each device under the same operating conditions. It is seen that GaN-based IMPATT devices surpass the Gunn diode in the said frequency region.

  19. A fluorescent sensing membrane for iodine based on intramolecular excitation energy transfer of anthryl appended porphyrin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A single anthryl appended meso-tetraphenylporphyrin (TPP) dyad has been synthesized and applied in fluorescence sensing of iodine based on the intramolecular excitation energy transfer. The molecular recognition of the sensor is based on the interaction of iodine with inner anthracene moiety of the dyad, while the signal reporter for the recognition process is the TPP fluorescence quenching. Because the emission spectrum of anthracene is largely overlapped with the Soret band absorption of TPP, intramolecular excitation energy transfer interaction occurs between the donor, anthracene and acceptor, TPP. This energy transfer leads to TPP fluorescence emission by excitation of anthracene. The sensor was constructed by immobilizing the dyad in a plasticized poly(vinyl chloride) (PVC) membrane. The sensing membrane shows higher sensitivity compared to the sensors by using anthracene, TPP, or a mixture of anthracene and TPP as sensing materials. Under the optimum conditions, iodine in a sample solution can be determined from 2.04 to 23.6 mmol·L-1 with a detection limit of 33 nmol·L-1. The sensing membrane shows satisfactory response characteristics including good reproducibility, reversibility and stability, as well as the short response time of less than 60 s. Except for Cr2O72- and MnO4-, other common metal ions and anions in foodstuff do not interfere with iodine determination. The proposed method was applied in the determination of iodine in table salt samples. The results agree well with those obtained by other methods.

  20. A fluorescent sensing membrane for iodine based on intramolecular excitation energy transfer of anthryl appended porphyrin

    Institute of Scientific and Technical Information of China (English)

    LONG LiPing; YOU MingXu; WANG Hao; WANG YongXiang; YANG RongHua

    2009-01-01

    A single anthryl appended meso-tetraphenylporphyrin (TPP) dyed has been synthesized and applied in fluorescence sensing of iodine based on the intramolecular excitation energy transfer. The molecular recognition of the sensor is based on the interaction of iodine with inner anthracene moiety of the dyad, while the signal reporter for the recognition process is the TPP fluorescence quenching. Because the emission spectrum of anthracene is largely overlapped with the Soret band absorption of TPP, in-tremolecular excitation energy transfer interaction occurs between the donor, anthracene and acceptor, TPP. This energy transfer leads to TPP fluorescence emission by excitation of anthracene. The sensor was constructed by immobilizing the dyad in a plasticized poly(vinyl chloride) (PVC) membrane. The sensing membrane shows higher sensitivity compared to the sensors by using anthracene, TPP, or a mixture of anthracene and TPP as sensing materials. Under the optimum conditions, iodine in a sample membrane shows satisfactory response characteristics including good reproducibility, reversibility end stability, as well as the short response time of less than 60 s. Except for Cr2O2-7 and MnO-4, other common metal ions and anions in foodstuff do not interfere with iodine determination. The proposed method was applied in the determination of iodine in table salt samples. The results agree well with those obtained by other methods.