WorldWideScience

Sample records for based thin films

  1. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  2. Crystallization of zirconia based thin films.

    Science.gov (United States)

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C. PMID:26119755

  3. Synthesis and Characterization of Amorphous Carbide-based Thin Films

    OpenAIRE

    Folkenant, Matilda

    2015-01-01

    In this thesis, research on synthesis, structure and characterization of amorphous carbide-based thin films is presented. Crystalline and nanocomposite carbide films can exhibit properties such as high electrical conductivity, high hardness and low friction and wear. These properties are in many cases structure-related, and thus, within this thesis a special focus is put on how the amorphous structure influences the material properties. Thin films within the Zr-Si-C and Cr-C-based systems hav...

  4. Nanocrystalline silicon based thin film solar cells

    Science.gov (United States)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  5. Methods for preparing colloidal nanocrystal-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  6. Integration of ferroelectric thin films into silicon based microsystems

    OpenAIRE

    Kügeler, Carsten

    2006-01-01

    The integration of ferroelectric materials will enhance the functionality of conventional microsystems. The converse piezoelectric effect can be used for the fabrication of integrated actuators, which will help to realize integrated high frequency switches. The aim of this thesis is the integration of ferroelectric thin films into silicon based microsystems. Therefore, PZT thin films have been deposited on platinum coated silicon substrates by chemical solution deposition (CSD) and are charac...

  7. Linear Microbolometric Array Based on VOx Thin Film

    Science.gov (United States)

    Chen, Xi-Qu

    2010-05-01

    In this paper, a linear microbolometric array based on VOx thin film is proposed. The linear microbolometric array is fabricated by using micromachining technology, and its thermo-sensitive VOx thin film has excellent infrared response spectrum and TCR characteristics. Integrated with CMOS circuit, an experimentally prototypical monolithic linear microbolometric array is designed and fabricated. The testing results of the experimental linear array show that the responsivity of linear array can approach 18KV/W and is potential for infrared image systems.

  8. A PC based thin film dosimeter system

    DEFF Research Database (Denmark)

    Miller, A.; Hargittai, P.; Kovacs, A.

    2000-01-01

    A dosimeter system based on the Riso B3 dosimeter film, an office scanner for use with PC and the associated software is presented. The scanned image is analyzed either with standard software (Paint Shop Pro 5 or Excel) functions or with the computer code "Scanalizer" that allows presentation...

  9. Thin metal films in resistivity-based chemical sensing

    OpenAIRE

    Podešva, P. (Pavel); Foret, F

    2013-01-01

    Thin metal layers are widely utilized in a number of modern applications in electronics, optics, chemistry and many other applications. At present the thin layers of metals serve in applications spanning from simple electrodes to surface plasmon resonance (SPR) or giant magnetoresistance (GMR) based sensors [1, 2]. Thin films allow monitoring redox processes in the vicinity of electrodes, adsorption/desorption equilibria of ions, organic compounds, gases, and more recently also interactio...

  10. Thin films

    International Nuclear Information System (INIS)

    This volume is a compilation of papers presented at the 1990 Spring Meeting of the Materials Research Society in a symposium entitled Thin Films: Stresses and Mechanical Properties II. As indicated by the title, the symposium was the second in a series, the first of which was held at the Fall Meeting in 1988. The importance of thin film mechanical properties is now recognized to the extent that basic characterization techniques such as microindentation and thin film stress measurement are performed routinely, and new characterization techniques are being developed on a daily basis. Many of the papers in the symposium dealt with the developments in these characterization methods and their application to a broad spectrum of materials such as compositionally modulated structures, ion implanted materials, optical coatings, and the numerous metals, ceramics and organics used in semiconductor device manufacture

  11. Organic Thin-Film Transistor (OTFT-Based Sensors

    Directory of Open Access Journals (Sweden)

    Daniel Elkington

    2014-04-01

    Full Text Available Organic thin film transistors have been a popular research topic in recent decades and have found applications from flexible displays to disposable sensors. In this review, we present an overview of some notable articles reporting sensing applications for organic transistors with a focus on the most recent publications. In particular, we concentrate on three main types of organic transistor-based sensors: biosensors, pressure sensors and “e-nose”/vapour sensors.

  12. Thin Films

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga

    Maribor: Univerza v Mariboru, 2013. [Nanofuture. Maribor (SI), 03.02.2013-07.02.2013] R&D Projects: GA TA ČR TA01020804 Institutional support: RVO:67985858 Keywords : sol-gel methods * thin films * nannomaterials Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  13. MEMS-based thin-film fuel cells

    Science.gov (United States)

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  14. Tantalum-based thin film coatings for wear resistant arthroprostheses.

    Science.gov (United States)

    Balagna, C; Faga, M G; Spriano, S

    2011-10-01

    Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo. PMID:22400292

  15. Electrochromic Devices Based on Porous Tungsten Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Y. Djaoued

    2012-01-01

    Full Text Available Recent developments in the synthesis of transition metal oxides in the form of porous thin films have opened up opportunities in the construction of electrochromic devices with enhanced properties. In this paper, synthesis, characterization and electrochromic applications of porous WO3 thin films with different nanocrystalline phases, such as hexagonal, monoclinic, and orthorhombic, are presented. Asymmetric electrochromic devices have been constructed based on these porous WO3 thin films. XRD measurements of the intercalation/deintercalation of Li+ into/from the WO3 layer of the device as a function of applied coloration/bleaching voltages show systematic changes in the lattice parameters associated with structural phase transitions in LixWO3. Micro-Raman studies show systematic crystalline phase changes in the spectra of WO3 layers during Li+ ion intercalation and deintercalation, which agree with the XRD data. These devices exhibit interesting optical modulation (up to ~70% due to intercalation/deintercalation of Li ions into/from the WO3 layer of the devices as a function of applied coloration/bleaching voltages. The obtained optical modulation of the electrochromic devices indicates that, they are suitable for applications in electrochromic smart windows.

  16. Bacteria counting method based on polyaniline/bacteria thin film.

    Science.gov (United States)

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. PMID:26921555

  17. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  18. Optical switch based on nanocrystalline VOx thin film

    Science.gov (United States)

    Chen, Xiqu; Dai, Jun

    2009-11-01

    An optical switch is fabricated based on nanocrystalline vanadium oxide (VOx) thin film using micromachining technology. An "on" state with semiconducting phase to an "off" state with metallic phase is controlled by applying a DC power to Aurum electrodes of the optical switch. The optical switching performance for the fabricated device is investigated at optical communication wavelength of 1.55μm. The heater power requires to achieve switching action is about 15mW. The testing results show that the extinction ratio and switching response time are 14dB and 2ms, respectively.

  19. Studies on spintronics-related thin films using synchrotron-radiation-based Mössbauer spectroscopy

    International Nuclear Information System (INIS)

    Applications of synchrotron-radiation-based Mössbauer spectroscopy in the “energy domain” to the studies on magnetism of thin films are introduced on the basis of the experiments recently performed at SPring-8, Japan. The measured samples are spintronics-related thin films, such as Co2MnSn films, layered Fe/Cr films, layered Fe/Fe3O4 films, and Fe4N films. The validity of the energy domain measurements is demonstrated in the light of industrial applications of magnetic thin films.

  20. Large area radiation detectors based on II VI thin films

    Science.gov (United States)

    Quevedo-Lopez, Manuel

    2015-03-01

    The development of low temperature device technologies that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible, low metal content, sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, neutron/gamma-ray/x-ray detectors, etc. In this talk, our efforts to develop novel CMOS integration schemes, circuits, memory, sensors as well as novel contacts, dielectrics and semiconductors for flexible electronics are presented. In particular, in this presentation we discuss fundamental materials properties including crystalline structure, interfacial reactions, doping, etc. defining performance and reliability of II-VI-based radiation sensors. We investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. Besides II-VI materials, we also evaluated several diode materials, Si, CdTe,GaAs, C (diamond), and ZnO, and two neutron converter materials,10B and 6LiF. We determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

  1. Printed organic thin-film transistor-based integrated circuits

    International Nuclear Information System (INIS)

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted. (paper)

  2. Lanthanide oxides thin films for graphene-based devices

    International Nuclear Information System (INIS)

    We study the application potential of gadolinium and dysprosium oxide for graphene-based devices. Lanthanide oxide thin films of defined thickness are deposited in the presence of oxygen as well as nitrogen at 400 C by thermal CVD on an n+-Si(100) substrate. The roughness of the films is determined by atomic force micrographs and the thickness by cross-section scanning electron microscopy. A breakdown field in the range of 0.3 Vnm-1 is determined by I-V measurements for both rare earth oxides. From C-V measurements at 1 MHz the dielectric constant of Gd2O3 (εr=9) and Dy2O3 (εr=8) are extracted. Since the dielectric constant of the rare earth oxides are higher compared to SiO2 we expect an improved screening of charged impurities and therefore an improved performance for graphene-based devices due to the oxides. By using a Fresnel-law based model the contrast of graphene is calculated as a function of wavelength for different oxide thicknesses and compared to optical and atomic force micrographs of exfoliated graphene on Gd2O3 and Dy2O3.

  3. Zro2 Thin-Film-Based Sapphire Fiber Temperature Sensor

    OpenAIRE

    Wang, Jiajun; Lally, Evan M.; Wang, Xiaoping; Gong, Jianmin; Pickrell, Gary R.; Wang, Anbo

    2012-01-01

    A submicrometer-thick zirconium dioxide film was deposited on the tip of a polished C-plane sapphire fiber to fabricate a temperature sensor that can work to an extended temperature range. Zirconium dioxide was selected as the thin film material to fabricate the temperature sensor because it has relatively close thermal expansion to that of sapphire, but more importantly it does not react appreciably with sapphire up to 1800 degrees C. In order to study the properties of the deposited thin fi...

  4. Vacuum ultraviolet photoconductive detector based on pulse laser deposition-grown neodymium fluoride thin film

    International Nuclear Information System (INIS)

    A filterless vacuum ultraviolet photoconductive detector based on neodymium fluoride thin films was demonstrated. The thin films were deposited on quartz glass substrates by the pulsed laser deposition. Crystallinity and photoconductivity were improved by controlling the substrate temperature. The sample grown at 670 K showed the highest photoconductivity. It responded to wavelengths shorter than 180 nm without any filters. - Highlights: ► NdF3 thin films show photoconductivity under vacuum ultraviolet illumination. ► The substrate temperature affected the crystallinity of NdF3 thin films. ► The dark current was 0.63 pA at an applied bias voltage of 300 V

  5. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  6. Carbon nanotube thin film transistors based on aerosol methods

    International Nuclear Information System (INIS)

    We demonstrate a fabrication method for high-performance field-effect transistors (FETs) based on dry-processed random single-walled carbon nanotube networks (CNTNs) deposited at room temperature. This method is an advantageous alternative to solution-processed and direct CVD grown CNTN FETs, which allows using various substrate materials, including heat-intolerant plastic substrates, and enables an efficient, density-controlled, scalable deposition of as-produced single-walled CNTNs on the substrate directly from the aerosol (floating catalyst) synthesis reactor. Two types of thin film transistor (TFT) structures were fabricated to evaluate the FET performance of dry-processed CNTNs: bottom-gate transistors on Si/SiO2 substrates and top-gate transistors on polymer substrates. Devices exhibited on/off ratios up to 105 and field-effect mobilities up to 4 cm2 V-1 s-1. The suppression of hysteresis in the bottom-gate device transfer characteristics by means of thermal treatment in vacuum and passivation by an atomic layer deposited Al2O3 film was investigated. A 32 nm thick Al2O3 layer was found to be able to eliminate the hysteresis.

  7. Thin metal films in resistivity-based chemical sensing

    Czech Academy of Sciences Publication Activity Database

    Podešva, Pavel; Foret, František

    2013-01-01

    Roč. 9, č. 4 (2013), s. 642-652. ISSN 1573-4110 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081715 Keywords : voltohmmetric sensing * chemiresistor * thin metal film * gas sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.194, year: 2013

  8. Optical position detectors based on thin film amorphous silicon

    Science.gov (United States)

    Henry, Jasmine; Livingstone, John

    2001-10-01

    Thin film optical position sensitive detectors (PSDs) based on novel hydrogenated amorphous silicon Schottky barrier (SB) structures are compared in this work. The three structures reported here have been tested under different light sources to measure their linear properties and wavelength response characteristics. The sputtered a-Si sensors were configured as layered structures of platinum, a-Si and indium tin oxide, forming SB-i-n devices and exhibited linear properties similar to multi-layer a-Si p-i- n devices produced by complex chemical vapor deposition procedures, which involve flammable and toxic gases. All structures were test4ed as possible configurations for 2D sensors. The devices were tested under white light, filtered white light and also a red diode laser. Each of the three structures responded quite differently to each of the sources. Results, based on the correlation coefficient, which measures the linearity of output and which has a maximum value of 1, produced r values ranging between 0.992 to 0.999, in the best performances.

  9. Thin-film chemical sensors based on electron tunneling

    Science.gov (United States)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  10. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  11. Perylene Diimide Based ``Nanofabric'' Thin Films for Organic Photovoltaic Cells

    Science.gov (United States)

    Carter, Austin; Park, June Hyoung; Min, Yong; Epstein, Arthur

    2011-03-01

    We report progress in using a perylene diimide (PDI) nanofabric as an effective electron accepting nanostructure for organic photovoltaics (OPV). A key challenge in OPV continues to be the recovery of electrons after charge separation due to the relatively poor mobility of C60 and related materials. A series of PDI compounds and complexes have been synthesized and used to fabricate nanofibers and thin films using solution and vacuum deposition techniques. Overlaping PDI-based nanofibers form a fast electron-transporting ``nanofabric'' that has been characterized (AFM, PL, UV-vis, etc.) and can be blended with electron donating materials. A solution-processible OPV configuration containing a nanofabric heterojunction (FHJ) of poly(3-hexylthiophene) and the PDI nanofabric was investigated. We observed a significant improvement in power-conversion efficiency due in part to expansion of the interfacial area and the presence of high mobility electron pathways to the LiF/Al electrode. This work is supported by the Wright Center for Photovoltaic Innovation and Commercialization, the Institute for Materials Research and the Center for Affordable Nanoengineering of Polymeric Biomedical Devices.

  12. Design of camouflage material for visible and near infrared based on thin film technology

    Science.gov (United States)

    Miao, Lei; Shi, Jia-ming; Zhao, Da-peng; Liu, Hao; Wang, Chao; Xu, Yan-liang

    2015-11-01

    Visible light and near infrared based camouflage materials achieve good stealth under traditional optical detection equipment but its spectral differences with green plants can be taken advantage of by high spectrum based detection technologies. Based on the thin structure of bandpass filter, we designed an optical film with both green and near infrared spectrum. We conducted simulations using transfer matrix methods and optimized the result by simplex methods. The spectral reflectance curve of the proposed thin film matches that of green plants, and experiments show that the proposed thin film achieve good invisibility under visible light and near infrared in a wide viewing angle.

  13. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    Science.gov (United States)

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  14. Thermal conductivity and mechanical properties of AlN-based thin films

    Science.gov (United States)

    Moraes, V.; Riedl, H.; Rachbauer, R.; Kolozsvári, S.; Ikeda, M.; Prochaska, L.; Paschen, S.; Mayrhofer, P. H.

    2016-06-01

    While many research activities concentrate on mechanical properties and thermal stabilities of protective thin films, only little is known about their thermal properties being essential for the thermal management in various industrial applications. Based on the 3ω-method, we show the influence of Al and Cr on the temperature dependent thermal conductivity of single-phase cubic structured TiN and single-phase wurtzite structured AlN thin films, respectively, and compare them with the results obtained for CrN thin films. The dc sputtered AlN thin films revealed a highly c-axis oriented growth for deposition temperatures of 250 to 700 °C. Their thermal conductivity was found to increase strongly with the film thickness, indicating progressing crystallization of the interface near amorphous regions during the sputtering process. For the 940 nm AlN film, we found a lower boundary for the thermal conductivity of 55.3 W m-1 K-1 . By the substitution of only 10 at. % Al with Cr, κ significantly reduces to ˜5.0 W m-1 K-1 , although the single-phase wurtzite structure is maintained. The single-phase face centered cubic TiN and Ti0.36Al0.64N thin films exhibit κ values of 3.1 W m-1 K-1 and 2.5 W m-1 K-1 , respectively, at room temperature. Hence, also here, the substitutional alloying reduces the thermal conductivity, although at a significantly lower level. Single-phase face centered cubic CrN thin films show κ values of 3.6 W m-1 K-1 . For all nitride based thin films investigated, the thermal conductivity slightly increases with increasing temperature between 200 and 330 K. This rather unusual behavior is based on the high defect density (especially point defects) within the thin films prepared by physical vapor deposition.

  15. Thin metal films in resistivity-based chemical sensing

    Czech Academy of Sciences Publication Activity Database

    Podešva, Pavel; Foret, František

    University of Pécs, 2013 - (Kilár, F.; Nagy, L.; Kiss, I.). s. 87-87 ISBN 978-963-642-517-3. [CECE 2013. International Interdisciplinary Meeting on Bioanalysis /10./. 25.04.2013-27.04.2013, Pécs] R&D Projects: GA ČR(CZ) GBP206/12/G014; GA MŠk(CZ) EE2.3.20.0182 Institutional support: RVO:68081715 Keywords : chemiresistor * thin metal films * sensor Subject RIV: CB - Analytical Chemistry, Separation

  16. A Naphthalenediimide-Based Metal-Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties.

    Science.gov (United States)

    Xie, Yi-Xin; Zhao, Wen-Na; Li, Guo-Chang; Liu, Peng-Fei; Han, Lei

    2016-01-19

    A multifunctional metal-organic framework, NBU-3, has been explored as a 2D three-connected network based on a naphthalenediimide-based ligand. The NBU-3 crystals display photochromic properties, and NBU-3 thin films on FTO substrates exhibit electrochromic properties. NBU-3 is the first example of MOF materials containing both photochromic and electrochromic properties, which can be desirable for thin film devices. PMID:26713454

  17. ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing

    International Nuclear Information System (INIS)

    ZnO-based transparent conductive thin films have attracted much attention as a promising substitute material to the currently used indium-tin-oxide thin films in transparent electrode applications. However, the detailed function of the dopants, acting on the electrical and optical properties of ZnO-based transparent conductive thin films, is not clear yet, which has limited the development and practical applications of ZnO transparent conductive thin films. Growth conditions such as substrate type, growth temperature, and ambient atmosphere all play important roles in structural, electrical, and optical properties of films. This paper takes a panoramic view on properties of ZnO thin films and reviews the very recent works on new, efficient, low-temperature, and high-speed deposition technologies. In addition, we highlighted the methods of producing ZnO-based transparent conductive film on flexible substrate, one of the most promising and rapidly emerging research areas. As optimum-processing-parameter conditions are being obtained and their influencing mechanism is becoming clear, we can see that there will be a promising future for ZnO-based transparent conductive films.

  18. Amorphous IZO-based transparent thin film transistors

    International Nuclear Information System (INIS)

    Active electronics implemented on cheap flexible polymer substrates offer the promise of novel display technologies, wearable electronics, large area memory, and a multitude of other, as-yet-unthought-of applications that require low cost and high volume manufacturing. Thin film transistors (TFT's) fabricated on temperature-sensitive plastic substrates at low temperatures are the key to this technology. TFT's that use metal (In, Zn, Sn, Ga) oxide channels offer both high mobility (relative to amorphous Si) and the advantage of optical transparency in the visible regime. We report on the fabrication and performance of amorphous oxide transparent thin film transistors that use dc-magnetron sputter techniques to deposit IZO (In2O3 - 10 wt.% ZnO) at low oxygen potential (0 vol.% O2) for the source, drain, and gate-contact metallization and, at higher oxygen partial pressures (10 vol.% O2), for the semi-conducting channel. The devices in this study were processed at room temperature except for a single 280 oC PECVD deposition step to deposit a 230 nm-thick SiOx gate dielectric. The devices are optically transparent and operate in depletion mode with a threshold voltage of - 5 V, mobility of 15 cm2/V s, an on-off ratio of > 106 and, a sub-threshold slope of 1.2 V/decade. In addition, we report persistent photo-conductivity in the channel region of these devices when exposed to UV illumination

  19. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  20. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  1. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  2. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm2. For very small battery areas, 2, microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li+ ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  3. Nonlinear model-based control of thin-film drying for continuous pharmaceutical manufacturing

    OpenAIRE

    Mesbah, A.; Ford Versypt, AN; Zhu, X.; Braatz, RD

    2014-01-01

    This paper considers the model-based control of composition and thickness for a thin-film drying process used in the continuous manufacturing of pharmaceutical tablets. In this nonlinear distributed dynamical system, a drug formulation solution is coated onto a moving surface and then dried to form thin films of approximately 250 μm in thickness. A dynamic optimizer is designed that employs a first-principles process model to simulate the spatial distribution of solvent concentration in the f...

  4. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bat’hi, S. A. M. [Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University Malaysia IIUM, P.O. Box 10, 50728 Kuala Lumpur, Malaysia su3ad@iium.edu.my (Malaysia)

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  5. Ferroelectric memory element based on thin film field effect transistor

    Science.gov (United States)

    Poghosyan, A. R.; Aghamalyan, N. R.; Elbakyan, E. Y.; Guo, R.; Hovsepyan, R. K.

    2013-09-01

    We report the preparation and investigation of ferroelectric field effect transistors (FET) using ZnO:Li films with high field mobility of the charge carriers as a FET channel and as a ferroelectric active element simultaneously. The possibility for using of ferroelectric FET based on the ZnO:Li films in the ZnO:Li/LaB6 heterostructure as a bi-stable memory element for information recording is shown. The proposed ferroelectric memory structure does not manifest a fatigue after multiple readout of once recorded information.

  6. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  7. Polycrystalline Silicon Films and Thin-Film Transistors Using Solution-Based Metal-Induced Crystallization

    Science.gov (United States)

    Meng, Zhiguo; Zhao, Shuyun; Wu, Chunya; Zhang, Bo; Wong, Man; Kwok, Hoi-Sing

    2006-09-01

    Polycrystalline silicon (poly-Si) films consisting of dish-like and wadding-like domains were obtained with solution-based metal-induced crystallization (SMIC) of amorphous silicon. The Hall mobility of poly-Si was much higher in dish-like domains than in wadding-like domains. Thin-film transistors (TFTs) have been prepared using those two kinds of poly-Si films as the active layer, followed by the phosphosilicate glass (PSG) nickel gettering. The field effect mobility of dish-like domain poly-Si TFTs and wadding-like poly-Si TFTs were 70 ~ 80 cm2/V · s and 40 ~ 50 cm2/V · s, respectively. With a multi-gate structure, the leakage current of poly-Si TFTs was reduced by 1 to 2 orders of magnitude. In addition, the gate-induced drain leakage current (GIDL) and uniformity of the drain current distribution were also improved. P-type TFTs fabricated using SMIC exhibited excellent reliability.

  8. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films.

    Science.gov (United States)

    Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Müller, Johannes; Kersch, Alfred; Schroeder, Uwe; Mikolajick, Thomas; Hwang, Cheol Seong

    2015-03-18

    The recent progress in ferroelectricity and antiferroelectricity in HfO2-based thin films is reported. Most ferroelectric thin film research focuses on perovskite structure materials, such as Pb(Zr,Ti)O3, BaTiO3, and SrBi2Ta2O9, which are considered to be feasible candidate materials for non-volatile semiconductor memory devices. However, these conventional ferroelectrics suffer from various problems including poor Si-compatibility, environmental issues related to Pb, large physical thickness, low resistance to hydrogen, and small bandgap. In 2011, ferroelectricity in Si-doped HfO2 thin films was first reported. Various dopants, such as Si, Zr, Al, Y, Gd, Sr, and La can induce ferro-electricity or antiferroelectricity in thin HfO2 films. They have large remanent polarization of up to 45 μC cm(-2), and their coercive field (≈1-2 MV cm(-1)) is larger than conventional ferroelectric films by approximately one order of magnitude. Furthermore, they can be extremely thin (5 eV). These differences are believed to overcome the barriers of conventional ferroelectrics in memory applications, including ferroelectric field-effect-transistors and three-dimensional capacitors. Moreover, the coupling of electric and thermal properties of the antiferroelectric thin films is expected to be useful for various applications, including energy harvesting/storage, solid-state-cooling, and infrared sensors. PMID:25677113

  9. Physics of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Francombe, M.H. (Dept. of Physics, Univ. of Pittsburgh, Pittsburgh, PA (US)); Vossen, J.L. (John Vossen Associates, Technical and Scientific Consulting, Bridgewater, NJ (US))

    1992-01-01

    This book of Physics of Thin Films emphasizes two main technical themes. The first is essentially an extension of the topical thrust on Thin Films for Advance Electronic Devices, developed in Volume 15 of this series. The second deals primarily with the physical and mechanical behavior of films and the influence of these in relation to various applications. The first of the four articles in this volume, by Neelkanth G. Dhere, discusses high-transition-temperature (T{sub c}) superconducting films. Since their discovery in 1986, both world-wide research activity and published literature on high-T{sub c} oxide films have exploded at a phenomenal rate. In his treatment, the author presents an effective survey of the already vast literature on this subject, discusses the numerous techniques under development for the growth of these perovskite-related complex oxides, and describes their key properties and applications. In particular, factors affecting the epitaxial structure, critical current capability, and microwave conductivity in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O based film compositions are evaluated in relation to their use at 77K. An overview of potential applications in a variety of microwave devices, wide-band optical detectors, SQUID-type high-sensitivity magnetometers, etc., is included.

  10. Physics of thin films

    International Nuclear Information System (INIS)

    This book of Physics of Thin Films emphasizes two main technical themes. The first is essentially an extension of the topical thrust on Thin Films for Advance Electronic Devices, developed in Volume 15 of this series. The second deals primarily with the physical and mechanical behavior of films and the influence of these in relation to various applications. The first of the four articles in this volume, by Neelkanth G. Dhere, discusses high-transition-temperature (Tc) superconducting films. Since their discovery in 1986, both world-wide research activity and published literature on high-Tc oxide films have exploded at a phenomenal rate. In his treatment, the author presents an effective survey of the already vast literature on this subject, discusses the numerous techniques under development for the growth of these perovskite-related complex oxides, and describes their key properties and applications. In particular, factors affecting the epitaxial structure, critical current capability, and microwave conductivity in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O based film compositions are evaluated in relation to their use at 77K. An overview of potential applications in a variety of microwave devices, wide-band optical detectors, SQUID-type high-sensitivity magnetometers, etc., is included

  11. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Cai, SL; Zhang, YB; Pun, AB; He, B; Yang, JH; Toma, FM; Sharp, ID; Yaghi, OM; Fan, J; Zheng, SR; Zhang, WG; Liu, Y

    2014-09-16

    Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagnetic resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.

  13. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    Science.gov (United States)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  14. Functionally graded alumina-based thin film systems

    Science.gov (United States)

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  15. Transparent conductive thin films based on polyaniline nanofibers

    International Nuclear Information System (INIS)

    Conducting polyaniline (PANI) nanofibers doped with sulphuric acid were synthesized by a sonochemical method and dispersed in methyl isobutyl ketone (MIBK) with ultrasonicating. The dispersion was mixed with poly(methyl methacrylate) (PMMA) solution in MIBK and cast to fabricate transparent conductive films with evaporation of the solvent. With only a mixing procedure and without any dispersant added, the PANI nanofibers were well dispersed in the matrix polymer as indicated by scanning electron microscopy (SEM) examination. The conductive composite films showed a percolation threshold at ca. 2.2 wt% owing to the relatively larger one-dimensional aspect ratios of the nanofibers. With loadings of PANI nanofibers in the range of 5-20 wt%, composite coatings in thickness of 1 μm with conductivities of 10-4 to 10-2 S/cm and transmittances higher than 40% in the visible spectrum can be achieved. The composite coatings showed good stability in air and solvents like water and isopropanol. Combined with their relatively easy preparing procedures, the PANI nanofibers based transparent conductive films can be great promise in practical applications

  16. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    Directory of Open Access Journals (Sweden)

    Subramanian B

    2015-10-01

    Full Text Available Balasubramanian Subramanian,1 Sundaram Maruthamuthu,2 Senthilperumal Thanka Rajan1 1Electrochemical Material Science Division, 2Corrosion and Materials Protection Division, Central Electrochemical Research Institute, Karaikudi, India Abstract: Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.% of approximately 1.5 µm and 3 µm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. Keywords: thin film metallic glasses, sputtering, biocompatibility, corrosion, antimicrobial activity

  17. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  18. Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells

    International Nuclear Information System (INIS)

    The semiconductor tungsten disulfide (WS2) exhibits van der Waals bonding, crystallizes in a layer-type structure and is of interest as an absorber layer for thin-film solar cells. In this review article different preparation routes for WS2 thin films, based on magnetron sputtering, are reviewed. Films prepared by direct magnetron sputtering, though exhibiting quite a good structural quality, are not or only poorly photoactive. This can be attributed to the generation of recombination centers, especially sulfur vacancies, during the ion bombardment of the films, due to the low defect-formation energy of tungsten disulfide, an intrinsic property of transition metal dichalcogenides. A promising preparation route, which leads to photoactive WS2 films, is a two-step process, where, in a first step, a sulfur-rich, X-ray amorphous tungsten sulfide is deposited at low substrate temperatures onto a thin metal film (Ni, Co). This film sandwich is after wards annealed in an ampoule in a sulfur atmosphere or in flowing gas with a sufficient H2S partial pressure. From in-situ transmission electron microscopy and energy-dispersive X-ray diffraction, it was found that the WS2 film crystallization with a pronounced (001) texture is closely related to the formation of the liquid (eutectic) metal-sulfur phase. Based on these in-situ investigations the growth of the 2-dimensional WS2 nanosheets from an amorphous WS3+x precursor can be described as an amorphous solid-liquid-crystalline solid process (SLS), somewhat similar to the well-known vapor-liquid-solid (VLS) process for the growth of whiskers or nanorods and nanotubes. Research opportunities, to overcome current limitations for a broad use of WS2 (and MoS2) as thin-film solar cell absorbers are given. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Development of Low-cost Chemical and Micromechanical Sensors Based on Thick-film,Thin-film and Electroplated Films

    Institute of Scientific and Technical Information of China (English)

    Wenmin Qu; Kurt Drescher

    2000-01-01

    Various films could be used as sensing materials or as constructional materials for the fabrication of chemical and micromechanical sensors. To illustrate this potential, three sensors fabricated by very different film deposition technologies are given as examples. The sensors are a humidity sensor in thickfilm technology, a multi-functional gas sensor in thin-film technology and a three-dimensional acceleration sensor chip manufactured by electroplating techniques. Design, fabrication and characterisation of these sensors are described in this paper.

  20. Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film

    Science.gov (United States)

    Haija, Mohammad Abu; Ayesh, Ahmad I.; Ahmed, Sadiqa; Katsiotis, Marios S.

    2016-04-01

    Hydrogen gas sensors based on CuFe2O4 nanoparticle thin films are presented in this work. Each gas sensor was prepared by depositing CuFe2O4 thin film on a glass substrate by dc sputtering inside a high vacuum chamber. Argon inert gas was used to sputter the material from a composite sputtering target. Interdigitated metal electrodes were deposited on top of the thin films by thermal evaporation and shadow masking. The produced sensors were tested against hydrogen, hydrogen sulfide, and ethylene gases where they were found to be selective for hydrogen. The sensitivity of the produced sensors was maximum for hydrogen gas at 50 °C. In addition, the produced sensors exhibit linear response signal for hydrogen gas with concentrations up to 5%. Those sensors have potential to be used for industrial applications because of their low power requirement, functionality at low temperatures, and low production cost.

  1. Airflow energy harvesters of metal-based PZT thin films by self-excited vibration

    International Nuclear Information System (INIS)

    We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s

  2. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    Science.gov (United States)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic

  3. Carbon thin film thermometry

    Science.gov (United States)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  4. Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Besleaga, Cristina; Ion, L. [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, PO Box MG-11, 077125, Magurele-Ilfov (Romania); Ghenescu, Veta [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, PO Box MG-11, 077125, Magurele-Ilfov (Romania); Institute for Space Sciences, 409 Atomistilor Street, PO Box MG-23, 077125, Magurele-Ilfov (Romania); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, 077125, Magurele-Ilfov (Romania); Radu, A. [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, PO Box MG-11, 077125, Magurele-Ilfov (Romania); Arghir, Iulia; Florica, Camelia [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, PO Box MG-11, 077125, Magurele-Ilfov (Romania); National Institute of Materials Physics, 105 bis Atomistilor, PO Box MG.7, 077125 Magurele-Ilfov (Romania); Antohe, S., E-mail: santohe@solid.fizica.unibuc.ro [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, PO Box MG-11, 077125, Magurele-Ilfov (Romania)

    2012-09-01

    Indium zinc oxide (IZO) thin films were obtained using pulsed laser deposition. The samples were prepared by ablation of targets with In concentrations, In/(In + Zn), of 80 at.%, at low substrate temperatures under reactive atmosphere. IZO films were used as transparent electrodes in polymer-based - poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 1:1 blend - photovoltaic cells. The action spectra measurements revealed that IZO-based photovoltaic structures have performances comparable with those using indium-tin-oxide as transparent electrode. - Highlights: Black-Right-Pointing-Pointer Indium zinc oxide films were grown by pulsed laser deposition at room temperature. Black-Right-Pointing-Pointer The films had large free carrier density and reasonably high mobility. Black-Right-Pointing-Pointer These films fit for transparent electrodes in polymer-based photovoltaic cells.

  5. Thin films stress modeling : a novel approach

    OpenAIRE

    Bhattacharyya, A. S.; Ramgiri, Praveen Kumar

    2015-01-01

    A novel approach to estimate the thin film stress was discussed based on surface tension. The effect of temperature and film thickness was studies. The effect of stress on the film mechanical properties was observed.

  6. Development of a fluorescence based flux sensor for thin film growth and nanoparticle deposition

    Science.gov (United States)

    De Roo, Bert; Vervaele, Mattias; Rajala, Markku; Miller, Toni; Guillon, Herve; Seo, Jin Won; Locquet, Jean-Pierre

    2016-07-01

    An optical flux sensor, based on the fluorescence properties of materials and nanoparticles, has been developed to control the deposition rate in thin film deposition systems. Using a simple diode laser and a photomultiplier tube with a light filter, we report the detection of gallium atoms and CdSe-ZnS quantum dots. This setup has a high sensitivity and reproducibility.

  7. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  8. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films

    International Nuclear Information System (INIS)

    Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (108 cm−2), in the case of hydrogen-treated ND seeding particles, to very high values of 1011 cm−2 for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young’s moduli of more than 1000 GPa. (paper)

  9. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  10. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.

    Science.gov (United States)

    Niroui, Farnaz; Wang, Annie I; Sletten, Ellen M; Song, Yi; Kong, Jing; Yablonovitch, Eli; Swager, Timothy M; Lang, Jeffrey H; Bulović, Vladimir

    2015-08-25

    Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications. PMID:26244821

  11. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. E-mail: r-suzuki@aist.go.jp; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T

    2003-11-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO{sub 2} is basically the same as that in bulk amorphous SiO{sub 2} while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy.

  12. A fast infrared detector based on patterned YBCO thin film

    International Nuclear Information System (INIS)

    Detectors for infrared radiation (λ = 0.85 μ m) were made of 50 nm thick YBa2Cu3O7-δ films on LaAlO3 and MgO or 60 nm thick films on NdGaO3. Parallel strips (1 μ m wide by 20 μ m long) were patterned in the films and formed the active device. These devices were designed to detect short infrared laser pulses by electron heating. The detectors were current biased into the resistive and the normal states. The response was studied in direct pulse measurements as well as by amplitude modulation of a laser. The pulse measurements showed a fast picosecond response followed by a slower decay related to phonon escape through the film-substrate interface and heat diffusion in the substrate. The frequency spectra up to 10 GHz showed two slopes with a knee corresponding to the phonon escape time. (author)

  13. Thermally Sprayed Coatings as Interlayers for DLC-Based Thin Films

    Science.gov (United States)

    Bolelli, G.; Gualtieri, E.; Lusvarghi, L.; Pighetti Mantini, F.; Pitacco, F.; Valeri, S.; Volz, H.

    2009-06-01

    This article examines the usefulness of a thick thermally sprayed interlayer (plasma-sprayed Ni-50%Cr, plasma-sprayed Al2O3-13%TiO2, or high-velocity oxygen-fuel-sprayed WC-17%Co) for enhancing the wear resistance and the corrosion protectiveness of a diamond-like carbon (DLC)-based thin film deposited onto a carbon steel substrate. Scratch tests indicate that the Al2O3-13%TiO2 and WC-17%Co interlayers definitely increase the critical spallation load of the thin film, but the Al2O3-13%TiO2 interlayer itself undergoes brittle fracture under high-contact loads. Accordingly, during ball-on-disk tests at room temperature, no cracking and spallation occur in the DLC-based film deposited onto the WC-17%Co interlayer, whereas the one onto the Al2O3-13%TiO2 interlayer is rapidly removed because the interlayer itself is fractured. At 300 °C, by contrast, the DLC-based film on the Al2O3-13%TiO2 interlayer offers the best tribological performance, possibly thanks to the increased toughness of the ceramic interlayer at this temperature. Electrochemical polarization tests indicate that the thin film/WC-Co systems possess the lowest corrosion current density.

  14. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  15. High-energy-density sol-gel thin film based on neat 2-cyanoethyltrimethoxysilane.

    Science.gov (United States)

    Kim, Yunsang; Kathaperumal, Mohanalingam; Smith, O'Neil L; Pan, Ming-Jen; Cai, Ye; Sandhage, Kenneth H; Perry, Joseph W

    2013-03-13

    Hybrid organic-inorganic sol-gel dielectric thin films from a neat 2-cyanoethyltrimethoxysilane (CNETMS) precursor have been fabricated and their permittivity, dielectric strength, and energy density characterized. CNETMS sol-gel films possess compact, polar cyanoethyl groups and exhibit a relative permittivity of 20 at 1 kHz and breakdown strengths ranging from 650 V/μm to 250 V/μm for film thicknesses of 1.3 to 3.5 μm. Capacitors based on CNETMS films exhibit extractable energy densities of 7 J/cm(3) at 300 V/μm, as determined by charge-discharge and polarization-electric field measurements, as well as an energy extraction efficiency of ~91%. The large extractable energy resulting from the linear dielectric polarization behavior suggests that CNETMS films are promising sol-gel materials for pulsed power applications. PMID:23427818

  16. New routes for epitaxial thin films of Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Thersleff, Thomas; Haindl, Silvia; Iida, Kazumasa; Kurth, Fritz; Engelmann, Jan; Kidszun, Martin; Trommler, Sascha; Haenisch, Jens; Kauffmann, Alexander; Reich, Elke; Huehne, Ruben; Pohl, Darius; Hartmann, Andreas; Rellinghaus, Bernd; Schultz, Ludwig; Holzapfel, Bernhard [Institute for Metallic Materials, IFW Dresden (Germany)

    2011-07-01

    With the recent discovery of the Fe-based superconductors, a major question raised is their suitability for applications. Many of the most interesting devices require the controlled production of thin films with clean interfaces. During the laboratory production of Fe-based superconductor thin films, a detailed analysis by TEM of the substrate/film interface revealed evidence for secondary phase formation. On the basis of the observation of the formation of an Fe layer at the substrate/film interface for Co-doped BaFe{sub 2}As{sub 2}, we designed a bonding scheme between Fe and the iron pnictide phase, resulting in a new thin film architecture we have termed the 'Fe/Ba-122' bilayer system. The first results from this system reveal greatly enhanced growth properties and critical current densities with regard to deposition on pure oxide substrates and may provide a key to understanding a more general growth mechanism in this system.

  17. Ferroelectric thin films

    International Nuclear Information System (INIS)

    The area of ferroelectric thin films has expanded rapidly recently with the advent of high quality multi-oxide deposition technology. Advances in thin film quality has resulted in the realization of new technologies not achievable through classical bulk ceramic processing techniques. An example of this progress is the co-processing of ferroelectric thin films with standard semiconductor silicon and GaAs integrated circuits for radiation hard, non-volatile memory products. While the development of this class of products is still embryonic, the forecasted market potential is rapidly out distancing the combined developmental effort. Historically the greatest use of bulk ferroelectric material has been in sensor technology, utilizing the pyroelectric and piezoelectric properties of the material. By comparison, a relatively small development effort has been reported for ferroelectric thin film senor technology, a field sure to provide exciting advances in the future. The papers in this proceedings volume were presented at the first symposium dedicated to the field of ferroelectric thin films held by the Materials Research Society at the Spring 1990 Meeting in San Francisco, CA, April 16-20, 1990. The symposium was designed to provide a comprehensive tutorial covering the newest advances of ferroelectric thin films, including material systems, new deposition techniques and physical, electrical and electro-optic characterization

  18. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2011-01-01

    Full Text Available The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,GaSe2 (CIGS in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS semiconductor material has emerged as one of the most promising candidates for this aim and has attracted considerable interest recently. Significant progress in this relatively new research area has been achieved in the last three years. Over 130 papers on CZTS have been published since 2007, and the majority of them are on the preparation of CZTS thin films by different methods. This paper, will review the wide range of techniques that have been used to deposit CZTS semiconductor thin films. The performance of the thin film solar cells using the CZTS material will also be discussed.

  19. Ti doped ZnO thin film based UV photodetector: Fabrication and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, P.S.; Lee, N.K.; Lee, S.H.; Kang, K.Y. [Convergence of IT Devices Institute, Dong-Eui University, Busan 614-714 (Korea, Republic of); Yu, Y.S., E-mail: ysyu@deu.ac.kr [Convergence of IT Devices Institute, Dong-Eui University, Busan 614-714 (Korea, Republic of); Department of Radiological Science, Dong-Eui University, Busan 614-714 (Korea, Republic of)

    2015-03-05

    Highlights: • UV photoconductive undoped and Ti doped ZnO films were grown by spray pyrolysis. • Ti doping effects on physical and UV detection properties of films were studied. • Samples are polycrystalline with a hexagonal wurtzite crystal structure. • Ti doping increases the optical transmittance and band gap of ZnO film. • Ti doping improves the responsivity of ZnO film based MSM UV photodetector. - Abstract: This paper presents the synthesis of undoped and 2 wt.% titanium (Ti) doped zinc oxide (ZnO) thin films onto glass substrates by chemical spray pyrolysis technique. Both films are deposited at 375 °C substrate temperature. The influence of Ti doping on structural, morphological, optical and UV detection properties of ZnO film was studied. Both films revealed to be of polycrystalline nature with a hexagonal wurtzite structure; and the ZnO film crystallinity improved on Ti doping. Surface morphological observations agreed well with structural results. The Ti incorporation in ZnO thin films were confirmed by an energy dispersive X-ray spectroscopic analysis (EDX). The Ti doping increased the optical transmittance (∼96% at 550) and band gap (∼3.2927 eV) of ZnO thin film. Further, the metal–semiconductor–metal (MSM) planar ultraviolet photodetectors (UV PDs) were fabricated from deposition of tin (Sn) contacts onto undoped and Ti doped ZnO films using e-beam evaporation technique. To investigate UV photodetection properties, the MSM devices were subjected to current–voltage (I–V) characteristics measurements of forward and reverse bias in dark and UV light conditions. The photocurrent and responsivity were measured as a function of optical power density and applied voltage, respectively. The reproducibility of the UV detection performance of MSM devices was ensured by constantly switching UV light on and off at regular time intervals. The Ti doped ZnO film based UV PD demonstrates highest responsivity of about 0.051 A/W upon 2 mW/cm{sup 2

  20. Chemical sensing employingpH sensitive emeraldine base thin film for carbon dioxide detection

    Science.gov (United States)

    Irimia-Vladu, Mihai

    Respiration, or CO2 evolution, is a universal indicator for all the biological activities. Among many potential applications, the measurement of CO2 evolution has been found to be a rapid and nondestructive means for examining microbial contamination of food. The sensor developed in this work consists of a thin emeraldine base-polyaniline (EB-PAni) film. In the first half of the project the effect of carbon dioxide over the conductivity of a composite film of emeraldine base polyaniline and poly(vinyl alcohol) in N-methyl pyrrolidone (NMP) respectively was tested. Argon gas or mixture of argon and 5% CO2 were circulated through the glass cell containing the polymer film deposited on interdigitated electrode and exposed to specific humidity levels fixed by aqueous supersaturated salt solutions. In the second half of the project, a thin emeraldine base film in NMP was directly deposited on interdigitated electrode and the respective sensor inserted in water. Carbonic acid solutions of various pHs were generated by bubbling specific mixtures of carbon dioxide and argon. Conductivity measurements were performed by impedance spectroscopy throughout the project. The sensing mechanism is based on intermediate stages of the transformation of the emeraldine base polyaniline to a conductive salt type (ES-PAni). This EB-ES transformation is the consequence of the exposure of EB-PAni to a protonic acid and is accompanied by a change in the conductivity of the polymer film. Carbonic acid, unfortunately, is a very weak acid and is unable to induce a conductivity change, but the intermediate steps that predetermine this transformation are detected by impedance spectroscopy even when the overall conductivity of the film is unchanged. The composite thin film developed in the first part of the project showed poor sensing characteristics: limited dynamic range, drift, instability and slow time response. However, the sensor design employed in the second half of this work, coupled with

  1. Evaporated VOx Thin Films

    Science.gov (United States)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  2. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

    Directory of Open Access Journals (Sweden)

    Cai Liang

    2014-07-01

    Full Text Available This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

  3. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.

    2014-07-04

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. 2014 by the authors.

  4. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    Science.gov (United States)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-01

    Tungsten oxide (WOx) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10-4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WOx-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 106, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm2/V s was realized. Our results demonstrated that WOx-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  5. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    Science.gov (United States)

    Zhu, Changqiong

    Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from

  6. Color-neutral switchable mirrors based on magnesium-titanium thin films

    Science.gov (United States)

    Bao, S.; Tajima, K.; Yamada, Y.; Okada, M.; Yoshimura, K.

    2007-06-01

    In an investigation of smart-window applications of switchable mirror thin films, Pd-capped magnesium-titanium thin films were prepared by dc magnetron sputtering. Their optical properties, switching durability and crystalline structures have been investigated. We show that Pd/Mg-Ti thin films with specific thicknesses are completely color-neutral in the transparent state and their optical switching properties are suitable for building and automobile window glass applications. The ternary hydrides of Mg(1-x)Tix thin films with Pd overlayers are identified by in situ X-ray diffraction measurements during a hydrogen gas loading of 4%. Pd/Mg(1-x)Tix thin film switchable mirrors show fast hydriding and dehydriding kinetics as compared to a Pd-capped pure Mg thin film due to the catalytic role of doped metallic Ti.

  7. Superconducting detector of IR single-photons based on thin WSi films

    CERN Document Server

    Seleznev, V A; Vakhtomin, Yu B; Morozov, P V; Zolotov, P I; Vasilev, D D; Moiseev, K M; Malevannaya, E I; Smirnov, K V

    2016-01-01

    We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7K ) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors SDE (system detection efficiency) with increasing bias current (Ib) reaches a constant value of ~30% (for 1550 nm) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>=0.6Ic. The minimal dark counts level (DC) made 1 s^-1 limited with ba...

  8. PMMA–SiO{sub 2} hybrid films as gate dielectric for ZnO based thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, M.D. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, Querétaro, Qro. 76001 (Mexico); Quevedo-López, M.A. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75083 (United States); Ramírez-Bon, R., E-mail: rrbon@qro.cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, Querétaro, Qro. 76001 (Mexico)

    2014-08-01

    In this paper we report a low temperature sol–gel deposition process of PMMA–SiO{sub 2} hybrid films, with variable dielectric properties depending on the composition of the precursor solution, for applications to gate dielectric layers in field-effect thin film transistors (FE-TFT). The hybrid layers were processed by a modified sol–gel route using as precursors Tetraethyl orthosilicate (TEOS) and Methyl methacrylate (MMA), and 3-(Trimethoxysilyl)propyl methacrylate (TMSPM) as the coupling agent. Three types of hybrid films were processed with molar ratios of the precursors in the initial solution 1.0: 0.25, 0.50, 0.75: 1.0 for TEOS: TMSPM: MMA, respectively. The hybrid films were deposited by spin coating of the hybrid precursor solutions onto p-type Si (100) substrates and heat-treated at 90 °C for 24 h. The chemical bonding in the hybrid films was analyzed by Fourier Transform Infrared Spectroscopy to confirm their hybrid nature. The refractive index of the hybrid films as a function of the TMSPM coupling agent concentration, were determined from a simultaneous analysis of optical reflectance and spectroscopic ellipsometry experimental data. The PMMA–SiO{sub 2} hybrid films were studied as dielectric films using metal-insulator-metal structures. Capacitance–Voltage (C–V) and current–voltage (I–V) electrical methods were used to extract the dielectric properties of the different hybrid layers. The three types of hybrid films were tested as gate dielectric layers in thin film transistors with structure ZnO/PMMA–SiO{sub 2}/p-Si with a common bottom gate and patterned Al source/drain contacts, with different channel lengths. We analyzed the output electrical responses of the ZnO-based TFTs to determine their performance parameters as a function of channel length and hybrid gate dielectric layer. - Highlights: • PMMA–SiO{sub 2} hybrid films as dielectric material synthesized by sol–gel process at low temperature. • PMMA–SiO{sub 2

  9. PMMA–SiO2 hybrid films as gate dielectric for ZnO based thin-film transistors

    International Nuclear Information System (INIS)

    In this paper we report a low temperature sol–gel deposition process of PMMA–SiO2 hybrid films, with variable dielectric properties depending on the composition of the precursor solution, for applications to gate dielectric layers in field-effect thin film transistors (FE-TFT). The hybrid layers were processed by a modified sol–gel route using as precursors Tetraethyl orthosilicate (TEOS) and Methyl methacrylate (MMA), and 3-(Trimethoxysilyl)propyl methacrylate (TMSPM) as the coupling agent. Three types of hybrid films were processed with molar ratios of the precursors in the initial solution 1.0: 0.25, 0.50, 0.75: 1.0 for TEOS: TMSPM: MMA, respectively. The hybrid films were deposited by spin coating of the hybrid precursor solutions onto p-type Si (100) substrates and heat-treated at 90 °C for 24 h. The chemical bonding in the hybrid films was analyzed by Fourier Transform Infrared Spectroscopy to confirm their hybrid nature. The refractive index of the hybrid films as a function of the TMSPM coupling agent concentration, were determined from a simultaneous analysis of optical reflectance and spectroscopic ellipsometry experimental data. The PMMA–SiO2 hybrid films were studied as dielectric films using metal-insulator-metal structures. Capacitance–Voltage (C–V) and current–voltage (I–V) electrical methods were used to extract the dielectric properties of the different hybrid layers. The three types of hybrid films were tested as gate dielectric layers in thin film transistors with structure ZnO/PMMA–SiO2/p-Si with a common bottom gate and patterned Al source/drain contacts, with different channel lengths. We analyzed the output electrical responses of the ZnO-based TFTs to determine their performance parameters as a function of channel length and hybrid gate dielectric layer. - Highlights: • PMMA–SiO2 hybrid films as dielectric material synthesized by sol–gel process at low temperature. • PMMA–SiO2 films implemented for the first

  10. CuInSe2-Based Thin-Film Photovoltaic Technology in the Gigawatt Production Era

    Science.gov (United States)

    Kushiya, Katsumi

    2012-10-01

    The objective of this paper is to review current status and future prospect on CuInSe2 (CIS)-based thin-film photovoltaic (PV) technology. In CIS-based thin-film PV technology, total-area cell efficiency in a small-area (i.e., smaller than 1 cm2) solar cell with top grids has been over 20%, while aperture-area efficiency in a large-area (i.e., larger than 800 cm2 as definition) monolithic module is approaching to an 18% milestone. However, most of the companies with CIS-based thin-film PV technology still stay at a production research stage, except Solar Frontier K.K. In July, 2011, Solar Frontier has joined the gigawatt (GW) group by starting up their third facility with a 0.9-GW/year production capacity. They are keeping the closest position to pass a 16% module-efficiency border by transferring the developed technologies in the R&D and accelerating the preparation for the future based on the concept of a product life-cycle management.

  11. Fission-fragment detector for DANCE based on thin scintillating films

    Science.gov (United States)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  12. Heterogeneity in Polymer Thin Films

    OpenAIRE

    Kanaya, Toshiji; Inoue, Rintaro; Nishida, Koji

    2011-01-01

    In the last two decades very extensive studies have been performed on polymer thin films to reveal very interesting but unusual properties. One of the most interesting findings is the decrease in glass transition temperature Tg with film thickness in polystyrene (PS) thin film supported on Si substrate. Another interesting finding is apparent negative thermal expansivity in glassy state for thin films below ∼25 nm. In order to understand the unusual properties of polymer thin films we have st...

  13. The fabrication and characterization of nano-SQUIDs based on Nb thin films

    International Nuclear Information System (INIS)

    Highlights: • We developed a nano-SQUID fabrication process starting from a high-quality thin film. • The fabricated nano-SQUIDs exhibited flux modulation depth up to 10.3% at 4.6 K. • The measured data agreed with the Ginzburg–Landau simulation. • We found that a small critical current <50 μA is important for a deep flux modulation. • The suggestions in improving the nano-SQUID’s performance were discussed. - Abstract: SQUIDs with nano-junctions (or nano-SQUIDs) are able to be miniaturized into nanoscale to measure a single Bohr magneton. Here, we reported the development of a fabrication process for Nb (niobium) nano-SQUIDs using the thin film deposition and the electron-beam lithography technology. The developed process started from a high-quality superconducting thin film so that it is compatible with a variety of film growing techniques. The as-fabricated nano-SQUIDs exhibited functional flux modulation depth up to 10.3% at 4.6 K, in agreement with the numerical simulation based on the Ginzburg–Landau equation. By further comparing the results from both experiments and simulations, we found that a small critical current below ∼50 μA played a leading role in order to obtain a decent flux-modulation depth for Nb nano-SQUIDs

  14. The fabrication and characterization of nano-SQUIDs based on Nb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xixi; Liu, Xiaoyu; Wang, Hao; Chen, Lei, E-mail: leichen@mail.sim.ac.cn; Wang, Zhen

    2015-08-15

    Highlights: • We developed a nano-SQUID fabrication process starting from a high-quality thin film. • The fabricated nano-SQUIDs exhibited flux modulation depth up to 10.3% at 4.6 K. • The measured data agreed with the Ginzburg–Landau simulation. • We found that a small critical current <50 μA is important for a deep flux modulation. • The suggestions in improving the nano-SQUID’s performance were discussed. - Abstract: SQUIDs with nano-junctions (or nano-SQUIDs) are able to be miniaturized into nanoscale to measure a single Bohr magneton. Here, we reported the development of a fabrication process for Nb (niobium) nano-SQUIDs using the thin film deposition and the electron-beam lithography technology. The developed process started from a high-quality superconducting thin film so that it is compatible with a variety of film growing techniques. The as-fabricated nano-SQUIDs exhibited functional flux modulation depth up to 10.3% at 4.6 K, in agreement with the numerical simulation based on the Ginzburg–Landau equation. By further comparing the results from both experiments and simulations, we found that a small critical current below ∼50 μA played a leading role in order to obtain a decent flux-modulation depth for Nb nano-SQUIDs.

  15. Ink-jet printing of thin film transistors based on carbon nanotubes

    OpenAIRE

    Li, Jiantong

    2010-01-01

    The outstanding electrical and mechanical properties of single-walled carbon nanotubes (SWCNTs) may offer solutions to realizing high-mobility and high-bendability thin-film transistors (TFTs) for the emerging flexible electronics. This thesis aims to develop low-cost ink-jet printing techniques for high-performance TFTs based on pristine SWCNTs. The main challenge of this work is to suppress the effects of “metallic SWCNT contamination” and improve the device electrical performance. To this ...

  16. Calorimetry of epitaxial thin films.

    Science.gov (United States)

    Cooke, David W; Hellman, F; Groves, J R; Clemens, B M; Moyerman, S; Fullerton, E E

    2011-02-01

    Thin film growth allows for the manipulation of material on the nanoscale, making possible the creation of metastable phases not seen in the bulk. Heat capacity provides a direct way of measuring thermodynamic properties of these new materials, but traditional bulk calorimetric techniques are inappropriate for such a small amount of material. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous membrane platform, limiting the types of films which can be measured. In the current work, ion-beam-assisted deposition is used to provide a biaxially oriented MgO template on a suspended membrane microcalorimeter in order to measure the specific heat of epitaxial thin films. Synchrotron x-ray diffraction showed the biaxial order of the MgO template. X-ray diffraction was also used to prove the high quality of epitaxy of a film grown onto this MgO template. The contribution of the MgO layer to the total heat capacity was measured to be just 6.5% of the total addenda contribution. The heat capacity of a Fe(.49)Rh(.51) film grown epitaxially onto the device was measured, comparing favorably to literature data on bulk crystals. This shows the viability of the MgO∕SiN(x)-membrane-based microcalorimeter as a way of measuring the thermodynamic properties of epitaxial thin films. PMID:21361612

  17. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  18. Thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  19. Thin film temperature sensor

    Science.gov (United States)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  20. Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Costas A. Charitidis

    2013-04-01

    Full Text Available The use of materials with very attractive friction and wear properties has raised much attention in research and industrial sectors. A wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants and microelectromechanical systems (MEMS, require thin films with high mechanical strength, chemical inertness, broad optical transparency, high refractive index, wide bandgap excellent thermal conductivity and extremely low thermal expansion. Carbon based thin films like diamond, diamond-like carbon, carbon nitride and cubic boron nitride known as “super-hard” material have been studied thoroughly as the ideal candidate for tribological applications. In this study, the results of experimental and simulation works on the nanotribological behavior of carbon films and fundamental mechanisms of friction and lubricity at the nano-scale are reviewed. The study is focused on the nanomechanical properties and analysis of the nanoscratching processes at low loads to obtain quantitative analysis, the comparison obtain quantitative analysis, the comparison of their elastic/plastic deformation response, and nanotribological behavior of the a-C, ta-C, a-C:H, CNx, and a-C:M films. For ta-C and a-C:M films new data are presented and discussed.

  1. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    International Nuclear Information System (INIS)

    InxGa1−xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm−3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells

  2. Electrodeposition of In2O3 thin films from a dimethylsulfoxide based electrolytic solution

    International Nuclear Information System (INIS)

    Indium (III) oxide (In2O3) thin films have been obtained after heat treatment of In(OH)3 precursor layers grown by a potential cycling electrodeposition (PCED) method from a dimethylsulfoxide (DMSO) based electrolytic solution onto fluorine-doped tin oxide (FTO) coated glass substrates. X-ray diffraction (XRD) measurements indicate the formation of a polycrystalline In2O3 phase with a cubic structure. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a smooth morphology of the In2O3 thin films after an optimized heat treatment had been developed. The surface composition and chemical state of the semiconductor films was established by X-ray photoelectron spectroscopy analysis. The nature of the semiconductor material, flat band potential and donor density were determined from Mott-Schottky plots. This study reveals that the In2O3 films exhibited n-type conductivity with an average donor density of 2.2 x 1017 cm-3. The optical characteristics were determined through transmittance spectra. The direct and indirect band gap values obtained are according to the accepted values for the In2O3 films of 2.83 and 3.54 eV for the indirect and direct band gap values. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Electrical characterization of graphene oxide and organic dielectric layers based on thin film transistor

    International Nuclear Information System (INIS)

    Highlights: • We report the synthesis of graphene oxide nanosheets and electrical characterization of graphene oxide based thin film transistor. • Graphene oxide (GO) nanosheets were prepared by using modified Hummers method. • We used insulator layers which are polymethylmethacrylate (PMMA) and polyvinyl phenol (PVP) for graphene oxide based thin flim transistor. - Abstract: We have studied the electrical characteristics of graphene oxide based thin flim transistor with the polymer insulators such as polymethyl methacrylate (PMMA) and poly-4-vinylphenol (PVP). Graphene oxide (GO) nanosheets were prepared by using modified Hummers method. The structural properties of GO nanosheets were characterized with Ultraviolet Visible (UV–vis), FT-IR spectroscopy and X-rays diffraction (XRD). Graphene oxide based thin flim transistor (GO-TFT) was prepared by a spin-coating and thermal evaporation technique. The electrical characterization of GO-TFT was analyzed by output and transfer characteristics by using Keithley-4200 semiconductor characterization system (SCS). The graphene oxide based thin flim transistor devices show p-type semiconducting behavior. The mobility, threshold voltage, sub-threshold swing value and Ion/Ioff of GO-TFT were found to be 0.105 cm2 V−1 s−1, −8.7 V, 4.03 V/decade and 10, respectively

  4. Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films

    International Nuclear Information System (INIS)

    Most MEMS devices are currently based on silicon because of the available surface machining technology. However, Si has poor mechanical and tribological properties which makes it difficult to produce high performance Si based MEMS devices that could work reliably, particularly in harsh environments; diamond, as a superhard material with high mechanical strength, exceptional chemical inertness, outstanding thermal stability and superior tribological performance, could be an ideal material for MEMS. A key challenge for diamond MEMS is the integration of diamond films with other materials. Conventional CVD thin film deposition methods produce diamond films with large grains, high internal stress, poor intergranular adhesion and very rough surfaces, and are consequently ill-suited for MEMS applications. Diamond-like films offer an alternative, but are deposited using physical vapour deposition methods unsuitable for conformal deposition on high aspect ratio features, and generally they do not exhibit the outstanding mechanical properties of diamond. We describe a new ultrananocrystalline diamond (UNCD) film technology based on a microwave plasma technique using argon plasma chemistries that produce UNCD films with morphological and mechanical properties that are ideally suited for producing reliable MEMS devices. We have developed lithographic techniques for the fabrication of UNCD MEMS components, including cantilevers and multilevel devices, acting as precursors to micro-bearings and gears, making UNCD a promising material for the development of high performance MEMS devices. We also review the mechanical, tribological, electronic transport, chemical and biocompatibility properties of UNCD, which make this an ideal material for reliable, long endurance MEMS device use. (topical review)

  5. Nanoscale Ta-based diffusion barrier thin-films and their resistance properties

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanoscale Ta-based diffusion barrier thin-films and Cu/barrier/Si multilayer structures were deposited on p-type Si (100) substrates by DC magnetron sputtering. Then the samples were rapidly thermal-annealed (RTA) by tungsten halide lamp. The resistance properties, structure and surface morphology of the thin-films were investigated by four-point probe (FPP) sheet resistance measurement, AFM, SEM-EDS, Alpha-Step IQ Profilers and XRD. The experimental results showed that agglomeration, oxidation and stabilization effects are concurrent. And resistance increasing and decreasing are coexistent after RTA. The formation of high resistance Cu3Si due to inter-diffusion between Cu and Si and more intensive electron scattering resulting from rougher surface caused the sheet resistance to increase abruptly after high temperature RTA.

  6. Schottky solar cells based on CsSnI3 thin-films

    Science.gov (United States)

    Chen, Zhuo; Wang, Jian J.; Ren, Yuhang; Yu, Chonglong; Shum, Kai

    2012-08-01

    We describe a Schottky solar cell based on the perovskite semiconductor CsSnI3 thin-film. The cell consists of a simple layer structure of indium-tin-oxide/CsSnI3/Au/Ti on glass substrate. The measured power conversion efficiency is 0.9%, which is limited by the series and shunt resistance. The influence of light intensity on open-circuit voltage and short-circuit current supports the Schottky solar cell model. Additionally, the spectrally resolved short-circuit current was measured, confirming the unintentionally doped CsSnI3 is of p-type characteristics. The CsSnI3 thin-film was synthesized by alternately depositing layers of SnCl2 and CsI on glass substrate followed by a thermal annealing process.

  7. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  8. Miniaturized and reconfigurable notch antenna based on a BST ferroelectric thin film

    International Nuclear Information System (INIS)

    Highlights: • A miniature and agile antenna based on a BST MIM capacitor is simulated and made. • Mn2+ doped BST thin films are synthesized by chemical deposition and spin coating. • Permittivity and losses of the BST thin film are respectively 225 and 0.02 at 1 GHz. • A miniaturization rate of 70% is obtained with a MIM capacitance of 3.7 pF. • A frequency tunability of 14.5% and a tunability performance of 0.04 are measured. - Abstract: This work deals with the design, realization and characterization of a miniature and frequency agile antenna based on a ferroelectric Ba0,80Sr0,20TiO3 thin film. The notch antenna is loaded with a variable metal/insulator/metal (MIM) capacitor and is achieved by a monolithic method. The MIM capacitance is 3.7 pF, which results in a resonant frequency of 670 MHz compared to 2.25 GHz for the unloaded simulated antenna; the resulting miniaturization rate is 70%. The characterization of the antenna prototype shows a frequency tunable rate of 14.5% under an electric field of 375 kV/cm, with a tunability performance η = 0.04

  9. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaofeng; Wen Dianzhong; Zhuang Cuicui; Cao Jingya; Wang Zhiqiang

    2013-01-01

    A magnetic field sensor based on nano-polysilicon thin films transistors (TFTs) with Hall probes is proposed.The magnetic field sensors are fabricated on 〈100〉 orientation high resistivity (ρ > 500 Ω·cm) silicon substrates by using CMOS technology,which adopt nano-polysilicon thin films with thicknesses of 90 nm and heterojunction interfaces between the nano-polysilicon thin films and the high resistivity silicon substrates as the sensing layers.The experimental results show that when VDS =5.0 V,the magnetic sensitivities of magnetic field sensors based on nano-polysilicon TFTs with length-width ratios of 160 μm/80 μm,320 μm/80 μm and 480 μm/80μm are 78 mV/T,55 mV/T and 34 mV/T,respectively.Under the same conditions,the magnetic sensitivity of the obtained magnetic field sensor is significantly improved in comparison with a Hall magnetic field sensor adopting silicon as the sensing layers.

  10. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Directory of Open Access Journals (Sweden)

    Farzana Aktar Chowdhury

    2015-10-01

    Full Text Available This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP adorned graphene oxide (GO nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  11. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Science.gov (United States)

    Chowdhury, Farzana Aktar; Hossain, Mohammad Abul; Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe; Mohiuddin, Tariq; Boby, Monny Akter; Alam, Mohammad Sahabul

    2015-10-01

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW-1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  12. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Farzana Aktar [Experimental Physics Division, Atomic Energy Centre, 4, Kazi Nazrul Islam Avenue, Dhaka-1000 (Bangladesh); Hossain, Mohammad Abul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Mohiuddin, Tariq [Department of Physics, College of Science, Sultan Qaboos University, Muscat (Oman); Boby, Monny Akter [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Alam, Mohammad Sahabul, E-mail: msalam@ksu.edu.sa [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Department of Chemical Engineering, College of Engineering & King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-10-15

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW{sup −1}. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  13. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    International Nuclear Information System (INIS)

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well

  14. Miniaturized and reconfigurable notch antenna based on a BST ferroelectric thin film

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hung Viet [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); CEA-LETI, Minatec, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Borderon, Caroline [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France); Delaveaud, Christophe [CEA-LETI, Minatec, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Sharaiha, Ala [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Renoud, Raphael [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France); Paven, Claire Le [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Pavy, Sabrina; Nadaud, Kevin; Gundel, Hartmut W. [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France)

    2015-07-15

    Highlights: • A miniature and agile antenna based on a BST MIM capacitor is simulated and made. • Mn{sup 2+} doped BST thin films are synthesized by chemical deposition and spin coating. • Permittivity and losses of the BST thin film are respectively 225 and 0.02 at 1 GHz. • A miniaturization rate of 70% is obtained with a MIM capacitance of 3.7 pF. • A frequency tunability of 14.5% and a tunability performance of 0.04 are measured. - Abstract: This work deals with the design, realization and characterization of a miniature and frequency agile antenna based on a ferroelectric Ba{sub 0,80}Sr{sub 0,20}TiO{sub 3} thin film. The notch antenna is loaded with a variable metal/insulator/metal (MIM) capacitor and is achieved by a monolithic method. The MIM capacitance is 3.7 pF, which results in a resonant frequency of 670 MHz compared to 2.25 GHz for the unloaded simulated antenna; the resulting miniaturization rate is 70%. The characterization of the antenna prototype shows a frequency tunable rate of 14.5% under an electric field of 375 kV/cm, with a tunability performance η = 0.04.

  15. Ultraviolet photosensors based on ZnS thin films

    Directory of Open Access Journals (Sweden)

    Bobrenko Yu. N.

    2009-10-01

    Full Text Available High efficient photodiodes on the base of р-Cu1,8S/n-ZnS/(ZnSх(CdSe1–х/CdSe/Mo-structure with variband interlayer were fabricated. Optimization of this layer thickness was shown to be efficient method of reduction of photosensitivity behind UV region while preserving one in UV region.

  16. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  17. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  18. Ultimate form freedom in thin film solar cells by postmanufacture laser-based processing

    NARCIS (Netherlands)

    Gilot, J.; Emelin, B.; Galagan, Y.; Mandamparambil, R.; Andriessen, R.

    2015-01-01

    Thin film photovoltaics can be beneficial for specific applications like building integrated photovoltaics. To fully exploit the differentiator of form freedom, the interconnections in thin film modules can be tuned depending on the required module output. Traditionally, an alternation of coating an

  19. Thin-film microextraction.

    Science.gov (United States)

    Bruheim, Inge; Liu, Xiaochuan; Pawliszyn, Janusz

    2003-02-15

    The properties of a thin sheet of poly(dimethylsiloxane) (PDMS) membrane as an extraction phase were examined and compared to solid-phase microextraction (SPME) PDMS-coated fiber for application to semivolatile analytes in direct and headspace modes. This new PDMS extraction approach showed much higher extraction rates because of the larger surface area to extraction-phase volume ratio of the thin film. Unlike the coated rod formats of SPME using thick coatings, the high extraction rate of the membrane SPME technique allows larger amounts of analytes to be extracted within a short period of time. Therefore, higher extraction efficiency and sensitivity can be achieved without sacrificing analysis time. In direct membrane SPME extraction, a linear relationship was found between the initial rate of extraction and the surface area of the extraction phase. However, for headspace extraction, the rates were somewhat lower because of the resistance to analyte transport at the sample matrix/headspace barrier. It was found that the effect of this barrier could be reduced by increasing either agitation, temperature, or surface area of the sample matrix/headspace interface. A method for the determination of PAHs in spiked lake water samples was developed based on the membrane PDMS extraction coupled with GC/MS. A linearity of 0.9960 and detection limits in the low-ppt level were found. The reproducibility was found to vary from 2.8% to 10.7%. PMID:12622398

  20. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  1. A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films.

    Science.gov (United States)

    Chen, Songtao; Roh, Kwangdong; Lee, Joonhee; Chong, Wee Kiang; Lu, Yao; Mathews, Nripan; Sum, Tze Chien; Nurmikko, Arto

    2016-04-26

    Perovskite semiconductors are actively investigated for high performance solar cells. Their large optical absorption coefficient and facile solution-based, low-temperature synthesis of thin films make perovskites also a candidate for light-emitting devices across the visible and near-infrared. Specific to their potential as optical gain medium for lasers, early work has demonstrated amplified spontaneous emission and lasing at attractively low thresholds of photoexcitation. Here, we take an important step toward practically usable perovskite lasers where a solution-processed thin film is embedded within a two-dimensional photonic crystal resonator. We demonstrate high degree of temporally and spatially coherent lasing whereby well-defined directional emission is achieved near 788 nm wavelength at optical pumping energy density threshold of 68.5 ± 3.0 μJ/cm(2). The measured power conversion efficiency and differential quantum efficiency of the perovskite photonic crystal laser are 13.8 ± 0.8% and 35.8 ± 5.4%, respectively. Importantly, our approach enables scalability of the thin film lasers to a two-dimensional multielement pixelated array of microlasers which we demonstrate as a proof-of-concept for possible projection display applications. PMID:26997122

  2. Chemical vapor deposition based tungsten disulfide (WS2) thin film transistor

    KAUST Repository

    Hussain, Aftab M.

    2013-04-01

    Tungsten disulfide (WS2) is a layered transition metal dichalcogenide with a reported band gap of 1.8 eV in bulk and 1.32-1.4 eV in its thin film form. 2D atomic layers of metal dichalcogenides have shown changes in conductivity with applied electric field. This makes them an interesting option for channel material in field effect transistors (FETs). Therefore, we show a highly manufacturable chemical vapor deposition (CVD) based simple process to grow WS2 directly on silicon oxide in a furnace and then its transistor action with back gated device with room temperature field effect mobility of 0.1003 cm2/V-s using the Schottky barrier contact model. We also show the semiconducting behavior of this WS2 thin film which is more promising than thermally unstable organic materials for thin film transistor application. Our direct growth method on silicon oxide also holds interesting opportunities for macro-electronics applications. © 2013 IEEE.

  3. Effects of 1-MeV proton irradiation in Hg-based cuprate thin films

    International Nuclear Information System (INIS)

    We have studied the effects of 1-Mev proton irradiation on both superconducting properties and normal state resistivity of high-quality HgBa2CaCu2O6+δ (Hg-1212) and HgBa2Ca2Cu3O8+δ (Hg-1223) thin films. At low proton doses, we observed a linear decrease of the superconducting transition temperature Tc and a linear increase of the extrapolated residual resistivity as proton dose is increased. This is consistent with observations of other high-Tc superconductors while a lower dose threshold for suppressing the superconductivity is found in Hg-1212 and Hg-1223 films. To explain the linear dose dependence of Tc, we propose a model based on the proximity effect. An enhancement of up to 90% in the critical current density at low fields has also been observed in these films at low proton fluences that do not significantly degrade Tc. copyright 1997 The American Physical Society

  4. Molecular group dynamics study on slip flow of thin fluid film based on the Hamaker hypotheses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The thin fluid film was assumed to consist of a number of spherical fluid molecular groups and the attractive forces of molecular group pairs were calculated by the derived equation according to the three Hamaker homogeneous material hypotheses. Regarding each molecular group as a dynamics individual, the simulation method for the shearing motion of multilayer fluid molecular groups, which was initiated by two moving walls, was proposed based on the Verlet velocity iterative algorithm. The simulations reveal that the velocities of fluid molecular groups change about their respective mean velocities within a narrow range in steady state. It is also found that the velocity slips occur at the wall boundary and in a certain number of fluid film layers close to the wall. Because the dimension of molecular group and the number of group layers are not restricted, the hypothetical thickness of fluid film model can be enlarged from nanometer to micron by using the proposed simulation method.

  5. Deoxyribonucleic acid-based hybrid thin films for potential application as high energy density capacitors

    Science.gov (United States)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grabowski, Christopher A.; Terry Murray, P.; Grote, James G.

    2014-03-01

    Deoxyribonucleic acid (DNA) based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA (cetyltrimethylammonium) complex/sol-gel ceramic hybrid thin film devices have demonstrated reproducibility and stability in temperature- and frequency-dependent dielectric properties with dielectric constant k ˜ 5.0 (1 kHz), as well as reliability in DC voltage breakdown measurements, attaining values consistently in the range of 300-350 V/μm. The electrical/dielectric characteristics of DNA-CTMA films with sol-gel-derived ceramics were examined to determine the critical energy storage parameters such as voltage breakdown and dielectric constant.

  6. Investigation of Tribological Behavior of Lanthanum-Based Thin Films Deposited on Sulfonated Self-Assembled Monolayer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    3-mercaptopropyl trimethoxysilane (MPTS) was prepared on glass substrate so as to form a two-dimensional self-assembled monolayer (SAM), and the terminal -SH group in the film was in situ oxidized to -SO3H group to confer good chemisorption ability to the film. Thus, lanthanum-based thin films were deposited on oxidized MPTS-SAM, making use of the chemisorption ability of -SO3H group. Atomic force microscopy (AFM) and X-ray photoelectron spectrometry (XPS) and contact angle measurements were used to characterize the thin films. The tribological properties of the as-prepared thin films sliding against a steel ball were evaluated on a friction and wear tester. Tribological experiment shows that the friction coefficient of glass substrate decreases from 0.8 to 0.08 after the rare earth (RE) self-assembled films (SAMs) are formed on its surface. And the RE self-assembled films have longer wear life (500 sliding passes). It is demonstrated that RE self-assembled film exhibits good wear-resistant property. The marked decrease in friction and the longer wear life of RE films are attributed to the excellent adhesion of the film to the substrate and to the special characteristics of the RE elements. The frictional behaviors of RE thin-films-coated silicon surface were sensitive to the applied load and the sliding velocity of the steel ball.

  7. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  8. Protein Thin Film Machines

    OpenAIRE

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-01-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fuelled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  9. Thin film scintillators

    Science.gov (United States)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  10. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L., E-mail: riikka.puurunen@vtt.fi [VTT Technical Research Centre of Finland, Tietotie 3, 02044 Espoo (Finland)

    2015-01-15

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000 μm) and cavity height (e.g., 200–1000 nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25 000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al{sub 2}O{sub 3} and TiO{sub 2} processes from Me{sub 3}Al/H{sub 2}O and TiCl{sub 4}/H{sub 2}O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes.

  11. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  12. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    Science.gov (United States)

    Zhu, Changqiong

    Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from

  13. Thin film polymeric gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  14. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, H B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  15. Optical absorbers based on strong interference in ultra-thin films

    CERN Document Server

    Kats, Mikhail A

    2016-01-01

    Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using the emerging concepts of plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induc...

  16. Nanocomposite thin films for miniaturized multi-ayer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions

    OpenAIRE

    Schneller, T.; Halder, S; Waser, R.; Pithan, C.; Dornseiffer, J.; Shiratori, Y; Houben, L.; Vyshnavi, N.; Majumber, S.B.

    2011-01-01

    In the present work a flexible approach for the wet chemical processing of nanocomposite functional thin films is demonstrated. Barium titanate (BTO) based nanocomposite thin films for future miniaturized multi-layer ceramic capacitors are chosen as model systems to introduce the concept of "hybrid solutions" which consist of stabile mixtures of reverse micelle derived BTO nanoparticle dispersions and conventional molecular precursor solutions of either the same (BTO:BTO) or a specifically di...

  17. Hydrogenated amorphous silicon sensors based on thin film on ASIC technology

    CERN Document Server

    Despeisse, M; Anelli, G; Jarron, P; Kaplon, J; Rusack, R; Saramad, S; Wyrsch, N

    2006-01-01

    The performance and limitations of a novel detector technology based on the deposition of a thin-film sensor on top of processed integrated circuits have been studied. Hydrogenated amorphous silicon (a-Si:H) films have been deposited on top of CMOS circuits developed for these studies and the resulting "thin-film on ASIC" (TFA) detectors are presented. The leakage current of the a-Si:H sensor at high reverse biases turns out to be an important parameter limiting the performance of a TFA detector. Its detailed study and the pixel segmentation of the detector are presented. High internal electric fields (in the order of 10/sup 4/-10/sup 5/ V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in a-Si:H. Signal induction by generated carrier motion and speed in the a-Si:H sensor have been studied with a 660 nm pulsed laser on a TFA detector based on an ASIC integrating 5 ns peaking time pre- amplifiers. The measurement set-up also permits to study the depletion of the senso...

  18. Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes

    International Nuclear Information System (INIS)

    In the present investigation, we have successfully assembled symmetric supercapacitor device based on cobalt hydroxide [Co(OH)2] thin film electrodes using 1 M KOH as an electrolyte. Initially, potentiodynamic electrodeposition method is employed for the preparation of Co(OH)2 thin films onto stainless steel substrate. These films are characterized for structural and morphological elucidations using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD reveals formation of β-Co(OH)2 material with hexagonal crystal structure. The SEM images show formation of nanoflakes like microstructure with average flake width 100 nm. Electrochemical characterizations of Co(OH)2 based symmetric supercapacitor cell are carried out using cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy (EIS) techniques. In the performance evaluation the maximum values of specific capacitance, specific energy and specific power are encountered as 44 F g−1, 3.96 Wh kg−1 and 42 kW kg−1. The value of equivalent series resistance (ESR) is estimated as 2.3 Ω using EIS

  19. Assessment of adhesion between thin film and silicon based on a scratch test

    International Nuclear Information System (INIS)

    Thin film coatings are commonly utilized to prevent wear, modify surface properties, and manipulate the frictional behavior of various mechanical systems. The behavior of a coating has a direct effect on the life as well as performance of the system. However, the coating itself is subject to damage, and the quality of the coating is related to the adhesion characteristics between the coating and the substrate. Therefore, a quantitative assessment of the adhesion properties of thin film is important to guarantee the reliability of not only the thin film but also the mechanical system. In this study, ramp loading scratch tests were performed to assess the adhesion characteristics of Ag and ZnO thin films coated on a silicon wafer. Silver thin film, deposited by sputtering, and ZnO thin film, fabricated by a sol-gel method, were used as scratch specimens. Scratch tests using a diamond tip were performed with a continuously increasing normal force. During the scratch test, the normal and frictional forces were monitored to assess the integrity of the film. The Benjamin and Weaver model commonly used for obtaining the horizontal force during the scratching of films coated on a substrate showed large discrepancies with the experimental results. In this work, the model was modified with a plowing term to minimize the difference between the experimental and theoretical results. Using the modified model, the experimental results could be predicted with an accuracy of about 10%

  20. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    Science.gov (United States)

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-08-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing.

  1. Ultrastrong, Chemically Resistant Reduced Graphene Oxide-based Multilayer Thin Films with Damage Detection Capability.

    Science.gov (United States)

    Guin, Tyler; Stevens, Bart; Krecker, Michelle; D'Angelo, John; Humood, Mohammad; Song, Yixuan; Smith, Ryan; Polycarpou, Andreas; Grunlan, Jaime C

    2016-03-01

    Multilayer thin films of graphene oxide (GO) and poly(vinylamine) (PVAm) were deposited via layer-by-layer assembly. Poly(vinylamine) pH was used to tailor film thickness and GO layer spacing. Graphene oxide concentration in the films was controlled through simple pH adjustment. Thermal reduction of the PVAm/GO multilayer thin films rendered them electrically conductive, which could be further tailored with PVAm pH. These reduced films also exhibited exceptionally high elastic modulus of 30 GPa and hardness of 1.8 GPa, which are among the highest of any graphene-filled polymer composite values ever reported. Cross-linking of these films with glutaraldehyde improved their chemical resistance, allowing them to survive strongly acidic or salty solutions. Additionally, scratches in the films can be instantaneously detected by a simple electrical resistance measurement. These films are promising for a variety of packaging and electronic applications. PMID:26885558

  2. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  3. Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid

    International Nuclear Information System (INIS)

    Preparation of superhydrophobic silica-based thin film by adjusting different concentration of reverse (W/O) emulsion of resorcinol formaldehyde resin (re-RF) which was hybridised with silica sol has been developed. The hybrid films were coated by the mixing solution which included precursor solution (sol-gel process) and re-RF (sol-gel process). Rough surfaces were obtained by removing the organic polymer at high temperature and then the hydrophobic groups bonded onto the films were obtained by the reaction with trimethylchlorosilane (TMCS). Characteristic properties of the as-prepared cross-section and surface of the films were analyzed by scanning electron microscopy (SEM) and atom force microscopy (AFM). The experimental parameters are mainly varied the weight ratio of re-RF to silica sol from 0.2 to 4.0. The result showed that the contact angle of the modified silica film was greater than 160o when the weight ratio of re-RF to silica sol was 2.0.

  4. A Review on Development Prospect of CZTS Based Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiangbo Song

    2014-01-01

    Full Text Available Cu2ZnSnS4 is considered as the ideal absorption layer material in next generation thin film solar cells due to the abundant component elements in the crust being nontoxic and environmentally friendly. This paper summerized the development situation of Cu2ZnSnS4 thin film solar cells and the manufacturing technologies, as well as problems in the manufacturing process. The difficulties for the raw material’s preparation, the manufacturing process, and the manufacturing equipment were illustrated and discussed. At last, the development prospect of Cu2ZnSnS4 thin film solar cells was commented.

  5. Thin-film resistance heater based on Ni-Cr system

    International Nuclear Information System (INIS)

    The paper presents the data on structure, electric resistance and temperature coefficient of resistance of the Ni-Cr system thin films. The phase composition of thin films containing 80% Ni + 20% Cr is shown to remain unchanged with varying the annealing temperature from 500 °C to 700 °C. The Cr and Ni phases are detected in all the samples and there occurs oriented grain growth with raising the annealing temperature. It is found that as regards the thin films of the 80% Ni + 20% Cr composition there is an area of thicknesses where the temperature coefficient of resistance is actually equal to zero. (authors).

  6. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp; Miyokawa, Norihiko; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-01-15

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  7. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    Science.gov (United States)

    Kim, Junghwan; Miyokawa, Norihiko; Ide, Keisuke; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  8. Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors.

    Science.gov (United States)

    Boyce, Matthew W; Kenney, Rachael M; Truong, Andrew S; Lockett, Matthew R

    2016-04-01

    Paper-based scaffolds are an attractive material for generating 3D tissue-like cultures because paper is readily available and does not require specialized equipment to pattern, cut, or use. By controlling the exchange of fresh culture medium with the paper-based scaffolds, we can engineer diffusion-dominated environments similar to those found in spheroids or solid tumors. Oxygen tension directly regulates cellular phenotype and invasiveness through hypoxia-inducible transcription factors and also has chemotactic properties. To date, gradients of oxygen generated in the paper-based cultures have relied on cellular response-based readouts. In this work, we prepared a luminescent thin film capable of quantifying oxygen tensions in apposed cell-containing paper-based scaffolds. The oxygen sensors, which are polystyrene films containing a Pd(II) tetrakis(pentafluorophenyl)porphyrin dye, are photostable, stable in culture conditions, and not cytotoxic. They have a linear response for oxygen tensions ranging from 0 to 160 mmHg O2, and a Stern-Volmer constant (K sv) of 0.239 ± 0.003 mmHg O2 (-1). We used these oxygen-sensing films to measure the spatial and temporal changes in oxygen tension for paper-based cultures containing a breast cancer line that was engineered to constitutively express a fluorescent protein. By acquiring images of the oxygen-sensing film and the fluorescently labeled cells, we were able to approximate the oxygen consumption rates of the cells in our cultures. Graphical Abstract Schematic of a paper-based culture seeded with fluorescent cells, and an oxygen-sensitive film. PMID:26667655

  9. TiO2 thin film based transparent flexible resistive switching random access memory

    Science.gov (United States)

    Pham, Kim Ngoc; Dung Hoang, Van; Tran, Cao Vinh; Thang Phan, Bach

    2016-03-01

    In our work we have fabricated TiO2 based resistive switching devices both on transparent substrates (ITO, IGZO/glass) and transparent flexible substrate (ITO/PET). All devices demonstrate the reproducibility of forming free bipolar resistive switching with high transparency in the visible light range (∼80% at the wavelength of 550 nm). Particularly, transparent and flexible device exhibits stable resistive switching performance at the initial state (flat) and even after bending state up to 500 times with curvature radius of 10% compared to flat state. The achieved characteristics of resistive switching of TiO2 thin films seem to be promising for transparent flexible random access memory.

  10. Thin film tandem solar cells based on II-VI compounds

    Science.gov (United States)

    Bloss, W. H.; Kimmerle, J.; Pfisterer, F.; Schock, H. W.

    The R & D efforts for the production of thin film tandem solar cells are presented. The tandem structures are based on II-VIand related compounds and are arranged as electrically isolated (4-terminal) cascades. For the high-bandgap part the material combinations under investigation are p-ZnTe/n-Zn(x)Cd(1-x)S, pn-ZnSe(y)Te(1-y), and p-CuGaSe2/n-Zn(x)Cd(1-x)S. The preliminary results of the investigations on all systems are promising; open circuit voltages of 1.3 V have been achieved.

  11. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    OpenAIRE

    Hongxia Wang

    2011-01-01

    The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,Ga)Se2 (CIGS) in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS) semiconductor material has emerged as one of the most promising candidates for this aim and h...

  12. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  13. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  14. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  15. Highly flexible transparent thin film heaters based on silver nanowires and aluminum zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hahn-Gil; Kim, Jin-Hoon; Song, Jun-Hyuk; Jeong, Unyong; Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr

    2015-08-31

    In this work, we developed highly flexible transparent film heaters (f-TFHs) composed of Ag nanowire networks (AgNWs) and aluminum zinc oxide (AZO). Uniform AgNWs were roll-to-roll coated on polyethylene terephthalate (PET) substrates using the Mayer rod method, and AZO was sputter-deposited atop the AgNWs at room temperature. The sheet resistance (R{sub s}) and transparency (T{sub opt}) of the AZO-coated AgNWs changed only slightly compared with the uncoated AgNWs. AZO is thermally less conductive than the heat pipes, but increases the thermal efficiency of the heaters blocking the heat convection through the air. Based on Joule heating, a higher average film temperature (T{sub ave}) is attained at a fixed electric potential drop between electrodes (ϕ) as the R{sub s} of the film decreases. Our experimental results revealed that T{sub ave} of the hybrid f-TFH is higher than AgNWs when the ratio of the area coverage of AgNWs to AZO is over a certain value. When a ϕ as low as 3 V/cm was applied to 5 cm × 5 cm f-TFHs, the maximum temperature of the hybrid film was over 100 °C, which is greater than that of AgNWs by more than 30 °C. Furthermore, uniform heating throughout the surfaces is achieved in the hybrid films while heating begins in small areas where densities of the nanowires (NWs) are the highest in the bare network. The non-uniform heating decreases the lifetime of f-TFHs by forming hot spots. Cyclic bending test results indicated that the hybrid films were as flexible as the AgNWs, and the R{sub s} of the hybrid films changes only slightly until 5000 cycles. Combined with the high-throughput coating technology presented here, the hybrid films will provide a robust and scalable strategy for large-area f-TFHs with highly enhanced performance. - Highlights: • We developed highly efficient flexible thin film heaters based on Ag nanowires and AZO composites. • In the composite, AZO plays an important role as an insulation blanket to block heat loss to

  16. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene

    Energy Technology Data Exchange (ETDEWEB)

    Froning, I. H.; Harberts, M.; Yu, H.; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2015-03-23

    The organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]{sub x∼2}) has demonstrated potential for use in both microwave electronics and spintronics due to the combination of high temperature magnetic ordering (T{sub C} > 600 K), extremely sharp ferromagnetic resonance (peak to peak linewidth of 1 G), and low-temperature conformal deposition via chemical vapor deposition (deposition temperature of 50 °C). However, air-sensitivity leads to the complete degradation of the films within 2 h under ambient conditions, with noticeable degradation occurring within 30 min. Here, we demonstrate encapsulation of V[TCNE]{sub x∼2} thin films using a UV-cured epoxy that increases film lifetime to over 710 h (30 days) as measured by the remanent magnetization. The saturation magnetization and Curie temperature decay more slowly than the remanence, and the coercivity is unchanged after 340 h (14 days) of air exposure. Fourier transform infrared spectroscopy indicates that the epoxy does not react with the film, and magnetometry measurements show that the presence of the epoxy does not degrade the magnetic properties. This encapsulation strategy directly enables a host of experimental protocols and investigations not previously feasible for air-sensitive samples and lays the foundation for the development of practical applications for this promising organic-based magnetic material.

  17. Investigation of lead-free thin films based on barium titanate for electrocaloric devices

    International Nuclear Information System (INIS)

    Lead-free thin films were synthesized by sol-gel for possible use in solid- state coolers. Surface morphology of the layers was obtained by atomic force microscopy (AFM). Electrophysical properties were investigated by impedance spectroscopy

  18. MAPLE fabrication of thin films based on kanamycin functionalized magnetite nanoparticles with anti-pathogenic properties

    Science.gov (United States)

    Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Stănculescu, Anca; Socol, Gabriel; Iordache, Florin; Maniu, Horia; Chifiriuc, Mariana Carmen

    2015-05-01

    In this study we aimed to evaluate the biocompatibility and antimicrobial activity of kanamycin functionalized 5 nm-magnetite (Fe3O4@KAN) nanoparticles thin films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. A laser deposition regime was established in order to stoichiometrically transfer Fe3O4@KAN thin films on silicone and glass substrates. Morphological and physico-chemical properties of powders and coatings were characterized by XRD, TEM, SEM, AFM and IR microscopy (IRM). Our nanostructured thin films have proved efficiency in the prevention of microbial adhesion and mature biofilms development as a result of antibiotic release in its active form. Furthermore, kanamycin functionalized nanostructures exhibit a good biocompatibility, both in vivo and in vitro, demonstrating their potential for implants application. This is the first study reporting the assessment of the in vivo biocompatibility of a magnetite-antimicrobial thin films produced by MAPLE technique.

  19. Nanomechanical and nanotribological testing of ultra-thin carbon-based and MoST films for increased MEMS durability

    International Nuclear Information System (INIS)

    Reliability of MEM (microelectromechanical) devices can be limited by stiction forces that develop in use. It is desirable to alter the mechanical and interfacial behaviour of the silicon surfaces by the application of very thin, low surface energy and low stress coatings. In this publication we report the nanomechanical and nanotribological characterization of a range of 5-150 nm thin films deposited on silicon by filtered cathodic vacuum arc (FCVA) and closed field unbalanced magnetron sputtering. A method of analysing nano-scratch data with spherical indenters is proposed. The method suggests the onset of non-elastic deformation in the nano-scratch test is due to substrate yield rather than film deformation on all but the softest films studied in this publication. The critical load for total film failure is a marked function of indenter radius, the ratio of hardness to modulus and the film thickness. The FCVA films were tested with probes of different radii (1.1, 3.1 and 9.0 μm) and the critical load for film failure was found to vary strongly with probe radius. The deposition of <100 nm amorphous carbon films on Si could be a promising strategy for improving the reliability of Si-based MEMS devices as none of the very thin films tested underwent stress-related delamination failures that occur behind the indenter during the nano-scratch testing of thicker amorphous carbon films.

  20. The role of heteroepitaxy in the development of new thin-film oxide-based functional materials

    International Nuclear Information System (INIS)

    The methods of synthesis of new oxide compounds and thin-film materials based on the use of heteroepitaxy are considered. The thermodynamic model and the theory of the epitaxial stabilisation phenomenon are outlined, the role of thermodynamic and structure-geometric factors determining the possibility of epitaxial stabilisation of unstable phases is interpreted. The use of epitaxial stabilisation for the design of heterostructures with specific electric properties is demonstrated. The characteristic features of the structural relations between the film and substrate materials, resulting in the formation of thin films with different numbers of variants, are discussed.

  1. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

    OpenAIRE

    Cao, C. L.; Hu, C. G.; Fang, L.; Wang, S. X.; Y. S. TIAN; Pan, C. Y.

    2011-01-01

    The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nanotube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%–98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively...

  2. Adjustable grazing incidence x-ray optics based on thin PZT films

    Science.gov (United States)

    Cotroneo, Vincenzo; Davis, William N.; Marquez, Vanessa; Reid, Paul B.; Schwartz, Daniel A.; Johnson-Wilke, Raegan L.; Trolier-McKinstry, Susan E.; Wilke, Rudeger H. T.

    2012-10-01

    The direct deposition of piezoelectric thin films on thin substrates offers an appealing technology for the realization of lightweight adjustable mirrors capable of sub-arcsecond resolution. This solution will make it possible to realize X-ray telescopes with both large effective area and exceptional angular resolution and, in particular, it will enable the realization of the adjustable optics for the proposed mission Square Meter Arcsecond Resolution X-ray Telescope (SMART-X). In the past years we demonstrated for the first time the possibility of depositing a working piezoelectric thin film (1-5 um) made of lead-zirconate-titanate (PZT) on glass. Here we review the recent progress in film deposition and influence function characterization and comparison with finite element models. The suitability of the deposited films is analyzed and some constrains on the piezoelectric film performances are derived. The future steps in the development of the technology are described.

  3. ALD/MLD processes for Mn and Co based hybrid thin films.

    Science.gov (United States)

    Ahvenniemi, E; Karppinen, M

    2016-06-28

    Here we report the growth of novel transition metal-organic thin-film materials consisting of manganese or cobalt as the metal component and terephthalate as the rigid organic backbone. The hybrid thin films are deposited by the currently strongly emerging atomic/molecular layer deposition (ALD/MLD) technique using the combination of a metal β-diketonate, i.e. Mn(thd)3, Co(acac)3 or Co(thd)2, and terephthalic acid (1,4-benzenedicarboxylic acid) as precursors. All the processes yield homogeneous and notably smooth amorphous metal-terephthalate hybrid thin films with growth rates of 1-2 Å per cycle. The films are stable towards humidity and withstand high temperatures up to 300 or 400 °C under an oxidative or a reductive atmosphere. The films are characterized with XRR, AFM, GIXRD, XPS and FTIR techniques. PMID:27277668

  4. Thin film mechanics

    Science.gov (United States)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  5. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  6. Inkjet-based deposition of polymer thin films enabled by a lubrication model incorporating nano-scale parasitics

    Science.gov (United States)

    Singhal, Shrawan; Meissl, Mario J.; Bonnecaze, Roger T.; Sreenivasan, S. V.

    2013-09-01

    Thin film lubrication theory has been widely used to model multi-scale fluid phenomena. Variations of the same have also found application in fluid-based manufacturing process steps for micro- and nano-scale devices over large areas where a natural disparity in length scales exists. Here, a novel inkjet material deposition approach has been enabled by an enhanced thin film lubrication theory that accounts for nano-scale substrate parasitics. This approach includes fluid interactions with a thin flexible superstrate towards a new process called Jet and Coat of Thin-films (JCT). Numerical solutions of the model have been verified, and also validated against controlled experiments of polymer film deposition with good agreement. Understanding gleaned from the experimentally validated model has then been used to facilitate JCT process synthesis resulting in substantial reduction in the influence of parasitics and a concomitant improvement in the film thickness uniformity. Polymer films ranging from 20 to 500 nm mean thickness have been demonstrated with standard deviation of less than 2% of the mean film thickness. The JCT process offers advantages over spin coating which is not compatible with roll-to-roll processing and large area processing for displays. It also improves over techniques such as knife edge coating, slot die coating, as they are limited in the range of thicknesses of films that can be deposited without compromising uniformity.

  7. Robust thin-film generator based on segmented contact-electrification for harvesting wind energy.

    Science.gov (United States)

    Meng, Xian Song; Zhu, Guang; Wang, Zhong Lin

    2014-06-11

    Collecting and converting energy from ambient air flow promise to be a viable approach in developing self-powered autonomous electronics. Here, we report an effective and robust triboelectric generator that consists of an undulating thin-film membrane and an array of segmented fine-sized electrode pairs on a single substrate. Sequential processes of contact electrification and electrostatic induction generate alternating flows of free electrons when the membrane interacts with ambient air flow. Based on an optimum rational design, the segmented electrodes play an essential role in boosting the output current, leading to an enhancement of over 500% compared to the structure without the segmentation. The thin-film based generator can simultaneously and continuously light up tens of commercial light-emitting diodes. Moreover, it possesses exceptional durability, providing constant electric output after millions of operation cycles. This work offers a truly practical solution that opens the avenue to take advantage of wind energy by using the triboelectric effect. PMID:24824071

  8. n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells

    Science.gov (United States)

    Lee, Ching-Ting; Lee, Hsin-Ying; Chen, Kuan-Hao

    2016-06-01

    In this study, the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell deposited using plasma-enhanced chemical vapor deposition were cascaded for forming the tandem Si-based thin film solar cells to absorb the wide solar spectrum. To further improve the performances of the tandem Si-based thin film solar cells, a 5-nm-thick n +-microcrystalline-Si (n +-μc-Si) tunnel layer deposited using the laser-assisted plasma-enhanced chemical vapor deposition was inserted between the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell. Since both the plasma and the CO2 laser were simultaneously utilized to efficiently decompose the reactant and doping gases, the carrier concentration and the carrier mobility of the n +-μc-Si tunnel layer were significantly improved. The ohmic contact formed between the p-SiC layer and the n +-μc-Si tunnel layer with low resistance was beneficial to the generated current transportation and the carrier recombination rate. Therefore, the conversion efficiency of the tandem solar cells was promoted from 8.57% and 8.82% to 9.91% compared to that without tunnel layer and with 5-nm-thick n +-amorphous-Si tunnel layer.

  9. Electrically controllable terahertz square-loop metamaterial based on VO2 thin film

    Science.gov (United States)

    Shin, Jun-Hwan; Park, Kyung Hyun; Ryu, Han-Cheol

    2016-05-01

    An electrically controllable square-loop metamaterial based on vanadium dioxide (VO2) thin film was proposed in the terahertz frequency regime. The square-loop shaped metamaterial was adopted to perform roles not only as a resonator but also as a micro-heater for the electrical control of the VO2. A dual-resonant square-loop structure was designed to realize band-pass characteristics in the desired frequency band. The measured Q-factors of the basic and scaled-down metamaterials fabricated on VO2 thin films were 2.22 and 1.61 at the center frequencies of 0.44 and 1.14 THz in the passbands, respectively. The transmittances of the proposed metamaterial were successfully controlled by applying a bias voltage without an external heater. The measured transmittance on–off ratios of the metamaterials were over 40 at the center frequencies in the passbands. In the future, electrically controllable terahertz metamaterial based on VO2 metamaterial could be employed as high-performance active filters or sensors.

  10. Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells

    Science.gov (United States)

    Gokilamani, N.; Muthukumarasamy, N.; Thambidurai, M.; Ranjitha, A.; Velauthapillai, Dhayalan

    2015-03-01

    Nanocrystalline TiO2 thin films have been prepared by sol-gel dip coating method. The X-ray diffraction results showed that TiO2 thin films annealed at 400, 450 and 500 °C are of anatase phase and the peak corresponding to the (101) plane is present in all the samples. The grain size of TiO2 thin films was found to increase with increasing annealing temperature. The grain size is found to be 20, 25 and 33 nm for the films annealed at 400, 450 and 500 °C. The structure of the TiO2 nanocrystalline thin films have been examined by high-resolution transmission electron microscope, Raman spectroscopy and FTIR spectroscopy. TiO2 thin films were sensitized by natural dyes extracted from basella alba rubra spinach. It was found that the absorption peak of basella alba rubra extract is at about 665 nm. The dye-sensitized TiO2-based solar cell sensitized using basella alba rubra exhibited a J sc of 4.35 mA cm-2, V oc of 0.48 V, FF of 0.35 and efficiency of 0.70 %. Natural dyes as sensitizers for dye-sensitized solar cells are promising because of their environmental friendliness, low-cost production and fully biodegradable.

  11. Polycrystalline thin film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  12. Energy-saving spectrally-selective coatings based on MoO3/Ag thin films

    International Nuclear Information System (INIS)

    Graphical abstract: Transparent heat mirrors are multilayer structures that transmit light and reflect infrared radiation, thus conserving energy. In this work, this was achieved by deposition of molybdenum oxide thin films on top of silver layers. The silver layer provides the desired high infrared reflectance. The MoO3 thin film is a dielectric material characterized by wide band gap and high refractive index. It works as an antireflective layer, and thus provides the necessary high visible transparency. - Highlights: • Transparent heat mirrors transmit light and reflect infrared heat. • In this work, they were deposited using MoO3/Ag multilayer coatings. • The MoO3 films were smooth, had high refractive index, and wide bandgap. • The fabricated heat mirrors had high visible transparency and infrared reflection. - Abstract: Transparent heat mirrors are spectrally selective coatings that transmit light and reflect heat in the form of infrared radiation. In this work, these coatings were achieved by depositing a two-layer structure consisting of molybdenum oxide thin films deposited on silver thin films by thermal evaporation. First, the structural, chemical, and optical properties of molybdenum oxide thin films, that are relevant to their use in transparent heat mirrors, were investigated. Then, the optical properties of the two-layer structure were determined. Moreover, chemical depth profiling was carried out to investigate the spatial distribution of the elements among the layers. The deposited heat mirrors were found to exhibit the desired behavior of high visible transparency and high infrared reflection

  13. Anisotropic ferromagnetic behaviors in highly orientated epitaxial NiO-based thin films

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2015-07-01

    Full Text Available Antiferromagnetic materials attract a great amount of attention recently for promising antiferromagnet-based spintronics applications. NiO is a conventional antiferromagnetic semiconductor material and can show ferromagnetism by doping other magnetic elements. In this work, we synthesized epitaxial Fe-doped NiO thin films on SrTiO3 substrates with various crystal orientations by pulsed laser deposition. The room-temperature ferromagnetism of these films is anisotropic, including the saturated magnetization and the coercive field. The anisotropic magnetic behaviors of Fe-doped NiO diluted magnetic oxide system should be closely correlated to the magnetic structure of antiferromagnetic NiO base. Within the easy plane of NiO, the coercive field of the films becomes smaller, and larger coercive field while tested out of the easy plane of NiO. The saturated magnetization anisotropy is due to different strain applied by different substrates. These results lead us to more abundant knowledge of the exchange interactions in this conventional antiferromagnetic system.

  14. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  15. Magnetic behaviors of cerium oxide-based thin films deposited using electrochemical method

    International Nuclear Information System (INIS)

    Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ' is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M—H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M—H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Flexible all-solid-state MnO2 thin films based symmetric supercapacitors

    International Nuclear Information System (INIS)

    Flexible energy storage devices gained lot of substantial research interest in the recent decade as their special features and potential applications in different portable electronic devices such as smart sensors, actuators, mobiles, flexible touch screens and electronic newspapers, etc. Therefore, to develop such devices, the flexible electrode and electrolytes with desired mechanical and electrochemical properties are required. In present article, porous nanostructured MnO2 thin films are prepared directly on flexible stainless steel substrate through chemical bath deposition (CBD) method. Further, flexible all-solid-state thin film symmetric supercapacitors (FASSTF-SSCs) have been fabricated using identical MnO2 electrodes with carboxymethyl cellulose- Na2SO4 (CMC-Na2SO4) gel electrolyte. Our results, demonstrate that 0.7 μm thick FASSTF cell exhibits specific capacitance of 145 F g−1 with specific energy of 16 Wh kg−1 and excellent cycling stability after 2500 cycles. In addition, we have presented demonstration of lighting of two light emitting diodes (LEDs) for 135 s which finally confirms the potential applicability of MnO2 based solid-state symmetric cells for high-performance flexible energy storage devices

  17. Superlattice-based thin-film thermoelectric modules with high cooling fluxes

    Science.gov (United States)

    Bulman, Gary; Barletta, Phil; Lewis, Jay; Baldasaro, Nicholas; Manno, Michael; Bar-Cohen, Avram; Yang, Bao

    2016-01-01

    In present-day high-performance electronic components, the generated heat loads result in unacceptably high junction temperatures and reduced component lifetimes. Thermoelectric modules can, in principle, enhance heat removal and reduce the temperatures of such electronic devices. However, state-of-the-art bulk thermoelectric modules have a maximum cooling flux qmax of only about 10 W cm-2, while state-of-the art commercial thin-film modules have a qmax management of modern high-power devices. Here we show that cooling fluxes of 258 W cm-2 can be achieved in thin-film Bi2Te3-based superlattice thermoelectric modules. These devices utilize a p-type Sb2Te3/Bi2Te3 superlattice and n-type δ-doped Bi2Te3-xSex, both of which are grown heteroepitaxially using metalorganic chemical vapour deposition. We anticipate that the demonstration of these high-cooling-flux modules will have far-reaching impacts in diverse applications, such as advanced computer processors, radio-frequency power devices, quantum cascade lasers and DNA micro-arrays.

  18. Structural characterization of thin films based on II-VI ternary compounds deposited by evaporation

    International Nuclear Information System (INIS)

    Thin films of Zn(S, Se) (Zn, In)Se and Cd(S, Te) compounds, deposited by evaporation were characterized through X-ray diffraction (XRD) measurements and analyzed with the help of a simulation program. The interest in studying these materials is due to their potential for photovoltaic applications, especially as buffer materials in Cu(In,Ga)Se2 (CIGS) and CdTe based solar cells. The XRD measurements allowed us to determine the effect of the chemical composition on the structure and lattice parameter, which must be known to predict an optimum mechanical match between the buffer and absorber layers; a good mechanical match improves the hetero-interface of the solar cell. The studies revealed that In-rich Zn xIn1-xSe films and Te-rich CdS xTe1-x films grow with hexagonal structure; however, their structure is changed to cubic when they become Zn-rich and Te-rich, respectively. On the contrary, the Zn xIn1-xSe films grow with cubic structure, independently of its chemical composition. It was also found that the variation of the chemical composition leads to a significant variation of the optical gap Eg, which was determined by extrapolation of the curve (αhν)2 vs. hν, assuming that, for this type of compounds, the relation αhν A(hν - Eg)1/2 is valid. It was observed, in the three type of compounds studied, that their Eg values increase with the decreasing of the lattice constant, which in turn varies according to Vegard's Law. Comparing the lattice parameters of the ZnS xSe1-x and Zn xIn1-xSe compounds, with those reported in the literature for Cu(In1-x,Ga x)Se2 thin films, helpful information was found to achieve a good lattice match between the studied II-VI compounds and the CIGS film

  19. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  20. Electrochromics for smart windows: Oxide-based thin films and devices

    International Nuclear Information System (INIS)

    Electrochromic (EC) smart windows are able to vary their throughput of visible light and solar energy by the application of an electrical voltage and are able to provide energy efficiency and indoor comfort in buildings. Section 1 explains why this technology is important and timely by first outlining today's precarious situation concerning increasing energy use and associated effects on the world's climate, and this section also underscores the great importance of enhancing the energy efficiency of buildings by letting them function more in harmony with the environment—particularly its varying temperature—than is possible with current mainstream technologies. This same chapter also surveys recent work on the energy savings and other benefits that are possible with EC-based technologies. Section 2 then provides some notes on the history of the EC effect and its applications. Section 3 presents a generic design for the oxide-based EC devices that are most in focus for present-day applications and research. This design includes five superimposed layers with a centrally-positioned electrolyte connecting two oxide films—at least one of which having EC properties—and with transparent electrical conductors surrounding the three-layer structure in the middle. It is emphasized that this construction can be viewed as a thin-film electrical battery whose charging state is manifested as optical absorption. Also discussed are six well known hurdles for the implementation of these EC devices, as well as a number of practical constructions of EC-based smart windows. Section 4 is an in-depth discussion of various aspects of EC oxides. It begins with a literature survey for 2007–2013, which updates earlier reviews, and is followed by a general discussion of optical and electronic effects and, specifically, on charge transfer absorption in tungsten oxide. Ionic effects are then treated with foci on the inherent nanoporosity of the important EC oxides and on the

  1. Novel applications of piezoresistive thin film systems based on hydrogenated carbon

    Science.gov (United States)

    Biehl, Saskia; Rumposch, Christian; Recknagel, Christian

    2013-05-01

    Thin film sensor systems based on hydrogenated carbon have the advantage to combine two very important characteristics. They show a piezoresistive behaviour and also a tribological stability caused by a high hardness and wear resistance. Therefore they can be applied on the surface of machine parts or used for building up universal insertable sensor systems like sensory washers. A real challenge is the deposition of a whole sensory layer system on technical components like a spindle, which have a length of 480 mm and an outer diameter of about 90 mm. The functions of the layer system directly applied in the contact zone between spindle shaft and tool holder are the measurement of the clamping force of the tool holder, the imbalance of the used tool and the process forces during machining. For this application a self-contained thin film sensor system is investigated. Directly in the spindle shaft an insulating alumina layer is deposited in a thickness of about 4 μm followed by electrode structures out of 200 nm thin chromium coating. On top of this the piezoresistive hydrogenated carbon layer in a thickness of about 1 μm is deposited, covered by a wear resistant and insulating top coating. Therefore a silicon and oxygen modified carbon layer in a thickness of about 2 μm is used. The piezoresistive sensor layer and also the top layer are part of the diamond like carbon layer family [1,2,3,4]. Another very important application is the sensory washer. The thin film sensor system, consisting out of the piezoresistive sensor layer deposited directly on the washer surface, the electrode structures out of chromium for the local detection of the load distribution in the washer system and the insulating layer as top layer out of the silicon and oxygen modified carbon layer, has a thickness in the range of 9 μm. In the latest investigations this layer system is connected with a RFID-chip for contactless data transmission.

  2. A novel phase modulation-based system using bi-layer thin film displacement sensors

    Energy Technology Data Exchange (ETDEWEB)

    Meydan, T. [Wolfson Centre for Magnetics, Cardiff University, Queens Buildings, Newport Road, Cardiff CF24 3AA (United Kingdom)]. E-mail: Meydan@cf.ac.uk; Katranas, G.S. [Wolfson Centre for Magnetics, Cardiff University, Queens Buildings, Newport Road, Cardiff CF24 3AA (United Kingdom); Ovari, T.A. [Wolfson Centre for Magnetics, Cardiff University, Queens Buildings, Newport Road, Cardiff CF24 3AA (United Kingdom); Borza, F. [Wolfson Centre for Magnetics, Cardiff University, Queens Buildings, Newport Road, Cardiff CF24 3AA (United Kingdom)

    2007-03-15

    A novel method has been used for accurately measuring low-voltage signals ({approx}10{sup -4} V) associated with inductance changes of bi-layer thin-film sensors under bending stress. Bi-layer sensors consist of a magnetic layer and a non-magnetic counter layer that is used to enhance the changes in the relative permeability of the material, caused by tensile or compressive stresses. The measuring system utilizes a personal computer-based system using the LabVIEW[reg] graphical programming package. The results from the acquisition proved that this system provided a robust, cost-effective solution (as compared to hardware-based systems) to evaluate magnetostrictive materials and their application in magnetic sensors.

  3. A novel phase modulation-based system using bi-layer thin film displacement sensors

    International Nuclear Information System (INIS)

    A novel method has been used for accurately measuring low-voltage signals (∼10-4 V) associated with inductance changes of bi-layer thin-film sensors under bending stress. Bi-layer sensors consist of a magnetic layer and a non-magnetic counter layer that is used to enhance the changes in the relative permeability of the material, caused by tensile or compressive stresses. The measuring system utilizes a personal computer-based system using the LabVIEW[reg] graphical programming package. The results from the acquisition proved that this system provided a robust, cost-effective solution (as compared to hardware-based systems) to evaluate magnetostrictive materials and their application in magnetic sensors

  4. Photoelectric conversion characteristics of c-Se-based thin-film photodiodes in imaging device

    Science.gov (United States)

    Imura, S.; Kikuchi, K.; Miyakawa, K.; Ohtake, H.; Kubota, M.

    2015-06-01

    Herein, we report the use of high-efficiency crystalline-selenium-based (c-Se-based) thin-film heterojunction photodiodes in imaging devices. As a novel experiment, we use an image pickup tube with a photoelectric conversion layer consisting of n-gallium oxide (Ga2O3)/p-c-Se heterojunction photodiodes to obtain high-resolution images at a relatively low applied voltage. We reduce the thickness of the Ga2O3 layer to expand the depletion layer into the c-Se layer at a lower applied voltage. In addition, Sn-doping of the Ga2O3 layer effectively increases the carrier concentration, thereby allowing the photodiode to operate at lower voltage.

  5. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    International Nuclear Information System (INIS)

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (ION/IOFF) of 103 and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  6. Fabrication and characterization of the split-drain MAGFET based on the nano-polysilicon thin film transistor

    International Nuclear Information System (INIS)

    A split-drain magnetic field-effect transistor (MAGFET) based on a nano-polysilicon thin film transistor (TFT) is proposed, which contains one source, two drains and one gate. The sensor chips were fabricated on (100) high resistivity silicon substrate by CMOS technology. When drain—source voltage equals 5.0 V and length and width ratio of the TFT channel is 80 μm/160 μm, the current and voltage magnetic sensitivities of the split-drain MAGFET based on the TFT are 0.018 mA/T and 55 mV/T, respectively. Through adopting nano-polysilicon thin films and nano-polysilicon thin films/high resistivity silicon heterojunction interfaces as the magnetic sensing layers, it is possible to realize detection of the external magnetic field. The test results show that magnetic sensitivity of the split-drain MAGFET can be improved significantly. (semiconductor devices)

  7. PL and EL properties of Tm-activated vanadium oxide-based phosphor thin films

    International Nuclear Information System (INIS)

    The preparation of high-luminance blue emitting Tm-activated multicomponent oxide phosphor thin films is described. The phosphor thin films were deposited on thick BaTiO3 ceramic sheets by r.f. magnetron sputtering using powder targets. A very high photoluminescence (PL) intensity in blue emission could be observed in postannealed Tm-activated gadolinium oxide-vanadium oxide Gd0.5-V0.5-O:Tm thin films prepared using Tm2O3-doped (Gd2O3)0.5-(V2O5)0.5 targets (V2O5 content of 50 mol.%). It should be noted that thin films of this phosphor postannealed at 1100 deg. C in air exhibited higher PL intensity than those from commercially available blue BaMgAl14O23:Eu (BAM) phosphor powder and Gd0.5-V0.5-O:Tm powders. In addition, a Gd0.5-V0.5-O:Tm thin-film electroluminescent device exhibited a blue emission that was the same as the PL emission

  8. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    K K Makhija; Arabinda Ray; R M Patel; U B Trivedi; H N Kapse

    2005-02-01

    A sensor for ammonia gas and ethanol vapour has been fabricated using indium oxide thin film as sensing layer and indium tin oxide thin film encapsulated in poly(methyl methacrylate) (PMMA) as a miniature heater. For the fabrication of miniature heater indium tin oxide thin film was grown on special high temperature corning glass substrate by flash evaporation method. Gold was deposited on the film using thermal evaporation technique under high vacuum. The film was then annealed at 700 K for an hour. The thermocouple attached on sensing surface measures the appropriate operating temperature. The thin film gas sensor for ammonia was operated at different concentrations in the temperature range 323–493 K. At 473 K the sensitivity of the sensor was found to be saturate. The detrimental effect of humidity on ammonia sensing is removed by intermittent periodic heating of the sensor at the two temperatures 323K and 448 K, respectively. The indium oxide ethanol vapour sensor operated at fixed concentration of 400 ppm in the temperature range 293–393 K. Above 373 K, the sensor conductance was found to be saturate. With various thicknesses from 150–300 nm of indium oxide sensor there was no variation in the sensitivity measurements of ethanol vapour. The block diagram of circuits for detecting the ammonia gas and ethanol vapour has been included in this paper.

  9. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matei, A., E-mail: andreeapurice@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Laser techniques MAPLE and PLD can successfully be used to produce LDHs thin films. Black-Right-Pointing-Pointer Hydration treatments of the PLD and MAPLE deposited films lead to the LDH reconstruction effect. Black-Right-Pointing-Pointer The Ni retention from aqueous solution occurs in the films via a dissolution-reconstruction mechanism. Black-Right-Pointing-Pointer The films are suitable for applications in remediation of contaminated drinking water or waste waters. - Abstract: Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition - PLD and matrix assisted pulsed laser evaporation - MAPLE) starting from targets of Mg-Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO{sub 3}){sub 2} aqueous solutions with Ni concentrations of 10{sup -3}% (w/w) (1 g/L) and 10{sup -4}% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.

  10. Organic solar cells based on liquid crystalline and polycrystalline thin films

    Science.gov (United States)

    Yoo, Seunghyup

    This dissertation describes the study of organic thin-film solar cells in pursuit of affordable, renewable, and environmentally-friendly energy sources. Particular emphasis is given to the molecular ordering found in liquid crystalline or polycrystalline films as a way to leverage the efficiencies of these types of cells. Maximum efficiencies estimated based on excitonic character of organic solar cells show power conversion efficiencies larger than 10% are possible in principle. However, their performance is often limited due to small exciton diffusion lengths and poor transport properties which may be attributed to the amorphous nature of most organic semiconductors. Discotic liquid crystal (DLC) copper phthalocyanine was investigated as an easily processible building block for solar cells in which ordered molecular arrangements are enabled by a self-organization in its mesophases. An increase in photocurrent and a reduction in series resistance have been observed in a cell which underwent an annealing process. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements suggest that structural and morphological changes induced after the annealing process are related to these improvements. In an alternative approach, p-type pentacene thin films prepared by physical vapor deposition were incorporated into heterojunction solar cells with C60 as n-type layers. Power conversion efficiencies of 2.7% under broadband illumination (350--900 nm) with a peak external quantum efficiency of 58% have been achieved with the broad spectral coverage across the visible spectrum. Analysis using an exciton diffusion model shows this efficient carrier generation is mainly due to the large exciton diffusion length of pentacene films. Joint XRD and AFM studies reveal that the highly crystalline nature of pentacene films can account for the observed large exciton diffusion length. In addition, the electrical characteristics are studied as a function of light intensity using

  11. Characteristic of TiNi(Cu) shape memory thin film based on micropump

    Science.gov (United States)

    Zhang, Huijun; Qiu, Chengjun

    2009-07-01

    Shape memory thin films offer a unique combination of novel properties and have the potential to become a primary actuating mechanism for micropumps. In this study, a micropump driven by TiNiCu shape memory thin film is designed and fabricated. The micropump is composed of a TiNiCu/Si bimorph driving membrane, a pump chamber and two inlet and outlet check valves. The property of TiNiCu films and driving capacity of TiNiCu/Si bimorph driving membrane are investigated. By using the recoverable force of TiNiCu thin film and biasing force of silicon membrane, the actuation diaphragm realizes reciprocating motion effectively. Experimental results show that the film surface appears a smooth and featureless morphology without any cracks, and the hysteresis width ΔT of TiNiCu film is about 2-3°C, the micropump driving by TiNiCu film has good performance, such as high pumping yield, high working frequency, stable driving capacity, and long fatigue life time.

  12. Low-voltage gallium-indium-zinc-oxide thin film transistors based logic circuits on thin plastic foil: Building blocks for radio frequency identification application

    NARCIS (Netherlands)

    Tripathi, A.K.; Smits, E.C.P.; Putten, J.B.P.H. van der; Neer, M. van; Myny, K.; Nag, M.; Steudel, S.; Vicca, P.; O'Neill, K.; Veenendaal, E. van; Genoe, G.; Heremans, P.; Gelinck, G.H.

    2011-01-01

    In this work a technology to fabricate low-voltage amorphous gallium-indium-zinc oxide thin film transistors (TFTs) based integrated circuits on 25 µm foils is presented. High performance TFTs were fabricated at low processing temperatures (<150 °C) with field effect mobility around 17 cm2 /V s. The

  13. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    Directory of Open Access Journals (Sweden)

    Junghwan Kim

    2016-01-01

    Full Text Available We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  14. In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells

    Science.gov (United States)

    Buehlmann, P.; Bailat, J.; Dominé, D.; Billet, A.; Meillaud, F.; Feltrin, A.; Ballif, C.

    2007-10-01

    We show that SiO-based intermediate reflectors (SOIRs) can be fabricated in the same reactor and with the same process gases as used for thin-film silicon solar cells. By varying input gas ratios, SOIR layers with a wide range of optical and electrical properties are obtained. The influence of the SOIR thickness in the micromorph cell is studied and current gain and losses are discussed. Initial micromorph cell efficiency of 12.2% (Voc=1.40V, fill factor=71.9%, and Jsc=12.1mA/cm2) is achieved with top cell, SOIR, and bottom cell thicknesses of 270, 95, and 1800nm, respectively.

  15. Design of lost fast-ion probe based on thin faraday films in Heliotron J

    International Nuclear Information System (INIS)

    A lost fast-ion probe based on thin Faraday films (FLIP) is designed to measure fast-ion losses caused by fast-ion-driven MHD modes as well as magnetic field ripples in Heliotron J. The FLIP works as a magnetic spectrometer providing the energy and pitch angle of lost fast-ions. The installation location of FLIP is studied using Lorentz orbit code. Upper port of Heliotron J at the corner section is a primary target to install the FLIP, because not only co-going fast ions but also counter-going fast ions will be detected at this position. The FLIP will give the decisive information to study fast-ion losses in Heliotron J. (author)

  16. A numerical study on the mechanical characteristics of zinc oxide-based transparent thin film transistors.

    Science.gov (United States)

    Lee, D-K; Park, K; Ahn, J-H; Lee, N-E; Kim, Y-J

    2011-07-01

    Zinc Oxide (ZnO) based Thin Film Transistors (TFTs) have been fabricated and analyzed to investigate mechanical characteristics regarding the stress, strain and deformation of electro circuits using the Finite Element Method (FEM). As the best compromise between the stretching and bending abilities, the coating thickness of SU-8 can be as important for bendability as a neutral mechanical plane. The neutral mechanical plane in electro circuits was designed for obtaining flexibility, e.g., bendability, in a previous numerical study. After that, through experimental validation, we observed what degree of SU-8 thickness was attributable for improved mechanical stability. The results suggest that not only numerical but also experimental measurements of the deformation and SU-8 coating thickness in electro circuits are useful for enhancing structural stability. PMID:22121623

  17. Polymer thin-film transistor based on a high dielectric constant gate insulator

    Institute of Scientific and Technical Information of China (English)

    Lü Wen; Peng Jun-Biao; Yang Kai-Xia; Lan Lin-Feng; Niu Qiao-Li; Cao Yong

    2007-01-01

    In this paper full polymer thin-film transistors (PTFTs) based on Poly (acrylonitrile) (PAN) as the gate dielectric and poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) as the semiconductor layer were investigated by using different channel width/length ratios. Relatively high dielectric constant of the polymer dielectric layer (6.27) can remarkably reduce the threshold voltage of the transistors to below-3 V. Hole field-effect mobility of MEH-PPV of the PTFTs was about 4.8 × 10-4 cm2/Vs, and on/off current ratio was larger than 102, which was comparable with that of transistors with widely used Poly (4-vinyl phenol) (PVP) or SiO2 as gate dielectrics.

  18. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  19. Low-voltage Driving Phototransistor Based on Dye-sensitized Nanocrystalline Titanium Dioxide Thin Films

    CERN Document Server

    Wang, Xiaoqi; Cai, Chuanbing

    2012-01-01

    Photo-gated transistors based on dye-sensitized nanocrystalline titanium dioxide thin film are established. A transistor-like transport behavior characterized by the linear increase, saturated plateau, and breakdown-like increase in the voltage-current curve is achievable with a low driven bias for the present device. The response current exhibits a linear dependence on the intensity of gated light, and the measured maximum photosensitivity is approximately 0.1 A/W. The dynamic responses for various light frequencies and their dependences on the load resistances are investigated as well. The cut-off frequency of ~50 Hz is abstracted, indicating the potential application for economical and efficient light switch or optical communication unit. The dc photo-gated response is explained by the energy level diagram, and is numerically simulated by an equivalent circuit model, suggesting a clear correlation between photovoltaic and photoconductive behaviors as well as their optical responses.

  20. A STUDY OF THIN FILM LUBRICATION AT NANOSCALE FOR A FERROFLUID BASED INFINITELY LONG ROUGH POROUS SLIDER BEARING

    Directory of Open Access Journals (Sweden)

    Jimit R. Patel

    2016-04-01

    Full Text Available The study aims at analyzing the performance of a ferrofluid-based infinitely long rough porous slider bearing which makes use of thin film lubrication at nanoscale. The stochastic model of Christensen and Tonder has been employed to analyze the effect of surface roughness while the Neuringer-Rosensweig’s model has been adopted to study the magnetization effect. The pressure distribution in the bearing system has been obtained by solving the associated stochastically averaged Reynolds type equation. The results indicate that although the transverse roughness is supposed to affect the bearing system adversely, the situation remains fairly better in the case of thin film lubrication at nanoscale. In fact, the consideration of thin film lubrication at nanoscale results in an all round improved performance, even for lower strength of the magnetic intensity. However, the couple stress adds a little more to this positive effect.

  1. Production of precursor solution for deposition of lead base ferroelectric thin films

    International Nuclear Information System (INIS)

    Recently, with the advances in thin-film technology, several methods for deposition of ferroelectrics materials have been reported. The possible applications involve dielectric phenomena, pyroelectric, piezoelectric and electroptics. Parallel to exploration of the properties of this films, increase the interest by research in the economical attractive methods, similar at the sputtering and Sol-gel. In this work, thin films of PZT has been manufactured by alternative chemical methods, similar to Sol-gel. The results here presented at kinetic of the crystallization are compared with results of the Sol-gel. The simulations and measurements in RBS techniques shown that mean thickness of films are 600 nm. The crystallization has been determined by X-ray diffraction and the study of temperatures transition by DTA/TG techniques. The loss of organic materials occur at 258 deg C and the crystallization at 416 deg C. (author)

  2. Multianalyte Biosensors for the Simultaneous Determination of Glucose and Galactose Based on Thin Film Electrodes

    Institute of Scientific and Technical Information of China (English)

    Neng Qin JIA; Zong Rang ZHANG; Jiang Zhong ZHU; Guo Xiong ZHANG

    2004-01-01

    A multianalyte biosensor for the simultaneous determination of glucose and galactose was developed by immobilizing glucose oxidase (GOD) and galactose oxidase (GAO) on Nafion-modified thin film platinum disk electrodes. The dual Pt working electrodes with disk shape and the surrounding ring shaped counter electrode were fabricated by thin film technology, which were integrated onto the same microchip. The response of the designed biosensor for glucose and galactose were linear up to 6.0 mmol/L and 3.5 mmol/L with sensitivities of 0.3 (A/mmol/L and 0.12 μA/mmol/L, respectively. No cross-talking effect was observed.

  3. A Review on Development Prospect of CZTS Based Thin Film Solar Cells

    OpenAIRE

    Xiangbo Song; Xu Ji; Ming Li; Weidong Lin; Xi Luo; Hua Zhang

    2014-01-01

    Cu2ZnSnS4 is considered as the ideal absorption layer material in next generation thin film solar cells due to the abundant component elements in the crust being nontoxic and environmentally friendly. This paper summerized the development situation of Cu2ZnSnS4 thin film solar cells and the manufacturing technologies, as well as problems in the manufacturing process. The difficulties for the raw material’s preparation, the manufacturing process, and the manufacturing equipment were illustrate...

  4. WO3 thin film based multiple sensor array for electronic nose application

    International Nuclear Information System (INIS)

    Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO3 thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H2S, NH3, NO and C2H5OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas

  5. WO{sub 3} thin film based multiple sensor array for electronic nose application

    Energy Technology Data Exchange (ETDEWEB)

    Ramgir, Niranjan S., E-mail: niranjanpr@yahoo.com, E-mail: deepakcct1991@gmail.com; Goyal, C. P.; Datta, N.; Kaur, M.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K. [Thin Film Devices Section, Technical Physics Division, Bhabha Atomic Research Centre, Mumbai–400085 (India); Goyal, Deepak, E-mail: niranjanpr@yahoo.com, E-mail: deepakcct1991@gmail.com [Thin Film Devices Section, Technical Physics Division, Bhabha Atomic Research Centre, Mumbai–400085 (India); Centre for Converging Technologies, University of Rajasthan, Jaipur-302004 (India)

    2015-06-24

    Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO{sub 3} thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H{sub 2}S, NH{sub 3}, NO and C{sub 2}H{sub 5}OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.

  6. Fabrication and characterization of high-mobility solution-based chalcogenide thin-film transistors

    KAUST Repository

    Mejia, Israel I.

    2013-01-01

    We report device and material considerations for the fabrication of high-mobility thin-film transistors (TFTs) compatible with large-area and inexpensive processes. In particular, this paper reports photolithographically defined n-type TFTs (n-TFTs) based on cadmium sulfide (CdS) films deposited using solution-based techniques. The integration process consists of four mask levels with a maximum processing temperature of 100 °C. The TFT performance was analyzed in terms of the CdS semiconductor thickness and as a function of postdeposition annealing in a reducing ambient. The IonI off ratios are ∼107 with field-effect mobilities of ∼5.3 and ∼4.7cm2V̇s for Al and Au source-drain contacts, respectively, using 70 nm of CdS. Transmission electron microscopy and electron energy loss spectroscopy were used to analyze the CdS-metal interfaces. © 1963-2012 IEEE.

  7. Magnetic measurements based on magneto-optical Kerr effect on pnictide Ba(Fe1−x Cox)2As2/Fe thin film

    International Nuclear Information System (INIS)

    We present characterization of Ba(Fe1−x Cox)2As2 thin film using a magneto-optical Kerr effect setup based on photoelastic modulation. The magneto optical technique has been used to analyse the thickness and the temperature dependence of the magnetic properties of epitaxial Ba(Fe1−x Cox)2As2/Fe thin films grown on MgO substrate. The first harmonics, of the reflected laser beam intensity from pnictide thin films is compared with a reference Fe thin film. The hysteretic loops of such samples at room temperature and at 5 K are presented

  8. Polyimide Aerogel Thin Films

    Science.gov (United States)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  9. Polycrystalline thin films

    Science.gov (United States)

    Zweibel, K.; Mitchell, R.; Ullal, H.

    1987-02-01

    This annual report for fiscal year 1986 summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Subcontracted work in this area has concentrated on the development of CuInSe2 and CdTe technologies. During FY 1986, major progress was achieved by subcontractors in (1) achieving 10.5% (SERI-verified) efficiency with CdTe, (2) improving the efficiency of selenized CuInSe2 solar cells to nearly 8%, and (3) developing a transparent contact to CdTe cells for potential use in the top cells of tandem structures.

  10. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films

    Directory of Open Access Journals (Sweden)

    Stefan Rung

    2014-10-01

    Full Text Available Thin film ablation with pulsed nanosecond lasers can benefit from the use of beam shaping optics to transform the Gaussian beam profile with a circular footprint into a Top-Hat beam profile with a rectangular footprint. In general, the quality of the transformed beam profile depends strongly on the beam alignment of the entire laser system. In particular, the adjustment of the beam shaping element is of upmost importance. For an appropriate alignment of the beam shaper, it is generally necessary to observe the intensity distribution near the focal position of the applied focusing optics. Systems with a low numerical aperture (NA can commonly be qualified by means of laser beam profilers, such as a charge-coupled device (CCD camera. However, laser systems for micromachining typically employ focus lenses with a high NA, which generate focal spot sizes of only several microns in diameter. This turns out to be a challenge for common beam profiling measurement systems and complicates the adjustment of the beam shaper strongly. In this contribution, we evaluate the quality of a Top-Hat beam profiling element and its alignment in the working area based on the ablated geometry of single pulse ablation of thin transparent conductive oxides. To determine the best achievable adjustment, we develop a quality index for rectangular laser ablation spots and investigate the influences of different alignment parameters, which can affect the intensity distribution of a Top-Hat laser beam profile.

  11. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    International Nuclear Information System (INIS)

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N2/H2 PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH3 PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N2:H2 ambient

  12. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO2-B nanotubes (NTs) and zero-dimensional TiO2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO2 NPs electrodes by rational tuning the weight ratio of TiO2-B NTs and TiO2 NPs. When the weight ratio of TiO2-B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO2-B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO2-B NTs and the high surface area of TiO2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  13. Current Progress of Hf (Zr)-Based High-k Gate Dielectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the continued downscaling of complementary metal-oxide-semiconductor field effect transistor dimensions, high-dielectric constant (high-k) gate materials, as alternatives to SiO2, have been extensively investigated. Hf (Zr)-based high-k gate dielectric thin films have been regarded as the most promising candidates for high-k gate dielectric according to the International Technology Roadmap for Semiconductor due to their excellent physical properties and performance. This paper reviews the recent progress on Hf (Zr)-based high-k gate dielectrics based on PVD (physical vapor deposition) process. This article begins with a survey of various methods developed for generating Hf (Zr)-based high-k gate dielectrics, and then mainly focuses on microstructure, synthesis, characterization, formation mechanisms of interfacial layer, and optical properties of Hf (Zr)-based high-k gate dielectrics. Finally, this review concludes with personal perspectives towards future research on Hf (Zr)-based high-k gate dielectrics.

  14. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films.

    Science.gov (United States)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-01-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp(2) clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181

  15. Performance analysis of resistive switching devices based on BaTiO3 thin films

    Science.gov (United States)

    Samardzic, Natasa; Kojic, Tijana; Vukmirovic, Jelena; Tripkovic, Djordjije; Bajac, Branimir; Srdic, Vladimir; Stojanovic, Goran

    2016-03-01

    Resitive switching devices, memristors, have recenty attracted much attention due to promising performances and potential applications in the field of logic and memory devices. Here, we present thin film BaTiO3 based memristor fabricated using ink-jet printing technique. Active material is a single layer barium titanate film with thickness of ̴100 nm, sandwitched between metal electodes. Printing parameters were optimized aiming to achieve stable drop flow and uniform printed layer. Current-voltage characteristics show typical memristive behavior with pinched hysteresis loop crossed at the origin, with marked differences between High Resistive State (HRS) and Low Resistive State (LRS). Obtained resistive states are stable during numerous switching processes. The device also shows unipolar switching effect for negative voltage impulses. Variable voltage impulse amplitudes leads to the shifting of the energy levels of electode contacts resulting in changing of the overall current through the device. Structural charcterization have been performed using XRD analysis and SEM micrography. High-temperature current-voltage measurements combined with transport parameter analysis using Hall efect measurement system (HMS 3000) and Impedance Analyzer AC measurements allows deeper insigth into conduction mechanism of ferroelectric memristors.

  16. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    International Nuclear Information System (INIS)

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (LaxAl1−xOy) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the LaxAl1−xOy films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlOy dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currents (<3 nA/cm2). TFTs employing solution processed LaAlOy gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >106, subthreshold swing of ∼650 mV dec−1, and electron mobility of ∼12 cm2 V−1 s−1

  17. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Esro, M.; Adamopoulos, G., E-mail: g.adamopoulos@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster LA1 4YR (United Kingdom); Mazzocco, R.; Kolosov, O.; Krier, A. [Physics Department, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Vourlias, G. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Milne, W. I. [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Department of Electrical and Computing Engineering, University of Canterbury, 4800 Christchurch (New Zealand)

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currents (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.

  18. Synthesis of CuInSe2 thin film by a hydroxides-based deposition process

    International Nuclear Information System (INIS)

    Highlights: ► CuInSe2 thin films free from In2O3 have been successfully prepared by selenizing hydroxide precursors without hydrogen reduction. ► The influence of pre-annealing temperature on the preparation of single phase CIS films has been investigated. ► A Cu-deficient surface layer was found although the bulk composition was Cu-rich. - Abstract: CuInSe2 thin films free from In2O3 have been successfully prepared by selenization of pre-annealed Cu–In hydroxide precursors without hydrogen reduction. The mixed hydroxides of Cu, In precursors were synthesized by the co-precipitation method. The inks containing Cu–In hydroxides and organic binders were deposited onto a soda lime glass substrate using a drop-casting technique. After coating, the precursor films were pre-annealed in flowing argon prior to selenization. The influence of pre-annealing temperature on the preparation of single phase CIS films has been investigated in order to obtain single phase CIS films. Through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), it was found that chalcopyrite structure CIS films free from In2O3 were obtained in our work.

  19. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    OpenAIRE

    Nishizawa S.; Shiratori S.

    2013-01-01

    Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these r...

  20. Nanoparticles and Nanostructured Thin Films Based on Strong Polycations of Integral type

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan; M. Mihai; S. Schwarz

    2005-01-01

    @@ 1Introduction Nonstoichiometric interpolyelectrolyte complexes (NIPECs) as nanoparticles, on the one side, and nanostructured thin films with controlled architecture, deposited on some planar surfaces, on the other side,have been designed by eco-friendly techniques using strong polycations (PC) containing quaternary ammonium groups in the backbone and either strong polyanions or multicharged azo dyes.

  1. The optical spectra of carbon-based thin films measured by the photothermal deflection spectroscopy (PDS)

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Pham, T.T.; Varga, Marián; Kromka, Alexander; Stuchlík, Jiří; Mao, H.B.

    Ostrava: Tanger, 2013. ISBN 978-80-87294-44-4. [International Conference NANOCON 2013 /5./. Brno (CZ), 16.10.2013-18.10.2013] R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : PDS * thin films * nanodiamond Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Real-time Holographic Display Based on a Super Fast Response Thin Film

    International Nuclear Information System (INIS)

    Real-time dynamic holographic display is obtained with super fast response in a thin film without any applied electric field. Holograms can be refreshed in the order of a millisecond and there is no cross talk between the recorded holograms because the hologram formed in the film is transient and can be completely self erased, and the hologram formation time and self-erasure time are both ∼1 ms. Holographic video display is achieved, which shows the real-time holographic image display capability of the thin film, and its much higher resolution than those of commercially available spatial light modulators. Furthermore, multiplexed hologram display using two polarization directions of a recorded light and multiple color holographic display at different laser wavelengths are presented, which demonstrate the feasibility of a RGB color holographic three-dimensional display with the thin film. Because the sample is easy to be fabricated into a large size screen and needs no external applied electric field, we think that the film can be developed into a large-size, dynamic, and color holographic three-dimensional display in the future.

  3. Dielectric property-microstructure relationship for nanoporous silica based thin films

    International Nuclear Information System (INIS)

    Low dielectric constant silica based films which incorporate a large amount of nanometer sized pores are attractive candidates as interlayer dielectrics in future gigascale integrated circuits chip technology. Nanoporous silica based films were deposited by surfactant templated self-assembly spin-on deposition (SOD). Other low-k materials with relatively low density silica based films were deposited by plasma enhanced chemical vapor deposition (PECVD), and some silica films were deposited by a CVD process. The SOD films have a higher porosity, compared to the PECVD/CVD films, as measured by x-ray reflectivity, Rutherford back scattering, and ellipsometry measurements. The SOD films have lower dielectric constants compared to the PECVD/CVD films, as derived from electrical (1 MHz) and optical (5x1014 Hz) measurements. The correlation between the dielectric constant and the porosity for the SOD films fits well to the lower prediction of the Lorentz-Lorenz model, and the PECVD/CVD films agree with the higher prediction of the Rayleigh model. These results suggest that the dielectric constant of the inhomogeneous two phase nanoporous silica based films deposited by SOD is significantly lowered by forming air voids, whereas the PECVD/CVD films consist of a homogeneous low density loose microstructure originating from the bonding nature alone, and therefore their dielectric constant is lowered to a smaller extent

  4. Plasmonic Based Sensing Using an Array of Au-Metal Oxide Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Joy, N.; Rogers, Phillip H.; Nandasiri, Manjula I.; Thevuthasan, Suntharampillai; Carpenter, Michael A.

    2012-12-04

    An optical plasmonic-based sensing array has been developed and tested for the selective and sensitive detection of H2, CO, and NO2 at a temperature of 500°C in an oxygen-containing background. The three element sensing array used Au nanoparticles embedded in separate thin films of yttria stabilized zirconia (YSZ), CeO2, and TiO2. A peak in the absorbance spectrum due to a localized surface plasmon resonance (LSPR) on the Au nanoparticles was monitored for each film during gas exposures and showed a blue shift in the peak positions for the reducing gases, H2 and CO, and a red shift for the oxidizing gas NO2. A more in-depth look at the sensing response was performed using the multivariate methods of principal component analysis (PCA) analysis and linear discriminant analysis (LDA) on data from across the entire absorbance spectrum range. Qualitative results from both methods showed good separation between the three analytes for both the full array and the Au-TiO2 sample. Quantification of LDA cluster separation using the Mahalanobis distance showed better cluster separation for the array, but there were some instances with the lowest concentrations where the single Au-TiO2 film had better separation than the array. A second method to quantify cluster separation in LDA space was developed using multidimensional volume analysis of the individual cluster volume, overlapped cluster volume and empty volume between clusters. Compared to the individual sensing elements, the array showed less cluster overlap, smaller cluster volumes, and more space between clusters, all of which were expected for improved separability between the analytes.

  5. Electrical and optical characterization of multilayered thin film based on pulsed laser deposition of metal oxides

    Science.gov (United States)

    Marotta, V.; Orlando, S.; Parisi, G. P.; Giardini, A.; Perna, G.; Santoro, A. M.; Capozzi, V.

    2000-12-01

    Thin films of semiconducting oxides such as In2O3, SnO2, and multilayers of these two compounds have been deposited by reactive pulsed laser ablation, with the aim to produce toxic gas sensors. Deposition of these thin films has been carried out by a frequency doubled Nd-YAG laser (λ=532 nm) on silicon (1 0 0) substrates. A comparison, among indium oxide, tin oxide, and multilayers of indium and tin oxides, has been performed. The influence of physical parameters such as substrate temperature, laser fluence and oxygen pressure in the deposition chamber has been investigated. The deposited films have been characterized by X-ray diffraction (XRD), optical and electric resistance measurements.

  6. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  7. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  8. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Science.gov (United States)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  9. High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films

    International Nuclear Information System (INIS)

    The free-carrier-modulated ZnO:N thin film-based flexible nanogenerators (NZTF-FNGs) are proposed and experimentally demonstrated. The suggested flexible nanogenerators (FNGs) are fabricated using N-doped ZnO thin films (NZTFs) as their piezoelectric active elements, which are deposited by a radio frequency magnetron sputtering technique with an N2O reactive gas as an in situ dopant source. Considerable numbers of N atoms are uniformly incorporated into NZTFs overall during their growth, which would enable them to significantly compensate the unintentional background free electron carriers both in the bulk and at the surface of ZnO thin films (ZTFs). This N-doping approach is found to remarkably enhance the performance of NZTF-FNGs, which shows output voltages that are almost two orders of magnitude higher than those of the conventionally grown ZnO thin film-based FNGs. This is believed to be a result of both substantial screening effect suppression in the ZTF bulk and more reliable Schottky barrier formation at the ZTF interfaces, which is all mainly caused by the N-compensatory doping process. Furthermore, the NZTF-FNGs fabricated are verified via charging tests to be suitable for micro-energy harvesting devices.

  10. High temperature superconducting thin film microwave filters

    International Nuclear Information System (INIS)

    Low loss thin films of high temperature superconductors (HTSC) on MgO as well as LaAlO3 substrates has been successfully developed. This effort aims at the development of application oriented innovations, such as HTSC based passive microwave devices. As an initial attempt in developing microwave devices, we have designed, fabricated and tested HTSC microstrip resonators at X-band using YBCO thin films on LaAlO3 substrates

  11. The preparation of ZnO based gas-sensing thin films by ink-jet printing method

    International Nuclear Information System (INIS)

    An ink-jet printing technique was applied to prepare ZnO based gas-sensing thin films. ZnO inks with appropriate viscosity and surface tension were prepared by sol-gel techniques, and printed onto substrates using a commercial printer. After the drying and heating treatment processes, continuous ZnO films were formed and studied by scanning electron microscopy, X-ray diffraction and by a home-made gas sensitivity measuring system. It was found that the morphology and electrical properties of the films changed significantly with the thickness of the films, which can be adjusted simply by printing on the film with increasing frequency. Highest resistance and sensitivity to acetone vapor were obtained when the film was prepared by printing only once on it. Different dopants with certain concentrations could be added into the films by printing with different dopant inks and printing frequency. All Pd, Ag, and ZrO2 dopants increased both the resistivity and the sensitivity of the films (180 ppm acetone). This work showed that the ink-jet printing technique was a convenient and low cost method to prepare films with controlled film thickness and dopant concentration

  12. Thin functional conducting polymer films

    OpenAIRE

    Tian, S.

    2005-01-01

    In the present study, thin functional conducting polyaniline (PANI) films, either doped or undoped, patterned or unpatterned, were prepared by different approaches. The properties of the obtained PANI films were investigated in detail by a combination of electrochemistry with several other techniques, such as SPR, QCM, SPFS, diffraction, etc. The sensing applications (especially biosensing applications) of the prepared PANI films were explored. Firstly, the pure PANI films were prepar...

  13. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described

  14. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets.

    Science.gov (United States)

    Park, Je Seob; Cho, Sung Min; Kim, Woo-Jae; Park, Juhyun; Yoo, Pil J

    2011-02-01

    In this study, we present a facile means of fabricating graphene thin films via layer-by-layer (LbL) assembly of charged graphene nanosheets (GS) based on electrostatic interactions. To this end, graphite oxide (GO) obtained from graphite powder using Hummers method is chemically reduced to carboxylic acid-functionalized GS and amine-functionalized GS to perform an alternate LbL deposition between oppositely charged GSs. Specifically, for successful preparation of positively charged GS, GOs are treated with an intermediate acyl-chlorination reaction by thionyl chloride and a subsequent amidation reaction in pyridine, whereby a stable GO dispersibility can be maintained within the polar reaction solvent. As a result, without the aid of additional hybridization with charged nanomaterials or polyelectrolytes, the oppositely charged graphene nanosheets can be electrostatically assembled to form graphene thin films in an aqueous environment, while obtaining controllability over film thickness and transparency. Finally, the electrical property of the assembled graphene thin films can be enhanced through a thermal treatment process. Notably, the introduction of chloride functions during the acyl-chlorination reaction provides the p-doping effect for the assembled graphene thin films, yielding a sheet resistance of 1.4 kΩ/sq with a light transmittance of 80% after thermal treatment. Since the proposed method allows for large-scale production as well as elaborate manipulation of the physical properties of the graphene thin films, it can be potentially utilized in various applications, such as transparent electrodes, flexible displays and highly sensitive biosensors. PMID:21207942

  15. Ceramics and amorphous thin films based on gallium sulphide doped by rare-earth sulphides

    International Nuclear Information System (INIS)

    Bulk ceramics of Ga2S3 and rare-earth sulfides (EuS, Gd2S3, Er2S3) as well as combinations thereof have been prepared by spark plasma sintering (SPS). The disk-shaped ceramics were used as targets for pulsed laser deposition (PLD) experiments to obtain amorphous thin films. The properties of these new bulks and amorphous thin films have been investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), optical transmission spectroscopy, and atomic force microscopy (AFM). In order to test the photoexpansion effect in Ga2S3 and the possibility to create planar arrays of microlenses, the film was irradiated with femtosecond laser pulses at different powers. For low laser power pulses (up to 100 mW power per pulse) a photoexpansion effect was observed, which leads to formation of hillocks with a height of 40–50 nm. EuS doped Ga2S3 thin film shows luminescence properties, which recommend them for optoelectronic applications. (invited article)

  16. TTF/TCNQ-based thin films and microcrystals. Growth and charge transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Solovyeva, Vita

    2011-05-26

    The thesis adresses several problems related to growth and charge transport phenomena in thin films of TTF-TCNQ and (BEDT-TTF)TCNQ. The following main new problems are addressed: - The influence of thin-film specific factors, such as the substrate material and growth-induced defects, on the Peierls transition temperature in TTF-TCNQ thin films was studied; - finite-size effects in TTF-TCNQ were investigated by considering transport properties in TTF-TCNQ microcrystals. The influence of the size of the crystal on the Peierls transition temperature was studied. In this context a new method of microcontact fabrication was employed to favor the measurements; - an analysis of radiation-induced defects in TTF-TCNQ thin films and microcrystals was performed. It was demonstrated than an electron beam can induce appreciable damage to the sample such that its electronic properties are strongly modified; - a bilayer growth method was established to fabricate (BEDT-TTF)TCNQ from the gas phase. This newly developed bilayer growth method was showed to be suitable for testing (BEDT-TTF)TCNQ charge-transfer phase formation; - the structure of the formed (BEDT-TTF)TCNQ charge-transfer compounds was analyzed by using a wide range of experimental techniques. An overview and the description of the basic physical principles underlying charge-transfer compounds is given in chapter 2. Experimental techniques used for the growth and characterization of thin films and microcrystals are presented in chapter 3. Chapter 4 gives an overview of the physical properties of the studied organic materials. Chapter 5 discussed the experimental study of TTF-TCNQ thin films. he Peierls transition in TTF-TCNQ is a consequence of the quasi-one-dimensional structure of the material and depends on different factors, studied in chapters 5 and 6. In contradistinction to TTF-TTCNQ, the (BEDT-TTF)TCNQ charge-transfer compound crystallizes in several different modifications with different physical properties

  17. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique

    International Nuclear Information System (INIS)

    The humidity sensing properties of the thin films of an organic semiconductor material orange dye (OD) and its composite with CNTs deposited at high gravity conditions have been reported. Impedance, phase angle, capacitance and dissipation of the samples were measured at 1 kHz and room temperature conditions. The impedance decreases and capacitance increases with an increase in the humidity level. It was found that the sensitivity of the OD-based thin film samples deposited at high gravity condition is higher than the samples deposited at low gravity condition. The impedances and capacitance sensitivities of the of the samples deposited under high gravity condition are 6.1 times and 1.6 times higher than the films deposited under low gravity condition. (paper)

  18. A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Douissard, P.A.; Martin, T.; Chevalier, V.; Rack, A. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Cecilia, A.; Baumbach, T.; Rack, A. [Karlsruhe Inst Technol ANKA, D-76021 Karlsruhe, (Germany); Couchaud, M. [CEA LETI, F-38054 Grenoble, (France); Dupre, K. [FEE GmbH, D-55743 Idar Oberstein, (Germany); Kuhbacher, M. [Helmholtz Zentrum Berlin Mat and Energie, D-14109 Berlin, (Germany)

    2010-07-01

    The efficiency of high-resolution pixel detectors for hard X-rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron-based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency a novel scintillator based on doped Lu{sub 2}SiO{sub 5} (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO-based thin crystal together with the high stopping power of the material allows for high-performance indirect X-ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible-light and the afterglow are investigated. A set-up to study the effect of the thin-film scintillator's temperature on its conversion efficiency is described as well it delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X-ray imaging systems based on different diffraction-limited visible-light optics and CCD cameras using among others LSO-based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high-resolution computed tomography for life sciences. (authors)

  19. Sol-Gel Deposited Porogen Based Porous Low-k Thin Films for Interlayer Dielectric Application in ULSI Circuits

    Directory of Open Access Journals (Sweden)

    Yogesh S. Mhaisagar

    2012-10-01

    Full Text Available Porous SiO2 low-k thin films with low dielectric constant were successfully deposited by sol-gel spin-coating technique. The films were deposited by using Tertaethylorthosilicate (TEOS as a precursor solution and HF was used as an acid catalyst solution. The Tween80 with different volumetric concentrations i.e. 0.0 ml, 0.5 ml and 0.7 ml was used as a pore generator to lower the dielectric constant of the films by introducing the porosity in the films matrix. The thickness and refractive index (RI of low-k thin films have been measured by Ellipsometer. The refractive index and thickness of the films observed to be decreasing with increase in Tween80 concentration. The chemical bonding structures of films were analyzed by using Fourier transform infrared spectroscopy (FT-IR spectroscopy and the stretching, bending and rocking peaks appear at 1077 cm – 1, 967  cm – 1, 447  cm – 1 respectively confirm the formation of Si-O-Si network. The RIs of the films deposited at 0 ml, 0.5 ml and at 0.7 ml of Tween80 concentration are found to be 1.34, 1.26, and 1.20 respectively. Based on RI values of the films, the porosity percentage, density and dielectric constant have been calculated by standard formulation method. The increase in porosity percentage of films from 3 % to 55 % with increase in Tween80 concentration reveals that, the most of the hydroxyl group and porogen get evaporated and form more voids in the films. This increase in porosity percentage causes to lower the dielectric constant of films and was found to be 2.26 at the 0.7 ml of Tween80 concentration. Such porogen based low dialectic constant thin films can be suitable for interlayer dielectric (ILD applications in ULSI circuits.

  20. A thermochromic thin film based on host-guest interactions in a layered double hydroxide.

    Science.gov (United States)

    Wang, Xinrui; Lu, Jun; Shi, Wenying; Li, Feng; Wei, Min; Evans, David G; Duan, Xue

    2010-01-19

    Optically transparent thin films with thermochromic properties have been fabricated by means of cointercalation of different molar ratios of 4-(4-anilinophenylazo)benzenesulfonate (AO5) and sodium dodecylbenzene sulfonate (SDS) into the galleries of a ZnAl layered double hydroxide (LDH). The X-ray diffraction (XRD) patterns of these thin films show that they are assembled in a highly c-oriented manner, and the basal spacing ranges from 2.95 to 2.63 nm with varying AO5/SDS molar ratio. The preferential orientation of AO5 in the galleries of 10% AO5-LDH (AO5/SDS = 10:90, molar percentage) was evaluated by the fluorescence polarization technique; the results show that AO5 anions are accommodated between sheets of ZnAl-LDH as monomeric units with a tilt angle Psi (defined as the angle between the transition dipole moment of the AO5 anion with respect to the normal to the LDH layer) of 74 degrees. It was found that the composite film exhibits marked thermochromic behavior (light yellow reddish-orange) in the temperature range of 35-65 degrees C, which is reversible over a number of heating-cooling cycles. It has been demonstrated that the thermochromic behavior results from tautomerism of interlayer AO5 and furthermore that both the host-guest and guest-guest interactions are key factors, since pristine AO5 shows no thermochromic performance. The 10% AO5-LDH film shows the highest thermochromic efficiency of all the films examined. Furthermore, a reversible contraction and expansion of the LDH basal spacing was also observed for this thin film over the same temperature range. PMID:19761228

  1. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte

    Science.gov (United States)

    Kammoun, M.; Berg, S.; Ardebili, H.

    2015-10-01

    Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method

  2. Photodiode Based on CdO Thin Films as Electron Transport Layer

    Science.gov (United States)

    Soylu, M.; Kader, H. S.

    2016-08-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage (I-V) characteristics of the CdO/p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances (R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  3. Electrical characteristics of SiGe-base bipolar transistors on thin-film SOI substrates

    International Nuclear Information System (INIS)

    This paper, based on two-dimensional simulations, provides a comprehensive analysis of the electrical characteristics of the Silicon germanium (SiGe)-base bipolar transistors on thin-film siliconon-insulator (SOI) substrates. The impact of the buried oxide thickness (TOX), the emitter width (WE), and the lateral distance between the edge of the intrinsic base and the reach-through region (Lcol) on both the AC and DC device characteristics was analyzed in detail. Regarding the DC characteristics, the simulation results suggest that a thicker TOX gives a larger base-collector breakdown voltage (BVCEO), whereas reducing the TOX leads to an enhanced maximum electric field at the B-C junction. As for the AC characteristics, cut-off frequency (fT ) increases slightly with increasing buried oxide thickness and finally saturates to a constant value when the buried oxide thickness is about 0.15 μm. The collector-substrate capacitance (CCS) decreases with increasing buried oxide thickness while the maximum oscillation frequency (fmax) increases with increasing buried oxide thickness. Furthermore, the impact of self-heating effects in the device was analyzed in various areas. The thermal resistance as a function of the buried oxide thickness indicates that the thermal resistance of the SiGe-base bipolar transistor on a SOI substrate is slightly higher than that of a bulk SiGe-base bipolar transistor. The thermal resistance is reduced by ∼37.89% when the emitter width is increased by a factor of 5 for a fixed buried oxide thickness of 0.1 μm. All the results can be used to design and optimize SiGe-base bipolar transistors on SOI substrates with minimum thermal resistance to enhance device performance.

  4. A Method to Extract the Intrinsic Mechanical Properties of Soft Metallic Thin Films Based on Nanoindentation Continuous Stiffness Measurement Technique

    International Nuclear Information System (INIS)

    In order to determine accurately the intrinsic hardness of the soft metallic thin film on a hard substrate using nanoindentation, a proper methodology irrespective of several important effects the Oliver-Pharr method concerns is described. First, the original analysis data such as the load, P, and contact stiffness, S, as a function of the indentation depth, h, are acquired by means of the continuous stiffness measurement (CSM) technique. By CSM, the complicating effects including indentation creep behaviour of metal materials as well as thermal drift on the measured results are avoided effectively. Then, the hardness of film-only is calculated via a material characteristic parameter, P/S2, which is independent of the contact area, A, based on the constant modulus assumption method. In this way, the influences of the substrate contribution and material pile-up behaviour needn't be accounted for. Guided by above ideas, moreover, a 504 nm Au film on the glass substrate system was chosen to study. The results show that the hardness of Au thin film is 1.6±1 GPa, which agree well with the literature. While the composite hardness measured by Oliver-Pharr method is between 2∼3GPa, obviously, which is overestimated. This implies the present methodology is a more accurate and simple way for extracting the true hardness of the soft metallic thin films

  5. How do evaporating thin films evolve? Unravelling phase-separation mechanisms during solvent-based fabrication of polymer blends

    KAUST Repository

    Wodo, Olga

    2014-10-13

    © 2014 AIP Publishing LLC. Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin and propagation characteristics of each of these modes. Finally, we construct a mode diagram that maps processing conditions with individual modes. The idea introduced here enables choosing processing conditions to tailor film morphology characteristics and paves the ground for a deeper understanding of morphology control with the ultimate goal of precise, yet affordable, morphology manipulation for a large spectrum of applications.

  6. Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, R. M., E-mail: rpinto@inesc-mn.pt [INESC MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); CQFM, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Gouveia, W. [INESC MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); Neves, A. I. S. [INESC MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL Exeter (United Kingdom); Alves, H. [INESC MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); CICECO, Physics Department, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2015-11-30

    We report on highly efficient organic phototransistors (OPTs) based on thin-film/single-crystal planar bilayer junctions between 5,6,11,12-tetraphenyltetracene (rubrene) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 61}BM). The OPTs show good field-effect characteristics in the dark, with high hole-mobility (4–5 cm{sup 2} V{sup −1} s{sup −1}), low-contact resistance (20 kΩ cm), and low-operating voltage (≤5 V). Excellent sensing capabilities allow for light detection in the 400–750 nm range, with photocurrent/dark current ratio as high as 4 × 10{sup 4}, responsivity on the order of 20 AW{sup −1} at 27 μW cm{sup −2}, and an external quantum efficiency of 52 000%. Photocurrent generation is attributed to enhanced electron and hole transfer at the interface between rubrene and PC{sub 61}BM, and fast response times are observed as a consequence of the high-mobility of the interfaces. The optoelectronic properties exhibited in these OPTs outperform those typically provided by a-Si based devices, enabling future applications where multifunctionality in a single-device is sought.

  7. Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures

    International Nuclear Information System (INIS)

    We report on highly efficient organic phototransistors (OPTs) based on thin-film/single-crystal planar bilayer junctions between 5,6,11,12-tetraphenyltetracene (rubrene) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). The OPTs show good field-effect characteristics in the dark, with high hole-mobility (4–5 cm2 V−1 s−1), low-contact resistance (20 kΩ cm), and low-operating voltage (≤5 V). Excellent sensing capabilities allow for light detection in the 400–750 nm range, with photocurrent/dark current ratio as high as 4 × 104, responsivity on the order of 20 AW−1 at 27 μW cm−2, and an external quantum efficiency of 52 000%. Photocurrent generation is attributed to enhanced electron and hole transfer at the interface between rubrene and PC61BM, and fast response times are observed as a consequence of the high-mobility of the interfaces. The optoelectronic properties exhibited in these OPTs outperform those typically provided by a-Si based devices, enabling future applications where multifunctionality in a single-device is sought

  8. Analysis of the diode characteristics of thin film solar cells based on CdTe

    International Nuclear Information System (INIS)

    A physical approach to the optimization of photoelectric processes in thin film multilayer systems has been developed. By means of a simulation of the influence of light-diode characteristics on the efficiency factor, it is concluded that the optimization of the photoelectric processes in ITO/CdS/CdTe/Cu/Au film solar cells is mainly determined by two competing physical mechanisms: an increase in the efficiency of the process of distribution of nonequilibrium charge carriers and a reduction in the efficiency of their generation, as the CdS layer thickness grows

  9. High-performance metal–semiconductor–metal UV photodetector based on spray deposited ZnO thin films

    International Nuclear Information System (INIS)

    Highlights: • ZnO based MSM UV photodetector by economical chemical spray pyrolysis technique. • Effect of substrate temperature on properties of ZnO based MSM UV photodetector. • Photoresponse mechanism by optical switching property of ZnO thin film photodetectors. - Abstract: Zinc oxide (ZnO) based metal–semiconductor–metal (MSM) ultraviolet photodetectors at different substrate temperatures were fabricated on glass substrates by economical chemical spray pyrolysis technique and its UV photoresponsivity was measured at room temperature. The samples were characterized with respect to their structural, morphological, and optical properties using various methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis spectroscopy, transmittance, reflectance etc. The synthesized ZnO thin films were c-axis oriented with hexagonal crystal structure as confirmed from XRD. All deposited films were specular and show high transmittance (∼85%) in visible region with steep fall off at 375 nm. The photoconductive MSM UV photodetector showed relatively high photocurrent (1.3 mA) and fast switching. ZnO thin films exhibited relatively high photoresponsivity (788 A/W) with cut of wavelength ∼375 nm signifying their application as UV detector

  10. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  11. Development of Bismuth-based Lead-free Piezoelectric Materials: Thin Film Piezoelectric Materials via PVD and CSD Routes

    Science.gov (United States)

    Jeon, Yu Hong

    Piezoelectric materials have been widely used in electromechanical actuators, sensors, and ultrasonic transducers. Among these materials, lead zirconate titanate Pb(Zr1-xTix)O3 (PZT) has been primarily investigated due to its excellent piezoelectric properties. However, environmental concerns due to the toxicity of PbO have led to investigations into alternative materials systems. Bismuth-based perovskite piezoelectric materials such as (Bi0.5,Na0.5)TiO3 - (Bi0.5K 0.5)TiO3 (BNT - BKT), (Bi0.5,Na0.5 )TiO3 - (Bi0.5K0.5)TiO3 - BaTiO3(BNT - BKT - BT), (Bi0.5K 0.5)TiO3 - Bi(Zn0.5,Ti0.5)O 3 (BKT - BZT), and (Bi0.5,Na0.5)TiO 3 - (Bi0.5K0.5)TiO3 - Bi(Mg 0.5,Ti0.5)O3 (BNT - BKT - BMgT) have been explored as potential alternatives to PZT. These materials systems have been extensively studied in bulk ceramic form, however many of the ultimate applications will be in thin film embodiments (i.e., microelectromechanical systems). For this reason, in this thesis these lead-free piezoelectrics are synthesized in thin film form to understand the structure-property-processing relationships and their impact on the ultimate device response. Fabrication of high quality of 0.95BKT - 0.05BZT thin films on platinized silicon substrates was attempted by pulsed laser deposition. Due to cation volatility, deposition parameters such as substrate temperature, deposition pressure, and target-substrate distance, as well as target overdoping were explored to achieve phase pure materials. This route led to high dielectric loss, indicative of poor ferroelectric behavior. This was likely a result of the poor thin film morphology observed in films deposited via this method. Subsequently, 0.8BNT - 0.2BKT, 85BNT - 10BKT - 5BT, and 72.5BNT - 22.5BKT - 5BMgT (near morphotropic phase boundary composition) were synthesized via chemical solution deposition. To compensate the loss of A-site cations, overdoped precursor solutions were prepared. Crystallization after each spin cast layer were required to

  12. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films

    OpenAIRE

    Stefan Rung; Johannes Barth; Ralf Hellmann

    2014-01-01

    Thin film ablation with pulsed nanosecond lasers can benefit from the use of beam shaping optics to transform the Gaussian beam profile with a circular footprint into a Top-Hat beam profile with a rectangular footprint. In general, the quality of the transformed beam profile depends strongly on the beam alignment of the entire laser system. In particular, the adjustment of the beam shaping element is of upmost importance. For an appropriate alignment of the beam shaper, it is generally necess...

  13. Investigation of gamma-ray sensitivity of neutron detectors based on thin converter films

    OpenAIRE

    Khaplanov, Anton; Piscitelli, Francesco; Buffet, Jean-Claude; Clergeau, Jean-Francois; Correa, Jonathan; Van Esch, Patrick; Ferraton, Mathieu; Guerard, Bruno; Hall-Wilton, Richard

    2013-01-01

    Currently, many detector technologies for thermal neutron detection are in development in order to lower the demand for the rare 3He gas. Gas detectors with solid thin film neutron converters readout by gas proportional counter method have been proposed as an appropriate choice for applications where large area coverage is necessary. In this paper, we investigate the probability for gamma-rays to generate a false count in a neutron measurement. Simulated results are compared to measurement wi...

  14. Flexible gastrointestinal motility pressure sensors based on aluminum thin-film strain-gauge arrays

    OpenAIRE

    Silva, Luís Rebelo; Sousa, Paulo J.; L.M. Gonçalves; Minas, Graça

    2015-01-01

    This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively cha...

  15. Superlattice-based thin-film thermoelectric modules with high cooling fluxes

    OpenAIRE

    Bulman, Gary; Barletta, Phil; Lewis, Jay; Baldasaro, Nicholas; Manno, Michael; Bar-Cohen, Avram; Yang, Bao

    2016-01-01

    In present-day high-performance electronic components, the generated heat loads result in unacceptably high junction temperatures and reduced component lifetimes. Thermoelectric modules can, in principle, enhance heat removal and reduce the temperatures of such electronic devices. However, state-of-the-art bulk thermoelectric modules have a maximum cooling flux q max of only about 10 W cm−2, while state-of-the art commercial thin-film modules have a q max

  16. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    Science.gov (United States)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  17. Liquid-mix synthesis of oxide powders and thin films using a starch-based polymer

    International Nuclear Information System (INIS)

    A commercially available water-soluble starch derivative was used as the sole organic precursor in the Liquid-Mix synthesis of mixed-cation oxide powders and thin films. The acidified polymer (by nitric acid) was able to complex metal ions through the carboxylate ligands. Loosely agglomerated fine powders as well as dense thin films of complex oxides have been prepared using the same type of polymer. Oxide powders of Cr-doped lanthanum aluminate and yttrium aluminum garnet both crystallized in a single step, without forming any intermediate or second phases, when the amorphous resin intermediates were calcined at 650 C and 750 C for 2 hours, respectively. It was demonstrated that nitric acid could effectively reduce the viscosity of the polymer-nitrate solution to make it suitable for spin coating process. Dense thin films of Y(8 mol%)-doped ZrO2 were formed on Si and Al2O3 substrates by spin coating the polymeric solution and heating at temperatures below 1,000 C

  18. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  19. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  20. Flexible and Patterned Thin Film Polarizer: Photopolymerization of Perylene-based Lyotropic Chromonic Reactive Mesogens.

    Science.gov (United States)

    Im, Pureun; Kang, Dong-Gue; Kim, Dae-Yoon; Choi, Yu-Jin; Yoon, Won-Jin; Lee, Myong-Hoon; Lee, In-Hwan; Lee, Cheul-Ro; Jeong, Kwang-Un

    2016-01-13

    A perylene-based reactive mesogen (DAPDI) forming a lyotropic chromonic liquid crystal (LCLC) phase was newly designed and synthesized for the fabrication of macroscopically oriented and patterned thin film polarizer (TFP) on the flexible polymer substrates. The anisotropic optical property and molecular self-assembly of DAPDI were investigated by the combination of microscopic, scattering and spectroscopic techniques. The main driving forces of molecular self-assembly were the face-to-face π-π intermolecular interaction among aromatic cores and the nanophase separation between hydrophilic ionic groups and hydrophobic aromatic cores. Degree of polarization for the macroscopically oriented and photopolymerized DAPDI TFP was estimated to be 99.81% at the λmax = 491 nm. After mechanically shearing the DAPDI LCLC aqueous solution on the flexible polymer substrates, we successfully fabricated the patterned DAPDI TFP by etching the unpolymerized regions selectively blocked by a photomask during the photopolymerization process. Chemical and mechanical stabilities were confirmed by the solvent and pencil hardness tests, and its surface morphology was further investigated by optical microscopy, atomic force microscopy, and three-dimensional surface nanoprofiler. The flexible and patterned DAPDI TFP with robust chemical and mechanical stabilities can be a stepping stone for the advanced flexible optoelectronic devices. PMID:26616135

  1. Quantitative determination of element distributions in silicon based thin film solar cells using SNMS.

    Science.gov (United States)

    Gastel, M; Breuer, U; Holzbrecher, H; Becker, J S; Dietze, H J; Kubon, M; Wagner, H

    1995-10-01

    The determination of elemental distributions in thin film solar cells based on amorphous silicon using electron beam SNMS is possible by quantifying the measured ion intensities. The relative sensitivity factors (RSFs) for all elements measured have to be known. The RSFs have been determined experimentally using implantation and bulk standards with known concentrations of the interesting elements. The measured RSFs have been compared with calculated RSFs. The model used for the calculation of the RSFs takes into account the probability for electron impact ionization and the dwell time of the neutrals inside the postionization region. The comparison between measured and calculated RSF shows, that this model is capable to explain the RSFs for most elements. Differences between calculated and measured values can be explained by the formation of hydride and fluoride molecules (in case of H and F) and influences of the angular distribution of the sputtered neutrals in case of Al. The experimentally determined RSFs have been used for a quantification of depth profiles of the i-, buffer-, p- and front contact layers of a-Si solar cells. PMID:15048522

  2. Inverter Circuits Using ZnO Nanoparticle Based Thin-Film Transistors for Flexible Electronic Applications

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2016-08-01

    Full Text Available Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high-k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the ION/IOFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V/V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates.

  3. A physics-based model of threshold voltage for amorphous oxide semiconductor thin-film transistors

    Science.gov (United States)

    Chen, Chi-Le; Chen, Wei-Feng; Zhou, Lei; Wu, Wei-Jing; Xu, Miao; Wang, Lei; Peng, Jun-Biao

    2016-03-01

    In the application of the Lambert W function, the surface potential for amorphous oxide semiconductor thin-film transistors (AOS TFTs) under the subthreshold region is approximated by an asymptotic equation only considering the tail states. While the surface potential under the above-threshold region is approximated by another asymptotic equation only considering the free carriers. The intersection point between these two asymptotic equations represents the transition from the weak accumulation to the strong accumulation. Therefore, the gate voltage corresponding to the intersection point is defined as threshold voltage of AOS TFTs. As a result, an analytical expression for the threshold voltage is derived from this novel definition. It is shown that the threshold voltage achieved by the proposed physics-based model is agreeable with that extracted by the conventional linear extrapolation method. Furthermore, we find that the free charge per unit area in the channel starts increasing sharply from the threshold voltage point, where the concentration of the free carriers is a little larger than that of the localized carriers. The proposed model for the threshold voltage of AOS TFTs is not only physically meaningful but also mathematically convenient, so it is expected to be useful for characterizing and modeling AOS TFTs.

  4. Effective contact resistance of zinc-tin oxide-based thin film transistors.

    Science.gov (United States)

    Kang, Youjin; Han, Dongsuk; Park, Jaehyung; Shin, Sora; Choi, Duckkyun; Park, Jongwan

    2014-11-01

    We investigated different source/drain (S/D) electrode materials in thin-film transistors (TFTs) based on amorphous zinc-tin oxide (ZTO) semiconductors. The transfer length, channel conductance, and effective contact resistance between the S/D electrodes and the a-ZTO channel layer were examined. Total ON resistance (R(T)), transfer length (L(T)) and effective contact resistance (R(c-eff)) were extracted by the well-known transmission-line method (TLM) using a series of TFTs with different channel lengths. When the width of ZTO channel layer was fixed as 50 μm, the lengths were varying from 10 to 50 μm. The channel layer and S/D electrode were defined by lift-off process and for the S/D electrodes, indium-tin oxide (ITO), Cu, and Mo were used. The resistivity and work function values of electrode materials were considered when selected as candidates for S/D electrodes of ZTO-TFTs. The results showed that the ZTO-TFTs with Mo S/D electrodes had the lowest effective contact resistance indicating that ZTO-TFTs with Mo electrodes have better electrical performance compared to others. PMID:25958489

  5. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    Science.gov (United States)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  6. Thermal annealing of thin PECVD silicon-oxide films for airgap-based optical filters

    Science.gov (United States)

    Ghaderi, M.; de Graaf, G.; Wolffenbuttel, R. F.

    2016-08-01

    This paper investigates the mechanical and optical properties of thin PECVD silicon-oxide layers for optical applications. The different deposition parameters in PECVD provide a promising tool to manipulate and control the film structure. Membranes for use in optical filters typically are of ~λ/4n thickness and should be slightly tensile for remaining flat, thus avoiding scattering. The effect of the thermal budget of the process on the mechanical characteristics of the deposited films was studied. Films with compressive stress ranging from  ‑100 to 0 MPa were deposited. Multiple thermal annealing cycles were applied to wafers and the in situ residual stress and ex situ optical properties were measured. The residual stress in the films was found to be highly temperature dependent. Annealing during the subsequent process steps results in tensile stress from 100 to 300 MPa in sub-micron thick PECVD silicon-oxide films. However, sub-100 nm thick PECVD silicon-oxide layers exhibit a lower dependence on the thermal annealing cycles, resulting in lower stress variations in films after the annealing. It is also shown that the coefficient of thermal expansion, hence the residual stress in layers, varies with the thickness. Finally, several free-standing membranes were fabricated and the results are compared.

  7. Radio-frequency sputter deposition of boron nitride based thin films

    International Nuclear Information System (INIS)

    Thin films (∼2 μm) of boron nitride, titanium boron nitride, and titanium aluminum boron nitride have been grown on molybdenum, niobium, and cemented carbide substrates employing nonreactive as well as reactive rf magnetron sputter deposition from either a BN, a TiN-BN, or a TiN--AlN--BN target. Substrates have been rf biased, with dc potentials up to -200 V. By means of nonreactive sputtering mixed-phase structures with dominant phases B48B2N2 (using a BN target), or B48B2N2 and hexagonal Ti--B--N (using a TiN--BN or a TiN--AlN--BN target) are formed. Reactive deposition leads to the existence of hexagonal BN in all deposition modes. In the cases of Ti--B--N and Ti--Al--B--N films this phase is accompanied by fcc Ti--B--N. SEM cross sections revealed very fine grained to fracture-amorphous film structures. Hardness measurements gave the following maximum HV 0.02 values: B--N films 2800, Ti--B--N films 2750, and Ti--Al--B--N films 1650

  8. Studies on electrochromic smart windows based on titanium doped WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karuppasamy, A. [Semiconductor Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai - 600036 (India)], E-mail: ksamy@physics.iitm.ac.in; Subrahmanyam, A. [Semiconductor Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai - 600036 (India)

    2007-12-03

    Titanium doped tungsten oxide thin films have been deposited by co-sputtering metallic titanium and tungsten in the presence of argon and oxygen. The oxygen chamber pressure was varied in the range 1 x 10{sup -3}-4 x 10{sup -3} mbar keeping the sputtering power of titanium and tungsten constant at 2 W/cm{sup 2} and 3 W/cm{sup 2} respectively. The effect of oxygen chamber pressure on the electrochromic (EC) properties of titanium doped WO{sub 3} has been investigated in three steps. First, the material properties of EC film were investigated by XRD, SEM, and UV-Vis spectrophotometer; the thickness and the optical constants were estimated from the reflectance measurements. Second, the electrochromic behavior of the EC films was characterized by cyclic voltammetry (CV) using 1.0 M HCl as electrolyte. The optical modulation ({delta}T) and coloration efficiency (CE) of the titanium doped tungsten oxide thin film deposited at an O{sub 2} pressure of 4 x 10{sup -3} mbar was found to be better with typical values of {delta}T = 70% and CE = 66 cm{sup 2}/C (at {lambda} = 550 nm). Finally, EC devices consisting of five layers (Glass/ITO/Ti:WO{sub 3}/Ta{sub 2}O{sub 5}/NiO/ITO) have been fabricated and tested.

  9. Studies on electrochromic smart windows based on titanium doped WO3 thin films

    International Nuclear Information System (INIS)

    Titanium doped tungsten oxide thin films have been deposited by co-sputtering metallic titanium and tungsten in the presence of argon and oxygen. The oxygen chamber pressure was varied in the range 1 x 10-3-4 x 10-3 mbar keeping the sputtering power of titanium and tungsten constant at 2 W/cm2 and 3 W/cm2 respectively. The effect of oxygen chamber pressure on the electrochromic (EC) properties of titanium doped WO3 has been investigated in three steps. First, the material properties of EC film were investigated by XRD, SEM, and UV-Vis spectrophotometer; the thickness and the optical constants were estimated from the reflectance measurements. Second, the electrochromic behavior of the EC films was characterized by cyclic voltammetry (CV) using 1.0 M HCl as electrolyte. The optical modulation (ΔT) and coloration efficiency (CE) of the titanium doped tungsten oxide thin film deposited at an O2 pressure of 4 x 10-3 mbar was found to be better with typical values of ΔT = 70% and CE = 66 cm2/C (at λ = 550 nm). Finally, EC devices consisting of five layers (Glass/ITO/Ti:WO3/Ta2O5/NiO/ITO) have been fabricated and tested

  10. Nanotemplated lead telluride thin films

    OpenAIRE

    Li, Xiaohong; Nandhakumar, Iris S.; Attard, George S.; Markham, Matthew L.; Smith, David C.; Baumberg, Jeremy J.

    2009-01-01

    Direct lyotropic liquid crystalline templating has been successfully applied to produce nanostructured IV–VI semiconductor PbTe thin films by electrodeposition both on gold and n-type (100) silicon substrates. The PbTe films were characterized by transmission electron microscopy, X-ray diffraction and polarized optical microscopy and the results show that the films have a regular hexagonal nanoarchitecture with a high crystalline rock salt structure and exhibit strong birefringenc...

  11. Thin films and froth flotation

    International Nuclear Information System (INIS)

    The properties of thin, aqueous films on solid surfaces and their central role in the froth flotation process are discussed. The stability of these films can generally be described in terms of electrostatic and van der Waals forces. Significant experimental and theoretical advances are required in many areas (e.g. short range forces, film drainage) before a clear picture of the collision of, adhesion between and detachment of bubbles and particles will emerge. (orig.)

  12. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    Science.gov (United States)

    Shrestha, R.; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G. H.; Choi, T. Y.

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m-1 K-1 at room temperature.

  13. Thin-film ternary superconductors

    International Nuclear Information System (INIS)

    Physical properties and preparation methods of thin film ternary superconductors, (mainly molybdenum chalcogenides) are reviewed. Properties discussed include the superconducting critical fields and critical currents, resistivity and the Hall effect. Experimental results at low temperatures, together with electron microscopy data are used to determine magnetic flux pinning mechanisms in films. Flux pinning results, together with an empirical model for pinning, are used to get estimates for possible applications of thin film ternary superconductors where high current densities are needed in the presence of high magnetic fields. The normal state experimental data is used to derive several Fermi surface parameters, e.g. the Fermi velocity and the effective Fermi surface area. (orig.)

  14. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    OpenAIRE

    R. Shrestha; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G H; Choi, T. Y.

    2013-01-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady he...

  15. Measurement of serum prostate cancer markers using a nanopore thin film based optofluidic chip.

    Science.gov (United States)

    Alzghoul, Salah; Hailat, Mohammad; Zivanovic, Sandra; Que, Long; Shah, Girish V

    2016-03-15

    Currently used cancer marker for prostate adenocarcinoma (PC), serum prostate-specific antigen (PSA), greatly overestimates PC population. Patients with high PSA levels have to undergo unnecessary but physically painful and expensive procedure such as prostate biopsies repeatedly. The reliability of PC test can be greatly increased by finding a protein that is secreted selectively by malignant, but not normal, prostate cells. A recently discovered novel protein, referred as neuroendocrine marker (NEM), is secreted only by malignant prostate cells and released in blood circulation. Although NEM seems to be significantly more reliable based on the data obtained from a limited cohort, currently available NEM ELISA is not suitable for undertaking a large study. Therefore, the goal of the present study was to develop an alternative, label-free assay system that can reliably measure NEM and PSA in patient samples. Herein an optofluidic chip that can reliably detect PSA as well as NEM in patient samples has been developed. The optofluidic chip, which consists of arrayed nanopore-based sensors fabricated from anodic aluminum oxide (AAO) thin film, offers improved sensitivity upon the optimization of the concentration of the detector antibodies immobilized on the sensor surface. The results demonstrate that the chip is reliable, extremely sensitive and requires just 1 µl of patient serum (or even less) to measure PSA and NEM even in a non-cancer individual. Compared with the traditional ELISA for PSA, the nanopore-based sensor assay is 50-100 fold more sensitive, and offers many advantages such as elimination of labeled antigen, need for sophisticated equipment and highly trained individuals. These advantages, along with the low cost, should make the technology suitable for point-of-care application to screen elderly male populations for PC and to monitor the progress of patients undergoing PC treatment. PMID:26457734

  16. Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique

    Directory of Open Access Journals (Sweden)

    I. M. Dharmadasa

    2014-06-01

    Full Text Available Thin film solar cells based on cadmium telluride (CdTe are complex devices which have great potential for achieving high conversion efficiencies. Lack of understanding in materials issues and device physics slows down the rapid progress of these devices. This paper combines relevant results from the literature with new results from a research programme based on electro-plated CdS and CdTe. A wide range of analytical techniques was used to investigate the materials and device structures. It has been experimentally found that n-, i- and p-type CdTe can be grown easily by electroplating. These material layers consist of nano- and micro-rod type or columnar type grains, growing normal to the substrate. Stoichiometric materials exhibit the highest crystallinity and resistivity, and layers grown closer to these conditions show n → p or p → n conversion upon heat treatment. The general trend of CdCl2 treatment is to gradually change the CdTe material’s n-type electrical property towards i-type or p-type conduction. This work also identifies a rapid structural transition of CdTe layer at 385 ± 5 °C and a slow structural transition at higher temperatures when annealed or grown at high temperature. The second transition occurs after 430 °C and requires more work to understand this gradual transition. This work also identifies the existence of two different solar cell configurations for CdS/CdTe which creates a complex situation. Finally, the paper presents the way forward with next generation CdTe-based solar cells utilising low-cost materials in their columnar nature in graded bandgap structures. These devices could absorb UV, visible and IR radiation from the solar spectrum and combine impact ionisation and impurity photovoltaic (PV effect as well as making use of IR photons from the surroundings when fully optimised.

  17. Delafossite CuFeO2 thin films electrochemically grown from a DMSO based solution

    International Nuclear Information System (INIS)

    Highlights: • A detailed electrochemical study about the electrodeposition of CuFeO2 from DMSO solution is presented. • The use of a precise quantity of chloride ion as complexing agent is decisive in order to obtain stoichiometric compounds (Cu:Fe ratio 1:1). • As-grown compounds were amorphous. Thus, a thermal treatment was required in order to obtain crystalline CuFeO2 with delafossite structure. • The formation of CuFeO2 was confirmed by XRD and XPS analyses. • Through optical measurements, four absorption in different spectrum regions were characterized: A IR absorption (Eg(IR) = 1.64 eV), two visible absorptions (Egdir(vis) = 2.35 eV, and Egind(vis) = 2.03 eV) and an UV absorption (Egind(UV) = 3.37 eV). - Abstract: This study shows the results obtained in the direct electrodeposition of CuFeO2 thin films from a DMSO based solution. First, a detailed electrochemical study was carried out in order to determinate the best condition for the CuFeO2 electrodeposition. The films were obtained potentiostatically from a 0.01 M CuCl2 + 0.005 M Fe(ClO4)3 + 0.1 M LiClO4 solution in the presence of molecular oxygen at 50 °C onto FTO/glass substrates. In all cases, the time of electrodeposition was 1000 s. The grown films presented a yellow-reddish color and exhibit an homogeneous aspect. Analyses of composition carried out through EDS, shown that a stoichiometric composition (atomic relation Cu:Fe = 1:1) is obtained at a potential of –0.6 V. However, as-grown films analyzed through XRD experiences did not evidence the presence of CuFeO2 compound presumably because it is amorphous. An annealing treatment at 650° C for 30 minutes in an argon atmosphere was necessary to transform the solid phase of the as grown films in crystalline CuFeO2. Furthermore, the presence of CuFeO2 has been confirmed through XPS analyses. UV-vis analyzes shown a ladder-like appearance due to the presence of several absorption edges from the IR to the UV spectrum region. The most

  18. Assessing the degradation mechanisms and current limitation design rules of SICR-based thin-film resistors in integrated circuits

    OpenAIRE

    Li, Yuan; Donnet, David; Grzegorczyk, Andrzej; Cavelaars, Jan; Kuper, Fred

    2010-01-01

    The degradation of SiCr-based thin-film resistors under current and temperature stress and the Joule heating in the resistors are experimentally investigated to set current limitation design rules. Degradation mechanisms, the failure modes, and the impact of the stress test on Temperature Coefficient of Resistance (TCR), are studied with the use of various test structures stressed under different conditions (temperature, current density and direction), followed by optical inspections, Infra-R...

  19. Non-conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce (Italy); National Institute of Nuclear Physics and University of Salento, 73100 Lecce (Italy); D’Elia, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce (Italy); National Institute of Nuclear Physics and University of Salento, 73100 Lecce (Italy); Di Giulio, M.; Maruccio, G. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce (Italy); Cola, A. [National Council Research, Institute for Microelectronics and Microsystems, 73100 Lecce (Italy); Stankova, N.E. [Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Kovacheva, D.G. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2014-07-01

    Copper (Cu) thin films were deposited on yttrium (Y) substrate by sputtering. During the deposition, a small central area of the Y substrate was shielded to avoid the film deposition and was successively used to study its photoemissive properties. This configuration has two advantages: the cathode presents (i) the quantum efficiency and the work function of Y and (ii) high electrical compatibility when inserted into the conventional radio-frequency gun built with Cu bulk. The photocathode was investigated by scanning electron microscopy to determine surface morphology. X-ray diffraction and atomic force microscopy studies were performed to compare the structure and surface properties of the deposited film. The measured electrical resistivity value of the Cu film was similar to that of high purity Cu bulk. Film to substrate adhesion was also evaluated using the Daimler–Benz Rockwell-C adhesion test method. Finally, the photoelectron performance in terms of quantum efficiency was obtained in a high vacuum photodiode cell before and after laser cleaning procedures. A comparison with the results obtained with a twin sample prepared by pulsed laser deposition is presented and discussed.

  20. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric

    Science.gov (United States)

    Liu, Ao; Liu, Guoxia; Zhu, Huihui; Shin, Byoungchul; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2016-06-01

    Solution-processed p-type oxide semiconductors have recently attracted increasing interests for the applications in low-cost optoelectronic devices and low-power consumption complementary metal-oxide-semiconductor circuits. In this work, p-type nickel oxide (NiOx) thin films were prepared using low-temperature solution process and integrated as the channel layer in thin-film transistors (TFTs). The electrical properties of NiOx TFTs, together with the characteristics of NiOx thin films, were systematically investigated as a function of annealing temperature. By introducing aqueous high-k aluminum oxide (Al2O3) gate dielectric, the electrical performance of NiOx TFT was improved significantly compared with those based on SiO2 dielectric. Particularly, the hole mobility was found to be 60 times enhancement, quantitatively from 0.07 to 4.4 cm2/V s, which is mainly beneficial from the high areal capacitance of the Al2O3 dielectric and high-quality NiOx/Al2O3 interface. This simple solution-based method for producing p-type oxide TFTs is promising for next-generation oxide-based electronic applications.

  1. [Improved color purity of green OLED device based on Au thin film].

    Science.gov (United States)

    Zhang, Yan-Fei; Zhao, Su-Ling; Xu, Zheng

    2014-04-01

    Au was used as anode in some kind of organic electroluminescent devices. Sometimes transparent Au electrodes are required, which means that the thickness of Au electrode should be as thin as possible. Therefore, two metals together forming an electrode become a choice. In the present paper, translucent Au/Al layer was inserted to anode side, and OLED device with the structure of ITO/Al (16 nm)/Au (10 nm)/TPD (30 nm)/AlQ (30 nm)/LiF (0.5 nm)/Al was prepared. There is a spectral narrowing phenomenon on the device ITO/TPD (30 nm)/AlQ (30 nm)/LiF (0. 5 nm)/Al, and through analysis and experiment it was found that this phenomenon comes from selective permeability to light of Au thin film rather than the microcavity effect. The device maintains wide viewing angle, without the angular dependence. And the color purity of device with Au thin film is improved. PMID:25007596

  2. An economic approach to fabricate photo sensor based on nanostructured ZnO thin films

    Science.gov (United States)

    Huse, Nanasaheb; Upadhye, Deepak; Sharma, Ramphal

    2016-05-01

    Nanostructural ZnO Thin Films have been synthesized by simple and economic Chemical Bath Deposition technique onto glass substrate with bath temperature at 60°C for 1 hour. Structural, Optical, Electrical and topographical properties of the prepared Thin Films were investigated by GIXRD, I-V Measurement System, UV-Visible Spectrophotometer and AFM respectively. Calculated lattice parameters are in good agreement with the standard JCPDS card (36-1451) values, exhibits Hexagonal Wurtzite crystal structure. I-V Measurement curve has shown ohmic nature in dark condition and responds to light illumination which reveals Photo sensor properties. After illumination of 60W light, decrease in resistance was observed from 110.9 KΩ to 104.4 KΩ. The change in current and calculated Photo sensitivity was found to be 3.51 µA and 6.3% respectively. Optical band gap was found to be 3.24 eV. AFM images revealed uniform deposition over entire glass substrate with 32.27 nm average roughness of the film.

  3. Electrodeposition of In{sub 2}O{sub 3} thin films from a dimethylsulfoxide based electrolytic solution

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, R.; Munoz, E.; Gomez, H. [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Curauma Valparaiso (Chile); Dalchiele, E.A.; Marotti, R.E. [Instituto de Fisica and CINQUIFIMA, Facultad de Ingenieria, Montevideo (Uruguay); Martin, F.; Leinen, D.; Ramos-Barrado, J.R. [Laboratorio de Materiales y Superficie, Departamento de Fisica Aplicada and Ingenieria Quimica, Universidad de Malaga (Spain)

    2013-02-15

    Indium (III) oxide (In{sub 2}O{sub 3}) thin films have been obtained after heat treatment of In(OH){sub 3} precursor layers grown by a potential cycling electrodeposition (PCED) method from a dimethylsulfoxide (DMSO) based electrolytic solution onto fluorine-doped tin oxide (FTO) coated glass substrates. X-ray diffraction (XRD) measurements indicate the formation of a polycrystalline In{sub 2}O{sub 3} phase with a cubic structure. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a smooth morphology of the In{sub 2}O{sub 3} thin films after an optimized heat treatment had been developed. The surface composition and chemical state of the semiconductor films was established by X-ray photoelectron spectroscopy analysis. The nature of the semiconductor material, flat band potential and donor density were determined from Mott-Schottky plots. This study reveals that the In{sub 2}O{sub 3} films exhibited n-type conductivity with an average donor density of 2.2 x 10{sup 17} cm{sup -3}. The optical characteristics were determined through transmittance spectra. The direct and indirect band gap values obtained are according to the accepted values for the In{sub 2}O{sub 3} films of 2.83 and 3.54 eV for the indirect and direct band gap values. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. A Q-switched thulium-doped fiber laser with a graphene thin film based saturable absorber

    International Nuclear Information System (INIS)

    We demonstrate a simple, compact and low cost Q-switched thulium-doped fiber laser (TDFL) operating at 1844.1 nm by exploiting a graphene based saturable absorber (SA) in conjunction with 1552 nm pumping. The SA is fabricated by sandwiching the graphene thin film between two fiber connectors. The thin film was produced by mixing graphene flakes, synthesized by an electrochemical exfoliation process, with polyethylene oxide (PEO) solution. The TDFL generates a stable pulse train with 6.73 kHz repetition rate, 11.41 μs pulse width and 90.64 nJ pulse energy at 513 mW 1552 nm pump power. A higher performance Q-switched TDFL is expected to be achieved with the optimization of the SA and laser cavity. (paper)

  5. Properties of double-layered Ga-doped Al-zinc-oxide/titanium-doped indium-tin-oxide thin films prepared by dc magnetron sputtering applied for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    In this article, Ga-doped Al-zinc-oxide (GAZO)/titanium-doped indium-tin-oxide (ITIO) bi-layer films were deposited onto glass substrates by direct current (dc) magnetron sputtering. The bottom ITIO film, with a thickness of 200 nm, was sputtered onto the glass substrate. The ITIO film was post-annealed at 350 deg. C for 10-120 min as a seed layer. The effect of post-annealing conditions on the morphologies, electrical, and optical properties of ITIO films was investigated. A GAZO layer with a thickness of 1200 nm was continuously sputtered onto the ITIO bottom layer. The results show that the properties of the GAZO/ITIO films were strongly dependent on the post-annealed conditions. The spectral haze (Tdiffuse/Ttotal) of the GAZO/ITIO bi-layer films increases upon increasing the post-annealing time. The haze and resistivity of the GAZO/ITIO bi-layer films were improved with the post-annealed process. After optimizing the deposition and annealing parameters, the GAZO/ITIO bi-layer film has an average transmittance of 83.20% at the 400-800 nm wavelengths, a maximum haze of 16%, and the lowest resistivity of 1.04 x 10-3Ω cm. Finally, the GAZO/ITIO bi-layer films, as a front electrode for silicon-based thin film solar cells, obtained a maximum efficiency of 7.10%. These encouraging experimental results have potential applications in GAZO/ITIO bi-layer film deposition by in-line sputtering without the wet-etching process and enable the production of highly efficient, low-cost thin film solar cells.

  6. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñor, Ana L.

    2014-06-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  7. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows

    OpenAIRE

    Batista, C.; Ribeiro, R. M.; Teixeira, Vasco M. P.

    2011-01-01

    Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elemen...

  8. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  9. A photochromic thin film based on salicylideneaniline derivatives intercalated layered double hydroxide

    Science.gov (United States)

    Wang, Xin Rui; Lu, Jun; Yan, Dongpeng; Wei, Min; Evans, David G.; Duan, Xue

    2010-06-01

    Optically transparent thin films with photochromic properties have been fabricated by means of co-intercalation of azomethine-H anions (AMH) and 1-pentanesulfonate (PS) with different molar ratios into the galleries of a ZnAl layered double hydroxide (LDH). The photochromism of AMH occurred in a 2D confined inorganic matrix has been studied by steady state and transient UV-vis spectroscopy. The AMH anion undergoes an excited-state intramolecular proton transfer from the enol tautomer to trans-keto tautomer after UV excitation, and the relaxed back-isomerization to the ground state of enol tautomer was investigated by transient UV-vis spectroscopy.

  10. Ultra-thin films based on random copolymers containing perfluoropolyether side chains

    International Nuclear Information System (INIS)

    Random copolymers were synthesised by copolymerizing methylmethacrylate and perfluoropolyetherurethanemethacrylate monomers, differing for the structural unit of the fluorinated chain, its end group and its molecular weight. The copolymers obtained had similar molecular weight and polydispersity, with a fluorine content between 5 and 10% wt/wt; they showed remarkable features such as biphasicity with coexistence of soft domains made of the perfluoropolyether chains and hard domains due to the methylmethacrylate backbone: the glass transition temperature Tg of the soft and hard phases was Tg1 g2 ≅ 110 °C respectively. All the copolymers were highly hydrophobic: water contact angle was always higher than 105°. The copolymers were used for the preparation of ultra thin films by spin coatings: by atomic force microscopy and X-ray reflectivity the thickness was found in the range of 20–400 Å depending on the spinning conditions, in particular the concentration of the spun solutions. The films were also highly smooth, with a roughness lower than 5 Å. - Highlights: ► We describe random methacrylic copolymers with perfluoropolyether side chain. ► The copolymers had a fluorine content of 5–10% wt/wt. ► The copolymers were spin coated and formed hydrophobic films. ► The film thickness was in the range of 20–400 Å. ► The coatings' roughness was always lower than 5 Å.

  11. Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    Directory of Open Access Journals (Sweden)

    Aleksandr L. Simonian

    2002-03-01

    Full Text Available Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS, ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.

  12. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    International Nuclear Information System (INIS)

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures

  13. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  14. Thin silicon based films on glass analyzed by laser modulated optical reflectance

    International Nuclear Information System (INIS)

    Amorphous and microcrystalline Si-based films deposited by magnetron sputtering on glass have been characterized with respect to their electronic and thermal properties by the laser-modulated optical reflectance method. Using a modulated pump beam (Ar+ laser) with photon energies above the band gap, charge carrier waves and thermal waves are simultaneously excited in the semi-conducting film. The non-contact laser modulated optical reflectance method gives direct information on the electronic properties and can thus be used to study and optimize the growth conditions of semiconductor films. (Authors)

  15. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Science.gov (United States)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  16. The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells

    Science.gov (United States)

    Noh, Ho-Sung; Yoon, Kyung Joong; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2014-02-01

    Thin-film electrolytes and nanostructured electrodes are essential components for lowering the operation temperature of solid oxide fuel cells (SOFCs); however, reliably implementing thin-film electrolytes and nano-structure electrodes over a realistic SOFC platform, such as a porous anode-support, has been extremely difficult. If these components can be created reliably and reproducibly on porous substrates as anode supports, a more precise assessment of their impact on realistic SOFCs would be possible. In this work, structurally sound thin-film and nano-structured SOFC components consisting of a nano-composite NiO-yttria-stabilized zirconia (YSZ) anode interlayer, a thin YSZ and gadolinia-doped ceria (GDC) bi-layer electrolyte, and a nano-structure lanthanum strontium cobaltite (LSC)-base cathode, are sequentially fabricated on a porous NiO-YSZ anode support using thin-film technology. Using an optimized cell testing setup makes possible a more exact investigation of the potential and challenges of thin-film electrolyte and nanostructured electrode-based anode-supported SOFCs. Peak power densities obtained at 500 °C surpass 500 mW cm-2, which is an unprecedented low-temperature performance for the YSZ-based anode-supported SOFC. It is found that this critical, low-temperature performance for the anode-supported SOFC depends more on the electrode performance than the resistance of the thin-film electrolyte during lower temperature operation.

  17. Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls

    Science.gov (United States)

    Maiolo, L.; Mirabella, S.; Maita, F.; Alberti, A.; Minotti, A.; Strano, V.; Pecora, A.; Shacham-Diamand, Y.; Fortunato, G.

    2014-09-01

    A fully flexible pH sensor using nanoporous ZnO on extended gate thin film transistor (EGTFT) fabricated on polymeric substrate is demonstrated. The sensor adopts the Low Temperature Polycrystalline Silicon (LTPS) TFT technology for the active device, since it allows excellent electrical characteristics and good stability and opens the way towards the possibility of exploiting CMOS architectures in the future. The nanoporous ZnO sensitive film, consisting of very thin (20 nm) crystalline ZnO walls with a large surface-to-volume ratio, was chemically deposited at 90 °C, allowing simple process integration with conventional TFT micro-fabrication processes compatible with wide range of polymeric substrates. The pH sensor showed a near-ideal Nernstian response (˜59 mV/pH), indicating an ideality factor α ˜ 1 according to the conventional site binding model. The present results can pave the way to advanced flexible sensing systems, where sensors and local signal conditioning circuits will be integrated on the same flexible substrate.

  18. Reliability of vibration energy harvesters of metal-based PZT thin films

    International Nuclear Information System (INIS)

    This paper describes the reliability of piezoelectric vibration energy harvesters (PVEHs) of Pb(Zr,Ti)O3 (PZT) thin films on metal foil cantilevers. The PZT thin films were directly deposited onto the Pt-coated stainless-steel (SS430) cantilevers by rf-magnetron sputtering, and we observed their aging behavior of power generation characteristics under the resonance vibration condition for three days. During the aging measurement, there was neither fatigue failure nor degradation of dielectric properties in our PVEHs (length: 13 mm, width: 5.0 mm, thickness: 104 μm) even under a large excitation acceleration of 25 m/s2. However, we observed clear degradation of the generated electric voltage depending on excitation acceleration. The decay rate of the output voltage was 5% from the start of the measurement at 25 m/s2. The transverse piezoelectric coefficient (e31,f) also degraded with almost the same decay rate as that of the output voltage; this indicates that the degradation of output voltage was mainly caused by that of piezoelectric properties. From the decay curves, the output powers are estimated to degrade 7% at 15 m/s2 and 36% at 25 m/s2 if we continue to excite the PVEHs for 30 years

  19. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  20. Deposition and dielectric characterization of strontium and tantalum-based oxide and oxynitride perovskite thin films

    Science.gov (United States)

    Jacq, S.; Le Paven, C.; Le Gendre, L.; Benzerga, R.; Cheviré, F.; Tessier, F.; Sharaiha, A.

    2016-04-01

    We have synthesized the composition x = 0.01 of the (Sr1-xLax)2(Ta1-xTix)2O7 solid solution, mixing the ferroelectric perovskite phases Sr2Ta2O7 and La2Ti2O7. Related oxide and oxynitride materials have been produced as thin films by magnetron radio frequency sputtering. Reactive sputter deposition was conducted at 750 °C under a 75 vol.% (Ar) + 25 vol.% (N2,O2) mixture. An oxygen-free plasma leads to the deposition of an oxynitride film (Sr0.99La0.01) (Ta0.99Ti0.01)O2N, characterized by a band gap Eg = 2.30 eV and a preferential (001) epitaxial growth on (001) SrTiO3 substrate. Its dielectric constant and loss tangent are respectively Epsilon' = 60 (at 1 kHz) and tanDelta = 62.5 × 10-3. In oxygen-rich conditions (vol.%N2 ≤ 15%), (110) epitaxial (Sr0.99La0.01)2(Ta0.99Ti0.01)2O7 oxides films are deposited, associated to a larger band gap value (Eg = 4.55 eV). The oxide films permittivity varies from 45 to 25 (at 1 kHz) in correlation with the decrease in crystalline orientation; measured losses are lower than 5.10-3. For 20 ≤ vol.% N2 ≤ 24.55, the films are poorly crystallized, leading to very low permittivities (minimum Epsilon' = 3). A correlation between the dielectric losses and the presence of an oxynitride phase in the samples is highlighted.

  1. Piezoelectric poly(vinylidene fluoride trifluoroethylene) thin film-based power generators using paper substrates for wearable device applications

    Science.gov (United States)

    Won, Sung Sik; Sheldon, Mackenzie; Mostovych, Nicholas; Kwak, Jiyeon; Chang, Bong-Suk; Ahn, Chang Won; Kingon, Angus I.; Kim, Ill Won; Kim, Seung-Hyun

    2015-11-01

    Solution-derived poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) piezoelectric thin films on cellulose paper substrates were prepared as flexible power generators for wearable device applications. Optimization of appropriate annealing and cooling sequences of the co-polymer films resulted in the formation of dense and uniform microstructures exhibiting a well-developed β-phase. A maximum open-circuit voltage of 1.5 V was generated from the periodic bending and releasing of the paper power generator at approximately 1 Hz. To demonstrate the wearable applications, P(VDF-TrFE) piezoelectric film-based paper power generators were directly attached on the back of a human hand, and they generated a maximum output open-circuit voltage of 0.4 V at low bending frequencies of 0.25 Hz. Good open-circuit voltage performance at low frequencies makes P(VDF-TrFE) piezoelectric thin films on paper substrates a strong candidate for future self-powered wearable devices.

  2. Fabrication and properties of the meander nanowires based on ultra-thin Nb films

    International Nuclear Information System (INIS)

    We report the fabrication and the study of superconducting properties of ultra-thin Nb superconducting meander nanowires, which can be used as superconducting nanowire single-photon detectors (SNSPDs). The ultra-thin (about 7-nm thick) Nb films are patterned into micro-bridges, and 100-nm wide meander nanowires by using e-beam lithography (EBL). The average transition temperature (Tc) of the nanowires is about 4.8 K and the critical current density jc is about 2.8 × 106 A/cm2. Superconducting characteristics of the specimens at different applied magnetic fields up to 8 T (parallel or perpendicular to the specimen) are systematically investigated. The normalized temperature t (= T/Tc) dependences of the parallel critical field (Hc‖) for both the micro-bridge and the meander nanowire are almost the same, following the Ginzburg and Landau (GL) formalism for ultra-thin films. However, in perpendicular field and in the vicinity of Tc (> 0.95Tc), the critical field Hc‖ of the nanowire exhibits a down-turn curvature nonlinear temperature dependence while the micro-bridge displays a linear temperature dependence. The nonlinear behavior of Hc⊥ in the nanowire is believed to be due to the fact that in the vicinity of Tc the coherence length becomes larger than the line width. Additionally, the localization of carriers in the nanowire could also contribute to the nonlinear behavior. The resistive transitions could be described by the phase-slip model for quasi-one-dimensional system. Moreover, the hysteresis in I–V curve of the meander nanowires can be illustrated by a simple model of localized normal hotspot maintained by Joule heating. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Fabrication and properties of the meander nanowires based on ultra-thin Nb films

    Science.gov (United States)

    Zhao, Lu; Jin, Yi-Rong; Li, Jie; Deng, Hui; Zheng, Dong-Ning

    2014-08-01

    We report the fabrication and the study of superconducting properties of ultra-thin Nb superconducting meander nanowires, which can be used as superconducting nanowire single-photon detectors (SNSPDs). The ultra-thin (about 7-nm thick) Nb films are patterned into micro-bridges, and 100-nm wide meander nanowires by using e-beam lithography (EBL). The average transition temperature (Tc) of the nanowires is about 4.8 K and the critical current density jc is about 2.8 × 106 A/cm2. Superconducting characteristics of the specimens at different applied magnetic fields up to 8 T (parallel or perpendicular to the specimen) are systematically investigated. The normalized temperature t (= T/Tc) dependences of the parallel critical field (Hc‖) for both the micro-bridge and the meander nanowire are almost the same, following the Ginzburg and Landau (GL) formalism for ultra-thin films. However, in perpendicular field and in the vicinity of Tc (> 0.95Tc), the critical field Hc‖ of the nanowire exhibits a down-turn curvature nonlinear temperature dependence while the micro-bridge displays a linear temperature dependence. The nonlinear behavior of Hc⊥ in the nanowire is believed to be due to the fact that in the vicinity of Tc the coherence length becomes larger than the line width. Additionally, the localization of carriers in the nanowire could also contribute to the nonlinear behavior. The resistive transitions could be described by the phase-slip model for quasi-one-dimensional system. Moreover, the hysteresis in I-V curve of the meander nanowires can be illustrated by a simple model of localized normal hotspot maintained by Joule heating.

  4. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  5. Thin-film solar cells. Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Bloss, W.H.; Pfisterer, F.; Schock, H.W. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Physikalische Elektronik)

    1990-01-01

    The authors present the state of the art in research and development, technology, production and marketing, and of the prospects of thin-film solar cells. Thin-film solar cells most used at present are based on amorphous silicon and on the compound semiconductors CuInSe{sub 2} and CdTe. Efficiencies in excess 12% have been achieved (14.1% with CuInSe{sub 2}). Stability is the main problem with amorphous silicon. Thin-film solar cells made from compound semiconductors do not have this problem, though their cost-effective series production needs to be shown still. The development potential of the three types mentioned will be ca. 30% in terms of efficiency: in terms of production cost, it is estimated with some certainty to be able to reach the baseline of 1 DM/Watt peak output (W{sub p}). (orig.).

  6. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  7. Activation of CdTe-based thin films with zinc chloride and tetrachlorozincates

    Energy Technology Data Exchange (ETDEWEB)

    Drost, C., E-mail: christian.drost@ctf-solar.com [CTF Solar GmbH, Manfred von Ardenne Ring 20 F, 01099 Dresden (Germany); Siepchen, B.; Krishnakumar, V.; Späth, B.; Kraft, C. [CTF Solar GmbH, Manfred von Ardenne Ring 20 F, 01099 Dresden (Germany); Modes, T.; Zywitzki, O. [Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277 Dresden (Germany)

    2015-05-01

    A series of CdTe thin film solar cells were prepared by applying aqueous solutions of ZnCl{sub 2} or tetrachlorozincates M{sub n}ZnCl{sub 4} (M = Na or NH{sub 4} for n = 2; M = Mg or Ca for n = 1) as flux reagents in the activation process, instead of established but highly toxic CdCl{sub 2}. The remaining process steps for the generation of solar cells have not been varied and activation-temperature and -duration were kept constant with 400 °C/25 min. The back contact comprised an etching step followed by deposition of ca. 150 nm gold. In contrast to Na{sub 2}ZnCl{sub 4} and (NH{sub 4}){sub 2}ZnCl{sub 4}, the application of ZnCl{sub 2} or CaZnCl{sub 4} in 30% concentration gave promising results with current-voltage and quantum efficiency cell-data well comparable to CdCl{sub 2} standard activated reference cells. The aqueous solutions were either applied manually by dip-coating or sponge roller procedure. Microstructural and interfacial investigations were performed with high resolution field emission scanning electron microscopy imaging on polished cross sections of ZnCl{sub 2}- or CaZnCl{sub 4}-derived devices using ion beam preparation techniques. Moreover, the measurement of the electron beam induced current was achieved, yielding a similar appearance for a CaZnCl{sub 4}-activated substrate compared to referential CdCl{sub 2} samples. - Highlights: • ZnCl{sub 2} or CaZnCl{sub 4} can substitute toxic CdCl{sub 2} in the activation of CdTe. • Activation process parameters are similar to standard CdCl{sub 2} activation. • Well comparable current-voltage cell data is obtained for Zn-based activation. • Microstructure for Zn-based cells compares well with standard CdCl{sub 2}-cells.

  8. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak [Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey and UNAM, National Nanotechnology Research Center, Bilkent University, 06800, Ankara (Turkey); Ozgit-Akgun, Cagla; Biyikli, Necmi [UNAM, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey and Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara (Turkey); Okyay, Ali Kemal, E-mail: aokyay@ee.bilkent.edu.tr [Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, 06800, Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara (Turkey)

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  9. Mechanical characterization of thin TiO2 films by means of microelectromechanical systems-based cantilevers.

    Science.gov (United States)

    Adami, A; Decarli, M; Bartali, R; Micheli, V; Laidani, N; Lorenzelli, L

    2010-01-01

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO(2)) deposited by sputtering from a TiO(2) target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO(2) films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis. PMID:20113131

  10. Mechanical characterization of thin TiO{sub 2} films by means of microelectromechanical systems-based cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L. [FBK-CMM: Fondazione Bruno Kessler-Center for Materials and MicroSystems, via Sommarive 18, Trento 38123 (Italy)

    2010-01-15

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO{sub 2}) deposited by sputtering from a TiO{sub 2} target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO{sub 2} films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  11. Mechanical characterization of thin TiO2 films by means of microelectromechanical systems-based cantilevers

    International Nuclear Information System (INIS)

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO2) deposited by sputtering from a TiO2 target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO2 films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  12. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation

  13. Thin Films Made Fast and Modified Fast

    International Nuclear Information System (INIS)

    Thin films are playing a more and more important role for technological applications and there are many aspects of materials surface processing and thin film production, ranging from simple heat treatments to ion implantation or laser surface treatments. These methods are often very complicated, involving many basic processes and they have to be optimized for the desired application. Nuclear methods, especially Moessbauer spectroscopy, can be successfully applied for this task and some examples will be presented for laser-beam and ion-beam based processes.

  14. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.;

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity and...... strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved....

  15. Thin-liquid-film evaporation at contact line

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhenai PAN; Zhao CHEN

    2009-01-01

    When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.

  16. Interlayer coupling dependent magnetic properties in amorphous and nanocrystalline FeTaC based multilayer thin films

    International Nuclear Information System (INIS)

    comprehensive study on the multistep magnetization reversal behavior in multilayer structured FeTaC based thin films. (paper)

  17. Interlayer coupling dependent magnetic properties in amorphous and nanocrystalline FeTaC based multilayer thin films

    Science.gov (United States)

    Singh, Akhilesh K.; Perumal, Alagarsamy

    2016-03-01

    comprehensive study on the multistep magnetization reversal behavior in multilayer structured FeTaC based thin films.

  18. Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kurniawan, Robi; Sutjahja, Inge M.; Winata, Toto [Department of Physics, Institut Teknologi Bandung, Ganesa 10 Bandung 40132 (Indonesia); Rusydi, Andrivo; Darma, Yudi, E-mail: yudi@fi.itb.ac.id [Department of Physics, Institut Teknologi Bandung, Ganesa 10 Bandung 40132 (Indonesia); Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); NUSNNI-Nanocore, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2015-09-30

    A set of sample consist of pure ZnO and Cu-doped ZnO film were grown on fused-quartz substrates using pulsed laser deposition (PLD) technique. Here, we report room temperature spectroscopic ellipsometry analysis (covering energy range of 0.5 to 6.3 eV) of pure ZnO film and Cu doped ZnO film at 8 in at. %. The thickness of pure ZnO and Cu-doped ZnO film using in this study is about 350 nm. To extract the dielectric function of ZnO thin film, multilayer modeling is performed which takes into account reflections at each interface through Fresnel coefficients. This method based on Drude-Lorentz models that connect with Kramers-Kronig relations. The best fitting of Ψ (amplitude ratio) and Δ (phase difference) taken by SE measurement are obtained reasonably well by mean the universal fitting of three different photon incident angles. The imaginary part of dielectric function (ε{sub 2}) show the broad peak at around 3.3 eV assigned as combination of optical band energy edge with excitonic states. The exitonic states could not be observed clearly in this stage. The evolution of extracted dielectric function is observable by introducing 8% Cu as indicated by decreasing of excitonic intensity. This result indicates the screening of excitonic state. This study will bring us to have a good undestanding for the role of Cu impurities for ZnO thin films.

  19. Room-temperature ferromagnetism in (Zn, Mn, Sn) As2 thin films applicable to In P-based spintronics devices

    International Nuclear Information System (INIS)

    Full text : III-V compound-based diluted semiconductors (DMS) such as (Ga,Mn)As, capable of being epitaxially grown on GaAs substrates with high-quality interface, are important for the implementation of a variety of spintronics devices. However, the applicability of ferromagnetic semiconductors in spintronic devices requires increasing Curie temperature from around 180 K in (Ga,Mn)As to above room temperature. Recently, II-IV-V2 compounds crystallizing in the chalcopyrite structure have attracted growing interest as semiconductor hosts for magnetic impurities such as Manganese. The synthesis of CdGeP2: Mn with Tc=320 K and ZnSnAs2: Mn with Tc=329 K marked the emergence of novel spintronic materials exhibiting above-room-temperature ferromagnetism. Furthermore, an important step towards practical applications would be to find high-quality thin films showing ferromagnetism at room temperature. In this work it is reported on some results obtained from our efforts to develop Mn-doped ZnSnAs2 thin films as a ferromagnetic building block for InP-based semiconductor spintronics. This work is dedicated to furthering our knowledge of the magnetic properties of Mn-doped ZnSnAs2 epitaxial thin films. In-situ reflection high-energy electron diffraction patterns exhibited streaky features during the entire buffer layer growth process, indicating that the ZnSnAs2 films were epitaxially grown on InP substrates. The crystalline structures were characterized using high-resolution x-ray diffraction and highresolution transmission electron microscopy. Superconducting quantum interference device magnetometry was used to investigate the magnetic properties of the Mn-doped ZnSnAs2 thin films. The high-resolution reciprocal space mapping of the Mn-doped ZnSnAs2 epitaxial film around the Bragg peak of the underlying InP substrate was also carried out. The values of the in-plane lattice parameter a of the Mn-doped ZnSnAs2 thin films were estimated from the RSM to be 0.5869 nm

  20. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  1. Thin Film Solid Lubricant Development

    Science.gov (United States)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  2. Optical thin films test methodology

    International Nuclear Information System (INIS)

    An over view of different test procedures for thin film optical coatings have been discussed in this paper. These procedures cover optical coatings for high precision and commercial applications. These tests include visual inspection test, self adhesion test, moderate abrasion test, etc. Two groups of testing sequences have been given depending upon the environmental conditions. (author)

  3. Ultra-thin films based on random copolymers containing perfluoropolyether side chains

    Energy Technology Data Exchange (ETDEWEB)

    Bongiovanni, Roberta, E-mail: roberta.bongiovanni@polito.it [Department of Materials Science and Technology, Politecnico di Torino, C. Duca Degli Abruzzi 24, 10129 Torino (Italy); Nelson, Andrew [Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Menai, Sydney (Australia); Vitale, Alessandra [Department of Materials Science and Technology, Politecnico di Torino, C. Duca Degli Abruzzi 24, 10129 Torino (Italy); Bernardi, Ettore [I.N.RI.M. Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy)

    2012-06-30

    Random copolymers were synthesised by copolymerizing methylmethacrylate and perfluoropolyetherurethanemethacrylate monomers, differing for the structural unit of the fluorinated chain, its end group and its molecular weight. The copolymers obtained had similar molecular weight and polydispersity, with a fluorine content between 5 and 10% wt/wt; they showed remarkable features such as biphasicity with coexistence of soft domains made of the perfluoropolyether chains and hard domains due to the methylmethacrylate backbone: the glass transition temperature T{sub g} of the soft and hard phases was T{sub g1} < 90 Degree-Sign C and T{sub g2} {approx_equal} 110 Degree-Sign C respectively. All the copolymers were highly hydrophobic: water contact angle was always higher than 105 Degree-Sign . The copolymers were used for the preparation of ultra thin films by spin coatings: by atomic force microscopy and X-ray reflectivity the thickness was found in the range of 20-400 Angstrom-Sign depending on the spinning conditions, in particular the concentration of the spun solutions. The films were also highly smooth, with a roughness lower than 5 A. - Highlights: Black-Right-Pointing-Pointer We describe random methacrylic copolymers with perfluoropolyether side chain. Black-Right-Pointing-Pointer The copolymers had a fluorine content of 5-10% wt/wt. Black-Right-Pointing-Pointer The copolymers were spin coated and formed hydrophobic films. Black-Right-Pointing-Pointer The film thickness was in the range of 20-400 A. Black-Right-Pointing-Pointer The coatings' roughness was always lower than 5 Angstrom-Sign .

  4. Networking Behavior in Thin Film and Nanostructure Growth Dynamics

    OpenAIRE

    Yuksel, Murat; Karabacak, Tansel; Guclu, Hasan

    2007-01-01

    Thin film coatings have been essential in development of several micro and nano-scale devices. To realize thin film coatings various deposition techniques are employed, each yielding surface morphologies with different characteristics of interest. Therefore, understanding and control of the surface growth is of great interest. In this paper, we devise a novel network-based modeling of the growth dynamics of such thin films and nano-structures. We specifically map dynamic steps taking place du...

  5. Cyclic nanoindentation studies on CrN thin films prepared by RF sputtering on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Cyclic nanoindentation tests were carried out to study the influence of the chromium nitride thin films on the mechanical properties of Zr-based metallic glass. Chromium nitride thin coatings have been deposited on Zr50Cu40Al10 metallic glass substrate by RF sputtering. The deposition process was done at room temperature under nitrogen reactive gas using a metallic chromium target. The CrN films have a thickness of 300 nm. Several cyclic nanoindentation measurements were conducted on CrN films and Zr50Cu40Al10 metallic glass substrate samples at various loading rate values. We have found that the coated metallic glass sample shows high mechanical properties such as hardness and reduced elastic modulus. Cyclic nanoindentation results show a hardening behaviour for these CrN coatings. Moreover, the CrN coated on Zr-based metallic glass was found to have a high value of resistance to crack propagation, as being analysed through the SEM pictures of the residual Vickers indentation impressions.

  6. Superfast Thinning of a Nanoscale Thin Liquid Film

    OpenAIRE

    Winkler, Michael; Kofod, Guggi; Krastev, Rumen; Abel, Markus

    2011-01-01

    This fluid dynamics video demonstrates an experiment on superfast thinning of a freestanding thin aqueous film. The production of such films is of fundamental interest for interfacial sciences and the applications in nanoscience. The stable phase of the film is of the order $5-50\\,nm$; nevertheless thermal convection can be established which changes qualitatively the thinning behavior from linear to exponentially fast. The film is thermally driven on one spot by a very cold needle, establishi...

  7. Phase Coarsening in Thin Films

    Science.gov (United States)

    Wang, K. G.; Glicksman, M. E.

    2015-08-01

    Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a `screened' phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.

  8. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films

    International Nuclear Information System (INIS)

    The ternary aluminium oxynitride (AlNxOy) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlNx and AlOy and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlNxOy thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlOy and AlNx systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N2 and/or O2) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group. - Highlights: • AlNx, AlOy and AlNxOy films were deposited by magnetron sputtering. • Discharge characteristics were compared between systems. • Different x and y coefficients were obtained. • Composition, structure and morphology were correlated with physical properties. • Thermal

  9. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...

  10. Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope

    DEFF Research Database (Denmark)

    Snigirev, O.V.; Andreev, K.E.; Tishin, A.M.; Gudoshnikov, S.A.; Bohr, Jakob

    1997-01-01

    We have applied a scanning HTS (high-temperature superconductor) de SQUID (superconducting quantum interference device) -based magnetic microscope to study the magnetic properties of Au/Ni/Si(100) films in the thickness range from 8 to 200 Angstrom at T = 77 K. A one-domain structure with in...

  11. Nonlinear photonic crystal waveguide structures based on barium titanate thin films and their optical properties

    Science.gov (United States)

    Liu, Zhifu; Lin, Pao-Tai; Wessels, Bruce W.; Yi, Fei; Ho, Seng-Tiong

    2007-05-01

    Nonlinear photonic crystal waveguide structures were fabricated from barium titanate thin films using nanolithography. A cascaded Bragg reflector using a strip waveguide was designed and analyzed. Both simulation and experimental results show that there is sufficient refractive index contrast to form a stop band by only etching through the Si3N4 strip layer. The band gap of the Bragg reflector can be engineered through control of the Bragg spacing, thickness, and etching depth of the strip layer. The transmission spectrum of the Bragg reflector waveguide was measured over the spectral range of 1500-1580nm. A 27nm wide stop band was obtained for a millimeter long sample. The nonlinear photonic crystal waveguides are potentially suitable as tunable filters, optical switches, and ultrawide bandwidth modulators.

  12. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    Science.gov (United States)

    Kocer, Hasan

    2015-01-01

    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  13. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, B., E-mail: aissab@emt.inrs.ca [Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Centre Energie, Matériaux et Télécommunications, INRS, 1650, Boulevard Lionel-Boulet Varennes, Quebec J3X 1S2 (Canada); Nedil, M. [Telebec Wireless Underground Communication Laboratory, UQAT, 675, 1ère Avenue, Val d' Or, Quebec J9P 1Y3 (Canada); Kroeger, J. [NanoIntegris & Raymor Nanotech, Raymor Industries Inc., 3765 La Vérendrye, Boisbriand, Quebec J7H 1R8 (Canada); Haddad, T. [Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 0B8 (Canada); Rosei, F. [Centre Energie, Matériaux et Télécommunications, INRS, 1650, Boulevard Lionel-Boulet Varennes, Quebec J3X 1S2 (Canada)

    2015-09-28

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 10{sup 4} and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 10{sup 4} s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices.

  14. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    International Nuclear Information System (INIS)

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 104 and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 104 s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices

  15. Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2015-07-01

    Full Text Available Flexible and transparent electronics have been studied intensively during the last few decades. The technique establishes the possibility of fabricating innovative products, from flexible displays to radio-frequency identification tags. Typically, large-area polymeric substrates such as polypropylene (PP or polyethylene terephthalate (PET are used, which produces new requirements for the integration processes. A key element for flexible and transparent electronics is the thin-film transistor (TFT, as it is responsible for the driving current in memory cells, digital circuits or organic light-emitting devices (OLEDs. In this paper, we discuss some fundamental concepts of TFT technology. Additionally, we present a comparison between the use of the semiconducting organic small-molecule pentacene and inorganic nanoparticle semiconductors in order to integrate TFTs suitable for flexible electronics. Moreover, a technique for integration with a submicron resolution suitable for glass and foil substrates is presented.

  16. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  17. Non-toxic and environmentally friendly route for preparation of copper indium sulfide based thin film solar cells

    International Nuclear Information System (INIS)

    Highlights: • Substrate structure of spray pyrolyzed CuInS2/In2S3 heterojunction solar cells. • Low cost and environmentally friendly fabrication of CuInS2 based solar cells. • Low RF power deposition of TCO layer. • AZO–Ag–AZO sandwich structure. • Effect of the thickness of buffer layer on the photovoltaic performance. - Abstract: In this study, copper based thin film solar cells with substrate structure have been built via spray pyrolysis method. Toxic material usage was avoided during the material deposition and the post-treatment steps. Novel device configuration of Mo/CuInS2/In2S3/ZnO/AZO–Ag–AZO was studied as a function of the In2S3 buffer layer thickness. In order to utilize the zinc oxide (ZnO) and aluminum doped zinc oxide (AZO) transparent conductive layers, deposited by physical vapor deposition (PVD), on top of the spray pyrolyzed thin films, the RF power was lowered to 30 W. Although this minimized the unwanted penetration of the highly energetic particles, created during PVD process, sheet resistivity of the AZO films increased enormously. Hence very thin silver layer has been deposited between two AZO films. This resulted the decrease in the sheet resistivity more than 106 times. Electrical measurements under illumination revealed that short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) and efficiency (η) of the Mo/CuInS2/In2S3/ZnO/AZO–Ag–AZO type solar cells increased with increasing the thickness of the In2S3 layer. The maximum Jsc of 9.20 mA/cm2, Voc of 0.43 V, FF of 0.44 have been observed for the 0.94 μm-thick In2S3 layer. Extraordinarily thick buffer layer provided better diffusion barrier between the absorber and the TCO layers and also resulted better photosensitivity. These could be the key factors to produce substrate configuration of the spray pyrolyzed thin film solar cells

  18. Non-toxic and environmentally friendly route for preparation of copper indium sulfide based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankir, Nurdan Demirci, E-mail: nsankir@etu.edu.tr; Aydin, Erkan; Ugur, Esma; Sankir, Mehmet

    2015-08-15

    Highlights: • Substrate structure of spray pyrolyzed CuInS{sub 2}/In{sub 2}S{sub 3} heterojunction solar cells. • Low cost and environmentally friendly fabrication of CuInS{sub 2} based solar cells. • Low RF power deposition of TCO layer. • AZO–Ag–AZO sandwich structure. • Effect of the thickness of buffer layer on the photovoltaic performance. - Abstract: In this study, copper based thin film solar cells with substrate structure have been built via spray pyrolysis method. Toxic material usage was avoided during the material deposition and the post-treatment steps. Novel device configuration of Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO was studied as a function of the In{sub 2}S{sub 3} buffer layer thickness. In order to utilize the zinc oxide (ZnO) and aluminum doped zinc oxide (AZO) transparent conductive layers, deposited by physical vapor deposition (PVD), on top of the spray pyrolyzed thin films, the RF power was lowered to 30 W. Although this minimized the unwanted penetration of the highly energetic particles, created during PVD process, sheet resistivity of the AZO films increased enormously. Hence very thin silver layer has been deposited between two AZO films. This resulted the decrease in the sheet resistivity more than 10{sup 6} times. Electrical measurements under illumination revealed that short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), fill factor (FF) and efficiency (η) of the Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO type solar cells increased with increasing the thickness of the In{sub 2}S{sub 3} layer. The maximum J{sub sc} of 9.20 mA/cm{sup 2}, V{sub oc} of 0.43 V, FF of 0.44 have been observed for the 0.94 μm-thick In{sub 2}S{sub 3} layer. Extraordinarily thick buffer layer provided better diffusion barrier between the absorber and the TCO layers and also resulted better photosensitivity. These could be the key factors to produce substrate configuration of the spray pyrolyzed

  19. Tailoring electronic structure of polyazomethines thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2010-09-01

    Full Text Available Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic devices.Findings: The method used allow for pure pristine polymer thin films to be prtepared without any unintentional doping taking place during prepoaration methods. This is a method based on polycondensation process, where polymer chain developing is running directly due to chemical reaction between molecules of bifunctional monomers. The method applied to prepare thin films of polyazomethines takes advantage of monomer transporting by mreans of neutral transport agent as pure argon is.Research limitations/implications: The main disadvantage of alternately conjugated polymers seems to be quite low mobility of charge carrier that is expected to be a consequence of their backbone being built up of sp2 hybridized carbon and nitrogen atoms. Varying technological conditions towards increasing reagents mass transport to the substrate is expected to give such polyazomethine thin films organization that phenylene rin stacking can result in special π electron systems rather than linear ones as it is the case.Originality/value: Our results supply with original possibilities which can be useful in ooking for good polymer materials for optoelectronic and photovoltaic applications. These results have been gained on polyazomethine thin films but their being isoelectronic counterpart to widely used poly p-phenylene vinylene may be very convenient to develop high efficiency polymer solar cells

  20. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    G V Kunte; S A Shivashankar; A M Umarji

    2008-11-01

    Thin films of the hydrated phase of tungsten oxide, hydrotungstite (H2WO4.H2O), have been grown on glass substrates using a dip-coating technique. The -axis oriented films have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations and on conductivity measurements, a novel sensing mechanism based on protonic conduction within the surface layers adsorbed onto the hydrotungstite film is proposed.

  1. Biaxial Fatigue Testing of Thin Films

    International Nuclear Information System (INIS)

    A new experimental setup, which allows for testing in an equi-biaxial loading condition, has been developed and applied to investigate the fatigue behaviour of thin films. A load controlled cycling, performed at room temperature on flat specimens, reproduces the strain amplitude and mean strain in the film corresponding to a thermal cycling in a given temperature range. The setup is based on the ring-on-ring test, which has been successfully used in biaxial fracture testing of glass and ceramics, and includes an optical in-situ failure detection system. The method is validated for specimens consisting in a gold film deposited on a polymer substrate

  2. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows

    Science.gov (United States)

    Batista, Carlos; Ribeiro, Ricardo M.; Teixeira, Vasco

    2011-12-01

    Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elements--regardless of the concentration, within the studied range-- formed a solid solution with VO2, which was the only compound observed by X-ray diffractometry. Nb showed a clear detrimental effect on the crystal structure of VO2. The undoped films presented a marked thermochromic behavior, specially the one prepared by pulsed-DC sputtering. The dopants effectively decreased the transition of VO2 to the proximity of room temperature. However, the IR modulation efficiency is markedly affected as a consequence of the increased metallic character of the semiconducting phase. Tungsten proved to be the most effective element on the reduction of the semiconducting-metal transition temperature, while Mo and Nb showed similar results with the latter being detrimental to the thermochromism.

  3. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows

    Directory of Open Access Journals (Sweden)

    Batista Carlos

    2011-01-01

    Full Text Available Abstract Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elements--regardless of the concentration, within the studied range-- formed a solid solution with VO2, which was the only compound observed by X-ray diffractometry. Nb showed a clear detrimental effect on the crystal structure of VO2. The undoped films presented a marked thermochromic behavior, specially the one prepared by pulsed-DC sputtering. The dopants effectively decreased the transition of VO2 to the proximity of room temperature. However, the IR modulation efficiency is markedly affected as a consequence of the increased metallic character of the semiconducting phase. Tungsten proved to be the most effective element on the reduction of the semiconducting-metal transition temperature, while Mo and Nb showed similar results with the latter being detrimental to the thermochromism.

  4. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    Science.gov (United States)

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants. PMID:25805699

  5. A Novel Thin Film Resistive Humidity Sensor Based on Soluble Conjugated Polymer: (propionic acid)-co-(propargyl alcohol)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel soluble conjugated copolymer (propionic acid)-co-(propargyl alcohol) (PA-co-OHP) has been synthesized for the first time using a new palladium acetylide catalyst Pd(PPh3)2 (CoCC(CH3)2OH)2 (PPB). Thin film resistive humidity sensor based on the copolymer doped with HClO-4 was prepared. The impedance of the sensor changed from 103~107 W in 95%~30%RH, and the response of that is very quick (<6 sec.). Preliminary results show the copolymer is a promising humidity sensitive material.

  6. In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells

    OpenAIRE

    Buehlmann, Peter; Bailat, J.; Dominé, Didier; Billet, Adrian; Meillaud, F.; Feltrin, Andrea; Ballif, Christophe

    2008-01-01

    We show that SiO-based intermediate reflectors (SOIRs) can be fabricated in the same reactor and with the same process gases as used for thin-film silicon solar cells. By varying input gas ratios, SOIR layers with a wide range of optical and electrical properties are obtained. The influence of the SOIR thickness in the micromorph cell is studied and current gain and losses are discussed. Initial micromorph cell efficiency of 12.2% (Voc=1.40 V, fill factor=71.9%, and Jsc=12.1 mA/cm2) is achiev...

  7. Electrical characteristics of 60Co gamma-ray irradiated pentacene-based organic thin film field effect transistors

    International Nuclear Information System (INIS)

    Preliminary studies of the 60Co γ-ray radiation effects on pentacene-based organic thin film transistors (OTFTs) with two kinds of gate insulators have been carried out. Negative threshold voltage shifts of OTFTs with a SiO2 gate insulator are consistent with positive charge trapping, and a rebound effect is observed. Threshold voltage of OTFTs with a polyimide gate insulator continuously decreased with increasing the total dose. When the total dose reached 1200 Gy (Si), the carrier mobility of OTFTs with the SiO2 gate insulator decreased by nearly 80%, while the carrier mobility of OTFTs with the polyimide gate insulator decreased by almost 40%. (author)

  8. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films

    International Nuclear Information System (INIS)

    Plasma-based ion implantation (PBII), invented in 1987, can now be considered as a mature technology for thin film modification. After a brief recapitulation of the principle and physics of PBII, its advantages and disadvantages, as compared to conventional ion beam implantation, are listed and discussed. The elaboration of thin films and the modification of their functional properties by PBII have already been achieved in many fields, such as microelectronics (plasma doping/PLAD), biomaterials (surgical implants, bio- and blood-compatible materials), plastics (grafting, surface adhesion) and metallurgy (hard coatings, tribology), to name a few. The major advantages of PBII processing lie, on the one hand, in its flexibility in terms of ion implantation energy (from 0 to 100 keV) and operating conditions (plasma density, collisional or non-collisional ion sheath), and, on the other hand, in the easy transferrability of processes from the laboratory to industry. The possibility of modifying the composition and physical nature of the films, or of drastically changing their physical properties over several orders of magnitude makes this technology very attractive for the elaboration of innovative materials, including metastable materials, and the realization of micro- or nanostructures. A review of the state of the art in these domains is presented and illustrated through a few selected examples. The perspectives opened up by PBII processing, as well as its limitations, are discussed

  9. Design and Simulation of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size,parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0. 001~20 MHz.

  10. L10 FePt-based thin films for future perpendicular magnetic recording media

    International Nuclear Information System (INIS)

    Current magnetic recording media using perpendicular CoCrPt-Oxide granular films are reaching their physical limit (approx 750 Gbit/in2 density) due to thermal fluctuations that hinder a further reduction of grain size (<6–7 nm) needed to scale down the bit size. L10-FePt alloy is currently considered the most promising candidate for future recording media with areal densities above 1 Tbit/in2 thanks to its high magneto-crystalline anisotropy (K=6–10 MJ/m3), which enables it to be thermally stable even at grain sizes down to 3 nm. However, its huge anisotropy implies an increase of the switching field, which cannot be afforded by current available write heads. To simultaneously address the writability and thermal stability requirements, exchange coupled composite media, combining two or multiphase hard and soft materials, where the hard phase provides thermal stability and the soft phase reduces the switching field, have been recently proposed. This paper briefly reviews the fundamental aspects as well as both experimental approaches and magnetic properties of L10 FePt-based single phase films and exchange coupled systems for future perpendicular magnetic recording media. - Highlights: • Up-to-date review on the progress in the study of FePt films for magnetic recording. • Single phase L10 FePt films: fundamental properties and experimental approaches. • Basics of exchange coupled composite media. • FePt-based exchange coupled systems: magnetic properties and preparation approaches

  11. Solution-based Syntheses of Iron Pyrite Thin Films for Photovoltaic and Protein Foot-printing Applications

    Science.gov (United States)

    El Makkaoui, Mohammed

    Iron pyrite (cubic FeS2) is a non-toxic, earth abundant semiconductor possessing a set of excellent optical/electronic properties for serving as an absorber layer in PV devices. Additionally, pyrite is a very efficient hydroxyl radical generator via Fenton chemistry and has shown promise in oxidative protein and DNA foot-printing application. The main focus of this thesis is on fabricating phase and elementally pure iron pyrite thin films using a solution-based approach that employs hydrazine as a solvent. A precursor ink is formed at room temperature by mixing elemental iron and sulfur in anhydrous hydrazine and then deposited on Mo-coated glass substrates, via spin coating, to yield amorphous iron sulfide films that are then annealed in H2S (340°C) and sulfur gas (≤ 500 °C) to form uniform, polycrystalline and phase pure pyrite films with densely packed grains. This approach is likely to yield the most elementally pure pyrite thin films made to date, through a very simple and scalable process. The ink has shown to be very sensitive to environmental conditions and has a very short shelf life (˜1 day). Additionally, the film microstructure is greatly influenced by the S:Fe concentration ratio that when tuned to 3:1, yielded uniform, robust and optically flat iron sulfide thin films with an optimal thickness (˜320 nm) for PV application. The results however were not reproducible, mainly due to failure in applying multiple layers without compromising film morphology. Thinner ( 12 hour H2S annealing step, yielded phase pure pyrite films, with good morphology, at lower processing time and annealing temperatures (Albert Einstein College of Medicine and the Khine lab at the University of California, Irvine. A thin film of pyrite nano-crystals is spray deposited (Video in supplementary ) onto a shape memory polymer that is then thermally treated with a heat gun, causing the sheet to retract and stiffen as the nanocrystalline layer crumples and integrates into the

  12. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    Science.gov (United States)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound

  13. Electrical conduction mechanism in BiFeO3-based ferroelectric thin-film capacitors: Impact of Mn doping

    Directory of Open Access Journals (Sweden)

    Hiroki Matsuo

    2015-12-01

    Full Text Available Electrical conduction properties of SrRuO3(SRO/BiFeO3(BFO/SRO and SRO/10% Mn-doped BFO(BFMO/SRO ferroelectric thin-film capacitors are investigated. The BFO capacitors exhibit a switchable diode effect accompanied by a conduction change from ohmic to space-charge-limited current with increasing external field. In contrast, the BFMO capacitors show only an ohmic conduction, arising from a considerable reduction in depletion layer width at the SRO/BFMO interfaces. These results suggest that the diode property can be tuned by Mn content in the BFO film. Our study opens the possibility of controlling the diode effect in BFO-based devices by a dilute Mn doping.

  14. Thin film growth of Fe-based superconductors: from fundamental properties to functional devices. A comparative review

    International Nuclear Information System (INIS)

    Fe-based superconductors bridge a gap between MgB2 and the cuprate high temperature superconductors as they exhibit multiband character and transition temperatures up to around 55 K. Investigating Fe-based superconductors thus promises answers to fundamental questions concerning the Cooper pairing mechanism, competition between magnetic and superconducting phases, and a wide variety of electronic correlation effects. The question addressed in this review is, however, is this new class of superconductors also a promising candidate for technical applications? Superconducting film-based technologies range from high-current and high-field applications for energy production and storage to sensor development for communication and security issues and have to meet relevant needs of today's society and that of the future. In this review we will highlight and discuss selected key issues for Fe-based superconducting thin film applications. We initially focus our discussion on the understanding of physical properties and actual problems in film fabrication based on a comparison of different observations made in the last few years. Subsequently we address the potential for technological applications according to the current situation. (review article)

  15. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  16. Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage

    Science.gov (United States)

    Si, Fai Tong; Kim, Do Yun; Santbergen, Rudi; Tan, Hairen; van Swaaij, René A. C. M. M.; Smets, Arno H. M.; Isabella, Olindo; Zeman, Miro

    2014-08-01

    We have fabricated a-SiOx:H/a-Si:H/nc-Si:H/nc-Si:H quadruple-junction thin-film silicon-based solar cells (4J TFSSCs) to obtain high spectral utilization and high voltages. By processing the solar cells on micro-textured superstrates, extremely high open-circuit voltages for photovoltaic technology based on thin-film silicon alloys up to 2.91 V have been achieved. Optical simulations of quadruple-junction solar cells using an advanced in-house model are a crucial tool to effectively tackle the challenging task of current matching among the individual sub-cells in such devices. After optimizing the optical design of the device and the absorber thicknesses, an energy conversion efficiency of 11.4% has been achieved. The open-circuit voltage, short-circuit current density, and fill factor were 2.82 V, 5.49 mA/cm2, and 73.9%, respectively. Based on this demonstration, strategies for further development of highly efficient 4J TFSSCs are proposed.

  17. AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance

    Science.gov (United States)

    Wang, W. B.; Fu, Y. Q.; Chen, J. J.; Xuan, W. P.; Chen, J. K.; Wang, X. Z.; Mayrhofer, P.; Duan, P. F.; Bittner, A.; Schmid, U.; Luo, J. K.

    2016-07-01

    This paper reports the characterization of scandium aluminum nitride (Al1‑x Sc x N, x  =  27%) films and discusses surface acoustic wave (SAW) devices based on them. Both AlScN and AlN films were deposited on silicon by sputtering and possessed columnar microstructures with (0 0 0 2) crystal orientation. The AlScN/Si SAW devices showed improved electromechanical coupling coefficients (K 2, ~2%) compared with pure AlN films (liquid droplets, and the acoustic streaming and pumping velocities were 2  ×  and 3  ×  those of the AlN/Si SAW devices, respectively. Mechanical characterization showed that the Young’s modulus and hardness of the AlN film decreased significantly when Sc was doped, and this was responsible for the decreased acoustic velocity and resonant frequency, and the increased temperature coefficient of frequency, of the AlScN SAW devices.

  18. Electronic properties of dioctylterthiophene-based organic thin-film transistors: A Kelvin probe force microscopy study

    International Nuclear Information System (INIS)

    It appeared in the past decades that semi-conducting organic liquid crystals could be used as the active layer in organic thin film transistors (OTFTs). They can be processed by simple methods such as inkjet printing, which paves the way to applications for cheap plastic electronics such as electronic tags, biosensors, and flexible screens. However, the measured field-effect mobility in these OTFTs is relatively low compared to inorganic devices. Generally, such low field-effect mobility values result from extrinsic effects such as grain boundaries or imperfect interfaces with source and drain electrodes. It has been shown that reducing the number of grain boundaries between the source and drain electrodes improves the field effect mobility. Therefore, it is important to understand the transport mechanisms by studying the local structure and electronic properties of organic thin films within the channel and at the interfaces with source and drain electrodes in order to improve the field-effect mobility in OTFTs. Kelvin probe force microscopy (KPFM) is an ideal tool for that purpose since it allows to simultaneously investigate the local structure and the electrical potential distribution in electronic devices. In this work, the structure and the electrical properties of OTFTs based on dioctylterthiophene (DOTT) were studied. The transistors were fabricated by spin-coating DOTT on the transistor structures with untreated and treated (silanized) channel silicon oxide. The potential profiles across the channel and at the metal-electrode interfaces were measured by KPFM. The effect of surface treatment on the electrical properties, charge trapping phenomenon and hysteresis effects is demonstrated and analyzed. - Highlights: • Kelvin probe force microscopy study of organic thin film transistors. • Cost and time savings by using solution processable molecules as active layers. • Smaller crystals and less charge trapping effects in silanized devices. • Decrement

  19. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  20. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  1. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  2. Correlation of film morphology and defect content with the charge-carrier transport in thin-film transistors based on ZnO nanoparticles

    International Nuclear Information System (INIS)

    The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussed with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization

  3. Correlation of film morphology and defect content with the charge-carrier transport in thin-film transistors based on ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Polster, S. [Chair of Electron Devices, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 6, 91058 Erlangen (Germany); Jank, M. P. M. [Fraunhofer Institute for Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany); Frey, L. [Chair of Electron Devices, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 6, 91058 Erlangen (Germany); Fraunhofer Institute for Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany)

    2016-01-14

    The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussed with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.

  4. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  5. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Ibrahim H.A. [University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48105-1055 (United States); Meyerhoff, Mark E. [University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48105-1055 (United States)]. E-mail: mmeyerho@umich.edu

    2005-11-30

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 {+-} 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  6. Organic thin-film photovoltaics

    OpenAIRE

    Liu, Miaoyin

    2010-01-01

    Zusammenfassung Zur Verbesserung der Leistungsumwandlung in organischen Solarzellen sind neue Materialien von zentraler Bedeutung, die sämtliche Erfordernisse für organische Photovoltaik-Elemente erfüllen. In der vorliegenden Arbeit „Organic thin-film photovoltaics“ wurden im Hinblick auf ein besseres Verständnis der Zusammenhänge zwischen molekularer Struktur und der Leistungsfähigkeit neue Materialien in „bulk-heterojunction“ Solarzellen und in Festphasen-Farbstoffsensibilisierten ...

  7. {sup 57}Fe Moessbauer studies of Fe-Si based amorphous ferromagnetic ribbons and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadzadeh, H

    1998-04-01

    {sup 57}Fe Moessbauer Spectroscopy has been used to study the mean magnetic moment direction and the distribution of moment directions in ribbon and thin film of amorphous ferromagnets known as Metglass and Finemet. We have studied them in As Received (AR) and Stress Relieved (SR) or Heat Treated (HT) states. These samples are excellent 'soft magnetic materials' with low coercivity of 8 A/m and 0.5 A/m respectively. Annealing has different effects on these samples. Although following annealing coercivity decreases for both Metglass and Finemet samples, in the Finemet it creates a second phase of DO{sub 3} structure which is a nanocrystallite. Our analysis also shows that in the Heat Treated Finemet ribbon 34 % (vol.) of the sample is amorphous and 64 % (vol.) nanocrystalline. In the HT Finemet there are seven different iron sites of which 6 sites belong to the crystalline phase and one site to the amorphous phase. We have studied the distribution of the hyperfine fields, which cause broadening of the spectral lines in the amorphous state. Each iron site has a different environment which is in turn the reason for the field distribution.Our results show that following annealing the mean magnetic field decreases from about 211 kOe in the AR Finemet to 165 kOe in the amorphous phase of the heat treated Finemet which means in this phase there is a depletion in the iron atoms. The spectra were recorded for a range of inclinations between the {gamma}-rays and the normal to the sample plane. Different phenomenological models have been used to investigate the moment direction distribution (anisotropy) in our sample. The results show that in both Metglass and Finemet samples annealing decreases the in-plane anisotropy substantially but not the out-of-plane anisotropy. We also show that the properties of Metglass thin film are quite different from its ribbon sample. Low temperature studies of the Metglass Ribbon sample allow us to investigate the temperature

  8. 57Fe Moessbauer studies of Fe-Si based amorphous ferromagnetic ribbons and thin films

    International Nuclear Information System (INIS)

    57Fe Moessbauer Spectroscopy has been used to study the mean magnetic moment direction and the distribution of moment directions in ribbon and thin film of amorphous ferromagnets known as Metglass and Finemet. We have studied them in As Received (AR) and Stress Relieved (SR) or Heat Treated (HT) states. These samples are excellent 'soft magnetic materials' with low coercivity of 8 A/m and 0.5 A/m respectively. Annealing has different effects on these samples. Although following annealing coercivity decreases for both Metglass and Finemet samples, in the Finemet it creates a second phase of DO3 structure which is a nanocrystallite. Our analysis also shows that in the Heat Treated Finemet ribbon 34 % (vol.) of the sample is amorphous and 64 % (vol.) nanocrystalline. In the HT Finemet there are seven different iron sites of which 6 sites belong to the crystalline phase and one site to the amorphous phase. We have studied the distribution of the hyperfine fields, which cause broadening of the spectral lines in the amorphous state. Each iron site has a different environment which is in turn the reason for the field distribution. Our results show that following annealing the mean magnetic field decreases from about 211 kOe in the AR Finemet to 165 kOe in the amorphous phase of the heat treated Finemet which means in this phase there is a depletion in the iron atoms. The spectra were recorded for a range of inclinations between the γ-rays and the normal to the sample plane. Different phenomenological models have been used to investigate the moment direction distribution (anisotropy) in our sample. The results show that in both Metglass and Finemet samples annealing decreases the in-plane anisotropy substantially but not the out-of-plane anisotropy. We also show that the properties of Metglass thin film are quite different from its ribbon sample. Low temperature studies of the Metglass Ribbon sample allow us to investigate the temperature dependence of the moment

  9. Preparation of thin film gold based catalysts for oxidation reactions in liquid and gas phases

    International Nuclear Information System (INIS)

    This work deals with the preparation of gold on titania catalysts to make catalytic films in the less than 100 nm thickness area and its comparison with usual powder catalyst in catalytic oxidation reactions in gas and liquid phases. Titania was coated on glass plates with different thicknesses, but with ultra-low surface roughness (< 5 Å). Gold deposition was performed with usual chemical method for catalysts preparation, that is deposition–precipitation with urea. Transmission electron microscopy showed that planar samples are decorated with a high quantity (> 10 wt.% with respect to TiO2) of gold nanoparticles smaller than 2.5 nm, with a narrow size distribution. Activity in CO oxidation demonstrates the catalytic behavior of the planar samples, although they are less active than powder catalyst because of the different geometries of the reactors and catalysts. In contrast, their catalytic performances in liquid phase, benzyl alcohol oxidation, are comparable. These results validate the concept that gold planar catalysts prepared by chemical methods can present similar catalytic behavior as real powder gold catalysts. Such planar catalysts could be useful for bridging the material gap between real and model catalysts in advanced techniques, such as scanning tunnelling microscopy and spectroscopy or high-pressure photoelectron spectroscopy. - Highlights: ► Preparation of thin film of TiO2 (pure anatase) on glass with a low roughness (< 5 Å) ► High density of small gold nanoparticles on planar substrates by a chemical method ► Planar catalysts active in both gas and liquid phase oxidation reactions ► Bridging of the material gap between real and model catalysts

  10. Thin Films Characterization by Ultra Trace Metrology

    International Nuclear Information System (INIS)

    Sensitive and accurate characterization of thin films used in nanoelectronics, thinner than a few nm, represents a challenge for many conventional methods, especially when considering in-line control. With capabilities in the E10 at/cm2 (2O3 tunnel oxide deposited on a magnetic stack. On the other hand, composition analysis by TXRF, and especially the detection of minor elements into thin films, requires the use of a specific incident angle to optimize sensitivity. Under the best conditions, determination of the composition of Co -based self aligned barriers (CoWP and CoWMoPB films with Co concentration >80%) is done with a precision of 6% on P, 8% on Mo and 13% on W (standard deviation)

  11. Hydrothermal synthesis, characterization of h-WO3 nanowires and gas sensing of thin film sensor based on this powder

    International Nuclear Information System (INIS)

    The monodisperse hexagonal WO3 (h-WO3) nanowires were synthesized using hydrothermal treatment through the acidification of Na2WO4 · 2H2O by addition of K2SO4 and Na2SO4. The obtained products were characterized using X-ray powder diffraction, field emission scanning electron microscopy and transmission electron microscopy. It showed a high crystallinity and good dispersity of nanowire structure with the exposure of < 200 > crystal facets. Based on h-WO3 products, thin film sensors were prepared. The gas-sensing properties to various concentrations (10, 20, 50, 100, and 200 ppm) of ethanol and formaldehyde were investigated. The h-WO3 nanowires exhibited high responses to both ethanol and formaldehyde gas. The sensor exhibited remarkably good response and fast response/recovery time, which were as short as 6–8 s. A possible reason for the influence of oxide structure on the sensing properties of thin film sensors is proposed. This work shows great potential for the preparation of 1D h-WO3 nanostructures and their application in the detection of toxic gases. - Highlights: • Monodisperse h-WO3 nanowires with a diameter of 80 nm were hydrothermally synthesized. • These h-WO3 nanowires grow along the direction of [001] and with < 200 > facets exposed. • Sensor based on h-WO3 nanowires show excellent gas sensing properties to toxic gases

  12. A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program

    Science.gov (United States)

    Simya, O. K.; Mahaboobbatcha, A.; Balachander, K.

    2015-06-01

    A comparative study of thin film solar cells based on CZTS, CZTSe, and CZTSSe (Copper Zinc Tin Sulphur Selenium) absorbers layers were simulated with Cadmium Sulphide (CdS) as buffer layer and Zinc Oxide (ZnO) as window layer using a solar cell capacitance simulator (SCAPS). The influences of series resistance, band to band recombination, defects and interfaces, thickness of (CZTS|CZTSe|CZTSSe) absorber layer, (CdS) buffer layer and transparent conductive oxide layer (ZnO) on the photovoltaic cell parameters were studied in detail. Improvements in efficiency were achieved by changing the back contact metal work function (BMWF) and choosing the flat band option in SCAPS software. Based on the best possible optimisation, an efficiency (η) of 12.03%, 13.16% and 15.77% were obtained for CZTS, CZTSe, and CZTSSe respectively. The performance of thin film photovoltaic devices (TFPV), for Mo back contact before optimisation and the SCAPS simulated values (flat band) after optimisation were described in detail to have in-depth understanding for better design of experiments (DOE) to obtain high efficiency solar cells.

  13. Electrical characterisation of ferroelectric field effect transistors based on ferroelectric HfO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yurchuk, Ekaterina

    2015-02-06

    Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO{sub 2}) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO{sub 2} thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO{sub 2}-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

  14. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  15. Modification of structure and property in Zr-based thin film metallic glass via processing temperature control

    International Nuclear Information System (INIS)

    The aims of this study are to fabricate the Zr–Cu–Ni–Al thin film metallic glass (TFMG) on silicon substrates by DC magnetron sputtering with single target and to investigate the characteristics of coatings with various substrate temperatures. All the coatings exhibit similar structural and thermal properties, yet the hardness increases with processing temperature. It is demonstrated that amorphous matrix and cluster structure are slightly affected by the processing temperatures due to high cooling rate during deposition and superior glass-forming ability. Besides, atoms and clusters can acquire extra energy via heating substrate to stabilize each cluster, and the amount of free volume is reduced. Thus, the hardness increases with substrate temperature owing to the resistance to the shear band propagation. In summary, this study integrates the correlations among microstructure, thermal and mechanical properties, providing a convenient approach to tune TFMG coating performance. - Highlights: • Zr-based thin film metallic glass (TFMG) exhibits a wide supercooled liquid region. • The effect of substrate temperature on the microstructure is considered. • The short range order cluster can be controlled through processing temperature. • The hardness of sputtered Zr-based TFMG (7.1 GPa) shows good mechanical property

  16. Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration

    Directory of Open Access Journals (Sweden)

    Yi Li

    2014-06-01

    Full Text Available This study investigates the remarkable reduction in the threshold voltage (VT of pentacene-based thin film transistors with pentacene/copper phthalocyanine (CuPc sandwich configuration. This reduction is accompanied by increased mobility and lowered sub-threshold slope (S. Sandwich devices coated with a 5 nm layer of CuPc layer are compared with conventional top-contact devices, and results indicate that VT decreased significantly from −20.4 V to −0.2 V, that mobility increased from 0.18 cm2/Vs to 0.51 cm2/Vs, and that S was reduced from 4.1 V/dec to 2.9 V/dec. However, the on/off current ratio remains at 105. This enhanced performance could be attributed to the reduction in charge trap density by the incorporated CuPc layer. Results suggest that this method is simple and effectively generates pentacene-based organic thin film transistors with high mobility and low VT.

  17. Eutectic bonds on wafer scale by thin film multilayers

    Science.gov (United States)

    Christensen, Carsten; Bouwstra, Siebe

    1996-09-01

    The use of gold based thin film multilayer systems for forming eutectic bonds on wafer scale is investigated and preliminary results will be presented. On polished 4 inch wafers different multilayer systems are developed using thin film techniques and bonded afterwards under reactive atmospheres and different bonding temperatures and forces. Pull tests are performed to extract the bonding strengths.

  18. Infrared laser-based monitoring of the silane dissociation during deposition of silicon thin films

    International Nuclear Information System (INIS)

    The silane dissociation efficiency, or depletion fraction, is an important plasma parameter by means of which the film growth rate and the amorphous-to-microcrystalline silicon transition regime can be monitored in situ. In this letter we implement a homebuilt quantum cascade laser-based absorption spectrometer to measure the silane dissociation efficiency in an industrial plasma-enhanced chemical vapor deposition system. This infrared laser-based diagnostic technique is compact, sensitive, and nonintrusive. Its resolution is good enough to resolve Doppler-broadened rotovibrational absorption lines of silane. The latter feature various absorption strengths, thereby enabling depletion measurements over a wide range of process conditions.

  19. Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions

    International Nuclear Information System (INIS)

    Chemical solution deposition (CSD) is a very competitive technique to obtain epitaxial films and multilayers of high quality with controlled nanostructures. Based on the strong attractiveness from the cost point of view, the production of long length coated conductors based on the CSD approach is being extensively developed. The trifluoroacetate route (TFA) is the most widely used route to achieve epitaxial YBa2Cu3O7 (YBCO) layers with high critical currents, however a deep understanding of all the individual consecutive processing steps, as well as their mutual influence and relationship, is required to achieve superconducting materials with high performance. In this work, we review advances in the knowledge of all the steps relevant to the preparation of YBCO thin films based on TFA precursors as a CSD methodology: solution preparation and deposition, pyrolysis processes, intermediate phase evolution, nucleation and growth phenomena, microstructural evolution and its influence on percolating supercurrents, as well as vortex pinning by natural existing defects. Finally, we discuss the open issues still existing in the TFA approach, particularly that of film nanostructuration, and we provide a future outlook for this outstanding methodology. (topical review)

  20. Photoconductivity of thin organic films

    International Nuclear Information System (INIS)

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C60), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 x 103 Ω m and 3 x 104 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 x 108 Ω m in dark to 3.1 x 106 Ω m under the light.

  1. Stable, high-efficiency, CuInSe2-based, polycrystalline, thin-film tandem solar cells

    Science.gov (United States)

    Birkmire, R. W.; Phillips, J. E.

    1987-10-01

    The long-term objective of this research was to obtain a stable, thin-film solar cell based on polycrystalline materials with an efficiency of 15 percent. The approach was to make a tandem cell based on CuInSe2/CdS as the bottom cell and CdTe/CdS as the top cell. An essential feature was to develop a CdTe cell with transport contacts. A suitable contacting system was developed using transparent conducting oxides (ITO and SnO2) in conjunction with a thin layer of copper. Cells were made with efficiencies over 8.5 percent. A reproducible fabrication process for CuInSe2/(CdZn)S cells was developed based on CuInSe2 films grown by vacuum evaporation using Knudsen-type effusion sources. These cells were made with efficiencies over 10 percent. The composition of the CuInSe2 films can be varied over a considerable range and still yield high-efficiency cells. Adding Zn to the CdS did not increase the V(sub oc) of the devices; analysis showed that the V(sub oc) is not controlled by interface recombination. The effect of oxidizing and reducing heat treatments on CuInSe2 cells is to change carrier concentration and thus V(sub oc). Analysis suggests that J(sub o) is controlled by band-to-band recombination. Monolithic tandem CuInSe2 CdTe cells have been made with efficiencies of approximately 3 percent, demonstrating the feasibility of this approach.

  2. Wireless thin film transistor based on micro magnetic induction coupling antenna.

    Science.gov (United States)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-01-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT). PMID:26691929

  3. Flexible gastrointestinal motility pressure sensors based on aluminum thin-film strain-gauge arrays

    International Nuclear Information System (INIS)

    This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively changing their electrical resistance. The sensor, with an area of 3.4 mm2, is fabricated using photolithography and standard microfabrication techniques (wet etching). It features a linear response (R2 = 0.9987) and an overall sensitivity of 2.6 mV mmHg−1. Additionally, its topology allows a high integration capability. The strain gauges’ responses to pressure were studied and the fabrication process optimized to achieve high sensitivity, linearity, and reproducibility. The sequential acquisition of the different signals is carried out by a microcontroller, with a 10-bit ADC and a sample rate of 250 Hz. The pressure signals are then presented in a user-friendly interface, developed using the Integrated Development Environment software, QtCreator IDE, for better visualization by physicians. (paper)

  4. Liquid crystal devices with continuous phase variation based on high-permittivity thin films

    Science.gov (United States)

    Willekens, Oliver; Neyts, Kristiaan; Beeckman, Jeroen

    2016-03-01

    Most liquid crystal devices use transparent conductive electrodes such as indium tin oxide (ITO) to apply a potential difference in order to achieve electro-optic switching. As an alternative, we study a device with narrow metallic electrodes in combination with dielectric layers with large dielectric permittivity. In this approach the applied voltage can be a continuous function of the lateral distance from the electrode line. Simulations for a one-dimensional beam-steering device show that the switching of the liquid crystal (LC) director depends indeed on the distance from the addressing electrodes and on the value of the relative permittivity. We show that in a device with electrodes spaced 60 µm apart, the LC director halfway between the electrodes shows a considerable reorientation, when a dielectric layer with permittivity of Epsilonr = 550 is used, whereas no reorientation is observed for the uncoated reference sample at the same voltage. An added advantage is that the proposed configuration only contains dielectric materials, without resistive losses, which means that almost no heat is dissipated. This indicates that this technology could be used in low-power LC devices. The results show that using dielectric thin films with high relative permittivity in liquid crystal devices could form a cost-efficient and low-power alternative to many LC technologies where a gradient electric field is desirable.

  5. Wireless thin film transistor based on micro magnetic induction coupling antenna

    Science.gov (United States)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  6. Transparent Thin Film Transistors based on Pristine and Doped Indium Oxide Nanowires

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Sukcharoenchoke, Saowalak; Zhou, Chongwu

    2009-03-01

    The key to the realization of transparent electronics is the development of transparent thin film transistors (TTFT) with good device performance, in terms of high device mobility, low temperature fabrication, and optical transparency. We present our work on the fabrication of high performance TTFTs using both pristine In2O3 nanowires and doped In2O3 nanowires. In2O3 nanowire TTFTs were made on glass and PET substrates with Al2O3 as gate insulator and ITO source/drain electrodes. These devices showed a transparency of about 80% and n-type transistor performance. The device characteristics exhibit a subthreshold slope of 0.2 V/dec, a current on/off ratio of 10^6, and a field-effect mobility of 514 cm^2V-1S-1. We also fabricated TTFTs wbuilt on Arsenic-doped In2O3 nanowires with a field-effect mobility of 1,183.8 cm^2V-1S-1 without any post-treatments. In addition, we integrated TTFTs with organic light emitting diode (OLED) to make an active matrix organic light emitting diode (AMOLED) display, and thus made an animation by controlling the OLED light output.

  7. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    Highlights: • The leakage current is effectively reduced by adding a certain amount of titanium. • Addition of titanium increases the remnant polarization and decreases the band gap. • The power conversion efficiency increases as titanium content increases. - Abstract: Ti-doped bismuth ferrite thin films were prepared via sol–gel spin-coating method. The effects of titanium on the microstructure, optical, leakage, ferroelectric and photovoltaic characteristics have been investigated systematically. The result shows that bismuth ferrite thin films doped with 0–8 at.% Ti are rhombohedral distortion perovskite structure. The addition of titanium inhibits the grain growth and enhances the thickness uniformity and can decrease the band gap of bismuth ferrite thin films. The leakage current of bismuth ferrite thin films is effectively reduced by adding a certain amount of titanium and the leakage mechanism has been investigated. Addition of titanium increases the remnant polarization of the films. As titanium content increases, the short circuit photocurrent density decrease first and then increase, while the open circuit photovoltage increase first and then decrease. The power conversion efficiency of Ti-doped bismuth ferrite thin films increases as titanium content increases, which can be explained as a result of the increased remnant polarization and decreased band gap

  8. Optical waveguide modeling of refractive index mediated pH responses in silica nanocomposite thin film based fiber optic sensors

    Science.gov (United States)

    Ohodnicki, P. R.; Wang, C.

    2016-02-01

    Recent experiments have demonstrated a pH-dependent optical transmission of silica based nanocomposite thin film enabled evanescent wave absorption spectroscopy based fiber optic sensors in aqueous solutions. Although the response was observed to linearly correlate with the pH-dependent surface charge density of the silica matrix, the responsible mechanism was not fully clarified. In this manuscript, an optical waveguide model is applied to describe observed responses through a modified effective refractive index of the silica matrix layer as a function of the solution phase pH. The refractive index dependence results from a surface charge dependent ionic adsorption, resulting in concentration of ionic species at charged surfaces. The resultant effective index modification to porous silica is estimated through effective medium theories and applied to an optical waveguide model of a multi-mode fiber optic based sensor response capable of reproducing all experimental observations reported to date.

  9. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Hairong Wang

    2014-09-01

    Full Text Available An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor’s output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  10. High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices

    KAUST Repository

    Lin, Yen-Hung

    2015-05-26

    High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.

  11. Fabry-Perot Interferometer-Based Electrooptic Modulator using LiNbO3 and Organic Thin Films

    Science.gov (United States)

    Banks, C.; Frazier, D.; Penn, B.; Abdeldayem, H.; Sharma, A.; Yelleswarapu, C.; Leyderman, Alexander; Correa, Margarita; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We report the study of a Fabry-Perot electro-optical modulator using thin crystalline film NPP, and Crystalline LiNbO3. We are able to observe 14, and 60 percent degree of modulation. Measurements were carried using a standard lock-in amplifier with a silicon detector. The proposal to design a Fabry-Perot electro-optic modulator with an intracavity electro-optically active organic material was based on the initial results using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Packets cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside die resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field.

  12. Effect of film thickness and texture morphology on the physical properties of lead sulfide thin films

    Science.gov (United States)

    Azadi Motlagh, Z.; Azim Araghi, M. E.

    2016-02-01

    Lead sulfide (PbS) thin films were prepared onto ultra-clean quartz substrate by the electron beam gun (EBG) evaporation method. The thicknesses of the thin films were 50, 100, 150 and 200 nm. They were annealed at 423 K for 2 h. Field emission scanning electron microscopy (FESEM) images of the thin films showed their texture morphology at the surface of the quartz substrate. X-ray diffraction (XRD) patterns of the thin films showed that they have a cubic phase and rock-salt structure after annealing. The average crystallite size for the thin films was in the range of 32-100 nm. Optical measurements confirmed that crystalline thin films have a direct band gap that increases by decreasing the film thickness. This blue shift of the band gap of thin films compared to the bulk structure can be attributed to the quantum confinement effects in the nanoparticles. A decrease in conductivity by increasing the temperature confirmed the positive temperature coefficient of resistance in the thin films that showed the dominant conduction mechanism is via a band-like transition. The density of localized states at the Fermi level increases by increasing the film thickness. Current-voltage behavior of the thin films showed an increase in both dark current and photocurrent by increasing the crystallite size which is discussed, based on the presence of trap states and barriers in nanostructures.

  13. Effect of film thickness and texture morphology on the physical properties of lead sulfide thin films

    International Nuclear Information System (INIS)

    Lead sulfide (PbS) thin films were prepared onto ultra-clean quartz substrate by the electron beam gun (EBG) evaporation method. The thicknesses of the thin films were 50, 100, 150 and 200 nm. They were annealed at 423 K for 2 h. Field emission scanning electron microscopy (FESEM) images of the thin films showed their texture morphology at the surface of the quartz substrate. X-ray diffraction (XRD) patterns of the thin films showed that they have a cubic phase and rock-salt structure after annealing. The average crystallite size for the thin films was in the range of 32–100 nm. Optical measurements confirmed that crystalline thin films have a direct band gap that increases by decreasing the film thickness. This blue shift of the band gap of thin films compared to the bulk structure can be attributed to the quantum confinement effects in the nanoparticles. A decrease in conductivity by increasing the temperature confirmed the positive temperature coefficient of resistance in the thin films that showed the dominant conduction mechanism is via a band-like transition. The density of localized states at the Fermi level increases by increasing the film thickness. Current–voltage behavior of the thin films showed an increase in both dark current and photocurrent by increasing the crystallite size which is discussed, based on the presence of trap states and barriers in nanostructures. (paper)

  14. Solution-Processable BODIPY-Based Small Molecules for Semiconducting Microfibers in Organic Thin-Film Transistors.

    Science.gov (United States)

    Ozdemir, Mehmet; Choi, Donghee; Kwon, Guhyun; Zorlu, Yunus; Cosut, Bunyemin; Kim, Hyekyoung; Facchetti, Antonio; Kim, Choongik; Usta, Hakan

    2016-06-01

    Electron-deficient π-conjugated small molecules can function as electron-transporting semiconductors in various optoelectronic applications. Despite their unique structural, optical, and electronic properties, the development of BODIPY-based organic semiconductors has lagged behind that of other π-deficient units. Here, we report the design and synthesis of two novel solution-proccessable BODIPY-based small molecules (BDY-3T-BDY and BDY-4T-BDY) for organic thin-film transistors (OTFTs). The new semiconductors were fully characterized by (1)H/(13)C NMR, mass spectrometry, cyclic voltammetry, UV-vis spectroscopy, photoluminescence, differential scanning calorimetry, and thermogravimetric analysis. The single-crystal X-ray diffraction (XRD) characterization of a key intermediate reveals crucial structural properties. Solution-sheared top-contact/bottom-gate OTFTs exhibited electron mobilities up to 0.01 cm(2)/V·s and current on/off ratios of >10(8). Film microstructural and morphological characterizations indicate the formation of relatively long (∼0.1 mm) and micrometer-sized (1-2 μm) crystalline fibers for BDY-4T-BDY-based films along the shearing direction. Fiber-alignment-induced charge-transport anisotropy (μ∥/μ⊥ ≈ 10) was observed, and higher mobilities were achieved when the microfibers were aligned along the conduction channel, which allows for efficient long-range charge-transport between source and drain electrodes. These OTFT performances are the highest reported to date for a BODIPY-based molecular semiconductor, and demonstrate that BODIPY is a promising building block for enabling solution-processed, electron-transporting semiconductor films. PMID:27182606

  15. ENERGY EFFICIENCY OF A PHOTOVOLTAIC CELL BASED THIN FILMS CZTS BY SCAPS

    OpenAIRE

    C. Mebarkiaa; Dib, D. (collab.); H. Zerfaoui; R. Belghit

    2016-01-01

    In the overall context of the diversification of the use of natural resources, the use of renewable energy including solar photovoltaic has become increasingly indispensable. As such, the development of a new generation of photovoltaic cells based on CuZnSnS4 (CZTS) looks promising. Cu2ZnSnS4 (CZTS) is a new film absorber, with good physical properties (band gap energy 1.4-1.6 eV [01] with a large absorption coefficient over 104 cm-1). Indeed, the performance of these cells exceeded 30% in re...

  16. Data storage applications based on LiCoO2 thin films grown on Al2O3 and Si substrates

    Science.gov (United States)

    Svoukis, E.; Mihailescu, C. N.; Mai, V. H.; Schneegans, O.; Breza, K.; Lioutas, C.; Giapintzakis, J.

    2016-09-01

    In this study, LiCoO2 thin films were investigated for data storage applications based on scanning probe mediated approaches. LiCoO2, compared to other materials proposed for scanning probe mediated nanoscale patterning, is highly stable and exhibits reversible electrochemical surface modifications. LiCoO2 thin films have been grown by pulsed laser deposition on Al2O3 and Si substrates over a range of deposition temperatures. The crystal structure and the microstructure of the films has been inferred through in- and out-of-plane X-ray diffraction studies and high-resolution transmission electron microscopy, respectively. The influence of the film deposition temperature on the surface electrical properties of the LiCoO2 films is discussed along with the relevant mechanism of surface resistance modification.

  17. Investigation of ZnO thin films deposited on ferromagnetic metallic buffer layer by molecular beam epitaxy toward realization of ZnO-based magnetic tunneling junctions

    International Nuclear Information System (INIS)

    Deposition of ZnO thin films on a ferromagnetic metallic buffer layer (Co3Pt) by molecular beam epitaxy technique was investigated for realization of ZnO-based magnetic tunneling junctions with good quality hexagonal ZnO films as tunnel barriers. For substrate temperature of 600 °C, ZnO films exhibited low oxygen defects and high electrical resistivity of 130 Ω cm. This value exceeded that of hexagonal ZnO films grown by sputtering technique, which are used as tunnel barriers in ZnO-MTJs. Also, the effect of oxygen flow during deposition on epitaxial growth conditions and Co3Pt surface oxidation was discussed.

  18. Wavelength-switchable multiwavelength erbium-doped fiber laser based on a D-shaped fiber with a photoresist thin-film overlay

    International Nuclear Information System (INIS)

    A wavelength-switchable multiwavelength erbium-doped fiber (EDF) laser based on a D-shaped fiber with a photoresist (PR) thin-film overlay is proposed and experimentally demonstrated. The D-shaped fiber with a PR thin-film overlay is implemented as a multichannel filter. Based on the evanescent field coupling between the D-shaped fiber and the PR thin-film overlay, periodic transmission characteristics are obtained. The wavelength spacing of the D-shaped fiber with the PR thin-film overlay is controlled by changing the thickness and the refractive index of the PR thin film overlay. By inserting the proposed multichannel filter into an EDF ring laser, a multiwavelength EDF laser is achieved. The homogenous line broadening of erbium ions for the realization of stable operation of the multiwavelength EDF ring laser is suppressed by using a nonlinear polarization rotation. A high-quality multiwavelength output with a high extinction ratio of ∼0 dB is realized. The output fluctuation of the proposed multiwavelength EDF ring laser is measured to be less than 0.3 dB. Since the transmission characteristics of the proposed multichannel filter are controlled by using two orthogonal input polarization states, multiwavelength lasing outputs are switched.

  19. Development of artificial surface layers for thin film cathode materials

    OpenAIRE

    Carrillo Solano, Mercedes Alicia

    2016-01-01

    The present work was based on the investigation of different thin film components of Li ion batteries. A first part was dedicated to the deposition of cathodes in thin film form of a known material, LiCoO2, and an alternative one, Li(NiMnCo)O2 employing physical vapor deposition (PVD) and chemical vapor deposition (CVD), respectively. A second part was focused on the cathode-electrolyte interface for three case studies: 1) as deposited LiCoO2 cathode thin film, 2) ZrO2 coated LiCoO2 thin...

  20. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Macedo, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Couto, F.M. [Physics Sciences Laboratory, Norte Fluminense State University, 28013-602 Campos–RJ (Brazil); Rodrigues, M.S.; Lopes, C. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Pedrosa, P. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Polcar, T. [Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Engineering Materials & nCATS, FEE, University of Southampton, Highfield Campus, SO17 1BJ, Southampton (United Kingdom); Marques, L.; Vaz, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-08-01

    The ternary aluminium oxynitride (AlN{sub x}O{sub y}) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlN{sub x} and AlO{sub y} and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlN{sub x}O{sub y} thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlO{sub y} and AlN{sub x} systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N{sub 2} and/or O{sub 2}) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group. - Highlights: • AlN{sub x}, AlO{sub y} and AlN{sub x}O{sub y} films were deposited by magnetron sputtering. • Discharge characteristics were compared between systems. • Different x and y coefficients were obtained.

  1. Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques

    International Nuclear Information System (INIS)

    Thin coatings are important for a variety of industries including energy (e.g., solar cells, batteries), consumer electronics (e.g., LCD displays, computer chips), and medical devices (e.g., implants). These coatings are typically highly uniform layers with thicknesses ranging from a monolayer up to several micrometers. Characterizing these highly uniform coatings for their thickness, elemental composition, and uniformity are all paramount, but obtaining these measurements can be more difficult when the layers are subsurface and must be interrogated non-destructively. The coupling of confocal micro-X-ray fluorescence (confocal MXRF) and nano-scale X-ray computed tomography (nano-CT) together can make these measurements while meeting these sensitivity and resolution specifications necessary for characterizing thin films. Elemental composition, atomic percent, placement, and uniformity can be measured in three dimensions with this integrated approach. Confocal MXRF uses a pair of polycapillary optics to focus and collect X-rays from a material from a 3D spatially restricted confocal volume. Because of the spatial definition, individual layers (of differing composition) can be characterized based upon the elementally characteristic X-ray fluorescence collected for each element. Nano-scale X-ray computed tomography, in comparison, can image the layers at very high resolution (down to 50 nm) to precisely measure the embedded layer thickness. These two techniques must be used together if both the thickness and atomic density of a layer are unknown. This manuscript will demonstrate that it is possible to measure both the atomic percent of an embedded thin film layer and confirm its manufacturing quality. As a proof of principle, a 1.5 atomic percent, 2 μm-thick Ge layer embedded within polymer capsules, used for laser plasma experiments at the Omega Laser Facility and National Ignition Facility, are measured. - Highlights: • Coupling of confocal X-ray fluorescence

  2. Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Nikolaus L., E-mail: ncordes@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Havrilla, George J. [Chemistry Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Usov, Igor O.; Obrey, Kimberly A.; Patterson, Brian M. [Materials Science and Technology Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2014-11-01

    Thin coatings are important for a variety of industries including energy (e.g., solar cells, batteries), consumer electronics (e.g., LCD displays, computer chips), and medical devices (e.g., implants). These coatings are typically highly uniform layers with thicknesses ranging from a monolayer up to several micrometers. Characterizing these highly uniform coatings for their thickness, elemental composition, and uniformity are all paramount, but obtaining these measurements can be more difficult when the layers are subsurface and must be interrogated non-destructively. The coupling of confocal micro-X-ray fluorescence (confocal MXRF) and nano-scale X-ray computed tomography (nano-CT) together can make these measurements while meeting these sensitivity and resolution specifications necessary for characterizing thin films. Elemental composition, atomic percent, placement, and uniformity can be measured in three dimensions with this integrated approach. Confocal MXRF uses a pair of polycapillary optics to focus and collect X-rays from a material from a 3D spatially restricted confocal volume. Because of the spatial definition, individual layers (of differing composition) can be characterized based upon the elementally characteristic X-ray fluorescence collected for each element. Nano-scale X-ray computed tomography, in comparison, can image the layers at very high resolution (down to 50 nm) to precisely measure the embedded layer thickness. These two techniques must be used together if both the thickness and atomic density of a layer are unknown. This manuscript will demonstrate that it is possible to measure both the atomic percent of an embedded thin film layer and confirm its manufacturing quality. As a proof of principle, a 1.5 atomic percent, 2 μm-thick Ge layer embedded within polymer capsules, used for laser plasma experiments at the Omega Laser Facility and National Ignition Facility, are measured. - Highlights: • Coupling of confocal X-ray fluorescence

  3. Approaches Towards the Minimisation of Toxicity in Chemical Solution Deposition Processes of Lead-Based Ferroelectric Thin Films

    Science.gov (United States)

    Bretos, Iñigo; Calzada, M. Lourdes

    The ever-growing environmental awareness in our lives has also been extended to the electroceramics field during the past decades. Despite the strong regulations that have come up (RoHS directive), a number of scientists work on ferroelectric thin film ceramics containing lead. Although the use of these materials in piezoelectric devices is exempt from the RoHS directive, successful ways of decreasing toxic load must be considered a crucial challenge. Within this framework, a few significant advances are presented here, based on different Chemical Solution Deposition strategies. Firstly, the UV sol-gel photoannealing technique (Photochemical Solution Deposition) avoids the volatilisation of hazardous lead from lead-based ferroelectric films, usually observed at conventional annealing temperatures. The key point of this approach lies in the photo-excitation of a few organic components in the gel film. There is also a subsequent annealing of the photo-activated film at temperatures low enough to prevent lead volatilisation, but allowing crystallisation of the pure perovskite phase. Ozonolysis of the films is also promoted when UV-irradiation is carried out in an oxygen atmosphere. This is known to improve electrical response. By this method, nominally stoichiometric solution (i.e., a solution without PbO-excess) derived films with reliable properties, and free of compositional gradients, may be prepared at temperatures as low as 450°C. A PtxPb interlayer between the ferroelectric film and the Pt silicon substrate is observed in the heterostructure of the low-temperature processed films. This is when lead excesses are present in their microstructure. The influence of this interface on the compositional depth profile of the films will be discussed. We will evaluate the feasibility of the UV sol-gel photoannealing technique in fabricating functional films while fulfilling environmental and technological aspects (like integration with silicon IC technology). The second

  4. Zinc oxide thin film acoustic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  5. Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques

    Science.gov (United States)

    Cordes, Nikolaus L.; Havrilla, George J.; Usov, Igor O.; Obrey, Kimberly A.; Patterson, Brian M.

    2014-11-01

    Thin coatings are important for a variety of industries including energy (e.g., solar cells, batteries), consumer electronics (e.g., LCD displays, computer chips), and medical devices (e.g., implants). These coatings are typically highly uniform layers with thicknesses ranging from a monolayer up to several micrometers. Characterizing these highly uniform coatings for their thickness, elemental composition, and uniformity are all paramount, but obtaining these measurements can be more difficult when the layers are subsurface and must be interrogated non-destructively. The coupling of confocal micro-X-ray fluorescence (confocal MXRF) and nano-scale X-ray computed tomography (nano-CT) together can make these measurements while meeting these sensitivity and resolution specifications necessary for characterizing thin films. Elemental composition, atomic percent, placement, and uniformity can be measured in three dimensions with this integrated approach. Confocal MXRF uses a pair of polycapillary optics to focus and collect X-rays from a material from a 3D spatially restricted confocal volume. Because of the spatial definition, individual layers (of differing composition) can be characterized based upon the elementally characteristic X-ray fluorescence collected for each element. Nano-scale X-ray computed tomography, in comparison, can image the layers at very high resolution (down to 50 nm) to precisely measure the embedded layer thickness. These two techniques must be used together if both the thickness and atomic density of a layer are unknown. This manuscript will demonstrate that it is possible to measure both the atomic percent of an embedded thin film layer and confirm its manufacturing quality. As a proof of principle, a 1.5 atomic percent, 2 μm-thick Ge layer embedded within polymer capsules, used for laser plasma experiments at the Omega Laser Facility and National Ignition Facility, are measured.

  6. Gas-sensitive properties of thin film heterojunction structures based on Fe2O3-In2O3 nanocomposites

    OpenAIRE

    Ivanovskaya, M.; Kotsikau, D.; Faglia, G.; Nelli, P.; Irkaev, S.

    2003-01-01

    This paper reports an investigation of the gas-sensitive properties of thin film based on the double-layers Fe2O3/In2O3 and Fe2O3-In2O3/In2O3 towards gases with different chemical nature (C2H5OH, CH4, CO, NH3, NO2, O3). As it was found, the -Fe2O3-In2O3 composite (Fe:In = 9:1) is more sensitive to O3; on the contrary, the -Fe2O3-In2O3 system (9:1), possesses an higher sensitivity to NO2. The optimal temperature for detecting both gases is in the range 70 - 100C. Sensors based on the -Fe2O...

  7. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  8. ANFIS-based approach to studying subthreshold behavior including the traps effect for nanoscale thin-film DG MOSFETs

    Institute of Scientific and Technical Information of China (English)

    T.Bentrcia; F.Djeffal; E.Chebaaki

    2013-01-01

    A fuzzy framework based on an adaptive network fuzzy inference system (ANFIS) is proposed to evaluate the relative degradation of the basic subthreshold parameters due to hot-carrier effects for nanoscale thin-film double-gate (DG) MOSFETs.The effect of the channel length and thickness on the resulting degradation is addressed,and 2-D numerical simulations are used for the elaboration of the training database.Several membership function shapes are developed,and the best one in terms of accuracy is selected.The predicted results agree well with the 2-D numerical simulations and can be efficiently used to investigate the impact of the interface fixed charges and quantum confinement on nanoscale DG MOSFET subthreshold behavior.Therefore,the proposed ANFIS-based approach offers a simple and accurate technique to study nanoscale devices,including the hot-carrier and quantum effects.

  9. ANFIS-based approach to studying subthreshold behavior including the traps effect for nanoscale thin-film DG MOSFETs

    International Nuclear Information System (INIS)

    A fuzzy framework based on an adaptive network fuzzy inference system (ANFIS) is proposed to evaluate the relative degradation of the basic subthreshold parameters due to hot-carrier effects for nanoscale thin-film double-gate (DG) MOSFETs. The effect of the channel length and thickness on the resulting degradation is addressed, and 2-D numerical simulations are used for the elaboration of the training database. Several membership function shapes are developed, and the best one in terms of accuracy is selected. The predicted results agree well with the 2-D numerical simulations and can be efficiently used to investigate the impact of the interface fixed charges and quantum confinement on nanoscale DG MOSFET subthreshold behavior. Therefore, the proposed ANFIS-based approach offers a simple and accurate technique to study nanoscale devices, including the hot-carrier and quantum effects. (semiconductor devices)

  10. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    Science.gov (United States)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  11. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    International Nuclear Information System (INIS)

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range

  12. Thin-film-based CdTe photovoltaic module characterization: Measurements and energy prediction improvement

    Science.gov (United States)

    Lay-Ekuakille, A.; Arnesano, A.; Vergallo, P.

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m2. About 37 000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m2 and from -1 to 40 W/m2 from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  13. Flexible Tactile Sensor Using Polyurethane Thin Film

    OpenAIRE

    Seiji Aoyagi; Tomokazu Takahashi; Masato Suzuki

    2012-01-01

    A novel capacitive tactile sensor using a polyurethane thin film is proposed in this paper. In previous studies, capacitive tactile sensors generally had an air gap between two electrodes in order to enhance the sensitivity. In this study, there is only polyurethane thin film and no air gap between the electrodes. The sensitivity of this sensor is higher than the previous capacitive tactile sensors because the polyurethane is a fairly flexible elastomer and the film is very thin (about 1 µm)....

  14. Silicon Thin-Film Solar Cells

    OpenAIRE

    2007-01-01

    We review the field of thin-film silicon solar cells with an active layer thickness of a few micrometers. These technologies can potentially lead to low cost through lower material costs than conventional modules, but do not suffer from some critical drawbacks of other thin-film technologies, such as limited supply of basic materials or toxicity of the components. Amorphous Si technology is the oldest and best established thin-film silicon technology. Amorphous silicon is deposited at low t...

  15. Improved electrochromic performances of NiO based thin films by lithium addition: From single layers to devices

    International Nuclear Information System (INIS)

    Aiming at enhancing the electrochromic properties of anodically colored NiO thin films, lithium doped NiO thin films were grown on FTO/glass substrates, by the pulsed laser deposition (PLD) method. Optimized conditions, namely a room temperature substrate under 10 Pa oxygen pressure were used. Comparison with undoped NiO thin films indicates that lithium doping deteriorates NiO cubic phase (1 1 1) preferred orientation and also induces lattice disorder. The investigation of the electrochromic properties of Li–Ni–O thin films in aqueous liquid electrolyte, 1 M KOH, on the one hand and in hydrophobic lithium conductive ionic liquid, 0.3 M LiTFSI in BMITFSI, on the other hand, demonstrates an improvement in the electrochromic performances with lithium doping. Finally, electrochromic devices built on the association of WO3 and Li–Ni–O thin films and using the above quoted ionic liquid blended with PMMA as electrolyte are reported. Good electrochromic performances and neutral color are shown.

  16. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    Directory of Open Access Journals (Sweden)

    F. W. Zeng

    2014-05-01

    Full Text Available Organosilicate glass (OSG is often used as an interlayer dielectric (ILD in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, GTH, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.

  17. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, F. W.; Lane, M. W., E-mail: mlane@ehc.edu [Department of Chemistry, Emory and Henry College, Emory, Virginia 24340 (United States); Gates, S. M. [IBM TJ Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-05-15

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.

  18. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    International Nuclear Information System (INIS)

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, GTH, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species

  19. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  20. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...... presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements....

  1. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density JSC = 10.62 mA/cm2, open-circuit voltage VOC = 0.93 V and fill factor = 64%).

  2. Towards solution-processed ambipolar hybrid thin-film transistors based on ZnO nanoparticles and P3HT polymer

    Science.gov (United States)

    Diallo, Abdou Karim; Gaceur, Meriem; Berton, Nicolas; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine

    2013-06-01

    Solution-processed n-channel oxide semiconductor thin-film transistors (TFTs) were fabricated using zinc oxide (ZnO) nanoparticles. Polycrystalline fused-ZnO nanoparticle films were produced by spin-coating ZnO nanosphere dispersions following by a subsequent heat treatment. The solution-processable semiconductor ink based on ZnO was prepared by dispersing the synthesized ZnO nanospheres in isopropanol mixed with ethanolamine to various concentrations from 20 to 80 mg/mL. Such concentration dependence on morphology and microstructure of thin films was studied on spin-coated ZnO films by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Spin-coated ZnO films involved as active layers in transistor configuration delivered an almost ideal output characteristic (Id-Vd) with an electron mobility up to 3 × 10-2 cm2/V s. As a p-channel semiconductor, a poly(3-hexylthiophene) (P3HT) solution-processable ink was deposited by spin-coating on top of closely packed ZnO nanoparticles-based films to form an uniform overlying layer. A hybrid (inorganic-organic) interface was formed by the direct contact between ZnO and P3HT leading to carrier redistribution. Such solution-processed hybrid thin-film transistors delivered in air well balanced electron and hole mobilities as 3.9 × 10-5 and 2 × 10-5 cm2/V s, respectively.

  3. Durability of VO 2 -based thin films at elevated temperature : Towards thermochromic fenestration

    OpenAIRE

    Ji, Yu-Xia; Niklasson, Gunnar A.; Granqvist, Claes-Göran

    2014-01-01

    An explorative study was performed on sputter-deposited thermochromic VO 2 films with top coatings of Al oxide and Al nitride. The films were exposed to dry air at a high temperature. Bare 80-nm-thick VO 2 films rapidly converted to non-thermochromic V 2 O 5 under the chosen conditions. Al oxide top coatings protected the underlying VO 2 films and, expectedly, increased film thickness yielded improved protection. Specifically, it was found that a 30-nm-thick sputter-deposited Al oxide top coa...

  4. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author)

  5. Interactions in thin aqueous films

    OpenAIRE

    Hänni-Ciunel, Katarzyna

    2006-01-01

    In der Arbeit werden die Wechselwirkungen in dünnen flüssigen Filmen untersucht und modifiziert. Schaum- (gas/flüssig/gas) und Benetzungsfilme (gas/flüssig/fest) werden mittels Thin Film Pressure Balance (TFPB) untersucht. Die Apparatur wurde im Rahmen der Arbeit für die Studien an asymmetrischen Filmen aufgebaut und modifiziert. Die Ladungen an den Filmgrenzflächen werden gezielt modifiziert. Die Adsoprtion von Tensiden bestimmt die Oberflächenladung an der gas/flüssig Grenzfläche. Die Oberf...

  6. The role of thin films in wetting

    OpenAIRE

    Marmur, Abraham

    1988-01-01

    The role of thin films in wetting is reviewed. Three modes of spontaneous spreading are discussed : incomplete spreading, complete spreading and mixed-mode spreading. A thin film can be either molecular or colloidal in thickness. Molecularly adsorbed films are mainly associated with incomplete spreading. Colloidal films usually extend from the bulk of the liquid in dynamic situations of complete spreading. Their existence at equilibriuim with the bulk depends on the orientation in the gravita...

  7. Microstructural evolution of tungsten oxide thin films

    International Nuclear Information System (INIS)

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 deg. were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a 'instability wheel' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  8. A versatile platform for magnetostriction measurements in thin films

    Science.gov (United States)

    Pernpeintner, M.; Holländer, R. B.; Seitner, M. J.; Weig, E. M.; Gross, R.; Goennenwein, S. T. B.; Huebl, H.

    2016-03-01

    We present a versatile nanomechanical sensing platform for the investigation of magnetostriction in thin films. It is based on a doubly clamped silicon nitride nanobeam resonator covered with a thin magnetostrictive film. Changing the magnetization direction within the film plane by an applied magnetic field generates a magnetoelastic stress and thus changes the resonance frequency of the nanobeam. A measurement of the resulting resonance frequency shift, e.g., by optical interferometry, allows to quantitatively determine the magnetostriction constants of the thin film. In a proof-of-principle experiment, we determine the magnetostriction constants of a 10 nm thick polycrystalline cobalt film, showing very good agreement with literature values. The presented technique aims, in particular, for the precise measurement of magnetostriction in a variety of (conducting and insulating) thin films, which can be deposited by, e.g., electron beam deposition, thermal evaporation, or sputtering.

  9. Impact of different polyimide-based substrates on the soft magnetic properties of NiFe thin films

    Science.gov (United States)

    Rittinger, Johannes; Taptimthong, Piriya; Jogschies, Lisa; Wurz, Marc C.; Rissing, Lutz

    2015-05-01

    We investigated the impact of polymer substrates on the magnetic properties of soft magnetic thin films. Experiments were carried out to evaluate the performance of AMR (anisotropic magnetoresistive) sensors deposited on polymeric substrates and to give indications for the design of future sensors on flexible substrates. Sputtered permalloy (NiFe 81/19) was used as a soft magnetic thin film layer. As substrate materials, liquid polyimide precursors and DuPont Kapton® HN foil were examined. Surface roughness was determined for each substrate material. The dynamic of soft magnetic behavior of the permalloy thin films was observed in a homogenous alternating magnetic field. Resulting R-Hcurves were evaluated in regard to the magnitude of the magnetoresistive effect (ΔR / R0-ratio), as well as the resulting magnetic anisotropy of the tested samples. B-H-curves were obtained by means of a vibrating sample magnetometer (VSM).

  10. Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure.

    Science.gov (United States)

    Li, H K; Chen, T P; Hu, S G; Li, X D; Liu, Y; Lee, P S; Wang, X P; Li, H Y; Lo, G Q

    2015-10-19

    Ultraviolet photodetector with p-n heterojunction is fabricated by magnetron sputtering deposition of n-type indium gallium zinc oxide (n-IGZO) and p-type nickel oxide (p-NiO) thin films on ITO glass. The performance of the photodetector is largely affected by the conductivity of the p-NiO thin film, which can be controlled by varying the oxygen partial pressure during the deposition of the p-NiO thin film. A highly spectrum-selective ultraviolet photodetector has been achieved with the p-NiO layer with a high conductivity. The results can be explained in terms of the "optically-filtering" function of the NiO layer. PMID:26480430

  11. All-Printed Thin-Film Transistor Based on Purified Single-Walled Carbon Nanotubes with Linear Response

    Directory of Open Access Journals (Sweden)

    Guiru Gu

    2011-01-01

    Full Text Available We report an all-printed thin-film transistor (TFT on a polyimide substrate with linear transconductance response. The TFT is based on our purified single-walled carbon nanotube (SWCNT solution that is primarily consists of semiconducting carbon nanotubes (CNTs with low metal impurities. The all-printed TFT exhibits a high ON/OFF ratio of around 103 and bias-independent transconductance over a certain gate bias range. Such bias-independent transconductance property is different from that of conventional metal-oxide-semiconductor field-effect transistors (MOSFETs due to the special band structure and the one-dimensional (1D quantum confined density of state (DOS of CNTs. The bias-independent transconductance promises modulation linearity for analog electronics.

  12. Preparation of thin film nanofibrous composite NF membrane based on EDC/NHS modified PAN-AA nanofibrous substrate

    Science.gov (United States)

    Yang, Y.; Wang, X.; Hsiao, B. S.

    2016-07-01

    A novel kind of thin-film nanofibrous composite (TFNC) nanofiltration (NF) membranes consisting of a polyamide (PA) barrier layer were successfully fabricated by interfacial polymerization (IFP) based on electrospun double-layer nanofibrous substrates, which have an ultrathin poly (acrylonitrile-co-acrylic acid) (PAN-AA) nanofibrous layer as top layer and a thicker polyacrylonitrile (PAN) nanofiber layer as bottom porous support layer. Immersing PAN/PAN-AA nanofibrous substrates into 1-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) aqueous solution and piperazine (PIP) aqueous solution (0.20 wt%) sequentially for a period of time, the carboxyl groups on PAN-AA nanofibers were activated by carbodiimide and then reacted with the amide groups. The as prepared composite membrane has an integrated structure with high rejection rate (98.0%); high permeate flux (40.4 L/m2h) for MgSO4 aqueous solution (2 g/L).

  13. Growth of II-VI thin-films from single-source precursors based on sterically encumbered sitel ligands

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.; Seligson, A.L.; Walker, J.M.; Bourret, E.D.; Bonasia, P.J.

    1992-04-01

    We have developed a new route to MOCVD of II-VI compounds based on the use of novel single-source precursors in which the II-VI elements are combined at the molecular level in a single covalent compound. We have prepared and fully characterized a number of new derivatives of zinc, cadmium and mercury incorporating large, sterically demanding tellurolate ligands of general formula: M(sitel){sub 2} where sitel = -TeSi(SiMe{sub 3}){sub 3}. The crystalline compounds are relatively volatile and are easily manipulated under nitrogen. Several of these compounds have been tested for their suitability as precursors in the MOCVD process. Clean pyrolysis reactions and deposition of thin films were achieved. The stoichiometry of the pyrolysis reaction has been determined by analysis of the reaction by-products.

  14. Growth and transport properties of thin Co-based Heusler films; Wachstum und Transporteigenschaften duenner Co-basierter Heusler-Filme

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Horst

    2010-07-01

    During this work, thin films of Co-based Heusler compounds were deposited under optimized conditions, and their structural, magnetic, and transport properties were investigated. The growth of the thin film samples was accomplished by two different methods. At first Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al and Co{sub 2}FeSi were deposited by sputter deposition from stoichiometric targets. This is considered the standard technique for the preparation of thin Heusler films. Also for the compounds investigated here it resulted in samples with a high degree of L2{sub 1} ordering. An excess of Fe atoms on Si sites was discovered by a detailed X-ray analysis in conjunction with NMR spectroscopy. The choice of different substrates allowed the adjustment of the growth direction. On the other hand, bulk magnetometry revealed that these sputter deposited films exhibit only a reduced magnetic moment, which is an indication of a reduced spin asymmetry at the Fermi level. One source of this problem seems to be a high residual gas pressure, which leads to an increased sample contamination. To improve this situation, a pulsed laser deposition system was constructed and put into operation. The resulting film growth under ultra-high vacuum conditions led to a further improvement of the short-range crystallographic ordering and a clear enhancement of the magnetic properties. The additional use of a metallic buffer layer resulted in samples with a smooth surface. This opens the door for a number of further analytical experiments, such as tunneling spectroscopy or Brillouin light scattering. After this successful demonstration of this growth technique, an additional method for the flexible variation of the film stoichiometry was implemented. In this work, this method was successfully applied in the deposition of Co{sub 2}Mn{sub 1-x}Fe{sub x}Si films. All samples in this series show a high degree of atomic ordering. Their magnetization values are compatible with the Slater-Pauling rule for

  15. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  16. Erbium-Doped Amorphous Carbon-Based Thin Films: A Photonic Material Prepared by Low-Temperature RF-PEMOCVD

    Directory of Open Access Journals (Sweden)

    Hui-Lin Hsu

    2014-02-01

    Full Text Available The integration of photonic materials into CMOS processing involves the use of new materials. A simple one-step metal-organic radio frequency plasma enhanced chemical vapor deposition system (RF-PEMOCVD was deployed to grow erbium-doped amorphous carbon thin films (a-C:(Er on Si substrates at low temperatures (<200 °C. A partially fluorinated metal-organic compound, tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5- octanedionate Erbium(+III or abbreviated Er(fod3, was incorporated in situ into a-C based host. Six-fold enhancement of Er room-temperature photoluminescence at 1.54 µm was demonstrated by deuteration of the a-C host. Furthermore, the effect of RF power and substrate temperature on the photoluminescence of a-C:D(Er films was investigated and analyzed in terms of the film structure. Photoluminescence signal increases with increasing RF power, which is the result of an increase in [O]/[Er] ratio and the respective erbium-oxygen coordination number. Moreover, photoluminescence intensity decreases with increasing substrate temperature, which is attributed to an increased desorption rate or a lower sticking coefficient of the fluorinated fragments during film growth and hence [Er] decreases. In addition, it is observed that Er concentration quenching begins at ~2.2 at% and continues to increase until 5.5 at% in the studied a-C:D(Er matrix. This technique provides the capability of doping Er in a vertically uniform profile.

  17. Multiferroic oxide thin films and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chengliang, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Weijin; Wu, Tom, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tian, Yufeng [School of Physics, Shandong University, Jinan 250100 (China)

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  18. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  19. Thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  20. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    International Nuclear Information System (INIS)

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm2/V s with good stability under a negative bias stress in InWZnO thin film transistors

  1. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Miyanaga, Miki; Awata, Hideaki [Advanced Materials R& D Laboratories, Sumitomo Electric Industries, Ltd., 1-1-1 Koyakita, Itami, Hyogo 664-0016 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  2. Combining mixed titania morphologies into a complex assembly thin film by iterative block-copolymer-based sol-gel templating

    Science.gov (United States)

    Niedermeier, M. A.; Magerl, D.; Zhong, Q.; Nathan, A.; Körstgens, V.; Perlich, J.; Roth, S. V.; Müller-Buschbaum, P.

    2012-04-01

    Sol-gel templating combined with iterative spin-coating steps are used to custom-tailor hierarchically structured titania thin films. Using poly(styrene-block-ethylene oxide) P(S-b-PEO) as the structure directing agent, a foam-like structure is combined with nanogranules. Both structural elements are merged into a complex assembly in thin film geometry. The resulting morphology is pictured by SEM and probed with GISAXS. The installed mesoporous titania sandwich structure exhibits holes with a size of 45 nm which makes it promising for applications in photovoltaics or photocatalysis. An optical characterization completes the structural investigation.

  3. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    Science.gov (United States)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  4. AlGaInN-based light emitting diodes with a transparent p-contact based on thin ITO films

    International Nuclear Information System (INIS)

    A method for obtaining transparent conductive ITO (indium-tin oxide) films aimed for use in light emitting diodes of the blue spectral range is developed. The peak external quantum efficiency of light-emitting diodes with a p-contact based on the obtained films reaches 25%, while for similar light-emitting diodes with a standard semitransparent metal contact, it is <10%. An observed increase in the direct voltage drop from 3.15 to 3.37 V does not significantly affect the possibility of applying these films in light-emitting diodes since the optical power of light-emitting diodes with a transparent p-contact based on ITO films exceeds that of chips with metal semitransparent p-contacts with a working current of 20 mA by a factor of almost 2.5. Light-emitting diodes with p-contacts based on ITO films successfully withstand a pumping current that exceeds their calculated working current by a factor of 5 without the appearance of any signs of degradation.

  5. Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer

    Science.gov (United States)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2000-01-01

    Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is

  6. Laser induced vibration of a thin soap film.

    OpenAIRE

    Emile, Olivier; Emile, Janine

    2014-01-01

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be implemented in an optofluidic...

  7. Microwave absorber based on silver nanoparticle-embedded polymer thin film.

    Science.gov (United States)

    Ramesh, G V; Sudheendran, K; Raju, K C James; Sreedhar, B; Radhakrishnan, T P

    2009-01-01

    Silver nanoparticle-embedded poly(vinyl alcohol) films are fabricated through a simple in situ process. The nanocomposite films are a few hundred nanometers thick with silver concentrations below 10% and the nanoparticles 5-10 nm in diameter. These films are shown to exhibit appreciable microwave absorption in the 8-12 GHz range; the return and insertion losses are found to be sensitive to the nanoparticle content. PMID:19441305

  8. ENERGY EFFICIENCY OF A PHOTOVOLTAIC CELL BASED THIN FILMS CZTS BY SCAPS

    Directory of Open Access Journals (Sweden)

    C. Mebarkiaa

    2016-05-01

    Full Text Available In the overall context of the diversification of the use of natural resources, the use of renewable energy including solar photovoltaic has become increasingly indispensable. As such, the development of a new generation of photovoltaic cells based on CuZnSnS4 (CZTS looks promising. Cu2ZnSnS4 (CZTS is a new film absorber, with good physical properties (band gap energy 1.4-1.6 eV [01] with a large absorption coefficient over 104 cm-1. Indeed, the performance of these cells exceeded 30% in recent years.In the present paper, our work based on modeling and numerical simulation, we used SCAPS to study the performance of solar cells based on Cu2ZnSnS4 (CZTS and thus evaluate the electrical efficiency η for typical structures of ZnO / i- ZnO / CdS / CZTS and ITO / ZnO / CdS / CZTS. Furthermore, the influence of the change of CdS by ZnSe buffer layer was treated in this paper.

  9. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  10. Epitaxial ferromagnetic thin films and heterostructures of Mn-based metallic and semiconducting compounds on GaAs

    Science.gov (United States)

    Tanaka, Masaaki

    1998-07-01

    We present two approaches to integrate magnetic materials with III-V semiconductors. One is epitaxial ferromagnetic metallic films and heterostructures on GaAs (0 0 1) substrates. Although crystal structure, lattice constant, chemical bonding and other properties are dissimilar, ferromagnetic hexagonal MnAs thin films and MnAs/NiAs ferromagnet/nonmagnet heterostructures (HSs) are grown on GaAs by molecular beam epitaxy (MBE). Multi-stepped magnetic hysteresis are controllably realized in MnAs/NiAs HSs, making this material promising for the application to multi-level nonvolatile recording on semiconductors. The other approach is to prepare a new class of GaAs based magnetic semiconductor, GaMnAs, by low-temperature molecular beam epitaxy (LT-MBE) on GaAs (0 0 1). New III-V based superlattices consisting of ferromagnetic semiconductor GaMnAs and nonmagnetic semiconductor AlAs are also successfully grown. Structural and magnetic properties of these new heterostructures are presented.

  11. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    Science.gov (United States)

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C. PMID:25180569

  12. A new room temperature gas sensor based on pigment-sensitized TiO2 thin film for amines determination.

    Science.gov (United States)

    Yanxiao, Li; Xiao-bo, Zou; Xiao-wei, Huang; Ji-yong, Shi; Jie-wen, Zhao; Holmes, Mel; Hao, Limin

    2015-05-15

    A new room temperature gas sensor was fabricated with pigment-sensitized TiO2 thin film as the sensing layer. Four natural pigments were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica) by ethanol. Natural pigment-sensitized TiO2 sensor was prepared by immersing porous TiO2 films in an ethanol solution containing a natural pigment for 24h. The hybrid organic-inorganic formed films here were firstly exposed to atmospheres containing methylamine vapours with concentrations over the range 2-10 ppm at room temperature. The films sensitized by the pigments from black-rice showed an excellent gas-sensitivity to methylamine among the four natural pigments sensitized films due to the anthocyanins. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of methylamine (r=0.931). At last, the black rice pigment sensitized TiO2 thin film was used to determine the biogenic amines generated by pork during storage. The developed films had good sensitivity to analogous gases such as putrscine, and cadaverine that will increase during storage. PMID:24934102

  13. A lossy mode resonance-based fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin film and nanoparticles

    International Nuclear Information System (INIS)

    In this article, the idea of employing lossy mode resonances (LMR) concertedly for gas sensing along with the reversible interaction of metal oxides with gases has been investigated. Fabrication and characterization of a LMR-based fiber optic probe with successive coatings of indium-tin oxide (ITO) film and nanoparticles over the unclad core of the fiber have been carried out for the detection of hydrogen gas (H2). The results have been compared with the probes having individual coatings of ITO thin film and nanoparticles. For calibrating and comparing, the wavelength interrogative spectra have been recorded for varying concentrations of H2 gas exploiting the sensor probes. A red shift of the spectrum has been observed with the increase in the concentration of the gas. The results uphold the fact that the LMR-based sensor with both thin film and nanoparticles layer has better sensitivity to H2 gas than the probes with the layer of either nanoparticles or thin film. A collective study on the three probes for different gases has predicted a maximum level of sensitivity for the probe with layers of thin film and nanoparticles along with the high selectivity and repeatability of the results for H2 gas. In addition to high sensitivity and selectivity, the proposed sensor can be used for online monitoring and remote sensing of the gas because of the fabrication of the probe on the optical fiber. (paper)

  14. Light management in thin-film silicon solar cells

    OpenAIRE

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved with silicon-based solar cells. To stay competitive with bulk crystalline silicon and other thin-film solar cell technologies, thin-film silicon solar cells have to achieve a conversion efficiency l...

  15. The state of the art of thin-film photovoltaics

    International Nuclear Information System (INIS)

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future

  16. Local deposition and patterning of catalytic thin films in microsystems

    International Nuclear Information System (INIS)

    The local deposition of catalysts is desired in a wide range of catalytic microsystems (microreactors and sensors). In this study, we investigate technologies enabling deposition and patterning of catalyst thin films in a manner compatible with standard micromachining processes. We evaluate and compare deposition techniques based on a combination of a self-assembly, soft-lithography and conventional micromachining. Platinum (Pt) and palladium (Pd) were used as model catalysts, both as a sputtered thin film and as nanoparticles supported on γ-alumina. The thin films were characterized and tested in terms of their catalytic activity based on CO chemisorption measurements, stability and reproducibility. (paper)

  17. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 oF while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  18. Characteristics of silicon-based BaxSr1-xTiO3 thin films prepared by a sol-gel method

    International Nuclear Information System (INIS)

    Silicon-based BaxSr1-xTiO3 (BST) thin films have been prepared by a sol-gel method with rapid thermal annealing (RTA) processes. Phase structure of the films has been investigated by x-ray diffraction. Atomic force microscopy studies reveal a dense and smooth surface of the sol-gel prepared films. Microstructure and electrical properties of the BST films can be affected by the substrate and the annealing process. RTA method is found to be very efficient to improve the electrical properties of the films. Dielectric constant and dielectric loss of the BST films at 100 kHz are 230 and 0.02, respectively. Leakage current density of the BST capacitors is 1.6x10-7A cm-2 at 3 V. (author)

  19. ITO-Free Semitransparent Organic Solar Cells Based on Silver Thin Film Electrodes

    Directory of Open Access Journals (Sweden)

    Zhizhe Wang

    2014-01-01

    Full Text Available ITO-free semitransparent organic solar cells (OSCs based on MoO3/Ag anodes with poly(3-hexylthiophene and [6,6]-phenyl-C61-butyric acid methyl ester films as the active layer are investigated in this work. To obtain the optimal transparent (MoO3/Ag anode, ITO-free reference OSCs are firstly fabricated. The power conversion efficiency (PCE of 2.71% is obtained for OSCs based on the optimal MoO3 (2 nm/Ag (9 nm anode, comparable to that of ITO-based reference OSCs (PCE of 2.85%. Then based on MoO3 (2 nm/Ag (9 nm anode, ITO-free semitransparent OSCs with different thickness combination of Ca and Ag as the cathodes are investigated. It is observed from our results that OSCs with Ca (15 nm/Ag (15 nm cathode have the optimal transparency. Meanwhile, the PCE of 1.79% and 0.67% is obtained for illumination from the anode and cathode side, respectively, comparable to that of similar ITO-based semitransparent OSCs (PCE of 1.59% and 0.75% for illumination from the anode and cathode side, resp. (Sol. Energy Mater. Sol. Cells, 95, pp. 877–880, 2011. The transparency and PCE of ITO-free semitransparent OSCs can be further improved by introducing a light couple layer. The developed method is compatible with various substrates, which is instructive for further research of ITO-free semitransparent OSCs.

  20. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  1. Durability of VO2-based thin films at elevated temperature: Towards thermochromic fenestration

    Science.gov (United States)

    Ji, Yu-Xia; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-11-01

    An explorative study was performed on sputter-deposited thermochromic VO2 films with top coatings of Al oxide and Al nitride. The films were exposed to dry air at a high temperature. Bare 80-nm-thick VO2 films rapidly converted to non-thermochromic V2O5 under the chosen conditions. Al oxide top coatings protected the underlying VO2 films and, expectedly, increased film thickness yielded improved protection. Specifically, it was found that a 30-nm-thick sputter-deposited Al oxide top coating delayed the oxidation by more than one day upon heating at 300°C. The results demonstrate the importance of protective layers in thermochromic windows for practical application.

  2. Characterization of U-based thin films: the UFe{sub 2+x} case

    Energy Technology Data Exchange (ETDEWEB)

    Kim-Ngan, Nhu-T H; Havela, L; Adamska, A M; Danis, S; Pesicka, J; Macl, J [Faculty of Mathematics and Physics, Charles University, 12116 Prague 2 (Czech Republic); Eloirdi, R; Huber, F; Gouder, T [European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Balogh, A G, E-mail: tarnawsk@mag.mff.cuni.cz [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

    2011-07-06

    We have characterized UFe{sub 2+x} films prepared by sputter deposition onto fused silica (SiO{sub 2}) and Si(111) substrates with the film thickness ranging from 75 nm to 900 nm. The X-ray diffraction results showed an amorphous character of the deposited material. Some of the films showed in addition a pattern of highly textured cubic Laves phase. Rutherford Backscattering Spectroscopy with 2 MeV He{sup +} ions has been used to determine the composition, thickness and concentration depth profile of the films. A large ageing affect was observed within 1 month after that the films were exposed to air. Magnetic measurements revealed T{sub C} increasing with relative Fe concentration and reaching approx. 450 K in UFe{sub 3.0}.

  3. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth;

    2010-01-01

    This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...

  4. Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, SY; Zhang, HN; Sviridov, L; Huang, LM; Liu, XH; Samson, J; Akins, D; Li, J; O' Brien, S

    2012-11-07

    We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2-2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

  5. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  6. Piezoelectric thin films: an integrated review of transducers and energy harvesting

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Oh, Il-Kwon

    2016-05-01

    Piezoelectric thin films offer a number of advantages in various applications, such as high energy density harvesters, a wide dynamic range, and high sensitivity sensors, as well as large displacement and low power consumption actuators. This review covers the available material forms and applications of piezoelectric thin films: lead zirconate titanate (PZT)-based thin films, lead-free piezoelectric thin films, piezopolymer films, cellulose-based electroactive paper (EAPap), and many other thin films used for electromechanical transduction. The electromechanical properties and performances of piezoelectric films are compared and their suitability for particular applications are reported. The key ideas of piezoelectric thin films are reviewed and discussed for sensory and actuation systems, energy harvesting, and medical and acoustic transducers. In the last section, an insight into the future outlook and possibilities for thin film-based devices and their integration into real-world applications is presented.

  7. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates

    International Nuclear Information System (INIS)

    For conventional thin-film transistors (TFTs), bottom-gate or top-gate configuration is always adopted because the channel current is generally controlled by vertical capacitive coupling. In this article, depending on huge lateral electric-double-layer (EDL) capacitor induced by spatial movement of protons in phosphosilicate glass (PSG) solid electrolyte dielectrics, coplanar-gate indium–zinc–oxide (IZO)-TFTs based on the lateral capacitive coupling were fabricated on bare paper substrates. The PSG solid electrolyte films here were used at the same time as gate dielectrics and smooth buffer layers. These TFTs showed a low-voltage operation of only 1 V with a large field-effect mobility of 13.4 cm2 V−1·s, a high current on/off ratio of 6  ×  106 and a small subthreshold swing of 75 mV/decade. Furthermore, with introducing another coplanar gate, AND logic operation was also demonstrated on the coplanar dual-gate TFTs. These simple lateral-coupling coplanar-gate IZO-TFTs on bare paper substrates are very promising for low-cost portable sensors and bio-electronics. (paper)

  8. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates

    Science.gov (United States)

    Wu, Guodong; Wan, Xiang; Yang, Yi; Jiang, Shuanghe

    2014-11-01

    For conventional thin-film transistors (TFTs), bottom-gate or top-gate configuration is always adopted because the channel current is generally controlled by vertical capacitive coupling. In this article, depending on huge lateral electric-double-layer (EDL) capacitor induced by spatial movement of protons in phosphosilicate glass (PSG) solid electrolyte dielectrics, coplanar-gate indium-zinc-oxide (IZO)-TFTs based on the lateral capacitive coupling were fabricated on bare paper substrates. The PSG solid electrolyte films here were used at the same time as gate dielectrics and smooth buffer layers. These TFTs showed a low-voltage operation of only 1 V with a large field-effect mobility of 13.4 cm2 V-1·s, a high current on/off ratio of 6  ×  106 and a small subthreshold swing of 75 mV/decade. Furthermore, with introducing another coplanar gate, AND logic operation was also demonstrated on the coplanar dual-gate TFTs. These simple lateral-coupling coplanar-gate IZO-TFTs on bare paper substrates are very promising for low-cost portable sensors and bio-electronics.

  9. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    Science.gov (United States)

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications. PMID:26039187

  10. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide

    International Nuclear Information System (INIS)

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 x 10-13-1.0 x 10-14 S cm-1. The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to 10. Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 1011. The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  11. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  12. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    International Nuclear Information System (INIS)

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction

  13. Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance

    International Nuclear Information System (INIS)

    A new fabrication technology for stretchable electrical interconnections is presented. This technology can be used to connect various non-stretchable polyimide islands hosting conventional electronic components. The interconnections are realized by patterning a 200 nm thick sputter-deposited gold film into meandering horseshoe shapes, functioning as 'two-dimensional springs' when embedded in a silicone elastomer. Polyimide support is introduced around the meandering conductors as a means to improve the mechanical performance. Processing is done on a temporary carrier; the islands and interconnections are embedded in polydimethylsiloxane in a final stage. To this end, a release technique compatible with high temperatures up to 350 oC based on the evaporation of a 400 nm thick layer of potassium chloride is developed. Test structures consisting of stretchable interconnections with a varying polyimide support width were fabricated. These were strained up to twice their original length without compromising their functionality. Also cyclic mechanical loading at various strains was performed, indicating the influence of the polyimide support width on the lifetime. At strains of 10%, a minimum lifetime of 500 000 cycles is demonstrated. The presented technology thus provides a promising route towards the fabrication of stretchable electronic circuits with enhanced reliability

  14. Multi-resonator structure based on continuous silver thin films for transparent conductors

    International Nuclear Information System (INIS)

    A type of metal-dielectric multilayered structures is investigated theoretically and experimentally for achieving optical transparency with a high electrical conductivity. The structure in our demonstrated case comprises of two coupled metal-dielectric-metal planar optical resonators with metal-layer thicknesses near to its skin depth. Simulations show that the maximum transmittance for visible light can easily reach 90% for silver-based structures. Experimentally, the sample fabricated exhibits a transmission window with a bandwidth of 150 nm and a maximum transmittance of 76% around 643 nm wavelength at normal incidence. Its sheet resistance is measured to be less than 10Ω/□, much smaller than that of common indium-tin-oxide films. Transparent conductors functioning for blue light and even for the whole visible light are also shown to be theoretically possible. Owing to their simple fabrication procedure as well as design flexibility, such a layered structure can serve as a compelling alternative as transparent conductors for optoelectronic devices, especially for liquid-crystal displays and light-emitting diodes

  15. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    R, Lisha; P, Geetha; B, Aravind P.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Cochin University of Science and Technology, Cochin-682022 (India); T, Hysen [Christian College, Chengannur, Kerala-689121 (India); Ojha, S.; Avasthi, D. K. [Inter University Accelerator Centre, Vasant Kunj, New Delhi-110067 (India); Ramanujan, R. V. [School of Materials Science and Engineering, Nanyang Technological University (Singapore)

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  16. An assessment of the environmental impacts on thin film cadmium telluride modules based on life cycle analysis

    International Nuclear Information System (INIS)

    Life cycle analysis has identified the production and decommissioning/disposal of thin film CdTe modules as the stages which have potentially the most severe environmental impacts. This paper investigates these stages with respect to materials, energy input and possible environmental and health implications

  17. A non-labeled DNA biosensor based on light addressable potentiometric sensor modified with TiO_2 thin film

    Institute of Scientific and Technical Information of China (English)

    Xiao-lin ZONG; Chun-sheng WU; Xiao-ling WU; Yun-feng LU; Ping WANG

    2009-01-01

    Titanium dioxide (TiO_2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect of ultraviolet (UV) treatment on the silanization level of TiO_2 thin film by 3-aminopropyltrietboxysilane (APTS), fluorescein isothiocyanate (FITC) was used to label the amine group on the end of APTS immobilized onto the TiO_2 thin film. We found that, with UV irradiation, the silani-zation level of the irradiated area of the TiO_2 film was improved compared with the non-irradiated area under well-controlled conditions. This result indicates that TiO_2 can act as a coating material on the biosensor surface to improve the effect and effi-ciency of the covalent immobilization of biomolecules on the sensor surface. The artificially synthesized probe DNA molecules were covalently linked onto the surface of TiO_2 film. The hybridization of probe DNA and target DNA was monitored by the recording of Ⅰ-Ⅴ curves that shift along the voltage axis during the process of reaction. A significant LAPS signal can be detected at 10 μmol/L of target DNA sample.

  18. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  19. Optical and Structural Properties of Ultra-thin Gold Films

    CERN Document Server

    Kossoy, Anna; Simakov, Denis; Leosson, Kristjan; Kéna-Cohen, Stéphane; Maier, Stefan A

    2014-01-01

    Realizing laterally continuous ultra-thin gold films on transparent substrates is a challenge of significant technological importance. In the present work, formation of ultra-thin gold films on fused silica is studied, demonstrating how suppression of island formation and reduction of plasmonic absorption can be achieved by treating substrates with (3-mercaptopropyl) trimethoxysilane prior to deposition. Void-free fi lms with deposition thickness as low as 5.4 nm are realized and remain structurally stable at room temperature. Based on detailed structural analysis of the fi lms by specular and diffuse X-ray reflectivity measurements, it is shown that optical transmission properties of continuous ultra-thin films can be accounted for using the bulk dielectric function of gold. However, it is important to take into account the non-abrupt transition zone between the metal and the surrounding dielectrics, which extends through several lattice constants for the laterally continuous ultra-thin films (film thickness...

  20. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  1. Enhanced electrical properties of pentacene-based organic thin-film transistors by modifying the gate insulator surface

    Science.gov (United States)

    Tang, J. X.; Lee, C. S.; Chan, M. Y.; Lee, S. T.

    2008-09-01

    A reliable surface treatment for the pentacene/gate dielectric interface was developed to enhance the electrical transport properties of organic thin-film transistors (OTFTs). Plasma-polymerized fluorocarbon (CFx) film was deposited onto the SiO 2 gate dielectric prior to pentacene deposition, resulting in a dramatic increase of the field-effect mobility from 0.015 cm 2/(V s) to 0.22 cm 2/(V s), and a threshold voltage reduction from -14.0 V to -9.9 V. The observed carrier mobility increase by a factor of 10 in the resulting OTFTs is associated with various growth behaviors of polycrystalline pentacene thin films on different substrates, where a pronounced morphological change occurs in the first few molecular layers but the similar morphologies in the upper layers. The accompanying threshold voltage variation suggests that hole accumulation in the conduction channel-induced weak charge transfer between pentacene and CFx.

  2. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  3. Thermal Expansion Coefficients of Thin Crystal Films

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.

  4. Slip-controlled thin film dynamics

    OpenAIRE

    Fetzer, R.; Rauscher, M; Münch, A.; Wagner, B. A.; Jacobs, K.

    2006-01-01

    In this study, we present a novel method to assess the slip length and the viscosity of thin films of highly viscous Newtonian liquids. We quantitatively analyse dewetting fronts of low molecular weight polystyrene melts on Octadecyl- (OTS) and Dodecyltrichlorosilane (DTS) polymer brushes. Using a thin film (lubrication) model derived in the limit of large slip lengths, we can extract slip length and viscosity. We study polymer films with thicknesses between 50 nm and 230 nm and various tempe...

  5. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  6. Thin-film optical shutter

    Science.gov (United States)

    Matlow, S. L.

    1981-02-01

    The ideal solution to the excessive solar gain problem is an optical shutter, a device which switches from being highly transmissive to solar radiation to being highly reflective to solar radiation when a critical temperature is reached in the enclosure. The switching occurs because one or more materials in the device undergo a phase transition at the critical temperature. A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, was chosen as the one most likely to meet all of the requirements of the thin film optical shutter project (TFOS). The reason for this choice is explored. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a quantum mechanical method, the equilibrium bond length (EBL) theory, was developed. Some results of EBL theory are included.

  7. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi [Department of Information Science and Electronic Engineering, Zhejiang University and Cyrus Tang Centre for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027 (China); Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich [Institute of Sensor and Actuator Systems, Vienna University of Technology, Floragasse, 7/2/366-MST, A-1040 Vienna (Austria); Luo, J. K., E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk [Institute of Renewable Energy Environmental Technology, University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Department of Information Science and Electronic Engineering, Zhejiang University and Cyrus Tang Centre for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027 (China)

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  8. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    AntonioPolitano

    2014-07-01

    Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  9. Thin-film Organic-based Solar Cells for Space Power

    Science.gov (United States)

    Bailey, Sheila G.; Harris, Jerry D.; Hepp, Aloysius F.; Anglin, Emily J.; Raffaelle, Ryne P.; Clark, Harry R., Jr.; Gardner, Susan T. P.; Sun, Sam S.

    2002-01-01

    Recent advances in dye-sensitized and organic polymer solar cells have lead NASA to investigate the potential of these devices for space power generation. Dye-sensitized solar cells were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AM0) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6 percent loss in efficiency as a result of the thermal cycling. In a separate project, novel -Bridge-Donor-Bridge- Acceptor- (-BDBA-) type conjugated block copolymer systems have been synthesized and characterized by photoluminescence (PL). In comparison to pristine donor or acceptor, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99 percent. Effective and efficient photo induced electron transfer and charge separation occurs due to the interfaces of micro phase separated donor and acceptor blocks. The system is very promising for a variety high efficiency light harvesting applications. Under an SBIR contract, fullerene-doped polymer-based photovoltaic devices were fabricated and characterized. The best devices showed overall power efficiencies of approx. 0.14 percent under white light. Devices fabricated from 2 percent solids content solutions in chlorobenzene gave the best results. Presently, device lifetimes are too short to be practical for space applications.

  10. High efficiency cadmium and zinc telluride-based thin film solar cells

    Science.gov (United States)

    Rohatgi, A.; Summers, C. J.; Erbil, A.; Sudharsanan, R.; Ringel, S.

    1990-10-01

    Polycrystalline Cd(1-x)Zn(x)Te and Cd(1-x)Mn(x)Te films with a band gap of 1.7 eV were successfully grown on glass/SnO2/CdS substrates by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. Polycrystalline Cd(1-x)Zn(x)Te films grown by MBE resulted in uniform composition and sharp interfaces. However, polycrystalline Cd(1-x)Mn(x)Te films grown by MOCVD showed nonuniform compositions and evidence of manganese accumulation at the Cd(1-x)Mn(x)Te/CdS interface. We found that manganese interdiffuses and replaces cadmium in the CdS film. By improving the CdTe/CdS interface and, thus, reducing the collection function effects, the efficiency of the MOCVD CdTe cell can be improved to about 13.5 percent. MBE-grown CdTe cells also produced 8 to 9 percent efficiencies. The standard CdTe process was not optimum for ternary films and resulted in a decrease in the band gap. Recent results indicate that CdCl2 + ZnCl2 chemical treatment may prevent the band-gap reduction, and that chromate etch (rather than bromine etch) may provide the solution to contact resistance in the ternary cells.

  11. High efficiency cadmium and zinc telluride-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Summers, C.J.; Erbil, A.; Sudharsanan, R.; Ringel, S. (Georgia Inst. of Tech., Atlanta, GA (USA). School of Electrical Engineering)

    1990-10-01

    Polycrystalline Cd{sub 1-x}Zn{sub x}Te and Cd{sub 1-x}Mn{sub x}Te films with a band gap of 1.7 eV were successfully grown on glass/SnO{sub 2}/CdS substrates by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. Polycrystalline Cd{sub 1-x}Zn{sub x}Te films grown by MBE resulted in uniform composition and sharp interfaces. However, polycrystalline Cd{sub 1-x}Mn{sub x}Te films grown by MOCVD showed nonuniform compositions and evidence of manganese accumulation at the Cd{sub 1-x}Mn{sub x}Te/CdS interface. We found that manganese interdiffuses and replaces cadmium in the CdS film. By improving the CdTe/CdS interface and, thus, reducing the collection function effects, the efficiency of the MOCVD CdTe cell can be improved to about 13.5%. MBE-grown CdTe cells also produced 8%--9% efficiencies. The standard CdTe process was not optimum for ternary films and resulted in a decrease in the band gap. Recent results indicate that CdCl{sub 2} + ZnCl{sub 2} chemical treatment may prevent the band-gap reduction, and that chromate etch (rather than bromine etch) may provide the solution to contact resistance in the ternary cells.

  12. Barium strontium titanate thin film varactors for room-temperature microwave device applications

    International Nuclear Information System (INIS)

    Recent progress in the development of barium strontium titanate thin film varactors for room temperature tunable microwave devices applications is reviewed, with emphasis on efforts towards the improvement in the quality of BST thin films and the fabrication issues crucial for the performance of microwave devices based on BST varactors. The paper provides examples of tunable microwave devices employing BST varactors. Other thin film materials currently competing with BST thin films are discussed. Topics which deserve further investigation are suggested. (topical review)

  13. Visible-light photochromic nanocomposite thin films based on polyvinylpyrrolidone and polyoxometalates supported on clay minerals

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Hybrid film was synthesized by entrapping PMoA supported on the Na-MMT into PVPd. • Na-MMT performed the function of excellent dispersion. • The hybrid film had good visible-light photochromic properties. • The photo-reduction process occurred according to the proton transfer mechanism. - Abstract: A novel reversible photochromic nanocomposite film was prepared by entrapping phosphomolybdic acid supported on the sodium bentonite (PMoA/Na-MMT) into polyvinylpyrrolidone (PVPd). The microstructure, thermal stability, photochromic behavior and mechanism of the hybrid film were investigated. Fourier transform infrared spectroscopy (FT-IR) results illustrated that the Keggin geometry of polyoxometalates (PMoA) and organic groups of PVPd were still preserved inside the composites and non-covalent bond interaction was built between PMoA/Na-MMT and PVPd polymer matrix. Transmission electron microscopy (TEM) image showed that PMoA nanoparticles were finely dispersed in Na-MMT which exhibited fine stratified structure. Atomic force microscopy (AFM) images indicated that the surface topography of polymeric matrix changed after adding PMoA/Na-MMT, and the surface appearance of nanocomposite film was different before and after visible-light irradiation. The stability of the hybrid film and the effect of the perturbation of Na-MMT on the stability were determined by means of the thermogravimetric analysis (TG) and differential thermal analysis (DTA). Irradiated with visible light, the ultraviolet-–visible spectra (UV–vis) showed that the hybrid films changed from colorless to blue and could recover the colorless state gradually in air, where oxygen played an important role during the bleaching process. The hybrid films exhibited excellent bleaching ability during the heating. According to the X-ray photoelectron spectroscopy (XPS) analysis, the appearance of Mo5+ species indicated the photo-reduction reaction between PMoA/Na-MMT and

  14. Visible-light photochromic nanocomposite thin films based on polyvinylpyrrolidone and polyoxometalates supported on clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang-yu; Dong, Qi [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Meng, Qing-ling [Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118 (China); Yang, Jun-Yan [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Feng, Wei, E-mail: weifeng@jlu.edu.cn [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Han, Xiang-kui [Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118 (China)

    2014-10-15

    Graphical abstract: - Highlights: • Hybrid film was synthesized by entrapping PMoA supported on the Na-MMT into PVPd. • Na-MMT performed the function of excellent dispersion. • The hybrid film had good visible-light photochromic properties. • The photo-reduction process occurred according to the proton transfer mechanism. - Abstract: A novel reversible photochromic nanocomposite film was prepared by entrapping phosphomolybdic acid supported on the sodium bentonite (PMoA/Na-MMT) into polyvinylpyrrolidone (PVPd). The microstructure, thermal stability, photochromic behavior and mechanism of the hybrid film were investigated. Fourier transform infrared spectroscopy (FT-IR) results illustrated that the Keggin geometry of polyoxometalates (PMoA) and organic groups of PVPd were still preserved inside the composites and non-covalent bond interaction was built between PMoA/Na-MMT and PVPd polymer matrix. Transmission electron microscopy (TEM) image showed that PMoA nanoparticles were finely dispersed in Na-MMT which exhibited fine stratified structure. Atomic force microscopy (AFM) images indicated that the surface topography of polymeric matrix changed after adding PMoA/Na-MMT, and the surface appearance of nanocomposite film was different before and after visible-light irradiation. The stability of the hybrid film and the effect of the perturbation of Na-MMT on the stability were determined by means of the thermogravimetric analysis (TG) and differential thermal analysis (DTA). Irradiated with visible light, the ultraviolet-–visible spectra (UV–vis) showed that the hybrid films changed from colorless to blue and could recover the colorless state gradually in air, where oxygen played an important role during the bleaching process. The hybrid films exhibited excellent bleaching ability during the heating. According to the X-ray photoelectron spectroscopy (XPS) analysis, the appearance of Mo{sup 5+} species indicated the photo-reduction reaction between PMo

  15. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    Rachana Gupta; Mukul Gupta; Thomas Gutberlet

    2008-11-01

    Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The film prepared with only Ar gas shows reflections corresponding to the permalloy phase in X-ray diffraction (XRD) pattern. The addition of nitrogen during sputtering results in broadening of the peaks in XRD pattern, which finally leads to an amorphous phase. The - loop for the sample prepared with only Ar gas is matching well with the values obtained for the permalloy. For the samples prepared with increased nitrogen partial pressure the magnetic moment decreased rapidly and the values of coercivity increased. The polarized neutron reflectivity measurements (PNR) were performed in the sample prepared with only Ar gas and with nitrogen partial pressure of 5 and 10%. It was found that the spin-up and spin-down reflectivities show exactly similar reflectivity for the sample prepared with Ar gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity.

  16. Nano porous Al2O3-TiO2 thin film based humidity sensor prepared by spray pyrolysis technique

    Science.gov (United States)

    Chandrashekara, H. D.; Angadi, Basavaraj; Ravikiran, Y. T.; Poornima, P.; Shashidhar, R.; Murthy, L. C. S.

    2016-05-01

    The nano porous surface structured TiO2 and Al2O3-TiO2 thin films were prepared using spray pyrolysis technique at 350°C. The XRD pattern of Al2O3-TiO2 film shows anatase phase and mixed phase of Al2TiO5. The surface morphology of films show a uniformly distributed nano porous structure. The elemental analysis through EDAX shows good stoichiometry. The sensitivity for humidity sensing were determined for both films of TiO2 and Al2O3-TiO2 and corresponding values are found to be 74.2% and 84.02%, this result reveal that Al2O3-TiO2 films shows higher sensing percent than the TiO2 due to the nano porous surface nature. The Al2O3-TiO2 film shows fast response time and long recovery time than the TiO2 film, this may be due to the meso-porous morphology of these films.

  17. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    International Nuclear Information System (INIS)

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  18. Thin liquid film flow and heat transfer under spray impingement

    International Nuclear Information System (INIS)

    A mathematical model was derived to investigate thin liquid film flow under spray impingement. Based on predicted flow patterns, a heat transfer model was developed to investigate the heat transfer performance in the non-boiling regime of spray cooling. The film thickness predicted by the thin film flow model favourably compares with reported experimental results obtained at different measurement locations and nozzle inlet pressures. It is found that the film thickness is sensitive to droplet flux distribution but not the nozzle inlet pressure. The comparison of the heated surface temperature between the proposed heat transfer model and the published experimental data shows good agreement. - Highlights: ► Thin liquid film flow in spray cooling is theoretically studied. ► A thin liquid film flow model is derived to predict the thin film flow pattern under spray impingement. ► A heat transfer model is developed to predict the heat transfer performance in the non-boiling regime of spray cooling. ► Film thickness of the liquid film flow is sensitive to droplet flux distribution but not the nozzle inlet pressure. ► Droplet impingement cooling is the primary cooling mechanism in the non-boiling regime of spray cooling.

  19. Planar Millimeter Wave Notch Filters Based on Magnetostatic Wave Resonance in Barium Hexagonal Ferrite Thin Films

    Science.gov (United States)

    Lu, Lei; Song, Young-Yeal; Bevivino, Joshua; Wu, Mingzhong

    2010-10-01

    There is a critical need for planar millimeter (mm) wave devices. To meet this need, one important strategy is in the use of high-anisotropy hexagonal ferrite films. The high internal anisotropy field for the hexagonal ferrites can be used to realize low-loss devices in the 30-100 GHz regime without the need for high external magnetic fields. Previous work has demonstrated the use of M-type barium hexagonal ferrite (BaM) films and ferromagnetic resonance therein to make mm-wave notch filters. This presentation reports on a new mm-wave notch filter that uses magnetostatic wave (MSW) resonance in BaM films. The device consists of a BaM film strip positioned on the top of a coplanar waveguide (CPW), with the strip's length along the CPW signal line. The BaM strip was grown by pulsed laser deposition and had uniaxial anisotropy along the strip's length. The device showed a band-stop filtering response centered at 53 GHz in absence of external fields. One can increase this frequency with nonzero external fields. A reduction in the strip's width resulted in an enhancement in peak absorption. This filtering response resulted from MSW resonance across the BaM strip's width. The MSW modes were excited by CPW-produced non-uniform alternating magnetic fields.

  20. Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film.

    Science.gov (United States)

    Wang, Wenzhen; Xu, Haitao; Cai, Jiang; Zhu, Jiabin; Ni, Chaowei; Hong, Feng; Fang, Zebo; Xu, Fuzong; Cui, Siwei; Xu, Run; Wang, Linjun; Xu, Fei; Huang, Jian

    2016-04-18

    We report a prototypical device of CH3NH3PbCl3 film ultraviolet photodetectors that were fabricated with a coplanar metal-semiconductor-metal Au interdigital electrode configuration. Pure phase CH3NH3PbCl3 films with a good crystallinity were formed by a hybrid sequential deposition process featured with inter-diffusion of PbCl2 and CH3NH3Cl upon annealing. The CH3NH3PbCl3 film photodetector exhibits a high responsivity of 7.56 A /W at 360 nm, a ultraviolet/visible rejection ratio (R360 nm/R500 nm) was about two orders of magnitude and fast response speed with a rising time of 170 μs and a decay time of 220 μs. All the above results demonstrate CH3NH3PbCl3 film photodetector as a competitive candidate in the application of visible blind UV detectors. PMID:27137279